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Abstract

Effective systems for expressive description logics
require a heavily-optimised subsumption checker
incorporating a range of optimisation techniques.
Because of the correspondence between descrip-
tion logics and propositional modal logic most
of these techniques carry over into propositional
modal logic satisfiability checking. Some of the
techniques are extremely effective on various test
suites for propositional modal satisfiability and oth-

These optimisation techniques make a dramatic difference
to the performance of the overall system. As evidenaeisK
is not able to load (a modified version of) a large medical
terminology knowledge base from theaGEN project [13]
because it gets stuck trying to perform one of the thousands
of required subsumption tests. FaCT and DLP, which have
higher levels of optimisation, are able to easily load this
knowledge base, classifying over two thousand definitians i
about two hundred seconds.

Because FaCT and DLP incorporate several optimisations
we have investigated which of these optimisations are most

ers are less effective. Further, the effectiveness of a

§ effective. We would have liked to perform this investigatio
technique depends on the test performed.

using a sample of description logic knowledge bases that in-
o . o corporate hard problems for description subsumption. Un-
Description logic systems spend much of their ime com+ortynately such knowledge bases are currently uncommon,
puting subsumption relationships between descriptidrkel largely because existing description logic systems haee be
system is based on an expressive description logic then thg,aple to effectively process them.
amount of time spent computing subsumption can be intoler- o ever, there are other sources of hard description logic
able, even for small knowledge bases, unless steps are tak@ﬂbsumption problems! FaCT and DLP implement a superset
to hea_vily optim_ise this task. The total time spent in su_b—of the propositional modal Iogi 4 ). A number of testing
sumption checking comes from the number of subsumptiog,ethodologies have been established for propositionatinod
checks required to process a knowledge base as well as frof@gics [8, 7, 10] and we have used these to perform exper-

the time spent in performing the hardest of these subsumptioments comparing the effectiveness of the various optimisa
checks—with an expressive description logic, the timentake tions puilt into FaCT and DLP.

by a small number of hard subsumption checks can dominate
the total time. _ o -1 TheDescription Logic ALC -+

Two systems based on expressive description logics _
KRIs [1] and CRACK [3], have incorporated a number of op- Both FaCT and DLP implement a superset ALCr+,
timisations to achieve better performance of their subsumpPUt this DL is adequate to demonstrate their optimisations.
tion checkers. These systems use various techniques @ avoft“Cr+ IS built up from atomic concepts and two kinds of
performing subsumption checks, and they also optimise thtomic roles, non-transitive ro_les and transitive roleanC
subsumption check itself. Two other systems that explor&ePts INALC .+ are formed using the grammar| T | L |
the optimisations required to build an expressive desoript ~C | CT1D | CUD [3R.C|VR.C[3T.C | VT.C, where
logic system are FaCT [9], a full description logic systenga A IS @n atomic concept; and D are concept expressions,
DLP [12], an experimental system providing only a limited IS & non-transitive role, aniél is a transitive role.
description logic interface. The subsumption checkers for 1he semantics oflLC k+ is a standard extensional seman-
both FaCT and DLP incorporate a range of known, adaptedicS: @s given in Table 1.
and novel optimisation techniques including lexical ndrma  Systems that are based on description logics M  +
isation, semantic branching search, boolean constraiqt-pr generally determine whether a subsumption holds by trans-
agation, dependency directed backtracking, heuristidegli  forming the subsumption question into a satisfiability ques
search and caching. tion in the obvious manner. They then attempt to construct a



Syntax Semantics of known, adapted and novel optimisations that improve the

'_Ar 'ZIIQ A7 performance of the satisfiability testing algorithm.

n 0 DLP simplifies all concept expressions and converts them
-C AT — T into a lexically normalised form. In this form, concept ex-
cnbD|c*fnD* pressions consist only of (possibly negated) atomic caiscep
cubp|ctfuD?* conjunction concepts and universal role concepts: expres-

3R.C | {de AT | RT(d)nCT # 0} sions of the fornBR.C are transformed inte:(VR.~C') and
VR.C |{de Ai | Ri(d) c OII} expressions of the forfiD; L. .. L D,,) are transformed into
3;2 {g € ﬁf | TI(d) nc 175 0} —(=D;1M...M=D,). In addition, the sub-expressions form-
. {de [T cCc} ing conjunctive concepts are sorted, and any duplicates eli
) ) inated. The normalisation process also identifies and simpl
Table 1: Semantics 0ALC r+ concept expressions fies sub-expressions which are obviously satisfiable or-obvi
ously unsatisfiable, replacing them withor L respectively.
model for this concept, using a tableaux method. During thidn extreme cases the need for a tableau expansion can be com-
process, various nodes are created, where each node repRéetely eliminated.
sents an individual, and tells whether the individual bglon ~ Lexically identical concepts are uniquely stored so that a
to various concepts. This set of concepts is said to form th&lash can be detected as soon as an expression and its lexi-
label of the node—denote(x). cal negation occur in the same node label. This can lead to

The basic algorithm starts out with a single node repre£lashes being detected much earlier, eliminating the {iplyss
senting an individual that must be in the extension of the conCOStly) €xpansion which would have been required in order to
cept being tested for satisfiability. This concept is exahd generate node label(s) containing clashing atomic coscept
to produce simpler concepts that must have the individual Description logic satisfiability tests typically deal witim
in their extension. Disjunctive concepts give rise to ckoic unexpanded disjunctiofD; U ... L D,,) € L(x) by search-
points in the algorithm. ing the possible models obtained by separately adding €ach o

Each existential role concepi,R.C, causes the creation D,...,D,, a technique known as syntactic branching [7].
of a new, related node representing another individual whic In contrast, DLP uses a semantic branching search technique
must be in the extension @f. If a node is related to another adapted from the Davis-Putnam-Logemann-Loveland proce-
node via roleR, the second node is called &successor of dure (DPLL). In semantic branching the branches are ob-
the first. tained by separately addidg; and—D;.

Universal role concepts augment the concepts that these Because the two possible models generated at a semantic
individuals must belong to. In order to guarantee termargti  branching point are strictly disjoint, there is no posstpibf
transitive roles requirdlocking a check to ensure that no wasted search. An additional advantage of using a DPLL-
other node has the same set of concepts—if so, the two nodégsed search technique is that a great deal is known about the
can be collapsed into a cycle. implementation and optimisation of this algorithm. In part

If the algorithm constructs a collection of nodes whereular, both boolean constraint propagation and heurisiitegli
there are no concept expressions that have not been expand&rch can be used to try to minimise the size of the search
and where there are no obvious contradictions, calleshes  tree.
at any of the nodes, then the collection of nodes corresponds Boolean constraint propagation (BCP) is a technique used
to a model for the initial concept. If the algorithm fails to to maximise deterministic expansion, and thus pruningef th
construct such a collection then the initial concept is tissa search tree via clash detection [6]. Before semantic biagch

fiable. is applied to the label of a nodg BCP deterministically ex-
The details of the basic algorithm are fairly standard, anchands disjunctions ifi (=) which present only one expansion
can be found in [14]. possibility and detects a clash when a disjunctiofi j=) has

no expansion possibilities: in effect, BCP uses the infegen
2 Optimisation Techniques rule =52 to simplify the expression representedibfr).

This can dramatically reduce the size of the search space, pa
A naive implementation of the tableaux method would beticularly when used in conjunction with semantic branching
much too slow to be used for subsumption testing in a de-

scription logic. DLP (and FaCT)therefore employ a range Inherent unsatisfiability concealed in sub-problems can

lead to large amounts of unproductive backtracking search
1In this description logic all cycles are good—they can berint known as thrashing. DLP tackles this problem by adapting a
preted as valid cyclical models. form of dependency directed backtracking caltetkjump-

2From now on we will often refer to DLP only, as it has a larger ing, which has been used in solving constraint satisfiability
set of optimizations, and incorporates the ideas from FaCT. problems [2].



Backjumping labels concept expressions with a dependW: Use the JW heuristic to select a disjunct from all dis-
dency set indicating the branch points on which they depend.  junctions and whether to branch positive or negative
When a clash is discovered, the dependency sets can be used first.
to identify the most recent branch point where exploring thég 5, 4om negative: Select a disjunct at random, and branch
other branch might alleviate the cause of the clash. The al- negative on it first.
gorithm can then jump back over intervening branch points N .
without exploring alternative branches. Backjumping canRandom, positive: Select a disjunct at random, but do the
lead to dramatic reductions in the search space, but there is  Positive (instead of the negative) branch first.
some overhead caused by the evaluation and storage of th@ caching: Turn off caching.

dependency sets. No backjumping: Turn off backjumping

During a tableau expansion many identically labelled
nodes may be created, particularly as #euccessors for
a noder each have the same concept expressions for the uniNo BCP: Turn off boolean constraint propagation
versal role concepts it (x). DLP takes advantage of the No normalisation: Turn off normalization
repetitive structure of a typical tableau by caching thesat - . .
ability result for each node label as it is evaluated. If a&lab Unfortunately, we are not yet satisfied with the kinds of
recurs, then there is no need to reevaluate the satisfjﬁ\bilitteSts that we have been able to perform. We would pre-

of that node: the previous satisfiability result can simpdy b fer t(.) test on actqal de;crlptlon logic knowledge bases, as
reused. that is what DLP is designed for. However, there are very

few description logic knowledge bases that use the more-
DPLL SAT algorithms often use heuristics to guide the powerful constructs provided by DLP. Most of our testing
search by selecting the next disjunct on which to branchhas thus been against test suites for propositional mogal lo
These heuristics typically try to maximise the effectivesie cs, using the propositional modal logic interface for DM
of BCP by selecting disjuncts which occur frequently in dmal have tested against the test suite for the Tableaux’98 propo
diSjUnCtionS [5] However, these teChniqueS do nOtWOfRWElsitiona| modal |Ogic Comparison [8] and against a collec-

with modal problems because they rely for their effectisane tion of random formulae initially generated by Hustadt and
on finding the same disjuncts recurring in multiple disjunc-schmidt [10].

tions. This is likely in non-modal problems, otherwise most
problems would be trivially satisfiable, but it is less likel
in modal problems where unsatisfiability can be caused b
modal sub-problems.

No semantic branching: Turn off semantic branching

The Tableaux’98 test suite consists of several classes of
formulae (e.gbranch), in both provable and non-provable
¥orms, for each ofK, KT, andS4. For each class of for-

. . . . . _mula, 21 examples of supposedly exponentially increasing

DLP_taf:kIes this prqblem by using a heu.r|st|c W.h'c_h trIeSdi1‘ficulty are automatically generated from a basic pattern
to maximise the eﬁectlvgr}ess 9f bat;k;umpmg. This is dor"?/vhich incorporates features intended to make the formulae
by branching first on a disjunction with the oldest dependenhard to solve. The test methodology is to ascertain the num-

cies [9]. The disjunct within these disjunctions is chossn u ber of the largest formula of each tvpe which the svstem is
ing Jeroslow and Wang'’s weighted occurrences heuristic [11 g . ype wh 4 I

able to solve within 100 seconds of CPU time.
(the JW heuristic hereafter), a BCP-maximising heuridtic.

ddition. DLP red the si f th h b . The complete test suite contains 1,134 problems; Table 2
adartion, DLF reduces the size of the search space by Using, ¢ the total number of problems solved (within 100s of
similar heuristic techniques to select the order in whith

; q ded CPU time) by various configurations of DLP and how many
SUCCESSOTS ot a node are expanded. of the provableS4 formulae were solved within the time
limit.
3 Comparing Optimisations There is a wide variability between the different types of

In order to determine which optimisations are effective FDL formula, with some optimisations dramatically changing th

has configuration options to turn on and off or vary all of thebehavlour both quaptltgt|vely, n soIV|-ng much more d|fftcu_
above optimisations. We have run DLP in various configu-pmblems’ and qualitatively, in changing from an exporanti

rations on several test suites. Al statistics reportedoP growth in solution time to an almost-constant solution time

are for runs on machines with approximately the speed of %h's 'Sf 'Ilﬁratled by F'?‘f 1 Whl'Ch shtcﬁlws t_he actu?I §o{|;t|on
SPARC Ultra 1 and with 128MB of main memory. iImes for two classes of formulae with various optimisasion

) . ) disabled. In one of these examples the qualitative improve-
The configurations that we tested are: . LT o .
ment is due to caching; in the other it is due to semantic
Oldest-JW: Select an oldest disjunction and use the JWbranching and backjumping.
heuristic to select a disjunct in it and whether to branch The results indicate that the most effective optimisatmn f
positive or negative first. This is the basis for the otherthis test suite is semantic branching. The next-most-tffec
configurations below. technique is caching, followed by backjumping. The benefits



Configuration Total S4 class
45 branch grz ipc md path ph s5 t4p
Oldest-JW 928 | 21 21 21 10 3 13 4 19 21
Jw 915 | 21 18 21 10 3 8 5 21 21
Random, negative 907 | 21 18 21 10 3 12 7 3 2]
Random, positive 868 | 21 18 21 10 3 9 7 4 21
No caching 839 | 21 21 21 8 7 9 4 8 21
No backjumping 863 | 21 21 21 7 3 3 4 5 19
No semantic branching 738 | 12 4 21 7 3 2 7 4 6
No BCP 910 | 21 21 21 9 3 13 4 17 2]
No normalisation 901 | 21 21 21 10 3 8 6 13 21

Table 2: Total Tableaux’98 problems solved and Prov&8di@roblems solved

from semantic branching, however, are concentrated in a few
classes of formulae, suchlsanch andt4p in Table 2, which
were designed to have large amounts of redundant syntactic
search. Semantic branching avoids this redundant seadch an
thus does much better on these classes of formulae. Caching
is very effective on this test suite because of its large arhou

of structure, which results in the frequent repetition df-su
problems.

The heuristics were only effective for some classes of prob-
lem in this test suite. In some classes the JW heuristic was
good, such as5 in Table 2, and in others it resulted in worse
performance, but overall it actually resulted in fewer prob
lems being solved than using the simpler oldest-first heuris
tic. This is probably due to the fact that the JW heuristic
is designed for non-modal problems whereas the oldest-first
heuristic enhances backjumping.

Our second propositional modal logic test suite uses a com-
mon method for testing SAT decision procedures [4] that
has been adapted for use with propositional mddaby
Giunchiglia and Sebastiani [7], and further refined by Hus-
tadt and Schmidt [10]. The method uses a random generator
to produce formulae, with the characteristics of the foaweul
being controlled by a number of parameters. Each formula
is a conjunction ofl, K-clauses, where & -clause is a dis-
junction of K elements, each element being negated with a  Figure 1: Solution times for two Tableaux’98 tests
probability of 0.5. An element is either a modal atom of the
formVR.C, whereC is itself aK -clause, or at the maximum
modal depthD, a propositional variable chosen from the  juncts in a disjunction, which semantic branching avoids.
propositional variables which appear in the formula. Hdsta The two next-most-effective optimisations are backjurgpin
and Schmidt used two sets of formulae, dend®&d2 and ~ and boolean constraint propagation, with backjumping be-
PS13, choosingN = 4 andN = 6 respectively, withx” = 3 ing more effective for intermediate valuesibf N, where the
andD = 1 in both cases. The test sets are created by varyingharder” problems arise, and boolean constraint propagati
L from N to 30N, giving formulae with a probability of satis- being more effective for the larger valuesiof N, where the
fiability varying from~1 to~0, and generating 100 formulae formulae are severely overconstrained, so there is corside
for each integer value df /N . able scope for simplification whenever a branching choice is
The median times required to test the satisfiability of themade. The effectiveness of boolean constraint propagation
PS12 formulae using various configurations of DLP are givenalso helps to explain the effectiveness of semantic bragchi
in Figure 2. The results fd?S13 are generally similar. for the overconstrained formulae, as syntactic branchigsd
The most effective optimisation for this test suite is againnot allow as much boolean constraint propagation.
semantic branching. Random problems can have large The other optimisations are much less effective in this
amounts of overlapping search between the different dissuite. In particular, caching is not effective at all. Thisie-



why this is—perhaps in the & EN knowledge base there are
seldom any cases where adding the negation of a disjunct af-
fects the other elements of the disjunction and the results s
ply reflect the additional complexity of semantic branching

4 Summary

The collection of optimizations we have described are effec
tive in improving the speed of modal propositional logic-rea
soners, as shown by the results we have given above. They
can also dramatically improve the speed of subsumption rea-
soning on description logic knowledge bases. To our knowl-

Figure 2: Median solution times fé&*S12 formulae edge some of these improvements have not been investigated
in the modal propositional reasoning literature. The carabi
Configuration Time (s) tion appears to be unique and, moreover, results in a polverfu
?\/'SGSt'JW 428674 reasoner for the propositional modal logli€s KT, andS4.
Random, negative 479 The optlr_nlsatlons_are_ not uniformly effe_ct|ve. In particu-
Random, positive 203 lar, semantic branching is extremely effective on conséaic
No caching 4808 hard problems and on random satisfiability problems, but not
No backjumping ~ >10000 on the G\LEN knowledge base. We plan to perform more
Hg SBeC“;a““C branching zéfg experiments on knowledge bases to see if semantic branch-
No normalisation 273 ing is indeed ineffective on them. The two other optimisa-

tions that are the most effective are backjumping and cachin
These two optimisations make the difference between accept
able and ridiculous performance in many of the tests. Their

) ) absence in previous description logic systems has made them
cause, with such a small number of literals, the purely propoynacceptablely slow.

sitional problems at depth 1 can always be solved determin- e, along with Enrico Franconi of IRST, are embarking
istically, and performance is therefore dependent on tfie ef op 5 project to create a description logic system for a descri
ciency of propositional reasoning at depth 0. Caching is thutjon |ogic that corresponds to a propositional dynamicdogi
ineffective because there are no hard modal sub-problems tphig project will require more optimisation, as propositi
cache. Normalisation is largely ineffective here becahse t dynamic logic is harder than the logics we are currently han-
formulae are already in conjunctive normal form. dling, and will give us further opportunities to investigahe
None of the heuristics are particularly effective with this gptimisation of satisfiability reasoners. We are also perfo
test suite, so changing heuristics made little differefidee  jng more testing of the optimisations we are putting into our
JW heuristic is ineffective because the disjuncts are ramiylo  provers and we plan to create a test suite that emphasizes the
generated modal sub-formulae, and the large number of difyodal nature of description logics.
ferent possibilities means that any given sub-formula is un  FaCT is available attp://iww.cs.man.ac.uk/ horrocks; the
likely to occur in many disjunctions. The oldest-first hedri  p|p prover is currently under development, but the version

tic is ineffective because, for formulae in conjunctivemat  ysed in these tests is availablenap://imww-db.research.bell-
form, every disjunction at depth 0 has the same “age”. labs.com/user/pfps.

Table 3: Times for the GLEN KB
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