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Abstract

Description Logics form a family of formalisms
closely related to semantic networks but with the
distinguishing characteristic that the semantics of
the concept description language is formally de-
fined, so that the subsumption relationship be-
tween two concept descriptions can be computed
by a suitable algorithm. Description Logics have
proved useful in a range of applications but their
wider acceptance has been hindered by their lim-
ited expressiveness and the intractability of their
subsumption algorithms. This paper addresses
both these issues by describing a sound and com-
plete tableaux subsumption testing algorithm for
a relatively expressive Description Logic which,
in spite of the logic’s worst case complexity, has
been shown to perform well in realistic applica-
tions.

1 INTRODUCTION

Description Logics (DLs) form a family of formalisms
which have grown out of knowledge representation tech-
niques using frames and semantic networks; their dis-
tinguishing characteristic is a formally defined semantics
which enables the subsumption (kind-of) relationship to be
computed by a suitable algorithm (Woods and Schmolze
1992). DL based knowledge representation systems have
proved useful in a range of applications (Berman et al.
1994; Guha and Lenat 1994; Goble et al. 1996; Levy and
Rousset 1996; Küssner 1997), but their wider acceptance
has been hindered by their limited expressiveness (Doyle
and Patil 1991; MacGregor 1991) and the intractability of
their subsumption algorithms (Heinsohn et al. 1994; Speel
et al. 1995).1 This paper addresses both these issues by

1A desire/requirement for sound and complete reasoning is as-
sumed, but see (Borgida 1992) for a discussion of this issue.

describing a tableaux subsumption testing algorithm for a
relatively expressive DL which, in spite of the logic’s worst
case complexity, has been shown to perform well in realis-
tic applications.

A particularly promising application domain for DLs is in
the growth area of ontological engineering—the design,
construction and maintenance of large conceptual schemas
or ontologies (Mays et al. 1996; Horrocks et al. 1996; Rec-
tor and Horrocks 1997). An example of such an application
is the European GALEN project, which aims to promote the
sharing and re-use of medical data by building a large med-
ical terminology ontology which can be used by application
designers as a flexible and extensible classification schema
(Rector et al. 1993). However design studies at the outset of
the project identified expressive requirements which were
satisfied by few if any implemented DL systems (Nowlan
1993), in particular the ability to reason about transitive
part-whole, causal and compositional relations (called roles
in DLs) (Rector et al. 1997). The importance of reasoning
with transitive roles has long been recognised (Hors 1994;
Padgham and Lambrix 1994; Artale et al. 1996), and has
been identified as a requirement in other application do-
mains, particularly those concerned with complex physi-
cally composed objects, e.g., engineering (Sattler 1995).

The work presented here was motivated by the desire to
provide a sound, complete and empirically tractable algo-
rithm for a DL with the expressive power required by these
kinds of application. The logic developed for this purpose
was ALCHR+ , an extension of the well known ALC DL
(Schmidt-Schauß and Smolka 1991). ALC supports con-
cept descriptions using the standard logical connectives,
plus existential and universal role restrictions, but only us-
ing simple primitive roles. ALCHR+ augments ALC with
transitively closed primitive roles and role inclusion ax-
ioms, the combination of which enables a hierarchy of tran-
sitive and non-transitive roles to be defined—a fundamen-
tal requirement of the GALEN project—and allows reason-
ing with respect to general terminologies (see Section 5), a
feature which is also required by some applications (Levy



and Rousset 1996). A tableaux satisfiability testing algo-
rithm for ALCHR+ will be presented, along with a proof
of its soundness and completeness, and an extension to the
algorithm which supports reasoning with attributes (func-
tional/feature roles) will also be described. A highly opti-
mised implementation of this algorithm forms the basis for
a terminological classifier, FaCT, which has been devel-
oped to demonstrate the feasibility of using the algorithm
for subsumption reasoning in realistic applications.

2 TRANSITIVE ROLES

Extensions to ALC which support some form of transitive
roles include CIQ (Giacomo and Lenzerini 1996), T SL
(Schild 1991), ALC+ (Baader 1990), ALCR+ and ALC⊕

(Sattler 1996). Of these, CIQ, T SL and ALC+ all support
role expressions with transitive or transitive reflexive oper-
ators, and from correspondence to propositional dynamic
logics their satisfiability problems are known to be EXP-
TIME-complete (Schild 1991). The ALCR+ and ALC⊕

DLs support transitive roles without providing a general
transitive closure operator, and were investigated in the
hope that a more restricted form of transitive role might
lead to a satisfiability problem in a lower complexity class
(Sattler 1996).

ALCR+ augments ALC with transitively closed primitive
roles: an ALCR+ terminology may include axioms of
the form R ∈ R+, where R is a role name and R+ is
the set of transitive roles names in the terminology. In
(Sattler 1996) an algorithm for deciding the satisfiability
of ALCR+ concept expressions is presented along with a
proof of its soundness and completeness. It is also demon-
strated that the complexity of the ALCR+ satisfiability
problem is PSPACE-complete, the same as for ALC (Donini
et al. 1995). ALC⊕ extends ALCR+ by associating each
non-transitive role R with its transitive orbit. The transitive
orbit of a role R, denoted R⊕, is a transitive role which sub-
sumes R, and could be defined by the axioms R⊕ ∈ R+

and R v R⊕. The interpretation of R⊕ is therefore a su-
perset of the interpretation of the transitive closure of R,
i.e., (R⊕)I ⊇ (R+)I . Unfortunately, the complexity of
the ALC⊕ satisfiability problem is also shown to be EXP-
TIME-complete.

ALCHR+ generalises ALC⊕ by supporting transitively
closed primitive roles and arbitrary role inclusion axioms
of the form R v S. As it is more general than ALC⊕, but
still less expressive than DLs such as ALC+ which support
the transitive closure role forming operator, the ALCHR+

satisfiability problem is clearly also EXPTIME-complete.
However, the tableaux satisfiability testing algorithm for
ALCHR+ is much simpler than for ALC+:

1. It is simpler to detect cycles in the tableaux con-

struction which could lead to non-termination. Cycle
detection (blocking) involves comparing sets of con-
cepts, and this is complicated in ALC+ by the need
to deal with concepts containing role expressions. It
can be shown, for example, that identifying equivalent
role expressions is itself a PSPACE-complete problem
(Baader 1990).

2. It is simpler to deal with cycles once they have been
detected, because in the ALCHR+ algorithm all cy-
cles lead to a valid cyclical model. In the ALC+ algo-
rithm, on the other hand, it is necessary to differentiate
between cycles which lead to a valid cyclical model
(good cycles) and those which do not (bad cycles).

ALCHR+ is sufficiently expressive to be useful in a range
of applications, but the simplicity of its satisfiability testing
algorithm means that it is easy to implement and amenable
to a wide range of optimisation techniques.

3 THE ALCHR+ DESCRIPTION LOGIC

In this section a tableaux algorithm for testing the satisfi-
ability of ALCHR+ concept expressions will be described
and a proof of its soundness and completeness presented.
The algorithm and proof are extensions of those described
for ALCR+ (Sattler 1996).

3.1 SYNTAX AND SEMANTICS

ALCHR+ is the DL obtained by augmenting ALC with
transitively closed primitive roles and primitive role intro-
duction axioms. An ALCHR+ terminology consists of a
finite set of axioms of the form C v D | C

.
= D | R v

S | R ∈ R+, where C and D are concept expressions,
R and S are role names and R+ is the set of transitive
role names. ALCHR+ concept expressions are of the form
CN | > | ⊥ | ¬C | C u D | C t D | ∃R.C | ∀R.C, where
CN is a concept name, C and D are concept expressions
and R is a role name.

A standard Tarski style model theoretic semantics is used
to interpret concept expressions and to justify subsump-
tion inferences (Baader et al. 1991). The meaning of con-
cepts and roles is given by an interpretation I which is a
pair (∆I , ·I), where ∆I is the domain (a set) and ·I is an
interpretation function. The interpretation function maps
each concept name CN to a subset of ∆I and each role
to a set valued function (or equivalently a binary relation):
RI : ∆I −→ 2∆I

(RI ⊆ ∆I × ∆I). The semantics of an
ALCHR+ concept expression is derived from the seman-
tics of its components as shown in Figure 1. The semantics
of ALCHR+ axioms is given in Figure 2.

To simplify the description of the algorithm, it will be as-



Syntax Semantics
CN CNI ⊆ ∆I

> ∆I

⊥ ∅
¬C ∆I − CI

C u D CI ∩ DI

C t D CI ∪ DI

∃R.C {d ∈ ∆I | RI(d) ∩ CI 6= ∅}
∀R.C {d ∈ ∆I | RI(d) ⊆ CI}

Figure 1: Semantics of ALCHR+ Concept Expressions

Syntax Semantics
C v D CI ⊆ DI

C
.
= D CI = DI

R v S RI ⊆ SI

R ∈ R+ RI = (RI)+

Figure 2: Semantics of ALCHR+ Axioms

sumed that R+ and the v relation have been defined by
an ALCHR+ terminology T , so that R+ = {R | R ∈
R+ is an axiom in T }, and for two roles R and S, R v S
iff R v S is an axiom in T or there is a role R′ such that
R v R′ is an axiom in T and R′ v S. Without loss of
generality, it will also be assumed that the concept expres-
sion is in negation normal form, so that negations are ap-
plied only to concept names, and that the terminology does
not contain any concept axioms (i.e., axioms of the form
C v D or C

.
= D), so that all concept names are atomic

primitives.2 Arbitrary concept expressions can be trans-
formed into negation normal form using a combination of
DeMorgan’s laws and the identities ¬∃R.C = ∀R.¬C and
¬∀R.C = ∃R.¬C. How the algorithm can be used to test
satisfiability w.r.t. a general terminology will be described
in Section 5.

Like other tableaux algorithms, the ALCHR+ algorithm
tries to prove the satisfiability of a concept expression D
by demonstrating a model of D—an interpretation I =
(∆I , ·I) such that DI 6= ∅. The model is represented by
a tree whose nodes correspond to individuals in the model,
each node being labelled with a set of ALCHR+-concepts.
When testing the satisfiability of an ALCHR+ -concept D,
these sets are restricted to subsets of sub(D), where sub(D)
is the closure of the subexpressions of D defined as fol-
lows:

1. if D is an atomic primitive concept or its negation,
then sub(D) = {D}

2An atomic primitive is a concept name CN for which there is
no definition in T : all that is known about CN is that CNI

⊆ ∆
I .

2. if D is of the form ∃R.C or ∀R.C, then sub(D) =
{D} ∪ sub(C)

3. if D is of the form C1uC2 or C1tC2, then sub(D) =
{D} ∪ sub(C1) ∪ sub(C2)

The soundness and completeness of the algorithm will be
proved by showing that a concept has a model iff it has a
tableau, and that the algorithm constructs a tableau for a
concept iff one exists.

Definition 1 If D is an ALCHR+-concept and RD is the
set of role names occurring in D, a tableau T for D is de-
fined to be a triple (S,L,E) such that: S is a set of in-
dividuals, L : S → 2sub(D) maps each individual to a
set of concept expressions which is a subset of sub(D),
E : RD → 2S×S maps each role name occurring in D
to a set of pairs of individuals, and there is some individual
s ∈ S such that D ∈ L(s). For all s ∈ S it holds that:

1. ⊥ /∈ L(s), and if C ∈ L(s), then ¬C /∈ L(s)

2. if C1 u C2 ∈ L(s), then C1 ∈ L(s) and C2 ∈ L(s)

3. if C1 t C2 ∈ L(s), then C1 ∈ L(s) or C2 ∈ L(s)

4. if ∀R.C ∈ L(s) and 〈s, t〉 ∈ E(R), then C ∈ L(t)

5. if ∃R.C ∈ L(s), then there is some t ∈ S s.t. 〈s, t〉 ∈
E(R) and C ∈ L(t)

6. if ∀R.C ∈ L(s), 〈s, t〉 ∈ E(S), S ∈ R+ and S v R,
then ∀S.C ∈ L(t)

7. if R v S then E(R) ⊆ E(S)

Lemma 1 An ALCHR+ -concept D is satisfiable iff there
exists a tableau for D.

Proof: For the if direction, if T = (S,L,E) is a tableau
for D, a model I = (∆I , ·I) of D can be defined as:

∆I = S

CNI = {s | CN ∈ L(s)}

for all concept names CN in sub(D)

RI =

{

E(R)+ if R ∈ R+

E(R) ∪ ∪
S@R

SI otherwise

where E(R)+ denotes the transitive closure of E(R).

By induction on the structure of concepts it can be shown
that I is well defined and that DI 6= ∅. For concepts of
the form ¬C, C1 uC2, C1 tC2 and ∃R.C, the correctness
of their interpretations follows directly from Definition 1
and the semantics of ALCHR+ concept expressions given
in Figure 1 above:



1. For concepts of the form ¬C, if ¬C ∈ L(s), then
C /∈ L(s), so s ∈ ∆I − CI and ¬C is correctly
interpreted.

2. For concepts of the form C1 uC2, if C1 uC2 ∈ L(s),
then C1 ∈ L(s) and C2 ∈ L(s), so s ∈ CI

1 ∩ CI
2 and

C1 u C2 is correctly interpreted.

3. For concepts of the form C1 tC2, if C1 tC2 ∈ L(s),
then C1 ∈ L(s) or C2 ∈ L(s), so s ∈ CI

1 ∪ CI
2 and

C1 t C2 is correctly interpreted.

4. For concepts of the form ∃R.C, if ∃R.C ∈ L(s), then
there is some t ∈ S such that 〈s, t〉 ∈ E(R) and C ∈
L(t), so s ∈ {d ∈ ∆I | RI(d) ∩ CI 6= ∅} and ∃R.C
is correctly interpreted.

For concepts of the form ∀R.C, the correctness of their
interpretations follows from Definition 1, and the semantics
of ALCHR+ concept expressions and axioms:

1. if ∀R.C ∈ L(s) and 〈s, t〉 ∈ E(R), then C ∈ L(t)

2. if ∀R.C ∈ L(s), 〈s, t〉 6∈ E(R) and 〈s, t〉 ∈ RI ,
then there exists a path 〈s, u1〉, . . . , 〈un, t〉 s.t. n > 1,
{〈s, u1〉, . . . , 〈un, t〉} ⊆ E(S), S ∈ R+ and S v R.
From property 6 of Definition 1, ∀S.C ∈ L(ui) for
all 1 6 i 6 n, and from property 4 of Definition 1,
C ∈ L(t)

so s ∈ {d ∈ ∆I | RI(d) ⊆ CI} and ∀R.C is correctly
interpreted.

Finally, from Definition 1, there is some individual s ∈ S

such that D ∈ L(s), so s ∈ DI and DI 6= ∅.

For the converse, if I = (∆I , ·I) is a model of D, then a
tableau T = (S,L,E) for D can be defined as:

S = ∆I

E(R) = RI

L(s) = {C ∈ sub(D) | s ∈ CI}

It only remains to demonstrate that T is a tableau for D:

1. T satisfies properties 1–5 in Definition 1 as a direct
consequence of the semantics of the ¬C, C1 u C2,
C1 t C2, ∀R.C and ∃R.C concept expressions.

2. If d ∈ (∀R.C)I , 〈d, e〉 ∈ SI , S ∈ R+ and S v R,
then e ∈ (∀S.C)I unless there is some f such that
〈e, f〉 ∈ SI and f /∈ CI . However, if 〈d, e〉 ∈ SI ,
〈e, f〉 ∈ SI , S ∈ R+ and S v R, then from
the semantics of role axioms given in Figure 2, S ∈
R+ → 〈d, f〉 ∈ SI , S v R → 〈d, f〉 ∈ RI and
d /∈ (∀R.C)I . T therefore satisfies property 6 in Def-
inition 1.

3. T satisfies property 7 in Definition 1 as a direct conse-
quence of the semantics of role inclusion axioms given
in Figure 2.

3.2 CONSTRUCTING AN ALCHR+ TABLEAU

The algorithm builds a tree where each node x of the tree is
labelled with a set L(x) ⊆ sub(D) and may, in addition, be
marked satisfiable. The tree is expanded either by extend-
ing L(x) for some leaf node x or by adding new leaf nodes.
For a node x, L(x) is said to contain a clash if ⊥ ⊆ L(x)
or, for some concept C, {C,¬C} ⊆ L(x). L(x) is called
a pre-tableau if it is clash-free and contains no unexpanded
conjunction or disjunction concepts. Note that ∅ is a pre-
tableau.

Edges of the tree are either labelled t or labelled R for
some role name R occurring in sub(D). Edges labelled t
are added when expanding C1 t C2 concepts in L(x), and
are the mechanism whereby the algorithm searches possi-
ble alternative expansions. Edges labelled with a role name
R are added when expanding ∃R.C terms in L(x), and cor-
respond to relationships between pairs of individuals.

A node y is called an R-successor of a node x if there is
an edge 〈x, y〉 labelled R; y is called a t-successor of x if
there is a path, consisting of t-labelled edges, from x to y.
A node x is an ancestor of a node y if there is a path from
x to y regardless of the labelling of the edges. Note that
both the t-successor and ancestor relations are reflexive as
nodes are connected to themselves by the empty path.

The algorithm initialises a tree T to contain a single node
x0, called the root node, with L(x0) = {D}. T is then
expanded by repeatedly applying the rules from Figure 3
until either the root node is marked satisfiable or none of
the rules is applicable. Note that the second condition in
each rule prevents multiple applications of the rule to the
same concept expression(s), while blocking is performed
by part b of the ∃-rule.

If the algorithm constructs a tree in which the root node is
marked satisfiable, then it returns satisfiable; from this tree
a tableau for D can trivially be constructed. If the algorithm
terminates without marking the root node satisfiable, then
it returns unsatisfiable.

3.3 SOUNDNESS AND COMPLETENESS

From Lemma 1, the soundness and completeness of the
algorithm can be demonstrated by proving that, for an
ALCHR+ -concept D, it always terminates and that it re-
turns satisfiable iff there exists a tableau for D.

Lemma 2 For each ALCHR+-concept D, the tableau
construction terminates.



u-rule: if 1. x is a leaf of T, L(x) is clash-free, C1 u C2 ∈ L(x)
2. {C1, C2} * L(x)

then L(x) −→ L(x) ∪ {C1, C2}

t-rule: if 1. x is a leaf of T, L(x) is clash-free, C1 t C2 ∈ L(x)
2. {C1, C2} ∩ L(x) = ∅

then create two t-successors y, z of x with:
L(y) = L(x) ∪ {C1}
L(z) = L(x) ∪ {C2}

∃-rule: if 1. L(x) is a pre-tableau, there is a concept of the form ∃R.C in L(x)
2. x is a leaf of T

then for each ∃R.C ∈ L(x) do:
a. `Rx := {C} ∪ {D | ∀S.D ∈ L(x) and R v S}

∪ {∀S.D | ∀P.D ∈ L(x), S ∈ R+, S v P and R v S}
b. if for some ancestor w of x, `Rx ⊆ L(w)

then create an R-successor y of x with L(y) = ∅
c. otherwise create an R-successor y of x with L(y) = `Rx

SAT-rule: if 1. x is a node of T, and either:
a. L(x) is a pre-tableau containing no concepts of the

form ∃R.C
b. L(x) is a pre-tableau which has successors,

and all successors of x are marked satisfiable
c. L(x) is not a pre-tableau and some t-successor of x is

marked satisfiable
2. x is not marked satisfiable

then mark x satisfiable

Figure 3: Tableaux Expansion Rules for ALCHR+

Proof: Let m = |sub(D)|. As nodes are labelled with
subsets of sub(D), |L(x)| ≤ m for all nodes x. For any
node x the u-rule can therefore be applied at most m times.
The size of any sub-trees is also limited by m: the t-rule
can also be applied at most m times along a t-labelled path
and the ∃-rule can be applied at most 2m times along any
path before there must be some ancestor y s.t. `Rx ⊆ L(y)
for any R.

Lemma 3 For an ALCHR+-concept D, there exists a tab-
leau for D iff the tableau construction returns satisfiable.

Proof: For the if direction (the algorithm returns satisfi-
able), let T be the tree constructed by the tableaux algo-
rithm for D. A tableau T = (S,L,E) can be defined with:

S = {x | x is a node in T, x is marked sat-
isfiable and L(x) is a non-empty pre-
tableau.}

E(R) = {〈x, y〉 ∈ S × S | either y is a t-
successor of an R-successor of x; or x
has an R-successor z with L(z) = ∅,
y is an ancestor of x and `Rx ⊆ L(y);
or for some role S, 〈x, y〉 ∈ E(S) and
S v R}

and it can be shown that T is a tableau for D:

1. D ∈ L(x) for the root x0 of T and for all t-
successors of x0. As x0 is marked satisfiable one of
these must be a non-empty pre-tableau marked satisfi-
able, so D ∈ L(s) for some s ∈ S.

2. Properties 1–3 of Definition 1 are satisfied because
each x ∈ S is a pre-tableau.

3. Property 4 in Definition 1 is satisfied because {C |
∀R.C ∈ L(x)} ⊆ `Rx and `Rx ⊆ L(y) for all y with
〈x, y〉 ∈ E(R).



4. Property 5 in Definition 1 is satisfied by the ∃-rule
which, for all x ∈ S, creates for each ∃R.C ∈ L(x) a
new R-successor y with either:

(a) C ∈ L(y) or
(b) L(y) = ∅, C ∈ `Rx and `Rx ⊆ L(z) for some

ancestor z of x.

5. Property 6 in Definition 1 is satisfied because {∀S.C |
∀R.C ∈ L(x), S ∈ R+ and S v R} ⊆ `Sx and
`Sx ⊆ L(y) for all y with 〈x, y〉 ∈ E(S).

6. Property 7 in Definition 1 is satisfied because 〈x, y〉 ∈
E(S) for all 〈x, y〉 ∈ E(R) and R v S.

For the converse (the algorithm returns unsatisfiable), it can
be shown by induction on h(x), the height of the sub-tree
below x, that if x is not marked satisfiable then the concept
X = uC∈L(x)C is not satisfiable:

1. If h(x) = 0 (x is a leaf) and x is not marked sat-
isfiable, then L(x) contains a clash and X is clearly
unsatisfiable.

2. If h(x) > 0, L(x) is not a pre-tableau and x is not
marked satisfiable, then none of its t-successors is
marked satisfiable; hence C1 t C2 ∈ L(x) and nei-
ther y with L(y) = L(x) ∪ {C1} nor z with L(z) =
L(x) ∪ {C2} is marked satisfiable. It follows by in-
duction that X is not satisfiable.

3. If h(x) > 0, L(x) is a pre-tableau and x is not marked
satisfiable, then there is some R-successor of x which
is not marked satisfiable and it follows by induction,
and the semantics of value restriction concept expres-
sions (∀R.C), that X is not satisfiable.

4 EXTENDING ALCHR+ WITH
ATTRIBUTES

ALCHR+ can be extended with limited support for at-
tributes (functional/feature roles) to give ALCHf R+ . Un-
like ALCF (Hollunder and Nutt 1990), ALCHf R+ does
not include support for attribute value map concept form-
ing operators, but it only requires a minor extension to the
ALCHR+ algorithm.

ALCHfR+ extends the syntax of ALCHR+ by allowing
axioms of the form A ∈ F to appear in terminologies,
where A is a role name and F is the set of functional
role names, or attributes. As well as being correct for
ALCHR+ concept expressions, an ALCHf R+ interpreta-
tion I = (∆I , ·I) must satisfy the additional condition
that, for all A ∈ F, AI is a single valued partial function,
AI : dom AI −→ ∆I .

The ∃-rule in the ALCHR+ tree construction algorithm can
be extended to deal with attributes in ALCHf R+ . Expres-
sions of the form ∃R.C, where R is a role, are dealt with
exactly as before, but expressions of the form ∃A.C, where
A is an attribute, require special treatment. The extended
rule treats attributes in a similar way to roles: ∃A.C expres-
sions in the label of a pre-tableau node x will lead to the
creation of new A-successor nodes yi and labelled edges
〈x, yi〉. However, it may group together multiple ∃A.C
expressions in x’s label to create a single A-successor y,
labeling the edge 〈x, y〉 with a set of attribute names A.

Multiple ∃A.C expressions must be grouped together
when, in the model represented by the tree, the AI(x) are
constrained to be the same individual, for example when
there are multiple ∃A.C expressions containing the same
attribute A. The interaction between attributes and the role
hierarchy means that for two expressions ∃A.C1 ∈ L(x)
and ∃B.C2 ∈ L(x), where A and B are attributes, AI(x)
and BI(x) are also constrained to be the same individ-
ual when A v B (because AI ⊆ BI) or B v A (be-
cause BI ⊆ AI). We will say that an attribute B is
directly-constrained by an attribute A in L(x) if (∃A.C ∈
L(x) and A v B) or (∃B.C ∈ L(x) and B v A), and we
will say that an attribute B is constrained by an attribute A
in L(x) if B is directly-constrained by A in L(x) or if, for
some attribute A′, A′ is directly-constrained by A in L(x)
and B is constrained by A′ in L(x). For an attribute B and
a node x, the set of attributes which are constrained by B
in L(x) will be denoted ABx, where ABx = {A ∈ F | A
is constrained by B in L(x)}. The extended ∃-rule for
ALCHfR+ is shown in Figure 4.

5 GENERAL TERMINOLOGIES

The algorithm described in Section 3 tests the satisfiability
of a concept expression D w.r.t. a terminology which does
not contain concept axioms, but it can also be used to test
satisfiability w.r.t. an arbitrary terminology T . If T is a re-
stricted terminology, one which contains only acyclic con-
cept definitions,3 this can be achieved simply by unfolding
D—using the definitions in T to expand concept names in
D until they are all atomic primitives. The ALCHf R+ al-
gorithm can, however, also be used to test the satisfiability
of a concept expression with respect to a general terminol-
ogy, one which may contain both cycles and general con-
cept inclusion axioms (GCIs). A GCI is an axiom of the
form C v D where C is an arbitrary concept expression.

3A concept definition is an axiom of the form CN v C or
CN .

= C, where CN is a concept name which appears only once
on the left hand side of such an axiom. Concept definitions are
acyclic if C does not refer to CN, either directly or indirectly.
Concepts defined by an axiom of the form CN v C are called
primitive while those defined by an axiom of the form CN .

= C

are called non-primitive.



if 1. L(x) is a pre-tableau, there is a concept of the form ∃R.C in L(x)
2. x is a leaf of T

then for each ∃R.C ∈ L(x) where R /∈ F do:
a. `Rx := {C} ∪ {D | ∀S.D ∈ L(x) and R v S}

∪ {∀S.D | ∀P.D ∈ L(x), S ∈ R+, S v P and R v S}
b. if for some ancestor w of x, `Rx ⊆ L(w)

then create an R-successor y of x with L(y) = ∅
c. otherwise create an R-successor y of x with L(y) = `Rx

and for each ∃A.D ∈ L(x) where A ∈ F do:
a. if for some A-successor y of x, A ∈ A then do nothing.
b. otherwise

i. A := AAx

ii. `Ax :=
⋃

B∈A
({C | ∃B.C ∈ L(x)} ∪
{C | ∀S.C ∈ L(x) and B v S} ∪
{∀S.C | ∀P.C ∈ L(x), S ∈ R+, S v P and B v S})

iii. if for some ancestor w of x, `Ax ⊆ L(w)
then create an A-successor y of x with L(y) = ∅

iv. otherwise create an A-successor y of x with L(y) = `Ax

Figure 4: Extended ∃-rule for ALCHf R+

An axiom C
.
= D is equivalent to two GCIs, C v D and

D v C, so we can, without loss of generality, restrict our
attention to GCIs.

A procedure called internalisation (Baader 1990) can be
used to test the satisfiability of a concept expression D
with respect to a terminology T containing an arbitrary
set of GCIs {A1 v B1, . . . , An v Bn}. Internalisa-
tion works by testing the satisfiability of D u M u ∀U.M,
where M is a concept expression formed from the GCIs,
M

.
= (B1 t ¬A1) u . . . u (Bn t ¬An), and U is a spe-

cially defined transitive role which subsumes all the other
roles which occur in T . The properties of U ensure that,
in any model constructed by the tableaux algorithm, every
individual satisfies M, and thus satisfies each of the GCIs
in T .

Assuming descriptive rather than fixed point semantics
(Nebel 1990), terminological cycles can easily be dealt
with by treating all concept axioms as GCIs (Buchheit et al.
1993). However, this method is highly inefficient because
reasoning with GCIs introduces large numbers of disjunc-
tions and is thus very costly. Terminological cycles can
be dealt with in a much more efficient manner by using
lazy unfolding: using the definitions in T to expand con-
cept names in D, but only as required by the progress of
the tableau expansion (Baader et al. 1992).

When building a tree T, lazy unfolding ensures that if the
terminology T contains a primitive definition axiom CN v
C, then for any node x in T, CN ∈ L(x) ⇒ C ∈ L(x).
Therefore, in the model represented by T, CNI ⊆ CI and
the axiom is satisfied. If C refers either directly or indi-

rectly to CN, termination of the tree construction algorithm
is still guaranteed because of blocking—most implemented
DLs are unable to deal with terminological cycles because
they have no blocking mechanism and could not guarantee
termination.

Lazy unfolding also takes care of non-primitive definition
axioms CN .

= C ∈ T , provided that C can be unfolded
so that it contains only primitive concepts, as any primi-
tive interpretation (an assignment of values to the interpre-
tations of primitive concepts) will lead, via the semantics,
to an interpretation for CN such that CNI = CI . How-
ever, if C cannot be unfolded so that it contains only prim-
itive concepts, then it cannot be guaranteed that a model
constructed by the algorithm satisfies T . For example, if
T = {CN1 v >, CN2

.
= ¬CN2}, then T is obviously

unsatisfiable (it only has a model with an empty domain).
Testing the satisfiability of CN1 would, however, cause
the algorithm to build a tree representing a model where
∆I = {x} and CNI

1 = {x}.

This problem can be dealt with by checking each defini-
tion axiom CN .

= C ∈ T , and if C cannot be unfolded
until it contains only primitive concepts, then transform-
ing the axiom into a primitive definition CN v C and a
GCI C v CN. The axiom CN2

.
= ¬CN2 from the above

example would thus be converted into the primitive defini-
tion CN2 v ¬CN2 and the GCI ¬CN2 v CN2. The GCI
would lead to CN2 being added to every node label, and
the unfolding of CN2 would then add ¬CN2, causing an
immediate clash.



6 THE FaCT SYSTEM

The FaCT system is a terminological classifier (TBox)
which has been developed as a testbed for a highly opti-
mised implementation of the ALCHf R+ satisfiability test-
ing algorithm, and to evaluate its empirical tractability.
FaCT reasons about concept, role and attribute descrip-
tions, and maintains a concept hierarchy based on the sub-
sumption relation. The algorithm is used for subsumption
testing in the usual way: C subsumes D iff D u ¬C is
not satisfiable. Correspondences between modal and de-
scription logics (Schild 1991) mean that FaCT can also be
used as a theorem prover for the propositional modal logics
K(m), KT(m), K4(m) and S4(m).

6.1 OPTIMISATION TECHNIQUES

A naive implementation of the algorithm would be of lim-
ited value in realistic applications: when trying to classify
the GALEN medical terminology ontology, for example,
single satisfiability problems were encountered which the
unoptimised algorithm had failed to solve after 100 hours
of CPU time. To improve the performance of the algorithm,
a range of optimisations have been employed (Horrocks
1997). These include:

• Lexical normalisation and encoding of concept
expressions—a technique which takes the hierarchi-
cal structure of terminologies to its logical conclusion
by lexically normalising and encoding all concept ex-
pressions and, recursively, their sub-expressions. In
this form, concept expressions consist only of (possi-
bly negated) concept names, conjunctions (C1 u . . .u
Cn) and value restrictions (∀R.C): expressions of
the form ∃R.C are transformed into ¬(∀R.¬C) and
expressions of the form (C1 t . . . t Cn) are trans-
formed into ¬(¬C1 u . . . u ¬Cn). In addition, the
sub-expressions forming conjunctions are sorted and
any duplicates eliminated. The normalisation process
also identifies and simplifies sub-expressions which
are obviously satisfiable (e.g., ∀R.>) or obviously
unsatisfiable (e.g., (C u ¬C u . . .)), replacing them
with > or ⊥ respectively: in extreme cases (when the
whole expression simplifies to > or ⊥) the need for a
tableau expansion can be completely eliminated.

The encoding process gives a unique identifier to
each lexically distinct concept expressions which, in
conjunction with lazy unfolding and the retention of
unfolded identifiers, facilitates early clash detection
when an identifier and its negation occur in the same
node label (Baader et al. 1992).

• Absorption—a technique which eliminates GCIs from
a terminology by absorbing them into primitive con-

cept definition axioms. For example, if a terminology
contains the axiom P v C and the GCI PuD1 v D2,
the GCI can be eliminated from the terminology by
absorbing it into the axiom to give P v C u (D2 t
¬D1).

Although absorption adds a disjunction to the primi-
tive concept definition axiom, it is much more efficient
than reasoning w.r.t. the GCI, which would require the
disjunction D2 t ¬(P u D1) to be added to the label
of every node. In effect, absorption restricts the ap-
plication of this disjunction to nodes where it is really
required.

• Semantic branching—a search technique adapted
from the Davis-Putnam-Logemann-Loveland proce-
dure (DPL) commonly use to solve propositional sat-
isfiability (SAT) problems (Davis et al. 1962). Seman-
tic branching works by selecting a concept C from one
of the unexpanded disjunctions in the label of a node x
and searching L(x)∪{C} and L(x)∪{¬C}. Wasted
search is avoided because the two branches are strictly
disjoint. For example, if {C tD,C tE} ⊆ L(x) and
L(x) ∪ {C} is found to be unsatisfiable, then ¬C is
added to L(x) and a second, possibly costly, evalua-
tion of the unsatisfiability of L(x) ∪ {C} is avoided.
A similar technique is also used in the KSAT modal
K(m) (equivalently ALC (Schild 1991)) satisfiability
testing algorithm (Giunchiglia and Sebastiani 1996).

• Dependency directed backtracking—a technique
adapted from constraint satisfiability problem solving
(Baker 1995) which addresses the problem of thrash-
ing (large amounts of unproductive backtracking
search) caused by inherent unsatisfiability concealed
in sub-problems. Backjumping labels concept
expressions with a dependency set indicating the
branch points on which they depend. When a clash
is discovered, the dependency sets can be used to
identify the most recent branch point where exploring
the other branch might alleviate the cause of the clash.
The algorithm can then jump back over intervening
branch points without exploring alternative branches.
A similar technique was used in the HARP theorem
prover (Oppacher and Suen 1988).

• Caching and re-using partial models—a technique
which takes advantage of the repetitive structure of the
satisfiability problems generated during terminologi-
cal classification by using cached partial tableaux to
demonstrate “obvious” satisfiability. For example, the
satisfiability of the concept expression C u ¬D (and
thus the non-subsumption C 6v D) can be demon-
strated by showing that tableaux for C and ¬D joined
at their root nodes result in a valid tableau for Cu¬D.



6.2 EMPIRICAL EVALUATION

The performance of the FaCT system has been evaluated
using a variety of empirical testing procedures (Horrocks
1997). When assessing the results of these tests it is im-
portant to note the the current system is an experimen-
tal prototype written in Common Lisp, and that very lit-
tle consideration has been given to low-level efficiency is-
sues. The tests have been performed using Allegro CL 4.3
(compiled) on a Sun SPARCstation 20/61 equipped with a
60MHz superSPARC processor, a 1Mbyte off-chip cache
and 128Mbytes of RAM. The FaCT system and test KBs
are available from the author’s home page.

To demonstrate the feasibility of using FaCT with a large,
realistic KB, it has been used to classify an ALCHf R+

KB representing the GALEN medical terminology ontol-
ogy. The KB used in the tests (which has since been ex-
tend as part of the ongoing GALEN project) contains 2,740
concepts, 699 of which are non-primitive, 413 roles, 26 of
which are transitive, and 1,214 GCIs. Using the optimised
algorithm, FaCT is able to classify the KB in ≈379s of
CPU time, performing a total of 122,695 subsumption tests
at an average of 0.003s per test. FaCT’s performance con-
trasts with that of the KRIS system (Baader and Hollunder
1991) which had only classified a small proportion (≈10%)
of a simplified version of the KB (with cycles and transitive
roles eliminated) after 100 hours of CPU time.

FaCT also performs well as a modal logic theorem prover:
Table 1 compares FaCT with CRACK (Bresciani et al.
1995), KSAT and KRIS using a suite of benchmark for-
mulae for modal K (Heuerding and Schwendimann 1996).
The tests use 9 classes of formula (k branch, k d4, etc.) in
both provable (p) and non-provable (n) forms.4 For each
type of formula, 21 examples of exponentially increasing
difficulty are provided, and the table shows the number of
the largest formula which each system was able to solve
within 100 seconds of CPU time (21 indicates that the hard-
est problem was solved in less than 100s).

FaCT significantly outperformed all the other systems, and
in many cases also exhibited a completely different quali-
tative performance. For example, with k dum p formulae
(see Figure 5) the other systems all showed an exponen-
tial increase in solution times with increasing formula size,
whereas the times taken by FaCT increased very little for
larger formulae (and FaCT was already 2,000 times faster
for the largest formula solved by another system).

4Note that a formula is proved by demonstrating the unsatisfi-
ability of its negation.

Table 1: Modal K Theorem Proving

FaCT Crack KSAT Kris
Test p n p n p n p n
k branch 6 4 2 1 8 8 3 3
k d4 21 8 2 3 8 5 8 6
k dum 21 21 3 21 11 21 15 21
k grz 21 21 1 21 17 21 13 21
k lin 21 21 5 2 21 3 6 9
k path 7 6 2 6 4 8 3 11
k ph 6 7 2 3 5 5 4 5
k poly 21 21 21 21 13 12 11 21
k t4p 21 21 1 1 10 18 7 5
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Figure 5: Solution Times for k dum p Formulae

7 DISCUSSION

This paper describes a sound and complete satisfiability
testing algorithm for a relatively expressive DL, one which
can reason with respect to a general terminology and a
primitive hierarchy of transitive and non-transitive roles. In
contrast to most other theoretical presentations, a practical
system which uses an (optimised) implementation of the al-
gorithm is also described. The FaCT system has been used
to investigate the practicability of using the algorithm for
subsumption reasoning, and results so far suggest that in
spite of the logic’s worst-case intractability the algorithm
can provide acceptable performance in realistic applica-
tions. FaCT has also been shown to perform well when
used as a propositional modal logic theorem prover, and
detailed results from these experiments will be the subject
of a future paper.

Although the “nice” properties of transitive roles, as op-
posed to a transitive closure operator (see Section 2), made
it simple to implement and optimise the algorithm, many
of the techniques investigated could be used with other



tableaux satisfiability testing algorithms, and should be-
come standard in future tableaux based DL implementa-
tions. Normalisation, encoding and absorption can, for ex-
ample, be performed as pre-processing steps, and could be
used with any DL regardless of its subsumption testing al-
gorithm, although integrating normalisation and encoding
with the classifier is preferable in order to avoid the over-
head of classifying new concepts generated by the encod-
ing process. The results obtained with FaCT suggest that
some of the very expressive DLs for which tableaux algo-
rithms are now available may also be usable in realistic ap-
plications, and work is already underway to produce an op-
timised implementation of such an algorithm.
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