
A Description Logic with Transitive and Inverse Roles and Role Hierarchies

Ian Horrocks ∗

Medical Informatics Group,
University of Manchester

Ulrike Sattler †

LuFG Theoretical Computer Science,
RWTH Aachen

1 Motivation
As widely argued [Horrocks & Gough, 1997, Sattler, 1996],
transitive roles play an important rôle in the adequate rep-
resentation of aggregated objects: they allow these objects
to be described by referring to their parts without specifying
a level of decomposition. In [Horrocks & Gough, 1997], the
Description Logic (DL)ALCHR+ is presented, which ex-
tendsALC with transitive roles and a role hierarchy. It is
argued in [Sattler, 1998] thatALCHR+ is well-suited to the
representation of aggregated objects in applications thatre-
quire various part-whole relations to be distinguished, some
of which are transitive. For example, a medical knowledge
base could contain the following entries defining two differ-
ent parts of the brain, namely the gyrus and the cerebellum.
In contrast to a gyrus, a cerebellum is an integral organ and,
furthermore, a functional component of the brain. Hence the
role is component (which is a non-transitive sub-role of
is part) is used to describe the relation between the brain
and the cerebellum:

is component⊑ is part

gyrus :=
(∀consists.brain mass) ⊓ (∃is part.brain)

cerebellum :=
organ ⊓ (∃is component.brain)

However,ALCHR+ does not allow the simultaneous descrip-
tion of parts by means of the whole to which they belong and
of wholes by means of their constituent parts: one or other
is possible, but not both. To overcome this limitation, we
present the DLALCHIR+ which extendsALCHR+ with
inverse (converse) roles, allowing, for example, the use of
has part as well asis part.1 UsingALCHIR+ , we can
define a tumorous brain as:

tumorous brain :=
brain ⊓ (tumorous ⊔ (∃has part.tumorous))

∗Part of this work was carried out while being a guest at IRST,
Trento.

†This work was supported by the Esprit Project 22469 – DWQ.
1Note thathas part is taken to be the inverse ofis part.

and then to recognise thatcerebellum⊓tumorous is sub-
sumed by∃is component.tumorous brain.

Furthermore,ALCHIR+ allows for the internalisation of
general inclusion axioms[Horrocks & Gough, 1997].

It could be argued that, instead of defining yet an-
other DL, one could make use of the results presented
in [De Giacomo & Lenzerini, 1996] and useALC extended
with role expressions which include transitive closure and
inverse operators. The reason for not proceeding like
this is the fact that transitive roles can be implemented
more efficiently than the transitive closure of roles (see
[Horrocks & Gough, 1997]), although they lead to the same
complexity class (EXPTIME-hard) when added, together
with role hierarchies, toALC. Furthermore, it is still an
open question whether the transitive closure of roles to-
gether with inverse roles necessitates the use of thecut rule
[De Giacomo & Massacci, 1998], a rule which leads to an al-
gorithm with very bad behaviour. We will present an al-
gorithm for ALCHIR+ without such a rule, which, from
the experiences made with an implementation ofALCHR+

[Horrocks & Gough, 1997], should behave well in practice.2

2 Blocking
The algorithms which we will present use the tableaux
method, in which the satisfiability of a conceptD is tested
by trying to construct a model ofD. The model is repre-
sented by a tree in which nodes correspond to individuals and
edges correspond to roles. Each nodex is labelled with a set
of conceptsL(x) which the individual must satisfy and each
edge is labelled with a role name.

An algorithm starts with a single node labelled{D}, and
proceeds by repeatedly applying a set ofexpansion rules
which recursively decompose the concepts in node labels;
new edges and nodes are added as required in order to sat-
isfy ∃R.C concepts. The construction terminates either when
none of the rules can be applied in a way which extends the
tree, or when the discovery of obvious contradictions demon-
strates thatD has no model.

2Details that have been omitted in the interests of brevity can be
found in [Horrocks & Sattler, 1998].

R

L(x) = {A, . . .}

R

S

L(y) = {∃R.⊤, ∃P.⊤, ∀R.C,
∀P.∃R.⊤, ∀P.∀R.C, ∀P.∃P.⊤}

x

y

z

P ∈ R+

L(z) = L(y) ⇒ z blocked byy

v L(v) = {C}
whereC := ∀R−.∀P−.∀S−.¬A

w

Figure 1: A tableau where dynamic blocking is crucial.

In order to prove that such an algorithm is a sound and
complete decision procedure for concept satisfiability in a
given logic, it is necessary to demonstrate that the models it
constructs are valid with respect to the semantics, that it will
always find a model if one exists and that it always terminates.
The first two points can usually be dealt with by proving that
the expansion rules preserve satisfiability, and that in thecase
of non-deterministic expansion (e.g., of disjunctions) all pos-
sibilities are exhaustively searched. For logics such asALC,
termination is mainly due to the fact that the expansion rules
can only add new concepts which are strictly smaller than the
decomposed concept, so the model must stabilise when all
concepts have been fully decomposed.

Termination is not, however, guaranteed for logics which
include transitive roles, as the expansion rules can introduce
new concepts which are the same size as the decomposed
concept. In particular,∀R.C concepts, whereR is a tran-
sitive role, are dealt with by propagating the whole concept
acrossR labelled edges. For example, given a leaf nodex la-
belled{C, ∃R.C, ∀R.(∃R.C)}, whereR is a transitive role,
the combination of the∃R.C and∀R.(∃R.C) concepts would
cause a new nodey to be added to the tree with an identical
label tox. The expansion process could then be repeated in-
definitely.

This problem can be dealt with byblocking: halting the
expansion process when a cycle is detected [Baader, 1991,
Buchheitet al., 1993]. For logics without inverse roles, the
general procedure is to check the label of each new nodey,
and if it is asubset[Baaderet al., 1996] of the label of an ex-
isting nodex, then no further expansion ofy is performed:x
is said to blocky. The resulting tree corresponds to a cycli-
cal model in whichy is identified withx.3 The validity of

3For logics with a transitive closure operator it is necessary
to check the validity of the cyclical model created by block-
ing [Baader, 1991], but for logics which only support transitive roles

the cyclical model is an easy consequence of the fact that
the ∃R.C concept whichy must satisfy must also be satis-
fied byx, becausex’s label is a superset ofy’s. Termination
is guaranteed by the fact that all concepts in node labels are
ultimately derived from the decomposition ofD, so all node
labels must be a subset of the subconcepts ofD, and a cy-
cle must therefore occur within a finite number of expansion
steps.

Blocking is, however, more problematical when inverse
roles are added to the logic, and a key feature of the algo-
rithms presented here is the introduction of adynamic block-
ing strategy using label equality instead of subset. With in-
verse roles, the blocking condition must be equality of node
labels, because roles are now bi-directional and additional
concepts inx’s label could invalidate the model with respect
to y’s predecessor. Taking the above example of a node la-
belled{C, ∃R.C, ∀R.(∃R.C)}, if the successor of this node
were blocked by a node whose label additionally included
∀R−.¬C, then the cyclical model would clearly be invalid.

Another difficulty introduced by inverse roles is the fact
that it is no longer possible to establish a block on a once and
for all basis when a new node is added to the tree, because
further expansion in other parts of the tree could lead to the
labels of the blocking and/or blocked nodes being extended
and the block being invalidated. For example, consider the
example sketched in Figure 1. It shows parts of a tableau that
was generated for the concept

A ⊓ ∃S.(∀P.∃R.⊤ ⊓ ∀P.∀R.C ⊓ ∀P.∃P.⊤
∃R.⊤ ⊓ ∃P.⊤ ⊓ ∀R.C⊓)

.

ForC as given in Figure 1, this concept is not satisfiable:w
has to be an instance ofC, which implies thatx is an instance
of ¬A—which is inconsistent withx being an instance ofA.

the cyclical model is always valid [Sattler, 1996].

AsP is a transitive role, all universal value restrictions over
P are propagated fromy to z, henceL(y) = L(z) andz is
blocked byy. Now, if the blocking ofz would not be bro-
ken when∀P−.∀S−.¬A is added toL(y) from C ∈ L(v),
then¬A would be never added toL(x) and the inconsistency
would not be detected.

Moreover, it is necessary to continue with some expan-
sion of blocked nodes, because∀R.C concepts in their labels
could effect other parts on the tree: Again, let us consider
the example in Figure 1: After the blocking ofz was bro-
ken and∀P−.∀S−.¬A added to bothL(y) andL(z), z is
again blocked byy. However, the universal value restriction
∀P−.∀S−.¬A ∈ L(z) has to be expanded in order to detect
the inconsistency.

This problem is overcome by using dynamic blocking: al-
lowing blocks to be dynamically established and broken as
the expansion progresses, and continuing to expand∀R.C
concepts in the labels of blocked nodes.

3 Syntax and Semantics ofALCIR+

For ease of understanding, we start by introducing the
Description LogicALCIR+ , which is the extension of
the well-known DLALC [Schmidt-Schauß & Smolka, 1988]
with transitively closed rolesand inverse(converse) roles.
The set of transitive role namesR+ is a subset of the set of
role namesR. Interpretations map role names to binary rela-
tions on the interpretation domain, and transitive role names
to transitive relations. In addition, for any roleR ∈ R, the
roleR− is interpreted as the inverse ofR.

In the next section, we describe a tableaux algorithm for
testing the satisfiability ofALCIR+ concepts and present a
proof of its soundness and completeness. The extension of
ALCIR+ by role hierarchies,ALCHIR+ , together with the
extended tableaux algorithm and corresponding proofs is then
described in Section 5.

Definition 1 Let NC be a set ofconcept namesand letR be
a set ofrole nameswith transitive role namesR+ ⊆ R. The
set ofALCIR+ -roles is R ∪ {R− | R ∈ R}. The set of
ALCIR+ -conceptsis the smallest set such that

1. every concept name is a concept and

2. if C andD are concepts andR is anALCIR+ -role, then
(C ⊓D), (C ⊔D), (¬C), (∀R.C), and(∃R.C) are con-
cepts.

An interpretationI = (∆I , ·I) consists of a set∆I , called
thedomainof I, and a function·I which maps every concept
to a subset of∆I and every role to a subset of∆I × ∆I

such that, for all conceptsC, D, the properties in Figure 2 are
satisfied.

A conceptC is calledsatisfiableiff there is some interpre-
tationI such thatCI 6= ∅. Such an interpretation is called
a model ofC. A conceptD subsumesa conceptC (written
C ⊑ D) iff CI ⊆ DI holds for each interpretationI. For an

interpretationI, an individualx ∈ ∆I is called aninstance
of a conceptC iff x ∈ CI .

In order to make the following considerations easier, we
introduce two functions on roles:

1. The inverse relation on roles is symmetric, and to avoid
considering roles such asR−−, we define a function
Inv which returns the inverse of a role. More precisely,
Inv(R) = R− if R is a role name, andInv(R) = S if
R = S−.

2. Obviously, a roleR is transitive if and only ifInv(R)
is transitive. However, this may be established by ei-
ther R or Inv(R) being inR+. We therefore define a
function Trans which returnstrue iff R is a transitive
role—regardless of whether it is a role name or the in-
verse of a role name. More precisely,Trans(R) = true
iff R ∈ R+ or Inv(R) ∈ R+.

4 A Tableaux Algorithm for ALCIR+

Like other tableaux algorithms, theALCIR+ algorithm tries
to prove the satisfiability of a conceptD by constructing a
model ofD. The model is represented by a so-calledcom-
pletion tree, a tree some of whose nodes correspond to in-
dividuals in the model, each node being labelled with a set
of ALCIR+ -concepts. When testing the satisfiability of an
ALCIR+ -conceptD, these sets are restricted to subsets of
sub(D), wheresub(D) is the set of subconcepts ofD.

For ease of construction, we assume all concepts to be in
negation normal form(NNF), that is, negation occurs only
in front of concept names. AnyALCIR+ -concept can eas-
ily be transformed to an equivalent one in NNF by pushing
negations inwards.

The soundness and completeness of the algorithm will be
proved by showing that it creates atableaufor D. We have
chosen to take the (not so) long way round tableaux for prov-
ing properties of tableaux algorithms because—once tableaux
are defined and Lemma 1 is proven—the remaining proofs are
considerable easier.

Definition 2 If D is anALCIR+ -concept in NNF andRD is
the set of roles occurring inD, together with their inverses, a
tableauT for D is defined to be a triple(S, L, E) such that:S

is a set of individuals,L : S → 2sub(D) maps each individual
to a set of concepts which is a subset ofsub(D), E : RD →
2S×S maps each role inRD to a set of pairs of individuals,
and there is some individuals ∈ S such thatD ∈ L(s). For
all s ∈ S, C, E ∈ sub(D), andR ∈ RD, it holds that:

1. if C ∈ L(s), then¬C /∈ L(s),

2. if C ⊓ E ∈ L(s), thenC ∈ L(s) andE ∈ L(s),

3. if C ⊔ E ∈ L(s), thenC ∈ L(s) or E ∈ L(s),

4. if ∀R.C ∈ L(s) and〈s, t〉 ∈ E(R), thenC ∈ L(t),

(C ⊓ D)I = CI ∩ DI , (C ⊔ D)I = CI ∪ DI , ¬CI = ∆I \ CI ,

(∃S.C)I = {x ∈ ∆I | There existsy ∈ ∆I with 〈x, y〉 ∈ SI andy ∈ CI},

(∀S.C)I = {d ∈ ∆I | For ally ∈ ∆I , if 〈x, y〉 ∈ SI , theny ∈ CI},

ForS ∈ R : 〈x, y〉 ∈ SI iff 〈y, x〉 ∈ S−I
, and

ForR ∈ R+ : if 〈x, y〉 ∈ RI and〈y, z〉 ∈ RI , then〈x, z〉 ∈ RI .

Figure 2: Semantics ofALCIR+ -concepts

5. if ∃R.C ∈ L(s), then there is somet ∈ S such that
〈s, t〉 ∈ E(R) andC ∈ L(t),

6. if ∀R.C ∈ L(s), 〈s, t〉 ∈ E(R) and Trans(R), then
∀R.C ∈ L(t), and

7. 〈x, y〉 ∈ E(R) iff 〈y, x〉 ∈ E(Inv(R)).

Lemma 1 AnALCIR+ -conceptD is satisfiable iff there ex-
ists a tableau forD.

Proof: For theif direction, if T = (S, L, E) is a tableau
for D with D ∈ L(s0), a modelI = (∆I , ·I) of D can be
defined as:

∆I = S

for all concept names A insub(D):
AI = {s | A ∈ L(s)}

RI =

{

E(R)+ if Trans(R)
E(R) otherwise

whereE(R)+ denotes the transitive closure ofE(R). DI 6= ∅
becauses0 ∈ DI . Transitive roles are obviously interpreted
as transitive relations. By induction on the structure of con-
cepts, we show that, ifE ∈ L(s), then s ∈ EI . Let
E ∈ L(s).

1. If E is a concept name, thens ∈ EI by definition.

2. If E = ¬C, thenC /∈ L(s) (due to Property 1 in Defi-
nition 2), sos ∈ ∆I \ CI = EI .

3. If E = (C1⊓C2), thenC1 ∈ L(s) andC2 ∈ L(s), so by
inductions ∈ CI

1 ands ∈ CI
2 . Hences ∈ (C1 ⊓ C2)

I .

4. The caseE = (C1 ⊔ C2) is analogous to 3.

5. If E = (∃S.C), then there is somet ∈ S such that
〈s, t〉 ∈ E(S) andC ∈ L(t). By definition,〈s, t〉 ∈ SI

and by inductiont ∈ CI . HenceS ∈ (∃S.C)I .

6. If E = (∀S.C) and〈s, t〉 ∈ SI , then either

(a) 〈s, t〉 ∈ E(S) andC ∈ L(t), or

(b) 〈s, t〉 6∈ E(S), then there exists a path of lengthn ≥
1 such that〈s, s1〉, 〈s1, s2〉, . . . , 〈sn, t〉 ∈ E(S).
Due to Property 6 in Definition 2,∀S.C ∈ L(si)
for all 1 ≤ i ≤ n, and we haveC ∈ L(t).

In both cases, we have by inductiont ∈ CI , hences ∈
(∀S.C)I .

For the converse, ifI = (∆I , ·I) is a model ofD, then a
tableauT = (S, L, E) for D can be defined as:

S = ∆I

E(R) = RI

L(s) = {C ∈ sub(D) | s ∈ CI}

It only remains to demonstrate thatT is a tableau forD:

1. T satisfies properties 1–5 in Definition 2 as a direct con-
sequence of the semantics ofALCIR+ concepts.

2. If d ∈ (∀R.C)I , 〈d, e〉 ∈ RI andTrans(R), thene ∈
(∀R.C)I unless there is somef such that〈e, f〉 ∈ RI

andf /∈ CI . However, if 〈d, e〉 ∈ RI , 〈e, f〉 ∈ RI

andR ∈ R+, then〈d, f〉 ∈ RI andd /∈ (∀R.C)I . T
therefore satisfies Property 6 in Definition 2.

3. T satisfies Property 7 in Definition 2 as a direct conse-
quence of the semantics of inverse relations.

4.1 Constructing anALCIR+ Tableau

¿From Lemma 1, an algorithm which constructs a tableau for
anALCIR+ -conceptD can be used as a decision procedure
for the satisfiability ofD. Such an algorithm will now be
described in detail.

The tableaux algorithm works oncompletion trees. This
is a tree where each nodex of the tree is labelled with a set
L(x) ⊆ sub(D) and each edge〈x, y〉 is labelledL(〈x, y〉) =
R for some (possibly inverse) roleR occurring insub(D).
Edges are added when expanding∃R.C and∃R−.C terms;
they correspond to relationships between pairs of individuals
and are always directed from the root node to the leaf nodes.
The algorithm expands the tree either by extendingL(x) for
some nodex or by adding new leaf nodes.

For a nodex, L(x) is said to contain aclash if, for some
conceptC, {C,¬C} ⊆ L(x).

If nodesx andy are connected by an edge〈x, y〉, theny
is called asuccessorof x andx is called apredecessorof y;
ancestoris the transitive closure ofpredecessor.

A nodey is called anR-neighbourof a nodex if either y
is a successor ofx andL(〈x, y〉) = R or y is a predecessor
of x andL(〈y, x〉) = Inv(R).

A nodex is blockedif for some ancestory, y is blocked
or L(x) = L(y). A blocked nodex is indirectly blocked

if its predecessor is blocked, otherwise it isdirectly blocked.
If x is directly blocked, it has a unique ancestory such that
L(x) = L(y): if there existed another ancestorz such that
L(x) = L(z) then eithery or z must be blocked. Ifx
is directly blocked andy is the unique ancestor such that
L(x) = L(y), we will say thaty blocksx.

The algorithm initialises a treeT to contain a single node
x0, called theroot node, withL(x0) = {D}, whereD is the
concept to be tested for satisfiability.T is then expanded by
repeatedly applying the rules from Figure 3.

The completion tree iscompletewhen for some nodex,
L(x) contains a clash or when none of the rules is applica-
ble. If, for an input conceptD, the expansion rules can be
applied in such a way that they yield a complete, clash-free
completion tree, then the algorithm returns “D is satisfiable”,
and “D is unsatisfiable” otherwise.

4.2 Soundness and Completeness

The soundness and completeness of the algorithm will be
demonstrated by proving that, for anALCIR+ -conceptD,
it always terminates and that it returnssatisfiableif and only
if D is satisfiable.

Lemma 2 For eachALCIR+ -conceptD, the tableaux algo-
rithm terminates.

Proof: Let m = |sub(D)|. Obviously,m is linear in the
length ofD. Termination is a consequence of the following
properties of the expansion rules:

1. The expansion rules never remove nodes from the tree
or concepts from node labels.

2. Successors are only generated for existential value re-
strictions (concepts of the form∃R.C), and for any node
each of these restrictions triggers the generation of at
most one successor. Sincesub(D) contains at mostm
existential value restrictions, the out-degree of the tree
is bounded bym.

3. Nodes are labelled with nonempty subsets ofsub(D).
If a path p is of length at least2m, then there are 2
nodesx, y on p, with L(x) = L(y), and blocking oc-
curs. Since a path on which nodes are blocked cannot
become longer, paths are of length at most2m.

Together with Lemma 1, the following lemma implies
soundness of the tableaux algorithm.

Lemma 3 If the expansion rules can be applied to an
ALCIR+ -conceptD such that they yield a complete and
clash-free completion tree, thenD has a tableau.

Proof: Let T be the complete and clash-free tree con-
structed by the tableaux algorithm forD. A tableauT =

(S, L, E) can be defined with:

S= {x | x is a node inT that is not blocked},
E(R) = {〈x, y〉 ∈ S× S |

1. y is anR-neighbour ofx or
2.L(〈x, z〉) = R andy blocksz or
3.L(〈y, z〉) = Inv(R) andx blocksz},

and it can be shown thatT is a tableau forD:

1. D ∈ L(x0) for the rootx0 of T and, asx0 has no pre-
decessors, it cannot be blocked. HenceD ∈ L(s) for
somes ∈ S.

2. Property 1 of Definition 2 is satisfied becauseT is clash-
free.

3. Properties 2 and 3 of Definition 2 are satisfied because
neither the⊓-rule nor the⊔-rule apply to anyx ∈ S.

4. Property 4 in Definition 2 is satisfied because for allx ∈
S, if ∀R.C ∈ L(x) and〈x, y〉 ∈ E(R) then either:

(a) x is anR-neighbour ofy,

(b) L(〈x, z〉) = R, y blocksz, from the∀-rule C ∈
L(z), L(y) = L(z), or

(c) L(〈y, z〉) = Inv(R), x blocksz, L(x) = L(z), so
from the∀-ruleC ∈ L(y).

In all 3 cases, the∀-rule ensures thatC ∈ L(y).

5. Property 5 in Definition 2 is satisfied because for allx ∈
S, if ∃R.C ∈ L(x), then the∃-rule ensures that there is
either:

(a) a predecessory such thatL(〈y, x〉) = Inv(R) and
C ∈ L(y). Becausey is a predecessor ofx it can-
not be blocked, soy ∈ S and〈y, x〉 ∈ E(R).

(b) a successory such thatL(〈x, y〉) = R andC ∈
L(y). If y is not blocked, theny ∈ S and〈x, y〉 ∈
E(R). Otherwise,y is blocked by somez with
L(z) = L(y). HenceC ∈ L(z), z ∈ S and
〈x, z〉 ∈ E(R).

6. Property 6 in Definition 2 is satisfied because for allx ∈
S, if ∀R.C ∈ L(x), 〈x, y〉 ∈ E(R), andTrans(R), then
either:

(a) x is anR-neighbour ofy,

(b) L(〈x, z〉) = R, y blocksz, andL(y) = L(z), or

(c) L(〈y, z〉) = Inv(R), x blocks z, henceL(x) =
L(z) and∀R.C ∈ L(z).

In all 3 cases, the∀+-rule ensures that∀R.C ∈ L(y).

7. Property 7 in Definition 2 is satisfied because for each
〈x, y〉 ∈ E(R), either:

(a) x is an R-neighbour ofy, so y is an Inv(R)-
neighbour ofx and〈y, x〉 ∈ E(Inv(R)).

(b) L(〈x, z〉) = R and y blocks z, so L(〈x, z〉) =
Inv(Inv(R)) and〈y, x〉 ∈ E(Inv(R)).

⊓-rule: if 1. C1 ⊓ C2 ∈ L(x), x is not indirectly blocked, and
2. {C1, C2} 6⊆ L(x) then L(x) −→ L(x) ∪ {C1, C2}

⊔-rule: if 1. C1 ⊔ C2 ∈ L(x), x is not indirectly blocked, and
2. {C1, C2} ∩ L(x) = ∅ then, for someC ∈ {C1, C2}, L(x) −→ L(x) ∪ {C}

∃-rule: if 1. ∃S.C ∈ L(x), x is not blocked, and
2. x has noS-neighboury with C ∈ L(y):

then create a new nodey with L(〈x, y〉) = S andL(y) = {C}

∀-rule: if 1. ∀S.C ∈ L(x), x is not indirectly blocked, and
2. there is anS-neighboury of x with C /∈ L(y) then L(y) −→ L(y) ∪ {C}

∀+-rule: if 1. ∀S.C ∈ L(x), Trans(S), x is not indirectly blocked, and
2. there is anS-neighboury of x with ∀S.C /∈ L(y) then L(y) −→ L(y) ∪ {∀S.C}

Figure 3: Tableaux expansion rules forALCIR+

(c) L(〈y, z〉) = Inv(R) andx blocksz, so 〈y, x〉 ∈
E(Inv(R)).

Lemma 4 If D has a tableau, then the expansion rules can
be applied in such a way that the tableaux algorithm yields a
complete and clash-free completion tree forD.

Proof: Let T = (S, L, E) be a tableau forD. UsingT , we
trigger the application of the expansion rules such that they
yield a completion treeT that is both complete and clash-
free. We start withT consisting of a single nodex0, the root,
with L(x0) = {D}.

T is a tableau, hence there is somes0 ∈ S with D ∈ L(s0).
When applying the expansion rules toT, the application of
the non-deterministic⊔-rule is driven by the labelling in the
tableauT . To this purpose, we define a mappingπ which
maps the nodes ofT to elements ofS, and we steer the appli-
cation of the⊔-rule such thatL(x) ⊆ L(π(x)) holds for all
nodesx of the completion tree.

More precisely, we defineπ inductively as follows:

• π(x0) = s0.

• If π(xi) = si is already defined, and a successory of
xi was generated for∃R.C ∈ L(xi), thenπ(y) = t for
somet ∈ S with C ∈ L(t) and〈si, t〉 ∈ E(R).

To make sure that we haveL(xi) ⊆ L(π(xi)), we use the
⊔′-rule given in Figure 4 instead of the⊔-rule.

⊔′-rule: if 1. C1 ⊔ C2 ∈ L(x),
x is not indirectly blocked, and

2. {C1, C2} ∩ L(x) = ∅
thenL(x) −→ L(x) ∪ {C} for some
C ∈ {C1, C2} ∩ L(π(x))

Figure 4: The⊔′-rule

The expansion rules given in Figure 3 with the⊔-rule re-
placed by the⊔′-rule are calledmodifiedexpansion rules in
the following.

It is easy to see that, if a treeT was generated using the
modified expansion rules, then the expansion rules can be ap-
plied in such a way that they yieldT. Hence Lemma 3 and
Lemma 2 still apply, and thus using the⊔′-rule instead of the
⊔-rule preserves soundness and termination.

We will now show by induction that, ifL(x) ⊆ L(π(x))
holds for all nodesx in T, then the application of an ex-
pansion rule preserves this subset-relation. To start with, we
clearly have{D} = L(x0) ⊆ L(s0).

If the⊓-rule can be applied tox in T with C = C1 ⊓C2 ∈
L(x), thenC1, C2 are added toL(x). SinceT is a tableau,
{C1, C2} ⊆ L(π(x)), and hence the⊓-rule preservesL(x) ⊆
L(π(x)).

If the ⊔′-rule can be applied tox in T with C = C1 ⊔
C2 ∈ L(x), thenC ∈ {C1, C2} is in L(π(x)), andC is
added toL(x) by the⊔′-rule. Hence the⊔′-rule preserves
L(x) ⊆ L(π(x)).

If the ∃-rule can be applied tox in T with C = ∃R.C1 ∈
L(x), then C ∈ L(π(x)) and there is somet ∈ S with
〈π(x), t〉 ∈ E(R) and C1 ∈ L(t). The ∃-rule creates a
new successory of x for which π(y) = t for somet with
C1 ∈ L(t). Hence we haveL(y) = {C1} ⊆ L(π(y)).

If the ∀-rule can be applied tox in T with C = ∀R.C1 ∈
L(x) and y is an R-neighbour ofx, then 〈π(x), π(y)〉 ∈
E(R), and thusC1 ∈ L(π(y)). The∀-rule addsC1 to L(y)
and thus preservesL(x) ⊆ L(π(x)).

If the ∀+-rule can be applied tox in T with C = ∀R.C1 ∈
L(x), Trans(R) and y being anR-neighbour ofx, then
〈π(x), π(y)〉 ∈ E(R), and thus∀R.C1 ∈ L(π(y)). The∀+-
rule addsC1 to L(y) and thus preservesL(y) ⊆ L(π(y)).

Summing up, the tableau-construction triggered byT ter-
minates with a complete tree, and sinceL(x) ⊆ L(π(x))
holds for all nodesx in T, T is clash-free due to Property 1
of Definition 2.

Theorem 1 The tableaux algorithm is a decision procedure
for the satisfiability and subsumption ofALCIR+ -concepts.

Theorem 1 is an immediate consequence of the Lemmata 1,
2, 3, and 4. Moreover, sinceALCIR+ is closed under nega-
tion, subsumptionC ⊑ D can be reduced to unsatisfiability
of C ⊓ ¬D.

5 ALCIR+ Extended by Role Hierarchies
We will now extend the tableaux algorithm presented
in Section 4.1 to deal withrole hierarchies in a sim-
ilar way to the algorithm forALCHR+ presented in
[Horrocks & Gough, 1997]. ALCHIR+ extendsALCIR+

by allowing, additionally, for inclusion axioms on roles.
These axioms can involve transitive as well as non-transitive
roles, and inverse roles as well as role names. For example,
to express that a roleR is symmetric, we add the two axioms
R ⊑ R− andR− ⊑ R.

Definition 3 A role inclusion axiomis of the form

R ⊑ S,

for two (possibly inverse) rolesR andS.
For a set of role inclusion axiomsR, R+ := (R ∪

{Inv(R) ⊑ Inv(S) | R ⊑ S ∈ R}, ⊑*) is called arole hier-
archy, where ⊑* is the transitive-reflexive closure of⊑ over
R∪ {Inv(R) ⊑ Inv(S) | R ⊑ S ∈ R}.
ALCHIR+ is the extension ofALCIR+ obtained by al-

lowing, additionally, for a role hierarchyR+.
As well as being correct forALCIR+ concepts, an

ALCHIR+ interpretation has to satisfy, for all rolesR, S
with R ⊑* S, the additional condition

〈x, y〉 ∈ RI implies〈x, y〉 ∈ SI .

The tableaux algorithm given in the preceding section can
easily be modified to decide satisfiability ofALCHIR+ -
concepts by extending the definitions of bothR-neighbours
and the∀+-rule to include the notion of role hierarchies. To
prove the soundness and correctness of the extended algo-
rithm, the definition of a tableau is also extended.

Definition 4 As well as satisfying Definition 2 (i.e., being
a valid ALCIR+ tableau), a tableauT = (S, L, E) for an
ALCHIR+ -conceptD must also satisfy:

6′. if ∀S.C ∈ L(s) and〈s, t〉 ∈ E(R) for someR ⊑* S with
Trans(R), then∀R.C ∈ L(t),

8. if 〈x, y〉 ∈ E(R) andR ⊑* S, then〈x, y〉 ∈ E(S),

where Property 6′ extends and supersedes Property 6 from
Definition 2.

For theALCHIR+ algorithm, the∀+-rule is replaced with
the∀′+-rule (see Figure 5) and the definition ofR-neighbours
is extended as follows:

Definition 5 Given a completion tree, a nodey is called an
R-neighbourof a nodex if either y is a successor ofx and
L(〈x, y〉) = S or y is a predecessor ofx andL(〈y, x〉) =
Inv(S) for someS with S ⊑* R.

In the following, the tableaux algorithm resulting from
these modifications will be called themodified tableaux al-
gorithm. Due to this definition and the reflexivity of⊑* , the
∀′+-rule extends the∀+-rule.

To prove that the modified tableaux algorithm is indeed
a decision procedure for the satisfiability ofALCHIR+ -
concepts, all 4 technical lemmata used in Section 4.2 to prove
this fact for theALCIR+ tableaux algorithm have to be re-
proven forALCHIR+ . In the following, we will restrict our
attention to cases that differ from those already considered for
ALCIR+ .

Lemma 5 An ALCHIR+ -conceptD is satisfiable iff there
exists a tableau forD.

Proof: For theif direction, the construction of a model of
D ¿from a tableau forD is similar to the one presented in the
proof of Lemma 1. IfT = (S, L, E) is a tableau forD with
D ∈ L(s0), a modelI = (∆I , ·I) of D can be defined as
follows:

∆I = S

for all concept namesA in sub(D)
AI = {s | A ∈ L(s)}

RI =

{

E(R)+ if Trans(R)
E(R) ∪

⋃

P ⊑* R,P 6=R

P I otherwise

The interpretation of non-transitive roles is recursive inor-
der to correctly interpret those non-transitive roles thathave
a transitive sub-role. From the definition ofRI and Prop-
erty 8 of a tableau it follows that if〈x, y〉 ∈ SI , then ei-
ther〈x, y〉 ∈ E(S) or there exists a path〈s, s1〉, 〈s1, s2〉, . . . ,
〈sn, t〉 ∈ E(R) for someR with Trans(R) andR ⊑* S.

Property 8 of a tableau ensures thatRI ⊆ SI holds for all
roles withR ⊑* S, including those cases whereR is a transi-
tive role. Again, it can be shown by induction on the structure
of concepts thatI is a correct interpretation. We restrict our
attention to the only case that is different from the ones in the
proof of Lemma 1. LetE ∈ sub(D).

6′. If E = (∀S.C) and〈s, t〉 ∈ SI , then either

(a) 〈s, t〉 ∈ E(S) andC ∈ L(t), or

(b) 〈s, t〉 6∈ E(S), then there exists a path of lengthn ≥
1 such that〈s, s1〉, 〈s1, s2〉, . . . , 〈sn, t〉 ∈ E(R) for
someR with Trans(R) andR ⊑* S. Due to Prop-
erty 6′, ∀R.C ∈ L(si) for all 1 ≤ i ≤ n, and we
haveC ∈ L(t).

In both cases, we havet ∈ CI .

∀′+-rule: if 1. ∀S.C ∈ L(x), x is not indirectly blocked, and
2. there is someR with Trans(R) andR ⊑* S,
3. there is anR-neighboury of x with ∀R.C /∈ L(y) thenL(y) −→ L(y) ∪ {∀R.C}

Figure 5: The new∀+-rule forALCHIR+ .

For the converse, ifI = (∆I , ·I) is a model ofD, then a
tableauT = (S, L, E) for D is defined like the one defined in
the proof of Lemma 1.

It remains to demonstrate thatT is a tableau forD:

1. T satisfies properties 1–5 in Definition 2 as a direct con-
sequence of the semantics ofALCHIR+ -concepts.

2. If d ∈ (∀S.C)I and〈d, e〉 ∈ RI for R with Trans(R)
andR ⊑* S, thene ∈ (∀R.C)I unless there is somef
such that〈e, f〉 ∈ RI and f /∈ CI . In this case, if
〈d, e〉 ∈ RI , 〈e, f〉 ∈ RI andTrans(R), then〈d, f〉 ∈
RI . Hence〈d, f〉 ∈ SI and d /∈ (∀S.C)I—in con-
tradiction of the assumption.T therefore satisfies Prop-
erty 6′ in Definition 4.

3. SinceI is a model ofD, 〈x, y〉 ∈ RI implies〈x, y〉 ∈
SI for all roles R, S with R ⊑* S. HenceT satisfies
Property 8 in Definition 4.

Lemma 6 For each ALCHIR+ -conceptD, the modified
tableaux algorithm terminates.

Proof: Identical to the one given for Lemma 2.

Lemma 7 If the expansion rules can be applied to an
ALCHIR+ -conceptD such that they yield a complete and
clash-free completion tree, thenD has a tableau.

Proof: The definition of a tableau from a complete and
clash-free completion tree, as presented in the proof of
Lemma 3, has to be slightly modified. A tableauT =
(S, L, E) is now defined with:

S = {x | x is a node inT that is not blocked}
E(S) = {〈x, y〉 ∈ S× S |

1. y is anS-neighbour ofx or
2. There exists a roleR with R ⊑* S and

a. L(〈x, z〉) = R andy blocksz or
b. L(〈y, z〉) = Inv(R) andx blocksz}

and, again, it is shown thatT is a tableau forD:

1. Since the expansion rules were started withL(x0) =
{D}, D ∈ L(x0) for somex0 ∈ S.

2. Properties 1-3, 5 and 7 in Definition 2 are identical to
the proof of Lemma 3.

3. Property 4 in Definition 2 is satisfied because for allx ∈
S, if ∀S.C ∈ L(x) and〈x, y〉 ∈ E(S) then either:

(a) x is anS-neighbour ofy,

(b) for some role withR ⊑* S, either

i. L(〈x, z〉) = R, y blocksz, hence from the∀-rule
C ∈ L(z), andL(y) = L(z), or

ii. L(〈y, z〉) = Inv(R), x blocksz, henceL(x) =
L(z) and therefor∀S.C ∈ L(z).

In all cases, the∀-rule ensuresC ∈ L(y).

4. Property 6’ in Definition 4 is satisfied because for all
x ∈ S, if ∀S.C ∈ L(x), 〈x, y〉 ∈ E(R) for someR with
Trans(R) andR ⊑* S, then either:

(a) y is anR-neighbour ofx, or

(b) there is some roleR′ with R′ ⊑ R and

i. L(〈x, z〉) = R′, y blocksz andL(y) = L(z), or
ii. L(〈y, z〉) = Inv(R), x blocks z and L(x) =

L(z), hence∀S.C ∈ L(z).

In all three cases,∀R.C ∈ L(y) follows from the∀′+-
rule.

5. Property 8 in Definition 4 follows immediately from the
definition ofE.

Lemma 8 If ALCHIR+ -conceptD has a tableau, then the
expansion rules can be applied in such a way that the tab-
leaux algorithm yields a complete and clash-free completion
tree forD.

The proof of Lemma 8 is identical to the one presented
for Lemma 4. Again, summing up, we have the following
theorem.

Theorem 2 The modified tableaux algorithm is a deci-
sion procedure for the satisfiability and subsumption of
ALCHIR+ -concepts.

5.1 General Concept Inclusion Axioms
In [Baader, 1991, Schild, 1991, Baaderet al., 1993], thein-
ternalisationof terminological axioms is introduced. This
technique is used to reduce reasoning with respect to a (pos-
sibly cyclic) terminology to satisfiability of concepts. In
[Horrocks & Gough, 1997], we saw how role hierarchies can
be used to reduce satisfiability and subsumption with respect
to a terminology to concept satisfiability and subsumption.In
the presence of inverse roles, this reduction must be slightly
modified.

Definition 6 A terminologyT is a finite set of general con-
cept inclusion axioms,

T = {C1 ⊑ D1, . . . , Cn ⊑ Dn},

whereCi, Di are arbitraryALCHIR+ -concepts. An inter-
pretationI is said to be a model ofT iff CI

i ⊆ DI
i holds for

all Ci ⊑ Di ∈ T . C is satisfiable with respect toT iff there
is a modelI of T with CI 6= ∅. Finally,D subsumesC with
respect toT (C ⊑T D) iff for each modelI of T we have
CI ⊆ DI .

The following lemma shows how general concept inclu-
sion axioms can beinternalisedusing a “universal” roleU .
This roleU is a transitive super-role of all relevant roles and
their respective inverses. Hence, for each interpretationI,
each individualt reachable via some role path ¿from another
individuals is anUI -successor ofs. All general concept in-
clusion axiomsCi ⊑ Di in T are propagated along all role
paths using the value restriction∀U.¬C ⊔ D.

Lemma 9 Let T be terminology andC, D beALCHIR+ -
concepts and let

CT := ⊓
Ci⊑Di∈T

¬Ci ⊔ Di.

LetU be a transitive role withR ⊑ U , Inv(R) ⊑ U for each
role R that occurs inT , C, or D.

ThenC is satisfiable with respect toT iff

C ⊓ CT ⊓ ∀U.CT

is satisfiable.D subsumesC with respect toT (C ⊑T D)
iff

C ⊓ ¬D ⊓ CT ⊓ ∀U.CT

is unsatisfiable.

Remark: Instead of definingU as a transitive super-role of
all roles and their respective inverses, one could have defined
U as a transitive super-role of all roles and, additionally, a
symmetric role by addingU ⊑ U− andU− ⊑ U .

The proof of Lemma 9 is similar to the ones that can be
found in [Schild, 1991, Baader, 1990]. One point to show is
that, if anALCHIR+ -conceptC is satisfiable with respect to
a terminologyT , thenC, T have aconnectedmodel, namely
one whose individuals are all related to each other by some
role path. This follows from the definition of the semantics of
ALCHIR+ -concepts. The other point to proof is that, ify is
reachable fromx via a role path (possibly involving inverse
roles), then〈x, y〉 ∈ UI , which is an easy consequence of the
definition ofU .

Decidability of satisfiability and subsumption with respect
to a terminology is an immediate consequence of Lemma 9
and Theorem 2.

Theorem 3 The modified tableaux algorithm is a decision
procedure for satisfiability and subsumption ofALCHIR+ -
concepts with respect to terminologies.

6 Future work
We intend to extend the logic with functional roles. Func-
tional roles are useful, not only for the representation of ag-
gregated objects, but also in general because they provide a
weak form of number restrictions.

The combination of a role hierarchy with transitive, con-
verse and functional roles adds a further level of complexity
because satisfiable concepts are no longer guaranteed to have
(possibly cyclical) finite models [Schild, 1991]. An example
of such a concept is:

¬C ⊓ ∃F−.C ⊓ ∀R−.(∃F−.C)

whereF is functional,R is transitive andF is a sub-role of
R. Any model of this concept must have an infinite sequence
of F− successors, each satisfyingC and∃F−.C, the∃F−.C
term being propagated along the sequence by the transitive
super-roleR. Attempting to terminate the sequence in a cy-
cle causes the model to collapse into a single node due the
functionality ofF , and this leads to an obvious contradiction
as the node label will contain bothC and¬C.

This problem can be overcome by “unravelling” cyclical
models to generate infinite models in which blocked nodes
are replaced by copies of the blocking node and its sub-tree.
However, to guarantee that local correctness is preserved by
the copying process, both the predecessor of a blocked node
and the role which connects it to its predecessor, must be the
same as those of the blocking node. If this is not the case,
then concepts in the label of the blocking node which were
satisfied by its predecessor may no longer be satisfied when it
is copied onto the blocked node. To ensure that this condition
is met, a further enhancement to the blocking strategy must be
introduced. Instead of considering single nodes, the enhanced
strategy, called pair-wise blocking, considers pairs of nodes
and the role which connects them, only establishing a block
when a matching node-role-node pattern is found.

The complexity of satisfiability and subsumption of these
new extensions ofALCHR+ is another open problem. From
results in [Sattler, 1996], it follows that these problems are
ExpTime-hard for ALCHIR+ and PSpace-complete for
ALCR+ . Whether these problems are still inPSpace for
ALCIR+ is an open question.

AlthoughALCHIR+ andALC with the transitive closure
and inverse roles are bothExpTime-hard, there are two hints
why ALCHIR+ should have better computational proper-
ties thanALC with the transitive closure and inverse roles:
First, the tableaux algorithm forALCHIR+ does not have
an equivalent of the cut rule—a rule which is strongly re-
sponsible for the bad computational behaviour ofALC with
the transitive closure and inverse roles. Intuitively, when a
new nodex is generated for some∃R.C concept, this rule
non-deterministically chooses a set of concepts from the sub-
concepts of the initial concept and adds this set toL(x). We
can think of this set as consisting of those concepts which

are possibly added to the labelling ofx due to universal
value restrictions on successors ofx. As this set is chosen
non-deterministically from exponentially many possibilities,
it should be clear that this rule leads to a bad computational
behaviour.

Second, the implementation ofALCHR+ in FaCT
[Horrocks & Gough, 1997] behaves quite well in realistic
application—even thoughALCHR+ , too, isExpTime-hard.
Furthermore, this algorithm is amenable to a range of optimi-
sation techniques. We hope that both, this good behaviour and
the optimisation techniques, carry over toALCHIR+ . To
verify this assumption, the modified tableaux algorithm will
be implemented in a descendant of FaCT [Horrocks, 1998].

Acknowledgements
We would like to thank the anonymous referees for their valu-
able comments and suggestions.

References
[Baaderet al., 1993] F. Baader, H.-J. Bürckert, B. Nebel,

W. Nutt, and G. Smolka. On the expressivity of feature
logics with negation, functional uncertainty, and sort equa-
tions. Journal of Logic, Language and Information, 2:1–
18, 1993.

[Baaderet al., 1996] F. Baader, M. Buchheit, and B. Hollun-
der. Cardinality restrictions on concepts.Artificial Intelli-
gence, 88(1–2):195–213, 1996.

[Baader, 1990] F. Baader. Augmenting concept languages
by transitive closure of roles: An alternative to termino-
logical cycles. Technical Report RR-90-13, Deutsches
Forschungszentrum für Künstliche Intelligenz (DFKI),
Kaiserslautern, Germany, 1990. An abridged version ap-
peared inProc. of the 12th Int. Joint Conf. on Artificial
Intelligence IJCAI-91, pp. 446–451.

[Baader, 1991] F. Baader. Augmenting concept languages by
transitive closure of roles: An alternative to terminological
cycles. InProceedings of the Twelfth International Joint
Conference on Artificial Intelligence (IJCAI-91), 1991.

[Buchheitet al., 1993] M. Buchheit, F. M. Donini, and
A. Schaerf. Decidable reasoning in terminological knowl-
edge representation systems.Journal of Artificial Intelli-
gence Research, 1:109–138, 1993.

[De Giacomo & Lenzerini, 1996] G. De Giacomo and
M. Lenzerini. Tbox and Abox reasoning in expressive
description logics. InProceedings of the Fifth Inter-
national Conference on the Principles of Knowledge
Representation and Reasoning (KR-96), pages 316–327.
Morgan Kaufmann, Los Altos, 1996.

[De Giacomo & Massacci, 1998] G. De Giacomo and
F. Massacci. Combining deduction and model checking
into tableaux and algorithms for converse-pdl.Information
and Computation, 1998. To appear.

[Horrocks, 1998] I. Horrocks. Using an Expressive Descrip-
tion Logic: FaCT or Fiction? InProceedings of the Sixth
International Conference on the Principles of Knowledge
Representation and Reasoning (KR-98), 1998.

[Horrocks & Gough, 1997] I. Horrocks and G. Gough. De-
scription logics with transitive roles. In M.-C. Rousset,
R. Brachmann, F. Donini, E. Franconi, I. Horrocks, and
A. Levy, editors,Proceedings of the International Work-
shop on Description Logics, pages 25–28, Gif sur Yvette,
France, 1997. Université Paris-Sud.

[Horrocks & Sattler, 1998] I. Horrocks and U. Sattler. A
description logic with transitive and inverse roles and
role hierarchies. Technical Report 98-05, LuFg Theo-
retical Computer Science, RWTH Aachen, 1998. Avail-
able via www: http://www-lti.informatik.
rwth-aachen.de/Forschung/Papers.html.

[Sattler, 1996] U. Sattler. A concept language extended
with different kinds of transitive roles. In G. Görz and
S. Hölldobler, editors,20. Deutsche Jahrestagung für
Künstliche Intelligenz, volume 1137 ofLecture Notes in
Mathematics. Springer-Verlag, 1996.

[Sattler, 1998] U. Sattler.Terminological knowledge repre-
sentation systems in a process engineering application.
PhD thesis, RWTH Aachen, 1998. To appear.

[Schild, 1991] K. Schild. A correspondence theory for ter-
minological logics: Preliminary report. InProceedings of
the Twelfth International Joint Conference on Artificial In-
telligence (IJCAI-91), pages 466–471, Sydney, 1991.

[Schmidt-Schauß & Smolka, 1988] M. Schmidt-Schauß and
G. Smolka. Attributive concept descriptions with unions
and complements. Technical Report SR-88-21, FB In-
formatik, Universität Kaiserslautern, Kaiserslautern,Ger-
many, 1988.

