
Knowledge Representation on the Web

Stefan Decker1, Dieter Fensel2, Frank van Harmelen2,3, Ian Horrocks4,
Sergey Melnik1, Michel Klein2 and Jeen Broekstra3

1 AIFB, University of Karlsruhe, Germany
2 Vrije Universiteit Amsterdam, Holland

3 AIdministrator Nederland B.V.
4 Department of Computer Science, University of Manchester, UK

Abstract

Exploiting the full potential of the World Wide Web will require semantic
as well as syntactic interoperability. This can best be achieved by providing a
further representation and inference layer that builds on existing and proposed
web standards. The OIL language extends the RDF schema standard to pro-
vide just such a layer. It combines the most attractive features of frame based
languages with the expressive power, formal rigour and reasoning services of a
very expressive description logic.

1 Introduction

The World Wide Web has been made possible through a set of widely established
standards which guarantee interoperability at various levels: the TCP/IP protocol has
ensured that now nobody has to worry about transporting bits over the wire any-
more. Similarly, HTTP and HTML have provided a standard way of retrieving and
presenting hyperlinked text documents. Applications were able to use this common
infrastructure and this has lead to the WWW as we know it now.

The current Web can be characterised as the second Web generation: the first
generation Web started with handwritten HTML pages; the second generation made
the step to machine generated and often active HTML pages. These generations of
the Web were meant for direct human processing (reading, browsing, form-filling,
etc). The third generation Web that we could call the ”Knowledgeable Web”, aims
at machine processable meaning of information. This coincides with the vision that
Tim Berners-Lee calls the Semantic Web in his recent book ”Weaving the Web” [2].
The Knowledgeable Web will enable intelligent services such as information brokers,
search agents, information filters etc.



The Semantic Web with machine processable information contents will only be
possible when further levels of interoperability are established. Standards must be
defined not only for the syntactic form of documents, but also for the form of their
semantic contents. Such semantic interoperability is facilitated by recent W3C stan-
dardisation efforts, notably XML/XML Schema and RDF/RDF Schema.

In this paper, we make the following claims:

• A further representation and inference layer is needed on top of the currently
available layers.

• This additional layer should be placed on top of the RDF layer, and not on top of
the XML layer. This runs counter to many XML proponents, who recommend
XML as the solution of the interoperability problems.

We will present the representation and inference language OIL1 [6] and show how
it can be embedded into the Semantic Web infrastructure by placing it on top of the
RDF/RDF-Schema layer. OIL aims to combine the most attractive features of frame
based languages (i.e., their more intuitive syntax and their acceptability within the
ontology community) with the expressive power and formal rigour of a very expres-
sive description logic. In fact the OIL language could be seen as nothing more that
a frame-like syntax for the SHIQ DL. However, this is to underestimate the impor-
tance of the re-packaging and of the RDF/RDF-Schema embedding, the combination
of which has already generated considerable interest in the web ontology community.
Of course the embedding technique could be used with any DL, but the features of
OIL/SHIQ (e.g., its support for role as well as concept hierarchies) make it particu-
larly suitable as an extension for RDF/RDF-Schema.

2 Ontologies

Ontologies will play a crucial role in enabling the processing and sharing of knowl-
edge between programs on the Web. Ontologies are generally defined as a ”represen-
tation of a shared conceptualisation of a particular domain”. They provide a shared
and common understanding of a domain that can be communicated across people and
application systems. They have been developed in Artificial Intelligence to facilitate
knowledge sharing and reuse. Recent articles covering various aspects of ontologies
can be found in [9, 10, 5].

An example of the use of ontologies on the Knowledgeable Web is in e-
commerce sites where ontologies are needed (a) to enable machine-based commu-
nication between buyer and seller, (b) to enable vertical integration of markets (e.g.
www.verticalnet.com), and (c) to leverage reusable descriptions between different
marketplaces.

1Ontology Inference Layer.



A second example of the use of ontologies can be found in search engines. By
using ontologies the search engines can escape from the current keyword-based ap-
proach, and can find pages that contain syntactically different, but semantically simi-
lar words (e.g. www.hotbot.com).

Typically, an ontology contains a hierarchical description of important concepts
in a domain (is-a hierarchy), and describes crucial properties of each concept through
an attribute-value mechanism. Additionally, further relations between concepts may
be described through additional logical sentences. Finally, individuals in the domain
of interest are assigned to one or more concepts in order to give them their proper
type.

3 The OIL language

OIL is based on XOL [7] (which is an XML serialisation of the OKBC-lite knowledge
model), with extensions that enable the full power of the SHIQ DL to be captured:

• Arbitrary boolean expressions (called class expressions) are allowed anywhere
that a class name can appear.

• A slot definition can be treated as a class and can be used in class expressions.

• Class definitions have an (optional) additional field that specifies whether the
class is primitive or non-primitive (the default is primitive).

• A class can be used as a slot value and is taken to specify that the slot must
have at least one filler that is an instance of the given class.

• Global slot definitions are extended to allow the specification of superslots
(subsuming slots) and of relation properties such as transitive, and
symmetrical.

• The additional rules governing XOL documents (see [7]) are not required in
OIL (e.g., there is no restriction on the ordering of class and slot definitions).

The extensions are designed to be backwards compatible with XOL so that, when no
extensions are used, the result is an XOL/OKBC ontology.

OIL also restricts XOL in some respects.

• Initially, only conceptual modelling will be supported, i.e., individuals are not
supported. This does not seem too onerous a restriction for an ontology spec-
ification language given that an ontology can be viewed as a kind of schema.
Moreover, allowing individuals to occur in class definitions is equivalent to
having extensionally defined classes, and this soon leads to very hard reasoning
problems and even undecidability [8, 3, 1].



• The slot constraints numeric-minimum and numeric-maximum are not
supported. Future extensions of OIL may support concrete data types (includ-
ing numbers and numeric ranges).

• Collection types other than set are not supported.

• Slot inverse can only be specified in global slot definitions: naming the
inverse of a relation only seems to make sense when applied globally.

The semantics of OIL rely on a translation into the SHIQ description logic.
SHIQ has a highly expressive concept language that is able to fully capture the OIL
core language, and we will define a satisfiability preserving translation σ(·) that maps
OIL ontologies into SHIQ terminologies. This has the added benefit that an existing
SHIQ reasoner implemented in the FaCT system can be used to reason with OIL
ontologies.

An OIL ontology O consists of a list d1, . . . , dn, where each di is either a class
definition or a slot definition. This list of definitions is translated into a SHIQ ter-
minology T (a set of axioms) as follows:

σ(d1, . . . , dn) =
⋃

i=1,...,n

σ(di)

A class definition is either a pair 〈CN, D〉 or a triple 〈CN, P,D〉, where
CN is a class name, D is a class description and P is either primitive or
defined; 〈CN, D〉 is equivalent to 〈CN,primitive, D〉. A class definition
〈CN,primitive, D〉 is written CN v D (it states that CN is a subclass of the
class described by D) and a class definition 〈CN,defined, D〉 is written CN .

= D

(it states that CN is equivalent to the class described by D).
A class description D consists of an optional subclass-of component, itself a

list of one or more class-expressions C1, . . . , Cn, followed by a list of zero or
more slot-constraints A1, . . . , Am. We will write such a class description as

[C1, . . . , Cn, A1, . . . , Am].

A class-expression is either a class name CN, a slot-constraint,
a conjunction of class expressions, written C1 u . . . u Cn, a disjunction of class
expressions, written C1 t . . . t Cn or a negated class expression, written ¬C. A
slot-constraint consists of a slot name SN followed by one or more con-
straints that apply to the slot, written SN[a1, . . . , an]. Each constraint can be either:

• A value constraint with a list of one or more class-expressions, written
∃C1, . . . , Cn.

• A value-type constraint with a list of one or more class-expressions, written
∀C1, . . . , Cn.



σ(CN v D) = {σ(CN) v σ(D)}
σ(CN .

= D) = {σ(CN) v σ(D), σ(D) v σ(CN)}
σ([C1, . . . , Cn, A1, . . . , Am]) = > u σ(C1) u . . . u σ(Cn) u σ(A1) u . . . u σ(Am)

σ(CN) = CN
σ(>) = >

σ(C1 u . . . u Cn) = σ(C1) u . . . u σ(Cn)
σ(C1 t . . . t Cn) = σ(C1) t . . . t σ(Cn)

σ(¬C) = ¬σ(C)
σ(SN[a1, . . . , an]) = σ(SN(a1)) u . . . u σ(SN(an))

σ(SN(∃C1, . . . , Cn)) = ∃SN.σ(C1) u . . . u ∃SN.σ(Cn)
σ(SN(∀C1, . . . , Cn)) = ∀SN.σ(C1) u . . . u ∀SN.σ(Cn)

σ(SN(6 n,C)) = 6nSN.σ(C)
σ(SN(> n,C)) = >nSN.σ(C)
σ(SN(= n,C)) = 6nSN.σ(C) u >nSN.σ(C)

Figure 1: Translation of OIL class definitions into SHIQ

• A max-cardinality constraint with a non-negative integer n followed (op-
tionally) by a class expression C, written 6n,C (6n,> if the class expression
is omitted).

• A min-cardinality constraint with a non-negative integer n followed (op-
tionally) by a class expression C, written >n,C (>n,> if the class expression
is omitted).

• A cardinality constraint with a non-negative integer n followed (option-
ally) by a class expression C, written =n,C (=n,> if the class expression is
omitted).

In order to maintain the decidability of the language, cardinality constraints can
only be applied to simple slots. A simple slot is one that is neither transitive nor has
any transitive subslots. However, as the transitivity of a slot can be inferred (e.g.,
from the fact that the inverse of the slot is a transitive slot), simple slot is defined in
terms of the translation into SHIQ: a slot SN in an ontology O is a simple slot iff
σ(SN) is a simple role in the SHIQ terminology σ(O).

We can now define how the function σ(·) maps an OIL class definition into a set
of SHIQ axioms. The definition is given in Figure 1, where CN is a class name
(or a SHIQ concept name), SN is a slot name (or SHIQ role name), D is a class
description, C (possibly subscripted) is a class expression, A (possibly subscripted)
is a slot constraint, ai is a constraint (on a slot) and n is a non-negative integer.

A slot definition is a pair 〈SN, D〉, where SN is a slot name and D is a slot
description. A slot description D consists of an optional subslot-of component,



σ(SN[RN1, . . . , RNn, S1, . . . , Sm]) = σ(SN[RN1, . . . , RNn] ∪ σ(SN[S1, . . . , Sm])
σ(SN[RN1, . . . , RNn] =

⋃
i=1,...,n

σ(SN v RN i)

σ(SN[S1, . . . , Sm]) =
⋃

i=1,...,m
σ(SN(Si))

σ(SN v RN) = {SN v RN}
σ(SN(↓ [C1, . . . , Cn])) =

⋃
i=1,...,n

{∃SN.> v σ(Ci)}

σ(SN(↑ [C1, . . . , Cn])) =
⋃

i=1,...,n
{> v ∀SN.σ(Ci)}

σ(SN(−RN)) = {SN− v RN, RN v SN−}
σ(SN([P1, . . . , Pn])) =

⋃
i=1,...,n

{σ(SN(Pi))}

σ(SN(+)) = {SN ∈ S+}
σ(SN(↔)) = {SN− v SN, SN v SN−}

Figure 2: Translation of OIL slot definitions into SHIQ

itself a list of one or more slot names RN1, . . . , RNn, followed by a list of zero or
more global slot constraints (e.g., inverse) S1, . . . , Sm. We will write such a slot
definition as:

SN[RN1, . . . , RNn, S1, . . . , Sm]

Each global constraint Si on SN can be either:

• A domain constraint with a list of one or more class-expressions, written
↓ [C1, . . . , Cn].

• A range constraint with a list of one or more class-expressions, written
↑ [C1, . . . , Cn].

• An inverse constraint with a slot name RN , written −RN .

• A properties constraint with a list of one or more properties, writ-
ten [P1, . . . , Pn]. Valid properties are transitive, written + and
symmetrical, written ↔.

We can now define how the function σ(·) maps an OIL slot definition into a set
of SHIQ axioms. The definition is given in Figure 2, where RN and SN are slot
names (or SHIQ role names), Ci is a class expression, Si is a global slot constraint
and Pi is a property.

4 Using OIL to Enrich RDF/RDF Schema

One of the key ideas behind OIL is that its much more expressive modelling primitives
can be used to enrich RDF/RDF Schema. We have chosen RDF rather than XML
because XML is just a formalism for defining a grammar: it can be used to represent



the structure of a document, but does not impose any common interpretation no the
data contained in the document.

RDF is designed to facilitate semantic interoperability by representing a domain
model in terms of simple object-relation-object triples, and techniques from Knowl-
edge Representation can be used to help find mappings between two RDF descrip-
tions. Of course this does not solve the general interoperability problem (i.e., finding
semantic-preserving mappings between objects), but the usage of RDF for data inter-
change raises the level of potential reuse much beyond the parser reuse which is all
that one would obtain from using plain XML. Moreover, since RDF describes a layer
independent of XML, an RDF domain model (and software using the RDF model)
could still be used, even if XML syntax changes or becomes obsolescent.

Of course we would ideally like a universally shared KR language to support the
Semantic Web. For a variety of pragmatic and technological reasons, this ideal is
not achievable in practice, and we will have to live with a multitude of meta-data
representations. RDF is said to contain as much KR technology as can be shared
between widely varying meta-data languages–which is not very much! However, the
RDF Schema language is powerful enough to define richer languages on top of the
relatively limited primitives of RDF.

Defining an ontology in RDF means defining an RDF Schema which in turn de-
fines all the terms and relationships of the particular language. In this ontology the
subclass-of primitive is a relation. This identifies the two arguments of ”subclass-of”
as objects: a class (the subclass) and a class-expression (the superclass). The view
of the class-expression as a object is justified by the fact that the expression defines a
new (unnamed) class. The remaining OIL modelling primitives are similarly defined
in the schema (see [6] for full details).

Since every ontology (RDF Schema) uses its own namespace [4], terms from dif-
ferent ontologies can be mixed in one RDF document without confusion. Since RDF
defines a clear object structure, it is possible to make assertions with one language
about an object defined in terms of another language. Note that this is not possible in
XML: since there is no defined meaning for a particular tag (Object, Attribute, Value
etc.), nothing can be assumed about the object structure.

Our proposal can be summarised as follows:

1. Use RDF Schema to describe the OIL modelling primitives.

2. Use the resulting RDF Schema document (containing the meta-ontology of
OIL) to describe a specific ontology in OIL.

3. Use the RDF Schema documents from 1 and 2 to describe instances of the
specific OIL ontology modelled in 2.

Although the same technique could be applied to any KR language, the fact that
OIL supports both of the basic RDF schema modelling primitives (rdfs:subClassOf



and rdfs:subPropertyOf) makes it particularly well suited to this purpose, as signifi-
cant parts of OIL ontologies will be available to any RDF schema aware application.
Moreover, the direct correspondence with the SHIQ DL can be exploited to provide
reasoning services for OIL. As well as supporting ontology design, these reasoning
services could be used to make inferred subsumption relations available to any RDF
schema aware application by adding explicit rdfs:subClassOf statements to the ontol-
ogy.

Initially, OIL’s main use may be in ontology design, with the resulting ontologies
being used by applications that are only RDF schema aware, and simply ignore any
additional knowledge captured by OIL. However, in the longer run we hope to see the
development of “OIL aware” applications that will enhance the services they provide
by exploiting the richer semantic content of OIL ontologies.

5 Discussion

In this paper we have argued that semantic interoperability will be a sine qua non for
the Semantic Web, and that such semantic interoperability must be achieved by ex-
ploiting the current RDF proposals. The RDF datamodel makes approaches from AI
and Knowledge Engineering to establish semantic interoperability directly applica-
ble. Furthermore, it is highly extensible. We have demonstrated this by applying it to
a particular ontological modelling language, OIL. A similar strategy should apply to
any knowledge modelling language, although we have argued that OIL is particularly
suitable for extending RDF.

The arguments in this paper are an important message to at least two different
communities.

The Web community is currently regarding XML as the most important step to-
wards semantic integration. We have argued why this cannot be true in the long run,
and why RDF is a much better platform for this.

The AI community is currently very much interested in applying many of its tech-
niques to the Web. We have shown a generic method that can be used to Web-enable
arbitrary Knowledge Representation languages. This is an important step towards the
realization of the dream of the Semantic Web.

References

[1] C. Areces, P. Blackburn, and M. Marx. A road-map on complexity for hybrid
logics. In Proc. of CSL’99, number 1683, pages 307–321, 1999.

[2] T. Berners-Lee. Weaving the Web. Harpur, San Francisco, 1999.



[3] P. Blackburn and J. Seligman. What are hybrid languages? In M. Kracht,
M. de Rijke, H. Wansing, and M. Zakharyaschev, editors, Advances in Modal
Logic, volume 1, pages 41–62. CSLI Publications, Stanford University, 1998.

[4] T. Bray, D. Hollander, and Andrew Layman (eds.). Namespaces in xml. World
Wide Web Consortium Recommendation, Jan 1999. http://www.w3.org/
TR/REC-xml-names/.

[5] A. Gomez Perez and V. R. Benjamins. Applications of ontologies and problem-
solving methods. AI-Magazine, 20(1):119–122, 1999.

[6] I. Horrocks, D. Fensel, C. Goble, F. Van Harmelen, J. Broekstra, M. Klein, and
S. Staab. The ontology inference layer oil. Technical report, Free University of
Amsterdam, 2000. http://www.ontoknowledge.org/oil/.

[7] P. D. Karp, V. K. Chaudhri, and J. Thomere. XOL: An XML-based ontology
exchange language. Version 0.3, July 1999.

[8] A. Schaerf. Reasoning with individuals in concept languages. Data and Knowl-
edge Engineering, 13(2):141–176, 1994.

[9] M. Uschold and M. Grüninger. Ontologies: Principles, methods and applica-
tions. Knowledge Engineering Review, 11(2), 1996.

[10] G. van Heijst, A. Th. Schreiber, and B. J. Wielinga. Using explicit ontolo-
gies in KBS development. International Journal of Human-Computer Stud-
ies, 46(2/3):183–292, 1997. http://ksi.cpsc.ucalgary.ca/IJHCS/
VH/.


