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Abstract

Effective systems for expressive description logics
require a heavily-optimised subsumption checker
incorporating a range of optimisation techniques.
Because of the correspondence between descrip-
tion logics and propositional modal logic most
of these techniques carry over into propositional
modal logic satisfiability checking. Some of the
techniques are extremely effective on various test
suites for propositional modal satisfiability and oth-
ers are less effective. Further, the effectiveness of a
technique depends on the test performed.

Description logic systems spend much of their time com-
puting subsumption relationships between descriptions. If the
system is based on an expressive description logic then the
amount of time spent computing subsumption can be intoler-
able, even for small knowledge bases, unless steps are taken
to heavily optimise this task. The total time spent in sub-
sumption checking comes from the number of subsumption
checks required to process a knowledge base as well as from
the time spent in performing the hardest of these subsumption
checks—with an expressive description logic, the time taken
by a small number of hard subsumption checks can dominate
the total time.

Two systems based on expressive description logics,
KRIS [1] and CRACK [3], have incorporated a number of op-
timisations to achieve better performance of their subsump-
tion checkers. These systems use various techniques to avoid
performing subsumption checks, and they also optimise the
subsumption check itself. Two other systems that explore
the optimisations required to build an expressive description
logic system are FaCT [9], a full description logic system, and
DLP [12], an experimental system providing only a limited
description logic interface. The subsumption checkers for
both FaCT and DLP incorporate a range of known, adapted
and novel optimisation techniques including lexical normal-
isation, semantic branching search, boolean constraint prop-
agation, dependency directed backtracking, heuristic guided
search and caching.

These optimisation techniques make a dramatic difference
to the performance of the overall system. As evidence, KRIS

is not able to load (a modified version of) a large medical
terminology knowledge base from the GALEN project [13]
because it gets stuck trying to perform one of the thousands
of required subsumption tests. FaCT and DLP, which have
higher levels of optimisation, are able to easily load this
knowledge base, classifying over two thousand definitions in
about two hundred seconds.

Because FaCT and DLP incorporate several optimisations
we have investigated which of these optimisations are most
effective. We would have liked to perform this investigation
using a sample of description logic knowledge bases that in-
corporate hard problems for description subsumption. Un-
fortunately such knowledge bases are currently uncommon,
largely because existing description logic systems have been
unable to effectively process them.

However, there are other sources of hard description logic
subsumption problems! FaCT and DLP implement a superset
of the propositional modal logicK4(m). A number of testing
methodologies have been established for propositional modal
logics [8, 7, 10] and we have used these to perform exper-
iments comparing the effectiveness of the various optimisa-
tions built into FaCT and DLP.

1 The Description Logic ALCR+

Both FaCT and DLP implement a superset ofALCR+ ,
but this DL is adequate to demonstrate their optimisations.
ALCR+ is built up from atomic concepts and two kinds of
atomic roles, non-transitive roles and transitive roles. Con-
cepts inALCR+ are formed using the grammarA | ⊤ | ⊥ |
¬C | C ⊓ D | C ⊔ D | ∃R.C | ∀R.C | ∃T.C | ∀T.C, where
A is an atomic concept,C andD are concept expressions,R
is a non-transitive role, andT is a transitive role.

The semantics ofALCR+ is a standard extensional seman-
tics, as given in Table 1.

Systems that are based on description logics likeALCR+

generally determine whether a subsumption holds by trans-
forming the subsumption question into a satisfiability ques-
tion in the obvious manner. They then attempt to construct a



Syntax Semantics
A AI ⊆ ∆I

⊤ ∆I

⊥ ∅
¬C ∆I − C

I

C ⊓ D C
I ∩ D

I

C ⊔ D C
I ∪ D

I

∃R.C {d ∈ ∆I | R
I(d) ∩ C

I 6= ∅}
∀R.C {d ∈ ∆I | R

I(d) ⊆ C
I}

∃T.C {d ∈ ∆I | T
I(d) ∩ C

I 6= ∅}
∀T.C {d ∈ ∆I | T

I(d) ⊆ C
I}

Table 1: Semantics ofALCR+ concept expressions

model for this concept, using a tableaux method. During this
process, various nodes are created, where each node repre-
sents an individual, and tells whether the individual belongs
to various concepts. This set of concepts is said to form the
label of the node—denotedL(x).

The basic algorithm starts out with a single node repre-
senting an individual that must be in the extension of the con-
cept being tested for satisfiability. This concept is expanded
to produce simpler concepts that must have the individual
in their extension. Disjunctive concepts give rise to choice
points in the algorithm.

Each existential role concept,∃R.C, causes the creation
of a new, related node representing another individual which
must be in the extension ofC. If a node is related to another
node via roleR, the second node is called anR-successor of
the first.

Universal role concepts augment the concepts that these
individuals must belong to. In order to guarantee termination,
transitive roles requireblocking: a check to ensure that no
other node has the same set of concepts—if so, the two nodes
can be collapsed into a cycle.1

If the algorithm constructs a collection of nodes where
there are no concept expressions that have not been expanded
and where there are no obvious contradictions, calledclashes,
at any of the nodes, then the collection of nodes corresponds
to a model for the initial concept. If the algorithm fails to
construct such a collection then the initial concept is unsatis-
fiable.

The details of the basic algorithm are fairly standard, and
can be found in [14].

2 Optimisation Techniques

A naive implementation of the tableaux method would be
much too slow to be used for subsumption testing in a de-
scription logic. DLP (and FaCT)2 therefore employ a range

1In this description logic all cycles are good—they can be inter-
preted as valid cyclical models.

2From now on we will often refer to DLP only, as it has a larger
set of optimizations, and incorporates the ideas from FaCT.

of known, adapted and novel optimisations that improve the
performance of the satisfiability testing algorithm.

DLP simplifies all concept expressions and converts them
into a lexically normalised form. In this form, concept ex-
pressions consist only of (possibly negated) atomic concepts,
conjunction concepts and universal role concepts: expres-
sions of the form∃R.C are transformed into¬(∀R.¬C) and
expressions of the form(D1⊔ . . .⊔Dn) are transformed into
¬(¬D1 ⊓ . . .⊓¬Dn). In addition, the sub-expressions form-
ing conjunctive concepts are sorted, and any duplicates elim-
inated. The normalisation process also identifies and simpli-
fies sub-expressions which are obviously satisfiable or obvi-
ously unsatisfiable, replacing them with⊤ or ⊥ respectively.
In extreme cases the need for a tableau expansion can be com-
pletely eliminated.

Lexically identical concepts are uniquely stored so that a
clash can be detected as soon as an expression and its lexi-
cal negation occur in the same node label. This can lead to
clashes being detected much earlier, eliminating the (possibly
costly) expansion which would have been required in order to
generate node label(s) containing clashing atomic concepts.

Description logic satisfiability tests typically deal withan
unexpanded disjunction(D1 ⊔ . . . ⊔ Dn) ∈ L(x) by search-
ing the possible models obtained by separately adding each of
D1, . . . , Dn, a technique known as syntactic branching [7].
In contrast, DLP uses a semantic branching search technique
adapted from the Davis-Putnam-Logemann-Loveland proce-
dure (DPLL). In semantic branching the branches are ob-
tained by separately addingDi and¬Di.

Because the two possible models generated at a semantic
branching point are strictly disjoint, there is no possibility of
wasted search. An additional advantage of using a DPLL-
based search technique is that a great deal is known about the
implementation and optimisation of this algorithm. In partic-
ular, both boolean constraint propagation and heuristic guided
search can be used to try to minimise the size of the search
tree.

Boolean constraint propagation (BCP) is a technique used
to maximise deterministic expansion, and thus pruning of the
search tree via clash detection [6]. Before semantic branching
is applied to the label of a nodex, BCP deterministically ex-
pands disjunctions inL(x) which present only one expansion
possibility and detects a clash when a disjunction inL(x) has
no expansion possibilities: in effect, BCP uses the inference
rule ¬C,C⊔D

D
to simplify the expression represented byL(x).

This can dramatically reduce the size of the search space, par-
ticularly when used in conjunction with semantic branching.

Inherent unsatisfiability concealed in sub-problems can
lead to large amounts of unproductive backtracking search
known as thrashing. DLP tackles this problem by adapting a
form of dependency directed backtracking calledbackjump-
ing, which has been used in solving constraint satisfiability
problems [2].



Backjumping labels concept expressions with a depen-
dency set indicating the branch points on which they depend.
When a clash is discovered, the dependency sets can be used
to identify the most recent branch point where exploring the
other branch might alleviate the cause of the clash. The al-
gorithm can then jump back over intervening branch points
without exploring alternative branches. Backjumping can
lead to dramatic reductions in the search space, but there is
some overhead caused by the evaluation and storage of the
dependency sets.

During a tableau expansion many identically labelled
nodes may be created, particularly as theR-successors for
a nodex each have the same concept expressions for the uni-
versal role concepts inL(x). DLP takes advantage of the
repetitive structure of a typical tableau by caching the satisfi-
ability result for each node label as it is evaluated. If a label
recurs, then there is no need to reevaluate the satisfiability
of that node: the previous satisfiability result can simply be
reused.

DPLL SAT algorithms often use heuristics to guide the
search by selecting the next disjunct on which to branch.
These heuristics typically try to maximise the effectiveness
of BCP by selecting disjuncts which occur frequently in small
disjunctions [5]. However, these techniques do not work well
with modal problems because they rely for their effectiveness
on finding the same disjuncts recurring in multiple disjunc-
tions. This is likely in non-modal problems, otherwise most
problems would be trivially satisfiable, but it is less likely
in modal problems where unsatisfiability can be caused by
modal sub-problems.

DLP tackles this problem by using a heuristic which tries
to maximise the effectiveness of backjumping. This is done
by branching first on a disjunction with the oldest dependen-
cies [9]. The disjunct within these disjunctions is chosen us-
ing Jeroslow and Wang’s weighted occurrences heuristic [11]
(the JW heuristic hereafter), a BCP-maximising heuristic.In
addition, DLP reduces the size of the search space by using
similar heuristic techniques to select the order in whichR-
successors of a node are expanded.

3 Comparing Optimisations

In order to determine which optimisations are effective, DLP
has configuration options to turn on and off or vary all of the
above optimisations. We have run DLP in various configu-
rations on several test suites. All statistics reported forDLP
are for runs on machines with approximately the speed of a
SPARC Ultra 1 and with 128MB of main memory.

The configurations that we tested are:

Oldest-JW: Select an oldest disjunction and use the JW
heuristic to select a disjunct in it and whether to branch
positive or negative first. This is the basis for the other
configurations below.

JW: Use the JW heuristic to select a disjunct from all dis-
junctions and whether to branch positive or negative
first.

Random, negative: Select a disjunct at random, and branch
negative on it first.

Random, positive: Select a disjunct at random, but do the
positive (instead of the negative) branch first.

No caching: Turn off caching.

No backjumping: Turn off backjumping

No semantic branching: Turn off semantic branching

No BCP: Turn off boolean constraint propagation

No normalisation: Turn off normalization

Unfortunately, we are not yet satisfied with the kinds of
tests that we have been able to perform. We would pre-
fer to test on actual description logic knowledge bases, as
that is what DLP is designed for. However, there are very
few description logic knowledge bases that use the more-
powerful constructs provided by DLP. Most of our testing
has thus been against test suites for propositional modal log-
ics, using the propositional modal logic interface for DLP.We
have tested against the test suite for the Tableaux’98 propo-
sitional modal logic comparison [8] and against a collec-
tion of random formulae initially generated by Hustadt and
Schmidt [10].

The Tableaux’98 test suite consists of several classes of
formulae (e.g.branch), in both provable and non-provable
forms, for each ofK, KT, andS4. For each class of for-
mula, 21 examples of supposedly exponentially increasing
difficulty are automatically generated from a basic pattern
which incorporates features intended to make the formulae
hard to solve. The test methodology is to ascertain the num-
ber of the largest formula of each type which the system is
able to solve within 100 seconds of CPU time.

The complete test suite contains 1,134 problems; Table 2
shows the total number of problems solved (within 100s of
CPU time) by various configurations of DLP and how many
of the provableS4 formulae were solved within the time
limit.

There is a wide variability between the different types of
formula, with some optimisations dramatically changing the
behaviour both quantitatively, in solving much more difficult
problems, and qualitatively, in changing from an exponential
growth in solution time to an almost-constant solution time.
This is illustrated by Fig. 1 which shows the actual solution
times for two classes of formulae with various optimisations
disabled. In one of these examples the qualitative improve-
ment is due to caching; in the other it is due to semantic
branching and backjumping.

The results indicate that the most effective optimisation for
this test suite is semantic branching. The next-most-effective
technique is caching, followed by backjumping. The benefits



Configuration Total S4 class
45 branch grz ipc md path ph s5 t4p

Oldest-JW 928 21 21 21 10 3 13 4 19 21
JW 915 21 18 21 10 3 8 5 21 21
Random, negative 907 21 18 21 10 3 12 7 3 21
Random, positive 868 21 18 21 10 3 9 7 4 21
No caching 839 21 21 21 8 7 9 4 8 21
No backjumping 863 21 21 21 7 3 3 4 5 19
No semantic branching 738 12 4 21 7 3 2 7 4 6
No BCP 910 21 21 21 9 3 13 4 17 21
No normalisation 901 21 21 21 10 3 8 6 13 21

Table 2: Total Tableaux’98 problems solved and ProvableS4 problems solved

from semantic branching, however, are concentrated in a few
classes of formulae, such asbranch andt4p in Table 2, which
were designed to have large amounts of redundant syntactic
search. Semantic branching avoids this redundant search and
thus does much better on these classes of formulae. Caching
is very effective on this test suite because of its large amount
of structure, which results in the frequent repetition of sub-
problems.

The heuristics were only effective for some classes of prob-
lem in this test suite. In some classes the JW heuristic was
good, such ass5 in Table 2, and in others it resulted in worse
performance, but overall it actually resulted in fewer prob-
lems being solved than using the simpler oldest-first heuris-
tic. This is probably due to the fact that the JW heuristic
is designed for non-modal problems whereas the oldest-first
heuristic enhances backjumping.

Our second propositional modal logic test suite uses a com-
mon method for testing SAT decision procedures [4] that
has been adapted for use with propositional modalK by
Giunchiglia and Sebastiani [7], and further refined by Hus-
tadt and Schmidt [10]. The method uses a random generator
to produce formulae, with the characteristics of the formulae
being controlled by a number of parameters. Each formula
is a conjunction ofL K-clauses, where aK-clause is a dis-
junction of K elements, each element being negated with a
probability of 0.5. An element is either a modal atom of the
form∀R.C, whereC is itself aK-clause, or at the maximum
modal depthD, a propositional variable chosen from theN
propositional variables which appear in the formula. Hustadt
and Schmidt used two sets of formulae, denotedPS12 and
PS13, choosingN = 4 andN = 6 respectively, withK = 3
andD = 1 in both cases. The test sets are created by varying
L fromN to30N , giving formulae with a probability of satis-
fiability varying from≈1 to≈0, and generating 100 formulae
for each integer value ofL/N .

The median times required to test the satisfiability of the
PS12 formulae using various configurations of DLP are given
in Figure 2. The results forPS13 are generally similar.

The most effective optimisation for this test suite is again
semantic branching. Random problems can have large
amounts of overlapping search between the different dis-

Figure 1: Solution times for two Tableaux’98 tests

juncts in a disjunction, which semantic branching avoids.
The two next-most-effective optimisations are backjumping
and boolean constraint propagation, with backjumping be-
ing more effective for intermediate values ofL/N , where the
“harder” problems arise, and boolean constraint propagation
being more effective for the larger values ofL/N , where the
formulae are severely overconstrained, so there is consider-
able scope for simplification whenever a branching choice is
made. The effectiveness of boolean constraint propagation
also helps to explain the effectiveness of semantic branching
for the overconstrained formulae, as syntactic branching does
not allow as much boolean constraint propagation.

The other optimisations are much less effective in this
suite. In particular, caching is not effective at all. This is be-



Figure 2: Median solution times forPS12 formulae

Configuration Time (s)
Oldest-JW 264
JW 487
Random, negative 472
Random, positive 203
No caching 4808
No backjumping >10000
No semantic branching 199
No BCP 251
No normalisation 223

Table 3: Times for the GALEN KB

cause, with such a small number of literals, the purely propo-
sitional problems at depth 1 can always be solved determin-
istically, and performance is therefore dependent on the effi-
ciency of propositional reasoning at depth 0. Caching is thus
ineffective because there are no hard modal sub-problems to
cache. Normalisation is largely ineffective here because the
formulae are already in conjunctive normal form.

None of the heuristics are particularly effective with this
test suite, so changing heuristics made little difference.The
JW heuristic is ineffective because the disjuncts are randomly
generated modal sub-formulae, and the large number of dif-
ferent possibilities means that any given sub-formula is un-
likely to occur in many disjunctions. The oldest-first heuris-
tic is ineffective because, for formulae in conjunctive normal
form, every disjunction at depth 0 has the same “age”.

Although the Tableaux’98 and random test suites show
how our optimisations perform on propositional modal logics,
neither is very good for our purposes. One test with a knowl-
edge base that we have been able to do is to take the GALEN

knowledge base and construct versions of it that are accept-
able to FaCT, DLP and KRIS. KRIS was unable to process
this knowledge base within four hours, but both FaCT and
DLP can process it in about 200 seconds. The times for the
various configurations of DLP loading this knowledge base
are given in Table 3.

In this test the most important optimisation is backjump-
ing, followed by caching. Semantic branching is not effective
in this knowledge base—in fact, turning semantic branching
off results in the fastest configuration. We do not understand

why this is—perhaps in the GALEN knowledge base there are
seldom any cases where adding the negation of a disjunct af-
fects the other elements of the disjunction and the results sim-
ply reflect the additional complexity of semantic branching.

4 Summary
The collection of optimizations we have described are effec-
tive in improving the speed of modal propositional logic rea-
soners, as shown by the results we have given above. They
can also dramatically improve the speed of subsumption rea-
soning on description logic knowledge bases. To our knowl-
edge some of these improvements have not been investigated
in the modal propositional reasoning literature. The combina-
tion appears to be unique and, moreover, results in a powerful
reasoner for the propositional modal logicsK, KT, andS4.

The optimisations are not uniformly effective. In particu-
lar, semantic branching is extremely effective on constructed
hard problems and on random satisfiability problems, but not
on the GALEN knowledge base. We plan to perform more
experiments on knowledge bases to see if semantic branch-
ing is indeed ineffective on them. The two other optimisa-
tions that are the most effective are backjumping and caching.
These two optimisations make the difference between accept-
able and ridiculous performance in many of the tests. Their
absence in previous description logic systems has made them
unacceptablely slow.

We, along with Enrico Franconi of IRST, are embarking
on a project to create a description logic system for a descrip-
tion logic that corresponds to a propositional dynamic logic.
This project will require more optimisation, as propositional
dynamic logic is harder than the logics we are currently han-
dling, and will give us further opportunities to investigate the
optimisation of satisfiability reasoners. We are also perform-
ing more testing of the optimisations we are putting into our
provers and we plan to create a test suite that emphasizes the
modal nature of description logics.

FaCT is available athttp://www.cs.man.ac.uk/ horrocks; the
DLP prover is currently under development, but the version
used in these tests is available athttp://www-db.research.bell-
labs.com/user/pfps.
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