
Adding formal semantics to the Web
building on top of RDF Schema

Jeen Broekstra1, Michel Klein2, Stefan Decker3, Dieter Fensel2, Ian Horrocks4

1 AIdministrator Nederland b.v., Amersfoort, The Netherlands, e-mail: jeen.broekstra@aidministrator.nl
2 Department of Computer Science, Vrije Universiteit, Amsterdam, The Netherlands, e-mail: {mcaklein,dieter}@cs.vu.nl
3 Department of Computer Science, Stanford University, Stanford, USA, e-mail: stefan@db.stanford.edu
4 Department of Computer Science, University of Manchester, UK, e-mail: horrocks@cs.man.ac.uk

4th September 2000

Abstract RDF Schema provides means to define vocabulary,
structure and constraints for expressing metadata about Web
resources. However, formal semantics for the primitives de-
fined in RDF Schema are not provided, and the expressivity
of these primitives is not enough for full-fledged ontologi-
cal modeling and reasoning. To perform these tasks, an addi-
tional layer on top of RDF Schema is needed. In this paper,
we will show how RDF Schema can be extended in such a
way that a full knowledge representation language can be ex-
pressed in it, thus enriching it with the required additional
expressivity and the semantics of this language. We do this
by describing the ontology language OIL as an extension of
RDF Schema. First, we give a short introduction to both RDF
Schema and OIL. We then proceed to define a Schema to ex-
press OIL ontologies in RDF, where the aim is to use exist-
ing RDF terminology where possible, and extending RDF(S)
where necessary. The result is an RDF Schema definition of
OIL primitives, which allows one to express any OIL ontol-
ogy in RDF syntax, thus enabling the added benefits of OIL,
such as reasoning support and formal semantics, to be used on
theWeb.We conclude that our method of extending is equally
applicable to other knowledge representation formalisms.

1 Introduction

RDF Schema provides means to define vocabulary, structure
and constraints for expressing metadata about Web resources.
However, formal semantics for the primitives defined in RDF
Schema are not provided, and the expressivity of these primi-
tives is not enough for full-fledged ontological modeling and
reasoning. To perform these tasks, an additional layer on top
of RDF Schema is needed. Tim Berners-Lee calls this layered
architecture the Semantic Web [Berners-Lee, 1998].

At the lowest level of the Semantic Web (see figure 1) a
generic mechanism for expressing machine readable seman-
tics of data is required. The Resource Description Framework

Logical layer

Schema layer

Data layer

Formal semantics and reasoning support
- OIL

Definition of vocabulary
- RDF Schema

Simple data model and syntax for meta data
- RDF

Figure 1. The three-layered architecture of the Semantic Web

(RDF) [Lassila and Swick, 1999] is this foundation for pro-
cessing metadata, providing a simple data model and a stan-
dardized syntax for metadata. Basically, it provides the lan-
guage for writing down factual statements. The next layer is
the schema layer (provided by the RDF Schema specifica-
tion [Brickley and Guha, 2000]). We will show how a formal
knowledge representation language can be used as the third,
logical, layer. We will illustrate this by defining the ontol-
ogy language OIL [Fensel et al., 2000,Horrocks et al., 2000]
as an extension of RDF Schema.

OIL (Ontology Inference Layer), a major spin-off from
the IST project On-To-Knowledge1, is a Web-based represen-
tation and inference layer for ontologies, which unifies three
important aspects provided by different communities: formal
semantics and efficient reasoning support as provided by De-

1 On-To-Knowledge: Content-driven Knowledge-Management Tools
through Evolving Ontologies (IST-1999-10132). Project partners are the
Vrije Universiteit Amsterdam (VU); the Institute AIFB, University of Karl-
sruhe, Germany; AIdministrator, the Netherlands; British Telecom Labora-
tories, UK; Swiss Life, Switzerland; CognIT, Norway; and Enersearch, Swe-
den. http://www.ontoknowledge.org/

http://www.ontoknowledge.org/


2 Jeen Broekstra, Michel Klein et al.: Adding formal semantics to the Web

scription Logics, epistemological rich modeling primitives as
provided by the Frame community, and a standard proposal
for syntactical exchange notations as provided by the Web
community.

The content of the paper is organized as follows. In sec-
tion 2 we provide a short introduction to RDF and RDF
Schema. Section 3 provides a very brief introduction into
OIL. Section 4 illustrates in detail how RDF Schema can be
extended, using OIL as an example knowledge representation
language. Finally, we provide some conclusions and recom-
mendations in section 5.

2 RDF and RDF Schema

In this section we will discuss the main features of RDF and
RDF Schema (or RDFS for short) and we will critically re-
view some of their design decisions.

2.1 Introduction to RDF

A prerequisite for the Semantic Web is machine-processable
semantics of the information. The Resource Description
Framework (RDF) [Lassila and Swick, 1999] is a foundation
for processing metadata; it provides interoperability between
applications that exchange machine-understandable informa-
tion on the Web. Basically, RDF defines a data model for de-
scribing machine processable semantics of data. The basic
data model consists of three object types:

– Resources: A resource may be an entire Web page; a part
of a Web page; a whole collection of pages; or an object
that is not directly accessible via the Web; e.g. a printed
book. Resources are always named by URIs.

– Properties: A property is a specific aspect, characteristic,
attribute, or relation used to describe a resource.

– Statements: A specific resource together with a named
property plus the value of that property for that resource
is an RDF statement.

These three individual parts of a statement are called, respec-
tively, the subject, the predicate, and the object. In a nutshell,
RDF defines object-property-value-triples as basic model-
ing primitives and introduces a standard syntax for them.
An RDF document will define properties in terms of the re-
sources to which they apply. As RDF statements are also re-
sources, statements can be recursively applied to statements
allowing their nesting.

2.2 Introduction to RDF Schema

The modeling primitives offered by RDF are very
basic2. Therefore, the RDF Schema specification
[Brickley and Guha, 2000] defines further modeling prim-
itives in RDF. Examples are class, subclass relationship,
2 Actually they correspond to binary predicates of ground terms, where,

however, the predicates may be used as terms, as well.

domain and range restrictions for property, and subproperty.
With these extensions, RDF Schema comes closer to existing
ontology languages.

Despite the similarity in their names, RDF Schema fulfills
a different role than XML Schema does. XML Schema, and
also DTDs, prescribes the order and combination of tags in an
XML document. In contrast, RDF Schema only provides in-
formation about the interpretation of the statements given in
an RDF data model, but it does not constrain the syntactical
appearance of an RDF description. Therefore, the definition
of OIL in RDFS that will be presented in this document will
not provide constraints on the structure of an actual OIL on-
tology.

In this section we will briefly discuss the overall structure
of RDFS and its main modeling primitives.

2.2.1 The data model of RDF Schema

Figure 2 pictures the subclass-of hierarchy of RDFS and fig-
ure 3 pictures the instance-of relationships of RDFS primi-
tives according to [Brickley and Guha, 2000]. The ‘rdf’ pre-
fix refers to the RDF name space (i.e., primitives with this
prefix are already defined in RDF) and ‘rdfs’ refers to new
primitives defined by RDFS. Note that RDFS uses a non-
standard object-meta model: the properties rdfs:subClassOf,
rdf:type, rdfs:domain and rdfs:range are used both as primi-
tive constructs in the definition of the RDF schema specifi-
cation and as specific instances of RDF properties. This dual
role makes it possible to view e.g. rdfs:subClassOf as an RDF
property just like other predefined or newly introduced RDF
properties, but introduces a self referentiality into the RDF
schema definition, which makes it rather unique when com-
pared to conventional model and meta modeling approaches,
and makes the RDF schema specification very difficult to read
and to formalize, cf. [Nejdl et al., 2000].

2.2.2 The modeling primitives of RDF Schema

In this section, we will discuss the main classes, properties,
and constraints in RDFS.

rdfs:Resource

rdfs:Class rdfs:ConstraintResource rdf:Property

rdfs:ConstraintProperty rdfs:ContainerMembershipProperty

Figure 2. The subclass-of hierarchy of modeling primitives in RDFS.

– Core classes are rdfs:Resource, rdf:Property3, and
rdfs:Class. Everything that is described by RDF ex-
pressions is viewed to be an instance of the class

3 Note, that in this sense a property is an instance of a class.



Jeen Broekstra, Michel Klein et al.: Adding formal semantics to the Web 3

rdfs:Resource

rdf:Property rdfs:ContainerMembershipProperty

rdfs:ConstraintProperty

rdfs:Literalrdfs:ConstraintResource

rdfs:Class

Figure 3. The instance-of relationships of modeling primitives in RDFS.

rdfs:Resource. The class rdf:Property is the class
of all properties used to characterize instances of
rdfs:Resource, i.e., each slot / relation is an instance of
rdf:Property. Finally, rdfs:Class is used to define con-
cepts in RDFS, i.e., each concept must be an instance of
rdfs:Class.

– Core properties are rdf:type, rdfs:subClassOf, and
rdfs:subPropertyOf. The rdf:type relation models
instance-of relationships between resources and classes.
A resource may be an instance of more than one class.
The rdfs:subClassOf4 relation models the subsumption
hierarchy between classes and is supposed to be tran-
sitive. Again, a class may be subclass of several other
classes, however, a class can neither be a subclass of
its own nor a subclass of its own subclasses, i.e., the
inheritance graph is cycle-free. The rdfs:subPropertyOf
relation models the subsumption hierarchy between
properties. If some property P2 is a rdfs:subPropertyOf
another property P1 , and if a resource R has a P2

property with a value V , this implies that the resource
R also has a P1 property with value V . Again, the
inheritance graph is supposed to be cycle-free.

– Core constraints are rdfs:ConstraintResource,
rdfs:ConstraintProperty, rdfs:range, and rdfs:domain.
rdfs:ConstraintResource defines the class of all
constraints. rdfs:ConstraintProperty is a subset of
rdfs:ConstraintResource and rdf:Property covering all
properties that are used to define constraints. At the
moment, it has two instances: rdfs:range and rdfs:domain
that are used to restrict range and domain of properties. It
is not permitted to express two or more range constraints
on a property. For domains this is not enforced and is
interpreted as the union of the domains.

3 OIL

In this section we will give a very brief description
of the OIL language; more details can be found in
[Horrocks et al., 2000]. A small example ontology in OIL is
provided in figure 4. This language has been designed so that:

4 It is not really clear from the RDFS specification whether
rdfs:subClassOf can be applied to rdf:Property. This seems possible because
the latter is also an instance of rdfs:Class.

1. it provides most of the modeling primitives commonly
used in frame-based and Description Logic (DL) oriented
Ontologies;

2. it has a simple, clean and well defined first-order seman-
tics;

3. automated reasoning support, (e.g., class consistency and
subsumption checking) can be provided. The FaCT sys-
tem [Bechhofer et al., 1999], a DL reasoner developed at
the University of Manchester, can be (and has been) used
to this end [Stuckenschmidt, 2000].

It is envisaged that this core language will be extended in
the future with sets of additional primitives, with the proviso
that full reasoning support may not be available for ontologies
using such primitives.

An ontology in OIL is represented via an ontology con-
tainer and an ontology definition part. For the container, we
adopt the components defined by Dublin Core Metadata Ele-
ment Set, Version 1.15.

The ontology-definition part consist of an optional import
statement, an optional rule-base and class and slot definitions.

A class definition (class-def) associates a class name with
a class description. This class description in turn consists of
the type of the definition (either primitive, which means that
the stated conditions for class membership are necessary but
not sufficient, or defined, which means that these conditions
are both necessary and sufficient), a subclass-of statement
and zero or more slot-constraints.

The value of a subclass-of statement is a (list of) class-
expression(s). This can be either a class name, a slot-
constraint, or a boolean combination of class expressions us-
ing the operators AND, OR and NOT, with the standard DL
semantics.

A slot-constraint (a slot may also be called a role or an
attribute) is a list of one or more constraints (restrictions) ap-
plied to a slot. Typical constraints are:

– has-value (class-expr) Every instance of the class de-
fined by the slot constraint must be related, via the slot
relation, to an instance of each class expression in the list.

– value-type (class-expr) If an instance of the class de-
fined by the slot-constraint is related via the slot relation
to some individual x, then x must be an instance of each
class-expression in the list.

– max-cardinality n (class-expr) An instance of the class
defined by the slot-constraint can be related to at most
n distinct instances of the class-expression via the slot
relation (also min-cardinality and, as a shortcut for both
min and max, cardinality).

A slot definition (slot-def) associates a slot name with a
slot definition. A slot definition specifies global constraints
that apply to the slot relation. A slot-def can consist of a
subslot-of statement, domain and range restrictions, and ad-
ditional qualities of the slot, such as inverse slot, transitive,
and symmetric.
5 See http://purl.org/DC/

http://purl.org/DC/


4 Jeen Broekstra, Michel Klein et al.: Adding formal semantics to the Web

ontology-container
title “African Animals”
creator “Ian Horrocks”
subject “animal, food, vegetarians”
description “A didactic example ontology

describing African animals”
description.release “1.01”
publisher “I. Horrocks”
type “ontology”
format “pseudo-xml”
format “rdf”
identifier “http://www.ontoknowledge.org/oil/rdfs-oil.pdf”
source “http://www.africa.com/nature/animals.html”
language “en-uk”

ontology-definitions
slot-def eats
inverse is-eaten-by

slot-def has-part
inverse is-part-of
properties transitive

class-def animal
class-def plant
subclass-of NOT animal

class-def tree
subclass-of plant

class-def plant
slot-constraint is-part-of
has-value tree

class-def leaf
slot-constraint is-part-of
has-value branch

class-def defined carnivore
subclass-of animal
slot-constraint eats
value-type animal

class-def defined herbivore
subclass-of animal, NOT carnivore
slot-constraint eats
value-type

plant OR
slot-constraint is-part-of
has-value plant

class-def giraffe
subclass-of herbivore
slot-contraint eats
value-type leaf

class-def lion
subclass-of animal
slot-constraint eats
value-type herbivore

class-def tasty-plant
subclass-of plant
slot-constraint is-eaten-by
has-value herbivore,carnivore

Figure 4. An example OIL ontology.

The syntax of OIL is oriented towards XML and RDF.
[Horrocks et al., 2000] defines a DTD and a XML schema

definition for OIL. [Klein et al., 2000] derives an XML
Schema for writing down instances of an OIL ontology. In
this paper, we will derive the RDFS syntax of OIL.

4 OIL as an extension of RDF Schema

RDF provides basic modeling primitives: ordered triples of
objects and links. RDFS enriches this basic model by provid-
ing a vocabulary for RDF, which is assumed to have a certain
semantics. In this section we will provide a careful analysis
of the relation between RDFS and OIL by defining OIL in
RDFS, using existing vocabulary where possible and extend-
ing RDFS with OIL primitives where necessary.

4.1 The ontology container, import mechanism and
rulebase

The outer box of the OIL specification in RDFS is defined by
the XML prologue and the namespace definitions xmlns:rdf
and xmlns:rdfs, which refer to RDF and RDFS, respectively.
Namespace definitions make externally defined RDF con-
structs available for local use. Therefore, the OIL specifica-
tion imports RDF and RDFS, and an actual ontology in OIL
has namespace definitions which import both the RDF and
RDFS definitions as well as the OIL specification itself.
<?xml version=’1.0’ encoding=’ISO-8859-1’?>
<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/
22-rdf-syntax-ns#"6

xmlns:rdfs="http://www.w3.org/TR/1999/
PR-rdf-schema-19990303#"

xmlns:oil="http://www.ontoknowledge.org/oil/rdfschema"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:dcq="http://purl.org/dc/qualifiers/1.1/"

<!-- The ontology defined in OIL with RDFS syntax-->
</rdf:RDF>

As one can see, the namespace definitions are not tran-
sitive. An actual ontology even needs to reimport RDF and
RDFS definitions via xmlns:rdf and xmlns:rdfs, otherwise, all
elements of OIL that directly correspond to RDF and RDFS
elements would not be available.

The ontology-container of OIL provides metadata de-
scribing an OIL ontology. Because the structure and RDF-
format of the Dublin Core element set is used, it is enough to
import the namespace of the Dublin Core element set. Note
that the fact that an OIL ontology should provide a container
definition is an informal guideline in its RDFS syntax, be-
cause it is not possible to enforce this in the schema defini-
tion.

Apart from the container, an OIL ontology consists of a
set of definitions. The import definition is a simple list of
references to other OIL modules that are to be included in
this ontology. We make use of the XML namespace mecha-
nism to incorporate this mechanism in our RDFS specifica-
tion. Notice again that, in contrast to the import statement in
OIL, inclusion via the namespace definition is not transitive.
6 Due to space limitations, we had to chop several URIs in two.



Jeen Broekstra, Michel Klein et al.: Adding formal semantics to the Web 5

There are no constraints on the format or content of the
rule-base in OIL. It could simply consist of untyped rules
(a text string), or structured rules according to an externally
defined format. For the latter, OIL provides a mechanism for
referring to an external definition7. In the RDFS specification
of OIL we provide a class RuleBase to classify the part of the
ontology which defines the rules:

<rdfs:Class rdf:ID="RuleBase">
<rdfs:comment>

A user-defined rulebase possibly described
by an external RDF-Schema

</rdfs:comment>
<rdfs:subClassOf rdf:resource="http://www.w3.org/TR/

1999/PR-rdf-schema-19990303#Resource"/>
</rdfs:Class>

In an actual ontology, a simple example of a rulebase
might look like:

<rdf:Description xmlns:syllogism=
"http://old.greece/syllogism/">

<rdf:type rdf:resource="http://www.ontoknowledge.org/
oil/rdfschema#RuleBase"/>

<syllogism:premise>
if it rains, you get wet

</syllogism:premise>
<syllogism:fact>

it rains
</syllogism:fact>
<syllogism:conclusion>

you get wet
</syllogism:conclusion>

</rdf:Description>

With help of the XML namespace facility it is very easy to
refer to an externally defined format of the rules and axioms.
See [Staab and Mädche, 2000].

4.2 Class and attribute definitions

In OIL, a class definition links a class with a name, a docu-
mentation, a type, its superclasses, and the attributes defined
for it. In RDFS, classes are simply declared by giving them
a name (with the ID attribute). We will show how OIL class
definitions can be written down in RDF, while trying to make
use of existing RDFS constructs as much as possible, but
where necessary extending RDFS with additional constructs
(see table 1 and figure 5).We conform to the informal RDF
guideline to start property names with a lower-case letter, and
class names with a capital.

To illustrate the use of these extensions, we will walk
through them by means of a running example of a class def-
inition in OIL that needs to be serialized in RDFS. Consider
the following class definition (see also figure 4):

class-def defined herbivore
subclass-of animal, NOT carnivore
slot-constraint eats
value-type

plant OR
slot-constraint is-part-of has-value plant

7 However, OIL does not provide a syntax for these external definitions.
The definition could simply consist of a description of the format of the rule-
base in plain text.

This defines a class named ”herbivore”, which is a sub-
class of all animals that are not carnivores (i.e. herbivore is
disjoint from the class carnivore), and whose instances only
eat plants or parts of plants.

We start by translating the class definition header. This
can be done in a straightforward manner, using the rdfs:Class
construct and the rdf:ID property to assign a name:
<rdfs:Class rdf:ID="herbivore"> </rdfs:Class>

However, from this definition it is not yet clear that this
class is a defined class. We chose to introduce two classes in
the OIL namespace, named PrimitiveClass and DefinedClass.
In a particular class definition, whenever a class is a defined
class, we use the rdf:type property to express this:
<rdfs:Class rdf:ID="herbivore">

<rdf:type rdf:resource="http://www.ontoknowledge.org/
oil/rdfs-schema/#DefinedClass"/>

</rdfs:Class>

Alternatively, one could serialize this as:
<oil:DefinedClass rdf:ID="herbivore"> </oil:DefinedClass>

We will use the first method of serialization throughout
this article, because, although both are equal in their meaning,
the first one is, in our opinion, clearer to a human reader.

This way of making an actual class an instance of either
DefinedClass or PrimitiveClass introduces a nice object-meta
distinction between the OIL RDFS schema and the actual on-
tology: using rdf:type you can consider the class ”herbivore”
to be an instance of DefinedClass. In general, if no explicit
rdf:type is given to a class definition, the class is assumed to
be primitive.

Next, we have to translate the subclass-of statement to
RDFS. Here, we come across two features of OIL that are not
directly expressible in RDFS: first, OIL allows class expres-
sions as an extension to simple class names, and second, the
subclass-of statement in OIL allows cycles in the subsump-
tion hierarchy, which the RDFS equivalent does not. We ig-
nore this last difference in our procedure for now (we come
back to this problem in section 5).

In OIL it is possible to say that a class is a subclass
of some class-expression, which is a boolean expression of
classes. Three boolean operators are allowed in OIL: AND,
OR and NOT. Since in RDFS the value of an rdfs:subClassOf
statement can only be an instance of rdfs:Class, we decided
to serialize the three boolean operators as classes in RDFS.
This makes sense from a modeling perspective as well, as the
result of the application of a boolean operator is the definition
of a (nameless) class.

We introduce oil:ClassExpression as a placeholder class8,
with the operators AND, OR and NOT defined as subclasses
of oil:ClassExpression. Also, since a single class is a es-
sentially a simple kind of class-expression, rdfs:Class itself
should be a subclass of oil:ClassExpression. Exploiting the
credo of RDFS that anyone can say anything they want about
8 A placeholder class in the OIL RDFS specification is only used in the

to apply domain- and rangerestrictions to a group of classes, and will not be
used in the actual OIL ontology.



6 Jeen Broekstra, Michel Klein et al.: Adding formal semantics to the Web

rdfs:Resource

oil:Classexpression

rdfs:Class

rdfs:ConstraintResource rdf:Property

oil:AND oil:OR oil:NOT oil:SlotConstraint

oil:NumberRestrictionoil:ClassType

oil:DefinedClass

oil:PrimitiveClass

oil:HasValueoil:ValueType

oil:MinCardinality

oil:MaxCardinality

oil:Cardinality

oil:TransitiveProperty

oil:SymmetricProperty

oil:ReflexiveProperty

Figure 5. The OIL extensions to RDFS in the subsumption hierarchy.

existing resources, we add in the OIL-specification an ex-
tra subClassOf relation to the existing rdfs:Class, using the
rdf:about construction:
<rdf:Description rdf:about="http://www.w3.org/2000/

01/rdf-schema#Class">
<rdfs:subClassOf rdf:resource="#ClassExpression"/>

</rdf:Description>

Consequently, we also have to extend the range of
rdfs:subClassOf with oil:ClassExpression.
<rdf:Description rdf:about="http://www.w3.org/2000/

01/rdf-schema#subClassOf">
<rdfs:range rdf:resource="#ClassExpression"/>

</rdf:Description>

The AND, OR and NOT operators are connected to
operands using the oil:hasOperand property. This property
has no direct equivalent in OIL primitive terms, but is a
helper to connect two class-expressions, because in the RDF
data model one can only relate two classes by means of a
Property. The oil:hasClass and oil:hasSlotConstraint prop-
erties have more or less the same meaning, but are used
in different contexts, and thus have different domain and
range restrictions. Because of this same function in more
specific contexts, we would prefer to model oil:hasOperand
and oil:hasSlotConstraint as rdfs:subPropertyOf oil:hasClass,
because essentially oil:hasOperand is a specific case of
oil:hasClass. However, the RDFS specification is unclear
about the way domain and range restrictions are inherited.
Because we are uncertain about this, we chose to keep them
as separate properties.

In the case of our example, we need an RDFS-equivalent
for NOT. The OIL RDF Schema definition of this operator
looks like this:
<rdfs:Class rdf:ID="NOT">

<rdfs:subClassOf rdf:resource="#ClassExpression"/>
</rdfs:Class>

and the helper property is defined as follows:
<rdf:Property rdf:ID="hasOperand">

<rdfs:domain rdf:resource="#AND"/>
<rdfs:domain rdf:resource="#OR"/>
<rdfs:domain rdf:resource="#NOT"/>
<rdfs:range rdf:resource="#ClassExpression"/>

</rdf:Property>

The fact that hasOperand is only to be used on specific
class expressions (AND, OR and NOT) is expressed using
the rdfs:domain construction. This type of modeling stems
directly from the RDF property-centric approach.

Back to the example now. The subclass-of statement con-
tains a comma seperated list. To serialize this in RDFS, we
simply use one subClassOf statement for each item in this
list:

<rdfs:Class rdf:ID="herbivore">
<rdf:type rdf:resource="http://www.ontoknowledge.org/

oil/rdfs-schema/#DefinedClass"/>
<rdfs:subClassOf rdf:resource="#animal"/>
<rdfs:subClassOf>

<oil:NOT>
<oil:hasOperand rdf:resource="#carnivore"/>

</oil:NOT>
</rdfs:subClassOf>

</rdfs:Class>

As we can see, the first subClassOf statement is normal
RDFS usage, where a named class is used as the value. In
the second statement however, RDFS is extended using OIL
primitives as explained above.

An alternative to this solution would be to serialize the
list as one subClassOf statement, using the oil:AND construct
to combine the items (after all, the comma seperated list is
an implicit conjunction). However, there are some significant
disadvantages to this approach:

– While none of the semantics of the original OIL expres-
sion is lost, its original modeling is. The difference be-
tween a comma seperated list within the subclass-of state-
ment or an explicit conjunction is unretrievable. In other
words: translating from OIL to RDF and back is no longer
guaranteed to give an identical ontology from a model-
ing perspective (though semantic equivalence is of course
still preserved).

– While using an RDFS-construct to model subsumption is
a good idea, in this case one might get the wrong impres-
sion that an RDF agent would be able to deal with the
information provided in the subClassOf statement. How-
ever, in the case of oil:AND as the outer class, it would



Jeen Broekstra, Michel Klein et al.: Adding formal semantics to the Web 7

only be able to see that the defined class is a subClass
of some other class, but no specifics of this other class
are known because it does not know the semantics of
oil:AND. By presenting it as a list, any RDFS agent can
understand the subclass statements.

We still need to serialize the slot constraint. In RDFS,
there is no mechanism for restricting the attributes of a class
on a local level. This is again due to the property-centric na-
ture of the RDF data model: properties are defined globally,
with their domain description coupling them to the relevant
classes.

To overcome this problem, we introduce the
oil:hasSlotConstraint property, which is an rdf:type of
rdfs:ConstraintProperty (analogous to rdfs:domain and
rdfs:range). Here we take full advantage of the intended
extensibility of RDFS. We also introduce oil:SlotConstraint
as a placeholder class for specific classes of slot constraints,
such as has-value, value-type, cardinality and so on. These
are all modeled in RDFS as subclasses of oil:SlotConstraint:

<rdfs:Class rdf:ID="ValueType">
<rdfs:subClassOf rdf:resource="#SlotConstraint"/>

</rdfs:Class>

and similar for the other slot constraints. For the three cardi-
nality constraints, an extra property ”number” is introduced,
which is used to assign a concrete value to the cardinality
constraints.

We now define the oil:hasSlotConstraint property:

<rdf:Property rdf:ID="hasSlotConstraint">
<rdf:type rdf:resource="http://www.w3.org/TR/1999/

PR-rdf-schema-19990303#ConstraintProperty"/>
<rdfs:domain rdf:resource="http://www.w3.org/2000/

01/rdf-schema#Class/">
<rdfs:range rdf:resource="#SlotConstraint"/>

</rdf:Property>

In our example, the slot-constraint would be serialized us-
ing the primitives introduced above, giving us the following
complete translation:

<rdfs:Class rdf:ID="herbivore">
<rdf:type rdf:resource="http://www.ontoknowledge.org/

oil/rdfs-schema/#DefinedClass"/>
<rdfs:subClassOf rdf:resource="#animal"/>
<rdfs:subClassOf>

<oil:NOT>
<oil:hasOperand rdf:resource="#carnivore"/>

</oil:NOT>
</rdfs:subClassOf>
<oil:hasSlotConstraint>

<oil:ValueType>
<oil:hasProperty rdf:resource="#eats"/>
<oil:hasClass>

<oil:OR>
<oil:hasOperand rdf:resource="#plant"/>
<oil:hasOperand>

<oil:HasValue>
<oil:hasProperty rdf:resource=
"#is-part-of"/>

<oil:hasClass rdf:resource=
"#plant"/>

</oil:HasValue>
</oil:hasOperand>

</oil:OR>
</oil:hasClass>

</oil:ValueType>
</oil:hasSlotConstraint>

</rdfs:Class>

In the second operand of the OR operator we see an ex-
ample of a slot constraint used as a nameless class definition.
It basically specifies the class of all things that have a prop-
erty ”is-part-of” of which the value is ”plant”.

An alternative to the introduction of oil:hasSlotConstraint
would be to serialize all slot constraints as part of the sub-
ClassOf statement. After all, a slot constraint is effectively
the definition of a (nameless) class and can as such be used
within any class expression. Also, this would eliminate the
need for an extension of RDFS with the oil:hasSlotConstraint
construct. However, there are some significant disadvantages
to this approach, quite similar to the disadvantages stated ear-
lier with respect to the serialization of a comma seperated
list of class names: stuffing the entire class definition within
a single subClassOf statement makes the RDF specification
unclear, part of the modeling is lost, and an RDF agent is less
likely to understand the subsumption hierarchy.

The serialization we propose gives us enough expressive-
ness to translate any possible OIL class definition to an RDF
syntax. Use of RDF(S) specific constructs is maximized with-
out sacrificing clarity of the specification, to enable RDF
agents that are not OIL-aware to understand as much of the
specification as possible, while retaining the possibility to
translate back to OIL unambiguously.

In the next section, we will examine how to serialize
global slot definitions.

4.3 Slot definitions

Both OIL and RDFS allow slots as first-class citizens of an
ontology. Therefore, slot definitions in OIL map nicely onto
property definitions in RDFS. Also the ”subslot-of”, ”do-
main”, and ”range” properties have almost direct equivalents
in RDFS. In table 2, an overview of the OIL constructs and
the corresponding RDFS constructs is given.

There is a subtile difference between range restrictions
in OIL and their equivalent in RDFS: in the latter, only one
restriction per Property is allowed. In contrast with RDFS,
OIL allows more than one range restriction on a property. Al-
though this can be circumvented by defining a dummy super-
class of all classes in the range restriction, we see no reason
for this restriction in RDFS. From a modeling point of view,
allowing more than one range restriction is a much cleaner
solution.

Translating a slot definition which comprises only con-
structs with more or less direct counterparts in RDFS is
straightforward. For example:

slot-def gnaws
subslot-of eats
domain Rodent

would become:

<rdf:Property rdf:ID="gnaws">
<rdfs:subPropertyOf rdf:resource="#eats"/>
<rdfs:domain rdf:resource="#Rodent"/>

</rdf:Property>



8 Jeen Broekstra, Michel Klein et al.: Adding formal semantics to the Web

Table 1. Class-definitions in OIL and the corresponding RDF(S) constructs

OIL primitive RDFS syntax type
class-def rdfs:Class class
subclass-of rdfs:subClassOf property
class-expression oil:ClassExpression class

(placeholder only)
AND oil:AND class

(subclass of ClassExpression)
OR oil:OR class

(subclass of ClassExpression)
NOT oil:NOT class

(subclass of ClassExpression)
slot-constraint oil:SlotConstraint class

(placeholder only)

oil:hasSlotConstraint property
(rdf:type of rdfs:ConstraintProperty)

oil:NumberRestriction class
(placeholder only)
(subclass of oil:SlotConstraint)

has-value oil:HasValue class
(subclass of oil:SlotConstraint)

value-type oil:ValueType class
(subclass of oil:SlotConstraint)

max-cardinality oil:MaxCardinality class
(subclass of oil:NumberRestriction)

min-cardinality oil:MinCardinality class
(subclass of oil:NumberRestriction)

cardinality oil:Cardinality class
(subclass of oil:NumberRestriction)

However, global slot-definitions in OIL allow specifica-
tion of more aspects of a slot than property definitions in
RDFS do. Besides the domain and range restrictions, OIL
slots can also have an ”inverse” attribute and qualities like
”transitive” and ”symmetric”.

We therefore added a property ”inverseRelationOf” with
”rdf:Property” as domain and range. We also added the
classes ”TransitiveRelation” and ”SymmetricRelation” to re-
flect the different qualities of a slot. In the RDFS-serialization
of OIL, the rdf:type property can be used to add a quality to
a property. For example, the OIL definition of:

slot-def has-part
inverse is-part-of
properties transitive

is in RDFS:
<rdf:Property rdf:ID="has-part">

<rdf:type rdf:resource="http://www.ontoknowledge.org/
oil/rdf-schema/#TransitiveRelation"/>

<oil:inverseRelationOf rdf:resource="#is-part-of"/>
</rdf:Property>

This way of translating the qualitities of properties fea-
tures the same nice object-meta distinction between the OIL
RDFS schema and the actual ontology as the translation of
the ”type” of a class (see section 4.2). In an actual ontology,
the property ”has-part” can be considered as an instance of a

TransitiveRelation. Note that it is allowed to make a property
an instance of more than one class, and thus giving it mul-
tiple qualities. Note that this way of representing qualities of
properties in RDFS follows the proposed general approach of
modeling axioms in RDFS, presented in [Staab et al., 2000].
In this approach, the same distinction between language-level
constructs and schema-level constructs is made.

One alternative way of serializing the attributes of prop-
erties would be to define the qualities ”transitive” and ”sym-
metric” as subproperties of rdf:Property. Properties in the ac-
tual ontology (e.g. ”has-part”) would in their turn be defined
as subProperties of these qualities (e.g. transitiveProperty).
However, this would mixup the use of properties at the OIL-
specification level and at the actual ontology level.

A third way would be to model the qualities as subprop-
erties of rdf:Property again, but to define properties in the ac-
tual ontology as instances (rdf:type) of such qualities. In this
aproach, the object-meta level distinction is preserved. How-
ever, we dislike the use of rdfs:subPropertyOf at the meta-
level, because then rdfs:subPropertyOf has two meanings, at
the meta-level and at the object-level.

We therefore prefer the first solution because of the clean
distinction between the meta and object level.



Jeen Broekstra, Michel Klein et al.: Adding formal semantics to the Web 9

Table 2. Slot-definitions in OIL and the corresponding RDF(S) constructs.

OIL primitive RDFS syntax type
slot-def rdf:Property class
subslot-of rdfs:subPropertyOf property
domain rdfs:domain property
range rdfs:range property
inverse oil:inverseRelationOf property
transitive oil:TransitiveRelation class
symmetric oil:SymmetricRelation class

5 Conclusion

In the previous section we have shown that it is possible to
define a formal knowledge representation schema as an ex-
tension to RDFS, effectively implementing the ”third layer
of the Semantic Web”. We did this by defining the ontology
language OIL in RDFS, using existing primitives as much
as possible while retaining a unambiguous mapping between
the original OIL specification and its RDFS serialization. The
resulting extension of RDFS allows the specification of do-
main ontologies that are already partially understandable by
non-OIL-aware RDFS applications, while OIL-aware appli-
cations can fully benefit of the added features, such as formal
semantics and reasoning support.

There are still a few unsolved problems with the specifi-
cation of OIL into RDFS. First, we did not take into account
a restriction on the rdfs:subClassOf statement, i.e. the restric-
tion that no cycles are allowed in the subsumption hierar-
chy. We think that this restriction should be dropped: without
cycles one cannot even represent equivalence between two
classes — in our view this is an essential modeling primi-
tive for any knowledge representation language. Moreover,
these kinds of constraint significantly add to the complex-
ity of parsing/validating RDF documents in a way which we
think would be highly undesirable. This is because they are
really semantic constraints rather than syntactic ones (they
limit the kinds of models that can be represented), even if the
reasoning required in order to detect constraint violation is of
a very basic kind.

Second, in contrast with RDFS, OIL allows more than
one range restriction on a property. Although this can be cir-
cumvented by defining a dummy superclass of all classes in
the range restriction, we see no reason for this restriction in
RDFS. From a modeling point of view, allowing more than
one range restriction is a much cleaner solution.

During the process of extending RDFS, we encountered
a couple of peculiarities in the RDFS definition itself. The
most striking of these is the non-standard object-meta model,
as already discussed in section 2.2.1. The main problem with
this non-standard model is that some properties have a dual
role in the RDFS specification, both at the schema level and
instance level (cf. [Nejdl et al., 2000]). This makes it quite a
challenge for modelers to understand the RDFS specification.
We tried to make this distinction clear in our extensions by

using the rdf:type relationship consistently as an object-meta
relationship.

Furthermore, the semantics of several relationships are
unclear. It is not obvious that the meaning of a list of domain
(or range) restrictions is the union of the elements. Also, the
meaning of the subPropertyOf relation with respect to the in-
heritance of the domain and range restrictions is unclear.

Despite these problems, we think that this procedure of
extending RDFS is also applicable to other knowledge repre-
sentation formalisms.

Acknowledgements. We would like to thank Monica Crubezy, Ying
Ding, Michael Erdmann, Frank van Harmelen, Arjohn Kampman,
and Borys Omelayenko for their helpful comments and for review-
ing early drafts of this paper.

References

Bechhofer et al., 1999. Bechhofer, S., Horrocks, I., Patel-
Schneider, P. F., and Tessaris, S. (1999). A proposal for a
description logic interface. In Proc. of DL’99, pages 33–36.

Berners-Lee, 1998. Berners-Lee, T. (1998). Semantic web road
map. Internal note, World Wide Web Consortium. See
http://www.w3.org/DesignIssues/Semantic.html.

Brickley and Guha, 2000. Brickley, D. and Guha, R. (2000). Re-
source Description Framework (RDF) Schema Specification 1.0.
Candidate recommendation, World Wide Web Consortium. See
http://www.w3.org/TR/2000/CR-rdf-schema-20000327.

Fensel et al., 2000. Fensel, D., Horrocks, I., van Harmelen, F.,
Decker, S., and Klein, M. (2000). OIL in a nutshell. In Proceed-
ings of 12th International Conference on Knowledge Engineering
and Knowledge Management, Juan-les-Pins, French Riviera.

Horrocks et al., 2000. Horrocks, I., Fensel, D., Broekstra, J.,
Decker, S., Erdmann, M., Goble, C., van Harmelen, F., Klein, M.,
Staab, S., and Studer, R. (2000). OIL: The Ontology Inference
Layer. Technical report, University of Manchester / Vrije Univer-
siteit Amsterdam. See http://www.ontoknowledge.org/oil/.

Klein et al., 2000. Klein, M., Fensel, D., van Harmelen, F., and
Horrocks, I. (2000). The relation between ontologies and schema-
languages: Translating OIL-specifications in XML-Schema. In
Proceedings of the Workshop on Applications of Ontologies and
Problem-solving Methods, 14th European Conference on Artifi-
cial Intelligence ECAI 2000, Berlin, Germany.

Lassila and Swick, 1999. Lassila, O. and Swick, R. R. (1999). Re-
source Description Framework (RDF): Model and Syntax Spec-
ification. Recommendation, World Wide Web Consortium. See
http://www.w3.org/TR/REC-rdf-syntax/.

Nejdl et al., 2000. Nejdl, W., Wolpers, M., and Capella, C.
(2000). The RDF Schema Revisited. In Modelle und Model-
lierungssprachen in Informatik und Wirtschaftsinformatik, Mod-
ellierung 2000, St. Goar. Foelbach Verlag, Koblenz.

Staab et al., 2000. Staab, S., Erdmann, M., Mädche, A., and
Decker, S. (2000). An extensible approach for modeling ontolo-
gies in RDF(S). In First Workshop on the Semantic Web at the
Fourth European Conference on Digital Libraries, Lisbon, Portu-
gal.

Staab and Mädche, 2000. Staab, S. and Mädche, A. (2000). Ax-
ioms are objects, too - ontology engineering beyond the modeling
of concepts and relations. Technical Report 399, Institut AIFB,
Universität Karlsruhe.



10 Jeen Broekstra, Michel Klein et al.: Adding formal semantics to the Web

Stuckenschmidt, 2000. Stuckenschmidt, H. (2000). Using OIL for
Intelligent Information Integration. In Proceedings of the Work-
shop on Applications of Ontologies and Problem-solving Meth-
ods, 14th European Conference on Artificial Intelligence ECAI
2000, Berlin, Germany.


