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A Description LogicwithTransitive and Converse Roles and RoleHierarchiesIan Horrocks and Ulrike Sattler1 MotivationAs widely argued [Horrocks&Gough,1997; Sattler,1996], transitive roles playan important rôle in the adequate representation of aggregated objects: theyallow these objects to be described by referring to their parts without speci-fying a level of decomposition. In [Horrocks&Gough,1997], the DescriptionLogic (DL) ALCHR+ is presented, which extends ALC with transitive rolesand a role hierarchy. It is argued in [Sattler,1998] thatALCHR+ is well-suitedto the representation of aggregated objects in applications that require var-ious part-whole relations to be distinguished, some of which are transitive.However, ALCHR+ allows neither the description of parts by means of thewhole to which they belong, or vice versa. To overcome this limitation, wepresent the DL ALCHIR+ which allows the use of, for example, has partas well as is part of. To achieve this, ALCHR+ was extended with inverseroles.It could be argued that, instead of de�ning yet another DL, one couldmake use of the results presented in [De Giacomo&Lenzerini,1996] and useALC extended with role expressions which include transitive closure and in-verse operators. The reason for not proceeding like this is the fact that tran-sitive roles can be implemented more e�ciently than the transitive closureof roles (see [Horrocks&Gough,1997]), although they lead to the same com-plexity class (ExpTime-hard) when added, together with role hierarchies, toALC. Furthermore, it is still an open question whether the transitive closure1



of roles together with inverse roles necessitates the use of the cut rule [DeGiacomo&Massacci,1998], and this rule leads to an algorithm with very badbehaviour. We will present an algorithm for ALCHIR+ without such a rule.12 A Tableaux Algorithm for ALCIR+In this section a tableaux algorithm for testing the satis�ability of ALCIR+concept expressions will be described and a proof of its soundness and com-pleteness presented. The algorithm and proof are extensions of those de-scribed for ALCR+ [Sattler,1996].2.1 Syntax and SemanticsALCIR+ is the Description Logic (DL) obtained by augmenting the well-known DL ALC [Schmidt-Schau�&Smolka,1988] with transitively closedroles and inverse (converse) roles. The set of transitive role names R+ is asubset of the set of role names R. Interpretations map role names to binaryrelations on the interpretation domain, and transitive role names to transi-tive relations. In addition, for any role R 2 R, the role R� is interpreted asthe inverse of R.De�nition 1 Let NC be a set of concept names and let R be a set of rolenames with both transitive and normal role names R+ [ RP = R, whereRP \ R+ = ;. The set of ALCIR+-roles is R [ fR� j R 2 Rg. The set ofALCIR+-concepts is the smallest set such that1. every concept name C 2 NC is a concept and2. if C and D are concepts and R is an ALCIR+-role, then (C u D),(C tD), (:C), (8R:C), and (9R:C) are concepts.An interpretation I = (�I ; �I) consists of a set �I , called the domain ofI, and a function �I which maps every concept to a subset of �I and everyrole to a subset of �I ��I such that(C uD)I = CI \DI;1Many details, and the proofs of the various lemmata, have been omitted in the interestsof brevity. 2



(C tD)I = CI [DI;:CI = �I n CI ;(9R:C)I = fx 2 �I j There exists some y 2 �I with hx; yi 2 RI and y 2 CIg;(8R:C)I = fd 2 �I j For all y 2 �I , if hx; yi 2 RI , then y 2 CIg;and, for P 2 R and R 2 R+,hx; yi 2 P I i� hy; xi 2 P�I ;if hx; yi 2 RI and hy; zi 2 RI, then hx; zi 2 RI :A concept C is called satis�able i� there is some interpretation I suchthat CI 6= ;. Such an interpretation is called a model of C. A conceptD subsumes a concept C (written C v D) i� CI � DI holds for eachinterpretation I. Two concepts C;D are equivalent (written C � D) i�they are mutually subsuming. For an interpretation I, an individual x 2 �Iis called an instance of a concept C i� x 2 CI.In order to make the following considerations easier, we introduce twofunctions on roles:1. The inverse relation on roles is symmetric, and to avoid consideringroles such as R��, we de�ne a function Inv which returns the inverseof a role, more preciselyInv(R) := � R� if R is a role name,S if R = S� for a role name S.2. Obviously, a role R is transitive if and only if Inv(R) is transitive.However, either R or Inv(R) is in R+. In order to avoid this casedistinction, the function Trans returns true i� R is a transitive role|regardless whether it is a role name or the inverse of a role name.Trans(R) := � true if R 2 R+ or Inv(R) 2 R+,false otherwise.2.2 An ALCIR+ TableauLike other tableaux algorithms, the ALCIR+ algorithm tries to prove thesatis�ability of a concept expression D by constructing a model of D. The3



model is represented by a so-called completion tree, a tree some of whosenodes correspond to individuals in the model, each node being labelled witha set of ALCIR+-concepts. When testing the satis�ability of an ALCIR+-concept D, these sets are restricted to subsets of sub(D), where sub(D) isthe set of subconcepts of D.For ease of construction, we assume all concepts to be in negation normalform (NNF), that is, negation occurs only in front of concept names. AnyALCIR+-concept can easily be extended to an equivalent one in NNF bypushing negations inwards using a combination of DeMorgan's laws and thefollowing equivalences: :(C tD) � :C u :D:(C uD) � :C t :D:(9R:C) � (8R::C):(8R:C) � (9R::C)The soundness and completeness of the algorithm will be proved by show-ing that it creates a tableau for D:De�nition 2 If D is an ALCIR+-concept in NNF and RD is the set of rolesoccurring in D, together with their inverses, a tableau T for D is de�ned tobe a triple (S;L;E) such that: S is a set of individuals, L : S! 2sub(D) mapseach individual to a set of concepts which is a subset of sub(D), E : RD !2S�S maps each role in RD to a set of pairs of individuals, and there is someindividual s 2 S such that D 2 L(s). For all s 2 S, C;C1; C2 2 sub(D), andR 2 RD, it holds that:1. if C 2 L(s), then :C =2 L(s),2. if C1 u C2 2 L(s), then C1 2 L(s) and C2 2 L(s),3. if C1 t C2 2 L(s), then C1 2 L(s) or C2 2 L(s),4. if 8R:C 2 L(s) and hs; ti 2 E(R), then C 2 L(t),5. if 9R:C 2 L(s), then there is some t 2 S such that hs; ti 2 E(R) andC 2 L(t),6. if 8R:C 2 L(s), hs; ti 2 E(R) and Trans(R), then 8R:C 2 L(t), and4



7. hx; yi 2 E(R) i� hy; xi 2 E(Inv(R)).Lemma 1 An ALCIR+-concept D is satis�able i� there exists a tableau forD. Proof: For the if direction, if T = (S;L;E) is a tableau for D withD 2 L(s0), a model I = (�I ; �I) of D can be de�ned as:�I = SCNI = fs j CN 2 L(s)g for all concept names CN in sub(D)RI = � E(R)+ if Trans(R)E(R) otherwisewhere E(R)+ denotes the transitive closure of E(R). DI 6= ; because s0 2 DI .Transitive roles are obviously interpreted as transitive relations. By inductionon the structure of concepts, we show that, if E 2 L(s), then s 2 EI . LetE 2 L(s) with E 2 sub(D).1. If E is a concept name, then s 2 EI by de�nition.2. If E = :C, then C =2 L(s) (due to property 1 in De�nition 2), sos 2 �I n CI = EI .3. If E = (C1 u C2), then C1 2 L(s) and C2 2 L(s), so by inductions 2 CI1 and CI2 . Hence s 2 (C1 u C2)I.4. If E = (C1 tC2), then C1 2 L(s) or C2 2 L(s), so by induction s 2 CI1or s 2 CI2 . Hence s 2 (C1 t C2)I .5. If E = (9S:C), then there is some t 2 S such that hs; ti 2 E(S) andC 2 L(t). By de�nition, hs; ti 2 SI and by induction t 2 CI . HenceS 2 (9S:C)I .6. If E = (8S:C) and hs; ti 2 SI , then either(a) hs; ti 2 E(S) and C 2 L(t), or(b) hs; ti 62 E(S), then there exists a path of length n � 1 such thaths; s1i; hs1; s2i; : : : ; hsn; ti 2 E(S). Due to property 6 in De�ni-tion 2, 8S:C 2 L(si) for all 1 � i � n, and we have C 2 L(t).In both cases, we have by induction t 2 CI , hence s 2 (8S:C)I .5



For the converse, if I = (�I; �I) is a model of D, then a tableau T =(S;L;E) for D can be de�ned as:S = �IE(R) = RIL(s) = fC 2 sub(D) j s 2 CIgIt only remains to demonstrate that T is a tableau for D:1. T satis�es properties 1{5 in De�nition 2 as a direct consequence ofthe semantics of the :C, C1 u C2, C1 t C2, 8R:C and 9R:C conceptexpressions.2. If d 2 (8R:C)I , hd; ei 2 RI and Trans(R), then e 2 (8R:C)I unlessthere is some f such that he; fi 2 RI and f =2 CI. However, if hd; ei 2RI, he; fi 2 RI and R 2 R+, then hd; fi 2 RI and d =2 (8R:C)I . Ttherefore satis�es property 6 in De�nition 2.3. T satis�es property 7 in De�nition 2 as a direct consequence of thesemantics of inverse relations.2.3 Constructing an ALCIR+ TableauFrom Lemma 1, an algorithm which constructs a tableau for an ALCIR+-concept D can be used as a decision procedure for the satis�ability of D.Such an algorithm will now be described in detail.The tableaux algorithm works on completion trees. This is a tree whereeach node x of the tree is labelled with a set L(x) � sub(D) and each edgehx; yi is labelled L(hx; yi) = R for some (possibly inverse) role R occurringin sub(D). Edges are added when expanding 9R:C and 9R�:C terms; theycorrespond to relationships between pairs of individuals and are always di-rected from the root node to the leaf nodes. The algorithm expands the treeeither by extending L(x) for some node x or by adding new leaf nodes.For a node x, L(x) is said to contain a clash if, for some concept C,fC;:Cg � L(x).If nodes x and y are connected by an edge hx; yi, then y is called asuccessor of x and x is called a predecessor of y; ancestor is the transitiveclosure of predecessor. 6



u-rule: if 1. C1 u C2 2 L(x), x is not indirectly blocked, and2. fC1; C2g 6� L(x)then L(x) �! L(x) [ fC1; C2gt-rule: if 1. C1 t C2 2 L(x), x is not indirectly blocked, and2. fC1; C2g \ L(x) = ;then L(x) �! L(x) [ fCg for some C 2 fC1; C2g9-rule: if 1. 9S:C 2 L(x), x is not blocked, and2. x has no S-neighbour y with C 2 L(y):then create a new node y with L(hx; yi) = S and L(y) = fCg8-rule: if 1. 8S:C 2 L(x), x is not indirectly blocked, and2. there is an S-neighbour y of x with C =2 L(y) :then L(y) �! L(y) [ fCg8+-rule: if 1. 8S:C 2 L(x), Trans(S), x is not indirectly blocked, and2. there is an S-neighbour y of x with 8S:C =2 L(y)then L(y) �! L(y) [ f8S:CgFigure 1: Tableaux expansion rules for ALCIR+A node y is called an R-neighbour of a node x if either y is a successorof x and L(hx; yi) = R or y is a predecessor of x and L(hy; xi) = Inv(R).A node x is blocked if for some ancestor y, y is blocked or L(x) = L(y).A blocked node x is indirectly blocked if its predecessor is blocked, otherwiseit is directly blocked. If x is directly blocked it has a unique ancestor y suchthat L(x) = L(y): if there existed another ancestor z such that L(x) = L(z)then either y or z must be blocked. If x is directly blocked, and y is theunique ancestor such that L(x) = L(y), we will say that y blocks x.The algorithm initialises a tree T to contain a single node x0, calledthe root node, with L(x0) = fDg, where D is the concept to be testedfor satis�ability. T is then expanded by repeatedly applying the rules fromFigure 1.The completion tree is complete when for some node x, L(x) contains aclash, or when none of the rules is applicable. If, for an input concept D,7



the expansion rules can be applied in such a way that they yield a complete,clash-free completion tree, then the algorithm returns \D is satis�able", and\D is unsatis�able" otherwise.2.4 Soundness and CompletenessThe soundness and completeness of the algorithm will be demonstrated byproving that, for an ALCIR+-concept D, it always terminates and that itreturns satis�able if and only if D is satis�able.Lemma 2 For each ALCIR+-concept D, the tableaux algorithm terminates.Proof: Let m = jsub(D)j. Obviously, m is linear in the length of D.Termination is a consequence of the following properties of the expansionrules:1. The expansion rules never remove nodes from the tree or concepts fromnode labels.2. Successors are only generated for existential value restrictions (conceptsof the form 9R:C), and for any node each of these restrictions triggersthe generation of at most one successor. Since sub(D) cannot containmore than m existential value restrictions, the out-degree of the tree isbounded by m.3. Nodes are labelled with nonempty subsets of sub(D). If a path p is oflength at least 2m, then there are 2 nodes x; y on p, with L(x) = L(y),and blocking occurs. Since a path on which nodes are blocked cannotbecome longer, paths are of length at most 2m.Together with Lemma 1, the following lemma implies soundness of thetableaux algorithm.Lemma 3 If the expansion rules can be applied to an ALCIR+-concept Dsuch that they yield a complete and clash-free completion tree, then D has atableau.Proof: Let T be the complete and clash-free tree constructed by thetableaux algorithm for D. A tableau T = (S;L;E) can be de�ned with:S = fx j x is a node in T and x is not blockedg;8



E(R) = fhx; yi 2 S� S j 1: y is an R-neighbour of x or2: L(hx; zi) = R and y blocks z or3: L(hy; zi) = Inv(R) and x blocks zg;and it can be shown that T is a tableau for D:1. D 2 L(x0) for the root x0 of T, and as x0 has no predecessors it cannotbe blocked. Hence D 2 L(s) for some s 2 S.2. Property 1 of De�nition 2 is satis�ed because T is clash free.3. Properties 2 and 3 of De�nition 2 are satis�ed because neither theu-rule nor the t-rule apply to any x 2 S.4. Property 4 in De�nition 2 is satis�ed because for all x 2 S, if 8R:C 2L(x) and hx; yi 2 E(R) then either:(a) x is an R-neighbour of y,(b) L(hx; zi) = R, y blocks z, from the 8-rule C 2 L(z), L(y) = L(z),or(c) L(hy; zi) = Inv(R), x blocks z, L(x) = L(z), so from the 8-ruleC 2 L(y).In all 3 cases, the 8-rule ensures that C 2 L(y).5. Property 5 in De�nition 2 is satis�ed because for all x 2 S, if 9R:C 2L(x) then the 9-rule ensures that there is either:(a) a predecessor y such that L(hy; xi) = Inv(R) and C 2 L(y). Be-cause y is a predecessor of x it cannot be blocked, so y 2 S andhy; xi 2 E(R).(b) a successor y such that L(hx; yi) = R and C 2 L(y). If y is notblocked, then y 2 S and hx; yi 2 E(R). Otherwise, y is blockedby some z with L(z) = L(y). Hence C 2 L(z), z 2 S andhx; zi 2 E(R).6. Property 6 in De�nition 2 is satis�ed because for all x 2 S, if 8R:C 2L(x), hx; yi 2 E(R) and Trans(R) then either:(a) x is an R-neighbour of y, 9



(b) L(hx; zi) = R, y blocks z, and L(y) = L(z), or(c) L(hy; zi) = Inv(R), x blocks z, hence L(x) = L(z) and 8R:C 2L(z).In all 3 cases, the 8+-rule ensures that 8R:C 2 L(y).7. Property 7 in De�nition 2 is satis�ed because for each hx; yi 2 E(R),either:(a) x is an R-neighbour of y, so y is an Inv(R)-neighbour of x andhy; xi 2 E(Inv(R)).(b) L(hx; zi) = R and y blocks z, so L(hx; zi) = Inv(Inv(R)) andhy; xi 2 E(Inv(R)).(c) L(hy; zi) = Inv(R) and x blocks z, so hy; xi 2 E(Inv(R)).Lemma 4 If D has a tableau, then the expansion rules can be applied in sucha way that the tableaux algorithm yields a complete and clash-free completiontree for D.Proof: Let T = (S;L;E) be a tableau for D. Using T , we trigger theapplication of the expansion rules such that they yield a completion tree Tthat is both complete and clash-free. We start with T consisting of a singlenode x0, the root, with L(x0) = fDg.T is a tableau, hence there is some s0 2 S with D 2 L(s0). Whenapplying the expansion rules to T, the application of the non-deterministict-rule is driven by the labelling in the tableau T . To this purpose, we de�nea mapping � which maps the nodes of T to elements of S, and we steer theapplication of the t-rule such that L(x) � L(�(x)) holds for all nodes x ofthe completion tree.More precisely, we de�ne � inductively as follows:� �(x0) = s0.� If �(xi) = si is already de�ned, and a successor y of xi was generatedfor 9R:C 2 L(xi), then �(y) = t for some t 2 S with C 2 L(t) andhsi; ti 2 E(R). 10



To make sure that we have L(xi) � L(�(xi)), we use the t0-rule instead ofthe t-rule, wheret0-rule: if 1. C1 t C2 2 L(x), x is not indirectly blocked, and2. fC1; C2g \ L(x) = ;then L(x) �! L(x) [ fDg for some D 2 fC1; C2g \ L(�(x)),The expansion rules given in Figure 1 with the t-rule replaced by thet0-rule are called modi�ed expansion rules in the following.It is easy to see that, if a tree T was generated using the modi�ed ex-pansion rules, then the expansion rules can be applied in such a way thatthey yield T. Hence Lemma 3 and Lemma 2 still apply, and thus using thet0-rule instead of the t-rule preserves soundness and termination.We will now show by induction that, if L(x) � L(�(x)) holds for allnodes x in T, then the application of an expansion rule preserves this subset-relation. To start with, we clearly have fDg = L(x0) � L(s0).If the u-rule can be applied to x in T with C = C1 u C2 2 L(x), thenC1; C2 are added to L(x). Since T is a tableau, fC1; C2g � L(�(x)), andhence the u-rule preserves the subset-relation between L(x) and L(�(x)).If the t0-rule can be applied to x in T with C = C1 t C2 2 L(x), thenD 2 fC1; C2g is in L(�(x)), and D is added to L(x) by the t0-rule. Hencethe t0-rule preserves the subset-relation between L(x) and L(�(x)).If the 9-rule can be applied to x in T with C = 9R:C1 2 L(x), thenC 2 L(�(x)) and there is some t 2 S with h�(x); ti 2 E(R) and C1 2 L(t).The 9-rule creates a new successor y of x for which �(y) = t for some t withC1 2 L(t). Hence we have L(y) = fC1g � L(�(y)).If the 8-rule can be applied to x in T with C = 8R:C1 2 L(x) and y isan R-neighbour of x, then h�(x); �(y)i 2 E(R), and thus C1 2 L(�(y)). The8-rule adds C1 to L(y) and thus preserves the subset-relation between L(x)and L(�(x)).If the 8+-rule can be applied to x in T with C = 8R:C1 2 L(x), Trans(R)and y being an R-neighbour of x, then h�(x); �(y)i 2 E(R), and thus 8R:C1 2L(�(y)). The 8+-rule adds C1 to L(y) and thus preserves the subset-relationbetween L(y) and L(�(y)).Summing up, the tableau-construction triggered by T terminates with acomplete tree, and since L(x) � L(�(x)) holds for all nodes x in T, T isclash-free due to Property 1 of De�nition 2.Theorem 1 The tableaux algorithm is a decision procedure for the satis�a-bility and subsumption of ALCIR+-concepts.11



Theorem 1 is an immediate consequence of the Lemmata 1, 2, 3, and 4.Moreover, since ALCIR+ is closed under negation, subsumption C v D canbe reduced to unsatis�ability of C u :D.3 Extending ALCIR+ by Role HierarchiesWe will now extend the tableaux algorithm presented in Section 2.3 to dealwith role hierarchies in a similar way to the algorithm for ALCHR+ presentedin [Horrocks&Gough,1997]. ALCHIR+ extends ALCIR+ by allowing, addi-tionally, for inclusion axioms on roles. These axioms can involve transitive aswell as non-transitive roles, and inverse roles as well as role names. For ex-ample, to express that a role R is symmetric, we add the two axioms R v R�and R� v R.De�nition 3 A role inclusion axiom is of the formR v S;for two (possibly inverse) roles R and S. For a set of role inclusion axiomsR,R+ := (R [ fInv(R) v Inv(S) j R v S 2 Rg; v* ) is called a role hierarchy,where v* is the transitive-reexive closure of v over R [ fInv(R) v Inv(S) jR v S 2 Rg.De�nition 4 ALCHIR+ is the extension of ALCIR+ obtained by allowing,additionally, for a role hierarchy R+.As well as being correct for ALCIR+ concepts, an ALCHIR+ interpreta-tion has to satisfy the additional condition,hx; yi 2 RI implies hx; yi 2 SI for all rolesR; S with R v* S:The tableaux algorithm given in the preceding section can easily be mod-i�ed to decide satis�ability of ALCHIR+-concepts by extending the de�ni-tions of both R-neighbours and the 8+-rule to include the notion of rolehierarchies. To prove the soundness and correctness of the extended algo-rithm, the de�nition of a tableau is also extended.De�nition 5 As well as satisfying De�nition 2 (i.e. being a valid ALCIR+tableau), a tableau T = (S;L;E) for an ALCHIR+-concept D must alsosatisfy: 12



80+-rule: if 1. 8S:C 2 L(x), x is not indirectly blocked, and2. there is some R with Trans(R) and R v* S,3. there is an R-neighbour y of x with 8R:C =2 L(y)then L(y) �! L(y) [ f8R:CgFigure 2: The new 8+-rule for ALCHIR+.60. if 8S:C 2 L(s) and hs; ti 2 E(R) for some R v* S with Trans(R), then8R:C 2 L(t),8. if hx; yi 2 E(R) and R v* S, then hx; yi 2 E(S),where property 60 extends and supersedes property 6 from De�nition 2.For the ALCHIR+ algorithm, the 8+-rule is replaced with the 80+-rule(see Figure 2), and the de�nition of R-neighbours extended as follows:De�nition 6 Given a completion tree, a node y is called an R-neighbour ofa node x if either y is a successor of x and L(hx; yi) = S or y is a predecessorof x and L(hy; xi) = Inv(S) for some S with S v* R.In the following, the tableaux algorithm resulting from these modi�ca-tions will be called the modi�ed tableaux algorithm.To prove that the modi�ed tableaux algorithm is indeed a decision pro-cedure for the satis�ability of ALCHIR+-concepts, all 4 technical lemmataused in Section 2 to prove this fact for the ALCIR+ tableaux algorithm haveto be re-proven for ALCHIR+. In the following, we will restrict our attentionto cases that di�er from those already considered for ALCIR+.Lemma 5 An ALCHIR+-concept D is satis�able i� there exists a tableaufor D.Proof: For the if direction, the construction of a model of D from atableau for D is similar to the one presented in the proof of Lemma 1. IfT = (S;L;E) is a tableau for D with D 2 L(s0), a model I = (�I ; �I) of Dcan be de�ned as follows:�I = SCNI = fs j CN 2 L(s)g for all concept names CN in sub(D)13



RI = ( E(R)+ if Trans(R)E(R) [ SP v* R;P 6=RP I otherwiseThe interpretation of non-transitive roles is recursive in order to correctlyinterpret those non-transitive roles that have a transitive sub-role. From thede�nition of RI and property 8 of a tableau it follows that if hx; yi 2 SI, theneither hx; yi 2 E(S) or there exists a path hs; s1i; hs1; s2i; : : : ; hsn; ti 2 E(R)for some R with Trans(R) and R v* S.Property 8 of a tableau ensures that RI � SI holds for all roles withR v* S, including those cases where R is a transitive role. Again, it can beshown by induction on the structure of concepts that I is a correct interpre-tation. We restrict our attention to the only case that is di�erent from theones in the proof of Lemma 1. Let E 2 sub(D) with E 2 L(s).60. If E = (8S:C) and hs; ti 2 SI , then either(a) hs; ti 2 E(S) and C 2 L(t), or(b) hs; ti 62 E(S), then there exists a path of length n � 1 such thaths; s1i; hs1; s2i; : : : ; hsn; ti 2 E(R) for some R with Trans(R) andR v* S. Due to Property 6', 8R:C 2 L(si) for all 1 � i � n, andwe have C 2 L(t).In both cases, we have t 2 CI .For the converse, if I = (�I; �I) is a model of D, then a tableau T =(S;L;E) for D can be de�ned as:S = �IE(R) = RIL(s) = fC 2 sub(D) j s 2 CIgIt remains to demonstrate that T is a tableau for D:1. T satis�es properties 1{5 in De�nition 2 as a direct consequence of thesemantics of ALCHIR+-concepts.2. If d 2 (8S:C)I and hd; ei 2 RI for R with Trans(R) and R v* S, thene 2 (8R:C)I unless there is some f such that he; fi 2 RI and f =2 CI .In this case, if hd; ei 2 RI , he; fi 2 RI and Trans(R), then hd; fi 2RI. Hence hd; fi 2 SI and d =2 (8S:C)I|in contradiction of theassumption. T therefore satis�es Property 60 in De�nition 5.14



3. Since I is a model of D, hx; yi 2 RI implies hx; yi 2 SI for all rolesR; S with R v* S. Hence T satis�es Property 8 in De�nition 5.Lemma 6 For each ALCHIR+-concept D, the modi�ed tableaux algorithmterminates.The proof is identical to the one given for Lemma 2.Lemma 7 If the expansion rules can be applied to an ALCHIR+-concept Dsuch that they yield a complete and clash-free completion tree, then D has atableau.Proof: The de�nition of a tableau from a complete and clash-free com-pletion tree, as presented in the proof of Lemma 3, has to be slightly modi�ed.A tableau T = (S;L;E) is now de�ned with:S = fx j x is a node in T and x is not blockedgE(S) = fhx; yi 2 S� S j 1: y is an S-neighbour of x or2: There exists a role R with R v* S anda: L(hx; zi) = R and y blocks z orb: L(hy; zi) = Inv(R) and x blocks zgand, again, it can be shown that T is a tableau for D:1. Since the expansion rules were started with L(x0) = fDg, D 2 L(x0)for some x0 2 S.2. Properties 1-3 are identical to the proof of Lemma 3.3. Property 4 in De�nition 2 is satis�ed because for all x 2 S, if 8S:C 2L(x) and hx; yi 2 E(S) then either:(a) x is an S-neighbour of y,(b) for some role with R v* S, eitheri. L(hx; zi) = R, y blocks z, hence from the 8-rule C 2 L(z),and L(y) = L(z), orii. L(hy; zi) = Inv(R), x blocks z, hence L(x) = L(z) and there-for 8S:C 2 L(z).In all three cases, the 8-rule ensures C 2 L(y).15



4. Property 5 in De�nition 2 is satis�ed for the same reasons as in theproof of Lemma 35. Property 6' in De�nition 5 is satis�ed because for all x 2 S, if 8S:C 2L(x), hx; yi 2 E(R) for some R with Trans(R) and R v* S, then either:(a) y is an R-neighbor of x, or(b) there is some role R0 with R0 v R andi. L(hx; zi) = R0, y blocks z and L(y) = L(z), orii. L(hy; zi) = Inv(R), x blocks z and L(x) = L(z), hence 8S:C 2L(z).In all three cases, 8R:C 2 L(y) follows from the 80+-rule.6. Property 8 in De�nition 5 follows immediately from the de�nition ofE.Lemma 8 If ALCHIR+-concept D has a tableau, then the expansion rulescan be applied in such a way that the tableaux algorithm yields a completeand clash-free completion tree for D.The proof of Lemma 8 is identical to the one presented for Lemma 4.Again, summing up, we have the following theorem.Theorem 2 The tableaux algorithm is a decision procedure for the satis�a-bility and subsumption of ALCHIR+-concepts.3.1 General Concept Inclusion AxiomsIn [Baader,1991; Schild,1991; Baader et al.,1993], the internalisation of ter-minological axioms is introduced. This technique is used to reduce reasoningwith respect to a (possibly cyclic) terminology to satis�ability of concepts. In[Horrocks&Gough,1997], we saw how role hierarchies can be used to reducesatis�ability and subsumption with respect to a terminology to concept sat-is�ability and subsumption. In the presence of inverse roles, this reductionmust be slightly modi�ed.
16



De�nition 7 A terminology T is a �nite set of general concept inclusionaxioms, T = fC1 v D1; : : : ; Cn v Dng;where Ci; Di are arbitrary ALCHIR+-concepts. An interpretation I issaid to be a model of T i� CIi � DIi holds for all Ci v Di 2 T . C issatis�able with respect to T i� there is a model I of T with CI 6= ;. Finally,D subsumes C with respect to T (C vT D) i� for each model I of T wehave CI � DI.The following lemma shows how general concept inclusion axioms can beinternalised using a \universal" role U . This role U is a transitive super-roleof all relevant roles and their respective inverses. Hence, for each interpreta-tion I, each individual t reachable via some role path from another individuals is an UI-successor of s. All general concept inclusion axioms Ci v Di in Tare propagated along all role paths using the value restriction 8U::C tD.Lemma 9 Let T be terminology and C;D be ALCHIR+-concepts and letCT := uCivDi2T :Ci tDi:Let U be a transitive role with R v U , Inv(R) v U for each role R that occursin T ; C, or D.Then C is satis�able with respect to T i�C u CT u 8U:CTis satis�able. D subsumes C with respect to T (C vT D) i�C u :D u CT u 8U:CTis unsatis�able.Remark: Instead of de�ning U as a transitive super-role of all roles and theirrespective inverses, one could have de�ned U as a transitive super-role of allroles and, additionally, a symmetric role by adding U v U� and U� v U .The proof of Lemma 9 is similar to the ones that can be found in[Schild,1991; Baader,1990]. One point to show is that, if an ALCHIR+-concept C is satis�able with respect to a terminology T , then C; T havea connected model, namely one whose individuals are all related to each17



other by some role path. This follows from the de�nition of the semantics ofALCHIR+-concepts. The other point to proof is that, if y is reachable fromx via a role path (possibly involving inverse roles), then hx; yi 2 UI , whichis an easy consequence of the de�nition of U .Decidability of satis�ability and subsumption with respect to a terminol-ogy is an immediate consequence of Lemma 9 and Theorem 2.Theorem 3 The modi�ed tableaux algorithm is a decision procedure for sat-is�ability and subsumption of ALCHIR+-concepts with respect to terminolo-gies.References[Baader et al., 1993] F. Baader, H.-J. B�urckert, B. Nebel, W. Nutt, andG. Smolka. On the expressivity of feature logics with negation, func-tional uncertainty, and sort equations. Journal of Logic, Language andInformation, 2:1{18, 1993.[Baader, 1990] F. Baader. Augmenting concept languages by transitive clo-sure of roles: An alternative to terminological cycles. Technical Report RR-90-13, Deutsches Forschungszentrum f�ur K�unstliche Intelligenz (DFKI),Kaiserslautern, Germany, 1990. An abridged version appeared in Proc. ofthe 12th Int. Joint Conf. on Arti�cial Intelligence IJCAI-91, pp. 446{451.[Baader, 1991] F. Baader. Augmenting concept languages by transitive clo-sure of roles: An alternative to terminological cycles. In Proceedings of theTwelfth International Joint Conference on Arti�cial Intelligence (IJCAI-91), 1991.[De Giacomo&Lenzerini, 1996] G. De Giacomo and M. Lenzerini. Tbox andAbox reasoning in expressive description logics. In Proceedings of the FifthInternational Conference on the Principles of Knowledge Representationand Reasoning (KR-96), pages 316{327. Morgan Kaufmann, Los Altos,1996.[De Giacomo&Massacci, 1998] G. De Giacomo and F. Massacci. Combiningdeduction and model checking into tableaux and algorithms for converse-pdl. Information and Computation, 1998. To appear.18
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