Generating Hard Modal Problems
for Modal Decision Procedures

lan Horrocks Peter F. Patel-Schneider
Department of Computer Science Bell Labs Research
University of Manchester, UK Murray Hill, NJ, U.S.A.
horrocks@cs.man.ac.uk pfps@research.bell-labs.com
Abstract

Random generation of modal formulae is a viable method foegging prob-
lems for benchmarking modal decision procedures. Howegurerious work in
this area has used a flawed generator that has resulted itomade results. Fix-
ing the generator changes the characteristics of the gedgueoblems. The fixed
generator can be used to generate hard problems that hagentenesting modal
properties than previous hard problem sets.

Optimised decision procedures for propositional modaildedave recently been
developed. These decision procedures are significantigrftisan previous decision
procedures for modal logics, to the extent that some problévat were impossible
to solve using older decision procedures are trivial forrtberer decision procedures.
Further, due to the connection between propositional modais and description log-
ics, there is a natural use for these optimised decisionggiwes in description logic
classifiers.

Now that such modal decision procedures are available,pbssible, and even
necessary, to determine their actual performance, badliveland absolute, on hard,
interesting modal problems. By hard problems, we mean problthat are hard, but
not impossible, for one or, preferably, more current decigirocedures, not necessar-
ily problems that are theoretically hard. Several mechagibave been proposed for
generating such hard modal problems. These mechanismeagjgieeak down into
three groups: 1/ hand generation of classes of modal foen@laranslation of actual
problems into modal formulae, and 3/ random generation af heodal formulae.

The first group is best illustrated by the modal formulae ugettie Tableaux’98
comparison of modal decision procedufeguerding and Schwendimann, 1996; Bal-
siger and Heuerding, 1988For this comparison, 54 parameterised formulae genera-
tors were created. Each generator took a size parametenyoot @ formula whose
difficulty of proving (or equivalently determining the ssftability of) was supposed to
increase exponentially with the size of the parameter.

The second group is illustrated by the translation of desion logic knowledge
bases, such as theaGEN knowledge baséRectoret al,, 1994, or other knowledge
descriptions, such as entity-relationship diagré@esvaneset al., 1994, into propo-
sitional modal logics. This mechanism was used in a compaud$ description logic
systems at DL'98Horrocks and Patel-Schneider, 1998a

The third group is illustrated by the work of Giunchiglia @ebastianiGiunchiglia
and Sebastiani, 1996a; 1996ind Hustadt and Schmifflustadt and Schmidt, 1997a;

19974. This work uses parameterised random generators to crelgetons of hard
(or at least large and non-trivial) modal formulae in theidol§.).

Even considering the above efforts, there is a general ladlam modal prob-
lems on which to test modal decision procedures. This is inrast to the situation in
non-modal propositional modal logics. There, becausettntinuing use of propo-
sitional reasoners to solve problems from chip layout, pilag, et cetera there is a
large collection of actual problems. These problems ard (emd/or large) enough
to stress even the decision procedures being currenthiaime. Also, there is gen-
eral agreement on a generator for hard random formi@aémaret al., 1994. Hand
generation is not widely used, as it is too hard to generaednting problems.

In modal logics there are very few real problems that can leel @s sources of
hard modal problems. This is, in part, due to lack of optimidecision procedures
for modal logics—if there are no fast modal decision procedythere is no incentive
to map problems into modal logics. This situation may chaingéne future as the
result of the availability of the current group of optimiseddal decision procedures.
Further, random generation of hard modal formulae is mucterddficult than ran-
dom generation of hard propositional formulae due to thgdanumber of parameters
needed to define their structure.

Hustadt and Schmidt's experiments led them to conclude fiiad given size, the
hardest modal formulae have a very simple structure, withodahdepth of 1 and
propositional variables occurring only at depth 1. (A punetopositional formula is
said to have a depth of 0.) Even if their conclusions are yaliil we take issue with
them at least in part, it is not a good idea to test modal datiprocedures only on
formulae that fall into this very restricted class. A modati$ion procedure that is very
much faster than other modal decision procedures on thtecpkar kind of formulae
may be very much slower than other modal decision procecurasther formulae.
Further, formulae of this form will not correspond to thetsof formulae involved
in real modal problems, so comparisons on them will be dklittse in predicting
behaviour with real problems.

What is needed is a good, systematic mechanism to generat@iublems with
real, varying modal content. Again, we mean problems thehard for current modal
decision procedures. This mechanism should have parasieteontrol the amount,
form, and depth of modal content. It should also reliablyagate problems of a given
hardness, with few or no trivial problems. Such a mechanmmnhddbe used to compare
the current optimised modal decision procedures.

To this end, we analyse the generators designed by Giumehigll Sebastiani and
Hustadt and Schmidt, and show how problems with these gemsdad to a serious
underestimation of the impact of modal depth on the hardofEsgse problems gener-
ated. We propose a modification of these generators thatipesdnuch harder modal
problems, and use the modified generator to compare varaision procedures and
optimisations. Finally, we analyze the results of thisitegst

Note that creating a good mechanism for generating hardramdoblems is inde-
pendent of whether is it a good idea to use random problenik &Va are of the firm
belief that random problems, at least random problems ttleahat related to actual
problems, are not the best way to test decision proceduregevtr, in the absence
of actual problems for testing modal decision proceduresas reduced to using ran-
dom problems. Perhaps the performance of the new decisamegures on random
problems will encourage the use of the new decision pro@sdoin actual problems,
which can then be used as benchmarks for the decision prozeduas models for the
generation of such benchmarks.

Techniques for Building Modal Decision Procedures

Building a decision procedure for a simple modal logic ismaich more difficult than
building a decision procedure for propositional logic. uffices to take any tableau
expansion methodology for the modal logic and directly iempént that methodology,
using a simple search to deal with the inherent nondetesminOf course, the result-
ing system will be completely unusable, as it will reflectta# inefficiencies of tableau
expansion.

There are several ways of producing faster modal decisiocgolures. One method
is to treat a modal proof as a collection of non-modal prapmsal proofs. This
method, as exemplified in thed&T decision procedurfGiunchiglia and Sebastiani,
1996a; 1996} treats the modal sub-formulae as proposition atoms arfdipes a sat-
isfiability check on the resulting formula. If any proposital model is found for this
formula, the true modal formulae are extracted from the rhadd for each modal
successor the process is repeated. If all the modal checkseul, a complete modal
model has been found; if they fail, the decision proceduss tother propositional
models until all possibilities have been exhausted.

The advantage of this method is that it can use a state of tlhgptimised proposi-
tional decision procedure, gaining the speed advantagésabfdecision procedure.
Only minor changes are needed in the propositional decisionedure to support
modal reasoning. The disadvantage of this method is thadiffexent propositional
steps are only loosely connected to the modal steps, andriafmn gained in the
modal steps may not be available to improve the overall perdoce of the decision
procedure, which is dominated by the propositional steps.

Another method for obtaining a fast modal decision procedhito translate modal
formulae into first-order formulae, which are then checksithg a first-order prover.
This approach is used in the TA systéRustadt and Schmidt, 1997a; 19974t first
glance this may seem to be a poor approach as first-orderibbgitdecidable. How-
ever, it is possible to translate modal formulae into a dadliel fragment of first-order
logic (FOL), and when combined with a first-order prover tisasdound and complete
for the fragment in question this gives a sound and completesibn procedure for the
modal logic.

This method again has the advantage that it can use a stdte afttfirst-order
prover, selecting one which is either naturally fast on timel& of formulae produced
by the translation, or which can be tuned to be fast on thesaulae. One disadvantage
of this mechanism is that it is hard to control first-orderyans, so performance may
be poor on some formulae.

A third method for obtaining a fast modal decision procedsr® build an opti-
mised decision procedure from scratch, using whatevemigstions are effective for
modal logics. Two decision procedures built using this radthre FaCT Horrocks,
19994 and DLP[Patel-Schneider, 1998Both decision procedures were actually built
as description logic systems, but, because of the reldtipa®etween description log-
ics and modal logics, include a modal logic decision procedu

The advantage of this third method is that the decision ghoeecan be optimised
for propositional modal logics, and does not depend on adgéitions designed for
other logics. The disadvantage of this method is that thésaecprocedure has to be
built from scratch and thus does not automatically get tmefits of optimisation work
in propositional or first-order logics.

However an optimised modal decision procedure is builtdt is still a search en-

gine that explores the space of potential proofs, or refitaf or models for a formula.

Although there are techniques that can be used to avoidisesarch as normalising the
input formula to detect local inconsistencies and taute®ghe search engine’s per-
formance is vital to the overall performance of the decigiomcedure. Further, there
are a number of differing approaches that result in perfoceaariations on different

types of formulae.

On Being a Good Adversary

The biggest problem in generating problem sets for modabubecprocedures is to
strike the right balance. If a problem set is too easy, it nat show off sophisticated
optimisations that have a high overhead, as even less-gptintecision procedures
will complete the problems quickly. If a problem set is toadhahe decision proce-
dures will not terminate within the time limit set for the teand their effectiveness
cannot be determined. If a problem set spans only a smalbpé#ne problem space,
then it may concentrate on or miss areas where a decisioeguoe is relatively fast
or slow. Ideally, then, a problem set should have some eadiose and some hard
ones, and should contain a large variety of problems.

It is possible that a large formula can have subformulae dhattautologous or
contradictory. Even if these subformulae do not make theesfirmula tautologous
or contradictory, the presence of these subformulae maw rined the formula is not
an effective test.

In the propositional case, generating formulae with therayppate characteristics
is now relatively easy. The input form can be restricted tojeoctive normal form
with 3 literals per clause (3CNF), as it is generally agréded this restriction does not
make the problem any simpl¢Belmanet al, 199d4. Each clause can be generated
by randomly selecting aombinationof three propositional atoms and negating each
of them with probability one-half. There is a general agreetthat the hardness of a
problem set in this form is determined by the number of prdjprsl atoms and the
number of clauses. In particular, to get a mix of interespingblems—some satisfi-
able, some unsatisfiable, some relatively easy, somevalatiard—it suffices to fix
the number of propositional atoms and vary the number ofselau With relatively
few clauses almost all problems are satisfiable and easly;ralatively many clauses
almost all problems are unsatisfiable and easy; with a afitiamber of clauses, about
4.2 times as many as the number of propositional variablestahalf the problems
are satisfiable and many of them are hard. Many experimeirg tisis generation
mechanism have been performed on various propositionisfiahtlity (SAT) decision
procedure$Freeman, 1996; Selmaat al., 1994.

All well-designed SAT algorithms have been shown to exradfibrm of this easy-
hard-easy behavior: for a given number of propositionalaides, problems with a
number of clauses that makes them either under-constréin®0% satisfiable) or
over-constrained€50% satisfiable) are generally much easier to solve thaicalht
constrained problems. This phenomenon has also been edsera range of other
NP-complete probleni$iogget al., 1994. Moreover, for sufficiently large numbers of
propositional variables, the transition from under- toresenstrained becomes rapid,
forming a phase transition.

In the modal case, there are many more difficulties. Firstnder formulae in
a (generalised) 3CNF form, there are additional variationthe structure requiring
parametric control: the “atoms” in clauses can be propwsdi literals or modal for-

mulae, and if modal they contain a sub formula the structfinetoch can itself be
varied. Second, it is not well understood how these additiparameters interact with
the propositional parameters to determine the hardnessobfgms, and there is as
yet no general agreement as to whether a phase transitidrecaloserved in $PACE
complete modal problems. Given our limited understandfrijese issues, generators
of modal problems must be carefully designed and rigorotestied.

Previous Problem-Generation Techniques

In order to test their KAT decision procedure, Giunchiglia and Sebastiani developed
a random generator for modal formulae that generalised@NF3model described in
Section[Giunchiglia and Sebastiani, 1996a; 1996The generator produces conjunc-
tive formulae of the forn{D; A ... A D1) where eaclD; is a K-disjunctive formula
of the form(C; v ...V Ck). Each disjuncC; can be either a literal (a propositional
variable or its negation) or a (possibly negated) modal atbtadal atoms are of the
form O; D wherei is one of the modalities ank is anotherk -disjunctive formula.

Generation is controlled by six parameterg; the number of different primitive
concepts (propositional variableg), the number of different modalitie%, the size
of the K-disjunctive formulae;D, the maximum modal depth?, the probability of
a disjunct being a literal rather than a modal atom (excepteath D); and L, the
number ofK -disjunctive formulae in the top-level conjunction.ffis 1, the formulae
generated are purely propositional and, it was claimed lm&iiglia and Sebastiani,
are of the standard SAT testing fofi@iunchiglia and Sebastiani, 1996b

The experiments devised by Giunchiglia and Sebastiani desegned to test the
performance oK, decision procedures, and to discover if a phase transitatuc
be observed. Three sets of experiments were performed lgingasne of the param-
etersN, M andD while keeping the others fixed. The values of the fixed pararaet
were chosen so that varyingto give valuesL/N in the range 1-40 produced prob-
lems ranging fromre100% satisfiable tez0% satisfiable. In all the experiments,
was fixed at 3 an@ was fixed at 0.5.

We will mostly concern ourselves with the set of experimémtshich the modal
depth was varied, the values chosen bdihg 2, 3, 4 and 5, withV fixed at 3 and\/
at 1; we will refer to these four parameter setting$&gl PS3 PS2andPS1respec-
tively, following Hustadt and Schmidt. The problems getedavere much harder (for
the KsAT decision procedure) if the value &f (the number of propositional variables)
was increased, but became only slightly harder with inéngamodal depth.

Hustadt and SchmidHustadt and Schmidt, 1997a; 199&ubsequently pointed
out that the formulae produced by Giunchiglia and Seba&igenerator contained
many tautological and contradictory clauses which comaltlg reduced the effective
size of the formulae and often rendered larger formulagéathywunsatisfiable. This
exaggerated the benefits of theskr decision procedure as it performed particularly
well with these kinds of formula. They also noted that with tither parameters fixed,
increasing the modal depth greatly increased the size dbtineulae generated. As it
had already been shown that increasing the modal depththlaceffect on the hard-
ness of problems, they concluded that for a given size of fitarimcreasing the modal
depth actually made problems easier, and that the valé @iie number of proposi-
tional variables) was by far the most important factor inedetining the hardness of
the generated formulae. Having modified the generator ddahdewer tautological
and contradictory clauses were produced (making for géipenach harder problems)

1000

TA ——
KSAT
FaCT o
_ 100 DLP - 7
L
]
g o o, A B'[f
S 10 o D 'D‘aa'mx:i ‘mmﬂmp]
P g b
5 S x
% X P Xxx x X)2&)(
8 o SR ><><>(><><><><><X>< * 538(X%]
§ X X
o
=
%
% X
0.01 L L L L L L L
0 10 20 30 40 50 60 70 80
L/N
e
]
=
2
o
®)
o
K
el
Q
£
0.01 ; 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80
L/N

Figure 1: Worst-case and median CPU timesH&il

they went on to perform new experiments, their conclusiauathe effect of increas-
ing modal depth leading them to fix the value of this paramatérin all cases.

Hustadt and Schmidt also improved the analysis of the exygarial results by
considering not just median times but a range of percerntiled, theNth percentile
being the time sufficient to solv&% of the problems in the test set. We will mostly
restrict our attention here to median (50th percentile)aoibt-case (100th percentile)
times. Worst-case times can be important in realistic apfins if, for example, a
real-time response is required or if they are so large that tominate the average
solution time.

Closer consideration reveals that the apparent reduatiding difficulty of prob-
lems with increasing modal depth is an artifact of the Giuglidoand Sebastiani gen-
erator, and in particular its production of tautologicabpositional clauses such as
(P V=PV ... that can be simplified td (True). When this occurs inside a modal
atom; T it can again be simplified td, and there is then a probability (usually fixed
at 0.5) that the modal atom will be negated to givéralse). If all the disjuncts in & -

disjunctive formula are_, then the formula can be simplified o and if this occurs in
one of theK -disjunctive formulae in the top level conjunction, thee thhole formula

can be simplified taL without invoking the modal decision procedure. Increasirg

modal depth increases the probability that such triviatigatisfiable formulae will be
generated.

Repeating the original experiments using the Hustadt ahdh&it generator gives
much different results for larger values Bt Using the original generator, the median
solution time even for the hardest problems generated by 8fesettings never ex-
ceeded 10s of CPU time for eithersiKt or TA; with the modified generator, median
solution times for both systems often exceeded the 1,0085ma allowed in the ex-
periment. Figure 1 shows the median and worst-case soltiti@s for both systems,
as well as those for FaCT and DLP, using the modified generator

The large oscillations in the median solution times usirgaKwith L/N in the
range 45-51 reflect the fact that this is the region where tbbability of problems
being satisfiable is approximately 0.5, and like FaCT and DK ®AT can solve most
unsatisfiable problems in this test relatively easily. TAlso able to solve some of the
unsatisfiable problems in this region, although not as marteother systems, but it
was not possible to complete the experiment with TA as it daesleal reliably with
the larger problems in the test.

Unsatisfiable formulae here are still mostly relativelyyefs all the systems be-
cause they are unsatisfiable considering only their nonatattion. As all the de-
cision procedures are biased towards looking first at themodal information, they
can quickly dispose of such formulae. Hustadt and Schmid balled these formulae
trivially unsatisfiable.

Examining more closely the results for DLP, the fastestgleniprocedure tested,
shows that the median solution time for problems in4f%#% satisfiable regiorf(/ N
in the range 40-50) increases fragd.05s forPS4to ~0.25s forPS1 Figure 2 shows
the probability of generating satisfiable formulae and RliRedian satisfiability times
for all four tests. The median size (measured syntactipafli?S1formulae is approx-
imately eight times that d?S4formulae.

In recent work, Giunchigli@t al [Giunchigliaet al., 1998 have further improved
the generator, but their testing concentrated solely anditeie withD = 1 andP = 0.

A Modified Problem-Generation Technique

The formulae produced by Hustadt and Schmidt’s generatogemerally harder, and
clearly demonstrate performance differences betweenahieus systems, but they are
still far from ideal for testing modal decision procedur€ke formulae are very similar
to each other, and this can exaggerate the importance ofiaytar reasoning or opti-
misation technique. There are still relatively few hardipeons produced, particularly
unsatisfiable ones. For a given valuelgfthe probability of generating unsatisfiable
formulae decreases for larger modal depths, and achieviradaace between satisfi-
able and unsatisfiable tests requires very large formuldmtgenerated. As modal
depth increases, the increase in hardness does not maicletbase in formula size.
To overcome some of these problems, we have further modliredi¢énerator in
order to produce much less uniform formulae. Such formutaetthe benefit of be-
ing generally much harder (for a given formula size), andahfj much more likely
to be unsatisfiable. Our generator has additional param&tgf, andD,,;, that re-
spectively define the minimum size of disjunctive exprassiand the minimum modal

probability of satisfiability

L/N
1 T T T T T T T
PS1 ——
PS2
[}
£
2 [22eazs
% Ol Iy CEE DD. EEE B
= == o X 2000000000
© i X X X 2000006000 X
° 00K 30X 300K | X 3600 100000K
g 200K X x X
0.01 L L L L !

Figure 2: Median CPU times for DLP withS1-4

depth. The values occurring within a formula are then vaaiethndom between the
specified maxima and minima.

With the parameters setat = 6, M = 1, P = 0.5, Kppin = 1, Kiaw = 4,
Dpin, = 1andDy,,, = 6, varyingL/N in the range 1-40 produces a suitable range
of hard problems; we will refer to these parameter settisg®3a Figure 3 shows the
median and worst-case solution times R8ausing all four decision procedures.

The formulae produced by our generator become unsatisfiabfeuch lower val-
ues ofL/N and smaller formula size. F&®¥Sa problems in thes50% satisfiable region
are generated with values Bf N in the range 10-11. These are only one fifth the size
of 50% satisfiabl®S1formulae, and of similar difficulty (for DLP). Our generatiso
produces some hard unsatisfiable problems, althoughrstillatively small numbers,
as well as some very hard satisfiable problems in the regi@remmost formulae are
trivially unsatisfiable { /N in the range 30-40).

1000 + t t t =

TR 8-/
g KSAT -+
& o FaCT e
100 | ERLE L
@ x
;; Box X
£ o o
S 10 ',ET'DD x XXXX ! x5]
o jal x
o y X% «
) A *
§ 1r 5 =8 g N o 1
@ x
[e) x
3 y
01t x 1
X
x X
X
0.01 1 1 1 1 1
0 5 10 15 20 25 30
L/N
1000 : ;
TA —
KSAT -+
FaCT -o--
100 DLP - 7
» T
& i
= .
£ 10 | 1
2
o
o
g 1t
= .
= ”D,D
01} Pl
; X
001 1 1 1 1 1
0 5 10 15 20 25 30
L/N
Figure 3: Worst-case and median CPU timesH&a
DLP tests

The differences in performance between the various systeev&n more pronounced
for PSathan was the case f®*S1 KSAT in particular performs very badly, especially
for satisfiable formulae: for values d@f/N greater than 4 it was unable to solve any
of the satisfiable problems within the 1,000s time limit. peeformance of the FaCT
system is interesting in that it shows some evidence of abagy-easy pattern: median
solution times reach their maximum in the&50% satisfiable regior(/N in the range
10-15) and subsequently diminish. Overall, DLP is the bestopming system: its
median solution time never exceeds 0.5s and it is able t@sdlthe problems within
the 1,000s time limit.

In order to determine how the superior performance of DLP mgted to its var-
ious optimisations,the PSatest was repeated a number of times for configurations of

1For full details on these optimisations dé#orrocks and Patel-Schneider, 1998b

1000 + + + + T + T
no backjumping ——
? /i #no caching -—+--
no‘seﬂmamic branching -e--
100 . i " hopormalisation -x
g i no simplification -+--
0 gy 8 i, noymal -=--
o) Lo J
£ 10 o Lt
S R Bt
E R e % FE
S o sgmadNe B
2 1 o /f*}iﬁ L2 AV L VRNV W
= - /+’+X’§ $;,i‘%,*}t L2 ey
=) Bp K
» R
m‘ﬁ‘f}
0.1 %ﬁ J
0.01 £ L L L L L L L
5 10 15 20 25 30 35 40
L/N
1000 T + + T T : :
no backjumping ——
no caching -+
no semantic branching =
100 ¢ no normalisation -—»- 7
- no simplification -&--
- normal -x--
]
_g 10 1
o
o
®)
g 1 .
el 3 KoK a“ﬁ,w
2 =7E A e
E ﬂigﬁﬂ*ﬁ prpped e
-
0.1 fg’ﬁ’ B
0.01 ! ! ! ! ! ! !

5 10 15 20 25 30 35 40
L/N

Figure 4: 90% and median CPU times f@®awith DLP

DLP in which one of the optimisations was disabled. Figuré@dws the median and
90% solution times for DLP with each of its backjumping, fesaching, semantic
branching search, input formula normalisation and loaalpdification optimisations
disabled.

From this is is clear the the backjumping optimisation isrtfan reason for DLP’s
performance advantage ovesKr and TA. This optimisation uses a form of depen-
dency directed backtracking to avoid wasted search whetraxtintions result from
early branching choices. In DLP, this optimisation is efffex even when a contra-
diction derives from multiple modal nodes. Without backping, DLP performs very
badly asL/N increases, although performance may recover somewhaigfoetval-
ues ofL/N; testing had to be abandoned in this area.

Semantic branching is the next-most-important optimigatparticularly for the
harder problems. Caching also provides some benefit, @thmwuch less. Normali-
sation of the input formulae also provides some benefit, gigpthat there still remain
some local tautologies or contradictions in the input.

10

There is some evidence of a easy-hard-easy pattern, mastaloe in the harder
problems, although this is very slight unless the bettefgpming optimisations are
turned off. Partly masking this easy-hard-easy patternédsricreasing time taken just
to input the larger formulae.

Discussion

How the parameters controlling the generation of randomahfatmulae affect the
difficulty of determining their satisfiability is as yet inepletely understood. It is
therefore essential that generators for such random famrhé carefully designed and
rigorously tested. Failing to do so can easily lead to reghkt reflect the characteris-
tics of the generator, and their interaction with diffeneotf techniques, rather than the
characteristics of the underlying problem and of the the ahdécision procedure(s)
being tested.

Our results show that, contrary to earlier suggestionseaming modal depth can
produce much harder problems, particularly if the struztifthe formulae generated is
less uniform. They also demonstrate the importance of adpyehard satisfiable and
unsatisfiable problems as the performance of some systembenfar from uniform
with respect to different problem types. It was also showat DLP’s dependency
directed backtracking optimisation was the most imporfaator contributing to its
superior performance. There was no conclusive evidenag\akdther or not a phase
shift can be observed for this type of problem: there was spasiive indication of
hard-easy-hard behaviour with both FaCT and DLP but notghntwbe called a phase
shift.

Another observation from the tests is that a small numbereo§ ¥aard “outlier”
problems were generated. It is important that these prabkmm not masked by the
analysis technique, for example by considering only mesadution times, as the time
taken to solve such problems could be critical to the utidity decision procedure in
realistic applications.

Although our generator is a considerable improvement, veerait completely
satisfied with its performance. In particular, it still geates too few hard unsatisfi-
able problems and can still produce trivially unsatisfigblenulae. Moreover, it only
generateX ,,) formulae, while current decision procedures are already tabdeal
with much more expressive logics including features sudhaassitive modalities and
graded modalities.

Future work will therefore include further improvementgte generator in order
to reduce the likelihood of trivially unsatisfiable formalaextending the technique to
generate formulae for more expressive logics, and morasixte testing and evalua-
tion.

References

[Balsiger and Heuerding, 19P&. Balsiger and A. Heuerding. Comparison of theorem provers
for modal logics — introduction and summary. Automated Reasoning with Analytic Tab-
leaux and Related Methods: Int. Conf. Tableaux'88@mber 1397 in LNAI, pages 25-26.
Springer-Verlag, 1998.

[Calvaneset al, 1999 D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, and Rsd&io
Source integration in data warehousing.Froc. of the 9th Int. Workshop on Database and
Expert Systems Applications (DEXA-98ages 192—-197, 1998.

11

[Freeman, 1996 J. W. Freeman. Hard random 3-SAT problems and the DavisaRuproce-
dure. Artificial Intelligence 81:183—-198, 1996.

[Giunchiglia and Sebastiani, 1996&. Giunchiglia and R. Sebastiani. Building decision proce-
dures for modal logics from propositional decision progedu—the case study of modal K.
In Proc. of the 13th Conf. on Automated Deduction (CADE-p&yes 583-597, 1996.

[Giunchiglia and Sebastiani, 1996lF. Giunchiglia and R. Sebastiani. A SAT-based decision
procedure fotdLC. In Proc. of the 5th Int. Conf. on the Principles of Knowledge riesen-
tation and Reasoning (KR-96)ages 304—-314, 1996.

[Giunchigliaet al,, 1999 E. Giunchiglia, F. Giunchiglia, R. Sebastiani, and A. Taatzh More
evaluation of decision procedures for modal logics. Pioc. of the 6th Int. Conf. on the
Principles of Knowledge Representation and ReasoninggBRpages 626—635, 1998.

[Heuerding and Schwendimann, 1998. Heuerding and S. Schwendimann. A benchmark
method for the propositional modal logics K, KT, and S4. Techl report IAM-96-015,
University of Bern, Switzerland, 1996.

[Hogget al, 1994 T. Hogg, B. A. Huberman, and C. P. Williams. Phase transitiand the
search problemArtificial Intelligence 81:1-15, 1996. Editorial.

[Horrocks and Patel-Schneider, 1998aHorrocks and P. F. Patel-Schneider. DL systems com-
parison. InCollected Papers from the Int. Description Logics WorkskDp'98), pages 55—
57, 1998.

[Horrocks and Patel-Schneider, 1998b Horrocks and P. F. Patel-Schneider. Optimising
propositional modal satisfiability for description logighsumption. IrArtificial Intelligence
and Symbolic Computation: Int. Conf. AISC,98umber 1476 in LNAI, pages 234-246.
Springer-Verlag, 1998.

[Horrocks, 1998 I. Horrocks. Using an expressive description logic: FaCTiation? InProc.
of the 6th Int. Conf. on the Principles of Knowledge Repredam and Reasoning (KR-98)
pages 636-647, 1998.

[Hustadt and Schmidt, 1997&J. Hustadt and R. A. Schmidt. On evaluating decision proce-
dures for modal logic. Technical Report MPI-1-97-2-003 @vRlanck-Institut Fir Informatik,
1997.

[Hustadt and Schmidt, 199FdJ. Hustadt and R. A. Schmidt. On evaluating decision proce-
dures for modal logic. IfProc. of the 15th Int. Joint Conf. on Atrtificial Intelligen¢ECAI-
97), volume 1, pages 202-207, 1997.

[Patel-Schneider, 1998P. F. Patel-Schneider. DLP system description.Cbilected Papers
from the Int. Description Logics Workshop (DL'9®rges 87-89, 1998.

[Rectoret al, 1994 A. L. Rector, A. Gangemi, E. Galeazzi, A. J. Glowinski, and #sRi-Mori.
The GaLEN core model schemata for anatomy: towards a re-useablecapphi-independent
model of medical concepts. Proc. of Medical Informatics in Europ@ages 229—-233, 1994.

[Selmaret al, 1994 B. Selman, D. G. Mitchell, and H. J. Levesque. Generating Batisfia-
bility problems. Artificial Intelligence 81:17-29, 1996.

12

