Optimising Propositional Modal Satisfiability for
Description Logic Subsumption

lan Horrocks and Peter F. Patel-Schneider

1 University of Manchester, Manchester, UK (horrocks@cs.aauk)
2 Bell Labs Research, Murray Hill, NJ, U.S.A. (pfps@resedret-labs.com)

Abstract. Effective optimisation techniques can make a dramatiedifice in
the performance of knowledge representation systems lmsectpressive de-
scription logics. Because of the correspondence betweserigdon logics and
propositional modal logic many of these techniques cargr @xo propositional
modal logic satisfiability checking. Currently-implemedtrepresentation sys-
tems that employ these techniques, such as FaCT and DLP efiakéve satis-
fiable checkers for various propositional modal logics.

1 Introduction

Description logics are a logical formalism for the repreaaéaon of knowledge about in-
dividuals and descriptions of individuals. Descriptiogils represent and reason with
descriptions similar to “all people whose friends are badhtdrs and lawyers” or “all
people whose children are doctors or lawyers or who haveld aiiio has a spouse”.
The computations performed by systems that implement ightiser logics are based
around determining whether one description is more getieaal (subsumes) another.
There have been various schemes for computing this subsamnptationship, depend-
ing on the expressive power of the description logic and #wek of completeness of
the system. As description logic systems perform numergbistsnption checks in the
course of their operations, they need to have a highly-apéichsubsumption checker.

Recentwork [16] has shown that determining subsumptiorpnessive description
logics is equivalent to determining satisfiability of forlae in propositional modal or
dynamic logics. Thus one part of a system that implementserigigion logic is equiv-
alent to a satisfiability checker for a propositional modaldgnamic logic. Several
description logic systems have been built for such desorigbgics, and thus include
what is essentially a satisfiability checker, includingIK [2] and CRACK [5]. These
two systems have incorporated a number of optimisationstizeae better performance
of their subsumption checkers.

Description logic systems are also optimised in other wimygarticular, their oper-
ations are optimised to avoid the potentially-costly sulygtion checks whenever pos-
sible. There are also other optimisations to subsumpti@sipte in description logic
systems, having to do with the nature of the representafiknavledge in a descrip-
tion logic, but these have little or nothing to do with optsinig propositional modal
satisfiability.

We have built two systems that explore the optimisationsired to build an ex-
pressive description logic system, namely FaCT [11], adekcription logic system,

and DLP [14], an experimental system providing only a limitkescription logic in-
terface. FaCT is available http://www.cs.man.ac.uk/"horrocks ;DLP is
available ahttp://www-db.research.bell-labs.com/user/pfps

We have incorporated a range of known, adapted and novehisatiion technlques
into the subsumption checkers for these two systems. Theigation techniques in-
clude: lexical normalisation, semantic branching seabcdwolean constraint propaga-
tion, dependency directed backtracking, heuristic guskadch and caching.

These optimisations techniques make a drastic differemdbe performance of
the overall system. As evidenceRIS is not able to load a modified version of the
GALEN knowledge base because it gets stuck trying to determinefathe thousands
of subsumptions required to load the knowledge base. Fa@TDdiP, which have
higher levels of optimisation, are able to easily load thiswledge base, classifying
over two thousand definitions in about two hundred seconds.

We have also performed experiments with both FaCT and DLRweral test suites
of propositional modal formulae. The optimisations builioi the two systems qualita-
tively change their behaviour on the test suites, indicativat the optimisations have
considerable utility simply taken as optimisations fors@aing in propositional modal
logics.

2 Background

FaCT and DLP are designed to build and maintain taxonomiesaofed concepts.
Given a collection of definitions of named concepts and states about these con-
cepts, they determine the subsumption partial order fonémeed concepts. To do this
they have to determine subsumption relationships betwescrightions in a description
logic.

The description logic that DLP implements is calldd’C 5+ . FaCT implements a
considerably more-expressive logic, but most of the saligfiy optimisations in FaCT
are demonstrable IALC p+. ALC p+ is built up from atomic concepts and two kinds of
atomic roles, non-transitive roles and transitive rolesn€2pts inALC p+ are formed
using the grammak | T | L | -C |CN D |CuD |3R.C |YR.C|3T.C |VT.C}}
whereA is an atomic concept; and D are concept expressions,is a non-transitive
role, and! is a transitive role.

The semantics aflLC -+ is a standard extensional semantics, using an interpreta-
tion Z that is a pair(A%, .7) consisting of a domain and a mapping from concepts to
subsets of the domain and from roles to binary relations erdtimain (transitive re-
lations for transitive roles, of course). The semanticfmicept expressions are given
in Table 1. One concept then subsumes another if and onlg iéxttension of the first
concept includes the extension of the second in all intéaioms.

The semantics afALC -+ is a simple transformation of the possible world seman-
tics for propositional modal logics. In this transformatielements of the domain cor-
respond to possible worlds, atomic concepts corresponibfmogitional variables, and

! Throughout the paper, we will be using the syntax of deseripiogics. To translate into the
syntax of modal propositional logics, repla¢®& with O r and3R with ¢ zr and perform sev-
eral other obvious replacements.

Syntax Semantics

A AT Cc AT
T AT
1 1]

-C AT —c?
cnbD|ctnD?
cubD|ctfuDbD?

JR.C |{d e AT | R*(d)nC* +# 0}
VR.C | {d € AT | R*(d) C C*}
31.C | {de AT | T*(d) N CT # 0}
VT.C | {d e AT | T%(d) C C*}

Table 1. Semantics 0fALC -+ concept expressions

roles correspond to modalities. This transformation shihas fragments ofALC p+
correspond tdK ,,) andK4 . Transitive roles inALC i+ are used folK4,,) and
non-transitive roles are used b ,,,). ALCr+ can also express formulae KT)
andS4,, via the usual encoding that mapg&.C' into C M VR.C, etc.

Determining subsumption iMLC g+ is PsPACEcomplete [15], as is the related
problem of determining whether a conceptd’C - is satisfiable. However, it is pos-
sible to build practical description logic systems base@xpressive description log-
ics [2,5, 11] that have this sort of computationally intedide subsumption. Systems
that are based on description logics li&€C z+ generally determine whether a sub-
sumption holds by transforming the subsumption questitmarsatisfiability question
and then attempting to construct a model for this concegtgs a tableaux satisfiability
checker for a propositional logic attempts to construct aehdor a formula. During
this process, various nodes are created, where each nadserts an individual (pos-
sible world), and tells whether the individual belongs toimas concepts (gives values
to formulae at this world). This set of concepts is said torfthe label of the node—we
will use L(z) to denote the label of a node The nodes are connected by modal rela-
tionships in a tree fashion, starting at a root node. If a riedelated to another node
via role R, the second node is called &isuccessor of the first.

The basic algorithm starts out with a single node represgran individual (pos-
sible world) that must be in the extension of the conceptdedsted for satisfiability
(must have a formula evaluate to true at it). This concepinitda) is expanded to
produce simpler concepts that must have the individualeir #xtension (simpler for-
mulae that evaluate at the world). Disjunctive conceptmgfdae) give rise to choice
points in the algorithm (branches in the tableau). Exiséntle conceptsiR.C, (ex-
istential modal formulae) cause the creation of new successles representing other
individuals (possible worlds).

Universal role concepts (universal modal formulae) augrttenconcepts that these
individual must belong to (formulae that are true at thesssitde worlds). In order to
guarantee termination, transitive roles (transitive nitida) require filtration oblock-
ing: a check to ensure that no other node has the same set of te(foemulae)—if so,

the two nodes can be collapsed into a cycle. If the algorithnstructs a collection of
nodes where there are no compound concepts (formulae)atatrtot been expanded
and where there are no obvious contradictions, callashesat any of the nodes, then
the collection of nodes corresponds to a model for the Irdtacept (formula). If the
algorithm fails to construct such a collection then theiahitoncept (formula) has no
model—it is said to bensatisfiable

The details of the algorithm, including precise terminat@onditions, are fairly
standard, and can be found in [15].

3 Optimisation Techniques

The basic algorithm given above is too slow to form the bat&s aseful description
logic system. We have therefore investigated and employadg@e of known, adapted
and novel optimisations that improve the performance oftiesfiability testing algo-
rithm, including lexical normalisation, semantic bramahisearch, boolean constraint
propagation, dependency directed backtracking, heugsiided search, and caching.

Theoretical descriptions of tableaux algorithms gengradisume that the concept
expression to be tested is in negation normal form, with tiega applying only to
atomic concepts. This simplifies the (description of thg)oathm but it means that
a clash will only be detected when an atomic concept and ig&tien occur in the
same node label. For example, when testing the satisfiabflithe concept expression
JR.(CN D)NVYR.—~C, whereC'is an atomic concept, a clash would be detected when
the algorithm creates aR-successoy becaus€C,~C} C L(y). However, ifC is
a concept expression, then the clash would not be detectaédately becauseC
would have been transformed into negation normal fornt” li6 a large or complex
expression this could lead to costly wasted expansion.

This problem is addressed by transforming concept expneséito a lexically nor-
malised form, and by identifying lexically equivalent egpsions. All concepts can
then be treated equally, whether or not they are atomic, aithash being detected
whenever a concept expression and its negation occur irathe sode labél.In lex-
ically normalised form, concept expressions consist ofifpossibly negated) atomic
concepts, conjunction concepts and universal role coacegpressions of the form
JR.C are transformed intex(VR.—C') and expressions of the for(C;L,...,UC,)
are transformed inte(-C41 M, ..., M—=C,,), where the’1, . . ., C,, are sorted and dupli-
cates are eliminated. The normalisation process can albale simplifications such as
VRT — T,(LMN...)— Land(Cn-CT1...) — L;inextreme cases the need
for a tableau expansion can be completely eliminated by Idiying expressions tor
or L. Efficiency can be further enhanced by tagging each leyichditinct expression
with a unique code so that equivalent expressions can béfiddrsimply by comparing
tags®

Tableau expansion of concepts in this form is no more comihlan if they are
in negation normal form=(VR.C) can be dealt with in the same way aB.—~C and

2 KRIs addresses the same problem, in a less complete manner, ilyyegganding named
concepts, and retaining their names in node labels [1].
8 A similar technique is used in &aT, but without the benefit of tagging [9].

—(C1M,...,NC,) can be dealt with in the same way @sCiL,...,U-C,). The ex-
pressiordR.(C' 11 D)NYR.—~C would be transformed inte(VR.—~(C M D))NVR.-C,
and the~(VR.—(C 1 D)) term would lead directly to the creation of @&isuccessor
whose label contained bothi and—C'. As the two occurrences @l will be lexically
normalised and tagged as the same concept, a clash will imtedbe detected, re-
gardless of the structure 6f.

Standard tableaux algorithms are inherently inefficiertalse they use a search
technique based on syntactic branching. When expandiriglteéof a noder, syntac-
tic branching works by choosing an unexpanded disjunctidh(iz) and searching the
different models obtained by adding each of the disjuncssth® alternative branches
of the search tree are not disjoint, there is nothing to prethee recurrence of an un-
satisfiable disjunct in different branches [9]. The resgitvasted expansion could be
costly if discovering the unsatisfiability requires thewtmn of a complex sub-problem.
For example, tableau expansion of a nedeshere{(C' U D;), (C U Ds)} C L(z) and
C'is an unsatisfiable concept expression, could lead to thelspattern shown below,
where the unsatisfiability af’ must be demonstrated twice.

L(z) U{C} = clash (4 L(z)U{Dy}

L(zz) U{C} = clash

This problem is dealt with by using a semantic branchingréepine adapted from
the Davis-Putnam-Logemann-Loveland procedure (DPLL) momly used to solve
propositional satisfiability (SAT) problems [6, 8]. Insteaf choosing an unexpanded
disjunction inL(x), a single disjuncD is chosen from one of the unexpanded disjunc-
tions inL(z). The two possible sub-trees obtained by adding either —D to L(z)
are then searched. Because the two sub-trees are strijthyndi there is no possibility
of wasted search as in syntactic branching.

An additional advantage of using a DPLL based search teakn#that a great deal
is known about the implementation and optimisation of thigethm. In particular,
bothboolean constraint propagaticendheuristic guided searchan be used to try to
minimise the size of the search tree.

Boolean constraint propagation (BCP) is a technique usethtamise determinis-
tic expansion, and thus pruning of the search tree via clatdcton, before performing
non-deterministic expansion (branching) [8]. Before seticabranching is applied to
the label of a node, BCP deterministically expands disjunctiongitx) which present
only one expansion possibility and detects a clash wherjandigon inL(z) has no ex-
pansion possibilities. The number of expansion poss#slipresented by a disjunction
(CLU...UCy) € L(x) is equal to the number of disjunats such that-C; ¢ L(z). In
effect, BCP is using the inference rul“é’w% to simplify the expression represented
by L(x).

For example, given a nodesuch that{(C U (D M D3)), (=D U =D5),~C} C
L(z), BCP deterministically expands the disjunctigiiLl (D M D3)) because-C €

Backjump " Pruning

{(CL U DY), (Cp U D), 3R(CT D), YRAC} o
N U
N -

\’"/ L(z)U{=Cy, Di} ol
N »7 7%)
L) U {Cu) TN R UGy, D2}
27N B(a2) U{RCs, Ds)
L(@u_1) U{Cu} (2, ¥ AN §
R B
(€1 D), ~C,C, D} o @ lenncen))
clash ! clash
clash clash

Fig. 1. Thrashing in backtracking search/Backjumping

L(z). The expansion of D, M D) adds bothD; and D5 to L(z), allowing BCP to
identify (—D; LI =D-) as a clash without any branching having occurred.

Inherent unsatisfiability concealed in sub-problems caudl @ large amounts of
unproductive backtracking search known as thrashing. Tbelem is exacerbated
when blocking is used to guarantee termination, becausekiolp may require that
sub-problems only be explored after all other forms of esanhave been performed.
For example, expanding a nodewherel(z) = {(C1UD,),...,(C,UD,),3R.(CN
D),VR.~C}, would lead to the fruitless exploration B possibleR-successors of
before the inherent unsatisfiability is discovered. Thedetaee created by the tableau
expansion algorithm is illustrated in Fig. 1.

This problem is addressed by adapting a form of dependemegtdd backtrack-
ing calledbackjumpingwhich has been used in solving constraint satisfiabilitybpr
lems [3] (a similar technique was also used in the HARP thagweover [13]). Back-
jumping works by labeling concept expressions with a depang set indicating the
branching points on which they depend. A concept expressienl (x) depends on a
branching point whe@ was added td.(x) at the branching point or whefi € L(x)
depends an another concept expresdibre L(y), andD € L(y) depends on the
branching point. A concept expressiéh € L(z) depends on a concept expression
D € L(y) whenC was added tol(x) by a deterministic expansion which used
D e L(y), e.g., ifA € L(z) was derived from the expansion 0 M B) € L(z),
thenA € L(x) depends ofiA M B) € L(z).

When a clash is discovered, the dependency sets of the mdasbincepts can be
used to identify the most recent branching point where ekmpddhe other branch might
alleviate the cause of the clash. The algorithm can then jobagk over intervening
branching pointsvithoutexploring alternative branches.

For example, when expanding the nadérom the previous example, the search
algorithm will perform a sequence of branches, eventually leading to the nadg
with {3R.(C N D),VR.~C} C L(z,). When3R.(C N D) € L(z,) is expanded the
algorithm will generate aR-successog; with L(y;) = {(C 1 D),—~C}. The con-
cept expressiofiC' M D) will then be expanded and a clash will be detected because

{C,=C} C L(y1). As neitherC nor—C'in L(y;) will have the branching points lead-
ing fromz to z,, in their dependency sets, the algorithm can either rainsatisfiable
immediately (if both the dependency sets were empty) or jdirgetly back to the most
recent branching point on which one @for —-C did depend. Figure 1 illustrates how
the search tree below is pruned by backjumping, with the number Bfsuccessors
explored being reduced & — 1.

Heuristic techniques can be used to guide the search in a Wwahwries to min-
imise the size of the search tree. A method which is widelyluseDPLL SAT algo-
rithms is to branch on the disjunct which has the Maximum neina$ Occurrences in
disjunctions of Minimum Size [8]. By choosing a disjunct whioccurs frequently in
small disjunctions, this heuristic tries to maximise theetfof BCP. For example, if the
label of a noder contains the unexpanded disjunctidd$LI D, ...,CUD,} C L(z),
then branching o’ leads to their deterministic expansion in a single step:nvies
added toL(x), all of the disjunctions are fully expanded and whefi is added to
L(z), BCP will expand all of the disjunctions. Branching first anyaf D, ..., D,,
on the other hand, would only cause a single disjunction texpanded.

Unfortunately this heuristic interacts adversely with Baekjumping optimisation
by overriding any “oldest first” order for choosing disjusicolder disjuncts are those
which resulted from earlier branching points and will thead to more effective prun-
ing if a clash is discovered [11]. Moreover, the heuristselt is of little value because
it relies for its effectiveness on finding the same disjumetairring in multiple unex-
panded disjunctions: this is likely in SAT problems, wheme tlisjuncts are proposi-
tional variables, and where the number of different vagali$ usually small compared
to the number of disjunctive clauses (otherwise problemslayan general, be triv-
ially satisfiable); it is unlikely in concept satisfiabiliproblems, where the disjuncts are
concept expressions, and where the number of differentegirexpressions is usually
large compared to the number of disjunctive clauses. Asudtréise heuristic will often
discover that all disjuncts have similar or equal priostiand the guidance it provides
is not particularly useful.

An alternative strategy is to employ a heuristic which ttiegnaximise the effec-
tiveness of backjumping by using dependency sets to guaexpansion. Whenever a
choice is presented, the heuristic chooses the conceptewtemndency set includes
the earliest branching points. This technique can be ustdvidzen selecting disjuncts
and when orderin@-successors. The use of heuristics is an area of continegsgurch,
but preliminary results suggest that the dependency heuisgsa promising technique.

During a satisfiability check there may be many successoesiadeated. These
nodes tend to look considerably alike, particularly asRhguccessors for a nodesach
have the same concept expressions for the universal roteptsinl (z). Considerable
time can thus be spent re-performing the computations oesththt end up having the
same label. As the satisfiability algorithm only cares wketh node is satisfiable or
not, this time is wasted.

If successors are only created when other possibilitiesiatie are exhausted, then
the entire set of concept expressions that come into a nbeé dan be generated at
one time. The satisfiability status of the node is then cotepleletermined by this set
of concept expressions. Then, if there exists another ndttiethie same set of initial

formulae the two nodes will have the same satisfiabilityustd?]. Thus work need
be done only on one of the two nodes, potentially saving aiderable amount of
processing, as not only is the work at one of the nodes saut@/sp the work at any
of the successors of this node.

The downside of caching is that the dependency informaéquired for backjump-
ing cannot be effectively calculated for the nodes that ateerpanded. This happens
because the dependency set of any clash detected depereldeptndency sets of the
incoming concept expressions, which will differ betwees two nodes. Backjumping
can still be performed, however, by combining the depengleets of all incoming
concept expressions and using that as the dependency et fomsatisfiable node.

Another problem with caching is that it requires that nodest least sets of formu-
lae, be retained until the end of a satisfiability test, cli@gthe storage requirements
of the algorithm from polynomial to exponential in the wotase.

4 Testing

All the above optimisations are implemented in FaCT and Dai] we have tested
their efficacy on several test suites. (FaCT and DLP diffethair implementation de-
tails, how well they implement some of the above optimisaij@nd the exact heuristic
optimisation they do.) All times reported are for runs on hiaes with approximately
the speed of a SPARC Ultra 1.

We would prefer to test on actual description logic knowketigses, as that is what
FaCT and DLP are designed for. However, there are very feerigi¢ion logic knowl-
edge bases that use the more-powerful constructs provided®T and DLP. One test
that we have been able to do is to take the. &N knowledge base and construct ver-
sions of it that are acceptable to FaCT, DLP arri& by, among other things, making
all roles non-transitive and eliminating inclusion axiomg illustrate the importance of
backjumping, caching, and the heuristics, times are algngior DLP with these op-
timisations disabled—we will refer to this system as DLPaCT and DLP processed
the knowledge base in 210 seconds, classifying over twostrodiconcept definitions
requiring tens of thousands of satisfiability tests. BotiPDland Kris were unable to
complete the processing of the knowledge base in four hours.

Our other testing has been against test suites for propoaltmodal logics, using
the propositional modal logic interface for FaCT and DLP. Wgee tested against the
test suite for the Tableaux’98 propositional modal logimparison [10] and against a
collection of random formulae initially generated by Huitand Schmidt [12].

The Tableaux’98 test suite consists of several classeswiulae (e.gbranch), in
both provableff) and non-provablen) forms, for each oK, KT, andS4. For each type
of formula, 21 examples of supposedly exponentially insiregdifficulty are provided,
and the result of a test is the number of the largest formulahlwine system was able
to solve within 100 seconds of CPU time. The results of theststwith FaCT, DLP,
DLP*, KsAT 4 and Kris are summarised in Table 2. In the tabl€0 indicates that

4 The tests here used the original Lisp implementation ®&K a much faster C implementation
is now available.

FaCT DLP DLP* KSAT Kris
plnfp[nfp[n]pl]n
K branch 6 41 18| 12| 10| 11 8 8
d4 >20| 8{|>20|>20 8 6 8 5
dum >20(>201||>20|>20| 10| 12| 11|>20
grz >20(>201{|>20|>20 ||>20 |>20| 17|>20

©
=}

>20
>20

ol

[ERN
o
[ERN
oo
PNWOPRPRWOWOWWARNFRLPARWOWOLIOW
a1

lin >20|>201|>20{>20||>20|>20||>20| 3 9
path 7 6(/>20|>20 7| 11 4 8 11
ph 6 7 7 8 6 8 5 5 5

poly >20|>20{|>20 |>20||>20 (>20
t4p >20(>20][>20|>20 6 4
KT | 45 >20(>20|>20|>20 91(>20
branch 6| 4] 18| 12| 16| 11

[
w
[
N
[

>20

5
8
dum 11 (>20 |[>20 >20 9|>20 7| 12 14
grz >20|>20{|>20 |>20||>20 (>20 9|>20 5
md 4| 5 3(>20 3|>20 2| 4 4
path 5(3 8| 8 2|>20 2| 5 13
ph 6 7 7| 18 5| 19 41 5 3
poly ||>20| 7]|>20| 8|>20| 2 1| 2 2
t4p 4| 2(>20(>20 1] 1 1] 1 7
S4 |45 >20|>20{|>20|>20 {|>20 [>20
branch|| 4| 4|>20| 12| 16| 12
grz 2|>20(|>20|>20| 0|>20
ipc 5| 4| 10(>20 3| 10
md 8| 4 3(>20 3|>20
path 2| 1 6(>20 2|>20
ph 5(4 4| 5 5| 15
s5 >20| 21| 19|>20 1(>20
t4p 5| 3(>20(>20 0(>20

Table 2. Results for Tableaux'98 Benchmarks

the hardest problem was solved in less than 100 secondsh@l&sAT nor KRIS can
reason with transitive roles, so they cannot be used to pei$d satisfiability tests.)

In these tests FaCT and DLP outperformed the other systethsitest, with DLP
being a clear winner, because of its more-complete cacliingn DLP performed
better than other systems due to the optimizations retamiedOLP also outperformed
the other systems that took part in the the Tableaux’'98 coisga[4].

Further analysis of the difference between DLP and DUt presented here be-
cause of space limitations, shows that caching is more itapbthan backjumping in
these tests, which is more important than the heuristickadhthe heuristics signifi-
cantly degraded performance in some cases.

The optimisations in FaCT and DLP often resulted not simplyriproved absolute
performance but in a different qualitative behaviour. Tikidlustrated by Fig. 2 which
shows the actual solution times for two types of formulaeDbaP with backjumping
and caching turned off and on. In one of these examples tHeajive improvement is

K-dum-p KT-t4p-n

100

100 T T T T
Neither —— Neither ——
Backjumping -+ i Backjumping -+
Caching ~=-- : e g
x et
0l Both | 106 P - Eiot? e
— —_ »'#/{)f‘* xxxxxx
O o "
[} o
£ 1 £ bt
o) >
o o
(8] o)
o1l e | 01} %
o
0.01 0.01
0 5 10 15 20 0 5 10 15 20
problem size problem size

Fig. 2. Solution times for constructed satisfiability problems

due to caching (a common occurrence); in the other it is dumtkjumping (a less-
common occurrence).

Our second propositional modal logic test suite uses a rdethiotesting SAT
decision procedures that has been adapted for use with gtigpal modalK by
Giunchiglia and Sebastiani [9], and further refined by Hdistand Schmidt [12]. The
method uses a random generator to produce formulae, withhtheacteristics of the
formulae being controlled by a number of parameters. Eaghdta is a conjunction
of L K-clauses, where & -clause is a disjunction dk elements, each element being
negated with a probability of 0.5. An element is either a ntattam of the formvR.C,
where(is itself a K'-clause, or at the maximum modal degh a propositional vari-
able chosen from th&/ propositional variables which appear in the formula. Hdista
and Schmidt used two sets of formulae, dend®&d 2andPS13 choosingV = 4 and
N = 6 respectively, withX' = 3 andD = 1 in both cases. The test sets are created by
varying L from N to 30NN, giving formulae with a probability of satisfiability vanyg
from ~1 to=0, and generating 100 formulae for each integer valul/a¥ .

The median time required to test the satisfiability of B#&l2andPS13formulae,
with a limit of 1,000s per formula, using FaCT, DLP, DL K SAT and KRIs are shown
in Fig. 3. It can be seen that in these tests the performafffegatices between FaCT,
DLP and KsAT are much less marked than was the case in the Tableaux'98Tés is
because the purely propositional problems at depth 1 caayallse solved determinis-
tically, and so performance is dependent on the efficien@rapositional reasoning at
depth 0. The optimisations which allowed FaCT and DLP to exigym KsAT, notably
caching, are of little use with these formulae as there ateand modal sub-problems.

Although the Tableaux’98 and random test suites show hovoptimisations per-
form on propositional modal logics, neither is very gooddar purposes. In particular,
for the collection of random formulae most of the computagiadifficulties have to do
with the initial non-modal component. In realistic KBs wepext to encounter problems
where the hardness comes from the number of successoratieetorbe considered and
their interaction with the non-modal component. The Talmé28 formulae have this
form, but there are too few hard collections there to vaéidaitr optimisations, and the

1000 1000

X DLP -+ DLP -+
. DLP* -a-- DLP* -5
100 / KSAT - 7 100 | KSAT
: Kris -= Kris -a
o

- / eo® B, =

2 10 | i / wa © 10 L

() i =) =Y @

£ - o £

2 2

& F & 1t

0.1r 0.1

i 0.01
0 5 10 15 20 25 30 0 5 10 15 20 25 30
L/IN L/IN

0.01

Fig. 3. Median solution times for randomly generated satisfigbgioblems

regular structure of the formulae tends to exaggerate ility wf the caching optimi-
sation, particularly for satisfiable (non-provable) folawri

5 Summary

The collection of optimizations we have described are &ffeén improving the speed

of modal propositional logic reasoners, as shown by thelteesie have given above.

They can also dramatically improve the speed of subsumpti@soning on description
logic knowledge bases. To our knowledge some of these ingpnewnts have not been
investigated in the modal propositional reasoning litemat The combination appears
to be unique and, moreover, results in a powerful reasomehépropositional modal

logicsK, KT, andS4.

Unfortunately, the benefits of the various optimizatioresrast yet completely clear.
Cachingis bestin some areas, backjumping in others. Iir twdeetter understand these
effects, we continue to analyze and improve the optimisatiwe have incorporated
into our provers. We also plan to create a test suite that asipés the modal nature
of our description logic. Further, we are embarking on agubijo create a description
logic system for a description logic that corresponds toappsitional dynamic logic.
This project will give us further opportunities to invesitg optimisation of satisfiability
reasoners.

References

1. F. Baader, E. Franconi, B. Hollunder, B. Nebel, and H.rdfitich. An empirical analysis
of optimization techniques for terminological represéintasystems or: Making KRIS get a
move on. In B. Nebel, C. Rich, and W. Swartout, editégnciples of Knowledge Repre-
sentation and Reasoning: Proceedings of the Third Intéonal Conference (KR'92pages
270-281. Morgan-Kaufmann Publishers, San Francisco, 882.1Also available as DFKI
RR-93-03.

10.

11.

12.

13.

14.

15.

16.

F. Baader and B. Hollunder.#{s: Knowledge representation and inference syst8iGART
Bulletin, 2(3):8-14, 1991.

. A. B. Baker. Intelligent Backtracking on Constraint Satisfaction Plefs: Experimental

and Theoretical Result$?hD thesis, University of Oregon, 1995.

. P. Balsiger and A. Heuerding. Comparison of theorem psdfiee modal logics — introduc-

tion and summary. In H. de Swart, editBritomated Reasoning with Analytic Tableaux and
Related Methods: International Conference Tableauxi®@@mber 1397 in Lecture Notes in
Artificial Intelligence, pages 25-26. Springer-Verlag,yMi£98.

. P. Bresciani, E. Franconi, and S. Tessaris. Implemenmtingtesting expressive description

logics: a preliminary report. In Gerard Ellis, Robert A. lieson, Andrew Fall, and Veronica
Dahl, editorsKnowledge Retrieval, Use and Storage for Efficiency: Prdoess of the First
International KRUSE Symposiumages 28-39, 1995.

. M. Davis, G. Logemann, and D. Loveland. A machine progranttfeorem provingCom-

munications of the ACMb:394-397, 1962.

. F. Donini, G. De Giacomo, and F. Massacci. EXPTIME tabtefau ALC. In L. Padgham,

E. Franconi, M. Gehrke, D. L. McGuinness, and P. F. Pateh&icler, editorsCollected
Papers from the International Description Logics Workslt{bi'96), number WS-96-05 in
AAAI Technical Report, pages 107-110. AAAI Press, MenlokR&alifornia, 1996.

. J. W. Freeman. Hard random 3-SAT problems and the DawisaRuprocedureAtrtificial

Intelligence 81:183-198, 1996.

. F. Giunchiglia and R. Sebastiani. A SAT-based decisioggulure fotALC. In L. C. Aiello,

J. Doyle, and S. Shapiro, editoRrinciples of Knowledge Representation and Reasoning:
Proceedings of the Fifth International Conference (KR;9t9ges 304-314. Morgan Kauf-
mann Publishers, San Francisco, CA, November 1996.

A. Heuerding and S. Schwendimann. A benchmark methodhBpropositional modal
logics k, kt, s4. Technical report IAM-96-015, Universit§ Bern, Switzerland, October
1996.

I. Horrocks.Optimising Tableaux Decision Procedures for Descriptimgics PhD thesis,
University of Manchester, 1997.

U. Hustadt and R. A. Schmidt. On evaluating decision gaaces for modal logic. Tech-
nical Report MPI-1-97-2-003, Max-Planck-Institut Furfdnmatik, Im Stadtwald, D 66123
Saarbriicken, Germany, February 1997.

F. Oppacher and E. Suen. HARP: A tableau-based theoramerpdournal of Automated
Reasoning4:69-100, 1988.

P. F. Patel-Schneider. System description: DLP. BdikLResearch, Murray Hill, NJ, De-
cember 1997.

U. Sattler. A concept language extended with differémi of transitive roles. In G. Gorz
and S. Holldobler, editors20. Deutsche Jahrestagung fur Kunstliche Intelligemamber
1137 in Lecture Notes in Atrtificial Intelligence, pages 3385. Springer Verlag, 1996.

K. Schild. A correspondence theory for terminologicgits: Preliminary report. liPro-
ceedings of the 12th International Joint Conference onfi&idl Intelligence (IJCAI-91)
pages 466-471, 1991.

