
Optimising Propositional Modal Satisfiability for
Description Logic Subsumption

Ian Horrocks1 and Peter F. Patel-Schneider2

1 University of Manchester, Manchester, UK (horrocks@cs.man.ac.uk)
2 Bell Labs Research, Murray Hill, NJ, U.S.A. (pfps@research.bell-labs.com)

Abstract. Effective optimisation techniques can make a dramatic difference in
the performance of knowledge representation systems basedon expressive de-
scription logics. Because of the correspondence between description logics and
propositional modal logic many of these techniques carry over into propositional
modal logic satisfiability checking. Currently-implemented representation sys-
tems that employ these techniques, such as FaCT and DLP, makeeffective satis-
fiable checkers for various propositional modal logics.

1 Introduction

Description logics are a logical formalism for the representation of knowledge about in-
dividuals and descriptions of individuals. Description logics represent and reason with
descriptions similar to “all people whose friends are both doctors and lawyers” or “all
people whose children are doctors or lawyers or who have a child who has a spouse”.
The computations performed by systems that implement description logics are based
around determining whether one description is more generalthan (subsumes) another.
There have been various schemes for computing this subsumption relationship, depend-
ing on the expressive power of the description logic and the degree of completeness of
the system. As description logic systems perform numerous subsumption checks in the
course of their operations, they need to have a highly-optimised subsumption checker.

Recent work [16] has shown that determining subsumption in expressive description
logics is equivalent to determining satisfiability of formulae in propositional modal or
dynamic logics. Thus one part of a system that implements a description logic is equiv-
alent to a satisfiability checker for a propositional modal or dynamic logic. Several
description logic systems have been built for such description logics, and thus include
what is essentially a satisfiability checker, including KRIS [2] and CRACK [5]. These
two systems have incorporated a number of optimisations to achieve better performance
of their subsumption checkers.

Description logic systems are also optimised in other ways.In particular, their oper-
ations are optimised to avoid the potentially-costly subsumption checks whenever pos-
sible. There are also other optimisations to subsumption possible in description logic
systems, having to do with the nature of the representation of knowledge in a descrip-
tion logic, but these have little or nothing to do with optimising propositional modal
satisfiability.

We have built two systems that explore the optimisations required to build an ex-
pressive description logic system, namely FaCT [11], a fulldescription logic system,

and DLP [14], an experimental system providing only a limited description logic in-
terface. FaCT is available athttp://www.cs.man.ac.uk/˜horrocks ; DLP is
available athttp://www-db.research.bell-labs.com/user/pfps .

We have incorporated a range of known, adapted and novel optimisation techniques
into the subsumption checkers for these two systems. The optimisation techniques in-
clude: lexical normalisation, semantic branching search,boolean constraint propaga-
tion, dependency directed backtracking, heuristic guidedsearch and caching.

These optimisations techniques make a drastic difference to the performance of
the overall system. As evidence, KRIS is not able to load a modified version of the
GALEN knowledge base because it gets stuck trying to determine oneof the thousands
of subsumptions required to load the knowledge base. FaCT and DLP, which have
higher levels of optimisation, are able to easily load this knowledge base, classifying
over two thousand definitions in about two hundred seconds.

We have also performed experiments with both FaCT and DLP on several test suites
of propositional modal formulae. The optimisations built into the two systems qualita-
tively change their behaviour on the test suites, indicating that the optimisations have
considerable utility simply taken as optimisations for reasoning in propositional modal
logics.

2 Background

FaCT and DLP are designed to build and maintain taxonomies ofnamed concepts.
Given a collection of definitions of named concepts and statements about these con-
cepts, they determine the subsumption partial order for thenamed concepts. To do this
they have to determine subsumption relationships between descriptions in a description
logic.

The description logic that DLP implements is calledALCR+ . FaCT implements a
considerably more-expressive logic, but most of the satisfiability optimisations in FaCT
are demonstrable inALCR+ .ALCR+ is built up from atomic concepts and two kinds of
atomic roles, non-transitive roles and transitive roles. Concepts inALCR+ are formed
using the grammarA | ⊤ | ⊥ | ¬C | C ⊓ D | C ⊔ D | ∃R.C | ∀R.C | ∃T.C | ∀T.C,1

whereA is an atomic concept,C andD are concept expressions,R is a non-transitive
role, andT is a transitive role.

The semantics ofALCR+ is a standard extensional semantics, using an interpreta-
tion I that is a pair(∆I , .I) consisting of a domain and a mapping from concepts to
subsets of the domain and from roles to binary relations on the domain (transitive re-
lations for transitive roles, of course). The semantics forconcept expressions are given
in Table 1. One concept then subsumes another if and only if the extension of the first
concept includes the extension of the second in all interpretations.

The semantics ofALCR+ is a simple transformation of the possible world seman-
tics for propositional modal logics. In this transformation elements of the domain cor-
respond to possible worlds, atomic concepts correspond to propositional variables, and

1 Throughout the paper, we will be using the syntax of description logics. To translate into the
syntax of modal propositional logics, replace∀R with �R and∃R with ♦R and perform sev-
eral other obvious replacements.

Syntax Semantics
A AI ⊆ ∆

I

⊤ ∆
I

⊥ ∅
¬C ∆

I − C
I

C ⊓ D C
I ∩ D

I

C ⊔ D C
I ∪ D

I

∃R.C {d ∈ ∆
I | R

I(d) ∩ C
I 6= ∅}

∀R.C {d ∈ ∆
I | R

I(d) ⊆ C
I}

∃T.C {d ∈ ∆
I | T

I(d) ∩ C
I 6= ∅}

∀T.C {d ∈ ∆
I | T

I(d) ⊆ C
I}

Table 1.Semantics ofALCR+ concept expressions

roles correspond to modalities. This transformation showsthat fragments ofALCR+

correspond toK(m) andK4(m). Transitive roles inALCR+ are used forK4(m) and
non-transitive roles are used forK(m). ALCR+ can also express formulae inKT(m)

andS4(m) via the usual encoding that maps∀R.C into C ⊓ ∀R.C, etc.

Determining subsumption inALCR+ is PSPACE-complete [15], as is the related
problem of determining whether a concept inALCR+ is satisfiable. However, it is pos-
sible to build practical description logic systems based onexpressive description log-
ics [2, 5, 11] that have this sort of computationally intractable subsumption. Systems
that are based on description logics likeALCR+ generally determine whether a sub-
sumption holds by transforming the subsumption question into a satisfiability question
and then attempting to construct a model for this concept, just as a tableaux satisfiability
checker for a propositional logic attempts to construct a model for a formula. During
this process, various nodes are created, where each node represents an individual (pos-
sible world), and tells whether the individual belongs to various concepts (gives values
to formulae at this world). This set of concepts is said to form the label of the node—we
will use L(x) to denote the label of a nodex. The nodes are connected by modal rela-
tionships in a tree fashion, starting at a root node. If a nodeis related to another node
via roleR, the second node is called anR-successor of the first.

The basic algorithm starts out with a single node representing an individual (pos-
sible world) that must be in the extension of the concept being tested for satisfiability
(must have a formula evaluate to true at it). This concept (formula) is expanded to
produce simpler concepts that must have the individual in their extension (simpler for-
mulae that evaluate at the world). Disjunctive concepts (formulae) give rise to choice
points in the algorithm (branches in the tableau). Existential role concepts,∃R.C, (ex-
istential modal formulae) cause the creation of new successor nodes representing other
individuals (possible worlds).

Universal role concepts (universal modal formulae) augment the concepts that these
individual must belong to (formulae that are true at these possible worlds). In order to
guarantee termination, transitive roles (transitive modalities) require filtration orblock-
ing: a check to ensure that no other node has the same set of concepts (formulae)—if so,

the two nodes can be collapsed into a cycle. If the algorithm constructs a collection of
nodes where there are no compound concepts (formulae) that have not been expanded
and where there are no obvious contradictions, calledclashes, at any of the nodes, then
the collection of nodes corresponds to a model for the initial concept (formula). If the
algorithm fails to construct such a collection then the initial concept (formula) has no
model—it is said to beunsatisfiable.

The details of the algorithm, including precise termination conditions, are fairly
standard, and can be found in [15].

3 Optimisation Techniques

The basic algorithm given above is too slow to form the basis of a useful description
logic system. We have therefore investigated and employed arange of known, adapted
and novel optimisations that improve the performance of thesatisfiability testing algo-
rithm, including lexical normalisation, semantic branching search, boolean constraint
propagation, dependency directed backtracking, heuristic guided search, and caching.

Theoretical descriptions of tableaux algorithms generally assume that the concept
expression to be tested is in negation normal form, with negations applying only to
atomic concepts. This simplifies the (description of the) algorithm but it means that
a clash will only be detected when an atomic concept and its negation occur in the
same node label. For example, when testing the satisfiability of the concept expression
∃R.(C ⊓D) ⊓ ∀R.¬C, whereC is an atomic concept, a clash would be detected when
the algorithm creates anR-successory because{C,¬C} ⊆ L(y). However, ifC is
a concept expression, then the clash would not be detected immediately because¬C
would have been transformed into negation normal form. IfC is a large or complex
expression this could lead to costly wasted expansion.

This problem is addressed by transforming concept expressions into a lexically nor-
malised form, and by identifying lexically equivalent expressions. All concepts can
then be treated equally, whether or not they are atomic, witha clash being detected
whenever a concept expression and its negation occur in the same node label.2 In lex-
ically normalised form, concept expressions consist only of (possibly negated) atomic
concepts, conjunction concepts and universal role concepts: expressions of the form
∃R.C are transformed into¬(∀R.¬C) and expressions of the form(C1⊔, . . . ,⊔Cn)
are transformed into¬(¬C1⊓, . . . ,⊓¬Cn), where theC1, . . . , Cn are sorted and dupli-
cates are eliminated. The normalisation process can also include simplifications such as
∀R.⊤ −→ ⊤, (⊥ ⊓ . . .) −→ ⊥ and(C ⊓ ¬C ⊓ . . .) −→ ⊥; in extreme cases the need
for a tableau expansion can be completely eliminated by simplifying expressions to⊤
or ⊥. Efficiency can be further enhanced by tagging each lexically distinct expression
with a unique code so that equivalent expressions can be identified simply by comparing
tags.3

Tableau expansion of concepts in this form is no more complexthan if they are
in negation normal form:¬(∀R.C) can be dealt with in the same way as∃R.¬C and

2 KRIS addresses the same problem, in a less complete manner, by lazily expanding named
concepts, and retaining their names in node labels [1].

3 A similar technique is used in KSAT, but without the benefit of tagging [9].

¬(C1⊓, . . . ,⊓Cn) can be dealt with in the same way as(¬C1⊔, . . . ,⊔¬Cn). The ex-
pression∃R.(C ⊓D)⊓∀R.¬C would be transformed into¬(∀R.¬(C ⊓D))⊓∀R.¬C,
and the¬(∀R.¬(C ⊓ D)) term would lead directly to the creation of anR-successor
whose label contained bothC and¬C. As the two occurrences ofC will be lexically
normalised and tagged as the same concept, a clash will immediately be detected, re-
gardless of the structure ofC.

Standard tableaux algorithms are inherently inefficient because they use a search
technique based on syntactic branching. When expanding thelabel of a nodex, syntac-
tic branching works by choosing an unexpanded disjunction in L(x) and searching the
different models obtained by adding each of the disjuncts. As the alternative branches
of the search tree are not disjoint, there is nothing to prevent the recurrence of an un-
satisfiable disjunct in different branches [9]. The resulting wasted expansion could be
costly if discovering the unsatisfiability requires the solution of a complex sub-problem.
For example, tableau expansion of a nodex, where{(C ⊔D1), (C ⊔D2)} ⊆ L(x) and
C is an unsatisfiable concept expression, could lead to the search pattern shown below,
where the unsatisfiability ofC must be demonstrated twice.t tx t txx1 x2x3 x4xxL(x) [fCg) clash L(x)[fD1gL(x2) [fCg) clash L(x2) [fD2g

This problem is dealt with by using a semantic branching technique adapted from
the Davis-Putnam-Logemann-Loveland procedure (DPLL) commonly used to solve
propositional satisfiability (SAT) problems [6, 8]. Instead of choosing an unexpanded
disjunction inL(x), a single disjunctD is chosen from one of the unexpanded disjunc-
tions inL(x). The two possible sub-trees obtained by adding eitherD or ¬D to L(x)
are then searched. Because the two sub-trees are strictly disjoint, there is no possibility
of wasted search as in syntactic branching.

An additional advantage of using a DPLL based search technique is that a great deal
is known about the implementation and optimisation of this algorithm. In particular,
bothboolean constraint propagationandheuristic guided searchcan be used to try to
minimise the size of the search tree.

Boolean constraint propagation (BCP) is a technique used tomaximise determinis-
tic expansion, and thus pruning of the search tree via clash detection, before performing
non-deterministic expansion (branching) [8]. Before semantic branching is applied to
the label of a nodex, BCP deterministically expands disjunctions inL(x) which present
only one expansion possibility and detects a clash when a disjunction inL(x) has no ex-
pansion possibilities. The number of expansion possibilities presented by a disjunction
(C1⊔ . . .⊔Cn) ∈ L(x) is equal to the number of disjunctsCi such that¬Ci /∈ L(x). In
effect, BCP is using the inference rule¬C,C⊔D

D
to simplify the expression represented

by L(x).
For example, given a nodex such that{(C ⊔ (D1 ⊓ D2)), (¬D1 ⊔ ¬D2),¬C} ⊆

L(x), BCP deterministically expands the disjunction(C ⊔ (D1 ⊓ D2)) because¬C ∈

clash clash
tt t t txx1x2t L(x) [f:C1; D1gL(x) [fC1gL(x1) [fC2gx RxnL(xn�1) [fCng L(x1) [f:C2; D2gL(x2) [f:C3; D3gxf(C1 tD1); : : : ; (Cn tDn); 9R:(C uD); 8R::Cg

y1 : : : xy2nf(C uD);:C;C;Dg f(C uD);:C;C;Dg clash clashy1
tt t t txx1x2tx Rxn x

PruningBackjumpx
: : : xy2n

Fig. 1. Thrashing in backtracking search/Backjumping

L(x). The expansion of(D1 ⊓ D2) adds bothD1 andD2 to L(x), allowing BCP to
identify (¬D1 ⊔ ¬D2) as a clash without any branching having occurred.

Inherent unsatisfiability concealed in sub-problems can lead to large amounts of
unproductive backtracking search known as thrashing. The problem is exacerbated
when blocking is used to guarantee termination, because blocking may require that
sub-problems only be explored after all other forms of expansion have been performed.
For example, expanding a nodex, whereL(x) = {(C1⊔D1), . . . , (Cn⊔Dn), ∃R.(C⊓
D), ∀R.¬C}, would lead to the fruitless exploration of2n possibleR-successors ofx
before the inherent unsatisfiability is discovered. The search tree created by the tableau
expansion algorithm is illustrated in Fig. 1.

This problem is addressed by adapting a form of dependency directed backtrack-
ing calledbackjumping, which has been used in solving constraint satisfiability prob-
lems [3] (a similar technique was also used in the HARP theorem prover [13]). Back-
jumping works by labeling concept expressions with a dependency set indicating the
branching points on which they depend. A concept expressionC ∈ L(x) depends on a
branching point whenC was added toL(x) at the branching point or whenC ∈ L(x)
depends an another concept expressionD ∈ L(y), andD ∈ L(y) depends on the
branching point. A concept expressionC ∈ L(x) depends on a concept expression
D ∈ L(y) when C was added toL(x) by a deterministic expansion which used
D ∈ L(y), e.g., if A ∈ L(x) was derived from the expansion of(A ⊓ B) ∈ L(x),
thenA ∈ L(x) depends on(A ⊓ B) ∈ L(x).

When a clash is discovered, the dependency sets of the clashing concepts can be
used to identify the most recent branching point where exploring the other branch might
alleviate the cause of the clash. The algorithm can then jumpback over intervening
branching pointswithoutexploring alternative branches.

For example, when expanding the nodex from the previous example, the search
algorithm will perform a sequence ofn branches, eventually leading to the nodexn

with {∃R.(C ⊓ D), ∀R.¬C} ⊂ L(xn). When∃R.(C ⊓ D) ∈ L(xn) is expanded the
algorithm will generate anR-successory1 with L(y1) = {(C ⊓ D),¬C}. The con-
cept expression(C ⊓ D) will then be expanded and a clash will be detected because

{C,¬C} ⊂ L(y1). As neitherC nor¬C in L(y1) will have the branching points lead-
ing fromx to xn in their dependency sets, the algorithm can either returnunsatisfiable
immediately (if both the dependency sets were empty) or jumpdirectly back to the most
recent branching point on which one ofC or ¬C did depend. Figure 1 illustrates how
the search tree belowx is pruned by backjumping, with the number ofR-successors
explored being reduced by2n − 1.

Heuristic techniques can be used to guide the search in a way which tries to min-
imise the size of the search tree. A method which is widely used in DPLL SAT algo-
rithms is to branch on the disjunct which has the Maximum number of Occurrences in
disjunctions of Minimum Size [8]. By choosing a disjunct which occurs frequently in
small disjunctions, this heuristic tries to maximise the effect of BCP. For example, if the
label of a nodex contains the unexpanded disjunctions{C⊔D1, . . . , C⊔Dn} ⊆ L(x),
then branching onC leads to their deterministic expansion in a single step: when C is
added toL(x), all of the disjunctions are fully expanded and when¬C is added to
L(x), BCP will expand all of the disjunctions. Branching first on any of D1, . . . , Dn,
on the other hand, would only cause a single disjunction to beexpanded.

Unfortunately this heuristic interacts adversely with thebackjumping optimisation
by overriding any “oldest first” order for choosing disjuncts: older disjuncts are those
which resulted from earlier branching points and will thus lead to more effective prun-
ing if a clash is discovered [11]. Moreover, the heuristic itself is of little value because
it relies for its effectiveness on finding the same disjunctsrecurring in multiple unex-
panded disjunctions: this is likely in SAT problems, where the disjuncts are proposi-
tional variables, and where the number of different variables is usually small compared
to the number of disjunctive clauses (otherwise problems would, in general, be triv-
ially satisfiable); it is unlikely in concept satisfiabilityproblems, where the disjuncts are
concept expressions, and where the number of different concept expressions is usually
large compared to the number of disjunctive clauses. As a result, the heuristic will often
discover that all disjuncts have similar or equal priorities, and the guidance it provides
is not particularly useful.

An alternative strategy is to employ a heuristic which triesto maximise the effec-
tiveness of backjumping by using dependency sets to guide the expansion. Whenever a
choice is presented, the heuristic chooses the concept whose dependency set includes
the earliest branching points. This technique can be used both when selecting disjuncts
and when orderingR-successors. The use of heuristics is an area of continuing research,
but preliminary results suggest that the dependency heuristic is a promising technique.

During a satisfiability check there may be many successor nodes created. These
nodes tend to look considerably alike, particularly as theR-successors for a nodex each
have the same concept expressions for the universal role concepts inL(x). Considerable
time can thus be spent re-performing the computations on nodes that end up having the
same label. As the satisfiability algorithm only cares whether a node is satisfiable or
not, this time is wasted.

If successors are only created when other possibilities at anode are exhausted, then
the entire set of concept expressions that come into a node label can be generated at
one time. The satisfiability status of the node is then completely determined by this set
of concept expressions. Then, if there exists another node with the same set of initial

formulae the two nodes will have the same satisfiability status [7]. Thus work need
be done only on one of the two nodes, potentially saving a considerable amount of
processing, as not only is the work at one of the nodes saved, but also the work at any
of the successors of this node.

The downside of caching is that the dependency information required for backjump-
ing cannot be effectively calculated for the nodes that are not expanded. This happens
because the dependency set of any clash detected depend on the dependency sets of the
incoming concept expressions, which will differ between the two nodes. Backjumping
can still be performed, however, by combining the dependency sets of all incoming
concept expressions and using that as the dependency set forthe unsatisfiable node.

Another problem with caching is that it requires that nodes,or at least sets of formu-
lae, be retained until the end of a satisfiability test, changing the storage requirements
of the algorithm from polynomial to exponential in the worstcase.

4 Testing

All the above optimisations are implemented in FaCT and DLP,and we have tested
their efficacy on several test suites. (FaCT and DLP differ ontheir implementation de-
tails, how well they implement some of the above optimisations, and the exact heuristic
optimisation they do.) All times reported are for runs on machines with approximately
the speed of a SPARC Ultra 1.

We would prefer to test on actual description logic knowledge bases, as that is what
FaCT and DLP are designed for. However, there are very few description logic knowl-
edge bases that use the more-powerful constructs provided by FaCT and DLP. One test
that we have been able to do is to take the GALEN knowledge base and construct ver-
sions of it that are acceptable to FaCT, DLP and KRIS, by, among other things, making
all roles non-transitive and eliminating inclusion axioms. To illustrate the importance of
backjumping, caching, and the heuristics, times are also given for DLP with these op-
timisations disabled—we will refer to this system as DLP∗. FaCT and DLP processed
the knowledge base in 210 seconds, classifying over two thousand concept definitions
requiring tens of thousands of satisfiability tests. Both DLP∗ and KRIS were unable to
complete the processing of the knowledge base in four hours.

Our other testing has been against test suites for propositional modal logics, using
the propositional modal logic interface for FaCT and DLP. Wehave tested against the
test suite for the Tableaux’98 propositional modal logic comparison [10] and against a
collection of random formulae initially generated by Hustadt and Schmidt [12].

The Tableaux’98 test suite consists of several classes of formulae (e.g.branch), in
both provable (p) and non-provable (n) forms, for each ofK,KT, andS4. For each type
of formula, 21 examples of supposedly exponentially increasing difficulty are provided,
and the result of a test is the number of the largest formula which the system was able
to solve within 100 seconds of CPU time. The results of these tests with FaCT, DLP,
DLP∗, KSAT 4 and KRIS are summarised in Table 2. In the table,>20 indicates that

4 The tests here used the original Lisp implementation of KSAT; a much faster C implementation
is now available.

FaCT DLP DLP∗ KSAT Kris
p n p n p n p n p n

K branch 6 4 18 12 10 11 8 8 3 3
d4 >20 8 >20 >20 8 6 8 5 8 6
dum >20 >20 >20 >20 10 12 11 >20 15 >20
grz >20 >20 >20 >20 >20 >20 17 >20 13 >20
lin >20 >20 >20 >20 >20 >20 >20 3 6 9
path 7 6 >20 >20 7 11 4 8 3 11
ph 6 7 7 8 6 8 5 5 4 5
poly >20 >20 >20 >20 >20 >20 13 12 11 >20
t4p >20 >20 >20 >20 6 4 10 18 7 5

KT 45 >20 >20 >20 >20 9 >20 5 5 4 3
branch 6 4 18 12 16 11 8 7 3 3
dum 11 >20 >20 >20 9 >20 7 12 3 14
grz >20 >20 >20 >20 >20 >20 9 >20 0 5
md 4 5 3 >20 3 >20 2 4 3 4
path 5 3 8 8 2 >20 2 5 1 13
ph 6 7 7 18 5 19 4 5 3 3
poly >20 7 >20 8 >20 2 1 2 2 2
t4p 4 2 >20 >20 1 1 1 1 1 7

S4 45 >20 >20 >20 >20 >20 >20
branch 4 4 >20 12 16 12
grz 2 >20 >20 >20 0 >20
ipc 5 4 10 >20 3 10
md 8 4 3 >20 3 >20
path 2 1 6 >20 2 >20
ph 5 4 4 5 5 15
s5 >20 2 19 >20 1 >20
t4p 5 3 >20 >20 0 >20

Table 2.Results for Tableaux’98 Benchmarks

the hardest problem was solved in less than 100 seconds. (Neither KSAT nor KRIS can
reason with transitive roles, so they cannot be used to perform S4 satisfiability tests.)

In these tests FaCT and DLP outperformed the other systems inthis test, with DLP
being a clear winner, because of its more-complete caching.Even DLP∗ performed
better than other systems due to the optimizations retainedin it. DLP also outperformed
the other systems that took part in the the Tableaux’98 comparison [4].

Further analysis of the difference between DLP and DLP∗, not presented here be-
cause of space limitations, shows that caching is more important than backjumping in
these tests, which is more important than the heuristics. Infact the heuristics signifi-
cantly degraded performance in some cases.

The optimisations in FaCT and DLP often resulted not simply in improved absolute
performance but in a different qualitative behaviour. Thisis illustrated by Fig. 2 which
shows the actual solution times for two types of formulae forDLP with backjumping
and caching turned off and on. In one of these examples the qualitative improvement is

K-dum-p KT-t4p-n

0.01

0.1

1

10

100

0 5 10 15 20

C
P

U
 ti

m
e

(s
)

problem size

Neither
Backjumping

Caching
Both

0.01

0.1

1

10

100

0 5 10 15 20

C
P

U
 ti

m
e

(s
)

problem size

Neither
Backjumping

Caching
Both

Fig. 2.Solution times for constructed satisfiability problems

due to caching (a common occurrence); in the other it is due tobackjumping (a less-
common occurrence).

Our second propositional modal logic test suite uses a method for testing SAT
decision procedures that has been adapted for use with propositional modalK by
Giunchiglia and Sebastiani [9], and further refined by Hustadt and Schmidt [12]. The
method uses a random generator to produce formulae, with thecharacteristics of the
formulae being controlled by a number of parameters. Each formula is a conjunction
of L K-clauses, where aK-clause is a disjunction ofK elements, each element being
negated with a probability of 0.5. An element is either a modal atom of the form∀R.C,
whereC is itself aK-clause, or at the maximum modal depthD, a propositional vari-
able chosen from theN propositional variables which appear in the formula. Hustadt
and Schmidt used two sets of formulae, denotedPS12andPS13, choosingN = 4 and
N = 6 respectively, withK = 3 andD = 1 in both cases. The test sets are created by
varyingL from N to 30N , giving formulae with a probability of satisfiability varying
from≈1 to≈0, and generating 100 formulae for each integer value ofL/N .

The median time required to test the satisfiability of thePS12andPS13formulae,
with a limit of 1,000s per formula, using FaCT, DLP, DLP∗, KSAT and KRIS are shown
in Fig. 3. It can be seen that in these tests the performance differences between FaCT,
DLP and KSAT are much less marked than was the case in the Tableaux’98 tests. This is
because the purely propositional problems at depth 1 can always be solved determinis-
tically, and so performance is dependent on the efficiency ofpropositional reasoning at
depth 0. The optimisations which allowed FaCT and DLP to outperform KSAT, notably
caching, are of little use with these formulae as there are nohard modal sub-problems.

Although the Tableaux’98 and random test suites show how ouroptimisations per-
form on propositional modal logics, neither is very good forour purposes. In particular,
for the collection of random formulae most of the computational difficulties have to do
with the initial non-modal component. In realistic KBs we expect to encounter problems
where the hardness comes from the number of successors that have to be considered and
their interaction with the non-modal component. The Tableaux’98 formulae have this
form, but there are too few hard collections there to validate our optimisations, and the

PS12 PS13

0.01

0.1

1

10

100

1000

0 5 10 15 20 25 30

C
P

U
 ti

m
e

(s
)

L/N

FaCT
DLP

DLP*
KSAT

Kris

0.01

0.1

1

10

100

1000

0 5 10 15 20 25 30

C
P

U
 ti

m
e

(s
)

L/N

FaCT
DLP

DLP*
KSAT

Kris

Fig. 3. Median solution times for randomly generated satisfiability problems

regular structure of the formulae tends to exaggerate the utility of the caching optimi-
sation, particularly for satisfiable (non-provable) formulae.

5 Summary

The collection of optimizations we have described are effective in improving the speed
of modal propositional logic reasoners, as shown by the results we have given above.
They can also dramatically improve the speed of subsumptionreasoning on description
logic knowledge bases. To our knowledge some of these improvements have not been
investigated in the modal propositional reasoning literature. The combination appears
to be unique and, moreover, results in a powerful reasoner for the propositional modal
logicsK, KT, andS4.

Unfortunately, the benefits of the various optimizations are not yet completely clear.
Caching is best in some areas, backjumping in others. In order to better understand these
effects, we continue to analyze and improve the optimisations we have incorporated
into our provers. We also plan to create a test suite that emphasizes the modal nature
of our description logic. Further, we are embarking on a project to create a description
logic system for a description logic that corresponds to a propositional dynamic logic.
This project will give us further opportunities to investigate optimisation of satisfiability
reasoners.

References

1. F. Baader, E. Franconi, B. Hollunder, B. Nebel, and H.-J. Profitlich. An empirical analysis
of optimization techniques for terminological representation systems or: Making KRIS get a
move on. In B. Nebel, C. Rich, and W. Swartout, editors,Principles of Knowledge Repre-
sentation and Reasoning: Proceedings of the Third International Conference (KR’92), pages
270–281. Morgan-Kaufmann Publishers, San Francisco, CA, 1992. Also available as DFKI
RR-93-03.

2. F. Baader and B. Hollunder. KRIS: Knowledge representation and inference system.SIGART
Bulletin, 2(3):8–14, 1991.

3. A. B. Baker. Intelligent Backtracking on Constraint Satisfaction Problems: Experimental
and Theoretical Results. PhD thesis, University of Oregon, 1995.

4. P. Balsiger and A. Heuerding. Comparison of theorem provers for modal logics — introduc-
tion and summary. In H. de Swart, editor,Automated Reasoning with Analytic Tableaux and
Related Methods: International Conference Tableaux’98, number 1397 in Lecture Notes in
Artificial Intelligence, pages 25–26. Springer-Verlag, May 1998.

5. P. Bresciani, E. Franconi, and S. Tessaris. Implementingand testing expressive description
logics: a preliminary report. In Gerard Ellis, Robert A. Levinson, Andrew Fall, and Veronica
Dahl, editors,Knowledge Retrieval, Use and Storage for Efficiency: Proceedings of the First
International KRUSE Symposium, pages 28–39, 1995.

6. M. Davis, G. Logemann, and D. Loveland. A machine program for theorem proving.Com-
munications of the ACM, 5:394–397, 1962.

7. F. Donini, G. De Giacomo, and F. Massacci. EXPTIME tableaux for ALC. In L. Padgham,
E. Franconi, M. Gehrke, D. L. McGuinness, and P. F. Patel-Schneider, editors,Collected
Papers from the International Description Logics Workshop(DL’96), number WS-96-05 in
AAAI Technical Report, pages 107–110. AAAI Press, Menlo Park, California, 1996.

8. J. W. Freeman. Hard random 3-SAT problems and the Davis-Putnam procedure.Artificial
Intelligence, 81:183–198, 1996.

9. F. Giunchiglia and R. Sebastiani. A SAT-based decision procedure forALC. In L. C. Aiello,
J. Doyle, and S. Shapiro, editors,Principles of Knowledge Representation and Reasoning:
Proceedings of the Fifth International Conference (KR’96), pages 304–314. Morgan Kauf-
mann Publishers, San Francisco, CA, November 1996.

10. A. Heuerding and S. Schwendimann. A benchmark method forthe propositional modal
logics k, kt, s4. Technical report IAM-96-015, University of Bern, Switzerland, October
1996.

11. I. Horrocks.Optimising Tableaux Decision Procedures for Description Logics. PhD thesis,
University of Manchester, 1997.

12. U. Hustadt and R. A. Schmidt. On evaluating decision procedures for modal logic. Tech-
nical Report MPI-I-97-2-003, Max-Planck-Institut Für Informatik, Im Stadtwald, D 66123
Saarbrücken, Germany, February 1997.

13. F. Oppacher and E. Suen. HARP: A tableau-based theorem prover. Journal of Automated
Reasoning, 4:69–100, 1988.

14. P. F. Patel-Schneider. System description: DLP. Bell Labs Research, Murray Hill, NJ, De-
cember 1997.

15. U. Sattler. A concept language extended with different kinds of transitive roles. In G. Görz
and S. Hölldobler, editors,20. Deutsche Jahrestagung für Künstliche Intelligenz, number
1137 in Lecture Notes in Artificial Intelligence, pages 333–345. Springer Verlag, 1996.

16. K. Schild. A correspondence theory for terminological logics: Preliminary report. InPro-
ceedings of the 12th International Joint Conference on Artificial Intelligence (IJCAI-91),
pages 466–471, 1991.

