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1 Motivation and then to recognise thaérebellumtumorous is sub-

As widely argued [Horrocks & Gough, 1997, Sattler, 1996], SUMed bydis_component.tumorous.brain.
transitive roles play an important role in the adequate rep Furthermore ALCHT .+ allows for the internalisation of
resentation of aggregated objects: they allow these abjec@€neral inclusion axiomfgorrocks & Gough, 1997].
to be described by referring to their parts without speaiyi 't could be argued that, instead of defining yet an-
a level of decomposition. In [Horrocks & Gough, 1997], the Other DL, one could make use of the results presented
Description Logic (DL).ALCH z+ is presented, which ex- N [De Giacomo & Lenzerini, 1996] and usdLC extended
tends.ALC with transitive roles and a role hierarchy. It is With role expressions which include transitive closure and
argued in [Sattler, 1998] thal LCH -+ is well-suited to the ~INVerse operators. The reason for not proceeding like
representation of aggregated objects in applicationsrtrat this is the fact that transitive roles can be implemented
quire various part-whole relations to be distinguishednso More efficiently than the transitive closure of roles (see
of which are transitive. For example, a medical knowledgdH0rrocks & Gough, 1997]), although they lead to the same
base could contain the following entries defining two differ COMPplexity class (EpTiME-hard) when added, together
ent parts of the brain, namely the gyrus and the cerebellunfVith role hierarchies, toALC. Furthermore, it is still an
In contrast to a gyrus, a cerebellum is an integral organ andP€n question whether the transitive closure of roles to-
furthermore, a functional component of the brain. Hence th@€ther with inverse roles necessitates the use oétiteule
role is_component (which is a non-transitive sub-role of [D€ Giacomo & Massacci, 1998], a rule which leads to an al-
is_part) is used to describe the relation between the brair@®rithm with very bad behaviour. We will present an al-
and the cerebellum: gorithm for ACCHZ r+ without such a rule, which, from
the experiences made with an implementationddiCH 5+

is_componentC is_part [Horrocks & Gough, 1997], should behave well in pracfice.
gyrus =

(Vconsists.brain mass) M (Jis_part.brain) 2 Blocking
cerebellum :=

The algorithms which we will present use the tableaux
method, in which the satisfiability of a conceptis tested

However, ACCH -+ does not allow the simultaneous descrip- PY r¥ing to construct a model ab. The model is repre-
tion of parts by means of the whole to which they belong andented by a tree in which nodes correspond to |ndPV|duaIs and
of wholes by means of their constituent parts: one or othefPdges correspond to roles. Each nade labelled with a set

is possible, but not both. To overcome this limitation, we ©f cOncepts(x) which the individual must satisfy and each
present the DLACCHT z+ which extendSACCH g+ with ~ ©d9€ IS [abelled with a role name.

inverse (converse) roles, allowing, for example, the use of An @lgorithm starts with a single node labellgd}, and
has_part as well asis_part.t Using ACCHZ i+, e can proceeds by repeatedly applying a setexpansion rules
define a tumorous brain as: which recursively decompose the concepts in node labels;

new edges and nodes are added as required in order to sat-
tumorous_brain:= isfy 3R.C concepts. The construction terminates either when
brain M (tumorous Ul (Fhas_part.tumorous)) none of the rules can be applied in a way which extends the

— . ) . tree, or when the discovery of obvious contradictions demon
*Part of this work was carried out while being a guest at IRST,Strates thaD has no model

Trento. )
This work was supported by the Esprit Project 22469 — DWQ.  2Details that have been omitted in the interests of brevitylma
INote thathas_part is taken to be the inverse a&_part. found in [Horrocks & Sattler, 1998].

organ (1 (Jdis_component.brain)
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Figure 1: A tableau where dynamic blocking is crucial.

In order to prove that such an algorithm is a sound andhe cyclical model is an easy consequence of the fact that
complete decision procedure for concept satisfiability in ahe 3R.C concept whichy must satisfy must also be satis-
given logic, it is necessary to demonstrate that the modlels fied by x, because:’s label is a superset afs. Termination
constructs are valid with respect to the semantics, thaillit w is guaranteed by the fact that all concepts in node labels are
always find a model if one exists and that it always terminatesultimately derived from the decomposition &, so all node
The first two points can usually be dealt with by proving thatlabels must be a subset of the subconcept®pfind a cy-
the expansion rules preserve satisfiability, and that icéise  cle must therefore occur within a finite number of expansion
of non-deterministic expansion (e.g., of disjunctionspak-  steps.
sibilities are exhaustively searched. For logics sucil 4§, Blocking is, however, more problematical when inverse
termination is mainly due to the fact that the expansiongrule roles are added to the logic, and a key feature of the algo-
can only add new concepts which are strictly smaller than theithms presented here is the introduction afysamic block-
decomposed concept, so the model must stabilise when &lig strategy using label equality instead of subset. With in-
concepts have been fully decomposed. verse roles, the blocking condition must be equality of node

Termination is not, however, guaranteed for logics whichlabels, because roles are now bi-directional and additiona
include transitive roles, as the expansion rules can ioited concepts ine's label could invalidate the model with respect
new concepts which are the same size as the decompostmly’s predecessor. Taking the above example of a node la-
concept. In particulaty R.C' concepts, wheré? is a tran-  belled{C,3R.C,VR.(3R.C)}, if the successor of this node
sitive role, are dealt with by propagating the whole conceptvere blocked by a node whose label additionally included
acrossk labelled edges. For example, given a leaf ned@ VR~ .—~C, then the cyclical model would clearly be invalid.
belled{C,3R.C,VR.(3R.C)}, whereR is a transitive role, Another difficulty introduced by inverse roles is the fact
the combination of th8 R.C andvR.(3R.C) conceptswould thatitis no longer possible to establish a block on a once and
cause a new nodgto be added to the tree with an identical for all basis when a new node is added to the tree, because
label tox. The expansion process could then be repeated irfurther expansion in other parts of the tree could lead to the
definitely. labels of the blocking and/or blocked nodes being extended

This problem can be dealt with Hdylocking halting the  and the block being invalidated. For example, consider the
expansion process when a cycle is detected [Baader, 199éxample sketched in Figure 1. It shows parts of a tableau that
Buchheitet al,, 1993]. For logics without inverse roles, the was generated for the concept
general procedure is to check the label of each new gode
_an_d if it is asubse{Baaderet al,, 1996_] of th_e label of an .ex- AN3S.(YP3IR.T NVPYR.CAVPAPT .
isting noder, then no further expansion gfis performed:z
o . . 3JR.TN3P.TNVR.CM)
is said to blocky. The resulting tree corresponds to a cycli-
cal model in whichy is identified withz.® The validity of ForC as given in Figure 1, this concept is not satisfiale:
has to be an instance 6f, which implies thatr is an instance

For logics with a transitive closure operator it is necegsar o¢ _ A__which is inconsistent with: being an instance of.
to check the validity of the cyclical model created by block-

ing [Baader, 1991], but for logics which only support tramsiroles  the cyclical model is always valid [Sattler, 1996].



As P is atransitive role, all universal value restrictions over
P are propagated from to z, hencel(y) = L(z) andz is
blocked byy. Now, if the blocking ofz would not be bro-
ken whenvP~.¥S~.-A is added tol(y) from C € L(v),
then—A would be never added t(z) and the inconsistency
would not be detected.

Moreover, it is necessary to continue with some expan-

sion of blocked nodes, becaus®.C' concepts in their labels

could effect other parts on the tree: Again, let us consider

the example in Figure 1: After the blocking efwas bro-
ken andvP~.VS~.—A added to bothl(y) andL(z), z is
again blocked by. However, the universal value restriction
VP~.¥S~.—A € L(z) has to be expanded in order to detect
the inconsistency.

This problem is overcome by using dynamic blocking: al-

lowing blocks to be dynamically established and broken as

the expansion progresses, and continuing to expaRd”
concepts in the labels of blocked nodes.

3 Syntax and Semantics ofJALCZ p+

interpretationZ, an individualz € A is called aninstance
of a concept iff 2 € CZ.

In order to make the following considerations easier, we
introduce two functions on roles:

1. The inverse relation on roles is symmetric, and to avoid
considering roles such a8~ —, we define a function
Inv which returns the inverse of a role. More precisely,
Inv(R) = R~ if Ris arole name, anthv(R) = S if
R=5".

Obviously, a roleR is transitive if and only iflnv(R)

is transitive. However, this may be established by ei-
ther R or Inv(R) being inR. We therefore define a
function Trans which returnstrue iff R is a transitive
role—regardless of whether it is a role name or the in-
verse of a role name. More precis€elyans(R) = true

iff R e Ry orlnv(R) € R..

2.

4 A Tableaux Algorithm for ALCT p+

For ease of understanding, we start by introducing thd.ike other tableaux algorithms, thé£CZ r+ algorithm tries

Description Logic ALCZ g+, which is the extension of
the well-known DLALC [Schmidt-SchaulR & Smolka, 1988]
with transitively closed rolesand inverse (converse) roles.

to prove the satisfiability of a concef? by constructing a
model of D. The model is represented by a so-caliain-
pletion tree a tree some of whose nodes correspond to in-

The set of transitive role namd, is a subset of the set of dividuals in the model, each node being labelled with a set
role namedR.. Interpretations map role names to binary rela-of ALCZ +-concepts. When testing the satisfiability of an
tions on the interpretation domain, and transitive role eam ALCZ r+-conceptD, these sets are restricted to subsets of

to transitive relations. In addition, for any role € R, the
role R~ is interpreted as the inverse Bf

sub(D), wheresul{ D) is the set of subconcepts 6f.
For ease of construction, we assume all concepts to be in

In the next section, we describe a tableaux algorithm fomegation normal form(NNF), that is, negation occurs only

testing the satisfiability ofALCZ g+ concepts and present a

in front of concept names. AnyLCZ p+-concept can eas-

proof of its soundness and completeness. The extension @f be transformed to an equivalent one in NNF by pushing

ALCZ r+ by role hierarchiesALCHZ -+, together with the
extended tableaux algorithm and corresponding proof&is th
described in Section 5.

Definition 1 Let N¢ be a set oEoncept nameand letR be
a set ofrole nameswith transitive role nameR.. C R. The
set of ACCTZ g+-rolesis RU{R™ | R € R}. The set of
ALCT r+-conceptss the smallest set such that

1. every concept name is a concept and

2. if C andD are concepts ant is anALCZ i+ -role, then
(CnD), (CUD), (-C), (VR.C),and(3R.C) are con-
cepts.

An interpretationZ = (AZ,-7) consists of a seh?, called
thedomainof Z, and a function” which maps every concept
to a subset ofAZ and every role to a subset df? x AZ
such that, for all concepts, D, the properties in Figure 2 are
satisfied.

A conceptC is calledsatisfiableiff there is some interpre-
tationZ such thatC? £ (). Such an interpretation is called
amodel of C. A conceptD subsumes conceptC' (written
C C D) iff C* C D? holds for each interpretatich For an

negations inwards.

The soundness and completeness of the algorithm will be
proved by showing that it createsableaufor D. We have
chosen to take the (nhot so) long way round tableaux for prov-
ing properties of tableaux algorithms because—once taklea
are defined and Lemma 1 is proven—the remaining proofs are
considerable easier.

Definition 2 If D isanALCZ r+-conceptin NNF an®R p is
the set of roles occurring iP, together with their inverses, a
tableaul” for D is defined to be a tripléS, L, £) such thatS

is a set of individualst, : S — 25U8P) maps each individual
to a set of concepts which is a subsesof(D), £ : Rp —
25>S maps each role iR p to a set of pairs of individuals,
and there is some individuale S such thatD € L(s). For
alls € S,C,E € sub(D), andR € Rp, it holds that:

1. if C € L(s), then-C ¢ L(s),

2. ifCNE € L(s), thenC € L(s) andE € L(s),
3. ifCUE € L(s), thenC € L(s) or E € L(s),

4. ifVR.C € L(s) and(s,t) € E(R), thenC € L(¢),



(cnD) =c*TnD?,

(3S.0) =
(VS.C)F =
ForSeR: (z,y) € SZiff (y,2) € S~7, and
ForRe Ry : if (z,y) € RT and(y,z) €

(CuD)* =cTuD?,
{z € AT | There existy € AT with (z,y) € ST andy € C*},

{de AT | Forally € AZ,if (z,y) € ST, theny € C*},

—‘CI — AI\CI,

RZ, then(xz, z) € RT.

Figure 2: Semantics o LCZ r+-concepts

5. if JR.C € L(s), then there is someé € S such that
(s,t) € E(R)andC € L(t),

6. if VR.C € L(s), (s,t) € E(R) and Trans(R), then
VR.C € L(t), and

7. (z,y) € E(R) Iff (y,z) € E(Inv(R)).

Lemma 1 An ALCT p+-conceptD is satisfiable iff there ex-
ists a tableau fotD.

Proof: For theif direction, if T = (S, L, ) is a tableau
for D with D € L(sq), a modelZ = (AZ,.) of D can be
defined as:

AT =S
for all concept names A isubl(D):
AT = {s|Ael(s)}
BT E(R)T if Trans(R)
E(R) otherwise

whereé(R)* denotes the transitive closure®&fR). DT # ()

because, € DZ. Transitive roles are obviously interpreted

For the converse, if = (AZ,-) is a model ofD, then a
tableaul’ = (S, L, €) for D can be defined as:

S = AT
&R) = R*
L(s) = {CesulD)|seC?}

It only remains to demonstrate thAtis a tableau foD:

1. T satisfies properties 1-5 in Definition 2 as a direct con-
sequence of the semantics4fCZ z+ concepts.

2. If d € (VR.C)%, (d,e) € RT andTrans(R), thene €
(VR.C)T unless there is somg such thatle, f) € R?
andf ¢ CZ. However, if(d,e) € RZ, (e, f) € R*
andR € Ry, then(d, f) € R andd ¢ (VR.C)Z. T
therefore satisfies Property 6 in Definition 2.

3. T satisfies Property 7 in Definition 2 as a direct conse-
quence of the semantics of inverse relations.

4.1 Constructing an. ALCZ p+ Tableau

as transitive relations. By induction on the structure afco ¢From Lemma 1, an algorithm which constructs a tableau for

cepts, we show that, iZ € L(s), thens € EZ. Let
E € L(s).

1. If £ is a concept name, thenc EZ by definition.

2. If E = =C, thenC ¢ L(s) (due to Property 1 in Defi-
nition 2), sos € AT\ C% = EZ.

3. If E = (C1NCs), thenCy € L(s) andCy € L(s), so by
inductions € C ands € C%. Hences € (C; M Cq)~.

4. The cas&r = (Cy U C») is analogous to 3.

5. If E = (35.0), then there is some € S such that
(s,t) € &(S) andC € L(t). By definition, (s, t) € 5%
and by inductiort € CZ. HenceS € (35.C)~.

6. If E = (VS.C) and(s,t) € SZ, then either

(@) (s,t) € £&(S) andC € L(t), or

(b) (s,t) & &(S), then there exists a path of length>
1 such that(s, s1), (s1,82),..., (sn,t) € &E(S).
Due to Property 6 in Definition 2yS.C' € L(s;)
forall 1 <i < n,andwe hav& € L(t).

In both cases, we have by inductiore CZ, hences ¢
(VS.0)L.

an ALCT p+-conceptD can be used as a decision procedure
for the satisfiability of D. Such an algorithm will now be
described in detail.

The tableaux algorithm works atompletion trees This
is a tree where each nodeof the tree is labelled with a set
L(z) C sul D) and each edgér, y) is labelledL ((z, y)) =
R for some (possibly inverse) rolg occurring insub(D).
Edges are added when expandi@.C' and3R~.C terms;
they correspond to relationships between pairs of indadgiu
and are always directed from the root node to the leaf nodes.
The algorithm expands the tree either by extendirg) for
some node: or by adding new leaf nodes.

For a noder, L(x) is said to contain &lashif, for some
concept’, {C,-C} C L(x).

If nodesz andy are connected by an edge, y), theny
is called asuccessoof x andz is called apredecessoof y;
ancestolis the transitive closure qfredecessor

A nodey is called anR-neighbourof a nodex if eithery
is a successor af andL({z,y)) = R ory is a predecessor
of z andL({y, z)) = Inv(R).

A nodex is blockedif for some ancestoy, y is blocked
or L(z) = L(y). A blocked noder is indirectly blocked



if its predecessor is blocked, otherwise itisectly blocked (S, £, €) can be defined with:

If 2 is directly blocked, it has a unique ancesfosuch that
L(x) = L(y): if there existed another ancestosuch that
L(z) = L(z) then eithery or z must be blocked. iz
is directly blocked and, is the unique ancestor such that
L(x) = L(y), we will say thaty blocksz.

The algorithm initialises a tre® to contain a single node
xo, called theroot node, withL(z) = {D}, whereD is the
concept to be tested for satisfiabilit¥: is then expanded by

repeatedly applying the rules from Figure 3. 1.

The completion tree isompletewhen for some node,
L(z) contains a clash or when none of the rules is applica-
ble. If, for an input concepD, the expansion rules can be 5
applied in such a way that they yield a complete, clash-free
completion tree, then the algorithm returrs fs satisfiablé,
and “D is unsatisfiabl& otherwise.

4.2 Soundness and Completeness 4,

The soundness and completeness of the algorithm will be
demonstrated by proving that, for ahZCZ +-conceptD,

it always terminates and that it retursatisfiableif and only

if D is satisfiable.

Lemma 2 For eachALCZ r+-conceptD, the tableaux algo-
rithm terminates.

Proof: Let m = |sub(D)|. Obviously,m is linear in the
length of D. Termination is a consequence of the following
properties of the expansion rules:

1. The expansion rules never remove nodes from the tree
or concepts from node labels.

2. Successors are only generated for existential value re-
strictions (concepts of the foraR.C), and for any node
each of these restrictions triggers the generation of at
most one successor. Sinsel(D) contains at mosin
existential value restrictions, the out-degree of the tree
is bounded byn.

3. Nodes are labelled with nonempty subsetsaif( D).
If a pathp is of length at leasR™, then there are 2
nodesz, y on p, with L(z) = L(y), and blocking oc-
curs. Since a path on which nodes are blocked cannot
become longer, paths are of length at nizst

Together with Lemma 1, the following lemma implies
soundness of the tableaux algorithm.

Lemma 3 If the expansion rules can be applied to an
ALCT r+-conceptD such that they yield a complete and
clash-free completion tree, thém has a tableau.

Proof: Let T be the complete and clash-free tree con-
structed by the tableaux algorithm f&r. A tableauT =

3.

S ={z | xis anode irT that is not blocke},
E(R)={(z,y) €S x S|
1.y is anR-neighbour oft or
2.L({x, z)) = R andy blocksz or
3.L({y,z)) = Inv(R) andz blocksz},

and it can be shown thdtis a tableau foD:

D € L(xp) for the rootz, of T and, ast, has no pre-
decessors, it cannot be blocked. Hetfge= L(s) for
somes € S.

. Property 1 of Definition 2 is satisfied becadés clash-

free.

Properties 2 and 3 of Definition 2 are satisfied because
neither theT-rule nor the l-rule apply to any: € S.

Property 4 in Definition 2 is satisfied because forcadl

S, if VR.C € L(z) and(z,y) € E(R) then either:

(a) x is anR-neighbour ofy,

(b) L({x,z)) = R, y blocksz, from theV-rule C' ¢
L(z), L(y) = L(z), or

() L({y, 2)) = Inv(R), = blocksz, L(x) = L(z), SO
from theV-rule C' € L(y).

In all 3 cases, th&-rule ensures that' € L(y).

. Property 5 in Definition 2 is satisfied because forcadl

S, if 3R.C' € L(x), then the3-rule ensures that there is
either:

(a) a predecessarsuch thatl((y,«)) = Inv(R) and
C € L(y). Becausey is a predecessor af it can-
not be blocked, sg € S and(y, z) € E(R).

(b) a successoy such thatl({z,y)) = R andC €
L(y). If y is not blocked, they € S and(x,y) €
E(R). Otherwise,y is blocked by some: with
L(z) = L(y). HenceC € L(z), z € S and
(x,z) € E(R).

. Property 6 in Definition 2 is satisfied because forcadl

S,if VR.C € L(x), (z,y) € E(R), andTrans(R), then

either:

(a) = is anR-neighbour ofy,

(b) L({x,z)) = R, y blocksz, andL(y) = L(z), or

() L({y,z)) = Inv(R), = blocks z, hencel(z) =
L(z) andVR.C € L(z).

In all 3 cases, th&, -rule ensures thatR.C' € L(y).

7. Property 7 in Definition 2 is satisfied because for each

(x,y) € E(R), either:

(&) = is an R-neighbour ofy, so y is an Inv(R)-
neighbour ofr and(y, =) € E(Inv(R)).

(b) L({x,z)) = R andy blocks z, so L({z,z)) =
Inv(Inv(R)) and(y, x) € E(Inv(R)).



then, for some&” € {C4,Cy}, L(z) — L(z) U{C}

then create a new nodewith L((z,y)) = S andL(y) = {C}

M-rule: if1. Cy N Cy € L(x),  is not indirectly blocked, and
2. {Cl, 02} g L(I)
U-rule: if1. C; U Cy € L(x), z is notindirectly blocked, and
2. {Cl, OQ} N L(ZC) = @
J-rule: if1. 3S.C € L(x), = is not blocked, and
2. z has noS-neighboury with C € L(y):
V-rule: if 1. VS.C € L(z), « is not indirectly blocked, and
2. there s arb-neighboury of x with C' ¢ L(y)
Vi-rule: if 1. VS.C € L(z), Trans(S), z is not indirectly blocked, and
2. thereis arb-neighboury of = with vS.C ¢ L(y)

then L(x) e L(I) U {Ol, 02}

then L(y) — L(y) U{C}

then L(y) — L(y) U {¥S.C}

Figure 3: Tableaux expansion rules f4LCZ p+

() L({y,z)) = Inv(R) andz blocksz, so (y,z) €
E(Inv(R)).

Lemma 4 If D has a tableau, then the expansion rules can
a

be applied in such a way that the tableaux algorithm yields
complete and clash-free completion tree for

Proof: LetT = (S, L, €) be a tableau foD. UsingT', we
trigger the application of the expansion rules such that the
yield a completion tredl that is both complete and clash-
free. We start withl' consisting of a single node), the root,
with L(zo) = {D}.

T is atableau, hence there is sosges Swith D € L(sg).
When applying the expansion rulesT) the application of
the non-deterministici-rule is driven by the labelling in the
tableauT'. To this purpose, we define a mappingwvhich
maps the nodes & to elements 08, and we steer the appli-
cation of thell-rule such thal(z) C L(n(x)) holds for all
nodesr of the completion tree.

More precisely, we defing inductively as follows:

e 7(xg) = S0.

o If w(x;) = s; is already defined, and a succesgaf
x; was generated fatR.C' € L(x;), thenn(y) = ¢t for
somet € Swith C € L(t) and(s;,t) € E(R).

To make sure that we havig(z;) C L(w(x;)), we use the
L’-rule given in Figure 4 instead of therule.

L-rule:if 1.C; U Cy € L(x),
x is not indirectly blocked, and
2. {Cl,Cg} n L(,T) =0
thenL(x) — L(x) U {C} for some
Ce {Cl, Cg} N L(TF(,T))

Figure 4: The/'-rule

The expansion rules given in Figure 3 with therule re-
placed by the /-rule are callednodifiedexpansion rules in
the following.

It is easy to see that, if a tréB was generated using the
modified expansion rules, then the expansion rules can be ap-
plied in such a way that they yield. Hence Lemma 3 and
Lemma 2 still apply, and thus using thé-rule instead of the
Li-rule preserves soundness and termination.

We will now show by induction that, i (z) C L(n(z))
holds for all nodesr in T, then the application of an ex-
pansion rule preserves this subset-relation. To start, wi¢h
clearly have{ D} = L(xq) C L(sp).

If the M-rule can be appliedtoin TwithC =C,MCs €
L(z), thenCy, C; are added tdl(z). SinceT is a tableau,
{C1,Cy} C L(w(x)), and hence the-rule preserves (z) C
L(m(x)).

If the L/-rule can be applied te in T with C = C; U
Cy € L(z), thenC € {C1,Cs} is in L(w(x)), andC is
added toL(z) by thel/-rule. Hence the/-rule preserves
L(z) C L(n(z)).

If the 3-rule can be applied to in T with C = 3R.C; €
L(z), thenC € L(w(x)) and there is some € S with
(r(z),t) € E(R) andC; € L(t). The3-rule creates a
new successoy of x for which «(y) = ¢ for somet with
Cy € L(t). Hence we havé (y) = {C1} C L(7(y)).

If the V-rule can be applied to in T with C = VR.C4 €
L(z) andy is an R-neighbour ofz, then (n(z), 7 (y)) €
E(R), and thuC; € L(w(y)). TheV-rule addsC; to L(y)
and thus preserves(z) C L(m(x)).

If the V_-rule can be applied to in T with C' = VR.C; €
L(z), Trans(R) and y being anR-neighbour ofz, then
(r(x),7(y)) € E(R), and thus/R.Cy € L(n(y)). TheV,-
rule add<”; to L(y) and thus preserves(y) C L(7(y)).

Summing up, the tableau-construction triggeredibter-
minates with a complete tree, and sintéx) C L(w(x))
holds for all nodes: in T, T is clash-free due to Property 1
of Definition 2.



Theorem 1 The tableaux algorithm is a decision procedure Definition 5 Given a completion tree, a nodeis called an
for the satisfiability and subsumption df£CZ +-concepts.  R-neighbourof a nodez if either y is a successor of and

) ) ) L((z,y)) = S ory is a predecessor af andL({(y, z)) =
Theorem 1 is an immediate consequence of the Lemmata ?nv(S) for somesS with S = R.

2, 3, and 4. Moreover, sincdLCZ g+ is closed under nega-
tion, subsumptiorC C D can be reduced to unsatisfiability

In the following, the tableaux algorithm resulting from
of C M —D.

these modifications will be called thmodified tableaux al-

5 ALCIg+ Extended by Role Hierarchies 32 r_lfggeztueiéz tt?]s f.?ﬂ{;'_“on and the reflexviy o, the
We will now extend the tableaux algorithm presented To prove that the modified tableaux algorithm is indeed
in Section 4.1 to deal withrole hierarchiesin a sim- a decision procedure for the satisfiability gfLCHZ -
ilar way to the algorithm for ACCHg+ presented in concepts, all 4 technical lemmata used in Section 4.2 togorov
[Horrocks & Gough, 1997]. ALCHZ p+ extendsALCZ p+ this fact for the ALCZ p+ tableaux algorithm have to be re-
by allowing, additionally, for inclusion axioms on roles. proven forALCHZ r+. In the following, we will restrict our
These axioms can involve transitive as well as non-trasesiti attention to cases that differ from those already consitifere
roles, and inverse roles as well as role names. For exampl{LCT - .

to express that a rolB is symmetric, we add the two axioms

RC R™andR™ C R. Lemma5 An ALCHI r+-conceptD is satisfiable iff there

. . . . exists a tableau foP.
Definition 3 A role inclusion axioms of the form

Proof: For theif direction, the construction of a model of
D ¢from a tableau fob is similar to the one presented in the
proof of Lemma 1. IfT" = (S, L, €) is a tableau fotD with

RLCS,

for two (possibly inverse) roleB andS.

For a set of role inclusion axiom®, RT := (RU D € L(so), amodelZ = (A%, %) of D can be defined as
{Inv(R) C Inv(S) | RC S € R}, E) is called arole hier-  follows:
archy, where = is the transitive-reflexive closure af over I
RU{Inv(R) C Inv(S) | RC S € R}. AT = 8 _

ALCHTI r+ is the extension ofALCZ p+ obtained by al- fo;all concept names in sub(D)
lowing, additionally, for a role hierarchig ™. AT = {s]A Ef“(s)} .

As well as being correct fotALCZ R+ concepts, an RI — E(R) T i Tran;(R)
ALCHT p+ interpretation has to satisfy, for all rolgs, S - E(R) U - [gp;mp otherwise

with R & S, the additional condition

The interpretation of non-transitive roles is recursiveiin
der to correctly interpret those non-transitive roles tieate

The tableaux algorithm given in the preceding section carft transitive sub-role. From the definition &f and Prop-
easily be modified to decide satisfiability ofLCHZ .- €ty 8 of a tableau it follows that ifz,y) € S7, then ei-
concepts by extending the definitions of bdthneighbours ther(z,y) € £(5) or there exists a patfs, s1), (s1,82), ..,
and thev., -rule to include the notion of role hierarchies. To (sn,t) € &(R) for someR with Trans(R) andR £ 5.

prove the soundness and correctness of the extended algo-Property 8 of a tableau ensures tiit € S* holds for all
rithm, the definition of a tableau is also extended. roles with R .5, including those cases whefeis a transi-
tive role. Again, it can be shown by induction on the struetur

(z,y) € RT implies (z,y) € S7.

Definition 4 As well as satisfying Definition 2 (i.e., being
a valid ALCT + tableau), a tableald = (S,L, &) for an
ALCHZ r+-conceptD must also satisfy:
6. if VS.C € L(s) and(s,t) € E(R) for someR & S with
Trans(R), thenVR.C € L(t),

8. if (x,y) € E&(R) andR £ S, then(zx,y) € &(S),

where Property ‘6extends and supersedes Property 6 from

Definition 2.

For theALCHZ r+ algorithm, thev_ -rule is replaced with
thev’_-rule (see Figure 5) and the definition Bfneighbours
is extended as follows:

of concepts that is a correct interpretation. We restrict our
attention to the only case that is different from the onebén t
proof of Lemma 1. Lef € sul(D).

6. If E = (VS.C)and(s,t) € S, then either
(@) (s,t) € £(S)andC € L(t), or
(b) (s,t) & &(9), then there exists a path of length>
1such thats, s1), (s1,82),--., {(sn, t) € E(R) for
someR with Trans(R) and R = S. Due to Prop-

erty6’, VR.C € L(s;) forall 1 < i < n, and we
haveC € L(t).

In both cases, we haves CZ.



V. -rule: ifl. VS.C € L(z), z is notindirectly blocked, and
2. thereis som& with Trans(R) andR =S,
3. thereis amR-neighboury of x with VR.C ¢ L(y) thenL(y) — L(y) U{VR.C}

Figure 5: The new -rule for ACCHZ p+.

For the converse, T = (AZ,-Z) is a model ofD, then a (b) for some role withR = S, either
tableaul’ = (S, L, £) for D is defined like the one defined in i. L((z,z)) = R,y blocksz, hence from th&-rule
the proof of Lemma 1. C € L(z), andL(y) = L(z), or

It remains to demonstrate thAtis a tableau foD: ii. £((y,z)) = Inv(R),  blocksz, hencel(z) =

1. T satisfies properties 1-5 in Definition 2 as a direct con- L(z) and therefolS.C' € L(z).
sequence of the semanticsALCHZ r+-concepts. In all cases, the-rule ensure€’ € L(y).

2. Ifd € (VS.C)T and{d,e) € fl for R with Trans(R) 4. Property 6’ in Definition 4 is satisfied because for all
andRES, thene € (VR.C)” unless there is somg x €8,ifVS.C € L(z), (z,y) € E(R) for someR with
such that(e, f) € R andf ¢ CZ. In this case, if Trans(R) andR & S, then either:

(d,e) € RZ, (e, f) € RT andTrans(R), then(d, f) € _ ~

RZ. Hence(d, f) € ST andd ¢ (¥S5.C)T—in con- (a) y is anE-neighbour otz, or

tradiction of the assumptiori therefore satisfies Prop- (b) there is some rol&’ with R’ C R and

erty 6 in Definition 4. i. L({z,z2)) =R/, yblocksz andL(y) = L(z), or

3. SinceZ is a model ofD, (x,y) € R” implies(z,y) € ii. L((y,2)) = Inv(R), z blocksz and L(z) =
ST for all roles R, S with RES. HenceT satisfies L(z), hencevS.C € L(z).

Property 8 in Definition 4. In all three casesyR.C' € L(y) follows from theV, -
rule.

Lemma 6 For each ALCHZr+-conceptD, the modified

tableaux algorithm terminates. 5. Property 8 in Definition 4 follows immediately from the

definition of €.
Proof: Identical to the one given for Lemma 2.
Lemma 8 If ALCHZ r+-conceptD has a tableau, then the
Lemma 7 If the expansion rules can be applied to an expansion rules can be applied in such a way that the tab-
ALCHT »+-conceptD such that they yield a complete and leaux algorithm yields a complete and clash-free comptetio
clash-free completion tree, thém has a tableau. tree forD.

Proof: The definition of a tableau from a complete and The proof of Lemma 8 is identical to the one presented
clash-free completion tree, as presented in the proof ofor Lemma 4. Again, summing up, we have the following
Lemma 3, has to be slightly modified. A table§u =  theorem.

(S, L, €) is now defined with:
Theorem 2 The modified tableaux algorithm is a deci-

S = {z | z is anode inT that is not blocke} sion procedure for the satisfiability and subsumption of
E(S) ={({z,y) €S xS | ALCHI r+-concepts.
1. y is anS-neighbourofr  or
2. There exists a rol& with R = S and 5.1 General Concept Inclusion Axioms
a. L((z,z)) = R andy blocksz  or In [Baader, 1991, Schild, 1991, Baadgral, 1993], thein-
b. L({y, 2)) = Inv(R) andz blocksz} ternalisation of terminological axioms is introduced. This

technique is used to reduce reasoning with respect to a (pos-

sibly cyclic) terminologyto satisfiability of concepts. In

1. Since the expansion rules were started wiifyy) =  [Horrocks & Gough, 1997], we saw how role hierarchies can
{D}, D € L(z() for somez, € S. be used to reduce satisfiability and subsumption with respec

to a terminology to concept satisfiability and subsumptlan.

the presence of inverse roles, this reduction must be $fight

modified.

and, again, it is shown thdt is a tableau foiD:

2. Properties 1-3, 5 and 7 in Definition 2 are identical to
the proof of Lemma 3.

3. Property 4 in Definition 2 is satisfied because foradl

S,if v5.C € L(z) and(z, y) € &(5) then either: Definition 6 A terminology7 is a finite set of general con-
(a) = is anS-neighbour ofy, cept inclusion axioms,



6 Future work

T={C ;Dl’ -3 Cn & D}, _ We intend to extend the logic with functional roles. Func-
whereC;, D; are arbitraryALCHT r+-concepts. Aninter-  tional roles are useful, not only for the representationgef a

pretationZ is said to be a model f iff C} C D} holds for  gregated objects, but also in general because they provide a
all C; C D; € T. C is satisfiable with respect 6 iff there  weak form of number restrictions.

is a modelZ of 7 with C* # 0. Finally, D subsumes” with The combination of a role hierarchy with transitive, con-
re;spect ;07 (C Cr D) iff for each modelZ of 7 we have  yerse and functional roles adds a further level of compjexit
¢t C D, because satisfiable concepts are no longer guaranteedgo hav

(possibly cyclical) finite models [Schild, 1991]. An exarepl

The following lemma shows how general concept inclu- k
of such a conceptis:

sion axioms can b&ternalisedusing a “universal” roldJ.
This roleU is a transitive super-role of all relevant roles and
their respective inverses. Hence, for each interpretafion

.eagh. mdmdyat reichable via some role path ¢from an.OtherwhereF is functional,R is transitive andt" is a sub-role of
individual s is anU*-successor of. All general concept in-

. i ) R. Any model of this concept must have an infinite sequence
clusion axioms”; C D; in 7 are propagated along all role y P q

: - of '~ successors, each satisfyi6qgand3F~.C, thedF—.C
paths using the value restrictioh. =L D. term being propagated along the sequence by the transitive

Lemma 9 Let T be terminology and”, D be ALCHT s - super-roleR. Attempting to terminate the sequence in a cy-
concepts and let ’ cle causes the model to collapse into a single node due the

functionality of F', and this leads to an obvious contradiction

~CM3F~.CNYR .(3F.C)

Cy = ~C; U D;. as the node label will contain both and—-C'.
Ci:ED;eT This problem can be overcome by “unravelling” cyclical
LetU be a transitive role withR C U, Inv(R) C U foreach  models to generate infinite models in which blocked nodes
role R that occursinZ, C, or D. are replaced by copies of the blocking node and its sub-tree.
ThenC is satisfiable with respect t& iff However, to guarantee that local correctness is presetyed b
the copying process, both the predecessor of a blocked node
CnCrnvU.Cr and the role which connects it to its predecessor, must be the
is satisfiable.D subsumes’ with respect tof’ (C' =7 D) same as those of the blocking node. If this is not the case,
iff then concepts in the label of the blocking node which were
satisfied by its predecessor may no longer be satisfied when it
Cn-DnNCyNYU.Cr is copied onto the blocked node. To ensure that this comditio

is met, a further enhancement to the blocking strategy maust b
introduced. Instead of considering single nodes, the ezgthn
Remark: Instead of definind/ as a transitive super-role of Strategy, called pair-wise blocking, considers pairs afe®
all roles and their respective inverses, one could haveettfin and the role which connects them, only establishing a block
U as a transitive super-role of all roles and, additionally, avhen a matching node-role-node pattern is found.
symmetric role by adding C U~ andU~ C U. The complexity of satisfiability and subsumption of these
The proof of Lemma 9 is similar to the ones that can benew extensions allLCH -+ is another open problem. From
found in [Schild, 1991, Baader, 1990]. One point to show isresults in [Sattler, 1996], it follows that these problems a
that, if anALCHZ p+-concepC is satisfiable with respectto ExpTime-hard for ACCHI z+ and PSpace-complete for
aterminology7, thenC, 7 have aconnectednodel, namely ALCr+. Whether these problems are still RSpace for
one whose individuals are all related to each other by somelLCZ i+ is an open question.
role path. This follows from the definition of the semanti€so  Although ALCHZ r+ and ALC with the transitive closure
ALCHT r+-concepts. The other point to proof is thatyifs ~ and inverse roles are bolExpTime-hard, there are two hints
reachable fromx: via a role path (possibly involving inverse why ALCHZ z+ should have better computational proper-
roles), thenz,y) € UZ, which is an easy consequence of theties thanALC with the transitive closure and inverse roles:
definition of U. First, the tableaux algorithm foadLCHZ g+ does not have
Decidability of satisfiability and subsumption with respec an equivalent of the cut rule—a rule which is strongly re-
to a terminology is an immediate consequence of Lemma 8ponsible for the bad computational behaviourdC with
and Theorem 2. the transitive closure and inverse roles. Intuitively, wlese
new noder is generated for someR.C concept, this rule
Theorem 3 The modified tableaux algorithm is a decision non-deterministically chooses a set of concepts from the su
procedure for satisfiability and subsumption4LCHZr+-  concepts of the initial concept and adds this set (o). We
concepts with respect to terminologies. can think of this set as consisting of those concepts which

is unsatisfiable.



are possibly added to the labelling of due to universal
value restrictions on successorsaof As this set is chosen
non-deterministically from exponentially many possiiel,
it should be clear that this rule leads to a bad computational
behaviour.

Second, the implementation oACLCHg+ in FaCT
[Horrocks & Gough, 1997] behaves quite well in realistic
application—even thougid LCH g+, too, iISExpTime-hard.
Furthermore, this algorithm is amenable to a range of optimi
sation techniques. We hope that both, this good behavialr an
the optimisation techniques, carry over toC.CHZp+. TO
verify this assumption, the modified tableaux algorithml wi
be implemented in a descendant of FaCT [Horrocks, 1998].

Acknowledgements

We would like to thank the anonymous referees for their valu-
able comments and suggestions.

[Sattler, 1996] U. Sattler.

References

[Baaderet al, 1993] F. Baader, H.-J. Burckert, B. Nebel,
W. Nutt, and G. Smolka. On the expressivity of feature
logics with negation, functional uncertainty, and sortaqu
tions. Journal of Logic, Language and Informatipn:1—
18, 1993.

[Baaderet al, 1996] F. Baader, M. Buchheit, and B. Hollun-
der. Cardinality restrictions on conceptstificial Intelli-
gence 88(1-2):195-213, 1996.

[Baader, 1990] F. Baader. Augmenting concept languages
by transitive closure of roles: An alternative to termino-

| [Horrocks & Sattler, 1998] I. Horrocks and U. Sattler.

[Horrocks, 1998] I. Horrocks. Using an Expressive Descrip-

tion Logic: FaCT or Fiction? IfProceedings of the Sixth
International Conference on the Principles of Knowledge
Representation and Reasoning (KR-IH98.

[Horrocks & Gough, 1997] I. Horrocks and G. Gough. De-

scription logics with transitive roles. In M.-C. Rousset,
R. Brachmann, F. Donini, E. Franconi, |. Horrocks, and
A. Levy, editors,Proceedings of the International Work-
shop on Description Logicpages 25-28, Gif sur Yvette,
France, 1997. Université Paris-Sud.

A
description logic with transitive and inverse roles and
role hierarchies. Technical Report 98-05, LuFg Theo-
retical Computer Science, RWTH Aachen, 1998. Avail-
able via www: http://wwwIti.informtik.

rw h- aachen. de/ For schung/ Papers. ht i .

A concept language extended
with different kinds of transitive roles. In G. Gorz and
S. Holldobler, editors,20. Deutsche Jahrestagungrf
Kunstliche Intelligenzvolume 1137 of_ecture Notes in
MathematicsSpringer-Verlag, 1996.

[Sattler, 1998] U. Sattler.Terminological knowledge repre-

sentation systems in a process engineering application
PhD thesis, RWTH Aachen, 1998. To appear.

[Schild, 1991] K. Schild. A correspondence theory for ter-

minological logics: Preliminary report. IRroceedings of
the Twelfth International Joint Conference on Artificiat In
telligence (IJCAI-91)pages 466—471, Sydney, 1991.

logical cycles. Technical Report RR-90-13, DeutschedSchmidt-Schaul3 & Smolka, 1988] M. Schmidt-Schaul3 and

Forschungszentrum fur Kinstliche Intelligenz (DFKI),
Kaiserslautern, Germany, 1990. An abridged version ap-
peared inProc. of the 12th Int. Joint Conf. on Artificial
Intelligence IJCAI-91pp. 446—451.

[Baader, 1991] F. Baader. Augmenting conceptlanguages by
transitive closure of roles: An alternative to terminolcayi
cycles. InProceedings of the Twelfth International Joint
Conference on Atrtificial Intelligence (IJCAI-911)991.

[Buchheitet al,, 1993] M. Buchheit, F. M. Donini, and
A. Schaerf. Decidable reasoning in terminological knowl-
edge representation systemurnal of Artificial Intelli-
gence Researghi:109-138, 1993.

[De Giacomo & Lenzerini, 1996] G. De Giacomo and
M. Lenzerini. Tbox and Abox reasoning in expressive
description logics. InProceedings of the Fifth Inter-
national Conference on the Principles of Knowledge
Representation and Reasoning (KR-96ages 316—-327.
Morgan Kaufmann, Los Altos, 1996.

[De Giacomo & Massacci, 1998] G. De Giacomo and
F. Massacci. Combining deduction and model checking
into tableaux and algorithms for converse-pdformation
and Computation1998. To appear.

G. Smolka. Attributive concept descriptions with unions
and complements. Technical Report SR-88-21, FB In-
formatik, Universitat Kaiserslautern, Kaiserslaute@er-
many, 1988.



