
In Search of Effectful Dependent Types

Matthijs Vákár
Magdalen College

University of Oxford

A thesis submitted for the degree of
Doctor of Philosophy

Trinity 2017

To my parents,
Hilde and László,

and grandparents,
Gé, Dick, Imi and László,

for their extraordinary selflessness.

Time’s fun when you’re having flies.

— Kermit the Frog

Acknowledgements

Personal

This thesis is the result of many years of academic and social support from far
more people than I could list here.

I would like to thank Samson Abramsky for giving me the fantastic and unique
opportunity of almost limitless freedom to pursue my academic interests under his
guidance and encouragement for the past years and for sharing his experience and
wisdom on how to navigate academic life whenever I needed advice. In addition
to Samson, I’ve had the joy of having Radha Jagadeesan as a collaborator and,
effectively but unofficially, cosupervisor. His optimism and excitement about our
project as well as his kindness as a person were a huge source of support for me.
I would like to point out that I (acting as primary author) was lucky to produce
the work on coherence space and game semantics for dependent types included in
this thesis in collaboration with both Radha and Samson.

I am very thankful to Nick Benton for taking me on as an intern at Microsoft
Research Cambridge, despite my theoretical background, and for patiently and
in a fun way teaching me so much about practical computer science and software
engineering. My thanks go out also to my examiners, Aleks Kissinger, Kobi
Kremnitzer, Guy McCusker, Luke Ong and Sam Staton, as well as the numerous
anonymous conference and journal referees who read my work and provided
impressively precise and useful feedback. I learned a lot from visiting Bath,
Birmingham, Bristol and Paris, which I owe to Fanny He, Neel Krishnaswami,
James Ladyman and Alexis Saurin. I would further like to thank Hongseok Yang
and Paul Levy for the discussions on programming language theory and Urs Schreiber
for explaining to me his thoughts on linear dependent type theory. Further, it’s
been lots of fun and a great learning experience to get to collaborate (and lift
weights!) with my good friend Neil Dhir.

More broadly, I am thankful to the Departments of Computer Science – parti-
cularly the Quantum Group –, of Statistics and of Engineering at the University
of Oxford for providing such a fascinating and friendly academic environment.
Particularly, my experience in Oxford would have been much less enjoyable and
educational if it hadn’t been for the many discussions of logic over coffee with
Alex Kavvos, Kohei Kishida and Norihiro Yamada. I am grateful to Destiny Chen

and Julie Sheppard for their spectacular administrative support and for making
sure I never failed to leave their offices with a smile. I am highly indebted to my
friendly colleagues at MSR Cambridge, like Jonathan Balkind, Tony Hoare and
Claudio Russo, who made my time there a real treat.

Before my time in Oxford, I was very fortunate to be inspired and supported in
my ambition to pursue a doctorate, by many of the excellent professors I’ve been
lucky enough to have been taught by. In particular, I am very thankful to Heinz
Hanßmann, Jan Hogendijk, Peter Johnstone, Corry Samson and Paul Ziche for
being such marvellous academic rôle models. Similarly, I am highly indebted to my
friends Dejan Gajic and Joost Nuiten, whose intelligence and work ethic I always
hugely admired during our time together in Amersfoort and Utrecht.

It’s been an especially incredible gift to get to spend this period of academic
and personal development in an inspiring environment like Oxford. I am very
thankful for the stunning physical environment, all the interesting academic events,
but most of all for the totally extraordinary people I’ve had the privilege to meet
there. In particular, I feel I’ve been very blessed to have wonderful friends here like
Carlos, Christoph, Claudia, Jerome, Karine, Marieke, Molly, Paul and Santhy, as
well as the support of the Oxford Thich Nhat Hanh sangha, the Clarendon Scholars
community and my friendly housemates at 20 Tyndale Road. During the end of
my time in Oxford, it was so meaningful and uplifting to write up together with
Jenna and to be inspired by her optimism and empathy.

Finally, I cannot imagine what my life would have looked like without my
caring family and my long-time friends Bart, Carien, Ewout, Hambo, Julius, Meike,
Pieter, Temple, Victor and my Descartes College chums. I am very grateful to
Gina for her love during many of the past years. Thanks to all of you for putting
up with me! I can only hope to have given you as much joy and support as
you have given me over the years.

Institutional

I am enormously grateful to the EPSRC, the Clarendon Fund and the Department
of Computer Science at the University of Oxford for funding this endeavour.
Many diagrams in this thesis were produced using Paul Taylor’s commutative
diagrams package.

There are only two kinds of programming languages:
those people always bitch about and those nobody
uses.

— Bjarne Stroustrup

Abstract

Real world programming languages crucially depend on the availability of com-
putational effects to achieve programming convenience and expressive power as
well as program efficiency. Logical frameworks rely on predicates, or dependent
types, to express detailed logical properties about entities. According to the
Curry-Howard correspondence, programming languages and logical frameworks
should be very closely related. However, a language that has both good support
for real programming and serious proving is still missing from the programming
languages zoo. We believe this is due to a fundamental lack of understanding of how
dependent types should interact with computational effects. In this thesis, we make
a contribution towards such an understanding, with a focus on semantic methods.

Our first line of work concerns a dependently typed version of linear logic (which
can be seen as a calculus for commutative effects). We develop a dependently typed
dual intuitionistic linear logic as well as a sound and complete categorical semantics
using certain indexed monoidal categories satisfying a comprehension axiom. We
present a range of models, based on monoidal families, commutative effects, a double
gluing construction, domains and strict functions and coherence spaces.

Our second line of work develops a game semantics for dependent type the-
ory, which had so far been missing altogether. We show that, if we work with
deterministic well-bracketed history-free winning strategies, the semantics satisfies
a full and faithful completeness result with respect to call-by-name dependent
type theory for a hierarchy of types built from certain finite inductive families.
We show that by relaxing the notion of strategy, we can further model various
effects rather than the pure type theory.

Our final line of work explores a generalisation of Levy’s call-by-push-value
(CBPV) to encompass dependent types. We show that the syntax of CBPV naturally
extends to a calculus we call dCBPV- in which types are allowed to depend on
values but not computations. We show it has an elegant categorical semantics and
a well-behaved operational semantics and that it admits a wide range of models
arising from indexed monads on models of pure dependent type theory and from
models of linear dependent type theory. By contrast with the simply typed situation,
however, it does not suffice to encode call-by-value and call-by-name versions of
dependent type theories with unrestricted effects. To obtain those, we need a richer
calculus dCBPV+ with a Kleisli extension principle for dependent functions, which
turns out to be less well-behaved from a semantic point of view.

(...) Livet maa forstaaes baglaends. Men (...) maa
leves forlaends.

Life can only be understood backwards; but it must
be lived forwards.

— Søren Kierkegaard Contents

1 Introduction 1
1.1 Motivation . 1

1.1.1 The Limits of Logic and the Conception of Computers . . . 1
1.1.2 Terms and Types . 2
1.1.3 Programming Requires More Terms: Effects 4
1.1.4 Logic Requires More Types: Dependent Types 5
1.1.5 Effects as Proofs of Modal Propositions 6
1.1.6 CBV, CBN and Half-Modalities 8
1.1.7 The Relationship Between Proving and Programming 9
1.1.8 Why Unify Proving and Programming? 10

1.2 Goals of This Thesis . 11
1.3 Key Contributions . 13
1.4 Thesis Outline . 15

2 Preliminaries 17
2.1 Cartesian Type Theory . 17

2.1.1 Syntax of Type Theories . 18
2.1.2 Categorical Semantics . 26

2.2 Call-By-Push-Value and Effectful Simple Type Theory 33
2.2.1 Syntax . 34
2.2.2 Categorical Semantics . 40
2.2.3 A Few Words about Models 42
2.2.4 Operational Semantics . 44
2.2.5 Adding Effects . 45

2.3 Linear Types . 49
2.3.1 Categorical Semantics . 50
2.3.2 Syntax . 51
2.3.3 Girard Translations . 52
2.3.4 Concrete Models . 54

2.4 AJM Game Semantics . 61

ix

x Contents

3 Linear Dependent Type Theory 73
3.1 Syntax of dDILL . 76
3.2 Semantics of dDILL . 85

3.2.1 Models of dDILL (Tautologically) 86
3.2.2 Categorical Semantics of dDILL 89

3.3 dLNL Calculus . 111
3.4 Girard Translations . 113
3.5 Concrete Models . 116

3.5.1 Some Discrete Models: Monoidal Families 116
3.5.2 Commutative Effects . 121
3.5.3 A Double Glueing Construction 121
3.5.4 Scott Domains and Strict Functions 124
3.5.5 Coherence Spaces . 125

4 Games for Dependent Types 139
4.1 An Indexed Category of Dependent Games 142
4.2 A Category with Families of Context Games 149
4.3 Semantic Type Formers 1, Σ, Π and Id 159
4.4 Ground Types: Finite Dependent Games 164
4.5 Soundness, Faithfulness and Completeness 167

4.5.1 Soundness and Faithfulness 167
4.5.2 Full Completeness . 169

4.6 Dependent Games for Effects . 178
4.6.1 Recursion . 180
4.6.2 Local Ground References . 181
4.6.3 Finite Non-Determinism . 182
4.6.4 Control Operators . 183
4.6.5 Lessons for Combining Dependent Types and Effects 184

5 Dependently Typed Call-by-Push-Value (dCBPV) 187
5.1 Dependent Types and Effects? . 191
5.2 dCBPV without Dependent Kleisli Extensions (dCBPV-) 194

5.2.1 Syntax . 194
5.2.2 Categorical Semantics . 198
5.2.3 Some Basic Models . 203
5.2.4 Operational Semantics and Effects 205

5.3 dCBPV with Dependent Kleisli Extensions (dCBPV+) 207
5.3.1 Syntax . 207
5.3.2 Categorical Semantics . 210
5.3.3 Some Basic Models and Non-Models 212

Contents xi

5.3.4 Operational Semantics and Effects 217
5.4 Dependent Projection Products? . 220
5.5 Dependent Kleisli Extensions: a Bug or a Feature? 223

5.5.1 Unrestricted Effects and Dependent Types? 223
5.5.2 Fundamentalist vs Pragmatic Dependent Types 224

5.6 Dependent Enriched Effect Calculus and More Connectives 226
5.7 Comparison with HTT . 236

6 Conclusions and Future Work 239
6.1 Conclusions . 239
6.2 Future Work . 242

6.2.1 Linear Dependent Functions 242
6.2.2 Stable Homotopy as Effectful Homotopy? 242
6.2.3 Dependently Typed Quantum Programming? 242
6.2.4 Extending CBN Game Semantics for Dependent Types . . . 243
6.2.5 Game Semantics for dCBPV 244
6.2.6 Certified Real-World Programming in dCBPV- 244

Appendices

A Summary for a General Audience 249

References 253

xii

Logic, like whiskey, loses its beneficial effect when
taken in too large quantities.

— Lord Dunsany

1
Introduction

1.1 Motivation

1.1.1 The Limits of Logic and the Conception of Com-
puters

Logic and computer science have been intimately related since the latter’s early days

[1–3]. Indeed, the precise modern concept of computability1 was rapidly formalised

in the early 1930s by a group of logicians, motivated, at least in part, by questions

in foundations of mathematics like Hilbert’s Entscheidungsproblem. Particularly

notable is that a wide range of formalisations of the concept of computability

were proposed in short succession, many of which were proven to be equivalent in

the so-called Church-Turing thesis. This “confluence of notions” of computation

included but was by no means limited to

• Herbrand-Gödel computable functions (or general recursive functions), a

scheme for axiomatising effectively computable functions, introduced in the af-

termath of Gödel’s study of his incompleteness theorems, which demonstrated

the limits of axiomatic systems to formalise mathematics;

1Following centuries of more informal descriptions of special cases of algorithms and computing
machines, dating back at least to Euclid.

1

2 1.1. Motivation

• Church’s λ-calculus, a formal language for defining functions that can now

be seen as a failed attempt at providing a foundation of mathematics: it

turned out to be inconsistent as a logic; in hindsight, one could argue that

this was one of the first real programming languages, however, for writing

algorithms or programs rather than proofs; modern functional languages

still closely resemble it;

• Kleene’s µ-recursive functions, which clearly show how the expressive power

of general computable functions can be obtained from the weaker previously

studied scheme of primitive recursive functions: by adding a minimisation

operator, closely related to the fixpoint combinators definable in the (untyped)

λ-calculus;

• Turing machines, giving a universal notion of hardware on which computation

can be performed.

Of course, it would still take more than a decade of clever engineering to transform

this theoretical groundwork into a working practical computer. For excellent

accounts of this fascinating history, we refer the reader to [1–3].

1.1.2 Terms and Types

To restore the logical consistency of his system, Church introduced devices called

types2, to classify the terms of his λ-calculus (the programs, if we view the

calculus as a programming language). From a modern point of view, we can

think of types as providing guarantees about a term (algorithm), for instance by

putting certain (extensional) restrictions on the inputs it takes and the outputs

it produces or (intensional) restrictions on the manner in which the outputs

are computed from the inputs.

Types were originally introduced by Church for foundational reasons to restore

the consistency of the λ-calculus as a logic. We must remember that the untyped
2The inconsistency is caused by self-application which allows us to construct Russell’s paradox

in the untyped λ-calculus. Note that types had been previously introduced by Russell already to
circumvent the same paradox in Cantor’s naive set theory.

1. Introduction 3

Type theory Programming Intuitionistic Logic
Type A (Data) Type A Proposition A
Term b : B Program b with output of type B Proof b with conclusion B
Typing context x1 : A1, . . . , xn : An Inputs of type A1, . . . , An Assumptions A1, . . . , An
Conversion b; b′ : B Execution b; b′ : B Proof normalization b; b′ : B
Product type A×B Type of pairs of type A and B Conjunction A ∧B
Sum type A+B Disjoint union of types A and B Disjunction A ∨B
Function type A⇒ B Type of (first class) functions from A to B Implication A⇒ B
Singleton type 1 void (Type of returning commands) True
Empty type 0 error (Type of non-returning commands) False
Parametric polymorphism ΠA Generics 2nd-order quantification ∀A

Figure 1.1: An informal sketch of some instances of the Curry-Howard correspondence.

λ-calculus was already a fine (albeit primitive) programming language! It is perhaps

surprising, therefore, that types have turned out to be of huge practical value in

software development, the main reason being that simple type annotations happen

to catch many of the most common bugs introduced by programmers before the

program is run. Moreover, types provide a useful abstraction of programs that

helps programmers think about their code and certainly make it much easier to

read code written by others. It is not a coincidence that the top four programming

languages in the TIOBE Index of popular programming languages (Java, C, C++

and C#) all have a strongly enforced type system [4].

The motivations for types outlined in the previous paragraph are rather prag-

matic in nature. A more principled motivation for types comes from the Curry-

Howard correspondence, which suggests that some type theories, the simply

typed λ-calculus being the prime example, can be interpreted both as a programming

language and as an (intuitionistic3) formal logic.

Informally, a type theory is a calculus for constructing terms (the programs or

proofs) in a compositional way, starting from certain basic building blocks, subject

to the restrictions on their inputs and outputs (or assumptions and conclusions)

imposed by the types (or propositions). It can also be used to reason about the

equality and conversion (execution/evaluation behaviour or proof normalization)

of these terms. This dual reading of a type theory as a programming language

and a logic is very roughly summarised in figure 1.1.
3In the sense that the principle of double negation elimination does not hold: not not A does

not imply A. Note that such a formalism is strictly more expressive than classical logic as the
latter is precisely the fragment of the former consisting of the doubly negated propositions.

4 1.1. Motivation

In particular, simple type theory (or the simply-typed λ-calculus) can not only

be viewed as a primitive programming language, but also as a formalism for writing

(natural deduction style) proofs for intuitionistic (implicational4) propositional logic.

1.1.3 Programming Requires More Terms: Effects

The simply typed λ-calculus is a rather unexpressive programming language, even

when enriched with ground types for booleans and natural numbers (the so-called

Gödel system T). Indeed, it can only define primitive recursive functionals (a

generalization of the class of primitive recursive functions to a system with higher

types), in particular functions that always terminate, and we do not have the

power of general recursion available: it is not Turing complete. In fact, just as

important in practice as mere expressive power5 is the practical convenience

that general recursion schemes provide for programmers: some primitive recursive

functionals can be defined more conveniently using general recursion, as we do

not have the burden of proving termination6.

The reason the untyped λ-calculus was inconsistent as a logic turned out to

be that the absence of types made so-called fixpoint combinators definable. We

now know (as was already foreshadowed by Kleene’s µ-recursive functions) that

these are the crucial ingredient on top of primitive recursion in defining general

computable functions.

One can explicitly add such fixpoint combinators to the syntax of a simply

typed λ-calculus to have the expressive power of general recursion in a typed setting.

However, the resulting language, known as PCF if we start from system T, is

again inconsistent as a logic, as programs involving a fixpoint combinator do not
4Of course, we can add product and sum types to the simple λ-calculus to get a correspondence

with full intuitionistic propositional logic.
5For instance, it is well-known that such a language of total functions cannot define its own

interpreter. [5]
6For instance, writing a program that computes the same function as the simplex algorithm

for linear programming would be possible in a language without general recursion by looping over
the (finite) number of vertices in the polytope. However, such a solution would be more effort
to implement and less efficient than the usual general recursive solution using a while loop as it
would involve at the very least computing from the problem specification the number of vertices
in the simplex.

1. Introduction 5

correspond to acceptable proofs. Such programs which do not correspond to logical

proofs are often called effectful and they are of crucial importance in real world

software development. By contrast, programs corresponding to proofs are called

(purely) functional. As purely functional code tends to be less error-prone and

easier to reason about, a lot can be said in its favour.

However, in software engineering practice, pure functionality is often too much of

a restriction, for reasons of efficiency, expressivity or mere programmer convenience.

We have already seen the example of general recursion, which is an important feature

in real programming languages. Another example of a class of effects are those

that are introduced to give the programmer the option of more explicit low-level

manipulation of the way the program is executed on the available hardware. A

prime concrete example is the explicit manipulation of memory (or state). This

can lead to a reduced (time and space) resource consumption. It can also make

a certain algorithm easier to understand and implement for the programmer7. In

other cases, effectful behaviour is an essential part of the specification of a program:

for instance, we may want a program to generate a random number, to process

keyboard input provided by the user, to generate output to a display or we may

want to write a program that never terminates, like an operating system or a

server, or to implement a counter.

We conclude that type theories require various extra terms, called (computatio-

nal) effects, in order to constitute a practical programming language. Since these

extra terms do not correspond to logical proofs, this renders the type theory of

a practical programming language inconsistent as a logic.

1.1.4 Logic Requires More Types: Dependent Types

At the same time, we may observe that while many real world programming langua-

ges implementing such effectful type theories have a type system implementing

the equivalent of the logical connectives of propositional logic (so-called simple types)
7 An example is given by matrix multiplication. Of course, one can give a purely functional

implementation, representing matrices as lists of lists on which we recurse, but it would be
complicated and inefficient compared to the obvious imperative definition.

6 1.1. Motivation

and even the equivalents of some higher-order predicates and quantifiers (so-called

parametric polymorphism or generics), the equivalents of first-order predicates

and quantifiers (so-called dependent types) are missing. However, these first-order

quantifiers are of crucial importance in logical frameworks that are sufficiently

expressive to be useful to formalise mathematics. From a programming point

of view, such dependent types allow us to assign more precise types to existing

programs of the simple λ-calculus, expressing detailed and useful program properties

which a program that type checks is guaranteed to satisfy.

This means we are faced with a choice, at the moment: either we choose a

language with many programs (an effectful programming language) while accepting a

type system missing dependent types or we choose to have many types (a dependently

typed language) and accept the lack of effects. All practical programming languages

are in the former camp (e.g. Java, C++, Python, OCaml, Go) while the languages

in this camp are inconsistent as a logic. The languages in the latter camp (e.g. Coq,

Agda) can be useful as a logic or proof-assistant, but the lack of effects usually

renders them impractical as programming languages.

1.1.5 Effects as Proofs of Modal Propositions

A first important issue to address if one wants to close the gap between programming

languages and logics is the logical inconsistency introduced by effects. Effects need

to be excluded from proofs, in order to retain their logical consistency (otherwise,

using for instance general recursion, we could trivially construct a proof of any

proposition), but not from programs. One possible way of solving this issue is to

introduce new types of which the possibly effectful programs will be inhabitants,

while keeping the inhabitants of other types pure. In such a formalism, not all types

are propositions, just the ones whose terms are pure computations, not involving

effects. In addition to restoring the logical consistency of the type theory, such a

typing discipline makes it easier to reason about programs, as it is immediately

clear from the type system which effects may occur in terms.

1. Introduction 7

A particularly pleasing such formalism is given by (strong) monads, which

can be used to encapsulate effects [6, 7]. The idea is that code is by default pure,

unless specified otherwise by the type system. For example, a program of type

N⇒ N is a primitive recursive functional from natural numbers to natural numbers,

but a program of type N⇒ TrecN may be a general recursive function, where Trec

is a (strong) monad that makes fixpoint combinators available.

Particularly pleasing is that such (strong) monads T can in fact be given a

logical interpretation. Under the Curry-Howard correspondence, they correspond

to certain diamond modalities 3 on the level of logic (sometimes called lax

modalities and written ©) [8]. This means that we can interpret the effectful

programs of type A ⇒ TB as all the extra proofs of A ⇒ 3B that do not arise

from proofs of A⇒ B, if you will all the derivations starting from A of “possibly

B” that aren’t also proofs of B.

A point that is often elaborated on is that many such modalities may already

be definable in a pure type theory. For instance, global state can be emulated with

a modality S ⇒ ((−)× S), errors with a modality (−) + E, non-determinism with

a powerset modality P(−) (if our pure type theory is a higher-order logic) and

printing with a modality (−)×M where M is some internal monoid in the type

theory. Another concrete example would be the double negation modality ¬¬(−) or,

more generally, continuation modalities ((−)⇒ R)⇒ R, which make the classical

principle of Peirce’s law (equivalent to double negation elimination) available from

a logical point of view and the (universal) control operator call/cc from the

point of view of programming languages [9]. In this sense, (constructive8) classical

propositional logic is at the same time a simply typed programming language as well:

not a purely functional one, but one enriched with constructs for non-local control

flow. Another interesting modality Dist(−) is that of probability distributions,

which, when definable in a pure type theory, lets us emulate probabilistic choice.

It is interesting to note that one would define Dist(X), for a discrete type X, as
8Constructive in the sense that double negation elimination is not an isomorphism of types.

This means that we avoid equating all terms of the same type, which would otherwise happen
according to Joyal’s lemma [10].

8 1.1. Motivation

the type Σf :X⇒R+ IdR+(
∫
f, 1) of pairs of a positive real valued function f : X ⇒ R+

and a proof p : IdR+(
∫
f, 1) that f sums (or integrates) to 1. We see that in order

to define such modalities, we need, in particular, dependent type formers Σ and

Id corresponding to existential quantification and identity predicates.

Such definable modalities allows us to emulate certain computational effects in a

pure language. We would like to stress, however, that to treat effects natively with

their intended custom operational semantics, rather than the emulation inherited

from the conversions of the pure type theory, modalities should explicitly be

added to the type system as new type formers and effects as new term formers

which inhabit these types.

1.1.6 CBV, CBN and Half-Modalities

Recall that in pure functional languages the choice of an evaluation strategy

does not effect the result of computations, merely their efficiency. This is why

we call these languages declarative: they specify what should be computed, not

how it should be computed. The user does not need to know about the how; this

is left to the discretion of the compiler.

By contrast, the same is not generally true for languages with effects. Effects

tend to bring us into the realm of imperative languages: the evaluation strategy (the

order in which we evaluate the various parts of the program) can have a significant

impact on the result of computations, so we need to think about language constructs

not only in terms of what they compute but also in terms of how they compute it

in time. Here, it is important for the user to know which strategy is being used.

Two strategies are particularly studied from a theoretical point of view: call-by-

value (CBV) and call-by-name (CBN) evaluation. An important distinction

between the two is that in CBN function arguments are only evaluated when they are

needed, while in CBV they are always evaluated eagerly whether they are needed or

not. CBN evaluation can sometimes be preferable from a performance or correctness

point of view. On the other hand, in the presence of some effects, it can be difficult

1. Introduction 9

to reason about, which is why CBV evaluation is often preferred as the default option

in software engineering practice, with CBN being reserved for special situations.

An idea that we believe to be underemphasized in literature is the perspective

that it is instructive to further decompose a monad T into an adjunction F a U

(or the corresponding modality 3 into a pair of “half-modalities”) between two

type theories of values on the one hand and computations (and more generally

stacks) on the other, whose types we shall write A,A′, . . . and B,B′, . . . respectively.

This is the point of view taken by Levy’s call-by-push-value (CBPV). The

advantage is that we obtain an elegant language (simpler than a monadic language,

in many ways) for proofs and effectful computations with a single intuitive canonical

evaluation strategy that is expressive enough to encode both CBV and CBN

and many things in between.

In particular, if we define the monad T := UF and comonad9 ! := FU , we

recover (thunks of) CBV computations as the terms of type x : A ` a : TA′ and the

CBN computations as those of type x :!B ` b : B′. We see that the type system now

also provides guarantees about the evaluation strategy of programs. Meanwhile,

proofs can still be interpreted as general terms x : A ` a : A′ (including the proofs of

modal propositions which can also be read as thunked call-by-value computations).

1.1.7 The Relationship Between Proving and Programming

It is clear that a blunt statement of the Curry-Howard correspondence like “a

programming language is the same as a logic” is far from the truth. In fact,

even the weaker statement, which may be closer to the truth, that “every logic

extends to a programming language” does not accurately reflect the reality of

programming languages research at the moment, although it may be a possible

future that the field is trying to realise.

The relationship between programming languages and logics may be more

accurately summarised by figure 1.2, where we refer to pure languages without
9This corresponds to a certain box modality if we try to give the type theory for computations

a logical interpretation. As we shall see, it can be understood to define a certain generalization of
linear logic, hence the notation ! for the comonad.

10 1.1. Motivation

Pidgins more types (dependent types)
- Useful logics

Useful programming languages

more terms (effects)

? more types (dependent types)
- ?

more terms (effects)

?

Figure 1.2: The present relationship between type theories that can serve as a logic and
as a programming language: it is not clear what sort of type theory would be satisfactory
as both.

dependent types as pidgins (e.g. the pure polymorphic λ-calculus) as they can

be seen as simplified languages that can be interpreted both as a programming

language and as a logic but are not entirely satisfactory as either. So far, however,

it is not yet clear if there exists a Promised Land of genuine programming logics,

languages that can serve as both a useful programming language and logic by

combining dependent types and effects.

What is clear is that there is an inherent tension between the extensions of a

pidgin with effects and with dependent types. The extra terms introduced by the

former allow for wilder kinds of program behaviour while the extra types introduced

by the latter serve to tame the behaviour of a program.

1.1.8 Why Unify Proving and Programming?

One might wonder why we should be looking for such a Promised Land at all. In

fact, who promised such a land in the first place?

Firstly, it is of fundamental importance to both the disciplines of mathematical

logic and programming language research to be very precise about the relationship

between mathematical proofs and computer programs. The promise of a unification

of proving and programming has been repeatedly made either implicitly or explicitly,

given how intertwined both disciplines have been historically, how much cross

fertilisation has taken place and how many parallels have been sketched (often

under the name of a Curry-Howard correspondence). It is stunning that no precise

result exists yet to either show how to unify the notions of logic (using dependent

types) and practical programming (using effects) in a single language or to show

1. Introduction 11

that this cannot be done satisfactorily. Such a marriage or the demonstration of

its impossibility would provide conceptual clarity about the foundations about two

important disciplines that have been flirting with each other for eighty years.

Secondly, a combined system with dependent types and effects could provide

a very useful practical framework for writing verified software. It may give us

a single language to both write real world programs (making use of effects) and

prove their correctness (using the expressive logic embedded in the type system,

using dependent types). Currently, this often needs to happen in two separate

systems: a programming language and a proof assistant or another verification

tool. We are required to build a model of the program in the verification tool in

order to prove its properties. This transcription results in an overhead of work as

well as in an extra source of potential bugs10. It is both safer and more efficient

to directly prove properties of the production code.

1.2 Goals of This Thesis

The distal goal that this thesis can be understood to be pursuing is an understanding

of the precise relationship between logic and programming. The main motivating

questions for this line of work are the following three.

• How should we understand the relationship between logic and programming?

• Can we design languages that are simultaneously satisfactory as a programming

language and as a logic and in which both aspects of the language interact in

a meaningful way?

• Can we use such a language for certified real world programming?

The desire to answer these questions leads us to the more proximal goal of

understanding how dependent types (from the realm of logic) can be combined with

computational effects (which define real world programming languages):
10In fact, it turns out that the construction of such a model can in some cases be automated

using game semantics [11].

12 1.2. Goals of This Thesis

• Can we combine dependent types and computational effects in an elegant and

meaningful way?

We believe the goals and questions we are pursuing are of tremendous importance

both from a fundamental academic point of view and from the concrete point of view

of software engineering. If these hugely ambitious questions had a straightforward

answer, the community would have found it a long time ago. This thesis only

claims to make a small contribution to solving this difficult puzzle, while hoping

to illustrate both its relevance and complexity.

Concretely, this thesis describes three closely related lines of work:

1. Studying a dependently typed version of linear logic, in the sense of a

dependent type theory in which terms cannot be copied or discarded freely;

2. Providing a game semantics for dependent type theory, interpreting types

as games and their terms as strategies on these games;

3. Studying a dependently typed version of Levy’s call-by-push-value in the

presence of various effects.

These are closely related to the goals of thesis. Indeed, firstly, CBPV is a very useful

paradigm for understanding effectful languages and their relationship to logic as it

gives us a fine-grained way of controlling where effects are allowed to occur (and in

what order they should be evaluated) and what parts of a program should be pure.

Secondly, effectful computations and the stacks used to evaluate these behave

linearly in some sense. To be precise, they cannot be discarded in the syntax

of CBPV11. On a more conceptual level, we like to point out that effectful com-

putations can be dynamic, in the sense that their reductions generally break

equality, for instance for a non-deterministic choice we can have a reduction
11This corresponds to the structural rule of weakening not being valid. We generally, for non-

commutative effects, only consider contexts of at most one identifier of computation/stack type B,
meaning that the rule of contraction does not have any meaning. We shall later see, in theorems
2.2.5 and 2.3.5, that we can conservatively extend the syntax for stacks with a multiplicative
conjunction ⊗, or, equivalently, with linear contexts of longer length, if we are dealing with only
commutative effects.

1. Introduction 13

choose(return tt, return ff) ; return ff where the result, after the choice has

been made, should clearly not be considered ’equal’ to the initial computation

before the program makes a non-deterministic choice. This should be contrasted

with the static nature of values or pure computations (whose normalization does

not break equations). Dynamic objects, in particular, cannot be copied in the

usual sense, as both copies might later cease to be equal, and are in that sense

linear. In fact, we shall argue that linear logic can be seen as a type system for

commutative effectful computations.

Thirdly, game semantics has been perhaps the most successful paradigm for

providing a unified intuitive semantics for many effectful programming languages

and pure logics. We can hope to gain useful semantic intuitions for the problem of

how to relate effects to dependent types, here. Moreover, game semantics naturally

arises from a model of linear logic. Recall that game semantics is naturally effectful

in the sense that computational effects like state, non-termination and non-local

control have to be explicitly excluded by putting conditions on the strategies we

consider on games. Therefore, we believe, the current absence of a game semantics

for dependent types reflects the same lack of fundamental understanding of how

to relate logic to programming, particularly the question of how type dependency

should interact with effectful computations.

We encounter similar possibilities and obstacles in all three lines of work – for

instance, we need to decide if it makes sense to have types depend on dynamic

or linear objects – and the simultaneous study of these three topics has hugely

helped us to see a bigger picture emerge of what the Promised Land of genuine

programming logics might look like. We hope it will do the same for the reader.

1.3 Key Contributions

This thesis makes the following key contributions:

• Explaining the difficulty of combining dependent types with linear types, game

semantics and effects and presenting a way of still doing so in the following

sense;

14 1.3. Key Contributions

• Developing a syntax for dependently typed dual intuitionistic linear logic

(dDILL);

• Developing a categorical semantics for dDILL and the dependently typed

linear/non-linear (dLNL) calculus;

• Developing a range of concrete models for dDILL and dLNL, including a

coherence space semantics;

• Explaining the relationship with commutative effects;

• Presenting a game semantics for dependent type theory;

• Showing it has strong (full and faithful) completeness properties with respect

to CBN dependent type theory;

• Examining effectful game models of dependent types;

• Presenting a dependently typed call-by-push-value (dCBPV-) calculus;

• Developing its categorical semantics;

• Showing that dLNL models give models of dCBPV-, as do algebras for indexed

monads on models of pure dependent type theory;

• Showing that the operational semantics of dCBPV- is well-behaved;

• Showing that we need to extend dCBPV- to dCBPV+ with dependent Kleisli

extensions if we want CBV and CBN translations;

• Showing that dCBPV+ is less straightforward than dCBPV- from the point

of view of operational semantics and concrete categorical models...;

• ... and that the same goes for dCBPV- extended with dependent projection

products (additive Σ-types);

• As an alternative, presenting a dependently typed enriched effect calculus

(dEEC) and showing it to be very well-behaved.

1. Introduction 15

In the course of his doctoral studies, the author has communicated the majority of

the material included in this thesis in [12–17] and in various oral presentations.

1.4 Thesis Outline

We have chosen to present this work in the order in which the research was conducted,

to best convey to the reader the author’s motivations for studying the various topics.

Chapter 2 provides background material on CBPV, linear logic and game semantics,

all in simply typed form, as well as on (cartesian) dependent type theory. Most

material in these sections is not original, but we present it in a novel way, in order

to ensure a smooth transition to the rest of this thesis. Our first pillar of original

work is presented in chapter 3, which discusses a dependently typed version of

linear logic. This naturally leads us to chapter 4, where we discuss our second line

of work: a game semantics for dependent type theory. Our third and last topic,

a discussion of dependently typed CBPV, can be found in chapter 5. We end on

a discussion of our conclusions and future work in chapter 6.

We have tried to keep chapters 3, 4 and 5 as self-contained as possible (apart

from their dependence on the appropriate sections of chapter 2). Historically, our

three lines of work roughly relate to each other as follows. Following a question by

Samson Abramsky, we set off to construct a game semantics for dependent type

theory or to understand why none existed yet. As categories of games originate from

models of linear logic (categories of cofree !-coalgebras), this pushed us to investigate

the relationship between linearity and dependent types first. Later, we came to

understand the tension between game semantics and dependent types as arising

from the natural effectful character of unrestricted strategies. This understanding

made clear to us our bias in studying type dependency only in CBN game semantics

and generally focussing on Girard’s first (CBN) translation into linear logic. This

finally led to our study of dependently typed CBPV, which we now understand, after

realising that linear logic can be read as a calculus for commutative effects, as giving

a generalization of our work on linear dependent type theory to non-commutative

effects, providing, additionally, an account of operational semantics.

16

Knowledge is knowing that a tomato is a fruit; wisdom
is not putting it in a fruit salad.

— Miles Kington

2
Preliminaries

In this chapter, we present our views on simply typed linear logic, game semantics

and call-by-push-value, as well as on their relation to each other, in order to easily

be able to extend all three with a notion of type dependency in later chapters. We

start with a discussion of cartesian type theory, however. The material in this

chapter mostly consists of definitions and results published by other authors as well

as folklore results. In most cases, however, it is reformulated in a non-trivial way in

order to make developments in further chapters go through as smoothly as possible.

We hope that this novel presentation of known results can be of value in its own right.

2.1 Cartesian Type Theory

We briefly recall the syntax and semantics of simple (STT) and dependent type

theory (DTT). We describe a general syntactic and semantic framework for both,

in the context of which we can consider many theories (in the case of syntax) or

models (in the case of semantics). We discuss, in particular, two CBN type theories

STTCBN and DTTCBN, with respect to which the game theoretic models we discuss

in section 2.4 and chapter 4 have full and faithful completeness properties1.
1These are CBN type theories in the sense that we only demand a limited η-rule with some

(but not all) commutative conversions for ground types. As we shall see in section 2.2, the full
η-law is typically broken in effectful settings under CBN evaluation. If we were to demand the
fully general η-rule (which would automatically imply all commutative conversions), we would be

17

18 2.1. Cartesian Type Theory

2.1.1 Syntax of Type Theories
2.1.1.1 Dependently Typed Equational Logic

In this section, we briefly recall the framework of dependently typed equational

logic (sometimes called generalised algebraic theories [18]), which will serve as the

structural core type theory and on top of which we later consider two theories in

particular: a flavour of simple type theory (STTCBN) and a flavour of dependent

type theory (DTTCBN). This framework puts both flavours of type theory on an

equal footing and allows us to better study their relationship. We go into this

level of precision in our specification of the syntax we are modelling, in order

to accurately state the appropriate completeness results in sections 2.4 and 4.5.

Although much more informal, our treatment is close in spirit to those of [19] and

[20], to which we refer the interested reader for more background and where the

reader can find details on delicate topics like pre-syntax, α-conversion, identifier

binding and capture-avoiding substitution.

The key feature of a dependent type system is that we allow types to refer

to free identifiers from the context. The reader may want to keep in mind the

analogy that dependent types are to predicates what non-dependent types are to

propositions. One consequence is that order in the context becomes important as

all free identifiers in a type need to be declared in the context to its left. As types

can depend on terms in a dependently typed system and equations of terms can

lead to equations of types which can lead to new typing judgements, we define

all judgements together in one big inductive definition.

Judgements

Figure 2.1 presents the various kinds of judgements of dependently typed equati-

onal logic and their intended meaning. Here, Γ,Γ′, A, , A′, a and a′ are all symbolic

expressions from a set Expr, built from an alphabet Sym, in which we have countably

infinite designated subsets Idf of identifiers and Cons of constants. As usual, we

modelling pure type theory. We briefly note that the usual set theoretic semantics is fully and
faithfully complete for this pure type theory.

2. Preliminaries 19

Judgement Intended meaning
` Γ ctxt Γ is a valid context
Γ ` A type A is a type in context Γ
Γ ` a : A a is a term of type A in context Γ
` Γ = Γ′ Γ and Γ′ are judgementally equal contexts
Γ ` A = A′ A and A′ are judgementally equal types in context Γ
Γ ` a = a′ : A a and a′ are judgementally equal terms of type A in context Γ

Figure 2.1: Judgements of dependently typed equational logic.

Γ,Γ′ ` J ` Γ, x : A,Γ′ ctxt
WeakΓ, x : A,Γ′ ` J

Γ, x : A,Γ′ ` J Γ ` a : A
SubstΓ,Γ′[a/x] ` J [a/x]

(a) Weakening and substitution rules. Here, J represents a statement of the form B type,
B = B′, b : B, or b = b′ : B. Note that these rules, additionally, make contraction and
exchange rules derivable.

C-Emp` · ctxt
` Γ ctxt Γ ` A type x is fresh for Γ and A

C-Ext` Γ, x : A ctxt
` Γ, x : A,Γ′ ctxt

IdfΓ, x : A,Γ′ ` x : A

Γ = Γ′ ctxt Γ ` A = B ` Γ, x : A ctxt ` Γ′, x : B ctxt C-Ext-Eq` Γ, x : A = Γ′, x : B

(b) Context formation and identifier declaration rules.
` Γ ctxt C-Eq-R` Γ = Γ

` Γ = Γ′ C-Eq-S` Γ′ = Γ
` Γ = Γ′ ` Γ′ = Γ′′ ctxt C-Eq-T` Γ = Γ′′

Γ ` A type Ty-Eq-RΓ ` A = A
Γ ` A = A′ Ty-Eq-SΓ ` A′ = A

Γ ` A = A′ Γ ` A′ = A′′ Ty-Eq-TΓ ` A = A′′

Γ ` a : A Tm-Eq-RΓ ` a = a : A
Γ ` a = a′ : A Tm-Eq-SΓ ` a′ = a : A

Γ ` a = a′ : A Γ ` a′ = a′′ : A Tm-Eq-TΓ ` a = a′′ : A

Γ ` A type ` Γ = Γ′ ctxt Ty-ConvΓ′ ` A type
Γ ` a : A ` Γ = Γ′ ctxt Γ; · ` A = A′ type

Tm-ConvΓ′ ` a : A′

Γ ` a = a′ : A Γ, x : A,Γ′ ` B type Ty-CongΓ,Γ′[a/x] ` B[a/x] = B[a′/x] type
Γ ` a = a′ : A Γ, x : A,Γ′ ` b : B Tm-CongΓ,Γ′[a/x] ` b[a/x] = b[a′/x] : B

(c) Rules for judgemental equality, making it a congruence relation, compatible with
typing.

Figure 2.2: The structural rules of dependently typed equational logic.

distinguish between the free and bound identifiers occurring in an expression J

and we consider expressions J up to α-equivalence, or up to permutations of Idf

fixing the free identifiers of J . We denote the syntactic metaoperation of capture-

avoiding substitution of an expression a for all occurrences of a free identifier x

in an expression J by J [a/x].

Structural Rules and Theories

Dependently typed equational logic has the structural rules presented in figure

2.2, which will be shared in particular by STTCBN and DTTCBN. We can use our

20 2.1. Cartesian Type Theory

framework to talk about various type theories. By a theory, we mean a set T

of judgements which is closed under the structural rules above, in the sense that

their conclusions (written under the horizontal line) are in T if their hypotheses

(written above) are. Usually, we specify a theory by a set of axioms, a set of

judgements which can be inductively closed under the structural rules to obtain a

theory. For our purposes, we only consider theories with no context symbols. That

is, all our contexts consist of lists of type declarations for identifiers and context

equalities consist of type equalities and identifier equalities.

2.1.1.2 A Simple Type Theory, STTCBN

The simple type theory we use is a variant STTCBN of the simply typed λ-calculus

with finite product types and finite inductive2 types {ai | i} for any finite set

of distinct constants a1, . . . , an, with β- and η′-rules3 and certain commutative

conversions for the corresponding case-constructs – essentially the PCF commutative

conversions [22] (section 3.2). We are considering a total finitary PCF, if you will.

Specifically, with STTCBN, we are referring to the theory in dependently typed

equational logic generated by the rules of figure 2.3. Note that the rule that

Γ ` t = u : A implies that Γ ` t : A is admissible.

2.1.1.3 A Dependent Type Theory, DTTCBN−

Similarly, we can present our preferred variant DTTCBN of dependent type theory

as a theory in dependently typed equational logic. First, we present a smaller
2We use this terminology as we see them as a specific instance of general inductive types, to

which one might want to generalise in future work.
3Note that we are using a restricted form of the η-rule for inductive types which we call η′.

This is why we are left to impose certain commutative conversions, which (among other things)
would be implied by the general η-rule case{ai | i},{ai | i}(x, {b[ai/x]}i) = b. More discussion of the
matter of commutative conversions and η-rules can be found in [21]. Our equational theory is
easily seen to precisely correspond precisely to observational equivalence if we extend the syntax
with some sufficiently evil computational effect (in fact, it can be shown using an embedding into
CBPV that no other effect can weaken the equational theory of pure type theory further) like
printing or state and use CBN evaluation. We present this equational theory as it will precisely
correspond to equality in CBN game semantics. As a rule of thumb, we would like to note that
in the presence of effects (which can be modelled in game semantics) the general η-laws fail for
positive connectives in CBN and for negative connectives in CBV. This is one of the mysteries
that CBPV addresses.

2. Preliminaries 21

` Γ ctxt 1-FΓ ` 1 type
` Γ ctxt 1-IΓ ` 〈〉 : 1

Γ ` t : 1 1-η
Γ ` t = 〈〉 : 1

Γ ` B type Γ ` C type
×-FΓ ` B × C type

Γ ` b : B Γ ` c : C ×-IΓ ` 〈b, c〉 : B × C
Γ ` d : B × C ×-E1Γ ` fst(d) : B

Γ ` d : B × C ×-E2Γ ` snd(d) : C

Γ ` fst(〈b, c〉) : B
×-β1Γ ` fst(〈b, c〉) = b : B

Γ ` snd(〈b, c〉) : C
×-β2Γ ` snd(〈b, c〉) = c : C

Γ ` 〈fst(d), snd(d)〉 : B × C ×-η
Γ ` 〈fst(d), snd(d)〉 = d : B × C

Γ ` B type Γ ` C type
⇒-FΓ ` B ⇒ C type

Γ, x : B ` c : C
⇒-IΓ ` λx:Bc : B ⇒ C

Γ ` f : B ⇒ C Γ ` b : B
⇒-EΓ ` f(b) : C

Γ ` (λx:Bc)(b) : C
⇒-βΓ ` (λx:Bc)(b) = c[b/x] : C

Γ ` λx:Bf(x) : B ⇒ C ⇒-η
Γ ` λx:Bf(x) = f : B ⇒ C

(a) Formation (F), introduction (I), elimination (E) and β- and η-conversion rules for the
usual connectives of simple type theory. For ⇒ −η, we demand the usual side condition
that x not free in f .

` Γ ctxt
ai, 1 ≤ i ≤ n, distinct constants {ai | i}-FΓ ` {ai | i} type

` Γ ctxt {ai | i}-IjΓ ` aj : {ai | i}
{Γ ` ci : C}1≤i≤n Γ ` a : {ai | i} {ai | i}-EΓ ` case{ai | i},C(a, {ci}i) : C

Γ ` case{ai | i},C(aj, {ci}i) : C
{ai | i}-βjΓ ` case{ai | i},C(aj, {ci}i) = cj : C

Γ, x : {ai | i} ` case{ai | i},{ai | i}(x, {ai}i) : {ai | i} {ai | i}-η′Γ, x : {ai | i} ` case{ai | i},{ai | i}(x, {ai}i) = x : {ai | i}

Γ ` case{ai | i},B×C(x, {di}i) : B × C
{ai | i}-Comm-〈−,−〉Γ ` case{ai | i},B×C(x, {di}i) = 〈case{ai | i},B(x, {fst(di)}i), case{ai | i},C(x, {snd(di)}i)〉 : B × C

Γ ` case{ai | i},B⇒C(x, {fi}i) : B ⇒ C
{ai | i}-Comm-λΓ ` case{ai | i},B⇒C(x, {fi}i) = λy:Bcase{ai | i},C(x, {fi(y)}i) : B ⇒ C

Γ ` case{bj | j},C(case{ai | i},{bj | j}(x, {b′i}), {cj}j) : C
{ai | i}-Comm-caseΓ ` case{bj | j},C(case{ai | i},{bj | j}(x, {b′i}), {cj}j) = case{ai | i},{bj | j}(x, {case{bj | j},C(b′i, cj)}j) : C

(b) The rules for a notion of ground types for simple type theory: finite inductive types.

Figure 2.3: The rules generating the axioms for STTCBN.

theory DTTCBN−, which does not yet include the β- and η-rules and commutative

conversions of DTTCBN, but rather only consists of its F -, I- and E-rules. Later,

DTTCBN is obtained by adding to DTTCBN− the equational theory that results from

that of STTCBN, under a syntactic translation to STTCBN.

DTTCBN− consists of the rules of figure 2.4. In addition to term and type

formation rules for Σ-, Π- and Id-types, we have a mechanism for forming finite

22 2.1. Cartesian Type Theory

` Γ ctxt 1-F` 1 type
` Γ ctxt 1-IΓ ` 〈〉 : 1

Γ, x : A ` B type
Σ-FΓ ` Σx:AB type

Γ ` a : A Γ ` b : B[a/x]
Σ-IΓ ` 〈a, b〉 : Σx:AB

Γ ` t : Σx:AB Σ-E1Γ ` fst(t) : A
Γ ` t : Σx:AB Σ-E2Γ ` snd(t) : B[fst(t)/x]

Γ, x : A ` B type
Π-FΓ ` Πx:AB type

Γ, x : A ` b : B
Π-IΓ ` λx:Ab : Πx:AB

Γ ` a : A Γ ` f : Πx:AB Π-EΓ ` f(a) : B[a/x]

Γ ` a : A Γ ` a′ : A Id-FΓ ` IdA(a, a′) type
Γ ` a : A Id-IΓ ` refl(a) : IdA(a, a)

Γ ` a : A
Γ ` a′ : A Γ, x : A, x′ : A, y : IdA(x, x′) ` D type
Γ ` p : IdA(a, a′) Γ, z : A ` d : D[z/x, z/x′, refl(z)/y]

Id-EΓ ` let p be refl(z) in d : D[a/x, a′/x′, p/y]

(a) Rules for 1-, Σ-, Π-, and Id-types. In case x is not free in B, we sometimes write
A⇒ B for Πx:AB and A×B for Σx:AB.

` Γ ctxt ` a1 : A . . . ` an : A
bi,j, 1 ≤ i ≤ n, 1 ≤ j ≤ mi, distinct constants (ai 7→i {bi,j | j})(x)-FΓ, x : A ` (ai 7→i {bi,j | j})(x) type

` Γ ctxt (ai 7→i {bi,j | j})(x)-Ii,jΓ ` bi,j : (ai 7→i {bi,j | j})(ai)

Γ ` a : A x : A, y : (ai 7→i {bi,j | j})(x) ` C type
Γ ` b : (ai 7→i {bi,j | j})(a) {Γ ` ci,j : C[ai/x, bi,j/y]}i,j (ai 7→i {bi,j | j})(x)-EΓ ` case(ai 7→i{bi,j | j})(a),C(b, {ci,j}i,j) : C[a/x, b/y]

Γ ` a : A Γ, y : (ai 7→i {bi,j | j})(a) ` C type
Γ ` b : (ai 7→i {bi,j | j})(a) {Γ, pi,j : IdA(ai, a), qi,j : Id(ai 7→i{bi,j | j})(a)(subst(p, bi,j), b) ` cij : C[b/y]}i,j (ai 7→i {bi,j | j})(x)-E’

Γ ` casep,q(ai 7→i{bi,j | j})(a),C(b, {ci,j}i,j) : C[b/y]

(b) Rules for a finite inductive type family x : A ` (ai 7→i {bi,j | j})(x) type, generated
by ` bi,1, . . . , bi,mi : (ai 7→i {bi,j | j})(x)[ai/x] for ` a1, . . . , an : A.

Figure 2.4: The rules generating the axioms for DTTCBN−.

inductive type families, which play the rôle of ground types. Let ` A type4.

Then, we can give a finite inductive definition of a type family x : A ` (ai 7→i

{bi,j | j})(x) type by specifying finitely many closed terms a1, . . . , an : A and distinct

symbols bi,j, 1 ≤ i ≤ n, 1 ≤ j ≤ mi. The idea is that B = (ai 7→i {bi,j | j})(x)

is a type family, such that (ai 7→i {bi,j | j})(ai) contains precisely the distinct

closed terms bi,1, . . . , bi,mi . These type families are more limited than general

inductive definitions as they are freely generated by closed terms, while one would

allow open terms in the general case [23]. This means that we precisely get the

inductive type families with finitely many non-empty fibres which are all finite

types. An example the reader may want to keep in mind is given by calendars in

format dd-mm (for the year 1984, for instance): here A = mm := {01, . . . , 12} and

4Perhaps, it would be more elegant to allow the specification of an inductive type family
depending on an arbitrary context ` x1 : A1, . . . , xn : An ctxt rather than a single type. However,
given that we consider a system with strong Σ-types, the two are equivalent and only letting
inductive families depend on a single types allows us to keep notation more lightweight.

2. Preliminaries 23

B = dd−mm := (i 7→i {01-i, . . . , Ni-i})(x), where Ni is 29, 30, or 31, depending

on the number of days the month in question has.

We interpret such a definition as specifying F -, I- and E-rules for (ai 7→i

{bi,j | j})(x). In fact, instead of (ai 7→i {bi,j | j})(x)-E, we may equivalently specify

an alternative elimination rule (ai 7→i {bi,j | j})(x)-E ′. While the former is the

usual elimination rule for finite inductive type families, the latter is closer, in a

sense, to the intuition of our model and arises naturally in the completeness proofs

in chapter 4. Here, we write subst for the following principle of indiscernability of

identicals.

Γ, x : A ` B type
Γ, x : A ` λy:By : Πy:BB Γ, x, x′ : A, p : IdA(x, x′) ` x, x′ : A Γ, x, x′ : A, p : IdA(x, x′) ` p : IdA(x, x′)

Id-EΓ, x, x′ : A, p : IdA(x, x′) ` subst(p,−) : ΠBB[x′/x]

More generally, for a context Γ, x : A, y1 : B1, . . . , yn : Bn, we can inductively

define

Γ, x, x′ : A, p : IdA(x, x′), y1 : B1, . . . , yn−1 : Bn−1 ` subst(p,−) : Πyn:BnBn[x′/x, . . . , subst(p, yi)/yi, . . .].

We note that (ai 7→i {bi,j | j})(x)-E and (ai 7→i {bi,j | j})(x)-E ′ really are

equivalent in a precise sense.

Theorem 2.1.1. We have translations between (ai 7→i {bi,j | j})(x)-E and (ai 7→i

{bi,j | j})(x)-E ′. These become mutually inverse in the equational theory of DTTCBN.

Proof. Let us write B for (ai 7→i {bi,j | j})(x). In the presence of B-E ′, we can

define B-E by noting that

x : A, y : B, z1,1 : C[a1/x, b1,1/y], . . . , zn,mn : C[an/x, bn,mn/y] ` zi,j : C[ai/x, bi,j/y]
x : A, y : B, z1,1 : C[a1/x, b1,1/y], . . . , zn,mn : C[an/x, bn,mn/y], pi,j : IdA(ai, x), q : IdB(subst(pi,j , bi,j), y) ` zi,j : C[ai/x, bi,j/y]

x : A, y : B, z1,1 : C[a1/x, b1,1/y], . . . , zn,mn : C[an/x, bn,mn/y], pi,j : IdA(ai, x), qi,j : IdB(subst(pi,j , bi,j), y) ` subst(qi,j , subst(pi,j , zi,j)) : C

and applying B-E ′ with

A′ = Σx:AΣy:BΣz1,1:C[a1/x,b1,1/y] · · ·Σzn,mn−1:C[an/x,bn,mn−1/y]C[an/x, bn,mn/y], a = x

(the projection to A), b = y (the projection to B) and the from zi,j derived

expression above for ci,j to derive B-E ′.

24 2.1. Cartesian Type Theory

Conversely, in the presence of B-E, we derive B-E ′:

{x′ : A′, pi,j : IdA(ai, a), qi,j : IdB[a/x](subst(pi,j, bi,j), b) ` ci,j : C[b/y]}i,j
{` λx′:A′λpi,j :IdA(ai,a)λqi,j :IdB[a/x](subst(pi,j ,bi,j),b)ci,j : Πx′:A′Πpi,j :IdA(ai,a)Πqi,j :IdB[a/x](subst(pi,j ,bi,j),b)C[b/y]}i,j

x : A, y′ : B ` caseB,Πx′:A′Πp:IdA(x,a)Πq:IdB[a/x](subst(p,y′),b)C[b/y](y′, {λx′:A′λpi,j :IdA(ai,a)λqi,j :IdB[a/x](subst(pi,j ,bi,j),b)ci,j}) : Πx′:A′Πp:IdA(x,a)Πq:IdB[a/x](subst(p,y′),b)C[b/y]

x′ : A′ ` caseB,Πx′:A′Πp:IdA(x,a)Πq:IdB[a/x](subst(p,y′),b)C[b/y](y′, {λx′:A′λpi,j :IdA(ai,a)λqi,j :IdB[a/x](subst(pi,j ,bi,j),b)ci,j})[a/x, b/y′](x′, refl(a), refl(b)) : C[b/y]

These translations are easily seen to be mutually inverse in their translation to

STTCBN, which we define in the next section, due to the {bi,j | i, j}-Comm-λ-rule.

Therefore, they are mutually inverse in DTTCBN.

We conclude that case and casep,q are equivalent. We prefer to use the latter

as the default, as it naturally arises in the completeness proofs in chapter 4. For

the purposes of proof theory, however, the former may be the preferred choice,

as the metatheory of the resulting system is known to be well-behaved (at least

in absence of the commutative conversions).

2.1.1.4 A Syntactic Translation from DTTCBN to STTCBN

Morally, DTTCBN should describe the same algorithms as STTCBN (at least at the

type hierarchy over finite types), possibly assigning them a more precise type.

Formally, this idea is captured by the existence of a syntactic translation from

DTTCBN− into STTCBN. By noting that it is compositional and faithful on all

term constructors, we note that we can add to DTTCBN− the equational theory of

STTCBN under this translation. We refer to the theory we obtain as DTTCBN. Some

examples of equations this implies are β- and η-laws for 1-, Σ- and Π-types and

finite inductive type families and commutative conversions for the case-constructs,

analogous to those for their simply typed equivalents, as well as β-laws for Id-types

which state that let refl(z) be refl(z) in d = d. We note that we then have a faithful

translation (−)T from DTTCBN to STTCBN.

The translation (−)T is inductively defined on types and terms through the

schema of figure 2.5. This translation will later suggest our game theoretic

interpretation of dependent type theory, by demanding that it agrees with (a

total, finitary equivalent of) the usual PCF game semantics [22] after translating the

syntax. A semantically inclined reader may want to think about the translation we

2. Preliminaries 25

` bi,j : (ai 7→i {bi,j | j})(ai) 7→ ` bi,j : {bi,j | i, j}
x : A, y : B, z1,1 : C[a1/x, b1,1/y], . . . , 7→ x : AT , y : BT , z1,1 : CT , . . . , zn,mn : CT

zn,mn : C[an/x, bn,mn/y] ` caseB,C(y, {zi,j}i,j) : C ` caseBT ,CT (y, {zi,j}i,j) : CT

x′ : A′ ` casep,qB[a/x],C(b, {ci,j}i,j) : C[b/y] 7→ x′ : (A′)T ` caseBT ,CT (bT , {cTi,j[refl/pi,j, refl/qi,j]}i,j) : CT

x : A ` 〈〉 : 1 7→ x : AT ` 〈〉 : 1
x : A ` 〈b, c〉 : Σy:BC 7→ x : AT ` 〈bT , cT 〉 : BT × CT

x : A ` fst(d) : B 7→ x : AT ` fst(dT) : BT

x : A ` snd(d) : C[fst(d)/y] 7→ x : AT ` snd(dT) : CT

x : A ` λy:Bc : Πy:BC 7→ x : AT ` λy:BT c
T : BT ⇒ CT

x : A ` f(b) : C[b/y] 7→ x : AT ` fT (bT) : CT

x : A ` refl(b) : IdB(b, b) 7→ x : AT ` refl : {refl}
x : A ` let p be refl(z) in d : D[b/y, b′/y′, p/w] 7→ x : AT ` case{refl},DT (pT , {dT [bT/z]}) : DT

Γ, x : A,∆ ` x : A 7→ ΓT , x : AT ,∆T ` x : AT

Figure 2.5: A syntactic translation on terms and types from DTTCBN− into STTCBN.
Note that it is functorial in the sense that it respects identifiers and substitutions.

Γ `DTTCBN a : A Γ `DTTCBN b : A ΓT `STTCBN a
T = bT : AT

DTTCBN-EqΓ `DTTCBN a = b : A

∀1≤i≤2 x1 : A1, . . . , xn : An ` Bi type
` BT

1 = BT
2

∀`t1:A1 . . . ∀`tn:An[t1/x1,...,tn−1/xn−1] ` B1[t1/x1, . . . , tn/xn] = B2[t1/x1, . . . , tn/xn]
Ty-Ext` Πx1:A1 · · ·Πxn:AnB1 = Πx1:A1 · · ·Πxn:AnB2

Figure 2.6: The final rule, DTTCBN-Eq, which DTTCBN has on top of DTTCBN−, letting
it inherit the equational theory of STTCBN, as well as the type extensionality rule Ty-Ext
which we sometimes consider.

define as a faithful non-full functor (−)T from the syntactic category (or, category

of contexts) of DTTCBN to the syntactic category of STTCBN.

Finally, we define DTTCBN as the theory generated by the rules of DTTCBN−

together with the final rule, DTTCBN-Eq, of figure 2.6, which says that DTTCBN

inherits the judgemental equalities of STTCBN. We note that DTTCBN-Eq gives

us a concise way of equipping DTTCBN with the appropriate β- and η-rules for

its type formers as well as all necessary commutative conversions. We sometimes

also consider the rule Ty-Ext, which expresses that types are extensional from

the point of view of their sections5.

We note that, by induction, (−)T respects the judgemental equalities introduced

by the rule above, meaning that (−)T defines a translation from DTTCBN to STTCBN.

This lets us conclude the following.

5It remains to be verified if type checking remains decidable in the presence of this rule.

26 2.1. Cartesian Type Theory

Corollary 2.1.2. The translation (−)T defined above defines a faithful translation

from DTTCBN to STTCBN.

We observe that we have defined a flavour of intensional type theory.

Remark 2.1.3. The reader might wonder how the equational theory of DTTCBN

compares to the usual ones we use for dependent type theories. We note that it

implies all the usual β- and η-rules (weak η′ for inductive families) for the type

formers we consider (as well as some PCF-like commutative conversions), with the

exception of the η-rule let z be refl(x) in c[refl(x)/z] = c for Id-types.

Indeed, we easily see that DTTCBN refutes one of the notorious consequences of

Id− η, the principle of equality reflection,

Γ ` p : IdA(f, g)
ReflectionΓ ` f = g : A

,

as, for instance, for Γ = x : {a} and A = {a}, f = case{a},{a}(x, a) and g = a,

we do not have that x : {a} ` f = g : {a}, while we do have x : {a} `

case{a},Id{a}(f,g)(x, refl(a)) : Id{a}(f, g).

2.1.2 Categorical Semantics

In this section, we briefly discuss a notion of categorical semantics for dependently

typed equational logic.

It is clear that a type theory with dependent types should be modelled by

some indexed category Bop C−→ Cat. (This would be even more obvious if we

represented context morphisms as first class objects in the syntax, in the style

of Pitts [19].) Indeed, we have the category B which interprets the contexts and

the morphisms between them. We have a type theory in each context Γ, which

is modelled by some category C([[Γ]]) with structure to interpret the appropriate

connectives. And, whenever two contexts are related by some context morphism

Γ′ ` γ : Γ, we have substitution operations going from the type theory in context

Γ to that in context Γ′, which are modelled by structure preserving functors

2. Preliminaries 27

C([[Γ]]) C([[γ]])−→ C([[Γ′]]) (as substitution usually is compatible with all term and type

formers). In this view, it is easily seen that existential quantifiers should get

interpreted, à la Lawvere [24], as left adjoints to these substitution functors while

universal quantifiers are their right adjoints.

The missing ingredient is that, in dependent type theory, quantification is not

external but internal: the entities (in B) we are quantifying over are of the same

nature as the proofs of the predicates (in C) that we quantify over. The idea is that

objects in B can be built as lists of objects in the fibres of C and that the morphisms

in B (the interpretation of context morphisms) then arise as corresponding lists

of morphisms in the fibres of C (the interpretation of terms). This intuition is

formalised by the so-called comprehension axiom.

Definition 2.1.4 (Comprehension Axiom). Let Bop C−→ Cat be a strict6 indexed

category (writing Cat for the category of small categories and functors). Given

B′
f−→ B in B, let us write −{f} for the change of base functor C(f) : C(B) −→

C(B′). Recall that C is said to satisfy the comprehension axiom if

• B has a terminal object ·;

• all fibres C(B) have terminal objects 1B which are stable under change of base

(for which we just write 1);

• the presheaves (writing Set for the category of small sets and functions)

(B/B)op - Set

(B′ f−→ B) - C(B′)(1, C{f})

are representable. That is, we have representing objects B.C pB,C−→ B and

natural bijections

C(B′)(1, C{f})
∼=- B/B(f,pB,C)

c - 〈f, c〉.
6For brevity, from now on we shall often drop the modifier “strict” for indexed structures. For

instance, if we mention an indexed honey badger, we shall really mean a strict indexed honey
badger.

28 2.1. Cartesian Type Theory

We write vB,C for the element of C(B.C)(1, C{pB,C}) corresponding to idpB,C

(the universal elements of the representation). We define the morphisms

B.C
diagB,C := 〈idB.C ,vB,C〉 - B.C.C{pB,C};

B′.C{f}
qf,C := 〈pB′,C{f}; f,vB′,C{f}〉 - B.C.

We have maps (defining the comprehension functor)

C(B)(C ′, C)
pB,− - B/B(pB,C′ ,pB,C)

c - pB,c := 〈pB,C′ ,vB,C′ ; c{pB,C′}〉.

When these are full and faithful, we call the comprehension full and faithful,

respectively. When it induces an equivalence C(·) ∼= B/· ∼= B, we call the

comprehension democratic.

Note that the comprehension axiom says that we build as lists of closed terms

the morphisms into objects that arise as lists of types in our category of contexts

B. Demanding the comprehension functor to be fully faithful means that also the

terms in C(Γ)(A,B) correspond precisely with the terms in C(Γ.A)(1, B{pΓ,A}).

This is essential to get a precise fit with the syntax for cartesian dependent type

theory. The notion of democracy corresponds to the syntactic condition that all

contexts are formed from the empty context by adjoining types.

Remark 2.1.5 (Correspondence with Comprehension Categories). The definition

of an indexed category with comprehension is easily seen to be equivalent to Jacobs’

notion of a split comprehension category with unit [25]. We prefer this formulation in

terms of indexed categories as strictness is important in computer science (syntactic

substitution is strict), in which case the fibrational perspective is needlessly abstract.

Jacobs’ notion of fullness of a comprehension category corresponds – confusingly –

to our demand of the comprehension both being full and faithful. We believe it is

useful to use this more fine-grained terminology.

Let us make the correspondence a bit more precise – the reader can find all details

in [25]. There is a well-known correspondence between strict indexed categories and

split fibrations:

2. Preliminaries 29

• given a strict indexed category Bop C−→ Cat, we can define a split fibration∫
C pC−→ B by using the Grothendieck construction: we take

∫
C to have objects

ob(
∫
C) := ΣB∈ob(B)ob(C(B)) and morphisms

(∫
C
)

(〈B,C〉, 〈B′, C ′〉) := Σb∈B(B,B′)C(C,C ′{b})

and we take pC to be the projection to the first component;

• given a split fibration E p−→ B, we can define a strict indexed category

B C−→ Cat as C(B) := p−1(B) where the functors −{f} : C(B′) −→ C(B)

arise as the inverse image functors of the split fibration E along B f−→ B′ ∈ B.

Now, our formulation of the comprehension axiom in definition 2.1.4 for a strict

indexed category Bop C−→ Cat then is easily seen to correspond to putting the following

conditions on
∫
C pC−→ B:

• B has a terminal object ·;

• pC
pC−→ idB has a fibred right adjoint idB 1−→ pC (fibred terminal objects);

• this functor B 1−→
∫
C has a further right adjoint

∫
C −.−−→ B; 〈B,C〉 7→ B.C.

Jacobs calls this structure a split comprehension category with unit.

Strict indexed categories with full and faithful comprehension admit a more

minimalistic presentation in the form of Dybjer’s notion of categories with families

with unit. Recall that these categories are another standard notion of model of

dependently typed equational logic [20, 26].

Definition 2.1.6 (Category with Families). A category with families (CwF) is a

category B with a terminal object ·, for all objects Γ a set Ty(Γ), for all A ∈ Ty(Γ) a

set Tm(Γ, A), for all Γ′ f−→ Γ in B functions Ty(Γ) −{f}−→ Ty(Γ′) and Tm(Γ, A) −{f}−→

Tm(Γ′, A{f}), such that

A{idΓ} = A (Ty-Id) A{f ; g} = A{g}{f} (Ty-Comp)
t{idΓ} = t (Tm-Id) t{f ; g} = t{g}{f} (Tm-Comp),

30 2.1. Cartesian Type Theory

for A ∈ Ty(Γ) a morphism Γ.A pΓ,A−→ Γ of B and vΓ,A ∈ Tm(Γ.A,A{pΓ,A}) and,

finally, for all t ∈ Tm(Γ′, A{f}) a morphism Γ′ 〈f,t〉−→ Γ.A such that

〈f, t〉; pΓ,A = f (Cons-L) vΓ,A{〈f, t〉} = t (Cons-R)
〈pΓ,A,vΓ,A〉 = idΓ.A (Cons-Id) g; 〈f, t〉 = 〈g; f, t{g}〉 (Cons-Nat).

A CwF is said to have a unit if we have 1 ∈ Ty(Γ), for all Γ ∈ ob(B), such that

Tm(Γ, 1) ∼= {∗} and 1{f} = 1 for all f ∈ B.

The correspondence works as follows. Every strict indexed category with

comprehension is easily seen to define a CwF with unit, if we define Ty(Γ) and

Tm(Γ, A) as ob(C(Γ)) and C(Γ)(1, A), respectively. Conversely, we can define a

strict indexed category with comprehension from a CwF with unit by defining

ob(C(Γ)) := Ty(Γ) and C(Γ)(A,B) := Tm(Γ.A,B{pΓ,A}). We see that the resulting

comprehension is full and faithful. Starting from a CwF with unit, defining the

corresponding strict indexed category with comprehension and then defining the

CwF from that again gives us back the CwF with unit we started with (up to

equivalence) as Tm(Γ.1, B{pΓ,1}) ∼= Tm(Γ, B). Starting from a strict indexed

category C with comprehension, defining the CwF with unit and from that again a

strict indexed category C ′, gives us the strict indexed category with full and faithful

comprehension where we have redefined C ′(Γ)(A,B) := C(Γ.A)(1, B{pΓ,A}). We

see that this restricts to a bijective correspondence between CwFs with unit and

strict indexed categories with full and faithful comprehension (up to equivalence).

The advantage we see for formulating models as indexed categories is that various

connectives get an elegant interpretation. We state some of these interpretations

below, where we make use of the usual equational theory for extensional dependent

type theory, using β- and η-rules for all type formers (including Id-types, unlike

in section 2.1.1.4).

Theorem 2.1.7 (Pure DTT Semantics, [20, 25]). We have a sound interpretation

of pure dependent type theory with 1-types in any indexed category Bop C−→ Cat with

full and faithful comprehension. We list necessary and sufficient conditions for the

model to support various type formers:

2. Preliminaries 31

• strong Σ-types7 – objects ΣCD of C(B) such that pB,ΣCD = pB.C,D; pB,C;

• weak Σ-types – left adjoint functors ΣC a −{pB,C} satisfying the left Beck-

Chevalley condition8 for pullback squares in B of the following form, which

we shall later refer to as p-squares,

B′.C{f}
qf,C- B.C

B′

pB′,C{f}

?

f
- B;

pB,C

?

• strong extensional9 Id-types – objects IdC of C(B.C.C) such that pB.C.C,IdC =

diagB,C;

• weak extensional Id-types – left adjoints IdC a −{diagB,C} satisfying the left

Beck-Chevalley condition for pullback squares in B of the following form,
7That is, Σ-types with a dependent elimination rule. We call Σ-types Σx:AB weak if the type

we are eliminating into is not allowed to depend on Σx:AB in the elimination rule. We use a similar
terminology for other positive connectives. We note that as soon as we have strong Σ-types, the
strong and weak elimination rules for other positive connectives become equivalent.

8Remember that the (left) Beck-Chevalley condition for a left adjoint functor f! to f∗ := C(f)
for a pullback square

A
h - B

C

f

?

g
- D

k

?

corresponds to the statement that the obvious morphism (from commuting of pullback square,
unit, and counit) f!h

∗ −→ f!h
∗k∗k!

∼=−→ f!f
∗g∗k! −→ g∗k! is an isomorphism. Similarly, by the

(right) Beck-Chevalley condition for a right adjoint f∗ to f∗ we mean that the obvious morphism
g∗k∗ −→ g∗k∗h∗h

∗ ∼=−→ g∗g∗f∗h
∗ −→ f∗h

∗ is an iso. The reader is encouraged to think of this
condition as the equivalent for Σ-, Π- and Id-types of the condition on the substitution functors
preserving the appropriate categorical structure for other type formers. It says that, in a sense,
Σ-, Π- and Id-types are preserved under substitution.

9These are identity types, which, in addition to the β-rule let refl(x) be refl(x) in d = d also
satisfy the η-rule d = let x be refl(x) in d[x/x′, refl(x)/p]. This η-rule is known to make type
checking undecidable in the presence of the strong elimination rule, hence it is often omitted [27].
We include it to obtain a more elegant categorical semantics; we could also easily omit it.

32 2.1. Cartesian Type Theory

which we shall later refer to as diag-squares,

B′.C{f}
qf,C - B.C

B′.C{f}.C{f}{pB′,C{f}}

diagB′,C{f}
?

qqf,C ,C{pB,C}
- B.C.C{pB,C};

diagB,C
?

• weak 0,+-types10 – finite indexed coproducts (i.e. finite coproducts in all fibres

that are stable under change of base);

• strong 0,+-types – if additionally the following canonical morphisms are

bijections

C(C.Σ1≤i≤nCi)(C ′, C ′′) −→ Π1≤i≤nC(C.Ci)(C ′{pC,〈i,idCi 〉}, C
′′{pC,〈i,idCi 〉});

• Π-types – right adjoint functors −{pB,C} a ΠC satisfying the right Beck-

Chevalley condition for p-squares.

In fact, the interpretation in such categories is complete in the sense that an equality

holds in all interpretations iff it is provable in the syntax of dependent type theory

where we use both β- and η-equality rules for all type formers.

Remark 2.1.8. Note that (weak) Σ-types and Π-types in particular allow us to

interpret ×-types and ⇒-types as their existence makes C into an indexed cartesian

closed category (that is, equips the fibres of C with a cartesian closed structure that

is stable under change of base).

In particular, we can use such categories to model pure simple type theory with

0,+, 1,×,⇒-types as a special case, rather than using the usual notion of model

of a bicartesian closed category C. Indeed, starting from such a bicartesian closed

category C, we can produce an indexed category Cop self(C)−→ Cat where self(C)(A) has

the same objects as C and self(C)(A)(B,C) = C(A×B,C) with the obvious identities
10The syntactic rules for 0,+-types can be found in [28]. We are mostly interested in stating

the semantic condition here, as we shall need it to describe the semantics for sum types in linear
and effectful settings, where we shall also treat the syntax.

2. Preliminaries 33

and composition and with the change of base functors defined to be the identity

on objects and to act on morphisms in the obvious way through precomposition.

We see that every model of simple type theory gives, in particular, rise to a (rather

degenerate) model of dependent type theory.

Theorem 2.1.9. For a bicartesian closed category C, self(C) is an indexed category

with full and faithful democratic comprehension, which supports 0-, +-, Σ- and

Π-types. In this case, pA,B is the usual product projection from A× B −→ A. It

does not usually support extensional Id-types as these correspond to objects 1/A such

that 1/A× A ∼= 1.

Inductive types and type families, in particular finite ones, can be given a pretty

categorical semantics as initial algebras for certain endofunctors. We refer the

interested reader to [29], as we shall not need those details in our development.

2.2 Call-By-Push-Value and Effectful Simple Type
Theory

We believe Levy’s call-by-push-value (CBPV) is an excellent setting for studying

effectful type theories [30]. It unifies the CBV and CBN paradigms as follows.

Recall that one origin of the CBV-CBN-distinction is the fact that, in an effectful

type theory, we cannot usually have both coproduct types and function types with

their general η-laws: the η-law has to fail either for the former type formers,

leading to CBN, or for the latter, leading to CBV. For a particular instantiation

of this idea, we would like to remind the reader of the folklore theorem that a

cartesian closed category with coproducts – just an initial object is enough, in fact

– degenerates to the trivial category if it has fixpoints [31]. CBPV unifies CBV

and CBN type theories by having two distinct classes of types: those for which

we have connectives like coproduct types and those for which we have ones like

function types. This allows us to retain the general η-laws for all connectives and

lets us encode traditional CBV and CBN type theories.

34 2.2. Call-By-Push-Value and Effectful Simple Type Theory

In this section, we present a slight reformulation and simplification of CBPV’s

simply typed version, with the purpose of extending it with dependent types later.

We start by discussing a syntax in section 2.2.1 which is almost identical to Levy’s

CBPV except that computations are treated as special stacks/homomorphisms.

In section 2.2.2, we discuss a modified but equivalent (in the categorical sense)

presentation of Levy’s categorical semantics of simple CBPV that makes the

transition to dependent types more natural, after which we give a few examples

of models in section 2.2.3. Next, we briefly discuss the small-step operational

semantics for CBPV in section 2.2.4. Finally, in section 2.2.5, we sketch how one

proceeds to add effects to the pure CBPV calculus, which is, after all, the point

of our endeavour. For this, we mostly take an operational point of view.

2.2.1 Syntax

We encourage the reader to look at the syntax of call-by-push-value (CBPV) in

the following slightly simplified way: as providing an adjunction decomposition

of Moggi’s monadic metalanguage [32], similar (dual) to the one that Benton’s

linear/non-linear (LNL) calculus [33] gives of (the comonadic) dual intuitionistic

linear logic (DILL) [34], but in the more general setting of possibly non-commutative

effects. Roughly, CBPV consists of two type theories, related by an adjunction

F a U : one for defining values and their types, to be thought of as static

objects which behave like a pure cartesian type theory, and one for defining effectful

computations/stacks and their types, to be thought of as dynamic objects

which behave linearly.

Therefore, CBPV distinguishes between two classes of types: value types

and computation types. These can be similarly read as, respectively, positive

and negative types or as types of data and codata. The linear types of the

LNL calculus should be thought of as analogous to computation types, while its

cartesian types correspond to value types. The idea is that in natural deduction,

for some connectives, the positive/value connectives, the introduction rule involves

a choice, while the elimination rule is invertible (works through pattern matching)

2. Preliminaries 35

and for others, the negative/computation connectives, the opposite is true. As

a rule of thumb, connectives that operate on value types arise as left adjoint

functors in the categorical semantics, while connectives that operate on computation

types are right adjoint functors.

Call-by-push-value (and polarised logic) chooses to keep the classes of types

formed from both classes of connectives separate and adds two extra connectives

F , which turns a value type into a type of computations that return a result of

the original value type, and U , which turns a computation type into a value type

of thunks of computations of the original computation type. This allows us to

use the full βη-equational theory for all connectives, even in the presence of effects.

Importantly, we have CBV and CBN embeddings of (effectful) type theory into

(effectful) CBPV, that give rise to the usual equational theories.

CBPV has two classes of types (we sometimes underline types to emphasize

that we mean a computation type):

value types A computation types B.

In this thesis, simple value and computation types are formed using the connectives of

figure 2.7, excluding general inductive and coinductive types. Here, 1,× will denote

pattern-matching products, while >,& are projection products11. More generally,

following Levy, we include primitives Π1≤i≤nBi for n-ary projection products and

Σ1≤i≤nAi for n-ary sum (we write nullary and binary sum as 0 and A+A′). We do

this to emphasize their similarity to Π(F (−)- and Σ-types in the dependently typed

version of CBPV. We write A F(B for the type of computations that take an

input of type A and return a computation of type B. (These are conventionally

written A ⇒ B. We choose our notation to be reminiscent of the LNL calculus

expression F (A) (B, which it should generalise.)

11Note that these correspond to the two ways of defining products in the categorical semantics:
as left adjoints to the internal hom or as right adjoints to the diagonal functor, as positive and
negative connectives, respectively.

36 2.2. Call-By-Push-Value and Effectful Simple Type Theory

value/positive types A computation/negative types B
0, A+ A′, Σ1≤i≤nAi A F(B

1, A× A′ >, B&B′, Π1≤i≤nBi

UB FA
(inductive types) (coinductive types)

Figure 2.7: An overview of the simple value and computation types we consider with
exception of general inductive and coinductive types which we shall not attempt to
incorporate.

Similarly, CBPV has separate typing judgements for terms representing values

and computations, respectively,

Γ `v a : A Γ `c b : B.

Here, Γ is a context, or list x1 : A1, . . . , xn : An of declarations of distinct

identifiers xi of value type Ai. Additionally, Levy considers stacks (sometimes

called homomorphisms, as many effects equip computation types with an algebraic

structure which stacks preserve), which are represented as typed terms

Γ; nil : B `k c : C,

where Γ, as before, is a context of identifier declarations of value type and nil is an

identifier of computation type B. For notational convenience, and unlike Levy, we

unify the computation and stack judgements as a single judgement

Γ; ∆ ` b : B,

where Γ is as before and ∆ is a context of identifier declarations of computation

type. For now, ∆ will have at most length 1 and in that case is often referred to as a

stoup. The case that ∆ has length 0 corresponds to Levy’s computation judgement

and the case of length 1 to his stack judgement. To keep the notation light, we also

omit the annotation v on the sequent in the value judgement and simply write

Γ ` a : A.

We encourage the reader to think of the dual context Γ; ∆ to consist of cartesian

region Γ in which the usual structural rules of weakening and contraction are valid

2. Preliminaries 37

and of ∆ as a linear region in which they are not. These typing judgements are

defined through the rules of figure 2.8 and the obvious (admissible) two substitution

rules and weakening rule for identifiers of value type.

As usual, we distinguish between free and bound (i.e. non-free) identifiers

and consider terms up to α-equivalence, or permutation of their bound identifiers.

The rules of the type theory force the free identifiers of a well-typed term to be

declared in the context. For notational convenience, we treat indices i of (terms

of) a sum Σ1≤i≤nAi or product Π1≤i≤nBi similarly to bound identifiers. A proper

formal treatment would involve including the indices and their range in the context,

to distinguish between bound and free indices and to consider freshness of the

appropriate indices in various η-rules. We prefer to avoid this extra formality and

keep their treatment informal as we are convinced that the intended meaning will

be clear to the reader and that anyone so inclined can fill in the technical details.

We can consider these terms up to α-equivalence and, as such, define an

operational semantics for them in section 2.2.4. We frequently also consider the

terms up to the additional equational theory of figure 2.9 together with the rules

which state that all term formers respect equality and that equality is an equivalence

relation, where we writeM [V/x] for the syntactic metaoperation of capture avoiding

substitution of V for x in M . We shall see that this equational theory naturally

arises from the categorical semantics of simple CBPV.

Recall that a call-by-value (CBV) and call-by-name (CBN) evaluation strategy

on the λ-calculus generally give rise to different equational theories (in the presence

of effects) [35]. For instance, the η-rule for function types typically fails in the

former and that for sum types in the latter. CBPV gives rise to both of these

equational theories by embedding an (impure) λ-calculus either with a CBV or

with a CBN translation.

In the presence of effects, the usual pure connectives of products, coproducts

and function types bifurcate into many variants due to the distinction of versions

of different arities and the distinction between projection and pattern matching

products. These are nicely and uniformly treated in Levy’s Jumbo λ-calculus [36].

38 2.2. Call-By-Push-Value and Effectful Simple Type Theory

Γ, x : A,Γ′ ` x : A
Γ ` V : A Γ, x : A,Γ′ ` W : A′

Γ,Γ′ ` let x be V in W : A′

Γ ` V : A Γ, x : A,Γ′; ∆ ` K : B
Γ,Γ′; ∆ ` let x be V in K : B

Γ; nil : B ` nil : B
Γ; ∆ ` K : B Γ; nil : B ` L : C

Γ; ∆ ` let nil be K in L : B

Γ ` V : A
Γ; · ` return V : FA

Γ; ∆ ` K : FA Γ, x : A,Γ′; · ` N : B
Γ,Γ′; ∆ ` K to x in N : B

Γ; · `M : B
Γ ` thunk M : UB

Γ ` V : UB
Γ; · ` force V : B

Γ ` Vi : Ai
Γ ` 〈i, Vi〉 : Σ1≤i≤nAi

Γ ` V : Σ1≤i≤nAi {Γ, x : Ai ` Wi : A′}1≤i≤n

Γ ` pm V as 〈i, x〉 in Wi : A′

Γ ` V : Σ1≤i≤nAi {Γ, x : Ai; ∆ ` Ki : B}1≤i≤n

Γ; ∆ ` pm V as 〈i, x〉 in Ki : B

Γ ` 〈〉 : 1
Γ ` V : 1 Γ ` W : A′
Γ ` pm V as 〈〉 in W : A′

Γ ` V : 1 Γ; ∆ ` K : B
Γ; ∆ ` pm V as 〈〉 in K : B

Γ ` V1 : A1 Γ ` V2 : A2
Γ ` 〈V1, V2〉 : A1 × A2

Γ ` V : A1 × A2 Γ, x : A1, y : A2 ` W : A′
Γ ` pm V as 〈x, y〉 in W : A′

Γ ` V : A1 × A2 Γ, x : A1, y : A2; ∆ ` K : B
Γ; ∆ ` pm V as 〈x, y〉 in K : B

{Γ; ∆ ` Ki : Bi}1≤i≤n

Γ; ∆ ` λiKi : Π1≤i≤nBi

Γ; ∆ ` K : Π1≤i≤nBi

Γ; ∆ ` i‘K : Bi

Γ, x : A; ∆ ` K : B
Γ; ∆ ` λxK : A F(B

Γ ` V : A Γ; ∆ ` K : A F(B

Γ; ∆ ` V ‘K : B

Figure 2.8: Values, computations and stacks of simple CBPV.

There are fully faithful translations (−)v and (−)n, respectively, from CBV

and CBN versions of this whole calculus into CBPV [30] and, in fact, the same

is true if we consider arbitrary theories rather than the pure calculi. To convey

the intuition without getting stuck on technicalities, we present some special cases

of the translations in figures 2.10 and 2.11.

2. Preliminaries 39

let w be S in R = R[S/w]
(return V) to x in M = M [V/x] L[K/nil] #x= K to x in L[return x/nil]
force thunk M = M V = thunk force V
pm 〈i, V 〉 as 〈i, x〉 in Ri = Ri[V/x] R[V/z] #i,x= pm V as 〈i, x〉 in R[〈i, x〉/z]
pm 〈〉 as 〈〉 in R = R R[V/z] = pm V as 〈〉 in R[〈〉/z]
pm 〈V, V ′〉 as 〈x, y〉 in R = R[V/x, V ′/y] R[V/z] #x,y= pm V as 〈x, y〉 in R[〈x, y〉/z]
i‘λjKj = Ki K

#i= λii‘K
V ‘λxK = K[V/x] K

#x= λxx‘K

Figure 2.9: Equations of simple CBPV. These should be read as equations of typed
terms: we impose them if we can derive that both sides of the equation are well-typed
terms of the same type in the same context. We write #x1,...,xn= to indicate that for the
equation to hold, the identifiers or indices x1, . . . , xn should, in both terms being equated,
be replaced by fresh ones, in order to avoid unwanted identifier bindings. Note that in
the first equation, w might either be an identifier of value type or of computation type.

CBV type CBPV type CBV term CBPV term
A Av x1 : A1, . . . , xm : Am `M : A x1 : Av1, . . . , xm : Avm; · `M v : F (Av)

x return x
let x be M in N M v to x in N v

Σ1≤i≤nAi Σ1≤i≤nA
v
i 〈i,M〉 M v to x in return 〈i, x〉

pm M as 〈i, x〉 in Ni M v to z in (pm z as 〈i, x〉 in N v
i)

Π1≤i≤nAi UΠ1≤i≤nFA
v
i λiMi return thunk (λiM v

i)
i‘N N v to z in (i‘force z)

A⇒ A′ U(Av F(FA′v) λxM return thunk λxM v

M ‘N M v to x in (N v to z in (x‘force z))
1 1 〈〉 return 〈〉

pm M as 〈〉 in N M v to z in (pm z as 〈〉 in N v)
A× A′ Av × A′v 〈M,N〉 M v to x in (N v to y in return 〈x, y〉)

pm M as 〈x, y〉 in N M v to z in (pm z as 〈x, y〉 in N v)

Figure 2.10: A CBV translation of a simple λ-calculus into CBPV.

CBN type CBPV type CBN term CBPV term
B Bn x1 : B1, . . . , xm : Bm `M : B x1 : UBn

1 , . . . , xm : UBn
m; · `Mn : Bn

x force x
let x be M in N let x be (thunk Mn) in Nn

Σ1≤i≤nBi FΣ1≤i≤nUB
n
i 〈i,M〉 return 〈i, thunk Mn〉

pm M as 〈i, x〉 in Ni Mn to z in (pm z as 〈i, x〉 in Nn
i)

Π1≤i≤nBi Π1≤i≤nB
n
i λiMi λiM

n
i

i‘M i‘Mn

B ⇒ B′ (UBn) F(B′n λxM λxM
n

N ‘M (thunk Nn)‘Mn

1 F1 〈〉 return 〈〉
pm M as 〈〉 in N Mn to z in (pm z as 〈〉 in Nn)

B ×B′ F (UBn × UB′n) 〈M,N〉 return 〈thunk Mn, thunk Nn〉
pm M as 〈x, y〉 in N Mn to z in (pm z as 〈x, y〉 in Nn)

Figure 2.11: A CBN translation of a simple λ-calculus into CBPV.

40 2.2. Call-By-Push-Value and Effectful Simple Type Theory

2.2.2 Categorical Semantics

CBPV admits a simple notion of a categorical model. We present a variation of that

of [37] to allow a smooth transition to dependent types. The philosophy is to add to

a model self(C) of pure simple type theory an extra (locally) indexed category D to

model computations and stacks separately from values and to demand all appropriate

negative (right adjoint) connectives in D and all positive (left adjoint) ones in self(C).

The idea will be that values Γ ` V : A denote elements of self(C)([[Γ]])(1, [[A]]) and

that computations and stacks Γ; ∆ `M : B denote elements of D([[Γ]])([[Γ; ∆]], [[B]]).

Definition 2.2.1 (Simple CBPV Model). By a categorical model of simple CBPV,

we shall mean the following data.

• A cartesian category (C, 1,×) of values;

• a locally indexed category Cop D−→ Cat of stacks (and computations, in

particular), that is, an indexed category such that the change of base functors

are identity on objects;

• 0,+-types in self(C)12 such that, additionally, the following obvious induced

maps are bijections:

D(C.Σ1≤i≤nCi)(D,D′) −→ Π1≤i≤nD(C.Ci)(D,D′);

• an indexed adjunction13 D
�

F

⊥
U
- self(C);

• Π(F (−)-types in D in the sense of having right adjoint functors −{pA,B} a

Π(F (B) : D(A) −→ D(A.B) satisfying the right Beck-Chevalley condition for

p-squares;

• Finite indexed products (>,&) in D (finite products, stable under change of

base);
12This amounts to having distributive finite coproducts in C.
13As Plotkin pointed out at the time of Moggi’s original work on the monadic metalanguage,

this gives a strong monad T = UF on C [6].

2. Preliminaries 41

Note that self(C) automatically has 1- and Σ-types.

Theorem 2.2.2 (Simple CBPV Semantics). We have a sound interpretation of

CBPV in a CBPV model:

[[·]] = 1 [[Γ; ·]] = F1
[[Γ, x : A]] = [[Γ]].[[A]] [[Γ; nil : B]] = [[B]]
[[Γ ` A]] = self(C)([[Γ]])(1, [[A]]) [[Γ; ∆ ` B]] = D([[Γ]])([[Γ; ∆]], [[B]])
[[UB]] = U [[B]] [[FA]] = F [[A]]
[[Σ1≤i≤nAi]] = (·([[A1]] + [[A2]]) + · · ·) + [[An]]) [[Π1≤i≤nBi]] = (·([[B1]]&[[B2]])& · · ·)&[[Bn]])
[[A× A′]] = [[A]] × [[A′]] ∼= Σ[[A]] [[A′]]{p[[Γ]],[[A]]} [[A F(B]] = Π(F ([[A]])[[B]]{p[[Γ]],[[A]]}
[[1]] = 1,

together with the obvious interpretation of terms. The interpretation in such

categories is complete in the sense that an equality of values or computations

holds in all interpretations iff it is provable in the syntax of CBPV. In fact, we have

a 1-1 relationship between models and theories which satisfy mutual soundness and

completeness results.

Let us write T for the indexed monad UF on self(C) and ! for the indexed

comonad FU on D. We note that the translations from CBV and CBN into CBPV

correspond to interpreting CBV and CBN in the Kleisli and co-Kleisli categories for

T and ! respectively. More generally, we can note that the translations of figures

2.10 and 2.11 can be transformed into semantic translations which means that any

CBPV model gives rise to models of the CBV and CBN λ-calculus.

Theorem 2.2.3 (Simple CBV Semantics). We obtain a sound interpretation of the

CBV λ-calculus with 1,×,⇒,Σ1≤i≤n,Π1≤i≤n-types in the Kleisli category for T :

[[A1, · · · , An ` A]] = D([[A1]]. · · · .[[An]])(F1, F [[A]]) ∼= self(C)T ([[A1]]. · · · .[[An]])(1, [[A]])
∼= self(C)(·)T ([[A1]] × · · · × [[An]], [[A]]).

The interpretation is complete with respect to this class of models.

Theorem 2.2.4 (Simple CBN Semantics). We obtain a sound interpretation of

the CBN λ-calculus with 1,×,⇒,Σ1≤i≤n,Π1≤i≤n-types in the co-Kleisli category for !:

[[B1, · · · , Bn ` B]] = D(U [[B1]]. · · · .U [[Bn]])(F1, [[B]]) ∼= D!(U [[B1]]. · · · .U [[Bn]])(>, [[B]])
∼= D(·)!([[B1]]& · · ·&[[Bn]], [[B]]).

The interpretation is complete with respect to this class of models.

42 2.2. Call-By-Push-Value and Effectful Simple Type Theory

Again, both of these results could be strengthened to the statement that we

have a 1-1 relationship between models and theories which satisfy mutual soundness

and completeness results.

2.2.3 A Few Words about Models

An extensive discussion of particular models as well as comparisons between CBPV

models and other notions of categorical models of effects can be found in [30]. Here,

we shall be very brief and just recall the following two results and provide some

context for the relationship between effects and linear logic.

Theorem 2.2.5. Let D′ be a model of intuitionistic exponential additive multipli-

cative linear logic (see section 2.3) in the sense of a symmetric monoidal closed

category (D′, I,⊗) with finite products (>,&), finite coproducts (0,⊕) that distribute

over ⊗ and a comonad ! that is induced by some adjunction

C ′
F ′

-

⊥�
U ′

D′

to a cartesian monoidal category (C ′, 1,×) with strong monoidal left adjoint F ′. In

that case, D′ gives rise to a canonical model F a U : self(C)� D of simple CBPV

where UF is a commutative monad [38].

Proof. First note that we can replace C ′ with its completion C under finite dis-

tributive coproducts. (Think of this as the completion under the notion of finite

coproducts in the 2-category of symmetric monoidal categories and lax symmetric

monoidal functors. Similarly, we should think of an adjunction with strong monoidal

left adjoint as corresponding with an adjunction in this 2-category and a commutative

monad as a monad in this 2-category.) Indeed, we have a full and faithful embedding

ι : C ′ ↪→ C and becauseD has finite distributive coproducts and F ′ is strong monoidal,

we can extend F ′ a U ′ to an adjunction F a U : C � D′ with strong monoidal F ,

2. Preliminaries 43

where we define F (Σ1≤i≤nι(Ci)) := Σ1≤i≤nF
′Ci and UD := ι(U ′D):

C(Σ1≤i≤nι(Ci), UD)) := C(Σ1≤i≤nι(Ci), ι(U ′(D)))

∼= Π1≤i≤nC(ι(Ci), ι(U ′(D)))

∼= Π1≤i≤nC ′(Ci, U ′D)

∼= Π1≤i≤nD′(F ′Ci, D)

∼= D′(Σ1≤i≤nF
′Ci, D)

=: D′(FΣ1≤i≤nι(Ci), D).

We define the indexed category Cop D−→ Cat as having the same objects as D′ in

each fibre and morphisms D(A)(B,C) := D′(B,FA(C). To see that the monad

is commutative, we note that a commutative monad is the same as a lax symmetric

monoidal monad [39].

In this way, we can see that linear logic describes certain commutative effects.

CBPV models for possibly non-commutative effects can be obtained from any

monad model [32] of the monadic metalanguage [30].

Theorem 2.2.6. Any bicartesian closed category C with a strong monad T gives

rise to a CBPV model.

Proof. It is well-known that the forgetful functor CT → C creates finite products

(limits). Recall that in this setting the Eilenberg-Moore category CT has Kleisli

exponentials, in the sense of algebras A F(k of homomorphisms from free algebras

µA to general algebras k (A⇒ Uk inherits a T -algebra structure from k) [32]. We

define the indexed category Cop D−→ Cat to have the same objects as the Eilenberg-

Moore category CT in each fibre and morphisms D(A)(k, l) := CT (k,A F (l).

F a U is interpreted by the usual Eilenberg-Moore adjunction.

44 2.2. Call-By-Push-Value and Effectful Simple Type Theory

2.2.4 Operational Semantics

Importantly, CBPV admits a natural operational semantics that, for terms of ground

type, reproduces the usual operational semantics of CBV and CBN under the

specified translations into CBPV [30] and that can easily be extended to incorporate

various effects that we may choose to add to pure CBPV. We very briefly discuss this.

First, we note that Levy chooses to only provide an operational semantics for

computations without complex values. Complex values are defined to be values

containing pm as in - and let be in -constructs. He does this as complex

values introduce arbitrary choices into the operational semantics, as we need to

decide when to evaluate them. As the normalization of values does not produce

effects (in particular, values are equal to their normal form; they are static), all

reasonable evaluation strategies for them are observationally indistinguishable and

we could choose our favourite.

While excluding complex values from computations is not a terrible restriction

(one can show that any computation is judgementally equal to one not having any

complex values as subterms and the CBV and CBN translations do not produce

any complex values), we do not see the need to introduce this restriction. Indeed,

complex values will turn out to be useful in a dependently typed CBPV, when

we want to substitute them in dependent types. For instance, we might want to

define a dependent type through a case distinction.

For that purpose, let us point out that the β-reductions for complex values are

directed versions (left-to-right) of their equations in the left hand column of figure

2.9. We use the parallel nested closure of β-reductions as our notion of reduction

for values. Following the usual argument of logical relations [40], this gives us a

strong normalization result for values. Let us write Vnf for the normal form of a

value V . We write V!nf to indicate a value which is not in normal form.

We present a small-step operational semantics for CBPV computations in terms

of a simple abstract machine that Levy calls the CK-machine. The configuration of

such a machine consists of a pair M,K where Γ; · ` M : B is a computation and

Γ; nil : B ` K : C is a compatible stack. We call C the type of the configuration.

2. Preliminaries 45

The idea is that transitions are defined on a pair of a computation and a stack, rather

than simply on computations, to be able to correctly model the operational behaviour

of sequencing and function application: we push parts of a computation to the stack

if other parts need to be executed first before we can pop the stack and resume.

The initial configurations, transitions (which embody left-to-right-directed

versions of the β-rules of our equational theory) and terminal configurations in the

evaluation of a computation Γ; · `M : C on the CK-machine are specified by figure

2.12 where we use the following abbreviations for stacks

V :: K := let nil be V ‘nil in K
j :: K := let nil be j‘nil in K

[·] to x in M :: K := let nil 1 be (nil 2 to x in M) in K.

We recall the following basic results about this operational semantics from [30, 41].

Theorem 2.2.7 (Determinism, Strong Normalization and Subject Reduction). For

every configuration of the CK-machine, at most one transition applies. No transition

applies precisely when the configuration is terminal. Every configuration of type C

reduces, in a finite number of transitions, to a unique terminal configuration of type

C.

Proof. The only real modification from [30, 41] is that our terms include complex

values. It is well-known that in a pure simple type theory with projection products

and coproducts, the reductions are strongly normalizing and satisfy subject reduction.

This shows that the transitions for complex values do not break strong normalization

or subject reduction. The distinction between values in normal form and those not

in normal form ensures that determinism still applies.

2.2.5 Adding Effects

So far, we have considered pure CBPV computations. Next, we add effects to them,

making them into real dynamic objects in the sense that their reductions might not

respect equality. We recall by example how one adds effects to CBPV. Figure 2.13

gives some examples of effects one could consider, from left to right, top to bottom:

46 2.2. Call-By-Push-Value and Effectful Simple Type Theory

Initial Configuration
M , nil

Transitions
let V!nf be x in M , K ; let Vnf be x in M , K
let Vnf be x in M , K ; M [Vnf/x] , K
let M be nil in L , K ; L[M/nil] , K
M to x in N , K ; M , [·] to x in N :: K
return V!nf , K ; return Vnf , K
return Vnf , [·] to x in N :: K ; N [Vnf/x] , K
force V!nf , K ; force Vnf , K
force thunk M , K ; M , K
pm V!nf as 〈i, x〉 in Mi , K ; pm Vnf as 〈i, x〉 in Mi , K
pm 〈j, V 〉 as 〈i, x〉 in Mi , K ; Mj[Vnf/x] , K
pm V!nf as 〈〉 in M , K ; pm Vnf as 〈〉 in M , K
pm 〈〉 as 〈〉 in M , K ; M , K
pm V!nf as 〈x, y〉 in M , K ; pm Vnf as 〈x, y〉 in M , K
pm 〈V,W 〉 as 〈x, y〉 in M , K ; M [V/x,W/y] , K
j‘M , K ; M , j :: K
λiMi , j :: K ; Mj , K
V!nf ‘M , K ; Vnf ‘M , K
Vnf ‘M , K ; M , Vnf :: K
λxM , V :: K ; M [V/x] , K

Terminal Configurations
return Vnf , nil
λiMi , nil
λxM , nil
force V x′

nf , K
pm V x′

nf as 〈i, x〉 in Mi , K
pm V x′

nf as 〈〉 in M , K
pm V x′

nf as 〈x, y〉 in M , K

Figure 2.12: The behaviour of the CK-machine in the evaluation of a computation
Γ; · ` M : C. We write V x′

nf for a non-canonical normal form of a value which has at
least one free identifier x′. Every time we encounter a computation term former taking a
value as an argument, we first normalize the value before proceeding to the corresponding
transition for the term former. We leave out type annotations.

divergence, recursion, printing an element m of some monoidM, erratic choice from

finitely many alternatives, errors e from some set E, writing a global state s ∈ S and

reading a global state to s. We note that the framework fits many more examples

like probabilistic erratic choice, local references and control operators [30].

The small-step semantics of divergence, recursion, erratic choice and errors can

easily be explained on our CK-machine as it is. This is summed up in figure 2.14.

For the operational semantics of printing and state, we need to add some hardware

to our machine. For that purpose, a configuration of our machine will now consist of

a quadruple M,K,m, s where M,K are as before, m is an element of our printing

2. Preliminaries 47

Γ; · ` diverge : B
Γ, z : UB; · `M : B

Γ; · ` µzM : B
Γ; · `M : B

Γ; · ` print m . M : B
{Γ; · `Mi : B}1≤i≤n

Γ; · ` choosei(Mi) : B

Γ; · ` error e : B
Γ; · `M : B

Γ; · ` write s . M : B
{Γ; · `Ms : B}s∈S

Γ; · ` readtos(Ms) : B

Figure 2.13: Some examples of effects we could add to CBPV. µz is a name binding
operation that binds the identifier z and choosei() and readtos() bind the indices i and s
respectively.

Transitions
diverge , K ; diverge , K
µzM , K ; M [thunk µzM/z] , K
choosei(Mi) , K ; Mj , K

Terminal Configurations
error e , K

Figure 2.14: The operational semantics for divergence, recursion, erratic choice and
errors.

Transitions
print n . M , K , m , s ; M , K , m ∗ n , s
write s′ . M , K , m , s ; M , K , m , s′

readtos′(Ms′) , K , m , s ; Ms , K , m , s

Figure 2.15: The operational semantics for printing and writing and reading global
state.

monoid (M, ε, ∗) which models some channel for output and s is an element of our

finite pointed set of states (S, s0) which is the current value of our storage cell. We

lift the operational semantics of all existing language constructs to this setting by

specifying that they do not modify m and s, that terminal configurations can have

any value of m and s and that initial configurations always have value m = ε and

s = s0 for the fixed initial state s0. Printing and writing and reading the state

can now be given the operational semantics of figure 2.15.

We can try to extend the results of the previous section to this effectful setting

and indicate when they break [30].

Theorem 2.2.8 (Determinism, Strong Normalization and Subject Reduction).

Every transition respects the type of the configuration. No transition occurs precisely

if we are in a terminal configuration. In absence of erratic choice, at most one

48 2.2. Call-By-Push-Value and Effectful Simple Type Theory

CBV Term M CBPV Term M v CBN Term M CBPV Term Mn

op(M) op(M v) op(M) op(Mn)
µxM µz(force z to x in M v) µzM µzM

n

Figure 2.16: The CBV and CBN translations for effectful terms. z is assumed to be
fresh in the CBV translation µxM . For our examples, op(−) ranges over diverge , error e ,
choosei(−), print m . (−), readtos(−) and write s . (−).

transition applies to each configuration. In absence of divergence and recursion,

every configuration reduces to a terminal configuration in a finite number of steps.

We can again translate effectful CBV and CBNλ-calculi into CBPV with the

appropriate effects as is indicated in figure 2.16.

Let us write M ⇓ N,m, s for a closed term ·; · ` M : B if M, nil , ε, s0 reduces

to the terminal configuration N, nil ,m, s. We call this the big-step semantics of

CBPV. Recall that, at least for terms of ground type, CBPV induces the usual

operational semantics via the CBV and CBN translations [41].

Theorem 2.2.9. The big-step semantics for CBPV induces the usual CBV and

CBN big-step semantics for terms of ground type, via the respective translations.

We list the basic equations we would typically demand for the effects we consider

in figure 2.17. In addition to these general equations, we could include the usual

specific equations from the algebraic theory for op(−) (like the lookup-update

algebra equations for global state of Plotkin and Power [42]). In a dependently

typed setting, we have to decide which effect specific equations to include as

judgemental equalities, such that the type checker has to be able to decide them,

and which to include as propositional equalities for manual reasoning by the user.

Although one could write down an equational theory for these effects and a

corresponding categorical semantics, in which case one would obtain soundness and

completeness properties for the CBV and CBN translations, we choose not to do so

here for reasons of space. For this, we refer the reader, for instance, to [30, 42]. The

important thing to note is that the CBV and CBN translations for effectful CBPV

typically result in a broken η-law for function types and sum types respectively as

is well-known from traditional CBV and CBN semantics of effectful type theories.

2. Preliminaries 49

K[op(M)/nil] = op(K[M/nil]) µzM = M [thunk µzM/z]

Figure 2.17: For effects, we demand the basic equation defining the fixpoint combinator
µz as well as algebraicity equations for all effects op(−) (in addition to the usual equational
theory for the specific operations op(−), like the Plotkin-Power equations for global state).
These algebraicity equations state that a stack K is a homomorphism of the algebra
defined by the operations op(−). For our examples, op(−) ranges over diverge , error e ,
choosei(−), print m . (−), readtos(−) and write s . (−).

2.3 Linear Types

Linear logic was introduced by Girard in [43] as a resource sensitive refinement of

intuitionistic logic, which was inspired by the structure present in certain models

for system F. From a modern perspective, we can see the essence of linear logic, or

rather that of its proof term calculus, the linear λ-calculus, to already be present in

[44]. Put simply, the linear λ-calculus provides an internal language for symmetric

monoidal closed categories in the same way that the ordinary (simply-typed) λ-

calculus does for cartesian closed categories. The system is resource sensitive in the

sense that a possibly non-cartesian monoidal structure does not generally admit

copying and deleting morphisms. This means that, in the corresponding logic or

λ-calculus, we lose the structural rules of contraction and weakening. This results

in an exposure of the frequency with which assumptions are used in proofs in logic

and gives us a better grip on complexity in the λ-calculus.

To be precise, the logic that is arises from this linear λ-calculus via a Curry-

Howard correspondence is referred to as (multiplicative) intuitionistic linear

logic. This system is strictly more general than the (multiplicative-additive-

exponential) classical linear logic studied by Girard. This latter system differs

from the former in three significant ways.

1. It admits a classical duality in the sense that there is a dualising object14

⊥ for the implication(. At the same time it still admits a non-trivial term

calculus. This is one of the historically surprising aspects of the system, in the
14That is, an object ⊥ such that the canonical evaluation morphism A −→ (A⇒ ⊥)⇒ ⊥ is an

isomorphism for all objects A.

50 2.3. Linear Types

light of the Joyal lemma (see e.g. [45]), which states that a cartesian closed

category with a dualising object is a preorder.

2. It comes equipped with a comodality (that is, a 2-modality) !, called the

exponential, which recovers the structural rules.

3. It comes equipped with an additional notion of conjunction, called the

additive conjunction, written &, to be contrasted with the multiplicative

conjunction ⊗ from multiplicative intuitionistic linear logic. It represents an

internal choice, rather than a simultaneous occurence of resources. Classical

duality also gives us an additive disjunction ⊕, which represents an external

choice, and which, in absence of classical duality, we might choose to include

in our linear logic as a primitive.

It will be the level of greater generality of (multiplicative) intuitionistic linear

logic, including the more specific cases of systems à la Girard, that we think of

when we refer to linear logic.

2.3.1 Categorical Semantics

Intuitionistic linear logic admits a relatively simple, though not historically uncontro-

versial, sound and complete categorical semantics which we describe here briefly. Our

principal reference will be [34]. Some more background is provided in [46] and [47].

There are several notions of model in use that are equivalent, which only differ

in their interpretation of !. It is clear that ! should be interpreted as a comonad,

but the exact properties of those comonad can be stated in several equivalent ways.

For our purposes, the notion of a linear/non-linear model of [33] is the best fit.

Definition 2.3.1 (Linear/Non-Linear Adjunction). By a linear/non-linear ad-

junction, we shall mean a lax symmetric monoidal adjunction (i.e. an adjunction

in the 2-category of symmetric monoidal categories and lax symmetric monoidal

functors)

(C, 1,×)
F
-

⊥�
U

(D, I,⊗)

2. Preliminaries 51

from a symmetric monoidal category D to a cartesian monoidal category C. An

equivalent condition for the adjunction F a U to be lax symmetric monoidal is for

the functor F to be strongly symmetric monoidal, in which case the symmetric oplax

structure on F transfers along the adjunction to a symmetric lax structure on U .

Definition 2.3.2 (Model of Linear Logic). A model of intuitionistic linear logic

with I- and ⊗-types consists of a symmetric monoidal category D. The model

supports...

• (- types iff D is closed (as a multicategory or as a symmetric monoidal

category in case we have I- and ⊗-types);

• >- and &-types iff D has finite products;

• 0- and ⊕-types iff D has distributive coproducts (or coproducts in the multica-

tegorical sense);

• !-types iff D is equipped with a comonad ! which arises as FU for a linear/non-

linear adjunction F a U : (C, 1,×)� (D, I,⊗).

2.3.2 Syntax

As is the case for its categorical semantics, there are many different roughly

equivalent syntactic proof calculi for linear logic. In order to allow a natural

generalization to dependent types (which most naturally come in a natural deduction

formulation), we choose a calculus in natural deduction style, rather than a sequent

calculus. Of the natural deduction formalisms for linear logic, the two most mature

options are Barber and Plotkin’s dual intuitionistic linear logic (DILL) [34]

and Benton’s linear/non-linear (LNL) calculus [33].

DILL chooses to work with a single typing judgement Γ; ∆ ` b : B and is

closer to Girard’s original formulations of linear logic. It uses a dual context Γ; ∆,

however, which consist of a cartesian region Γ, in which the structural rules of

weakening and contraction are valid, and a linear region ∆, in which they are

not. This separation of context should be seen as a metaoperation internalising !,

52 2.3. Linear Types

which was missing from Girard’s formulations, just as ⊗ internalises the comma

in the context and (internalises the turnstyle `. We should see DILL as an

internal language for D of definition 2.3.2.

The LNL calculus, by contrast, should be seen as providing an internal language

for both C and D (including their relationship through F a U) of definition 2.3.2.

It adds on top of the linear typing judgement Γ; ∆ ` b : B of DILL (which models

the morphisms D) a cartesian typing jugement Γ ` a : A to model the morphisms

of C. This means we – in particular – have two kinds of types: linear types B and

cartesian types A. Here, Γ consists of cartesian types and ∆ of linear types15. In

a model of the LNL calculus, C is considered part of the structure of the model,

while, for a model of DILL, we only demand the existence of a linear/non-linear

adjunction to some cartesian category C.

We have chosen to work with DILL in this thesis and generalise it with a notion

of type dependency (see chapter 3), mostly because it is closer to what we believe

most people understand to be the essence of linear logic and because it seems to

be more widely used. However, the LNL calculus can be useful to keep in mind in

order to see better how CBPV generalises linear logic to non-commutative effects in

a sense. We choose not to elaborate on the syntax of linear logic, here, as [33, 34]

are excellent references for the syntax of DILL and the LNL calculus, respectively.

2.3.3 Girard Translations

An important aspect of linear type theory is that we have two translations of cartesian

type theory (with commutative effects) into it, called the Girard translations. It

turns out that, from the point of view of CBPV, these are simply the CBN and

CBV translations, in disguise. Indeed, the point we like to stress in this thesis is

that the LNL calculus is essentially the same as CBPV for commutative effects

with the extra connectives of ⊗ and (. It might seem as if DILL is a serious

restriction in expressive power compared to the LNL calculus. In particular, from

the point of view of CBPV, it seems as if DILL only allows the CBN translation
15We can read a DILL context Γ; ∆ as the LNL context UΓ; ∆, where we apply U to all types

in Γ.

2. Preliminaries 53

of cartesian type theory (known as the first Girard translation in the context of

linear logic) as we are missing value types. However, the linear connectives ⊗ and

(allow us to express the CBV translation purely in terms of computation types.

Altough this was already known to Girard, he thought this second translation was

“not of much interest” and stressed the importance of his first (CBN) translation

[38]. It is precisely the absence of the connectives ⊗ and(for non-commutative

effects (particularly the latter) that forces CBPV to consider two separate typing

judgements, while linear logic can be formulated equally well using only one.

For completeness sake, figure 2.18 shows the CBN and CBV translations of

cartesian type theory into DILL, at least at the level of types. Note that as we

might be working with an effectful cartesian type theory, in general, we distinguish

between product types with a pattern matching eliminator, which we denote

A1 × · · · × An, and product types with a projection eliminator, which we denote

Π1≤i≤nAi. We trust that the reader can fill in the definitions at the level of terms,

from the corresponding translations for CBPV. While (−)f corresponds precisely

to the CBN translation (−)n of CBPV, (−)s can be read as the adjoint of (−)v

in a sense. Indeed, while (−)v sends a term x1 : A1, . . . , xn : An ` M : A to a

term x1 : Av1, . . . , xn : Avn; · ` M v : FAv, (−)s sends it to the equivalent term

·;x1 : As1, . . . , xn : Asn ` M s : As, where As = FAv. This equivalence follows

because F (A1 × · · · × An) ∼= FA1 ⊗ · · · ⊗ FAn.

We would like to point out that the conventional Girard translations choose to

use projection products for the CBN translation and pattern matching products for

the CBV translation, to make sure that η survives in either case. Note that there is

no analogous way of salvaging the η-law for sum types in CBN. We also note that

we only need additive conjunctions for the CBN translation of projection products.

Note that the usual practice of constructing models of cartesian type theory

out of models of linear type theory D by taking the co-Kleisli category D! for !

precisely is the semantic equivalent of Girard’s first translation. As far as we are

aware, there is no well-known categorical construction corresponding to Girard’s

54 2.3. Linear Types

Cartesian Type A CBN Translation Af CBV Translation As

1 I I

A1 × A2 !Af1⊗!Af2 As1 ⊗ As2
Π1≤i≤nAi Af1& . . .&Afn !As1 ⊗ . . .⊗!Asn
A1 ⇒ A2 !Af1 (Af2 !(As1 (As2)
0 0 0
A1 + A2 !Af1⊕!Af2 As1 ⊕ As2

Figure 2.18: The definitions of the CBN and CBV translations of cartesian type theory
into DILL, also known as the first and second Girard translation, respectively.

second translation, perhaps because it relies on the specific properties of ! as a

comonad (its compatibility with the monoidal structure on D).

2.3.4 Concrete Models
2.3.4.1 Commutative Computational Effects

In section 2.2.3, we saw that linear logic gives rise to certain models for CBPV for

commutative effects. In fact, a following partial converse result can be obtained.

A similar result was stated without proof or attribution16 in [38], but we provide

a construction here, in order to generalize it later.

Theorem 2.3.3. Let C be a cartesian closed category with a commutative monad T ,

where C additionally has equalisers and the Eilenberg-Moore category CT has reflexive

coequalisers17. Then, CT is symmetric monoidal closed and has finite products to

interpret additive conjunctions and the Eilenberg-Moore adjunction F a U defines a

linear/non-linear adjunction.

Proof. The statement about additive conjunctions follows from the well-known

result that the forget functor from the Eilenberg-Moore category creates limits.

For two algebras k, l ∈ CT , we define an object k
U
(l of C as the equaliser (which

represents the subobject of morphisms satisfying the homomorphism equations)

k
U
(l ⊂

m
- Uk ⇒ Ul

λf :Uk⇒UlTf ; l
-

λf :Uk⇒Ulk; f
- TUk ⇒ Ul.

16We believe the result on closure should be attributed to [48] while the construction of the
symmetric monoidal structure might be inspired by the results of [49].

17In fact, [50] provides an alternative construction for ⊗-types for which we demand instead all
coequalisers in C.

2. Preliminaries 55

We note that we can equip k
U
(l with a T -algebra structure if T is a commutative

monad. Indeed, using the morphism T (A ⇒ B) φA,B−→ A ⇒ TB which exists for

every strong monad, we can define the map

T (k
U
(l) Tm- T (Uk ⇒ Ul)

φUk,Ul- Uk ⇒ TUl
λff ; l
- Uk ⇒ Ul.

Commutativity of the monad gives us that this map is equalising, so we obtain a

unique factorisation of the map over k
U
(l, which gives us our algebra structure

k(l.

For ⊗-types note that we have the following reflexive fork in CT , where we write

TA × TB tA,B−→ T (A × B) for the left or right pairing for the strong monad T (it

doesn’t matter which, as T is commutative):

F (Uk × Ul) F 〈ηUk, ηUl〉- F (UFUk × UFUl)
F 〈k, l〉

-

F (tUk,Ul); εF (Uk×Ul)
- F (Uk × Ul).

Taking the coequaliser of this fork gives us our interpretation of k ⊗ l. Given

morphisms k φ−→ k′ and l ψ−→ l′, we easily see that we get natural transformations

between the respective coequaliser diagrams (using the homomorphism laws and the

naturality of ε and t), which, therefore, give us morphisms k ⊗ l φ⊗ψ−→ k′ ⊗ l′. This is

easily seen to make ⊗ a functor in each argument. Using the commutativity of T ,

we can show that it is, in fact, a bifunctor. Using the strength and pairing, we can

always define a cocone on the coequaliser diagram which gives rise to an associator

k⊗(l⊗m) −→ (k⊗l)⊗m. Next, observe that FA⊗FB ∼= F (A×B). To see this, note

that for k = FA and l = FB, we have that F (UFA×UFB)
F (tA,B);εF (A×B)−→ F (A×B)

is a cocone for the diagram above. Moreover, it is easily seen to have a section

F 〈ηA, ηB〉, making it into a split epi. Given another cocone ψ for the diagram,

we can now define a factorisation over F (tA,B); εF (A×B) by F (〈ηA, ηB〉);ψ, which is

unique as our cocone is an epi. Similarly, we can see that F1⊗ k ∼= k ∼= k ⊗ F1,

showing that I := F1 makes ⊗ into a monoidal structure on CT . We can further note

that commutativity of the monad means that the braiding of × gives us a cocone

on the coequaliser diagram which, gives rise to a braiding for ⊗, which inherits to

property of being involutive from the braiding of ×. The triangle, pentagon and

56 2.3. Linear Types

hexagon identities all follow from the universal property of the coequaliser defining

⊗. We conclude that ⊗ is a symmetric monoidal structure.

Using the universal property of the coequaliser defining⊗ as well as the naturality

of t and ε, the definition of a T -homomorphism and the universal property of

the equaliser defining (, it is a straightforward calculation to establish that

B ⊗ (−) a B((−).

The condition that CT has reflexive coequalisers can, of course, be reduced to C

having such coequalisers and T preserving them. This happens, for instance, when

T is induced by a finitary algebraic theory, as finite powers in a cartesian closed

category preserve reflexive coequalisers [51] (section D5.3).

Remark 2.3.4 (A Linear Logic for Non-Commutative Effects?). In the light of

theorem 2.3.3, it is tempting to wonder if we can define a similar, perhaps non-

commutative, linear logic to describe non-commutative computational effects. It is

clear that theorem 2.3.3 would not straightforwardly generalise to a non-commutative

setting, however, as it has been shown in [52] that none of the categories of magmas,

monoids, groups and rings admit a monoidal biclosed structure. At the same

time, they arise as Eilenberg-Moore categories for a (strong) monad on a complete

cocomplete cartesian closed category (Set). In fact, [53] shows that for a strong

monad T , k
U
(l above is a subalgebra of Uk ⇒ Ul (which is the carrier of the Kleisli

exponential Uk F(l, which is well-known to exist as a T -algebra) for all T -algebras

k and l if and only if T is commutative. The construction above, inspired by [49],

however, does yield a suitable (not necessarily symmetric, non-biclosed) premonoidal

structure (see [54]) on on categories of algebras (with reflexive coequalisers) for

arbitrary strong monads.

In fact, if we do not have the appropriate limits and colimits, we can always

extend our model to incorporate them.

Theorem 2.3.5. Every cartesian closed category C with a commutative monad

T embeds fully and faithfully into a model of intuitionistic exponential additive

multiplicative linear logic inducing the monad T .

2. Preliminaries 57

Proof. Let Ĉ be the category of presheaves on C (its cocompletion). We note that

the Yoneda embedding defines a strict 2-functor from the 2-category of categories

to the 2-category of cocomplete categories (computing its action on morphisms by

taking Yoneda extensions). In fact, using the Day convolution [55], it defines a strict

2-functor from the 2-category of symmetric monoidal categories (with lax symmetric

monoidal functors and symmetric monoidal natural transformations) SMCat to the

(sub-) 2-category of cocomplete symmetric monoidal categories cCSMCat. Noting

that a commutative monad is precisely the same as a monad in SMCat (Proposition

20 in [33]) and that 2-functors preserve monads, we get a monad in cCSMCat which

is a cocontinuous commutative monad T̂ on Ĉ, which restricts to T on C. Note

that Ĉ is bicartesian closed with equalisers and coequalisers (a topos even) and

that T̂ preserves colimits (in particular, reflexive coequalisers), so ĈT̂ has reflexive

coequalisers. Therefore, we can apply theorem 2.3.3 for the result that ĈT̂ � Ĉ

defines a model of intuitionistic exponential additive multiplicative linear logic.

Remark 2.3.6. We see that intuitionistic linear logic almost precisely describes

all commutative effects. Still, this point of view does not seem to be widely held.

Perhaps this is due to the fact that in the (initial) syntactic model of linear logic, a

so-called principle of uniformity of threads (called such because it implies the usual

principle D(!A,B) ∼= D(!A, !B)) holds [56]: the unit of the adjunction F a U is

an isomorphism idC ∼= UF =: T . In this sense, the free linear logic model does not

describe any effects from the monadic point of view. All its interesting information

is contained in the comonad ! := FU of the adjunction.

2.3.4.2 Scott Domains and Strict Functions

A simple model of linear type theory (with recursion, in the sense of a model of

CBPV with recursion) can be built from Scott domains and strict functions. Here,

D has as objects Scott domains (i.e. bounded complete, directed complete, algebraic

cpos) and as morphisms strict (preserving the bottom element ⊥) continuous

(preserving directed colimits) functions between them. If we define C to be the

category of Scott predomains (i.e. countable disjoint unions of Scott domains)

58 2.3. Linear Types

and continuous functions, we can note that the inclusion U of D into C has a left

adjoint F which adjoins a new bottom element. D is easily seen to have a terminal

object > (the one-element domain) and binary products A&B (the set-theoretic

product, equipped with the product order 〈a, b〉 ≤ 〈a′, b〉 := a ≤ a ∧ b ≤ b′). The

same is true for C where we write the cartesian structure (1,×). D also supports

(-types, where A(B is the set of strict continuous function from A to B under

the pointwise order (f ≤ g := ∀x∈Af(x) ≤ g(x)). We can note that A(− has a

left adjoint A⊗− which gives rise to a symmetric monoidal closed structure on D:

A⊗B is defined as the smash product {〈a, b〉 ∈ UA&UB | a 6= ⊥ ∧ b 6= ⊥}∪ {⊥}.

This has a unit I := {⊥ ≤ >}. Note that this monoidal structure makes F into

a strong symmetric monoidal functor. We see that we have a model of linear

logic with >,&, I,⊗,(and !-types.

2.3.4.3 Coherence Spaces

One of the most canonical kinds of denotational semantics of linear logic – and, in

fact, the original motivation for Girard to introduce linear connectives – is found

in stable domain theory and its linear decomposition through coherence spaces.

Imposing the property of stability on top of continuity can be seen as taking a step

closer to (what is definable in) the syntax of a functional language with recursion.

We briefly recall some of the definitions in Girard’s coherence space model of

(classical) linear logic. The model is given by the category Coh of coherence spaces

and cliques. Its objects are coherence spaces (A,¨A) (or, undirected graphs): a

set A of tokens with a reflexive relation ¨A, called the coherence relation. We

write ˝A for the irreflexive part of ¨A, ˇA for the complement of ¨A, and ˚A

for the complement of ˝A. Before we define the morphisms of the category, we

describe a few operations on objects.

Given a coherence space A, we define its linear negation A⊥ as the space with

the same underlying set A of tokens and coherence relation ˚A:

a ¨A⊥ a
′ := ¬(a ˝A a

′).

2. Preliminaries 59

Given coherence spaces A and B, we define their multiplicative conjunction

A ⊗ B as having underlying set the product A × B of the underlying sets of A

and B and coherence relation

(a, b) ¨A⊗B (a′, b′) := a ¨A a
′ ∧ b ¨B b

′.

We can then define their multiplicative disjunction A`B, through De Morgan dua-

lity,

A`B := (A⊥ ⊗B⊥)⊥,

and their (multiplicative) linear implication A (B,

A(B := A⊥ `B.

(Explicitly, (a, b) ˝A`B (a′, b′) := a ˝A a′ ∨ b ˝B b′ and (a, b) ˝A(B (a′, b′) :=

a ¨A a′ ⇒ b ˝B b′.)

We can define their additive disjunction A⊕B as the disjoint union of coherence

spaces, where never a ¨A⊕B b if a ∈ A and b ∈ B and ¨A⊕B restricts to ¨A and ¨B,

and we can define their additive conjunction A&B, through De Morgan duality, as

A&B := (A⊥ ⊕B⊥)⊥.

(Explicitly, always a ¨A&B b for a ∈ A, b ∈ B and ¨A&B restricts to ¨A and ¨B.)

The operations ⊗, `, ⊕, and & also have neutral elements which we shall

denote by I, ⊥, 0, and >, respectively. Indeed, I = ⊥ = {∗} and 0 = > = ∅

are easily seen to do the trick. (These identities between the units can be seen

as degeneracies of this model of linear type theory, as they do not follow from

the syntax of classical linear logic.)

We now define the morphisms:

Coh(A,B) := cliques(A(B),

where a clique σ in A is a subset σ ⊆ A such that a, a′ ∈ σ ⇒ a ¨A a
′. We compose

cliques as relations, which gives us the identity relations (which are cliques!) as

the identities of our category.

60 2.3. Linear Types

We note that (I,⊗,() make Coh into a symmetric monoidal closed category,

that > and & are our nullary and binary products, and that 0 and ⊕ are our

nullary and binary (distributive) coproducts. We note that we have obtained a

model of linear type theory with I-, ⊗-,(-, >-, &-, 0-, and ⊕-types. In fact, as

((−)⊥)⊥ ∼= idCoh, we even have a model of classical linear type theory. [46]

We have a linear/non-linear adjunction between the category Stable of Scott

predomains with pullbacks and continuous stable functions18 and the category

Coh of coherence spaces, F a U :

(Stable, 1,×)
F
-

⊥�
U

(Coh, I,⊗).

U takes the domain of cliques on objects and sends a clique σ in A(B to the

continuous stable function d 7→ {b | ∃a∈d(a, b) ∈ σ}. F sends a predomain D to

the coherence space with set of tokens the compact elements of D and coherence

relation s ¨FD t := ∃u∈D(s ≤ u) ∧ (t ≤ u) and sends a continuous stable function

D′
f−→ D to the clique {(x, y) | y ≤ f(x) ∧ ∀x′≤xy ≤ f(x′) ⇒ x = x′}. (Note

that F is a strong monoidal functor.) We have the following bijection of homsets,

which demonstrates the adjunction,

σ - d 7→ {c |∃d′≤d(d′, c) ∈ σ }

Coh(FD,C)
fun

-
∼=�

trace
Stable(D,UC)

{(d, c) | c ∈ f(d) ∧ ∀d′≤dc ∈ f(d′)⇒ d′ = d} � f.

This induces a comonad ! := FU on Coh. Explicitly, !A has set of tokens cliquesfin(A)

and coherence relation

s ¨!A s
′ := (s ∪ s′ ∈!A).

This shows that that our model Coh of linear logic additionally supports !-types.

18Recall that a function D′
f−→ D is called continuous if it preserves directed suprema and

that it is called stable if it preserves all pullbacks: d0, d1 ≤ d> and d0 ∧ d1 exists implies that
f(d0 ∧ d1) = f(d0) ∧ f(d1).

2. Preliminaries 61

2.3.4.4 AJM-Games

In section 2.4, we introduce another important class of models of linear logic:

categories of games and strategies. We encourage the reader to think of game

semantics as giving a further decomposition of coherence space semantics, which

itself gave a decomposition of domain semantics by interpreting domain elements

as sets of tokens. Indeed, it replaces tokens with (even length) plays in a game

which are built up as a sequence of moves. Strategies (certain sets of plays) will

then play the rôle of cliques. This can be formalised as the statement that there

is a (faithful) forgetful functor from the category of CBN AJM-games19 to the

category of coherence spaces, which sends a game to the coherence space with even

length plays as tokens, where tokens are called coherent if they agree on P -moves.

Strategies σ : A(B are then interpreted as the clique {(s �A, s �B) | s ∈ σ}. In

[57], it is shown that this functor can be made full if we work with a suitable category

of coherence spaces with a partial order on the tokens (representing the idea that

some plays extend others in time). In that sense, game semantics is coherence

space semantics extended in time. In turns out this more fine-grained description

provided by game semantics is enough to precisely pin down the functions that are

definable in a functional language with recursion (and with various other effects).

2.4 AJM Game Semantics

The idea behind game semantics is to model a computation by an alternating

sequence of interactions (the play) between a program (Player) and its environment

(Opponent), following some rules specified by its (data)type (the game). In this

translation, programs become Player strategies, while termination corresponds to a

strategy being winning or beating all Opponents. The charm of this interpretation

is that it not only fully captures the intensional aspects of a program but that it
19 In this thesis, we work with AJM-games because, in order to interpret dependent types, we

need the extra option of explicitly restricting plays by defining the set PA, rather than being
forced to work with all legal positions, as we would be in HO-games. Indeed, [30] has shown that
all HO-games can be defined from a simple type system with product and coproduct types as well
as type level recursion. This shows that HO-games do not suffice to interpret more expressive
types like dependent function types.

62 2.4. AJM Game Semantics

combines this with the structural clarity of a categorical model, thus interpolating

between traditional operational and denotational semantics.

If we view a type theory as a logic rather than as a programming language, its

game semantics formalises the idea of Socratic dialogues. The interpretation of a

proposition can be thought of as the game of all formal debates about its validity,

where Player argues in its favour and Opponent argues against it. In this view, a

proof of a proposition gets interpreted as a winning strategy for Player. We see

that proofs get interpreted by winning strategies, when giving a game semantics

of a logic, while partial strategies are of interest too, for the game semantics of a

programming language, as these model programs that do not always terminate.

We assume the reader has some familiarity with the basics of categories of

AJM-games (contrasted with the other style of HO game semantics [58]) and (≈-

saturated20) strategies, as described in [59], and will only briefly recall the definitions.

We define a category Game which has as objects AJM-games.

Let us fix some universal set of movesM with injective functions

M+M +−→M

M×M ×−→M

M× N ×−→M,

say the set of ASCII strings with [x 7→ “inl(”++x++“)”, x 7→ “inr(”++x++“)”],

〈x, y〉 7→ “〈” + +x+ +“, ” + +y + +“〉” and 〈x, y〉 7→ “〈” + +x+ +“, ” + +y + +“〉”,

to make sure that AJM-games (and later games with dependency) form a set.

Definition 2.4.1 (Game). A game A is a tuple (MA, λA, jA, PA,≈A,WA), where

• MA ⊆M is set of moves;
20Note that this is a mild technical difference from the formalism of [22], where strategies are

what we call skeletons, here, which are considered up to a partial equivalence relation induced by
≈. Both formalisms are equivalent as a class of skeletons up to this partial equivalence relation
can precisely be identified with the unique strategy obtained by closing the plays of the skeleton
under ≈.

2. Preliminaries 63

• MA

λA = 〈λOPA , λQAA 〉- {O,P} × {Q,A} is a function which indicates if a move is

made by Opponent (O) or Player (P) and if it is a Question (Q) or

an Answer (A), for which we write O = P , P = O and MO
A := λOPA

−1(O),

MP
A := λOPA

−1(P), MQ
A := λQAA

−1(Q) and MA
A := λQAA

−1(A);

• MA

jA
⇀MA is a partial function which indicates the justifier of a move,

with the properties

(Well-Foundedness): jA defines a well-founded forest in the sense that for

each move m ∈MA there is some number k such that jkA(m) is undefined;

such a move with an undefined justifier is called an initial move;

(Compatibility with λA): P -moves are justified by O-moves and vice-versa;

answers m are justified by questions n (but not necessarily vice-versa);

in this case, we say that m answers n.

jA will be used to enforce stack discipline in strategies.

• PA ⊆M~
A is a non-empty prefix-closed set of plays, where M~

A is the set of

finite sequences of moves, with the properties

(Initial Move): Opponent moves first;

(Alternation): Player and Opponent alternate in making a move;

(Linearity): Every move occurs at most once in a play;

(Justification): A move can only be played after its justifier.

• ≈A is an equivalence relation on PA, satisfying

(Compatibility with λA): s ≈A t⇒ λ∗A(s) = λ∗A(t);

(Prefix-Closure): s ≈A t ∧ s′ ≤ s ∧ t′ ≤ t ∧ |s′| = |t′| ⇒ s′ ≈A t′;

(Completeness): s ≈A t ∧ sa ∈ PA ⇒ ∃bsa ≈A tb.

Here, λ∗A is the extension of λA to sequences. The intuition is that ≈A-

equivalent plays represent the same computation performed using different

threads.

64 2.4. AJM Game Semantics

• WA ⊆ P∞A is a set of winning plays, where P∞A is the set of infinite plays,

i.e. infinite sequences of moves such that all their finite prefixes are in PA,

such that WA is closed under ≈A in the sense that

(s ∈ WA ∧ t /∈ WA)⇒ ∃s0≤s,t0≤t|s0| = |t0| ∧ s0 6≈A t0.

The intuition is that Opponent is the one who caused interactions in WA to be

infinite.

Our notion of morphism will be defined in terms of strategies on games.

Definition 2.4.2 (Strategy). A (Player) strategy on A is a non-empty subset

σ ⊆ P even
A satisfying

(Causal Consistency): sab ∈ σ ⇒ s ∈ σ;

(Representation Independence): s ∈ σ ∧ s ≈A t⇒ t ∈ σ.

We sometimes identify σ with the subset of PA that is obtained as its prefix

closure. Generally, we impose some more conditions on strategies.

Definition 2.4.3 (Conditions on Strategies). We call a strategy σ on A determi-

nistic if it satisfies

(Determinacy): sab, ta′b′ ∈ σ ∧ sa ≈A ta′ ⇒ sab ≈A ta′b′.

We call it well-bracketed if it satisfies

(Well-Bracketing): If an answer is played, it is in response to (i.e. justified

by) the pending question (i.e. the last unanswered question).

We call σ history-free, if there exists a non-empty causally consistent subset φ ⊆ σ

(called a history-free skeleton) such that

(Uniformization): ∀sab∈σs ∈ φ⇒ ∃!b′sab′ ∈ φ;

(History-Freeness 1): sab, tac ∈ φ⇒ b = c;

(History-Freeness 2): (sab, t ∈ φ ∧ ta ∈ PA)⇒ tab ∈ φ.

2. Preliminaries 65

We call σ winning if it satisfies

(Finite Wins): If s is ≤-maximal in σ, then s is ≤-maximal in PA.

(Infinite Wins): If s0 ≤ s1 ≤ . . . is an infinite chain in σ, then ⋃i si ∈ WA.

The idea is that game semantics naturally models various effects (and indeed

does so very precisely in the sense that full-abstraction results can be obtained):

non-determinism [60], non-local control flow21 [61, 62], local references of ground

type22 [64] and recursion/non-termination [22]. These four conditions on strategies

respectively serve to exclude these four classes of effects. This idea has been

dubbed the “semantic cube” by Abramsky [65], where the axes of the (hyper)cube

correspond to various conditions one could impose on strategies.

We write str(A) for the cpo of strategies (satisfying our favourite selection of

the four conditions above) on A ordered under inclusion and write ⊥A or simply ⊥

for the strategy {ε}. In the rest of this thesis, we assume strategies to satisfy all

four conditions, unless specified otherwise explicitly. (However, all constructions

and results, with the exception of completeness results, go through for any of

these classes of strategies.)

We note that a history-free skeleton φ for a strategy σ is induced by a partial

function on moves and that it satisfies σ = {t | ∃s∈φt ≈A s}. A winning strategy is

the semantic equivalent of a normalising or total term. It always has a response

to any valid O-move. Furthermore, if the result of the interaction between a

winning strategy and any (possibly history-sensitive) Opponent is an infinite play,
21If we drop the well-bracketing condition altogether, Laird showed that we allow for very

wild kinds of control flow, which are customary in CBV but not CBN. To obtain a precise
correspondence with a CBN language with the control operator call/cc we would still impose the
weaker condition on strategy of being weakly well-bracketed: we are allowed to answer any
open question, where by open question we mean a question for which no more recent question has
been answered already. This corresponds to a stack discipline in which we can not just pop the
top element, but we can pop an element that is deeper in the stack with the rule that we have to
discard all elements on top of it.

22While in HO-games naturally model general references, it is not clear to the author if these can
be modelled in AJM-style. Indeed, strategies on AJM-games (at least the simply typed hierarchy)
automatically satisfy the so-called visibility condition as a consequence of the restrictions on valid
plays (specifically the switching conditions). Visibility is known to be the semantic condition
which corresponds to the exclusion of higher-order references. [63]

66 2.4. AJM Game Semantics

then this is a member of the set of winning plays, capturing the idea that the

infinite interaction is Opponent’s fault.

Next, we define some constructions on games, starting with their symmetric

monoidal closed structure.

Definition 2.4.4 (Tensor Unit). We define the game I := (∅, ∅, ∅, {ε}, {(ε, ε)}, ∅).

Definition 2.4.5 (Tensor). Given games A and B, we define the game A⊗B by

• MA⊗B := MA +MB;

• λA⊗B := [λA, λB];

• jA⊗B := jA + jB

• PA⊗B := {s ∈M~
A⊗B | s �A∈ PA ∧ s �B∈ PB};

• s ≈A⊗B t := s �A≈A t �A ∧ s �B≈B t �B ∧ ∀1≤i≤|s|(si ∈MB ⇔ ti ∈MB);

• WA⊗B :=
{
s ∈ P∞A⊗B | (s �A∈ P∞A ⇒ s �A∈ WA) ∧ (s �B∈ P∞B ⇒ s �B∈ WB)

}
.

Definition 2.4.6 (Linear Implication). Given games A and B, and writing initB ⊆

MB for the set where jB is undefined, we define the game A(B by

• MA(B := MA × initB + MB; we write s �A for the subsequence of moves in

MA × initB of the play s where we further project to a sequence in MA;

• λA(B := [λA, λB], where λA(m,n) := λA(m);

•
jA(B(m,n) := n if m ∈ initA
jA(B(m,n) := jA(m) if m ∈MA \ initA
jA(B(n) := jB(n) if n ∈MB

;

• PA(B := {s ∈M~
A(B | s �A∈ PA ∧ s �B∈ PB};

• s ≈A(B t := s �A≈A t �A ∧ s �B≈B t �B ∧ ∀1≤i≤|s|(si ∈MB ⇔ ti ∈MB);

• WA(B := {s ∈ P∞A(B | s �A∈ WA ⇒ s �B∈ WB}.

2. Preliminaries 67

I is the unique game whose only play has length 0. Both A⊗B and A(B are

obtained by playing A and B in parallel by interleaving. Note that the definitions

of P− and λ− imply that in A ⊗ B only Opponent can switch between A and B,

while in A(B only Player can, and that in A⊗B Opponent can start the play

in either A or B, while in A(B the play must commence in B. In both cases,

a question is answered in the game where it was asked.

These definitions on objects extend to strategies, e.g. for strategies σ ∈

str(A), τ ∈ str(B), we can define a strategy σ ⊗ τ = {s ∈ P even
A⊗B | s �A∈ σ ∧ s �B∈

τ} ∈ str(A ⊗ B). This gives us a model of multiplicative intuitionistic linear

logic, with all structural morphisms consisting of appropriate variants of copycat

strategies, which are introduced next.

Theorem 2.4.7 (Linear Category of Games). We define a category Game by

• ob(Game) := {A | A is an AJM-game};

• Game(A,B) := str(A(B);

• idA := {s ∈ P even
A(A | ∀s′∈P even

A(A
s′ ≤ s ⇒ s′ �A(1)≈A s′ �A(2)}, the copycat

strategy on A;

• for A σ−→ B
τ−→ C, the composition (or interaction) A σ;τ−→ C is defined

from parallel composition σ||τ := {s ∈M~
(A(B)(C | s �A,B ∈ σ ∧ s �B,C ∈ τ}

plus hiding: σ; τ := {s �A,C | s ∈ σ||τ}.

Then, (Game, I,⊗,() is, in fact, a symmetric monoidal closed category.

To make this into a model of intuitionistic logic, a cartesian closed category (ccc),

through the first Girard translation (CBN translations), we need two more constructi-

ons on games, to interpret the additive conjunction and exponential, respectively.

Definition 2.4.8 (With). Given games A and B, we define the game A&B by

• MA&B := MA +MB;

• λA&B := [λA, λB];

68 2.4. AJM Game Semantics

• jA&B := jA + jB;

• PA&B := PA + PB;

• ≈A&B:=≈A + ≈B;

• WA&B := WA +WB.

Definition 2.4.9 (Bang). Given a game A, we define the game !A by

• M!A := N×MA;

• λ!A(i, a) := λA(a);

• j!A(i, a) := (i, jA(a));

• P!A := {s ∈M~
!A | ∀i∈Ns �i∈ PA};

• s ≈!A t := ∃π∈S(N)∀i∈Ns �i≈A t �π(i) ∧ (fst; π)∗(s) = fst∗(t), writing S(N) for

the set of permutations of N;

• W!A := {s ∈ P∞!A | ∀is �i∈ P∞A ⇒ s �i∈ WA}.

A play in A&B consists of either a play in A or in B, where Opponent chooses

which as by our convention Opponent always makes the initial move. A play in

!A consists of any number of interleaved threads of plays in A. Because of the

definition of ≈A, !A behaves as a countably infinite symmetric ⊗-product of A

with itself. As before, the definition of λ!A assures only Opponent can switch

games, while the definition of justification ensures that a question is answered

in the thread in which it was asked.

Next, we note that ! can be made into a comonad by defining, for A σ−→ B,

!σ := {s ∈ P even
!A(!B | ∃π∈S(N)∀i∈Ns �(π(i),A),(i,B)∈ σ},

and natural transformations !A derA−→ A and !A δA−→!!A where

derA := {s ∈ P even
!A(A | ∀s′∈P even

!A(A
s′ ≤ s⇒ ∃i∈Ns′ �!A�i≈A s′ �A} and

δA := {s ∈ P even
!A(!!A | ∀s′∈P even

!A(!!A
s′ ≤ s⇒ ∃p:N×N↪→N∀i,j∈Ns′ �!A�p(i,j)≈A s′ �!!A�i�j}.

2. Preliminaries 69

This allows us to define the co-Kleisli category Game! of CBN games, which

has the same objects as Game, while Game!(A,B) := Game(!A,B). Let us write

dom(f) for the domain of a morphism f . We have a composition (f, g) 7→ f †; g,

where we write f † := δdom(f); !(f), for which the strategies derA serve as identities.

We can define finite products in Game! by I and & and write

diagA :=
{
s ∈ P even

!A((A&A) | ∀s′∈P even
!A((A&A)

s′ ≤ s⇒ ∃i∈N(s′ = ε) ∨

(s′ �!A�i≈A s′ �A(1) 6= ε) ∨ (s′ �!A�i≈A s′ �A(2) 6= ε)
}

for the diagonal A diagA−→ A&A in Game!. Moreover, we have Seely-isomophisms !I ∼= I

and !(A&B) ∼=!A⊗!B, so we obtain a linear/non-linear adjunction Game� Game!,

hence a model of multiplicative exponential intuitionistic linear logic. In particular,

by defining A⇒ B :=!A(B, we make Game! into a ccc. We write compA,B,C for

the internal composition ((A ⇒ B) & (B ⇒ C)) −→ A ⇒ C in Game!.

Theorem 2.4.10 (Intuitionist Category of Games). (Game!, I,&,⇒) is a ccc.

Remark 2.4.11. Note that for the hierarchy of cartesian types A that are formed

by operations I, & and ⇒ from finite games (games A with finite PA), winning

strategies are the total strategies – strategies which respond to any O-move – for

which infinite plays can only occur because Opponent opens infinitely many threads

of the same game.

So far, we have shown that Game! provides a model of STTCBN without finite

inductive types. It is not clear that inductive types and (weak) coproducts are

supported in our large world Game! of all games if we work with history-free

strategies23. To support these – to be precise, in order to define the appropriate

eliminators –, we restrict the games we consider.

We can in fact construct a model of all of STTCBN in a full subcategory

Gamefin1×⇒
! of Game! by giving a suitable interpretation to finite inductive types,

23In fact, the condition of history-freeness is replaced with innocence in [66] which mends this
defect. Note that history-free and innocent strategies coincide on simple types. This is no longer
true in the presence of coproducts, as we can no longer encode the P -view in a thread index.
In this case, innocent strategies give the right notion to obtain definability and full abstraction
results [67].

70 2.4. AJM Game Semantics

which serve as the ground types for a type hierarchy built with 1, × and ⇒. For

a set X, let us define X∗ to be a so-called flat game with Player moves X which

are all justified by a single initial Opponent move ∗, PX∗ = {ε, ∗} ∪ {∗x |x ∈ X}

and ≈X= {(s, s) ∈ PX × PX} where the initial move ∗ is a question and the moves

from X are answers. Let us interpret a finite inductive type {ai | i} as a finite

flat game {ai | i}∗. Let us write Game!
fin1×⇒ for the full subcategory of Game! on

the objects formed from finite flat games by 1, × and ⇒. Then, Gamefin1×⇒
! is a

model of STTCBN. Indeed, the interpretation of the introduction rule for ai is the

strategy which answers ai to ∗, while the case-eliminators for finite inductive types

are interpreted inductively on the structure of the type C we are eliminating into:

the cases where C is not a finite inductive type are defined through equations 1− η,

{ai | i}−Comm−〈−,−〉 and {ai | i}−Comm−λ of figure 2.3. In case C is a finite

inductive type {cj | j}, we interpret case{ai | i},C as the winning history-free strategy

on {ai | i}∗ ⇒ {cj | j}∗(1) ⇒ . . . ⇒ {cj | j}∗(n) ⇒ {cj | j}∗ which is given by the

≈-closure of the set of traces defined by the following partial function f on moves:

∗(C) 7→ (0, ∗)(!{ai | i}∗) (0, ai) 7→ (0, ∗)(!C(i)) (0, cj)(!C(i)) 7→ c
(C)
j .

One of the interesting aspects of game semantics are the strong correspondences

that can often be established with the syntax we are modelling. In this case,

we have the following very strong completeness result. Note that fullness of the

interpretation is strictly stronger than completeness: it is a notion of completeness

with respect to proofs rather than mere provability.

Theorem 2.4.12. The interpretation functor STTCBN
[[−]]−→ Game! is full and faithful

and hence is an equivalence of categories to Gamefin1×⇒
! , where we write STTCBN

for the syntactic category corresponding to the eponymous theory of section 2.1.1.2.

Proof. This is a straightforward finitary total variation on the results of [22] that

can, in particular, be obtained as a special case of the results in [56]. We note that

winning strategies are total and therefore the case of ⊥ in the decomposition lemma

does not occur. Moreover, we note that the iterated decomposition terminates

2. Preliminaries 71

if we start with a winning strategy, for reasons outlined in the proof of lemma

4.5.3 (essentially because infinite plays are always Opponent’s responsibility, we can

assign a finite size to a strategy which shrinks under the decomposition).

72

“Well! I’ve often seen a cat without a grin,” thought
Alice; “but a grin without a cat! It’s the most curious
thing I ever saw in all my life.”.

— Lewis Carroll

3
Linear Dependent Type Theory

Starting from Church’s simply typed λ-calculus (or cartesian propositional type

theory), two extensions depart in perpendicular directions:

• following the Curry-Howard propositions-as-types interpretation, dependent

type theory (DTT) [68] extends the simply typed λ-calculus from a proof

calculus of intuitionistic propositional logic to one for predicate logic;

• linear logic [43] gives a more detailed resource sensitive analysis, exposing

precisely how many times each assumption is used in proofs.

A combined linear dependent type theory is one of the interesting directions

to explore to gain a more fine-grained understanding of dependent type theory

from a computer science point of view, explaining its flow of information. Indeed,

many of the usual settings for computational semantics are naturally linear in

character, either because they arise from a model of linear logic as !-co-Kleisli

categories (coherence space and game semantics) or for more fundamental reasons

(quantum computation). Relatedly, as we have seen, linear types naturally arise

in the semantics of commutative effects.

Combining dependent types and linear types is a non-trivial task, however, and

despite some work by various authors that we shall discuss, the precise relationship

73

74 3. Linear Dependent Type Theory

between the two systems remains poorly understood. The discrepancy between

linear and dependent types is the following.

• The lack of structural rules in linear type theory forces us to refer to each

identifier precisely once – for a sequent x : A ` t : B, x occurs uniquely in t.

• In dependent type theory, types can have free identifiers – x : A ` B type,

where x is free in B. Crucially, if x : A ` t : B, x may also be free in t.

What does it mean for x to occur uniquely in t in a dependent setting? Do we not

count its occurrence in B? This point of view seems incompatible with universes,

which play an important rôle in dependent type theory. If we do, however, the

language seems to lose much of its expressive power. In particular, it prevents

us from talking about constant types, it seems.

The usual way out, which we shall follow too, is to restrict type dependency on

cartesian terms, which can be copied and deleted freely. Although this seems very

limiting – for instance, we do not obtain full equivalents of the Girard translations,

embedding DTT in the resulting system –, it is not clear that there is a reasonable

alternative. Moreover, as even this limited scenario has not been studied extensively,

we hope that a semantic analysis, which was so far missing entirely, may shed new

light on the old mystery of linear type dependency.

Historically, Girard’s early work in linear logic already makes movements to

extend a linear analysis to predicate logic. Although it talks about first-order

quantifiers, the analysis appears to have stayed rather superficial, omitting the

identity predicates which, in a way, are what make first-order logic tick. Closely

related is that an account of internal quantification, or a linear variant of Martin-

Löf’s type theory, was missing, let alone a Curry-Howard correspondence.

Later, linear types and dependent types were first combined in a Linear Logical

Framework [69], where a syntax was presented that extends a Logical Framework

with linear types (that depend on terms of cartesian types). This has given rise to

a line of work in the computer science community [70–72]. All the work seems to be

syntactic in nature, however, and seems to be mostly restricted to the asynchronous

3. Linear Dependent Type Theory 75

fragment in which we only have (-, Π(! -, >-, and &-types. An exception is

the Concurrent Logical Framework [73], which treats synchronous connectives

resembling our I-, ⊗-, Σ⊗! -, and !-types. An account of additive disjunctions and

identity types is missing entirely.

On the other hand, similar ideas, this time at the level of categorical semantics

and specific models (from homotopy theory, algebra, and physics), have emerged in

the mathematical community [74–77]. In these models, as with Girard, a notion

of comprehension was missing and, with that, a notion of identity type. Although

in the last while some suggestions have been made on the nLab and nForum of

possible connections between the syntactic and semantic work, no account of the

correspondence was published.

The point of this chapter is to close this gap between syntax and semantics and

to pave the way for a proper semantic analysis of linear type dependency, treating

a range of type formers including Id⊗! -types. Firstly, in section 3.1, we present

a syntax, dependently typed dual intuitionistic linear logic (dDILL), a natural

blend of the dual intuitionistic linear logic (DILL) [34] and dependent type theory

(DTT) [20] which generalises both. Secondly, in section 3.2, we present a complete

categorical semantics, an obvious combination of linear/non-linear adjunctions [34]

and comprehension categories [25]. Thirdly, we discuss how our semantics applies

to the dependently typed LNL calculus [78] in section 3.3 and discuss dependently

typed Girard translations in section 3.4. Finally, in sections 3.5.1, 3.5.2, 3.5.3, 3.5.4

and 3.5.5 we present various concrete models, including a class of models arising

from commutative effects and a coherence space semantics.

Remark 3.0.1 (Related Publications). This chapter is largely based on [13, 16].

The material on many (the exception being the monoidal families) of the concrete

models is new as is the material on dependent Girard translations and the dependent

LNL calculus semantics. Around the same time that the author published his study

[12, 13] of dDILL, [78] independently developed a syntax (but not a denotational

semantics) and applications for dLNL.

76 3.1. Syntax of dDILL

3.1 Syntax of dDILL

We next present the formal syntax of dDILL, c.f. section 2.1.1. We start with

a presentation of its judgements and then discuss its rules of inference: first its

structural core, then the logical rules for a series of optional type formers. We

conclude this section with a few basic results about the syntax.

Judgements

We adopt a notation Γ; ∆ for contexts, where Γ is ‘a cartesian region’ and ∆

is ‘a linear region’, similarly to [34]. The idea will be that we have an empty

context and can extend an existing context Γ; ∆ with both cartesian and linear

types that are allowed to depend on Γ. Our language will express judgements

of the six forms of figure 3.1.

Structural Rules

We use the structural rules of figures 3.2, 3.3 and 3.4, which are essentially the

structural rules of dependent type theory where some rules appear in both a

cartesian and a linear form. We present the rules per group, with their names,

from left-to-right, top-to-bottom.

Logical Rules

We introduce some basic (optional) type and term formers, for which we give

type formation (denoted -F), term introduction (-I), term elimination (-E), term

computation rules (-β), and (judgemental) term uniqueness principles (-η), in figure

3.5, 3.6 and 3.7. Moreover, Σ⊗!(x:A), Π(!(x:A), λ!(x:A), and λx:A are name binding

operators, binding free occurences of x within their scope. Preempting some

theorems of the calculus, we overload some of the notation for -I and -E rules of

various type formers, in order to avoid unnecessary syntactic clutter. Needless to

say, uniqueness of typing can easily be restored by carrying around enough type

information on the term formers corresponding to the various -I and -E rules.

3. Linear Dependent Type Theory 77

dDILL judgement Intended meaning
` Γ; ∆ ctxt Γ; ∆ is a valid context
Γ; · ` A type A is a type in (cartesian) context Γ
Γ; ∆ ` a : A a is a term of type A in context Γ; ∆
` Γ; ∆ = Γ′; ∆′ Γ; ∆ and Γ′; ∆′ are judgementally equal contexts
Γ; · ` A = A′ A and A′ are judgementally equal types in (cartesian) context Γ
Γ; ∆ ` a = a′ : A a and a′ are judgementally equal terms of type A in context Γ; ∆

Figure 3.1: Judgements of dDILL.

C-Emp·; · ctxt

` Γ; · ctxt Γ; · ` A type
Cart-C-Ext` Γ, x : A; · ctxt

Γ; ∆ = Γ′; ∆′ Γ; · ` A = B Cart-C-Ext-Eq` Γ, x : A; ∆ = Γ′, y : B; ∆′

` Γ; ∆ ctxt Γ; · ` A type
Lin-C-Ext` Γ; ∆, x : A ctxt

Γ; ∆ = Γ′; ∆′ Γ; · ` A = B Lin-C-Ext-Eq` Γ; ∆, x : A = Γ′; ∆′, y : B

Γ, x : A,Γ′; · ctxt
Cart-IdfΓ, x : A,Γ′; · ` x : A

Γ;x : A ctxt
Lin-IdfΓ;x : A ` x : A

Figure 3.2: Context formation and identifier declaration rules.

` Γ; ∆ ctxt C-Eq-R` Γ; ∆ = Γ; ∆
` Γ; ∆ = Γ′; ∆′ C-Eq-S` Γ′; ∆′ = Γ; ∆

` Γ; ∆ = Γ′; ∆′ ` Γ′; ∆′ = Γ′′; ∆′′ C-Eq-T` Γ; ∆ = Γ′′; ∆′′

Γ; · ` A type Ty-Eq-RΓ; · ` A = A

Γ; · ` A = A′ Ty-Eq-SΓ; · ` A′ = A

Γ; · ` A = A′ Γ; · ` A′ = A′′ Ty-Eq-TΓ; · ` A = A′′

Γ; ∆ ` a : A Tm-Eq-RΓ; ∆ ` a = a : A
Γ; ∆ ` a = a′ : A Tm-Eq-SΓ; ∆ ` a′ = a : A

Γ; ∆ ` a = a′ : A Γ; ∆ ` a′ = a′′ : A Tm-Eq-TΓ; ∆ ` a = a′′ : A

Γ; ∆ ` a : A ` Γ; ∆ = Γ; ∆′ Γ; · ` A = A′
Tm-ConvΓ′; ∆′ ` a : A′

Γ′; · ` A type ` Γ; · = Γ′; · Ty-ConvΓ′; · ` A type

Figure 3.3: A few standard rules for judgemental equality, saying that it is an equivalence
relation and is compatible with typing.

Note that we are working with weak (non-dependent) elimination rules for

positive connectives. This is forced on us by the requirement that types do

not depend on linear assumptions. As an alternative, we could demand strong

elimination rules, but only for terms without linear assumptions.

78 3.1. Syntax of dDILL

Γ,Γ′; ∆ ` J Γ; · ` A type
Cart-WeakΓ, x : A,Γ′; ∆ ` J

Γ, x : A,Γ′; · ` B type Γ; · ` a : A Cart-Ty-SubstΓ,Γ′[a/x]; · ` B[a/x] type
Γ, x : A,Γ′; · ` B = B′ Γ; · ` a : A Cart-Ty-Subst-EqΓ,Γ′[a/x]; · ` B[a/x] = B′[a/x]

Γ, x : A,Γ′; ∆ ` b : B Γ; · ` a : A
Cart-Tm-SubstΓ,Γ′[a/x]; ∆[a/x] ` b[a/x] : B[a/x]

Γ, x : A,Γ′; ∆ ` b = b′ : B Γ; · ` a : A Cart-Tm-Subst-EqΓ,Γ′[a/x]; ∆ ` b[a/x] = b′[a/x] : B[a/x]

Γ; ∆, x : A,∆′ ` b : B Γ; ∆′′ ` a : A
Lin-Tm-SubstΓ; ∆,∆′,∆′′ ` b[a/x] : B

Γ; ∆, x : A,∆′ ` b = b′ : B Γ; ∆′′ ` a : A Lin-Tm-Subst-EqΓ; ∆,∆′,∆′′ ` b[a/x] = b′[a/x] : B

Γ; · ` a = a′ : A Γ, x : A,Γ′; ∆ ` b : B Cart-Tm-CongΓ,Γ′[a/x]; ∆[a/x] ` b[a/x] = b[a′/x] : B
Γ; · ` a = a′ : A Γ, x : A,Γ′; ∆ ` B type Cart-Ty-CongΓ,Γ′[a/x]; ∆[a/x] ` B[a/x] = B[a′/x]

Γ; ∆′′ ` a = a′ : A Γ; ∆, x : A,∆′ ` b : B Lin-Tm-CongΓ; ∆,∆′,∆′′ ` b[a/x] = b[a′/x] : B

Figure 3.4: Weakening, substitution and congruence rules. Here, J represents a
statement of the form B type, B = B′, b : B, or b = b′ : B, such that all judgements are
well-formed. Note that these imply exchange rules for both linear and cartesian identifiers
as well as a contraction rule for cartesian identifiers.

I-FΓ; · ` I type

Γ; · ` A type Γ; · ` B type
⊗-FΓ; · ` A⊗B type

Γ; · ` A type Γ; · ` B type
(-FΓ; · ` A(B type

Γ, x : A; · ` B type Σ⊗! -FΓ; · ` Σ⊗!(x:A)B type
Γ, x : A; · ` B type Π(! -FΓ; · ` Π(!(x:A)B type

>-FΓ; · ` > type
Γ; · ` A type Γ; · ` B type

&-FΓ; · ` A&B type

0-FΓ; · ` 0 type
Γ; · ` A type Γ; · ` B type

⊕-FΓ; · ` A⊕B type

Γ; · ` A type
!-FΓ; · `!A type

Γ; · ` a : A Γ; · ` a′ : A Id⊗! -FΓ; · ` Id⊗!A(a, a′) type

Figure 3.5: Type formation rules for the various connectives.

Remark 3.1.1. Note that all type formers that are defined context-wise (I, ⊗,

(, >, &, 0, ⊕, and !) are automatically preserved under the substitutions from

Cart-Ty-Subst (up to canonical isomorphism1), in the sense that F (A1, . . . , An)[a/x]

is isomorphic to F (A1[a/x], . . . , An[a/x]) for an n-ary type former F . Similarly,
1By an isomorphism of types Γ; · ` A type and Γ; · ` B type in context Γ, we here mean a

pair of terms Γ;x : A ` f : B and Γ; y : B ` g : A together with a pair of judgemental equalities
Γ;x : A ` g[f/y] = x : A and Γ; y : B ` f [g/x] = y : B.

3. Linear Dependent Type Theory 79

I-IΓ; · ` ∗ : I
Γ; ∆′ ` t : I Γ; ∆ ` a : A

I-EΓ; ∆,∆′ ` let t be ∗ in a : A

Γ; ∆ ` a : A Γ; ∆′ ` b : B
⊗-IΓ; ∆,∆′ ` a⊗ b : A⊗B

Γ; ∆ ` t : A⊗B Γ; ∆′, x : A, y : B ` c : C
⊗-EΓ; ∆,∆′ ` let t be x⊗ y in c : C

Γ; ∆, x : A ` b : B
(-IΓ; ∆ ` λx:Ab : A(B

Γ; ∆ ` f : A(B Γ; ∆′ ` a : A
(-EΓ; ∆,∆′ ` f(a) : B

Γ; · ` a : A Γ; ∆ ` b : B[a/x]
Σ⊗! -IΓ; ∆ `!a⊗ b : Σ⊗!(x:A)B

Γ; · ` C type
Γ; ∆ ` t : Σ⊗!(x:A)B

Γ, x : A; ∆′, y : B ` c : C
Σ⊗! -EΓ; ∆,∆′ ` let t be !x⊗ y in c : C

` Γ; ∆ ctxt Γ, x : A; ∆ ` b : B Π(! -IΓ; ∆ ` λ!(x:A)b : Π(!(x:A)B

Γ; · ` a : A Γ; ∆ ` f : Π(!(x:A)B Π(! -EΓ; ∆ ` f(!a) : B[a/x]

` Γ; ∆ ctxt
>-IΓ; ∆ ` 〈〉 : >

Γ; ∆ ` a : A Γ; ∆ ` b : B
&-IΓ; ∆ ` 〈a, b〉 : A&B

Γ; ∆ ` t : A&B
&-E1Γ; ∆ ` fst(t) : A

Γ; ∆ ` t : A&B
&-E2Γ; ∆ ` snd(t) : B

Γ; ∆ ` t : 0
0-EΓ; ∆,∆′ ` false(t) : B

Γ; ∆ ` a : A
⊕-I1Γ; ∆ ` inl(a) : A⊕B

Γ; ∆ ` b : B
⊕-I2Γ; ∆ ` inr(b) : A⊕B

Γ; ∆, x : A ` c : C Γ; ∆, y : B ` d : C Γ; ∆′ ` t : A⊕B
⊕-EΓ; ∆,∆′ ` case t of inl(x)→ c || inr(y)→ d : C

Γ; · ` a : A
!-IΓ; · `!a :!A

Γ; ∆ ` t :!A Γ, x : A; ∆′ ` b : B
!-EΓ; ∆,∆′ ` let t be !x in b : B

Γ; · ` a : A Id⊗! -IΓ; · ` refl(!a) : Id⊗!A(a, a)

Γ; · ` a : A
Γ; · ` a′ : A Γ, x : A, x′ : A; · ` D type
Γ; ∆′ ` p : Id⊗!A(a, a′) Γ, z : A; ∆ ` d : D[z/x, z/x′]

Id⊗! -EΓ; ∆[a/z],∆′ ` let (a, a′, p) be (z, z, refl(!z)) in d : D[a/x, a′/x′]

Figure 3.6: Term introduction and elimination rules for the various connectives.

for T = Σ⊗ or Π(, we have that (T!(y:B)C)[a/x] is isomorphic to T!(y:B[a/x])C[a/x]

and (Id!B(b, b′))[a/x] is isomorphic to Id!B[a/x](b[a/x], b′[a/x]). (This gives us Beck-

Chevalley conditions in the categorical semantics.)

Remark 3.1.2. The reader can note that the usual formulation of universes for

DTT transfers very naturally to dDILL, giving us a notion of universes for linear

types, where terms of the universes without linear assumptions code for types. This

allows us to write rules for forming types as rules for forming terms, as usual.

We do not choose this approach and define the various type formers in the setting

without universes, as this will give a cleaner categorical semantics. As we shall

80 3.1. Syntax of dDILL

let ∗ be ∗ in a = a c[d/z] = let d be ∗ in c[∗/z]
let a⊗ b be x⊗ y in c = c[a/x, b/y] c[d/z] #x,y= let d be x⊗ y in c[x⊗ y/z]
(λx:Ab)(a) = b[a/x] f

#x= λx:Af(x)
let !a⊗ b be !x⊗ y in c = c[a/x, b/y] c[d/z] #x,y= let d be !x⊗ y in c[!x⊗ y/z]
(λ!(x:A)b)(!a) = b[a/x] f

#x= λ!(x:A)f(!x)
c = 〈〉
fst(〈a, b〉) = a c = 〈fst(c), snd(c)〉
snd(〈a, b〉) = b

c[d/z] = false(d)
case inl(a) of inl(x)→ c || inr(y)→ d = c[a/x] c[d/z] #x,y= case d of inl(x)→ c[inl(x)/z] || inr(y)→ c[inr(y)/z]
case inr(b) of inl(x)→ c || inr(y)→ d = d[b/y]
let !a be !x in b = b[a/x] c[d/z] #x= let d be !x in c[!x/z]
let (a, a, refl(!a)) be (z, z, refl(!z)) in d = d[a/z] c[d/x, d′/y, e/z] #w= let (d, d′, e) be (w,w, refl(!w)) in c[w/x,w/y, refl(!w)/z]

Figure 3.7: β- and η-equations for the various connectives. These should be read
as equations of typed terms in context: we impose them if we can derive that both
terms being equated are well-typed of equal type in equal context. We write #x1,...,xn= to
indicate that for the equation to hold, the identifiers x1, . . . , xn should, in both terms
being equated, be replaced by fresh ones, in order to avoid unwanted identifier bindings.

argue in remark 5.6.6, it is more natural to consider a universe as a cartesian type.

Some Basic Results

As the focus of this chapter is the syntax-semantics correspondence, we only

briefly mention some syntactic results. For some metatheoretic properties for

the(,Π(! ,>,&-fragment of our syntax, like confluence, Church-Rosser, subject

reduction and strong normalisation for the (parallel nested, transitive closure of)

β-reductions, we refer the reader to [69]. Standard techniques [68] and some small

adaptations of the system should be enough to extend the results to all of dDILL.

As we discuss a wide range of non-trivial models in section 3.5, consistency of

dDILL follows immediately, both in the sense that not all terms are equated and

in the sense that not all types are inhabited.

Theorem 3.1.3 (Consistency). dDILL with all its type formers is consistent.

To give the reader some intuition for the novel connectives Π(! - and Σ⊗! , we

suggest the following two interpretations.

Theorem 3.1.4 (Π(! and Σ⊗! as Dependent !(−)((−) and !(−)⊗ (−)). Suppose

we have !-types. Let Γ, x : A; · ` B type, where x does not occur freely in B. Then,

for the purposes of the type theory,

3. Linear Dependent Type Theory 81

1. Π(!(x:A)B is isomorphic to !A(B, if we have Π(! -types and (-types;

2. Σ⊗!(x:A)B is isomorphic to !A⊗B, if we have Σ⊗! -types and ⊗-types.

Proof. 1. We construct terms

Γ; y : Π(!(x:A)B ` f :!A(B and Γ; y′ :!A(B ` g : Π(!(x:A)B

s.t.

Γ; y : Π(!(x:A)B ` g[f/y′] = y : Π(!(x:A)B and Γ; y′ :!A(B ` f [g/y] = y′ :!A(B.

First, we construct f .

Cart-IdfΓ, x : A; · ` x : A Lin-IdfΓ, x : A; y : Π(!(x:A)B ` y : Π(!(x:A)B Π(! -EΓ, x : A; y : Π(!(x:A)B ` y(!x) : B Lin-IdfΓ;x′ :!A ` x′ :!A
!-EΓ; y : Π(!(x:A)B, x

′ :!A ` let x′ be !x in y(!x) : B
(-IΓ; y : Π(!(x:A)B ` f :!A(B

Then, we construct g.

Cart-IdfΓ, x : A; · ` x : A
!-IΓ, x : A; · `!x :!A Lin-IdfΓ, x : A; y′ :!A(B ` y′ :!A(B

(-EΓ, x : A; y′ :!A(B ` y′(!x) : B Π(! -IΓ; y′ :!A(B ` g : Π(!(x:A)B

It is easily verified that (-β, !-β, and Π(! -η imply the first judgemental

equality:

g[f/y′] = λ!(x:A)(λx′:!Alet x′ be !x in y(!x))(!x) = λ!(x:A)let !x be !x in y(!x) =

λ!(x:A)y(!x) = y.

Similarly, Π(! -β, !-η, and(-η imply the second judgemental equality:

f [g/y] = λx′:!Alet x′ be !x in (λ!(x:A)y
′(!x))(!x) = λx′:!Alet x′ be !x in y′(!x) =

λx′:!Ay
′(let x′ be !x in !x) = λx′:!Ay

′(x′) = y′.

2. We construct terms

Γ; y : Σ⊗!(x:A)B ` f :!A⊗B and Γ; y′ :!A⊗B ` g : Σ⊗!(x:A)B

s.t.

Γ; y : Σ⊗!(x:A)B ` g[f/y′] = y : Σ⊗!(x:A)B and Γ; y′ :!A⊗B ` f [g/y] = y′ :!A⊗B.

82 3.1. Syntax of dDILL

First, we construct f .

Lin-IdfΓ; y : Σ⊗!(x:A)B ` y : Σ⊗!(x:A)B

Lin-IdfΓ;x′ :!A ` x′ :!A Lin-IdfΓ; z : B ` z : B
⊗-IΓ;x′ :!A, z : B ` x′ ⊗ z :!A⊗B

Cart-WeakΓ, x : A;x′ :!A, z : B ` x′ ⊗ z :!A⊗B

Cart-IdfΓ, x : A; · ` x : A
!-IΓ, x : A; · `!x :!A
Lin-SubstΓ, x : A; z : B `!x⊗ z :!A⊗B

Σ⊗! -EΓ; y : Σ⊗!(x:A)B ` f :!A⊗B

Then, we construct g.

Lin-IdfΓ; y′ :!A⊗B ` y′ :!A⊗B

Cart-IdfΓ, x : A; · ` x : A Lin-IdfΓ, x : A; y : B ` y : B Σ⊗! -IΓ, x : A; y : B `!x⊗ y : Σ⊗!(x:A)B
Lin-IdfΓ;x′ :!A ` x′ :!A
!-EΓ;x′ :!A, y : B ` let x′ be !x in !x⊗ y : Σ⊗!(x:A)B ⊗-EΓ; y′ :!A⊗B ` g : Σ⊗!(x:A)B

Here, the first judgemental equality follows from ⊗-β, !-β, and Σ⊗! -η:

g[f/y′] = let (let y be !x ⊗ z in !x ⊗ z) be x′ ⊗ y in (let x′ be !x in !x ⊗ y) =

let y be !x ⊗ z in let !x ⊗ z be x′ ⊗ y in (let x′ be !x in !x ⊗ y) =

let y be !x ⊗ z in (let x′ be !x in !x ⊗ y)[!x/x′][z/y] = let y be !x ⊗

z in (let !x be !x in !x⊗ z) = let y be !x⊗ z in !x⊗ z = y.

The second judgemental equality follows from Σ⊗! -β, !-η, and ⊗-η:

f [g/y] = let (let y′ be x′ ⊗ y in (let x′ be !x in !x ⊗ y)) be !x ⊗ z in !x ⊗ z =

let y′ be x′ ⊗ y in let x′ be !x in let !x ⊗ y be !x ⊗ z in !x ⊗ z = let y′ be x′ ⊗

y in let x′ be !x in (!x ⊗ y) = let y′ be x′ ⊗ y in (let x′ be !x in !x) ⊗ y =

let y′ be x′ ⊗ y in x′ ⊗ y = y′.

In particular, we have the following stronger version of a special case.

Theorem 3.1.5 (! as ΣI). Suppose we have Σ⊗! - and I-types. Let Γ; · ` A type.

Then, Σ⊗!(x:A)I satisfies the rules for !A. Conversely, if we have !- and I-types, then

!A satisfies the rules for Σ⊗!(x:A)I.

Proof. We obtain the !-I rule as follows.

Γ; · ` a : A I-IΓ, x : A; · ` ∗ : I Σ⊗! -IΓ; · `!a⊗ ∗ : Σ⊗!(x:A)I

We obtain the !-E rule as follows.

3. Linear Dependent Type Theory 83

2-FΓ; · ` 2 type 2-I1Γ; · ` tt : 2 2-I2Γ; · ` ff : 2

Γ, x : 2; · ` A type Γ; · ` t : 2 Γ; ∆[tt/x] ` att : A[tt/x] Γ; ∆[ff/x] ` aff : A[ff/x]
2-EΓ; ∆[t/x] ` if t then att else aff : A[t/x]

Γ; ∆ ` if tt then att else aff : A[tt/x] 2-β1Γ; ∆ ` if tt then att else aff = att : A[tt/x]
Γ; ∆ ` if ff then att else aff : A[ff/x] 2-β2Γ; ∆ ` if ff then att else aff = aff : A[ff/x]

Γ; ∆ ` if t then c[tt/x] else c[ff/x] : C 2-η
Γ; ∆ ` c[t/x] = if t then c[tt/x] else c[ff/x] : C

Figure 3.8: Rules for a discrete type 2.

Γ; ∆ ` t : Σ⊗!(x:A)I

Γ, x : A; ∆′ ` c : C Lin-IdfΓ; y : I ` y : I
I-EΓ, x : A; ∆′, y : I ` let y be ∗ in c : C
Σ⊗! -EΓ; ∆,∆′ ` let t be !x⊗ y in let y be ∗ in c : C.

It is easily seen that Σ⊗! -β and I-β imply !-β (let !a⊗∗ be !x⊗ y in let y be ∗ in c =

(let y be ∗ in c)[a/x][∗/y] = let ∗ be ∗ in c[a/x] = c[a/x]) and that I-η and Σ⊗! -η

imply !-η (let t be !x ⊗ y in let y be ∗ in c[!x ⊗ ∗/z] = let t be !x ⊗ y in c[!x ⊗

let y be ∗ in ∗ /z] = let t be !x⊗ y in c[!x⊗ y/z] = c[t/z]).

The converse statement follows through a similarly trivial argument, noting that

I[a/x] is isomorphic to I.

A second interpretation is that Π(! and Σ⊗! generalise & and ⊕. Indeed, the

idea is that that (or their infinitary equivalents) is what they reduce to when taken

over discrete types. The subtlety in this result will be the definition of a discrete

type. The same phenomenon is observed in a different context in section 3.5.1.

For our purposes, a discrete type is a strong sum of I (a sum with a dependent

-E-rule). Let us for simplicity limit ourselves to the binary case. For us, the discrete

type with two elements will be 2 = I ⊕ I, where ⊕ has a strong/dependent -E-rule

(note that this is not our ⊕-E). Explicitly, 2 is a type with the rules of figure 3.8.

Theorem 3.1.6 (Π(! and Σ⊗! as Infinitary Non-Discrete & and ⊕). If we have a

discrete type 2 and a type family Γ, x : 2; · ` A, then

1. Π(!(x:2)A satisfies the rules for A[tt/x]&A[ff/x];

84 3.1. Syntax of dDILL

2. Σ⊗!(x:2)A satisfies the rules for A[tt/x]⊕ A[ff/x].

Proof. 1. We obtain &-I as follows.

Γ, x : 2; ∆ ` a : A[tt/x] Γ, x : 2; ∆ ` b : A[ff/x] Cart-IdfΓ, x : 2; · ` x : 2 AssumptionΓ, x : 2; · ` A type 2-E-depΓ, x : 2; ∆ ` if x then a else b : A Π(! -IΓ; ∆ ` λ!(x:2)if x then a else b : Π(!(x:2)A

Moreover, we obtain &-E1 as follows (similarly, we obtain &-E2).

Γ; ∆ ` t : Π(!(x:2)A
2-I1Γ; · ` tt : 2
Π(! -E

t(!tt)

The &-β-rules follow from Π(! -β and 2-β, e.g.

fst〈a, b〉 := (λ!(x:2)if x then a else b)(!tt) = if tt then a else b = a.

The &-η-rules follow from Π(! -η and 2-η:

〈fst(t), snd(t)〉 := λ!(x:2)if x then t(!tt) else t(!ff) = λ!(x:2)t(!x) = t.

2. We obtain ⊕-I1 as follows (and similarly, we obtain ⊕-I2):

2-I1Γ; · ` tt : 2 Γ; ∆ ` a : A[tt/x]
Σ⊗! -IΓ; ∆ ` !tt⊗ a : Σ⊗!(x:2)A

Moreover, we obtain ⊕-E as follows.

Γ; ∆′ ` t : Σ⊗!(x:2)A

Γ; ∆, z : A[tt/x] ` c : C Γ; ∆, w : A[ff/x] ` d : C Γ, x : 2; · ` x : 2 Γ, x : 2; · ` A type
2-E Γ, x : 2; ∆, y : A ` if x then c[y/z] else d[y/w] : C

Σ⊗! -EΓ; ∆,∆′ ` let t be !x⊗ y in if x then c[y/z] else d[y/w] : C

The ⊕-β-rules follow from Σ⊗! -β and 2-β, e.g.

case inl(a) of inl(z)→ c|| inr(w)→ d :=

let !tt⊗ a be !x⊗ y in if x then c[y/z] else d[y/w] =

if tt then c[a/z] else d[a/w] = c[a/z].

3. Linear Dependent Type Theory 85

The ⊕-η-rules follow from Σ⊗! -η and 2-η:

case t of inl(z)→ c[inl(z)/u]|| inr(w)→ c[inr(w)/u] :=

let t be !x⊗ y in if x then c[inl(z)/u][y/z] else c[inr(w)/u][y/w] =

let t be !x⊗ y in if x then c[!tt⊗ z/u][y/z] else c[!ff ⊗ w/u][y/w] =

let t be !x⊗ y in if x then c[!tt⊗ y/u] else c[!ff ⊗ y/u] =

let t be !x⊗ y in c[!(if x then tt else ff)⊗ y/u] =

let t be !x⊗ y in [!x⊗ y/u] = c[t/u].

We see that we can also view Π(! and Σ⊗! as generalisations of & and ⊕, respecti-

vely.

3.2 Semantics of dDILL

The idea behind the categorical semantics we present for the structural core of our

syntax (with I- and ⊗-types) will be to take our suggested categorical semantics

for the structural core of DTT (with 1- and ×-types) and relax the assumption

of the cartesian character of its fibres to them only being (possibly non-cartesian)

symmetric monoidal. This entirely reflects the relation between the conventional

semantics of non-dependent cartesian and linear type systems. The structure we

obtain is that of a strict indexed symmetric monoidal2 category with comprehension.

The Σ⊗! - and Π(! -types arise as left and right adjoints of substitution functors

along projections in the base-category and the Id⊗! -types arise as left adjoints

to substitution along diagonals, all satisfying Beck-Chevalley (and Frobenius)

conditions, as is the case in the semantics for DTT. The !-types boil down to

having a left adjoint to the comprehension (which can be made a functor), giving a

linear/non-linear adjunction as in the conventional semantics for linear logic. Finally,
2It is plausible that we could obtain a sound and complete semantics for only the structural

core, possibly without I- and ⊗-types, by considering strict indexed symmetric multicategories
with comprehension.

86 3.2. Semantics of dDILL

additive connectives arise as compatible cartesian and distributive cocartesian

structures on the fibres, as would be expected from the semantics of linear logic.

3.2.1 Models of dDILL (Tautologically)

First, we translate the structural core of our syntax to the tautological notion of

model. We shall later prove this to be equivalent to the more intuitive notion

of categorical model we referred to above.

Definition 3.2.1 (Model of dDILL). By a model T̃ of dDILL, we shall mean the

following data.

(Contexts) A set CCtxt;

(Types) A map CCtxt LType−→ Set;

(Terms,
C-Emp1,
Lin-C-Ext)

A map ΣΓ∈CCtxtLCtxt(Γ) × LType(Γ) LTerm−→ Set, where we use
the syntactic sugar LCtxt(Γ) for the free monoid on LType(Γ)
whose unit and multiplication we shall write · and −.−;

(C-Emp2) An element · ∈ CCtxt;

(Cart-C-Ext) A map ΣΓ∈CCtxtLType(Γ) −.−−→ CCtxt;

(Cart-Weak) Maps LType(Γ.Γ′) weak−→ LType(Γ.A.weak(Γ′)) and
LTerm(Γ.Γ′,∆, B) weak−→ LTerm(Γ.A.weak(Γ′),weak(∆),weak(B))
(where we slightly abuse notation);

(Cart-Idf) Elements der ∈ LTerm(Γ.A.Γ′, ·,weak(A));

(Lin-Idf) Elements id ∈ LTerm(Γ, A,A);

(Cart-Ty-Subst) For B ∈ LType(Γ.A.Γ′) and a ∈ LTerm(Γ, ·, A), we have
B{Γ.a.Γ′} ∈ LType(Γ.Γ′{Γ.a});

(Cart-Tm-Subst) For b ∈ LTerm(Γ.A.Γ′,∆, B) and a ∈ LTerm(Γ, ·, A), we have
b{Γ.a.Γ′} ∈ LTerm(Γ.Γ′{Γ.a},∆{Γ.a}, B{Γ.a});

(Lin-Tm-Subst) For b ∈ LTerm(Γ,∆.A.∆′, B) and a ∈ LTerm(Γ,∆′′, A), we
have (∆.a.∆′); b ∈ LTerm(Γ,∆.∆′.∆′′, B),

such that

3. Linear Dependent Type Theory 87

• weak preserves id, der, −;− and −{−} in the obvious sense;

• −{−} commutes with −;− in the obvious sense;

• −;− is associative;

• −;−-substitutions in disjoint parts of the context commute: if j < i (set

N = 0) or j > i+m− 1 (set N = m) then

(C1.Cj−1.a
′.Cj+1.Cn+m−1); (A1.Ai−1.a.Ai+1.An); b

= (C1.Cj−1.a.Cj+1.Cn+m−1); (A1.Aj+N−1.a
′.Aj+N+1.An); b;

• −{−} on terms is associative;

• −{−}-term substitutions in disjoint parts of the context commute (as for −;−

substitutions);

• (∆.id.∆′); b = b for all b ∈ LTerm(Γ,∆.A.∆′, B);

• the actions on both LType and LTerm of −{Γ.der.Γ′} (“substituting a diagonal”)

and weak (“substituting a projection”) satisfy all equations induced by the

theory of cartesian products (see [79] for these precise equations).

The equations we demand in this definition are all the standard equations that

are implicit for syntactic substitution. The point of these laws is that we can form

context morphisms as lists of compatible terms, which we can then substitute into

terms (and types) in an associative way, using the operations −{−} and weak in

the case of cartesian contexts and using −;− in the case of linear contexts. Note

that commutativity of disjoint substitutions and the fact that weak preserves −{−}

imply that this parallel substitution is well-defined.

We interpret [[` ctxt]] := Ctxt, [[Γ ` type]] := LType(Γ) and [[Γ; ∆ ` A]] :=

LTerm(Γ,∆, A). We interpret judgemental equality of contexts, types and terms

as the equality on the sets Ctxt, LType(Γ) and LTerm(Γ,∆, A). Note that all rules

for judgemental equality (the rules with Eq, Conv and Cong in their name) then

automatically follow. It is tautological that there is a one to one correspondence

between theories T in dDILL and models T̃ of this sort.

88 3.2. Semantics of dDILL

We now define what it means for the model to support various type formers.

Definition 3.2.2 (Semantic I- and ⊗-types). We say a model T̃ supports I-types, if

for all Γ ∈ CCtxt, we have an I ∈ LType(Γ) and ∗ ∈ LTerm(Γ, ·, I) and whenever t ∈

LTerm(Γ,∆, I) and a ∈ LTerm(Γ,∆′, A), we have let t be ∗ in a ∈ LTerm(Γ,∆.∆′, A),

such that let ∗ be ∗ in a = a and (∆′.a); t = let a be ∗ in ((∆′.∗); t).

Similarly, we say it admits ⊗-types, if for all A,B ∈ LType(Γ), we have a

A⊗B ∈ LType(Γ), for all a ∈ LTerm(Γ,∆, A), b ∈ LTerm(Γ,∆′, B), we have a⊗ b ∈

LType(Γ,∆.∆′, A⊗B), and if t ∈ LTerm(Γ,∆, A⊗B) and c ∈ LTerm(Γ,∆′.A.B,C),

we have let t be idA ⊗ idB in c ∈ LTerm(Γ,∆.∆′, C), such that let a ⊗ b be idA ⊗

idB in c = c and (∆′.d); t = let t be idA ⊗ idB in (∆′.(idA ⊗ idB); t).

Note that this defines a function LCtxt(Γ)
⊗
−→ LType. The β-rule precisely says

that from the point of view of the (terms of the) type theory this map is an injection,

while the η-rule says it is a surjection3. We conclude that in the presence of I-

and ⊗-types, we can faithfully describe the type theory without mentioning linear

contexts, replacing them by the linear type that is their ⊗-product.

We shall henceforth assume that our type theory has I- and ⊗-types, as

this simplifies the categorical semantics4 and is appropriate for the examples

we are interested in.

For the other type formers, one can give a similar, almost tautological, translation

from the syntax into a model. We leave this to the reader when we discuss the seman-

tic equivalent of various type formers in the categorical semantics we present next.

3The precise statement that we are alluding to here would be that the multicategory of linear
contexts is equivalent to the (monoidal) multicategory of linear types. Really,

⊗
is only part

of an equivalence of categories rather than an isomorphism, i.e. it is injective on objects up to
isomorphism rather than on the nose.

4To be precise, it allows us to give a categorical semantics in terms of monoidal categories
rather than multicategories.

3. Linear Dependent Type Theory 89

3.2.2 Categorical Semantics of dDILL
Strict Indexed Symmetric Monoidal Categories with Comprehension

We now introduce a notion of categorical model for which soundness and com-

pleteness results hold with respect to the syntax of dDILL in the presence of I-

and ⊗-types5. This notion of model will prove to be particularly useful when

thinking about various type formers.

Definition 3.2.3. By a strict indexed symmetric monoidal category with

comprehension, we mean the following data.

1. A category B with a terminal object ·.

2. A strict indexed symmetric monoidal category D over B, i.e. a contravariant

functor D into the category SMCat of (small) symmetric monoidal categories

and strict monoidal functors Bop D−→ SMCat. We also write −{f} := D(f)

for the action of D on a morphism f of B.

3. A comprehension schema, i.e. for each Γ ∈ ob(B) and A ∈ ob(D(Γ)) a

representation for the functor

x 7→ D(dom(x))(I, A{x}) : (B/Γ)op −→ Set.

We write its representing object6 Γ.A pΓ,A−→ Γ ∈ ob(B/Γ) and universal element

vΓ,A ∈ D(Γ.A)(I, A{pΓ,A}). We write a 7→ 〈f, a〉 for the isomorphism

D(Γ′)(I, A{f}) ∼= B/Γ(f,pΓ,A).

Again, the comprehension schema means that the morphisms in our category of

contexts B, into a context built by adjoining types, arise as lists of closed linear

terms. Here, there is the crucial identification with cartesian terms of linear terms

without linear assumptions: they can be freely copied and discarded.
5In case we are interested in the case without I- and ⊗-types, the semantics easily generalises

to strict indexed symmetric multicategories with comprehension.
6Really, Γ.UA pΓ,UA−→ Γ would be a better notation, where we think of F a U as an adjunction

inducing !, but it would be very verbose.

90 3.2. Semantics of dDILL

We note that the definition of comprehension for an indexed symmetric monoidal

category is almost identical to that of definition 2.1.4 for an indexed cartesian

monoidal category. The only difference is that the tensor unit now plays the

rôle of the terminal object. We again use the same definitions for diag, q and

the comprehension functors pΓ,−.

Theorem 3.2.4 (Comprehension functor). A comprehension schema (p,v) on a

strict indexed symmetric monoidal category (B,D) defines a morphism D U−→ C of

indexed symmetric monoidal categories, which lax-ly sends the monoidal structure

of D to products in C (where they exist), where C is the full subindexed7 category of

B/− on the objects of the form pΓ,A.

Proof. First note that a morphism U of indexed symmetric monoidal categories

consists of lax monoidal functors UΓ in each context Γ ∈ B such that

D(Γ) UΓ - C(Γ)

∼=

D(Γ′)

D(f)

? UΓ′ - C(Γ′).

C(f) = “pullback along f”

?

We define

UΓ(A a−→ B) := pΓ,A
〈pΓ,A,vΓ,A; a{pΓ,A}〉- pΓ,B.

Functoriality follows from the uniqueness property of 〈pΓ,A,vΓ,A; a{pΓ,A}〉.

We define the lax monoidal structure

idΓ
mI

Γ - UΓ(I) = pΓ,I

pΓ.A,B{pΓ,A}; pΓ,A = UΓ(A)× UΓ(B) m
A,B
Γ- UΓ(A⊗B) = pΓ,A⊗B,

where mA,B
Γ := 〈pΓ.A,B{pΓ,A}; pΓ,A,vΓ,A{pΓ.A,B{pΓ,A}} ⊗ vΓ.A,B{pΓ,A}〉 and mI

Γ :=

〈idΓ, idI〉.
7Here, we use the axiom of choice to make a choice of pullback and make C really into a

(non-strict) indexed category (or cloven fibration). Alternatively, we can avoid the axiom of choice
and treat it as a more general fibration.

3. Linear Dependent Type Theory 91

Finally, we verify that C(f)UΓ = UΓ′D(f). This follows directly from the fact

that the following square is a pullback square:

Γ′.A{f}
qf,A- Γ.A

Γ′

pΓ′,A{f}

?

f
- Γ,

pΓ,A

?

where qf,A := 〈fpΓ′,A{f},vΓ′,A{f}〉. We leave this verification to the reader as an

exercise. Alternatively, a proof for this fact in DTT, that will transfer to our setting

in its entirety, can be found in [20].

Remark 3.2.5. Note that C is a display map category (or, less specifically, a full

comprehension category) and, using the axiom of choice to make a choice of pullbacks,

can be viewed as a (non-strict) indexed category with full and faithful comprehension,

another, slightly weaker, commonly used notion of model of dependent types. We

shall see that, in many ways, we can regard C as the cartesian content of D.

Remark 3.2.6. We shall see that this functor will give us a unique candidate for

!-types: ! := FU , where F a U . We conclude that, in dDILL, the !-modality is

uniquely determined by the indexing. This is worth noting, because, in propositional

linear type theory, we might have many different candidates for !-types.

Moreover, it explains why we do not demand U to be fully faithful in the case of

linear types. Indeed, although we have a map D(Γ)(A,B) UΓ−→ C(Γ)(pΓ,A,pΓ,B) ∼=

D(Γ.A)(I, B{pΓ,A}), this is not generally an isomorphism. In fact, in the presence

of !-types, we shall see that the right hand side is precisely isomorphic to D(Γ)(!A,B)

and the map is precomposition with dereliction.

Next, we prove that we have a sound interpretation of dDILL in such categories.

Theorem 3.2.7 (Soundness). A strict indexed symmetric monoidal category with

comprehension (B,D,p,v) defines a model T̃(B,D,p,v) of dDILL with I- and ⊗-types.

Proof. We define

92 3.2. Semantics of dDILL

1. Contexts: CCtxt := ob(B)

2. Types: LType(Γ) := ob(D(Γ))

3. LCtxt(Γ) := free−monoid(LType(Γ)) (where we write [] and ++ for the

monoid operations)

C-Emp1: ·LCtxt(Γ) := []LCtxt(Γ)

Lin-C-Ext: ∆.LCtxtA := ∆ + +A

Terms: LTerm(Γ,∆, A) := D(Γ)(⊗∆, A)

4. C-Emp2: ·CCtxt := ·B

5. Cart-C-Ext: Γ.CCtxtA := Γ.BA.

6. Cart-Weak: The required morphisms are interpreted as follows. Suppose we

are given A,Γ′ ∈ ob(D(Γ)). We define a weakening functor

D(Γ.Γ′) D(〈f, a〉)
- D(Γ.A.Γ′{pΓ,A}),

where f and a are defined as follows.

Γ.A.Γ′{pΓ,A}
f := pΓ.A,Γ′{pΓ,A}; pΓ,A

- Γ

and

I
a = vΓ,A.Γ′{pΓ,A}- Γ′{f} = Γ′{pΓ,A.Γ′{pΓ,A}} ∈ D(Γ.A.Γ′{pΓ,A}).

Note that this interpretation of weakening preserves der (by definition) and id

(as it is a functor) and commutes with the three substitution operations (by

functoriality of −{p} and by functoriality of −{−} in the second argument).

7. Cart-Idf: derΓ,A,Γ′ ∈ LTerm(Γ.A.Γ′, ·, A) is defined as

vΓ,A{pΓ.A,Γ′} : I −→ A{pΓ.A,Γ′ ; pΓ,A} ∈ D(Γ.A.Γ′)

Note that derΓ,A,Γ′ defines a morphism

Γ.A.Γ′
diagΓ,A,Γ′−→ Γ.A.Γ′.A{pΓ.A,Γ′ ; pΓ,A} := 〈idΓ.A.Γ′ , derΓ,A,Γ′〉.

We shall later show that this in fact behaves as a diagonal morphism on A.

3. Linear Dependent Type Theory 93

8. Lin-Idf: idA ∈ LTerm(Γ, A,A) is taken to be idA ∈ D(Γ)(A,A). Note that

this is indeed the neutral element for our semantic linear term substitution

operation that we shall define shortly.

9. Cart-Ty-Subst and Cart-Tm-Subst: substitution along a term Γ; · ` a : A,

are interpreted by the functors D(〈idΓ, a〉) = −{〈idΓ, a〉}. Indeed, let B ∈

D(Γ.A.Γ′) and a ∈ D(Γ)(I, A). Then, we define the context Γ.Γ′{Γ.a/x} as

Γ.(Γ′{〈idΓ, a〉}) and the type B{Γ.a.Γ′} as B{〈f, a′〉}, where

Γ.Γ′{〈idΓ, a〉}.I
〈f, a′〉

- Γ.A.Γ′

is defined from

Γ.Γ′{〈idΓ, a〉}
pΓ,Γ′{〈idΓ,a〉} - Γ

Γ.A

〈idΓ, a〉

?

f

-

and

I
a′ := vΓ,Γ′{〈idΓ,a〉}- Γ′{f} = (Γ′{〈idΓ, a〉}){pΓ,Γ′{〈idΓ,a〉}}.

10. Lin-Tm-Subst: interpreted by composition in D(Γ). To be precise, given

b ∈ D(Γ)((⊗∆)⊗A⊗ (⊗∆′), B) and a ∈ D(Γ)(⊗∆′′, A), we define b[a/x] ∈

D(Γ)((⊗∆)⊗ (⊗∆′)⊗ (⊗∆′′), B) as (id⊗∆ ⊗ a⊗ id⊗∆′); braid⊗∆′,
⊗

∆′′ ; b.

Note that Cart-Ty-Subst and Cart-Tm-Subst are interpreted by functors and therefore

preserve identities and compositions and are associative in their composition. Lin-Tm-

Subst is interpreted by composition in the fibre categories, hence is also associative.

The fact that Cart-Idf and Cart-Weak define compatible diagonals and projections

follows from the fact that Γ.A.B{pΓ,A}
pΓ.A,B{pΓ,A}−→ Γ.A pΓ,A−→ Γ defines the cartesian

product of pΓ,A and pΓ,B in B/Γ.

Finally, the model clearly supports I- and ⊗-types. We interpret I ∈ LType(Γ)

as the unit object in D(Γ) while its term ∗ is interpreted as the identity morphism.

Similarly, we interpret ⊗ by the monoidal product on the fibres: ∗ := idI ∈ D(Γ),

94 3.2. Semantics of dDILL

let t be ∗ in a := t⊗ a, a⊗ b is defined as the tensor product of morphisms in D(Γ),

and let t be idA ⊗ idB in c := (id∆′ ⊗ t); c (leaving out associatiators and unitors,

here). The β- and η-rules are immediate.

In fact, the converse is also true: we can build a category of this sort from

the syntax of dDILL.

Theorem 3.2.8 (Co-Soundness). A model T̃ of dDILL with I and ⊗-types defines

a strict indexed symmetric monoidal category with comprehension (BT,DT,pT,vT).

Proof. The main technical difficulty in this proof will be that our syntactic category

has context morphisms as morphisms (corresponding to lists of terms of the type

theory) while the type theory only talks about individual terms. This exact

difficulty is also encountered when proving completeness of the categories with

families semantics for ordinary DTT. It is sometimes fixed by (conservatively)

extending the the type theory to also talk about context morphisms explicitly. See

e.g. [19].

1. We define ob(BT) := CCtxt, modulo α-equivalence, and write Γ.A for the

equivalence class of Γ, x : A. The designated object · of BT will be the

(equivalence class of) · (from C-Emp), which will automatically become a

terminal object because of our definition of a morphism of BT (context

morphism). Indeed, we define morphisms in BT, as follows, by induction.

We start out by defining BT(Γ′, ·) := {〈〉} and for Γ ∈ CCtxt that are not of

the form Γ′′.A, define BT(Γ′,Γ) = {idΓ} if Γ′ = Γ and BT(Γ′,Γ) = ∅ otherwise.

Then, by induction on the length n of Γ = x1 : A1, . . . , xn : An, we define

BT(Γ′,Γ.An+1) := Σf∈BT(Γ′,Γ)LTerm(Γ′, ·, An+1[f/x]),

where An+1[f/x] is defined, using Cart-Ty-Subst, to be the (syntactic operation

of) parallel substitution (see [20], section 2.4) of the list f1, . . . , fn of linear

terms Γ′; · ` fi : Ai[f1/x1, . . . , fi−1/xi−1] that f is made up out of, for the

identifiers x1, . . . , xn in Γ.

3. Linear Dependent Type Theory 95

Note that, in particular, according to Cart-Idf, LTerm(A1.An., ·, Ai) con-

tains a term derA1.....Ai−1,Ai,Ai+1.....An , which allows us to define, inductively,

pnA1.....An := 〈〉 ∈ BT(A1.An, ·)

pn−iA1.....An :=

pn−i+1
A1.....An , derA1.....Ai−1,Ai,Ai+1.....An ∈ BT(A1.An, A1.Ai)

In particular, we define identities in BT from these: idA1.....An := p0
A1.....An . We

shall also use these ‘projections’ in 3. to define the comprehension schema.

In all cases, projections, identities and diagonals defined using der behave as

such via substitutions because we have demanded that the actions of Cart-Idf

and Cart-Weak interact via the laws induced from the theory of cartesian

products.

We define composition in BT by induction. Let B1.Bm = Γ′ f=f1,...,fn−→ Γ =

A1.An and Γ′′ g=g1,...,gm−→ Γ′. Then, we define, by induction, g; () := () and

g; (f1, . . . , fn−1, fn) := g; (f1, . . . , fn−1), fn[g/x], where fn[g/x] denotes the

parallel substitution of g = g1, . . . , gm for the free identifiers x1, . . . , xm in

fn, using Cart-Tm-Subst. Note that associativity of composition comes from

the associativity of substitution that is implicit in the syntax as well as the

compatibility of substitution with weakening while the identity morphism we

defined clearly acts as a neutral element for our composition.

2. Define ob(DT(Γ)) := LCtxt(Γ) and DT(Γ)(∆,∆′) := LTerm(Γ,∆,⊗∆′). Com-

position is defined through Lin-Tm-Subst and ⊗-E. Identities are given by

Lin-Idf. The monoidal unit is given by · ∈ LCtxt(Γ), while the monoidal

product ⊗ on objects is given by context concatenation. The monoidal

product ⊗ on morphisms is given by ⊗-I. Note that the associators and

unitors follow from the associative and unital laws for the commutative

monoid of contexts together with ⊗-β and ⊗-η and that the symmetry/braid

comes from the commutativity of the monoid. (Note that the rules for ⊗ give

96 3.2. Semantics of dDILL

us an isomorphism between an arbitrary context ∆ and the one-type-context⊗∆, while the rules for I do the same for · and I.)

We define DT(f) on objects by parallel substitution and weakening in each type

in a linear context, via Cart-Ty-Subst and Cart-Weak, and on morphisms by

parallel substitution and weakening, via Cart-Tm-Subst and Cart-Weak. Note

that functoriality is given by implicit properties of the syntax like associativity

of substitution. Note that this defines a strict symmetric monoidal functor.

We conclude that DT is a functor BTop −→ SMCat.

3. We define following comprehension schema on DT. Suppose Γ ∈ BT and

A ∈ DT(Γ).

Define Γ.A
pT

Γ,A−→ Γ as p1
Γ.A from 1. and I vT

Γ,A−→ A{pT
Γ,A} (through Cart-Idf) as

derA ∈ LTerm(Γ.A, ·, A) = DT(Γ.A)(I, A{pT
Γ,A}).

Suppose we are given Γ′ f−→ Γ and a ∈ DT(Γ′)(I, A{f}) = LTerm(Γ′, ·, A[f/c]).

Then, by definition of the morphisms in BT, there is a unique morphism

〈f, a〉 := f, a ∈ BT(Γ′,Γ.A) := Σf∈BT(Γ′,Γ)LTerm(Γ′, ·, A[f/x]) such that

〈f, a〉; pT
Γ,A = f and vT

Γ,A{〈f, a〉} = a. The uniqueness follows from the

fact that −; pT
Γ,A and vT

Γ,A{−} are the two (dependent) projections of the

Σ-type (in Set) that defines this homset. We can note this bijection is natural

in the sense that g; 〈f, a〉 = 〈g; f, a{g}〉 because of the associativity of the

substitution Cart-Tm-Subst in the syntax.

Theorem 3.2.9 (Completeness). The construction described in ‘Co-Soundness’

followed by the one described in ‘Soundness’ is the identity (up to categorical

equivalence): i.e. strict indexed symmetric monoidal categories with comprehension

provide a complete semantics for dDILL with I- and ⊗-types8.

Proof. This is a trivial exercise.
8It is easy to see that, similarly, indexed symmetric multicategories with comprehension form a

complete semantics for dDILL, possibly without I- and ⊗-types.

3. Linear Dependent Type Theory 97

Theorem 3.2.10 (Failure of Co-Completeness). The construction described in

‘Soundness’ followed by the one described in ‘Co-Soundness’ may not be equivalent

to the identity: i.e. Co-Completeness can fail (as for the categories with families

semantics for DTT). Its fixed-points (up to equivalence) are precisely the models for

which the comprehension is democratic.

Proof. Indeed, if we start with a strict indexed symmetric monoidal category with

comprehension, construct the corresponding model T̃ and then construct its syntactic

category, we effectively have thrown away all the non-trivial morphisms into objects

that are not of the form Γ.A or ·. The definition of a democratic comprehension is

precisely that every object is of that form.

Of course, we can easily obtain a co-complete model theory by putting this extra

restriction on our models. Alternatively – this may be nicer from a categorical

point of view –, we can take the obvious (see e.g. [19]) conservative extension of

our syntax by also talking about context morphisms (corresponding to morphisms

in our base category). In that case, we would obtain an actual internal language

for strict indexed symmetric monoidal categories with comprehension. This also

has the advantage that we can easily obtain an internal language for strict indexed

monoidal categories by dropping the axioms Cart-C-Ext, Cart-C-Ext-Eq, Cart-Idf

and Cart-Weak, which correspond to the comprehension schema. We have not

chosen this route as it would mean that the syntax would not fit as well with what

has been considered so far in the syntactic tradition.

Corollary 3.2.11 (Relation to DTT and ILTT). As we have seen, a model

(B,D,p,v) of dDILL with I- and ⊗-types defines a model C of DTT, that should

be thought of the cartesian content of the linear type theory. This will become even

more clear through our treatment of !-types and in the examples we treat.

Moreover, it clearly defines a model of ILTT with I- and ⊗-types (i.e. a

symmetric monoidal category) in every context.

Conversely, it is easily seen that every model of DTT can be obtained this way

(up to equivalence), by noting that it is in particular a model of dDILL and that

98 3.2. Semantics of dDILL

every model of ILTT can be embedded in a model of dDILL. (As we shall see in

section 3.5.1, we can cofreely add type dependency on Set.)

Semantic Type Formers

Next, we discuss the interpretation of various type formers in models of dDILL.

Theorem 3.2.12 (Semantic type formers). For the other type formers, we have

the following. A model of dDILL with I- and ⊗-types (a strict indexed symmetric

monoidal category with comprehension)...

1. ...supports Σ⊗! -types iff all the change of base functors D(pΓ,A) have left

adjoints Σ⊗!A that satisfy the left Beck-Chevalley condition for p-squares and

that satisfy Frobenius reciprocity9 in the sense that the canonical morphism

Σ⊗!A(∆′{pΓ,A} ⊗B) −→ ∆′ ⊗ Σ⊗!AB

is an isomorphism , for all ∆′ ∈ D(Γ), B ∈ D(Γ.A) .

2. ...supports Π(! -types iff all the change of base functors D(pΓ,A) have right

adjoints Π(!A that satisfy the right Beck-Chevalley condition for p-squares.

3. ...supports (-types iff D factors over the category SMCCat of symmetric

monoidal categories and (strict) symmetric monoidal functors.

4. ...supports >-types and &-types iff D factors over the category SMcCat of

cartesian categories with a symmetric monoidal structure and their (strict)

homomorphisms.

5. ...supports 0-types and ⊕-types iff D factors over the category dSMcCCat of

cocartesian categories with a distributive10 symmetric monoidal structure and

their (strict) homomorphisms.
9Frobenius reciprocity expresses compatibility of Σ⊗! and ⊗, which is reasonable if we want a

reading of Σ⊗! as a generalisation of ⊗. If one wants to drop Frobenius reciprocity in the semantics,
it is easy to see that the equivalent in the syntax is setting ∆′ = · in the Σ⊗! -E-rule. Therefore,
Frobenius reciprocity automatically follows if we have (-types.

10Note that in the light of theorem 3.1.6, the demand of distributivity here is essentially the
same phenomenon as the demand of Frobenius reciprocity for Σ⊗! -types.

3. Linear Dependent Type Theory 99

6. ...that supports (-types11, supports !-types iff all the comprehension functors

D(Γ) UΓ−→ C(Γ) have a strong monoidal left adjoint C(Γ) FΓ−→ D(Γ) in the

2-category SMCat of symmetric monoidal categories, lax symmetric monoidal

functors, and monoidal natural transformations12 and (compatibility with

substitution) for all Γ′ f−→ Γ ∈ B we have that FΓ;D(f) = C(f);FΓ′ (which

makes F− into a morphism of indexed categories). Then the linear exponential

comonad !Γ := UΓ;FΓ : D(Γ) −→ D(Γ) will be our interpretation of the

comodality ! in the context Γ.

7. ... supports Id⊗! -types iff for all A ∈ ob D(Γ), we have left adjoints Id⊗!A a

−{diagΓ,A} that satisfy the left Beck-Chevalley condition for diag-squares and

Frobenius reciprocity in the sense that the canonical morphisms

Id⊗!A(B) −→ Id⊗!A(I)⊗B{pΓ.A,A{pΓ,A}}

are isomorphisms.

Proof. 1. Assume our model supports Σ⊗! -types. We exhibit the claimed ad-

junction. The morphism from left to right is provided by Σ⊗! -I. The morphism

from right to left is provided by Σ⊗! -E. Σ⊗! -β and Σ⊗! -η say exactly that these

are mutually inverse. Naturality corresponds to the compatibility of Σ⊗! -I and

Σ⊗! -E with substitution.

c′ - (!vΓ,A,· ⊗ idB); (c′{pΓ,A})

D(Γ)(Σ⊗!AB,C)
-

∼=� D(Γ.A)(B,C{pΓ,A})

let z be !x⊗ y in c � c

11Actually, we only need this for the ‘if’. The ‘only if’ always holds. To make the ‘if’ work, as well,
in absence of(-types, we have to restrict !-E to the case where ∆′ = ·. Alternatively, we could
note that the semantic condition that precisely corresponds to having !-types (even in absence
of (-types) is to have a natural isomorphism D(Γ.A)(∆{pΓ,A}, B{pΓ,A}) ∼= D(Γ)(!A ⊗ ∆, B)
(which we immediately recognise as a specific case of Σ⊗! -types).

12i.e. a symmetric lax monoidal left adjoint functor FΓ such that an inverse for its lax structure
is given by the oplax structure on FΓ coming from the lax structure on UΓ. Put differently, FΓ is
a left adjoint functor to UΓ and is a strong monoidal functor in a way that is compatible with the
lax structure on UΓ.

100 3.2. Semantics of dDILL

We show how the morphism from left to right arises from Σ⊗! -I.

Cart-IdfΓ, x : A; · ` x : A Lin-IdfΓ, x : A;w : B ` w : B Σ⊗! -IΓ, x : A;w : B `!x⊗ w : Σ⊗!(x:A)B

Γ; z : Σ⊗!(x:A)B ` c′ : C
Cart-WeakΓ, x : A; z : Σ⊗!(x:A)B ` c′ : C
Lin-Tm-SubstΓ, x : A;w : B ` c′[!x⊗ w/z] : C

We show how the morphism from right to left is exactly Σ⊗! -E (with ∆′ = ·,

∆ = z : Σ⊗!(x:A)B, t = z).

Γ; · ` C type Lin-IdfΓ; z : Σ⊗!(x:A)B ` z : Σ⊗!(x:A)B Γ, x : A; y : B ` c : C
Σ⊗! -EΓ; z : Σ⊗!(x:A)B ` let z be !x⊗ y in c : C

We show how Frobenius reciprocity can be proved in our type system (parti-

cularly relying on the form of the Σ⊗! -E-rule13).

Claim (Frobenius reciprocity). The canonical morphism

Σ⊗!A(∆′{pΓ,A} ⊗B) f−→ ∆′ ⊗ Σ⊗!AB

is an isomorphism, for all ∆′ ∈ D(Γ), B ∈ D(Γ.A).

Proof. We first show how to construct the morphism f we mean.

Lin-IdfΓ;x′ : Σ⊗!(x:A)(∆′ ⊗B) ` x′ : Σ⊗!(x:A)(∆′ ⊗B)

Lin-IdfΓ, x : A; z : ∆′ ` z : ∆′
Cart-IdfΓ, x : A; · ` x : A Lin-IdfΓ; y : B ` y : B Σ⊗! -IΓ, x : A; y : B `!x⊗ y : Σ⊗!(x:A)B ⊗-IΓ, x : A; z : ∆′, y : B ` z⊗!x⊗ y : ∆′ ⊗ Σ⊗!(x:A)B ⊗-EΓ, x : A;w : ∆′ ⊗B ` let w be z ⊗ y in z⊗!x⊗ y : ∆′ ⊗ Σ⊗!(x:A)B Σ⊗! -EΓ;x′ : Σ⊗!(x:A)(∆′ ⊗B) ` f : ∆′ ⊗ Σ⊗!(x:A)B

We now construct its inverse. Call it g14.

Lin-IdfΓ; y2 : Σ⊗!(x:A)B ` y2 : Σ⊗!(x:A)B

Cart-IdfΓ, x : A; · ` x : A

Lin-IdfΓ; y1 : ∆′ ` y1 : ∆′ Lin-IdfΓ; y : B ` y : B
⊗-IΓ, x : A; y1 : ∆′, y : B ` y1 ⊗ y : ∆′ ⊗B Σ⊗! -IΓ, x : A; y1 : ∆′, y : B `!x⊗ y1 ⊗ y : Σ⊗!(x:A)(∆′ ⊗B)

Σ⊗! -EΓ; y1 : ∆′, y2 : Σ⊗!(x:A)B ` let y2 be !x⊗ y in !x⊗ y1 ⊗ y : Σ⊗!(x:A)(∆′ ⊗B)
⊗-EΓ; y′ : ∆′ ⊗ Σ⊗!(x:A)B ` g : Σ⊗!(x:A)(∆′ ⊗B)

13To be precise, we shall see Frobenius reciprocity is validated because we allow dependency on
∆′ in the Σ⊗! -E-rule. Conversely, it is easy to see we can prove Frobenius reciprocity holds in our
model if we have (semantic)(-types, as this allows us to remove the dependency on ∆′ in Σ⊗! -E.

14Frobenius reciprocity really comes in where Σ⊗! -E is used, because of the factor ∆′ in the
Σ⊗! -E-rule.

3. Linear Dependent Type Theory 101

We leave it to the reader to verify that these morphisms are mutually inverse

in the sense that

Γ;x′ : Σ⊗!(x:A)(∆′ ⊗B) ` g[f/y′] = x′ : Σ⊗!(x:A)(∆′ ⊗B)

and

Γ; y′ : ∆′ ⊗ Σ⊗!(x:A)B ` f [g/x′] = y′ : ∆′ ⊗ Σ⊗!(x:A)B.

For the converse, we show how to obtain Σ⊗! -I from our morphism from left

to right:

Lin-IdfΓ; z : Σ⊗!(x:A)B ` z : Σ⊗!(x:A)B “left to right”
Γ, x : A;w : B `!x⊗ w : Σ⊗!(x:A)B Γ; · ` a : A

Cart-Tm-SubstΓ;w : B `!a⊗ w : Σ⊗!(x:A)B Γ; ∆ ` b : B[a/x]
Lin-Tm-SubstΓ; ∆ `!a⊗ b : Σ⊗!(x:A)B

We show how to obtain Σ⊗! -E from our morphism from right to left, using

Frobenius reciprocity.

Γ; · ` C type
Γ, x : A; y : ∆′, B ` c : C

⊗-EΓ, x : A; y : ∆′ ⊗B ` c : C “right to left”
Γ; z : Σ⊗!(x:A)(∆′ ⊗B) ` let z be !x⊗ y in c : C

Frobenius reciprocity
Γ; z : (∆′ ⊗ Σ⊗!(x:A)B) ` let frob(z) be !x⊗ y in c : C

Lin-Tm-Subst,⊗-I,2×Lin-Idf
Γ; z1 : ∆′, z2 : Σ⊗!(x:A)B ` let frob(z1 ⊗ z2) be !x⊗ y in c : C Γ; ∆ ` t : Σ⊗!(x:A)B

Lin-Tm-SubstΓ; z1 : ∆′,∆ ` (let frob(z1 ⊗ z2) be !x⊗ y in c)[t/z2] : C

As usual, the left Beck-Chevalley condition says precisely that Σ⊗! -types

commute with substitution, as dictated by the type theory.

2. Assume our model supports Π(! -types. We exhibit the claimed adjunction.

The morphism from left to right is provided by Π(! -I – in fact, it is exactly the

I-rule – and the one from right to left by Π(! -E. Π(! -β and Π(! -η say exactly

that these are mutually inverse. Naturality corresponds to the compatibility

of Π(! -I and Π(! -E with substitution.

b - λ!(x:A)b

D(Γ.A)(∆{pΓ.A}, B)
-
∼=� D(Γ)(∆,Π(!(x:A)B)

f(!x) � f.

102 3.2. Semantics of dDILL

We show how we obtain the definition of f(!x) from Π(! -E.

Cart-IdfΓ, x : A; · ` x : A
Γ; ∆ ` f : Π(!(x:A)B

Cart-WeakΓ, x : A; ∆ ` f : (Π(!(x:A)B)
Π(! -EΓ, x : A; ∆ ` f(!x) : B

For the converse, we have to show that we can recover Π(! -E from the

definition of f(!x).

Γ; · ` a : A
Γ; ∆ ` f : Π(!(x:A)B Definition f(!x)Γ, x : A; ∆ ` f(!x) : B

Cart-Tm-SubstΓ; ∆ ` f(!x)[a/x] : B[a/x]
Γ; ∆ ` f(!a) : B[a/x]

This shows that individual Π(! -types correspond to right adjoint functors

to substitution along projections. The type theory dictates that Π(! -types

interact well with substitution. This corresponds to the right Beck-Chevalley

condition, as usual.

3. From the categorical semantics of (non-dependent) linear type theory (see

e.g. [47] for a very complete account) we know that(-types correspond to

monoidal closure of the category of contexts. The extra feature in dependent

linear type theory is that the syntax dictates that the type formers are

compatible with substitution. This means that we also have to restrict the

functors D(f) to preserve the relevant categorical structure.

4. Idem.

5. Idem.

6. Assume that we have !-types. We define a left adjoint FΓ a UΓ as FΓpΓ,A :=!A

(this is easily seen to be well-defined up to isomorphism, so we can use AC

for a definition on the nose) and, noting that every morphism pΓ,A −→ pΓ,B

in B/Γ is of the form 〈pΓ,A, b〉 for some unique I b−→ B{pΓ,A} ∈ D(Γ.A), we

define FΓ as acting on b as the map obtained from

Γ, x : A; · ` b : B
!-IΓ, x : A; · `!b :!B Lin-IdfΓ; y :!A ` y :!A

!-EΓ; y :!A ` let y be !x in !b :!B

3. Linear Dependent Type Theory 103

which indeed gives us FΓ(〈pΓ,A, b〉) ∈ D(Γ)(!A, !B).

We exhibit the adjunction by the following isomorphism of hom-sets, where

the morphism from left to right comes from !-I and the one from right to left

comes from !-E.

b - b[!x/x′]

D(Γ)(FΓpΓ,A, B) = D(Γ)(!A,B)
-
∼=� D(Γ.A)(I, B{pΓ,A}) ∼= B/Γ(pΓ,A,pΓ,B) = C(Γ)(pΓ,A, UΓB)

let y be !x in b′ � b′

We show how to construct the morphism from left to right, using !-I.

Γ;x′ :!A ` b : B
Cart-WeakΓ, x : A;x′ :!A ` b : B

Cart-IdfΓ, x : A; · ` x : A
!-IΓ, x : A; · `!x :!A
Lin-Tm-SubstΓ, x : A; · ` b[!x/x′] : B

We show to construct the morphism from right to left, using !-E. Suppose

we’re given b′ ∈ D(Γ.A)(I, B{pΓ,A}). From this, we produce a morphism in

D(Γ)(!A,B) as follows.

Lin-IdfΓ; y :!A ` y :!A Γ, x : A; · ` b′ : B
!EΓ; y :!A ` let y be !x in b′ : B

We leave it up to the reader to verify that these morphisms are mutually

inverse, according to !-β and !-η.

Note that FΓ is strong monoidal, as the rules for ! define a natural bijection

between terms Γ;x′ :!A, y′ :!B ` t′ : C and Γ, x : A, y : B; · ` t : C if

Γ ` C type. In semantic terms, this gives a natural bijection

D(Γ)(!A⊗!B,C) ∼= D(Γ.A.B)(1, C{pΓ.A,B; pΓ,A})

∼= B/Γ(pΓ.A,B; pΓ,A,pΓ,C)

= B/Γ(UΓA× UΓB,UΓC)

∼= D(Γ)(FΓ(UΓA× UΓB), C),

104 3.2. Semantics of dDILL

so strong monoidality follows by the Yoneda lemma. (A keen reader can verify

that the oplax structure on FΓ corresponds with the lax structure on UΓ.)

Conversely, suppose we have a strong monoidal left adjoint FΓ a UΓ. We

define, for A ∈ ob(D(Γ)), !A := FΓUΓ(A).

We verify that !-I can be derived from the homset morphism from left to right:

Lin-IdfΓ;x′ :!A ` x′ :!A “left to right”Γ, x : A; · `!x :!A Γ; · ` a : A
Cart-Tm-SubstΓ; · `!x[a/x] :!A

We verify that, in the presence of (-types, !-E can be derived from the

homset morphism from right to left:

Γ; ∆ ` t :!A

Lin-IdfΓ;w : ∆′ ` w : ∆′

Γ, x : A; y : ∆′ ` b : B
(-IΓ, x : A; · ` λy:∆′b : ∆′(B

“right to left”Γ; z :!A ` let z be !x in λy:∆′b : ∆′(B
(-EΓ; z :!A,∆′ ` let z be !x in b[w/y] : B

Lin-Tm-SubstΓ; ∆,∆′ ` let t be !x in b[w/y] : B

Note that the !-β- and !-η-rules correspond precisely to the fact that our

morphisms from left to right and from right to left define a homset isomor-

phism.

Finally, it is easily verified that the condition that FΓ;D(f) ∼= D(f);FΓ′

corresponds exactly to the compatibility of ! with substitution.

7. Suppose we have Id⊗!A a −{diagΓ,A} (satisfying the appropriate Frobenius and

Beck-Chevalley conditions). Then, we have a (natural) homset isomorphism

D(Γ.A.A{pΓ,A})(Id⊗!A(B), C)
-
∼=� D(Γ.A)(B,C{diagΓ,A}).

The claim is that Id⊗!A(I) satisfies the rules for the Id⊗! -type of A. Indeed, we

have Id⊗! -I as follows.

Lin-IdfΓ, x : A, x′ : A;w : Id⊗!A(I)(x, x′) ` w : Id⊗!A(I)(x, x′) “left to right”
Γ, x : A; y : I ` refl(!x)y : Id⊗!A(I)(x, x) I-IΓ, x : A; · ` ∗ : I

Lin-Tm-SubstΓ, x : A; · ` refl(!x) : Id⊗!A(I)(x, x) Γ; · ` a : A
Cart-Tm-Subst Γ; · ` refl(!x) : Id⊗!A(I)(a, a)

3. Linear Dependent Type Theory 105

We obtain Id⊗! -E as follows. Let Γ, x : A, x′ : A; · ` C type.

Γ, x : A;B ` c : C[x/x′] “right to left”
Γ, x : A, x′ : A; Id⊗!A(B) ` c′ : C Γ; · ` a : A Γ; · ` a′ : A

Cart-Tm-SubstΓ; Id⊗!A(B)[a/x, a′/x′] ` c′[a/x, a′/x′] : C[a/x, a′/x′]
Γ;B′ ` p : Id⊗!A(I)[a/x, a′/x′]

Frobenius Γ;B[a/x], B′ ` p′ : Id⊗!A(B)[a/x, a′/x′]
Lin-Tm-Subst Γ;B[a/x], B′ ` let (a, a′, p) be (z, z, refl(!z)) in c : C[a/x, a′/x]

Conversely, suppose we have Id⊗! -types. Then, define Id⊗!A(B) := Id⊗!A ⊗

B{pΓ.A,A{pΓ,A}}, with the obvious extension on morphisms. (This immediately

implies Frobenius reciprocity, clearly.) Then, we obtain the morphism “left to

right” as follows.

Γ, x : A, x′ : A; z : Id⊗!A, y : B ` c : C Cart-IdfΓ, x : A; · ` x : A
Cart-Tm-SubstΓ, x : A; z : Id⊗!A[x/x′], y : B ` c[x/x′] : C[x/x′]

Cart-IdfΓ, x : A; · ` x : A Id⊗! -IΓ, x : A; · ` refl(!x) : Id⊗!A(x, x)
Lin-Tm-SubstΓ, x : A; y : B ` c′ : C[x/x′]

The morphism “right to left” is obtained as follows.

Γ, x0 : A; y : B ` c : C[x0/x1] Lin-IdfΓ, x0 : A, x1 : A;w : Id⊗!A ` w : Id⊗!A
Cart-IdfΓ, x0 : A, x1 : A; · ` xi : A
Id⊗! -EΓ, x0 : A, x1 : A;w : Id⊗!A, y : B ` c′ : C

We leave it to the reader to verify that the Id⊗! -β- and Id⊗! -η-rules translate

precisely into the “right to left” and “left to right” morphisms being inverse.

As usual, the Beck-Chevalley condition corresponds to the compatibility of Id⊗! -

types with substitution, while the Frobenius condition says that Id⊗!A-functors

are entirely determined by the object Id⊗!A(I).

The semantics of ! suggests an alternative definition for the notion of a compre-

hension: if we have Σ⊗! -types in a strong sense, it is a derived notion!

Theorem 3.2.13 (Lawvere Comprehension). Given a strict indexed monoidal

category (B,D) with left adjoints Σ⊗F (f) to D(f) for arbitrary Γ′ f−→ Γ ∈ B, satisfying

106 3.2. Semantics of dDILL

the left Beck-Chevalley condition for all pullback squares, then we can define B/Γ FΓ−→

D(Γ) by

FΓ(−) := Σ⊗F (−)I.

In that case, (B,D) has a comprehension schema iff FΓ has a right adjoint UΓ

(which then automatically satisfies D(f);UΓ′ = UΓ;D(f) for all Γ′ f−→ Γ ∈ B).

That is, our notion of comprehension generalises that of [24].

In particular, if either condition is satisfied, it supports !-types iff Σ⊗! satisfies

Frobenius reciprocity.

Proof. Suppose that we have said right adjoints UΓ. We construct a comprehension

schema.

This allows us to define pΓ,A := UΓ(A) and note that we have natural isomor-

phisms

D(Γ′)(I, A{f})
∼=- D(Γ)(Σ⊗F (f)IΓ′ , A) = D(Γ)(FΓf, A)

∼=- B/Γ(f, UΓA)

a - af - 〈f, a〉,

where the first natural isomorphism comes from the adjunction Σ⊗F (f) a −{f} and the

second one comes from the adjunction FΓ a UΓ. This defines a comprehension for D.

Conversely, suppose D satisfies the comprehension schema. Then, we know,

by theorem 3.2.4, that we can define a comprehension functor UΓ such that

D(f);UΓ′ = UΓ;D(f). Then we have the following natural isomorphisms:

B/Γ(f, UΓA)
∼=- D(Γ′)(I, A{f})

∼=- D(Γ)(Σ⊗F (f)IΓ′ , A) = D(Γ)(FΓf, A)

〈f, a〉 - a - af ,

where the first isomorphism is precisely the representation defined by our compre-

hension and the second isomorphism comes from the fact that Σ⊗F (f) a −{f}. We

see that FΓ ` UΓ.

3. Linear Dependent Type Theory 107

Finally, note that we have the following commutative triangle of natural

isomorphisms

D(Γ.A)(∆{pΓ,A}, B{pΓ,A})
!-types
∼=

- D(Γ)(!A⊗∆, B)

D(Γ.A)(Σ⊗!A∆{pΓ,A}, B).

∼= Frobenius

?

∼=Definition Σ⊗
! -

Note that the Beck-Chevalley condition for Σ⊗F takes care of the substitution

condition for !-types. Therefore, the existence of !-types boils down to the top

isomorphism. Meanwhile, the Frobenius condition is by the Yoneda lemma equivalent

to the right isomorphism. Noting that the diagonal always holds if we have Σ⊗! -types,

it follows that we have !-types iff we have Frobenius reciprocity.

Theorem 3.2.14 (Type Formers in C). C supports Σ-types iff ob(C) is closed under

compositions (as morphisms in B). It supports Id-types iff ob(C) is closed under

postcomposition with maps diagΓ,A. If D supports !- and Π(! -types, then C supports

Π-types. Moreover, we have that

Σ⊗!A!B ∼= F (ΣUAUB) Id⊗!A(!B) ∼= F IdUA(UB) UΠ(!BC ∼= ΠUBUC.

Proof. We write out the adjointness condition

C(Γ)(ΣpΓ,Bf,pΓ,D)
!∼= C(Γ.B)(f,pΓ,D{pΓ,B})

∼= C(Γ.B)(f,pΓ,D{pΓ,B})

∼= D(Γ.B.C)(I,D{pΓ,B}{f})

∼= D(Γ.B.C)(I,D{f ; pΓ,B})

∼= C(Γ)(f ; pΓ,B,pΓ,D).

Now, the Yoneda lemma gives us that ΣpΓ,Bf = f ; pΓ,B.

108 3.2. Semantics of dDILL

Similarly,

C(Γ.A.A)(IdpΓ,A(f),pΓ.A.A,C)
!∼= C(Γ.A)(f,pΓ.A.A,C{diagΓ,A})

∼= D(Γ.A.B)(I, C{diagΓ,A}{f})

∼= D(Γ.A.B)(I, C{f ; diagΓ,A})

∼= C(Γ.A.A)(f ; diagΓ,A,pΓ.A.A,C),

so f ; diagΓ,A models IdpΓ,A(f).

Finally,

C(Γ)(UΓD,ΠpΓ,BpΓ.B,C)
!∼= C(Γ.B)((UΓD){pΓ,B},pΓ.B,C)

∼= C(Γ.B)((UΓD){pΓ,B}, UΓ.BC)

∼= D(Γ.B)(FΓ.B((UΓD){pΓ,B}), C)

∼= D(Γ.B)((FΓUΓD){pΓ,B}, C)

∼= D(Γ)(FΓUΓD,Π(!BC)

∼= C(Γ)(UΓD,UΓΠ(!BC).

Again, using the Yoneda lemma, we conclude that UΓΠ(!BC models ΠUΓBUΓ.BC.

In all cases, we have not worried about Beck-Chevalley (and Frobenius reciprocity

for Σ⊗! -types) as they are trivially seen to hold.

Note that if D has Σ⊗! -types (and, therefore, !-types), then

D(Γ)(FΓ(ΣUΓAUΓ.AB), C) ∼= C(Γ)(ΣUΓAUΓ.AB,UΓC)

∼= C(Γ.A)(UΓ.AB, (UΓC){pΓ,A})

∼= C(Γ.A)(UΓ.AB,UΓ.A(C{pΓ,A}))

∼= D(Γ.A)(!B,C{pΓ,A})

∼= D(Γ)(Σ⊗!A!B,C).

3. Linear Dependent Type Theory 109

By the Yoneda lemma, conclude that Σ⊗!A!B ∼= FΓ(ΣUΓAUΓ.AB).

Note that, in case D admits !- and Id⊗! -types,

D(Γ.A.A)(Id⊗!A(!B), C) ∼= D(Γ.A)(!B,C{diagΓ,A})

∼= C(Γ.A)(UΓ.AB,UΓ.A(C{diagΓ,A}))

∼= C(Γ.A)(UΓ.AB,UΓ.A.A(C){diagΓ,A})

∼= C(Γ.A.A)((UΓ.AB); diagΓ,A, UΓ.A(C))

∼= C(Γ.A.A)(IdUΓA(UΓ.AB), UΓ.A(C))

∼= D(Γ.A.A)(FΓ.A.AIdUΓA(UΓ.AB), C).

We conclude that Id⊗!A(!B) ∼= FΓ.A.AIdUΓA(UΓ.AB) and in particular Id⊗!A(I) ∼=

FΓ.A.AIdUΓA(idΓ.A). (The last statement is easily seen to also be valid in absence of

>-types.)

Remark 3.2.15 (Dependent Seely Isomorphisms?). Note that, in our setup, we

have a version of the simply typed Seely isomorphisms in each fibre. Indeed, suppose

D supports >-, &-, and !-types. Then, UΓ(>) = idΓ and UΓ(A&B) = UΓ(A)×UΓ(B),

as UΓ has a left adjoint and therefore preserves products. Now, FΓ is strong monoidal

and !Γ = FΓUΓ, so it follows that !Γ> = I and !Γ(A&B) =!ΓA⊗!ΓB.

Now, theorem 3.2.14 suggests the possibility of similar Seely isomorphisms for

Σ⊗! -types and Id⊗! -types. Indeed, C supports Σ-types iff we have additive Σ-types in

D in the sense of objects Σ&
AB such that

UΣ&
AB
∼= ΣUAUB and hence !Σ&

AB
∼= Σ⊗!A!B.

In an ideal world, one would hope that Σ&
AB generalises A&B in a similar way as

how Σ⊗!AB is a dependent generalisation of !A ⊗ B. In fact, it is easily seen that

such categorical Σ&-types precisely (soundly and completely) correspond with the

syntactic rules of figure 3.9, where we see a slight mismatch with &-types in the

sense that the introduction and elimination rules only apply for cartesian contexts

(without linear assumptions), here.

110 3.2. Semantics of dDILL

` Γ, x : A, y : B; · ctxt
Σ&-FΓ ` Σ&

x:AB type
Γ; · ` a : A Γ; · ` b : B[a/x]

Σ&-IΓ; · ` 〈a, b〉 : Σ&
x:AB

Γ; · ` t : Σ&
x:AB Σ&-E1Γ; · ` fst (t) : A

Γ; · ` t : Σ&
x:AB Σ&-E2Γ; · ` snd (t) : B[fst (t)/x]

Figure 3.9: Rules for additive Σ-types. We also demand the obvious β- and η-equations.

Similarly, we get a notion of additive Id-types: C supports Id-types iff we have

objects Id&
A(B) in D such that

U Id&
A(B) ∼= IdUA(UB) and hence !Id&

A(B) ∼= Id⊗!A(!B).

Note that this suggests that, in the same way that Id⊗!A(B) ∼= Id⊗!A(I)⊗B (a sense

in which usual Id⊗! -types are multiplicative connectives), Id&
A(B) ∼= Id&

A(>)&B. In

fact, if we have >- and &-types, we only have to give Id&
A(>) and can then define

Id&
A(B) := Id&

A(>)&B to obtain additive Id-types in generality.

In the light of theorem 3.2.14, we obtain such additive Σ- and Id-types in the fibre

over Γ if some UΓ is essentially surjective. In particular, we are in this situation if

F· a U· is the usual co-Kleisli adjunction of !·, where C(·) ∼= B. This shows that if

we are hoping to obtain a model of dDILL indexed over the co-Kleisli category, in

the natural way, we need to support these additive connectives.

From experience, it seems like the natural models of dDILL do not generally

support them, meaning that co-Kleisli categories often fail to give models of dependent

types. Similarly, it is difficult to come up with an intuitive interpretation of the

meaning of such connectives, in the sense of a resource interpretation.

To get some intuition of why such objects may be problematic, note that the

usual resource interpretation A&B is as follows: we either have (a resource of type)

A or B. This means that we would expect a Σ&
AB-type, which should be a dependent

generalisation of the ordinary &-type, to have an additive reading too. However,

B represents a predicate on A, so, if we have an object c of type Σ&
AB, we are in

the situation that we can either produce an object fst c of type A or an object snd c

embodying a property B of fst c.

3. Linear Dependent Type Theory 111

Figure 3.10: We encourage the reader to compare the idea of additive Σ-types with
Lewis Carroll’s invention of the Cheshire cat.
“Well! I’ve often seen a cat without a grin,” thought Alice; “but a grin without a cat! It’s
the most curious thing I ever saw in all my life.”. [80]

This is like the Cheshire cat of Alice in Wonderland of figure 3.10: let A be the

type of cats and let B be the predicate “is grinning”. Then, fst c corresponds to the

cat and snd c may be thought to embody having a grin (of a cat) without having the

cat.

In section 5.4, we shall see a similar problem in the operational semantics of

terms of such types. Terms of linear types generally represent dynamic objects. We

shall see that the term fst c, like the Cheshire cat, can lose information (e.g. the cat

disappears; the term fst c, for instance, could be a computation which proceeds to

make a non-deterministic choice or print to console) after which properties snd c

which held true of fst c before the change no longer make sense (e.g. the cat is

grinning; the program fst c is going to make a non-deterministic choice or prints

hello world to console).

3.3 dLNL Calculus

Independently from the author, Krishnaswami, Pradic and Benton developed a

syntax for a dependently typed version of the LNL calculus in [78], which we refer to

112 3.3. dLNL Calculus

as the dLNL calculus. It is a system with both cartesian types and linear types both

of which are allowed to depend on terms of cartesian types, but not linear types.

The cartesian type formers they consider are 1-, (strong) Σ-, Π- and extensional

Id-types as well as universes (as cartesian types) that code for both linear and

cartesian types and, finally, U -types which map linear types to cartesian types. The

linear type formers they consider are I-, ⊗-,(-, >-, &-, Σ⊗F (−)- and Π(F (−)-types

and, finally, F -types which map cartesian types to linear types. In their work,

they discuss an operational semantics but do not provide a denotational semantics.

Therefore, we believe it might be useful to point out that our categorical framework

can easily be adapted to model their dependent LNL calculus (minus universes,

which can be given their usual awkward categorical semantics [81]).

Theorem 3.3.1 (Dependent LNL Calculus Semantics). A sound and complete

categorical semantics for the universe-free fragment of the dependent LNL calculus

of [78] is given by the following:

• a model Bop C−→ Cat of pure cartesian dependent type theory in the sense of

an indexed category (with an indexed terminal object) with full and faithful

comprehension (p,v, 〈−−,−〉);

• strong Σ-types in C;

• strong (extensional) Id-types in C;

• Π-types in C;

• an indexed symmetric monoidal closed category Bop D−→ SMCCat;

• indexed finite products (>,&) in D;

• a linear/non-linear indexed adjunction15 F a U : C � D;

15Note that it is, in fact, enough to merely ask for an indexed functor D U−→ C, as we then
automatically obtain a linear/non-linear adjunction by defining FA := Σ⊗F (A)I.

3. Linear Dependent Type Theory 113

• Σ⊗F (−)-types in D in the sense of left adjoints Σ⊗F (A) a D(pΓ,A), for all display

maps Γ.A pΓ,A−→ Γ, satisfying the left Beck-Chevalley condition for all p-squares

and Frobenius reciprocity in the sense that the canonical maps

Σ⊗F (A)(∆′{pΓ,A} ⊗B) −→ ∆′ ⊗ Σ⊗F (A)B

are isomorphisms;

• Π(F (−)-types in D in the sense of right adjoints D(pΓ,A) a Π(F (A) satisfying the

right Beck-Chevalley condition for all p-squares.

Proof. The proof is entirely analogous to that for the categorical semantics of

dependently typed DILL.

Again, we see that the main distinction between DILL and the LNL calculus is

that the latter considers the cartesian category C part of the structure while the

DILL only assumes its existence. Note, in particular, that a model of the dependent

LNL calculus in the sense described above defines a model of dependently typed

DILL with I,⊗,(,>,&, !,Σ⊗! and Π⊗! -types. Indeed, the comprehension on C

together with the adjunction F a U is easily seen to give a comprehension for

D. However, we see that as U may not be full and faithful, a full and faithful

comprehension for C may not give a full and faithful comprehension for D (just

like in our semantics for dependently typed DILL).

3.4 Girard Translations

By contrast with the simply typed situation, I believe there are reasons to prefer

an LNL calculus over a DILL-style system when working with dependent types.

This is because the Girard translations fail for dDILL, meaning that it does not

suffice to encode cartesian dependent type theory. Meanwhile, the LNL calculus is

a proper extension of cartesian type theory, so, in particular, has more expressive

power. Later, in chapter 5, we shall see another reason to prefer a LNL-style

calculus, motivated by separating proving and programming. The idea is that

114 3.4. Girard Translations

cartesian types are for pure proofs while linear types are assigned to (commutative)

effectful programs.

Let us explain why the Girard translations of section 2.3.3 do not generalise

well to dependent type theory in their conventional form. While we can define

without any problems (ΠAB)f := Π(!AfBf , we run into problems with the first

Girard translation of Σ-types. One would expect the first Girard translation of

ΣAB to take the form of Σ-types Σ&
AfB

f . We can indeed define this, but we know

such connectives are often problematic from a denotational and operational point

of view. Similarly, we would expect (IdA)f := Id&
Af .

The second Girard translation is even more problematic. We would expect

to define (ΠAB)s :=!Π(AsBs for some linear dependent function type Π(A B which

generalises A(B. We encounter a similar problem when defining (ΣAB)s and

(IdA)s which we would expect to be Σ⊗AsBs and Id⊗As for some dependent connectives

Σ⊗ generalising ⊗ and a connective Id⊗ which takes the multiplicative identity

type of linear terms. Such Π(, Σ⊗ and Id⊗ types are even more problematic, in

a sense, than additive Σ-types, as we simply cannot formulate natural deduction

rules for such connectives in a system with types depending only on cartesian

assumptions and not linear ones.

One can wonder if a satisfactory translation (−)t can be obtained by mixing the

first and second Girard translations: using (ΠAB)t := Π!AtB
t, (ΣAB)t := Σ⊗!At !Bt

and (IdA)t := Id⊗!A. It is easily seen that this leads to violation of the η-rules for

Σ-types (as we are effectively modelling pattern matching Σ-types in CBN) and

Id-types. It is at present unclear to us if such a translation still has value.

At the level of categorical semantics, the first Girard translation takes the form

of the idea of modelling cartesian type theory in the co-Kleisli category D! for ! of a

model D of linear type theory. If we start with a model Bop D−→ Cat of dDILL with

!-types and >-types, it can easily be seen that the fibrewise co-Kleisli category D! is

a model of cartesian dependent type theory (with full and faithful comprehension).

3. Linear Dependent Type Theory 115

Indeed, D!(Γ′)(>, A{f}) ∼= D(I, A{f}) ∼= B/Γ(f,pΓ,A) and

D!(Γ′)(A,B) ∼= D(Γ)(!A,B)

∼= D(Γ.A)(I, B{pΓ,A})

∼= B/Γ(pΓ,A,pΓ,B).

Σ-types in D! are easily seen to correspond precisely to Σ&-types in D, which

do not generally exist.

We can gain more insight into what is going on, by embedding the co-Kleisli

category in the co-Eilenberg-Moore category, effectively closing it under certain

equalisers (as every coalgebra has a presentation in terms of cofree coalgebras). Un-

der that embedding, A&B is mapped to the cofree coalgebra !A⊗!B ∼=!(A&B) δA&B−→

!!(A&B) ∼=!(!A⊗!B). Hence, we would expect Σ&
AB to embed as a coalgebra

Σ⊗!A!B −→!Σ⊗!A!B. On closer inspection, it turns out that while (as in the simply

typed case [33]) we can always define a canonical coalgebra structure16 on Σ⊗!A!B,

this coalgebra structure is not always a cofree one δΣ&
AB

.

However, while we can always define Σ-types in the co-Eilenberg-Moore category,

we have no guarantee that Π-types exist, by contrast with the co-Kleisli category

where Π(!AB is the Π-type of A and B. Recalling that the co-Kleisli adjunction is

the initial adjunction giving rise to ! and the co-Eilenberg-Moore one the terminal,

we can hope to find a sweet spot C in between D! and D! which is closed under

both Σ- and Π-types. If no natural candidate for C is available, we could, for

instance, try to inductively close D! under Σ-types in D! (we work with formal

Σ-types of cofree coalgebras) or coinductively close D! under the Π-types of D!

(we work with a category of exponentiable coalgebras). We choose to employ the

16Indeed, given a coalgebra B k−→!B in D(Γ.A), we can define the coalgebra

Γ, x : A, y : B; · ` x : A Γ, x : A, y : B; · ` y : B
Γ, x : A, y : B; · `!x⊗ y : Σ⊗!AB

Γ, x : A, y : B; · `!(!x⊗ y) :!Σ⊗!AB
Γ, x : A; z :!B ` let z be !y in !(!x⊗ y) :!Σ⊗!AB Γ, x : A;w : B ` k :!B

Γ, x : A;w : B ` let k be !y in !(!x⊗ y) :!Σ⊗!AB
Γ; v : Σ⊗!AB ` let v be !x⊗ w in let k be !y in !(!x⊗ y) :!Σ⊗!AB.

We can, in particular, do this for the case that k = δC .

116 3.5. Concrete Models

former technique in the setting of game semantics. As we have an isomorphism of

types Πx:AΣy:BC ∼= Σf :Πx:ABΠx:AC[f(x)/y], we would expect these (co)inductively

constructed categories to be closed under both Σ- and Π-types.

3.5 Concrete Models

3.5.1 Some Discrete Models: Monoidal Families

We discuss a simple class of models in terms of families with values in a symmetric

monoidal category. On a logical level, what the construction boils down to is

starting with a model V of a linear propositional logic and taking the cofree linear

predicate logic on Set with values in this propositional logic. This important example

illustrates how Σ⊗! - and Π(! -types can represent infinitary additive disjunctions

and conjunctions. The model is discrete in nature, however, and in that respect

not representative for the type theory.

Suppose V is a symmetric monoidal category. We can then consider a strict

Set-indexed category, defined through the following enriched Yoneda embedding

Fam(V) := V− := SMCat(−,V):

Setop
Fam(V)

- SMCat S
f−→ S ′ - VS f ;−←− VS′ .

Note that this definition naturally extends to a functor Fam.

Theorem 3.5.1 (Families Model dDILL). The construction Fam adds type depen-

dency on Set cofreely in the sense that it is right adjoint to the forgetful functor ev1

that evaluates a model of dDILL at the empty context to obtain a model of linear

propositional type theory (where SMCatSetop
compr is the full subcategory of SMCatSetop on

the objects with comprehension):

SMCat
�

ev1

⊥
⊂

Fam
-

SMCatSetop
compr.

3. Linear Dependent Type Theory 117

Proof. Fam(V) admits a comprehension, by the following isomorphism

Fam(V)(S)(I, B{f}) = VS(I, f ;B)

= Πs∈SV(I, B(f(s)))

∼= Set/S(S idS−→ S,Σs∈SV(I, B(f(s))) fst−→ S)

∼= Set/S ′(S f−→ S ′,Σs′∈S′V(I, B(s′)) fst−→ S ′)

= Set/S ′(f,pS′,B),

where pS′,B := Σs′∈S′V(I, B(s′)) fst−→ S ′. (vS′,B is obtained as the image of idS′ ∈

Set/S ′ under this isomorphism.) To see that ev1 a Fam, note that we have the

following naturality diagrams for elements 1 s−→ S

1 ev1(D) = D(1) φ1 - V = Fam(V)(1)

S

s

?
D(S)

−{s}
6

φS
- VS = Fam(V)(S)

s;−
6

and that all 1 s−→ S are jointly surjective and therefore all s;− are jointly injective,

meaning that a natural transformation φ ∈ SMCatSetop(D,Fam(V)) is uniquely

determined by φ1 ∈ SMCat(ev1(D),V).

We have the following results for type formers.

Theorem 3.5.2 (Type Formers for Families). V has small coproducts that distribute

over ⊗ iff Fam(V) supports Σ⊗! -types. In that case, Fam(V) also supports 0- and

⊕-types (which correspond precisely to finite distributive coproducts).

V has small products iff Fam(V) supports Π(! -types. In that case, Fam(V) also

supports >- and &-types (which correspond precisely to finite products).

Fam(V) supports (-types iff V is monoidal closed.

Fam(V) supports !-types iff V has small coproducts of I that are preserved by

⊗ in the sense that the canonical morphism ⊕
S(∆′ ⊗ I) −→ ∆′ ⊗ ⊕S I is an

isomorphism for any ∆′ ∈ ob V and S ∈ ob Set. In particular, if Fam(V) supports

Σ⊗! -types, then it also supports !-types.

118 3.5. Concrete Models

Fam(V) supports Id⊗! -types if V has a distributive initial object. Supposing that

V has a terminal object, the only if also holds.

Proof. The statement about 0-, ⊕-, >-, and &-types should be clear from the

previous sections, as products and coproducts in VS are pointwise (and hence

automatically preserved under substitution).

We denote coproducts in V with ⊕. Then,

Πs′∈S′V(
⊕

s∈f−1(s′)
A(s), B(s′)) ∼= Πs′∈S′Πs∈f−1(s′)V(A(s), B(s′))

∼= Πs∈Σs′∈S′f−1(s′)V(A(s), B(f(s)))

∼= Πs∈SV(A(s), B(f(s))

= VS(A, f ;B).

So, we see that we can define Σ⊗F (f)(A)(s′) := ⊕
s∈f−1(s′) A(s) to get a left adjoint

Σ⊗F (f) a −{f}, if we have coproducts. (With the obvious definition on morphisms

coming from the cocartesian monoidal structure on V .) Conversely, we can clearly

use Σ⊗F (f) to define any coproduct by using, for instance, an identity function for

f on the set we want to take a coproduct over and a family A that denotes the

objects we want to sum. The Beck-Chevalley condition is taken care of by the fact

that our substitution morphisms are given by precomposition. Frobenius reciprocity

precisely corresponds to distributivity of the coproducts over ⊗.

Similarly, if V has products, we denote them with
˘

to suggest the connections

with linear type theory. In that case, we can define Π(F (f)(A)(s′) :=
˘

s∈f−1(s′) A(s)

to get a right adjoint −{f} a Π(F (f). (With the obvious definition on morphisms

coming from the cartesian monoidal structure on V .) Indeed,

Πs′∈S′V(B(s′),
¯

s∈f−1(s′)
A(s)) ∼= Πs′∈S′Πs∈f−1(s′)V(B(s′), A(s))

∼= Πs∈Σs′∈S′f−1(s′)V(B(f(s)), A(s))

∼= Πs∈SV(B(f(s)), A(s))

= VS(f ;B,A).

3. Linear Dependent Type Theory 119

Again, in the same way as before, we can construct any product using Π(F (f). The

right Beck-Chevalley condition comes for free as our substitution morphisms are

precomposition.

The claim about(-types follows immediately from the previous section: Fam(V)

supports(-types iff all its fibres have a monoidal closed structure that is preserved

by the substitution functors. Seeing that our monoidal structure is pointwise, the

same will hold for any monoidal closed structure. Seeing that substitution is given

by precomposition, the preservation requirement comes for free.

The characterisation of !-types is given by theorem 3.1.5, which tells us we can

define !A := Σ⊗F (pS′,A)I = s′ 7→⊕
V(I,A(s′)) I and conversely.

Finally, for Id⊗! -types, note that the adjointness condition Id⊗!A a −{diagΓ,A}

boils down to the requirement (*)

Πs∈SΠa∈A(s)V(B(s, a), C(s, a, a)) ∼= VΣs∈SA(s)(B,C{diagS,A})
!∼= VΣs∈SA(s)×A(s)(Id⊗!A(B), C)
∼= Πs∈SΠa∈A(s)Πa′∈A(s)V(Id⊗!A(B)(s, a, a′), C(s, a, a′)).

We see that if we have an initial object 0 ∈ ob(V), we can define

Id⊗!A(B)(s, a, a′) :=
{
B(s, a) if a = a′

0 else

Distributivity of the initial object then gives us Frobenius reciprocity. For a

partial converse, suppose we have a terminal object > ∈ V. Let V ∈ ob(V). Let

S := {∗}, A := {0, 1} and C s.t. C(0, 0) = C(1, 1) = C(0, 1) = > and C(1, 0) = V .

Then, (*) becomes the condition that {∗} ∼= V(Id⊗!A(B)(1, 0), V). We conclude that

Id⊗!A(B)(1, 0) is initial in V .

Remark 3.5.3. Note that an obvious way to guarantee distributivity of coproducts

over ⊗ is by demanding that V is monoidal closed.

Remark 3.5.4. It is easily seen that Σ-types in C, or additive Σ-types in D =

Fam(V), boil down to having an object ors∈SC(s) ∈ ob(V) for a family (C(s) ∈

ob(V))s∈S such that Σs∈SV(I, C(s)) ∼= V(I, ors∈SC(s)). Similarly, Id-types in C,

or additive Id-types in D, boil down to having objects one, zero ∈ ob(V) such that

V(I, one) ∼= 1 and V(I, zero) = 0.

120 3.5. Concrete Models

Two particularly simple concrete examples of V come to mind that can accom-

modate all type formers (except additive Σ- and Id-types, which are easily seen

not to be supported) and form a nice illustration: a category V = VectF of vector

spaces over a field F , with the tensor product, and the category V = Set∗ of pointed

sets, with the smash product. All type formers get their obvious interpretation,

but let us stop to think about ! for a second as it is a novelty of dDILL that it

gets uniquely determined by the indexing, while in propositional linear type theory

we might have several different choices. In the first example, ! boils down to the

following: (!B)(s′) = ⊕
VectF (F,B(s′)) F

∼=
⊕
B(s′) F , i.e. taking the vector space freely

spanned by all the vectors. In the second example, (!B)(s′) = ⊕
Set∗(2∗,B(s′)) 2∗ =∨

B(s′) 2∗ = B(s′) + {∗}, i.e. ! freely adds a new basepoint.

We note the following consequence of theorem 3.5.1.

Theorem 3.5.5 (DTT, DILL(dDILL). dDILL is a proper generalisation of DTT

and DILL: we have inclusions of the classes of models DTT,DILL(dDILL.

Proof. Models of DTT with 1- and ×-types, i.e. indexed cartesian monoidal

categories with full and faithful comprehension, clearly, are a special case of our

notion of model of dDILL. Moreover, in such cases, we easily see that !A ∼= A. From

their categorical descriptions, it is also clear that the other connectives of dDILL

reduce to those of DTT. This proves the inclusion DDT⊆dDILL.

The dDILL models described above based on symmetric monoidal families are

clearly more general than those of DTT, as we are dealing with a non-cartesian

symmetric monoidal structure on the fibre categories. This proves that the inclusion

is proper.

We have seen that the Fam-construction realises the category of models of DILL

as a reflective subcategory of the category of models of dDILL. Moreover, from

various non-trivial models of DTT indexed over other categories than Set it is clear

that this inclusion is proper as well.

Finally, we note that these inclusions still remain valid in the sub-algebraic

setting where we do not have I- and ⊗-types. A simple variation of the argument

using multicategories rather than monoidal categories does the trick.

3. Linear Dependent Type Theory 121

Although this class of families models is important, it is clear that it only

represents a very limited part of the generality of dDILL: not every model of dDILL

is either a model of DTT or of DILL. Hence, we are in need of models that are

less discrete in nature but still linear, if we are hoping to observe interesting new

phenomena arising from the connectives of dDILL.

3.5.2 Commutative Effects

As in the simply typed situation, commutative effects in dependent type theory give

rise to linear types (under mild completeness and cocompleteness assumptions).

Theorem 3.5.6. Suppose we are given a model C of pure dependent type theory

with 1,Σ, 0,+,Π-types which is equipped with an indexed commutative monad T ,

where C additionally has equalisers and CT has reflexive coequalisers. Then, CT is a

model of dDILL with I,⊗,(,>,&, !,Σ⊗! ,Π(! -types.

Proof. The interpretation of >,&,Π(! , !-types follows from theorem 5.2.9. Meanw-

hile, an indexed variation of theorem 2.3.3 gives us the interpretation of I,⊗,(-

types. Finally, theorem 5.6.3 lets us interpret Σ⊗! -types.

3.5.3 A Double Glueing Construction

Of course, any model C of cartesian type theory is a degenerate model D = C of

linear type theory in which the additive and multiplicative connectives coincide

and where we can define ! to be the identity to obtain C = D!. This shows us that

every model of dependent type theory is trivially obtained through a co-Kleisli

construction on a model of dDILL. This shows, in particular, in a rather boring

way, that Σ&- and Id&-types are consistent.

A more interesting construction is the following, which arises as a simple case

of the double gluing construction of [82], saying that every model of propositional

intuitionistic logic arises from a model of classical linear logic, as a category of

cofree !-coalgebras. Note that this is a properly linear model in the sense that its

symmetric monoidal structure is not cartesian, i.e. there is a real difference between

122 3.5. Concrete Models

additive and multiplicative connectives. This follows from Joyal’s lemma which

says that cartesian ∗-autonomous categories are preorders [10].

Theorem 3.5.7. Let (C, 1,×,⇒) be a cartesian closed category. Then, D :=

C ×Cop can be given the structure of a ∗-autonomous category equipped with a linear

exponential comonad !, such that C ∼= D!.

Proof. We see D as a special case of the Chu-construction, where the pairing takes

values in the terminal object 1: we define the duality (a, x)∗ := (x, a). We obtain

the usual formula for the symmetric monoidal structure on D:

I := (1, 1)

(a, x)⊗ (b, y) := (a× b, (a⇒ y)× (b⇒ x)).

This allows us to define

(a, x)((b, y) := ((a, x)⊗ (b, y)∗)∗ = ((a⇒ b)× (y ⇒ x), a× y).

Note that we have a linear/non-linear adjunction

(a, 1) � a

D
�

F

⊥
U

- C

(a, x) - a

meaning that we obtain a linear exponential comonad ! := FU on D. Finally, note

that we have an equivalence of categories D! −→ C, (a, x) 7→ a, being a full and

faithful and essentially surjective functor.

Remark 3.5.8. Note that D in the previous theorem supports finite products (or,

equivalently, finite coproducts), if and only if C supports finite coproducts. Indeed,

> := (1, 0) and (a, x)&(b, y) := (a × b, x + y). D having finite products (additive

conjunctions) is a sufficient but not necessary condition for D! to have finite products.

Indeed, in the above example, D! ∼= C always has finite products. It is not clear

what additive versions of the dependent connectives Σ and Id should be, except in

3. Linear Dependent Type Theory 123

the weaker sense of objects in D that in D! give a sound interpretation of ordinary

cartesian Σ-types and Id-types. In particular, it is not clear what a dependently

typed generalisation should be of the binary coproduct, in the same sense that Σ-

and Π-types, respectively, provide dependently typed generalisations of the binary

product and the internal hom: the idea of “having one of two types of objects, where

the type of the second depends on the first” sounds puzzling at best.

This result extends to the dependently typed setting, as follows.

Theorem 3.5.9. Let Bop C−→ Cat be a strict indexed cartesian closed category with

full and faithful comprehension (i.e. a model of cartesian dependent type theory).

Write D := C × Cop, where we take the cartesian product of the fibre categories.

Then, D is a strict indexed ∗-autonomous category with comprehension (i.e. a model

of classical linear dependent type theory). Moreover,

• D supports !-types and we have an (indexed) equivalence D! ∼= C.

• Therefore, D supports Σ&- and Id&-types, respectively, iff C supports (strong)

Σ- and Id-types.

• D supports Σ⊗! and Π(! -types iff C supports both (weak) Σ- and Π-types.

• D supports (extensional, resp. intensional) Id⊗! -types iff C supports (weak)

(extensional, resp. intensional) Id-types.

Proof. These are straightforward verifications. By analogy with !(−) ⊗ (−) and

!(−) ((−), we can define Σ⊗!(a,x)(b, y) := (Σab,Πay), Π(!(a,x)(b, y) := (Πab,Σay).

Note they are dual, in the sense that (Σ!(a,x)(b, y))∗ = Π!(a,x)(b, y)∗. Id⊗! -types,

we can interpret by Id⊗!(a,x) := (Ida, 1). (More generally, we define the functor

Id⊗!(a,x)(b, y) := Id⊗!(a,x) ⊗ (b, y) = (Ida × b, (Ida) ⇒ y).) Indeed, this definition of

Id⊗!(a,x) follows from applying the Yoneda lemma to the following sequence of natural

124 3.5. Concrete Models

isomorphisms:

C × Cop(Γ.a.a)(Id⊗!(a,x), (b, y)) ∼= C × Cop(Γ.a)((1, 1), (b, y){diagΓ,a})

∼= C(Γ.a)(1, b{diagΓ,a})

∼= C(Γ.a.a)(Ida, b)

∼= C × Cop(Γ.a.a)((Ida, 1), (b, y)).

3.5.4 Scott Domains and Strict Functions

We can extend the model of section 2.3.4.2 to a model of dDILL, following [83].

All constructions and proofs are exactly as in [83] with the only difference that in

some cases we have to replace the word domain with predomain.

We take B to be the category of Scott predomains and continuous functions.

For a preorder-enriched category like B, we call a pair of morphisms e : A� B : p

an embedding-projection pair if e; p = idA and p; e ≤ idB. We write Bep for

the lluf subcategory of B of the embedding-projection pairs. We can make this

into a model C of DTT in the same way as we can for the category of Scott

domains and continuous functions [83]: we define C(A) to be the category of Scott

predomains parametrised over A (continuous families of predomains), which we

define to be directed colimit preserving functors from A into Bep. Change of base is

given by precomposition. This supports 1-, Σ-, Σ1≤i≤n- and (intensional) Id-types.

Briefly, 1 is the one-point predomain, Σ-types are just the set-theoretic Σ-types

equipped with the product order, Σ1≤i≤n-types are given by disjoint unions and

IdA(x, y) := {z ∈ A | z ≤ x ∧ z ≤ y} with the induced order from A. For

predomains A and a predomain B parametrised over A, we can define a poset

(which generally will not be a predomain, for size reasons) Πx∈AB as the set of

continuous17 dependent functions from A to B under the pointwise order. This
17Here, I am referring to the appropriate generalisation of continuity to dependent functions

(called p-continuity in [83]): functions f : Πx:AB such that, for all x ∈ A, for all compact elements
b ≤B(x) f(x), there exists a compact element a ≤A x such that b ≤B(x) f(a).

3. Linear Dependent Type Theory 125

allows us to define C(A)(B,C) := Πx∈AΠy∈B(x)C(x) on which we have the obvious

identities, composition and change of base functions.

We can define D(A) to be the category of Scott domains parametrised over A

(continuous families of Scott domains) with strict continuous (families of) functions

as morphisms. We do this by extending the operations >,&, I,⊗ and(to D(A)

in a pointwise way and defining D(A)(B,C) := Πx∈UAU(B(x) (C(x)). This

extends to give an indexed category of parametrised Scott domains indexed over

Scott predomains. We note that we have an indexed adjunction F a U to C

(pointwise) where F is strong monoidal. We see that we have a model of the

dependently typed LNL calculus.

We can note that −D{pA,B} have both left and right adjoints Σ⊗F (B) and Π(F (B)

satisfying (Frobenius and) Beck-Chevalley conditions. Here, Σ⊗F (B)C(x) := {〈b, c〉 ∈

Σy∈B(x)UC(x, y) | c 6= ⊥} ∪ {⊥} and Π(F (B)C(x) := Πy∈B(x)UC(x, y). In fact, we

have additive Σ- and Id-types as well by noting that Σy∈UBUC(y) and IdUB are

(parametrised) Scott domains. Moreover, we can define Id⊗FA as F IdA.

3.5.5 Coherence Spaces

The usual coherence space model of linear type theory can be extended with a

notion of dependent types, which gives us a non-trivial model of dDILL (of classical

linear dependent type theory). We define it as a strict indexed symmetric monoidal

cloed category with comprehension

Stableop
D
- SMCCat.

For our category of cartesian contexts we take the category Stable of Scott pre-

domains with pullbacks and continuous stable functions. Note that we have a

large Scott (pre)domain U with pullbacks (given by intersection) of small coherence

spaces, using the following ordering on coherence spaces:

X � Y := X ⊆ Y ∧ ¨X= ¨Y

∣∣∣
X×X

.

U will play the rôle of a cartesian universe of linear types. For a predomain

D ∈ ob(Stable), we define D(D) to be a category with set of objects stable functions

126 3.5. Concrete Models

from D to U : ob(D(D)) := Stable(D,U). We shall define its morphisms shortly,

but, first, we define a few operations on the objects: I(= ⊥),⊗,(,&, 0(= >),

and ⊕ are defined pointwise, as on coherence spaces. Given G′ ∈ Stable(D,U), we

define two coherence spaces with the same underlying set

Σ⊗F (x:D)G
′(x) := Π(F (x:D)G

′(x) := {(x, u) | x ∈ FD, u ∈ G′(x)}

but different coherence relations

(s, u) ¨Σ⊗
F (x:D)G

′(x) (t, v) := s ¨FD t ∧ u ¨G′(s∨t) v,

and

(s, u) ˝Π(
F (x:D)G

′(x) (t, v) := s ¨FD t ⇒ u ˝G′(s∨t) v.

This defines two coherence spaces Σ⊗F (x:D)G
′(x) and Π(F (x:D)G

′(x).

We define (as the type theory dictates18 , if Π(F (x:D) is to give the Π(F (−)-type)

the morphisms in the fibres of D as cliques in the appropriate Π(F (−)-type:

D(D)(G′, G) := cliques(Π(F (x:D)(G′(G)(x)).

Composition and identities are defined pointwise (where it is left to the reader

to verify that these are indeed cliques):

G′
σ−→ G

τ−→ H := {(x, f, h) |
(
∃y,z≤x∃g∈G(x)(y, f, g) ∈ σ ∧ (z, g, h) ∈ τ

)
∧

∀x′≤x
(
∃y′,z′≤x′∃g∈G(x′)(y′, f, g) ∈ σ ∧ (z′, g, h) ∈ τ

)
⇒ x′ = x}

G′
idG′−→ G′ := {(x, f, f) | f ∈ G′(x) ∧ ∀x′≤xf ∈ G′(x′)⇒ x′ = x}.

The reader can check that the pointwise operations I and ⊗ make D(D) into

a symmetric monoidal category.

Theorem 3.5.10. Stable continuous families of coherence spaces, indexed over

Scott predomains with pullbacks and stable continuous functions define a strict

indexed symmetric monoidal category with comprehension, hence a model of dDILL.
18Indeed, cliques(Π(

F (x:D)(G′(G)(x)) = D(·)(I,Π(
F (x:D)(G′(G)(x)) ∼= D(D)(I,G′(G) ∼=

D(D)(G′, G).

3. Linear Dependent Type Theory 127

Proof. Note that Stable is a category with terminal object the one point domain

and that D(D) is a symmetric monoidal category. We define change of base in D

for morphisms D′ f−→ D in Stable: D(f)(G′) := f ;G′ and, for σ ∈ D(D)(G′, G),

D(f)(σ) := F (f);σ, where we see F (f) as a clique in FD′ (FD. This gives a

clique in Π(F (x:D′)(G′(G)(f(x)). D(f) is easily seen to strictly preserve I and ⊗

as precomposition is compatible with the pointwise defined connectives.

What remains to be done is define the comprehension. We define this as

UD(G′) := pD,UG′ := Σx:DUG
′(x) fst−→ D, where the Σ-type is taken in Stable. That

is, we take the set theoretic Σ-type, equip it with the product order and note that

it gives a Scott predomain with pullbacks. The fact that it is a Scott predomain

follows from section 3.5.4 as we are taking the Σ-type of a continuous family of Scott

domains. To see that it has pullbacks, note that UG′(x) and UG′(y) are downward

closed subsets of UG′(z) if x, y ≤ z, such that UG′(x ∧ y) = UG′(x) ∩ UG′(y)

(because of stability of G′). That means that we can take component-wise meets.

We define

vD,UG′ ∈ D(Σx:DUG
′(x))(I,G′{pD,UG′}) ∼= cliques(Π(F ((z,s):Σx:DUG′(x))G

′(z))

as the “trace” of the (dependent) projection onto the second component:

vD,UG′ := {((x, s), v) | (x, s) ∈ F (Σx:DUG
′(x)), v ∈ s,∀(x′,s′)≤(x,s)v ∈ s′ ⇒ (x′, s′) = (x, s)},

which is a clique.

Claim. vD,UG′ is a clique in Π(F ((z,s):Σx:DUG′(x))G
′(z).

Proof. Assume ((x, s), v) 6= ((x′, s′), v′), then

((x, s), v) ˝Π(
F ((z,s):Σx:DUG′(x))G

′(z) ((x′, s′), v′)

≡ (x, s) ¨F (Σx:DUG′(x)) (x′, s′)⇒ v ˝G′(x∨x′) v
′

≡ ∃(x′′,s′′)∈Σx:DUG′(x)((x, s), (x′, s′) ≤Σx:DUG′(x) (x′′, s′′))⇒ v ˝G′(x′′) v
′.

128 3.5. Concrete Models

Assume v = v′. Then, the maximality condition on (x, s) gives that (x, s) = (x, s′),

contradicting our assumption that ((x, s), v) 6= ((x′, s′), v′). Therefore, v 6= v′.

Then, (x, s), (x′, s′) ≤ (x′′, s′′) implies that v ∈ s ⊆ s′′ ⊇ s′ 3 v′, which in turn

implies that v ¨G′(x′′) v
′ and, as v 6= v′, we conclude that v ˝G′(x′′) v

′.

Given f ∈ Stable(D′, D) and σ ∈ D(D′)(I, f ;G′) = cliques(Π(F (x:D′)G
′(f(x))),

we define 〈f, σ〉 ∈ Stable(D′,Σx:DUG
′(x)) as the function (f, fun(σ)) with first

component f and second component fun(σ), where (writing Πx:D′UG
′(f(x)) for the

set of dependent continuous stable functions from D′ to f ′;UG)

fun(σ) := {(x,
∨
{a ∈ UG′(f(x))|∃y ≤ x, (y, a) ∈ σ}) | x ∈ D′} ∈ Πx:D′UG

′(f(x)).

We verify that (p,v, 〈−,−〉) gives a representation, demonstrating the compre-

hension axiom. Clearly, 〈f, σ〉; pD,UG′ = 〈f, σ〉; fst = f and vD,UG′{〈f, σ〉} =

F (〈f, σ〉); trace(snd) = F ((f, fun(σ))); trace(snd) = trace((f, fun(σ)); snd) =

trace(fun(σ)) = σ. Conversely, it is easily seen that 〈f, σ〉 is uniquely determined

by these two equations. Indeed, suppose t ∈ Stable(D′,Σx:DUG
′(x)) such that f =

t; pD,UG′ = t; fst and σ = vD,UG′{t} := Ft; vD,UG′ = Ft; trace(snd) = trace(t; snd).

Then, 〈f, σ〉 = 〈t; fst , trace(t; snd)〉 = (t; fst , fun(trace(t; snd))) = (t; fst , t; snd) =

t.

Theorem 3.5.11. The model supports I−,⊗−,(−,>−,&−, 0−,⊕−,Σ⊗! −,Π⊗! −,

!−, and Id⊗! -types. Moreover, it is a model of classical linear dependent type theory.

Proof. For I−,⊗−,(−,>−,&−, 0− and ⊕−-types the verifications are trivial as

the type formers are defined pointwise. It is clear that I and ⊗ give a symmetric

monoidal structure on D(D). It then follows that(gives internal homs, from the

facts that our operations are defined pointwise and that(gives internal homs in

Coh: D(D)(G′⊗G,H) ∼= cliques(Πx:D((G′⊗G)(H))(x)) = cliques(Πx:D((G′(x)⊗

G(x)) (H(x)) ∼= cliques(Πx:D(G′(x) ((G(x) (H(x))) = cliques(Πx:D((G′ (

(G(H))(x)) = D(D)(G′, G(H).

We have to show that > and & give finite products on D(D). Let G′ ∈

ob(D(D)). Then, we have a unique !G′ ∈ D(D)(G′,>) = cliques(Πx:D(G′ (

3. Linear Dependent Type Theory 129

>)(x)) = cliques(Πx:D∅) = cliques(∅) = {∅}. Let G′, G ∈ ob(D(D)). Then, we

have projections (G′&G fst−→ G′) = {(x, f, f) | x is minimal such that f ∈ G′(x) ⊆

G′&G(x)} and (G′&G snd−→ G) = {(x, g, g) |x is minimal such that g ∈ G(x) ⊆

G′&G(x)}. Given H
f−→ G′ and H

g−→ G, we define (H 〈f,g〉−→ G′&G) := f ∪ g.

This is a clique in Πx:D(H (G′&G)(x), as (x, h, e) ˝ (x′, h′, e′) = x ¨FD x′ ⇒

(h ¨H(x) h
′ ⇒ e ˝G′(x)&G(x) e

′). Now, we have three cases: if both e and e′ are

in G′(x), the fact that f is a clique takes care of the coherence and, similarly, if

both e and e′ are in G(x), g does this. Finally, if e ∈ G′(x) and e′ ∈ G(x) (or vice

versa), the definition of coherence in G′(x)&G(x) makes sure that e ¨G′(x)&G(x) e
′,

so (x, h, e) ¨ (x′, h′, e′).

We verify the rules for Σ⊗! -types.

Claim. We have a left adjoint

D(Σx:DUG
′(x))

Σ⊗
F (UG′)−→ D(D)

to the change of base functor

D(D)
−{pD,UG′}−→ D(Σx:DUG

′(x)).

Moreover, this satisfies Frobenius reciprocity,

Σ⊗F (UG′)(pD,UG′ ;G⊗H) ∼= G⊗ Σ⊗F (UG′)H,

and the left Beck-Chevalley condition.

Proof. We define, on objects,

Σ⊗F (UG′)(G)(x) := Σ⊗F (s:UG′(x))G(x, s)

and, on morphisms,

Σ⊗F (UG′)(G
σ−→ H) :=

{(x, (s, g), (s, h)) ∈ Π(F (x∈D)

(
Σ⊗F (s∈UG′(x))G(x, s)

)
(

(
Σ⊗F (s′∈UG′(x))H(x, s′)

)
| ((x, s), (g, h)) ∈ σ}.

130 3.5. Concrete Models

We verify that this, indeed, defines a clique in

Π(F (x:D)(Σ⊗F (s:UG′(x))G(x, s))((Σ⊗F (s:UG′(x))H(x, s)) :

(x, (s, g), (s, h)) ˝ (x′, (s′, g′), (s′, h′))

≡ x ¨ x′ ⇒ ((s, g), (s, h)) ˝ ((s′, g′), (s′, h′))

≡ x ¨ x′ ⇒ ((s, g) ¨ (s′, g′)⇒ (s, h) ˝ (s′, h′))

≡ x ¨ x′ ⇒ ((s ¨ s′ ∧ g ¨ g′)⇒ (s, h) ˝ (s′, h′))

≡ x ˇ x′ ∨ s ˇ s′ ∨ g ˇ g′ ∨ (s, h) ˝ (s′, h′).

Now, as σ is a clique in Π(F ((x,s):Σx:DUG′(x))G(x, s)(H(x, s), we have that

x ˇ x′ ∨ s ˇ s′ ∨ g ˇ g′ ∨ h ˝ h′.

Suppose that not x ˇ x′ ∨ s ˇ s′ ∨ g ˇ g′ (then, in particular, s ¨ s′). We have to

show that h ˝ h′ ⇒ (s, h) ˝ (s′, h′). This clearly holds as s ¨ s′. We conclude that

Σ⊗F (UG′)(σ) is a clique.

Σ⊗F (UG′) clearly respects identities and composition so we conclude it is a well-

defined functor.

We verify that adjointness condition

D(Σx:DUG
′(x))(G,pD,UG′ ;H) ∼= D(D)(Σ⊗F (UG′)G,H).

The LHS is equal to

cliques(Π(F ((x,s):Σx:DUG′(x))(G(x, s)(H(x))),

while RHS is equal to

cliques(Π(F (x:D)((Σ⊗F (s:UG′(x))(G(x, s)))(H(x))).

3. Linear Dependent Type Theory 131

Now,

Π(F ((x,s):Σx:DUG′(x))(G(x, s)(H(x))

= {((x, s), (g, h)) | x ∈ FD, s ∈ UG′(x), g ∈ G(x, s), h ∈ H(x)}

∼= {(x, ((s, g), h)) | x ∈ FD, s ∈ UG′(x), g ∈ G(x, s), h ∈ H(x)}

= Π(F (x:D)((Σ⊗F (s:UG′(x))G(x, s))(H(x)).

Moreover, ((x, s), (g, h)),((x′, s′), (g′, h′)) ∈ Π(F ((x,s):Σx:DUG′(x))(G(x, s)(H(x))) are

related via ˝ iff any of the following equivalent conditions hold

(x ¨ x′ ∧ s ¨ s′)⇒ (g, h) ˝ (g′, h′) ≡ x ˇ x′ ∨ s ˇ s′ ∨ (g ¨ g′ ⇒ h ˝ h′)

≡ x ˇ x′ ∨ s ˇ s′ ∨ g ˇ g′ ∨ h ˝ h′,

while (x, ((s, g), h) ˝ (x′, ((s′, g′), h′)) in Π(F (x:D)(Σ⊗F (s:UG′(x))(G(x, s)) (H(x)) iff

any of the following equivalent conditions hold

x ¨ x′ ⇒ ((s, g), h) ˝ ((s′, g′), h′) ≡ x ¨ x′ ⇒ ((s, g) ¨ (s′, g′)⇒ h ˝ h′)

≡ x ¨ x′ ⇒ ((s ¨ s′ ∧ g ¨ g′)⇒ h ˝ h′)

≡ x ˇ x′ ∨ s ˇ s′ ∨ g ˇ g′ ∨ h ˝ h′.

We see that the conditions on both sides coincide.

We can therefore take the canonical bijection between both sets of vertices to

induce an isomorphism of coherence spaces, hence a bijection of cliques.

Furthermore, it is immediately obvious from the definitions that Frobenius

reciprocity holds:

Σ⊗F (UG′)(G{pD,UG′} ⊗H) = x 7→ Σ⊗F (s:UG′(x))G(x)⊗H(x, s)

∼= x 7→ G(x)⊗ Σ⊗F (s:UG′(x))H(x, s)

= G⊗ Σ⊗F (UG′)H.

Finally, the Beck-Chevalley condition trivially holds, as the change of base functors

act by precomposition.

We verify the rules for Π-types.

132 3.5. Concrete Models

Claim. We have a right adjoint

D(Σx:DUG
′(x))

Π(
F (UG′)−→ D(D)

to the change of base functor

D(D)
−{pD,UG′}−→ D(Σx:DUG

′(x)),

satisfying the right Beck-Chevalley condition.

Proof. We define, on objects,

Π(F (UG′)(G)(x) := Π(F (s:UG′(x))G(x, s)

and, on morphisms,

Π(F (UG′)(G
σ−→ H) :=

{(x, (s, g), (s, h)) ∈ Π(F (x∈D)

(
Π(F (s∈UG′(x))UG(x, s)

)
(

(
Π(F (s′∈UG′(x))UH(x, s′)

)
| ((x, s), (g, h)) ∈ σ}.

We verify that this, indeed, defines a clique in

Π(F (x:D)(Π(F (s:UG′(x))G(x, s))((Π(F (s:UG′(x))H(x, s)) :

(x, (s, g), (s, h)) ˝ (x′, (s′, g′), (s′, h′))

≡ x ¨ x′ ⇒ ((s, g), (s, h)) ˝ ((s′, g′), (s′, h′))

≡ x ¨ x′ ⇒ ((s, g) ¨ (s′, g′)⇒ (s, h) ˝ (s′, h′))

≡ x ¨ x′ ⇒ ((s, g) ¨ (s′, g′)⇒ (s ¨ s′ ⇒ h ˝ h′))

≡ x ˇ x′ ∨ (s, g) ˇ (s′, g′) ∨ s ˇ s′ ∨ h ˝ h′.

Now, as σ is a clique in Π(F ((x,s):Σx:DUG′(x))G(x, s)(H(x, s), we have that

x ˇ x′ ∨ s ˇ s′ ∨ g ˇ g′ ∨ h ˝ h′.

Suppose that not x ˇ x′ ∨ s ˇ s′ ∨ h ˝ h′ (then, in particular, s ¨ s′). We have

to show that (s ¨ s′ ∧ g ˇ g′)⇒ (s, g) ˇ (s′, g′). For this, note that g ˇ g′ implies

3. Linear Dependent Type Theory 133

that g 6= g′ hence (s, g) 6= (s′, g′), so an equivalent thing to prove would be that

(s ¨ s′ ∧ g ˇ g′)⇒ ¬((s, g) ˝ (s′, g′)), which is (s ¨ s′ ∧ ¬(g ¨ g′))⇒ ¬(s ¨ s′ ⇒

g ˝ g′) by definition of ˝ on Π(F (−)-types, which clearly holds. We conclude that

Π(F (UG′)(σ) is a clique.

Π(F (UG′) clearly respects identities and composition so we conclude it is a well-

defined functor.

We verify the adjointness condition

D(Σx:DUG
′(x))(pD,UG′ ;G,H) ∼= D(D)(G,Π(F (UG′)H).

The LHS is equal to

cliques(Π(F ((x,s):Σx:DUG′(x))(G(x)(H(x, s))),

while RHS is equal to

cliques(Π(F (x:D)((G(x))(Π(F (s:UG′(x))H(x, s))).

Now,

Π(F ((x,s):Σx:DUG′(x))(G(x)(H(x, s))

= {((x, s), (g, h)) | x ∈ FD, s ∈ UG′(x), g ∈ G(x), h ∈ H(x, s)}

∼= {(x, (g, (s, h))) | x ∈ FD, s ∈ UG′(x), g ∈ G(x), h ∈ H(x, s)}

= Π(F (x:D)((G(x))(Π(F (s:UG′(x))H(x, s)).

Moreover, ((x, s), (g, h)),((x′, s′), (g′, h′)) ∈ Π(F ((x,s):Σx:DUG′(x))(G(x)(H(x, s))) are

related via ˝ iff any of the following equivalent conditions hold

(x ¨ x′ ∧ s ¨ s′)⇒ (g, h) ˝ (g′, h′) ≡ x ˇ x′ ∨ s ˇ s′ ∨ (g ¨ g′ ⇒ h ˝ h′)

≡ x ˇ x′ ∨ s ˇ s′ ∨ g ˇ g′ ∨ h ˝ h′,

while in Π(F ((x,s):Σx:DUG′(x))(G(x)(Π(F (s:UG′(x))H(x, s)) we have that (x, (g, (s, h)) ˝
(x′, (g′, (s′, h′))) iff any of the following equivalent conditions hold

x ¨ x′ ⇒ (g, (s, h)) ˝ (g′, (s′, h′)) ≡ x ¨ x′ ⇒ (g ¨, g′)⇒ (s, h) ˝ (s′, h′))

≡ x ¨ x′ ⇒ (g ¨, g′)⇒ (s ¨ s′ ⇒ h ˝ h′)

≡ x ˇ x′ ∨ s ˇ s′ ∨ g ˇ g′ ∨ h ˝ h′.

134 3.5. Concrete Models

We see that the conditions on both sides coincide. We can therefore take the

canonical bijection between both sets of vertices to induce an isomorphism of

coherence spaces, hence a bijection of cliques.

Finally, the Beck-Chevalley condition trivially holds, as the change of base

functors act by precomposition.

We verify the rules for !-types. Seeing that we already have Σ⊗F (−)-types and

I-types, we know we can construct !-types as Σ⊗F (−)I. We also give a direct proof,

however, as it may provide more insight in the definition of the exponential.

Claim. The comprehension functors UD have a strong monoidal left adjoint FD.

Proof. We define FD(pD,UG′) := G′;U ;F = G′; !. Note that is well-defined as we

can construct G′;U from pD,UG′ as x 7→ p−1
D,UG′(x). Moreover, G′; ! is a type family,

as, obviously, cliquesfin(⋃iAi) = ⋃
i cliquesfin(Ai), for a directed family (Ai)i, and

cliquesfin(A ∩B) = cliquesfin(A) ∩ cliquesfin(B), where we write cliquesfin(A) :=!A to

emphasise that we are taking the coherence space of finite cliques.

This definition extends to morphisms between objects of the form pD,UG′ . Indeed,

we note that a morphism pD,UG′
f−→ pD,UG restricts to stable functions UG′(x) fx−→

UG(x) for all x ∈ D. We define FD(f) ∈ cliques(Π(F (x:D)(!G′(x) (!G(x))) as

{(x, (s, t)) | x ∈ D, (s, t) ∈ F (fx) ∀x′≤x(s, t) ∈ fx′ ⇒ x′ = x}. This is a clique as

(x, (s, t)) ˝ (x′, (s′, t′)) = x ¨ x′ ⇒ (s, t) ˝ (s′, t′)

= x ¨ x′ ⇒ (s, t) 6= (s′, t′) (as fx is a clique) .

We finally take the unique strong monoidal extension to obtain a (strong

monoidal) functor from C(D).

The condition that FD is compatible with change of base (precomposition)

follows immediately because of the pointwise definition of FD.

Finally, we verify that we have Id⊗! -types.

Claim. Our model supports (intensional) Id⊗! -types.

Proof. We verify the formation, introduction, elimination and β-rules for Id⊗! -types.

3. Linear Dependent Type Theory 135

Id⊗! -F Let a, a′ : I −→ G′ ∈ D(D). Then, we define a type family over D:

Id⊗!G′(a, a′)(x) := {b ∈!G′(x) | b ≤ fun(a)(x), fun(a′)(x)} ⊆!G′(x),

with the induced coherence relation.

The fact that this is a continuous function D
Id⊗!G′ (a,a

′)
−→ U is a direct consequence

of its definition as a subfamily of a continuous family !G′ with a continuous

bound (fun(a)(x) ∧ fun(a)(x′)). The exact same argument gives stability:

Id⊗!G′(a, a′)(x1) ∧ Id⊗!G′(a, a′)(x2)

= {b ∈!G′(x1) | b ≤ fun(a)(x1), fun(a′)(x1)}∩

{b ∈!G′(x2) | b ≤ fun(a)(x2), fun(a′)(x2)}

= {b ∈!G′(x1)∩!G′(x2) | b ≤ fun(a)(x1) ∧ fun(a)(x2)∧

fun(a′)(x1) ∧ fun(a′)(x2)}

= {b ∈!G′(x1 ∧ x2) | b ≤ fun(a)(x1 ∧ x2) ∧ fun(a′)(x1 ∧ x2)}

= Id⊗!G′(a, a′)(x1 ∧ x2).

Id⊗! -I For a : I −→ G′ ∈ D(D), we define, for x ∈ D,

refl(a) := {(x, b) | x ∈ D, b ∈ Id⊗!G′(a, a)(x),∀x′≤xb ∈ Id⊗!G′(a, a)(x′)⇒ x′ = x}.

This is easily verified to be a clique in Π(F (x:D)Id
⊗
G′(a, a)(x), as a(x) is a clique

in G′(x), and hence a morphism I
refl(a)−→ Id⊗!G′(a, a) ∈ D(D).

Id⊗! -E Suppose we’re given

• G′ ∈ obD(D))

• C ∈ obD(Σ(y,x,x′):Σy:D)UG′(y)×UG′(y)U Id⊗!G′(x, x′)(y)

• c ∈ D(Σy:DUG
′)(Ξ, C{〈idD, idG′ , idG′ , refl(idG′)〉})

• a, a′ ∈ D(D)(I,G′)

• p ∈ D(D)(I, Id⊗G′(a, a′)).

136 3.5. Concrete Models

We construct

(let (a, a′, p) be (idG′ , idG′ , refl(idG′)) in c) ∈ D(D)(Ξ, C{〈idC , a, a′, p〉}).

(as a dependent stable function ∈ Πx:DU(Ξ(C{a, a′, p})) by defining

fun(let (a, a′, p) be (idG′ , idG′ , refl(idG′)) in c)(y)(ξ) := fun(d)(y,⋃ fun(p)(y))(ξ).

Id⊗! -β We calculate

fun(let (a, a, refl(a)) be (idG′ , idG′ , refl(idG′)) in c)(y)(ξ)

= fun(c)(y,
⋃

fun(refl(a))(y))(ξ)

= fun(c)(y, fun(a)(y))(ξ)

= fun(c{〈idD, a〉})(y)(ξ).

Finally, we note that 1 = ⊥ is a dualising object: (−) (⊥ = (−)⊥ is an

involution, as this is the case pointwise. This means we have a model of classical

linear dependent type theory.

While we can, in fact, define additive Id-types: Id&
G′(a, a′)(x) := fun(a)(x) ∩

fun(a′)(x) ⊆ G′(x), the interpretation of Σ& in the model turns out to be problema-

tic.

Theorem 3.5.12 (Absence of Σ&-Types). The model does not support Σ&-types.

Proof. Let A be the coherence space I. Then, UA = {∅ ≤ {0}}. Let B be the

stable continuous family of coherence spaces indexed by UA where B(∅) := > and

B({0}) := I. In that case, we note that ΣUAUB = {〈∅, ∅〉 ≤ 〈{0}, ∅〉 ≤ 〈{0}, {0}〉}.

Now, we claim that there is no coherence space Σ&
AB such that UΣ&

AB
∼= ΣUAUB.

To see this, note that UC always has strictly more elements than the sum of the

number of edges and vertices in C. Seeing that ΣUAUB has 3 elements, that would

leave only three possibilities for Σ&
AB: >, I and I⊕ I. However, we have U> = {∅},

UI = {∅ ≤ {0}} and U(I ⊕ I) = {∅ ≤ {0}, {1}}, none of which is isomorphic to

ΣUAUB. We conclude that no suitable Σ&
AB exists.

3. Linear Dependent Type Theory 137

We see that the category Coh! of coherent qualitative domains and stable

functions is too restrictive to admit the interpretation of Σ-types. To interpret

those, we have to pass to a larger category of domains, like the category Stable of

all Scott predomains with pullbacks. There, however, we face the usual problem

that we cannot interpret Π-types (or even simple function types; this was the

raison d’être for dI-domains). We ask the reader to compare this to our discussion

in section 3.4 about finding a sweet spot between the co-Kleisli category and co-

Eilenberg-Moore category where we can interpret both Σ- and Π-types. As is shown

in [84], dI-domains are such a sweet spot. In future work, we plan to demonstrate

how these arise as the co-Kleisli category of another model of linear logic, a certain

finitary variation on the linear information systems of [85].

138

It may be that all games are silly. But then, so are
humans.

— Roibéard Ó Floinn

4
Games for Dependent Types

DTT can be seen as the extension of the simple λ-calculus along the Curry-

Howard correspondence from a proof calculus for (intuitionistic) propositional

logic to one for predicate logic. It forms the basis of many proof assistants, like

NuPRL, LEGO and Coq, and is increasingly being considered as an expressive

type system for programming, as implemented in e.g. ATS, Cayenne, Epigram,

Agda and Idris [86] and with even Haskell approaching its expressive power with

the addition of GADTs [87].

A recent source of enthusiasm in this field is homotopy type theory (HoTT),

which refers to an interpretation of DTT into abstract homotopy theory [88] or,

conversely, an extension of DTT that is sufficient to reproduce significant results

of homotopy theory [89]. In practice, the latter means DTT with Σ-, Π-, Id-

types (corresponding to existential and universal quantifiers and identity predicates,

respectively, through the Curry-Howard correspondence), a universe (roughly, a

type of types) satisfying the univalence axiom, and certain higher inductive types

(playing the rôle of ground types whose towers of iterated identity types behave like

the homotopy types of certain spaces). The univalence axiom is an extensionality

principle which implies the axiom of function extensionality [89].

Game semantics provides a unified framework for intensional, computational

semantics of various type theories, ranging from pure logics [90] to programming

139

140 4. Games for Dependent Types

languages [22, 58, 91, 92] with a variety of effects (e.g. non-local control [61], state

[63, 64, 93], non-determinism [60], probability [94], dynamically generated local

names [95]) and evaluation strategies [96].

A game semantics for DTT has, surprisingly, so far been absent, perhaps because

of the naturally effectful character of game semantics. We hope to fill this gap in

the present chapter. Our hope is that such a semantics will provide an alternative

analysis of the implications of the subtle shades of intensionality that arise in the

analysis of DTT [20, 27]. Moreover, the game semantics of DTT is based on very

different, one might say orthogonal intuitions to those of the homotopical models:

temporal rather than spatial, and directly reflecting the structure of computational

processes. One goal, to which we hope this work will be a stepping stone, is a

game semantics of HoTT doing justice to both the spatial and temporal aspects of

identity types. Indeed, such an investigation might even lead to a computational

interpretation of the univalence axiom which has long been missing, although a

significant step in this direction was recently taken by the constructive cubical sets

model of HoTT [97]. Finally, a game semantics for DTT should hopefully shed

light on how dependent types can interact with effects.

We interpret dependent types as families of games indexed by strategies. We

adapt the viewpoint of the game semantics of system F of [92] to describe the

Π-type, capturing the intuitive idea that the specialisation of a term at type Πx:AB

to a specific instance B[a/x] is the responsibility solely of the context that provides

the argument a of type A; in contrast, any valid term of Πx:AB has to operate within

the constraints enforced by the context. Our definition draws its power from the

fact that in a game semantics, these constraints are enforced not only on completed

computations, but also on incomplete ones that arise when a term interacts with

its context. The temporal character of game semantics results in a model with

strikingly different properties from existing models like the domain semantics [83].

In this chapter, we describe a game theoretic model of DTT with 1-, Σ-, Π- and

intensional Id-types, where (lists of dependent) (call-by-name) AJM-games interpret

types and (lists of) deterministic history-free well-bracketed winning strategies on

4. Games for Dependent Types 141

games of dependent functions interpret terms. We next specialize to the semantic

type hierarchy formed by the 1-, Σ-, Π-, and Id-constructions and substitution over

finite dependent games. This gives a model of DTT which additionally supports

finite inductive type families. Our model has the following key properties.

• The place of the Id-types in the intensionality spectrum (in either model)

compares as follows with the domain semantics with totality and with HoTT.

Domains HoTT Games
Failure of Equality Reflection 3 3 3

Streicher [27] Intensionality Criteria (I1) and (I2) 3 3 3

Streicher Intensionality Criterion (I3) 7 7 3

Failure of Function Extensionality (FunExt) 7 7 3

Failure of Uniqueness of Identity Proofs (UIP) 7 3 7

• We show that the smaller model faithfully interprets DTTCBN. Moreover, it is

fully complete at the types A which do not involve Id in their construction

or which involve one strictly positive Id-type as a subformula, if we add the

Ty-Ext rule for types x : A ` B type. Full completeness for the full type

hierarchy remains to be investigated but seems plausible. In contrast, the

domain theoretic model of [83] is not (fully) complete or faithful.

• It can be extended from a model of pure type theory to, additionally,

interpreting various effects when we drop some of the conditions on strategies.

In section 4.1, we introduce a notion of dependent game and dependently

typed strategy, together with a semantic equivalent ,(−) of (−)T , the syntactic

translation of section 2.1.1.4 from DTTCBN to STTCBN: a translation to simply

typed game semantics. Although this almost gives a model of dependent type

theory, we show that we cannot interpret Σ-types (or comprehension). Adding

Σ-types formally, we next construct an interpretation of DTT in sections 4.2, 4.3

and 4.4, in the form of a category with families with Σ-, Π- and Id-types and finite

inductive type families. Section 4.3 further characterises various intensionality

properties of the Id-types. Soundness and faithfulness of the interpretation of DTT

are finally proved in section 4.5, as the interpretation factors faithfully over the

142 4.1. An Indexed Category of Dependent Games

faithful sound games interpretation of STT, as well as full completeness results

which are obtained by a dependently typed modification of the definability proofs

of [22, 56]. Finally, in section 4.6 we lift the various conditions on strategies

which ensure purity of the computations they model and we draw lessons on the

interaction between dependent types and effects.

Remark 4.0.1 (Related Publications). This chapter is based on [14, 15]. We have

changed the interpretation of Id-types to make them compatible with effects. To

give a uniform treatment for all classes of strategies, we have chosen to define a

dependent game in the pure setting only on winning strategies. We have also slightly

changed the equational theory DTTCBN which lets us simplify the completeness proof

considerably. We believe the current presentation to be both simpler and more robust

with respect to extensions to broader classes of types and terms. After we presented

our game semantics for dependent types in [14], [98] provided an alternative game

semantics for dependent type theory, while with very different motivations. Where

our work is motivated by precisely characterising effectful (CBN) type theory (e.g.

through completeness results) with the purpose of understanding dependently typed

effectful programming, [98] seems to be interested exclusively in modelling pure type

theory and providing a constructive foundation of mathematics.

4.1 An Indexed Category of Dependent Games

Section 2.4 sketched how Game! models simple cartesian type theory. In this chapter,

we extend this to a model of dependent type theory. In this section, we first show

how to equip Game! with a notion of dependent type and we show how this leads

to an indexed ccc DGame! of dependent games and dependently typed strategies.

We define a poset GameE of games with

A E B := (MA = MB) ∧ (λA = λB) ∧ (jA = jB) ∧ (PA ⊆ PB) ∧

(WA = WB ∩ P∞A) ∧ ∀s,t∈PB(s ≈A t ⇔ s ∈ PA ∧ s ≈B t).

4. Games for Dependent Types 143

Given a game C, we define the complete lattice Sub(C) as the poset of its E-

subgames. We note that, for A,B ∈ Sub(C), A E B ⇔ PA ⊆ PB. We make the

following simple observation that we shall refer to later.

Theorem 4.1.1. We have a functor Game!
Sub−→ CjsLat to the category CjsLat of

complete lattices and join-preserving functions.

Proof. An element of Sub(C) is precisely specified by a ≈C-closed prefix-closed

subset of PC , so we can compute joins and meets simply by unions and intersections.

Given A f−→ B ∈ Game! and A′ E A, we define

Sub(f)(A′) := {s ∈ PB | ∃t∈fs ≤ t �B ∧∀it �!A�i∈ A′}.

The result is clearly prefix-closed and closed under ≈B, as f is closed under ≈A⇒B.

Sub(f) clearly preserves unions.

This allows us to define a dependent game as follows, where ,(B) can be seen

as the semantic counterpart to the syntactic translation BT of section 2.1.1.4.

Definition 4.1.2 (Dependent game). For a game A, we define the set ob(DGame!(A))

of games with dependency on A as the set of pairs of a game ,(B) (without

dependency) and a function str(A) B−→ Sub(,(B)).

We note that ob(DGame!(I)) is the set of pairs (A(⊥),,(A)) where A(⊥) E

,(A), in which ob(Game!) embeds as the proper subset of diagonal elements

(A,A). As the definability results of section 4.5 illustrate, we need the generality

of ob(DGame!(I)) to properly capture the notion of closed typed in DTTCBN.

Therefore, we define, more generally, for a pair (A,,(A)) ∈ ob(DGame!(I)),

ob(DGame!(A(⊥),,(A))) := ob(DGame!(,(A))). As an example, let us write

x : mm ` dd−mm(x) for the (finite inductive) type family encoding the calendar

of the year 1984 in dd-mm format. For instance, dd−mm(02) has constructors

01-02,. . .,29-02. In this case, we note that for the purposes of the type theory the

closed type dd−mm(02) will behave differently from the closed (inductive) type

{01-02, . . . , 29-02}. Indeed, when eliminating from the former, our case analysis

144 4.1. An Indexed Category of Dependent Games

contains (redundant) additional information on how to handle the all other days of

the year as well. This example shows that for a substituted type like dd−mm(02)

the type theory still remembers information about the whole type family dd−mm

(like the constructors outside the particular fibre under consideration), hence our

interpretation of closed types as pairs A(⊥) E ,(A) of games rather than as single

games. From now on, we write A for the pair (A(⊥),,(A)) ∈ ob(DGame!(I)) and,

more generally and slightly ambiguously, B for the pair (B,,(B)) ∈ ob(DGame!(A)).

Writing s 7→ s for the function from P!,(A) to the power set PP,(A), inductively

defined on the empty play, Opponent moves and Player moves, respectively, as

ε 7→ ∅, s(i, a) 7→ s, s(i, a)(i, b) 7→ s(i, a) ∪ {t | ∃s′∈st ≈,(A) s
′ab}, we define

the Π-game as follows.

Definition 4.1.3 (Π-Game). Given A ∈ ob(DGame!(I)), B ∈ ob(DGame!(A)),

we define ΠAB ∈ ob(DGame!(I)) with ,(ΠAB) := ,(A) ⇒ ,(B) and (ΠAB)(⊥)

carved out in ,(ΠAB) as follows

P(ΠAB)(⊥) :={ε}
⋃

{sa ∈ P odd
,(A)⇒,(B) | s ∈ P

even
(ΠAB)(⊥) ∧ ∃sa�

!,(A)
⊆τ∈str(A(⊥))sa ∈ PA(⊥)⇒B(τ) }

⋃
{sab ∈ P even

,(A)⇒,(B) | sa ∈ P
odd
(ΠAB)(⊥) ∧

∀sab�
!,(A)

⊆τ∈str(A(⊥))sa ∈ PA(⊥)⇒B(τ) ⇒ sab ∈ PA(⊥)⇒B(τ) }.

We note that we can make DGame!(A) into a ccc1 by defining I and & pointwise

on dependent games B, while also performing the operation on ,(B), and by

defining P(B⇒C)(σ) := {s ∈ PB(σ)⇒C(σ) | ∃τ∈str(B(σ))s �B(σ) ⊆ τ } and ,(B ⇒ C) :=

,(B) ⇒ ,(C). This lets us define DGame!(A)(B,C) := str(O-sat(ΠA(B ⇒ C)))

with the obvious identity morphisms and composition, which we discuss later. Here,

ob(DGame!(I)) O-sat−→ ob(Game!), sends (A(⊥),,(A)) to the game in which Opponent

can play freely in ,(A) and Player has to respect the rules of the more restrictive
1Perhaps a more insightful way to think of this is as DGame!(A) being obtained as a co-Kleisli

category for a linear exponential comonad ! on a symmetric monoidal closed category DGame(A).
Here, DGame(A) has the same objects as DGame!(A) on which we define operations I, ⊗, (
pointwise, while also performing the operation on ,(B), and ,(!B) :=!,(B) while (!B)(σ) :=
{s ∈ P!(B(σ)) | ∃τ∈str(B(σ))s ⊆ τ }. We define DGame(A)(B,C) := str(O-sat(ΠA(B (C)) with
the obvious identity morphisms and composition. In fact, along similar lines, the games model of
DTT that we present in this chapter can easily be modified to give a model of dDILL.

4. Games for Dependent Types 145

game A(⊥) as long as Opponent does:

PO-sat(A(⊥),,(A)) :={ε}
⋃

{sa ∈ P odd
,(A) | s ∈ P

even
O-sat(A(⊥),,(A)) }

⋃
{sab ∈ P even

,(A) | sa ∈ P
odd
O-sat(A(⊥),,(A)) ∧ (sa ∈ PA(⊥) ⇒ sab ∈ PA(⊥))}.

Remark 4.1.4. Note that, explicitly, the game of dependent functions from

A to B, O-sat(ΠAB), is carved out in ,(A)⇒ ,(B), as

PO-sat(ΠAB) :={ε}
⋃

{sa ∈ P odd
,(A)⇒,(B) | s ∈ P

even
O-sat(ΠAB) }

⋃
{sab ∈ P even

,(A)⇒,(B) | sa ∈ P
odd
O-sat(ΠAB) ∧

∀sab�
!,(A)

⊆τ∈str(A(⊥))sa ∈ PA(⊥)⇒B(τ) ⇒ sab ∈ PA(⊥)⇒B(τ) }.

Indeed, this follows as sab �!,(A) = sa �!,(A). An explicit proof is given for the

more general claim of theorem 4.2.3.

Recall that we would like ,(−) to define a faithful functor to the world of

simply typed games, being the semantic equivalent of (−)T . It is for this reason that

the game of dependent functions from A to B is saturated under all O-moves in

,(A)⇒ ,(B). We present O-sat as a separate operation as this presentation will

simplify the treatment of higher-order dependent functions in section 4.2.

Following the mantra of game semantics for quantifiers [92], in O-sat(ΠAB),

Opponent can choose a strategy τ on A(⊥) while Player has to play in a way that

is compatible with all choices of τ that have not yet been excluded. Similarly

to the approach taken in the game semantics for polymorphism [92], we do not

specify all of τ in one go, as this would violate “Scott’s axiom” of continuity of

computation. Instead, τ is gradually revealed, explicitly so by playing in !,(A) and

implicitly by playing in ,(B). That is, unless Opponent behaves naughtily, in the

sense that there is no strategy τ on A(⊥) which is consistent with her behaviour

such that s �,(B) obeys the rules of B(τ). In case of such a naughty Opponent,

any further play in ,(A) ⇒ ,(B) is permitted.

Remark 4.1.5. In particular, DGame!(I) is a ccc which has Game! as a proper

full subcategory. Note that the morphisms from A to B consist of the strategies on

146 4.1. An Indexed Category of Dependent Games

N∗ days∗
∗

364

!N∗ days∗
∗

(i, ∗)
(i, 1984)

365

!N∗ days∗
∗

(i, ∗)
(i, 1985)
(i+ 1, ∗)

(i+ 1, 1986)
365

!N∗ !days∗ days∗
∗

(i, ∗)
(i,m)

m

O
P
O
P
O
P

Figure 4.1: Three plays in O-sat(ΠN∗days∗) and one in O-sat(ΠN∗(days∗ ⇒ days∗)).
The first as all years have > 364 days, the second as 1984 was a leap year, the third as
Player can play any move in ,(days∗) = N<366∗ after Opponent has not played along a
(history-free) strategy on N∗ and the fourth as Opponent makes the move m first, after
which Player can safely copy it. In the paired moves, Player chooses an (irrelevant) index i.
For an interpretation of the plays in O-sat(ΠN∗days∗), imagine them as a dialogue between
a departmental education manager (Opponent) and an academic (Player) where Player
gets to choose for every year the date that she promises to have marked the students’
end-of-year exam. A cheeky academic might try to suggest that she’ll return the marked
exams every year on the 366th day of the year without asking the manager for which
year he wants to know the date. Clearly the manager should not accept this. This would
correspond to a play ∗365, which is illegal as, by making the move 365, Player would
exclude certain fibres (the non-leap years), which is a privilege only Opponent has.

,(A)⇒ ,(B) for which Player plays along the rules of A(⊥)⇒ B(⊥) as long as

Opponent does so and as long as there is a strategy on A(⊥) which is consistent

with her play.

For a function Y X−→ Set to the class Set of sets, we define,(X∗) := (⋃y∈Y X(y))∗
and X∗(y) := X(y)∗. For an example of non-constant type dependency, write

days(n) := {m | there are > m days in the year n}. Then days∗(n) := days(n)∗ is a

game depending on N∗ (with days∗(n) = N<365∗ or N<366∗). Note that this will not

correspond to a finite inductive type family as the fibres of the type are not disjoint.

Then, figure 4.1 gives four examples of valid dependently typed strategies. The

fourth example is especially important, as it generalises to a (derelicted) B-copycat

on O-sat(ΠA(B ⇒ B)) for arbitrary B, denoted v[A],[B] in section 4.2. This motivates

why Opponent can narrow down the fibre of B freely, while Player can only play

without narrowing down the fibre further. To see that Player should not be able

to narrow down the fibre of B, note that we do not want f := {ε, ∗365} to define

a strategy on O-sat(ΠN∗days∗), as 1983; f = {ε, ∗365} /∈ str(days∗(1983)).

We now obtain the following result, whose proof we omit, as we shall prove

a more general result in theorem 4.2.5.

4. Games for Dependent Types 147

Theorem 4.1.6. We obtain a strict indexed ccc2

DGame!(I)op
(DGame!,−{−})- CCCat

of dependent games, if we define

• fibrewise objects ob(DGame!(A)) := {str(,(A)) B−→ Sub(,(B)) | ,(B) ∈

ob(Game!) };

• fibrewise hom-sets DGame!(A)(B,C) := str(O-sat(ΠA(B ⇒ C)));

• fibrewise identities derB := {s ∈ P even
O-sat(ΠA(B⇒B)) | ∀s′∈P even

O-sat(ΠA(B⇒B))
s′ ≤ s ⇒

∃is′ �!,(B)�i≈,(B) s
′ �,(B)};

• for B τ−→ C
τ ′−→ D ∈ DGame!(A), we define the fibrewise composition

B
τ†;Aτ ′−→ D ∈ DGame!(A) as τ †;A τ ′ := diag†A; (τ † ⊗ τ ′); comp,(B),,(C),,(D);

• given f ∈ Game!(A′, A), we define the change of base functor −{f}: B{f} ∈

ob(DGame!(A′)) where B{f}(σ) := B(!(σ); f) and ,(B{f}) := ,(B) and

τ{f} := f †; τ .

Seeing that DGame!(I) additionally has a terminal object I to interpret the

empty context, we are well on our way to producing a model of dependent type

theory: we only need to interpret context extension. This takes the form of the

full and faithful comprehension axiom for DGame!, which states that for each

A ∈ ob(DGame!(I)) and B ∈ ob(DGame!(A)) the following presheaf is representable

x 7→ DGame!(dom(x))(I, B{x}) : (DGame!(I)/A)op −→ Set

and that this induces a bijection DGame!(A)(B,C) ∼= DGame!(I)/A(pA,B,pA,C).

Unfortunately, this fails, as DGame!(I) does not yield a sound interpretation of

dependent contexts. Essentially, the problem is that we do not have additive

Σ-types, appropriate generalisations Σ&
AB of & to interpret dependent context

extension in DGame!(I) (c.f theorem 3.5.12).
2That is, a functor from DGame!(I)op to the 1-category CCCat of cartesian closed categories

and strict cartesian closed functors.

148 4.1. An Indexed Category of Dependent Games

Theorem 4.1.7. DGame! does not satisfy the full and faithful comprehension axiom.

Proof. Let us write B := {tt,ff}. Then, B∗ is the usual flat game of Booleans. We

can define a dependent game just∗ over B∗, where ,(just∗) := B∗, just∗(ff) = {ff}∗
and just∗(tt) = {tt}∗.

Then, note that the comprehension axiom (supposing that it holds) implies that,

for any C ∈ ob(DGame!(B∗)),

str(O-sat(ΠB∗(just∗ ⇒ C))) = DGame!(B∗)(just∗, C)

∼= DGame!(I)/B∗(pB∗,just∗ ,pB∗,C)

∼= DGame!(Σ&
B∗ just∗)(I, C{pB∗,just∗})

= str(O-sat(ΠΣ&
B∗ just∗C)),

where the second isomorphism is the full and faithfulness of the comprehension

functor and the third isomorphism is the comprehension axiom (representability

condition) and where Σ&
B∗ just∗

pB∗,just∗−→ B∗ is the representing object above for A = B∗

and B = just∗.

Now, taking C(τ) = I for all τ and ,(C) = D for some game D, implies that

,(Σ&
B∗ just∗) ∼= B∗&B∗. Indeed, we have a natural bijection Game!(,(Σ&

B∗ just∗), D) =

str(,(Σ&
B∗ just∗) ⇒ D) = str(O-sat(ΠΣ&

B∗ just∗C)) = str(O-sat(ΠB∗ just∗ ⇒ C)) =

str(B∗ ⇒ B∗ ⇒ D) = Game!(B∗,B∗ ⇒ D) ∼= Game!(B∗&B∗, D), which according to

the Yoneda lemma is induced by an isomorphism ,(Σ&
B∗ just∗) ∼= B∗&B∗ in Game!.

According to theorem 4.1.1 this induces an isomorphism Sub(,(Σ&
B∗ just∗)) ∼=

Sub(B∗&B∗). Therefore, symmetry of just in tt and ff implies that there are only

nine options for (Σ&
B∗ just∗)(⊥): I&I, I&∅∗, ∅∗&I, ∅∗&∅∗, I&B∗, B∗&I, ∅∗&B∗,

B∗&∅∗ and B∗&B∗.

We take C = just∗ in the bijection implied by the comprehension axiom above,

to obtain str(O-sat(ΠB∗(just∗ ⇒ just∗))) ∼= str(O-sat(ΠΣ&
B∗ just∗ just∗)). We see that

none of the nine options is satisfactory. Indeed, I&I, I&∅∗, ∅∗&I, ∅∗&∅∗, B∗&I and

B∗&∅∗ would imply that the negation between the two copies of just∗ is a member

of the right hand side, but not the left hand side, which is a contradiction. Similarly,

4. Games for Dependent Types 149

I&I, I&∅∗, ∅∗&I, ∅∗&∅∗, I&B∗ and ∅∗&B∗ would imply that the negation between

B∗ and the second copy of just∗ is a member of the right hand side, but not the

left hand side, which is a contradiction. The last case of B∗&B∗ also leads to a

contradiction as it would restrict members of the right hand side to output tt in

response to having been supplied with arguments tt and ff to the function upon

request, while members of the left hand side would also be free to answer ff.

This is a common problem we discussed in section 3.4. It also occurred for

coherence space semantics, which is not surprising if we view game semantics as

coherence space semantics extended in time. While we had a good candidate category

Stable of !-coalgebras to extend Coh!, such an obvious candidate is not available for

games. Section 3.4 suggested that such a suitable category of !-coalgebras may be

constructed either by inductively closing the co-Kleisli category under Σ-types

or by coinductively restricting the co-Eilenberg-Moore category to be closed under

Π-types. As it is easier to get an explicit description of the former category, we

construct a category of context games by formally closing Game! under a notion

of Σ-type. It is on this category that we base our model of dependent type theory.

4.2 A Category with Families of Context Games

All is not lost, however. In fact, we have almost translated the syntax of dependently

typed equational logic into the world of games and strategies. The remaining

generalisation, necessitated by the lack of additive Σ-types, is to dependent games

depending on multiple (mutually dependent) games. We can produce a categorical

model of DTTCBN out of the resulting structure by applying a so-called category

of contexts (Ctxt) construction, which is precisely how one builds a categorical

model from the syntax of dependent type theory [19, 20]. This construction can

be seen as a way of making our indexed category satisfy the comprehension axiom,

extending its base category by (inductively) adjoining (strong) Σ-types formally,

analogous to the Fam-construction of [96] which adds formal coproducts. We

150 4.2. A Category with Families of Context Games

encourage the reader to view this closure in the light of section 3.4: as inductively

closing the co-Kleisli category under Σ-types.

The problem which needs to be addressed is how to interpret dependent types

and dependent functions of more identifiers. This is done through a notion of context

game and a generalisation of the Π-game construction from the previous section.

Definition 4.2.1 (Context Game). We inductively define a context game to

be a (finite) list [Xi]1≤i≤n where Xi is a game with dependency on [Xj]j<i,

i.e. a function str(,(X1)) × · · · × str(,(Xi−1)) ∼= str(,(X1)& · · ·&,(Xi−1))
Xi−→

Sub(,(Xi)) for some game ,(Xi).

To keep notation light, we sometimes abuse notation and write A for the

context game [A] of length 1.

Definition 4.2.2 (Dependent Π-game). For a game Xn+1 depending on [Xi]i≤n,

we define the game ΠXnXn+1 depending on [Xi]i≤n−1 by ,(ΠXnXn+1) := ,(Xn)⇒

,(Xn+1) from which (ΠXnXn+1)(σ1, . . . , σn−1) is carved out as

P(ΠXnXn+1)(σ1,...,σn−1) ={ε}
⋃

{sa | s ∈ P even
(ΠXnXn+1)(σ1,...,σn−1) ∧

∃sa�
!,(Xn)

⊆τ∈str(Xn(σ1,...,σn−1))sa ∈ PXn(σ1,...,σn−1)⇒Xn+1(σ1,...,σn−1,τ) }
⋃

{sab | sa ∈ P odd
(ΠXnXn+1)(σ1,...,σn−1)∧

∀sab�
!,(Xn)

⊆τ∈str(Xn(σ1,...,σn−1))sa ∈ PXn(σ1,...,σn−1)⇒Xn+1(σ1,...,σn−1,τ) ⇒

sab ∈ PXn(σ1,...,σn−1)⇒Xn+1(σ1,...,σn−1,τ) }.

The following explicit characterisation of the game O-sat(ΠX1 · · ·ΠXnXn+1) of

dependent functions of multiple arguments will be useful later. Indeed, its

strategies will represent dependent functions from [Xi]1≤i≤n to Xn+1.

Theorem 4.2.3. Explicitly, (ΠXk · · ·ΠXnXn+1)(σ1, . . . , σk−1) can be inductively

defined as the following subset of the plays of ,(Xk)⇒ · · · ⇒ ,(Xn+1):

4. Games for Dependent Types 151

{ε}
⋃

{sa | s ∈ P even
(ΠXk ···ΠXnXn+1)(σ1,...,σk−1) ∧

∃sa�
!,(Xk)

⊆σk∈str(Xk(σ1,...,σk−1)) · · · ∃sa�
!,(Xn)

⊆σn∈str(Xn(σ1,...,σn−1))

sa ∈ PXk(σ1,...,σk−1)⇒···⇒Xn+1(σ1,...,σn) }
⋃

{sab | sa ∈ P odd
(ΠXk ···ΠXnXn+1)(σ1,...,σk−1)∧

∀sab�
!,(Xk)

⊆σk∈str(Xk(σ1,...,σk−1)) · · · ∀sab�
!,(Xn)

⊆σn∈str(Xn(σ1,...,σn−1))

sa ∈ PXk(σ1,...,σk−1)⇒···⇒Xn+1(σ1,...,σn) ⇒ sab ∈ PXk(σ1,...,σk−1)⇒···⇒Xn+1(σ1,...,σn) }.

As a consequence, the game of dependent functions O-sat(ΠX1 · · ·ΠXnXn+1) is carved

out in ,(X1)⇒ · · · ⇒ ,(Xn)⇒ ,(Xn+1) as the set of plays

{ε}
⋃

{sa | s ∈ P even
O-sat(ΠX1 ···ΠXnXn+1) }

⋃
{sab | sa ∈ P odd

O-sat(ΠX1 ···ΠXnXn+1)∧
∀sab�

!,(X1)
⊆τ1∈str(X1()) · · · ∀sab�

!,(Xn)
⊆τn∈str(Xn(τ1,...,τn−1))

sa ∈ PX1()⇒···⇒Xn(τ1,...,τn−1)⇒Xn+1(τ1,...,τn) ⇒ sab ∈ PX1()⇒···⇒Xn(τ1,...,τn−1)⇒Xn+1(τ1,...,τn) }.

That is, the set of plays where Opponent can do whatever she pleases, while Player

can only move without further determining the fibre of any of X1, . . . , Xn+1 as long

as Opponent plays along compatible strategies σ1, . . . , σn on ,(X1), . . . ,,(Xn), in

the sense that they extend to

〈τ1, . . . , τn〉 ∈ Σ(str(X1), . . . , str(Xn)) := {〈τ1, . . . , τn〉 | τ1 ∈ str(X1()) ∧ · · · ∧ τn ∈ str(Xn(τ1, . . . , τn−1))}

such that the current play obeys the rules of X1() ⇒ · · · ⇒ Xn(τ1, . . . , τn−1) ⇒

Xn+1(τ1, . . . , τn).

Proof. We first note that the second claim follows straightforwardly from the first.

Clearly, the proposed description of Opponent moves in the second claim is correct

as, by definition of O-sat, Opponent is free to move in ,(X1)⇒ · · · ⇒ ,(Xn)⇒

,(Xn+1) in O-sat(ΠX1 · · ·ΠXnXn+1). For Player moves, note that sab �!,(Xi) =

sa �!,(Xi) for all 1 ≤ i ≤ n. Therefore, assuming the first claim holds, it follows

that we are in one of two cases:

• Opponent has been naughty and has broken the rules of ΠX1 · · ·ΠXnXn+1.

In this case, there are no sab �!,(X1) ⊆ τ1 ∈ str(X1()), . . . , sab �!,(Xn) ⊆

τn ∈ str(Xn(τ1, . . . , τn−1)) such that sa ∈ X1() ⇒ · · · ⇒ Xn+1(τ1, . . . , τn).

152 4.2. A Category with Families of Context Games

In this case, Player is allowed to do whatever she wants according to our

proposed description of the second claim as the hypotheses of the implication

defining the incremental condition on Player moves are false. This matches,

of course, the definition of O-sat(ΠX1 · · ·ΠXnXn+1) from the description of

ΠX1 · · ·ΠXnXn+1 of the first claim.

• Opponent has been nice and has followed the rules of ΠX1 · · ·ΠXnXn+1

(i.e. there are in fact such τ1, . . . , τn). In this case, Player has to keep

obeying the rules of ΠX1 · · ·ΠXnXn+1 as well according to the definition of

O-sat(ΠX1 · · ·ΠXnXn+1). This matches our proposed description of the second

claim.

For the first claim, the idea is that Opponent has to play precisely such that there

is some compatible assignment of strategies σk, . . . , σn on Xk, . . . , Xn while Player

has to play such that she does not exclude any such compatible assignment of

strategies. Formally, we prove by induction that the proposed description of plays

in (ΠXk · · ·ΠXnXn+1)(σ1, . . . , σk−1) coincides with its definition

{ε}
⋃

{sa | s ∈ P even
(ΠXk ···ΠXnXn+1)(σ1,...,σk−1) ∧ ∃sa�

!,(Xk)
⊆σk∈str(Xk(σ1,...,σk−1))sa �!,(Xk+1),...,,(Xn+1)∈ P(ΠXk+1 ···ΠXnXn+1)(σ1,...,σk)

∧ ∃sa�
!,(Xk+1)

⊆σk+1∈str(Xk+1(σ1,...,σk))sa �!,(Xk+2),...,,(Xn+1)∈ P(ΠXk+2 ···ΠXnXn+1)(σ1,...,σk+1) ∧ · · ·

∧ ∃sa�
!,(Xn)

⊆σn∈str(Xk+1(σ1,...,σn−1))sa �,(Xn+1)∈ PXn+1(σ1,...,σn) }
⋃

{sab | sa ∈ P odd
(ΠXk ···ΠXnXn+1)(σ1,...,σk−1) ∧ (∀sab�

!,(Xk)
⊆σk∈str(Xk(σ1,...,σk−1))sa ∈ PXk(σ1,...,σk−1)⇒(ΠXk+1 ···ΠXnXn+1)(σ1,...,σk)

⇒ sab �!,(Xk)∈ PXk(σ1,...,σk−1)) ∧ (∀sab�
!,(Xk+1)

⊆σk+1∈str(Xk+1(σ1,...,σk))sa �!,(Xk+1),...,,(Xn+1)∈ PXk+1(σ1,...,σk)⇒(ΠXk+2 ···ΠXnXn+1)(σ1,...,σk+1)

⇒ sab �!,(Xk+1)∈ PXk+1(σ1,...,σk)) ∧ · · · ∧ (∀sab�
!,(Xn)

⊆σn∈str(Xn(σ1,...,σn−1))

sa �!,(Xn),,(Xn+1)∈ P(ΠXnXn+1)(σ1,...,σn−1) ⇒ sab �!,(Xn)∈ PXn(σ1,...,σn−1) ∧ sab �,(Xn+1)∈ PXn+1(σ1,...,σn)) }.

We note that the proposed description is valid for ε. Let us suppose it is valid for s.

Note that all conjuncts involving s (rather than sa) in the incremental condition

on Opponent moves then hold by induction. Rearranging the incremental condition

on Opponent moves now gives us a description in which we have obtained the

required incremental condition on Opponent moves, but not yet on Player moves –

in particular, our proposed description is now valid for sa:

4. Games for Dependent Types 153

{ε}
⋃

{sa | s ∈ P even
(ΠXk ···ΠXnXn+1)(σ1,...,σk−1) ∧ ∃sa�

!,(Xk)
⊆σk∈str(Xk(σ1,...,σk−1)) · · · ∃sa�

!,(Xn)
⊆σn∈str(Xn(σ1,...,σn−1))

sa ∈ PXk(σ1,...,σk−1)⇒···⇒Xn+1(σ1,...,σn) }
⋃

{sab | sa ∈ P odd
(ΠXk ···ΠXnXn+1)(σ1,...,σk−1) ∧ (∀sab�

!,(Xk)
⊆σk∈str(Xk(σ1,...,σk−1))sa ∈ PXk(σ1,...,σk−1)⇒(ΠXk+1 ···ΠXnXn+1)(σ1,...,σk)

⇒ sab �!,(Xk)∈ PXk(σ1,...,σk−1)) ∧ (∀sab�
!,(Xk+1)

⊆σk+1∈str(Xk+1(σ1,...,σk))sa �!,(Xk+1),...,,(Xn+1)∈ PXk+1(σ1,...,σk)⇒(ΠXk+2 ···ΠXnXn+1)(σ1,...,σk+1)

⇒ sab �!,(Xk+1)∈ PXk+1(σ1,...,σk)) ∧ · · · ∧ (∀sab�
!,(Xn)

⊆σn∈str(Xn(σ1,...,σn−1))

sa �!,(Xn),,(Xn+1)∈ P(ΠXnXn+1)(σ1,...,σn−1) ⇒ sab �!,(Xn)∈ PXn(σ1,...,σn−1) ∧ sab �,(Xn+1)∈ PXn+1(σ1,...,σn)) }.

Next, noting that our proposed description holds for sa, we note that the conjuncts

sa �!,(Xm),...,,(Xn+1)∈ PXm(σ1,...,σm−1)⇒(ΠXm+1 ···ΠXnXn+1)(σ1,...,σm)

in the incremental condition on P -moves can be replaced by the conditions

∃sa�
!,(Xm+1)

⊆σm+1∈str(Xm+1(σ1,...,σm)) · · · ∃sa�
!,(Xn)

⊆σn∈str(Xn(σ1,...,σn−1))sa �!,(Xm),...,,(Xn+1)∈ PXm(σ1,...,σm−1)⇒···⇒Xn+1(σ1,...,σn).

(Seeing that Opponent chooses the fibre, provided that our description holds.)

Now, again noting that sa �!,(Xl) = sab �!,(Xl), this means that all universal

quantifiers in the incremental condition on P -moves range over a non-empty domain,

so we might as well move them to the front of our formula, seeing that they do not

bind any more identifiers:

{ε}
⋃

{sa | s ∈ P even
(ΠXk ···ΠXnXn+1)(σ1,...,σk−1) ∧ ∃sa�

!,(Xk)
⊆σk∈str(Xk(σ1,...,σk−1)) · · · ∃sa�

!,(Xn)
⊆σn∈str(Xn(σ1,...,σn−1))

sa ∈ PXk(σ1,...,σk−1)⇒···⇒Xn+1(σ1,...,σn) }
⋃

{sab | sa ∈ P odd
(ΠXk ···ΠXnXn+1)(σ1,...,σk−1) ∧ ∀sab�

!,(Xk)
⊆σk∈str(Xk(σ1,...,σk−1)) · · · ∀sab�

!,(Xn)
⊆σn∈str(Xn(σ1,...,σn−1))

sa ∈ PXk(σ1,...,σk−1)⇒···⇒Xn+1(σ1,...,σn) ⇒ sab �!,(Xk)∈ PXk(σ1,...,σk−1) ∧ · · · ∧
sab �!,(Xn)∈ PXn(σ1,...,σn−1) ∧ sab �,(Xn+1)∈ PXn+1(σ1,...,σn) },

which clearly carves out the same plays in P,(X1)⇒···⇒,(Xn)⇒,(Xn+1) as our proposed

description.

Remark 4.2.4 (Logical Predicates/Realizability?). Note that these games of depen-

dent functions lead to quite a non-trivial notion of dependently typed strategy. Indeed,

we can send a game B with dependency on A to a function str(,(A)) −→ Pstr(,(B))

which assigns a set of consistent strategies σ 7→ cstr(B) := str(B(σ)) ⊆ str(,(B)).

One might wonder if this description is enough to recover our model from and if the

model can be recast into a realizability style model [99]. In particular, this would

mean that we send a pair (A(⊥),,(A)) to the pair (,(A), cstr(A) ⊆ str(,(A))). In

154 4.2. A Category with Families of Context Games

!N∗ !days∗ RA∗
∗

(i, ∗)
(i,m > 206)

(j, ∗)
(j, 1987)

Never Gonna Give You Up

!N∗ !days∗ RA∗
∗

(i, ∗)
(i, n > 1987)

Never Gonna Let You Down

O
P
O
P
O
P

Figure 4.2: Two examples of (partial) strategies on the game O-sat(ΠN∗Πdays∗RA∗),
defining dependent functions of two arguments. Note that these lyrics come from a song
released on day 207 of the year 1987, so Player does not constrain the fibre anywhere.

a realizability model, one would expect this class cstr(A) of consistent strategies to

behave as a logical predicate. In particular, given just{tt} = ({tt}∗,B∗), if cstr were

a logical predicate, we would have that cstr((just{tt} ⇒ B∗) ⇒ B∗) = cstr((B∗ ⇒

B∗) ⇒ B∗) = str((B∗ ⇒ B∗) ⇒ B∗) as cstr(B∗) = str(B∗). However, we have that

cstr((just{tt} ⇒ B∗) ⇒ B∗) := str(O-sat((just∗(tt) ⇒ B∗) ⇒ B∗)) (str((B∗ ⇒

B∗) ⇒ B∗). Indeed, a consistent strategy on (just{tt} ⇒ B∗) ⇒ B∗ cannot play ff

in just{tt} E B∗. We see that our notion of consistent strategy does not behave

as a logical predicate. We get a more non-trivial notion of higher-order dependent

function. The extra requirement that Player is constrained by type dependency

in positive occurring types just as she is in strictly positively occurring ones is

important to get an exact match with the syntax of dependent type theory.

For illustration, define a game RA∗ depending on the context game [N∗, days∗] by

RA(n,m) := {Rick Astley lyrics from songs released before day m of year n}

Then, the two strategies of figure 4.2 illustrate that a dependent function may query

its arguments in unexpected order or may not query some at all. To illustrate the

subtle nature of higher-order dependent functions with an example, define the game

holidays∗ depending on the context game [N∗, days∗] by

holidays(n,m) := {holidays that are celebrated on day m of year n}

Figure 4.3 illustrates how Player is in charge of providing certain arguments (the

positive ones) of dependent games and can therefore choose the fibre in some cases.

(Opponent controls the negative arguments to dependent games.) In the figure

4. Games for Dependent Types 155

!N∗ !!days∗ !!holidays∗ !B∗ B∗
∗

(0, ∗)
(0, (0, ∗))

(0, (0, International Talk Like a Pirate Day))
(0,ff)

tt

!N∗ !!days∗ !!holidays∗ !B∗ B∗
∗

(0, ∗)
(0, (0, ∗))

(0, (0,Holi))
(0, (0, ∗))

(0, ∗)
(0, 2015)

(0, (0, 65))
(0, tt)

tt

O
P
O
P
O
P
O
P
O
P

Figure 4.3: Two plays in O-sat(ΠN∗ΠΠdays∗Πholidays∗B∗B∗). For an interpretation, imagine
Player is a PhD-student who is trying to decide if he is going on holidays and ends up
asking his supervisor (Opponent) if she’s okay with him doing so. The first play can
be read as the dialogue where the supervisor asks if the student is planning to take any
holidays, the student asks if he’s allowed to, the supervisor wants to know what the
occasion is, the student admits that his best excuse for wanting time off is International
Talk Like a Pirate Day, the supervisor tells the student that he can’t have time off and,
finally, the student tells his supervisor that he’s taking time off anyway for this important
occasion. Here, Player can choose the holiday ’International Talk Like a Pirate Day’ as it
is celebrated each year, meaning that Player does not restrict the year we may be talking
about (which, as a negative argument, belongs to Opponent). Note that by choosing
this particular holiday, Player automatically fixes the day the holiday falls on, which is
fine as the subgame days∗ occurs positively in the total game we are playing in, meaning
that Player is in charge of determining the corresponding argument. The second play
corresponds to a dialogue with a more sensible student who uses the more respectable
excuse of celebrating Holi to get time off from work. Here, Player has to let Opponent
determine the year first, before she can answer with a date for Holi, as the date of Holi
on the Gregorian calendar varies (while it is celebrated every year).

below, Player controls the arguments of type days∗ and holidays∗, while Opponent

is in charge of the type of years N∗. We stress again that although Player has

to play in accordance with any choice of year that Opponent could make, the

converse is not true: Opponent can do what she likes and does not have to respect

Player’s choices of day and holiday.

We define a category Ctxt(DGame!) with objects context games [Ai]1≤i≤n and

morphisms which are defined inductively as (dependent) lists [σi]1≤i≤n of strategies

on appropriate games of dependent functions. To keep notation light, we sometimes

abuse notation and write σ for the context morphism [σ] of length 1.

We show that Ctxt(DGame!) has the structure of a category with families (CwF)

(see definition 2.1.6), a canonical notion of model of dependently typed equational

logic. This gives a more concise presentation of the resulting strict indexed category

with comprehension, where we also add formal Σ-types in the fibres.

156 4.2. A Category with Families of Context Games

Theorem 4.2.5. We have a CwF (Ctxt(DGame!),Ty,Tm,p,,v,,−.−, 〈−,−〉).

Proof. We define the required structures. All equations follow straightforwardly

from the definitions and the two claims stated.

ob(C), Ty, −.−, ·

We define a category C := Ctxt(DGame!) with context games as objects. We

define Ty([Xi]i) as the set of context games with dependency on [Xi]i: [Yj]j ∈

Ty([Xi]i) iff [Xi]i.[Yj]j := [X1, . . . , Xn, Y1, . . . , Ym] is a context game, while · := [] is

the terminal object.

mor(C), −{−}Ty

Next, let [Xi]i≤n, [Zk]k≤n′ ∈ ob(C), [Yj]j≤m ∈ Ty([Xi]i≤n and let

,(Z1)& · · ·&,(Zn′)
f−→ ,(X1)& · · ·&,(Xn)

be a morphism in Game!. Then, we define [Yj]j≤m{f} ∈ Ty([Zk]k≤n′) by

,(Yj{f}) := ,(Yj)

Yj{f}(σ1, . . . , σn′ , τ1, . . . , τj−1) := Yj(〈σ1, . . . , σn′〉†; f, τ1, . . . , τj−1).

This, in turn, lets us define mor(C):

Ctxt(DGame!)([Xi]i≤n, [Yj]j≤m) := { [fj]j≤m | fj ∈ str(O-sat(ΠX1 . . .ΠXnYj{〈f1, . . . , fj−1〉})) } ,

noting that fj can, in particular, be interpreted as a morphism

,(X1)& · · ·&,(Xn) fj−→ ,(Yj) ∈ Game!.

id, p,, Tm, v,, 〈·, ·〉, (Cons-Id)

The identities are defined as lists of derelicted copycats. Let us define a strategy

der[Xj]j ,Xi which plays the derelicted copycat on all of ,(Xi): der[Xj]j ,Xi := {s ∈

PO-sat(ΠX1 ...ΠXnXi) | ∀s′∈P even
O-sat(ΠX1 ...ΠXnXi)

s′ ≤ s ⇒ ∃ks �!,(Xi)�k≈,(Xi) s �,(Xi)}. We

then define id[Xi]i := [der[Xj]j ,Xi]i and p[Xi]i,[Yj]j := [der[Xi]i.[Yj]j ,Xk]k. Let us define

4. Games for Dependent Types 157

Tm([Xi]i≤n, [Yj]j≤m) :=
{

[fj]j≤m
∣∣∣ [der[Xi]i,X1 , . . . , der[Xi]i,Xn , f1, . . . , fm] ∈ Ctxt(DGame!)([Xi]i, [Xi]i.[Yj]j)

}
.

Then, we can define v[Xi]i,[Yj]j := [der[Xi]i.[Yj]j ,Yk]k. Note that these are well-defined

because of the following claim.

Claim. der[Xj]j ,Xi ∈ str(O-sat(ΠX1 · · ·ΠXnXi{[der[Xj]j ,Xk]k≤i−1})).

Proof. Note that Opponent makes every move first in Xi, so Player can copy it

freely without restricting the fibre of Xi further.

We define 〈[fj]j≤m, [gk]k≤l〉 := [f1, . . . , fm, g1, . . . , gl], after which (Cons-Id)

follows trivially.

Composition, −{−}Tm, (Cons-Nat)

We define the composition of [Xi]i≤n
[fj]j−→ [Yj]j≤m

[gk]k−→ [Zk]k in Ctxt(DGame!) by

[fj]j; [gk]k := [〈f1, . . . , fm〉†; gk]k,

using the usual (co-Kleisli) composition of strategies on ,(X1)⇒ · · · ⇒ ,(Xn)⇒

(,(Y1)& · · ·&,(Ym)) and ,(Y1)⇒ · · · ⇒ ,(Ym)⇒ ,(Zk). We note that we can

assign to this composition a more precise dependent function type.

Claim. The composition [fj]j; [gk]k above does, in fact, define a morphism in

Ctxt(DGame!)([Xi]i≤n, [Zk]k).

Proof. We need to verify that 〈f1, . . . , fm〉†; gk defines a winning strategy on

O-sat(ΠX1 · · ·ΠXnW{[fj]j}), where we write W := Zk{[gk′]k′<k}. The winning

part of the claim follows trivially from the usual fact that winning strategies

compose. What is to be verified is the claim that 〈f1, . . . , fm〉†; gk is a strategy on

O-sat(ΠX1 · · ·ΠXnW{[fj]j}).

Recall that, by assumption, gk is a strategy on O-sat(ΠY1 · · ·ΠYmW). Suppose

〈f1, . . . , fm〉†; gk wants to respond with a move b in some Xi or W after a play sa.

158 4.2. A Category with Families of Context Games

Recall that by theorem 4.2.3, we need to verify that for all sab �!,(X1) ⊆ σ′1 ∈

str(X1()), . . . , sab �!,(Xn) ⊆ σ′n ∈ str(Xn(σ′1, . . . , σ′n−1)), we have that

sab �!,(X1)∈ P!X1()∧· · ·∧sab �!,(Xn)∈ P!Xn(σ′1,...,σ′n−1)∧sab �,(W)∈ PW{[fj]j}(σ′1,...,σ′n),

provided that already

sa �!,(X1)∈ P!X1() ∧ · · · ∧ sa �!,(Xn)∈ P!Xn(σ′1,...,σ′n−1) ∧ sa �,(W)∈ PW{[fj]j}(σ′1,...,σ′n).

Here, all but the last conjunct follow from the fact that the fk are strategies on

O-sat(ΠX1 · · ·ΠXnYk{[fk′]k′<k}). (Seeing that gk will not break the dependency in

[Yk]k as a strategy on O-sat(ΠY1 · · ·ΠYmZk{[gk′]k′<k}).)

What remains to be checked, therefore, is that

sab �,(W)∈ PW{[fj]j}(σ′1,...,σ′n),

or equivalently,

sab �,(W)∈ PW (〈σ′1,...,σ′n〉†;f1,...,〈σ′1,...,σ′n〉†;fm).

This follows immediately from the fact that gk is a strategy on O-sat(ΠY1 · · ·ΠYmW)

if we can show that [σ′i]i≤n; [fj]j≤m ∈ Ctxt(DGame!)([], [Yj]j≤m), which is a special

case of our claim when [Xi]i = [].

That is, we need to demonstrate that 〈σ′1, . . . , σ′n〉†; fj defines a strategy on

O-sat(Yj{[σ′i]i≤n; [fj]j}). (Again, it follows trivially that it will be a winning strategy.)

We verify that for any play sab in 〈σ′1, . . . , σ′n〉†||fj, where b is a Player move in

,(Yj), we have in fact that it is a move in O-sat(Yj{[σ′i]i≤n; [fj]j}). This follows from

the fact that fj is a strategy on O-sat(ΠX1 · · ·ΠXnYj{[fj′]j′<j}), which according to

theorem 4.2.3 means, in particular, that for all

sab �!,(X1) ⊆ σ′1 ∈ str(X1()), . . . sab �!,(Xn) ⊆ σ′n ∈ str(Xn(σ′1, . . . , σ′n−1)), we have

that

sab �!,(X1)∈ P!X1()∧· · ·∧sab �!,(Xn)∈ P!Xn(σ′1,...,σ′n−1)∧sab �,(Yj)∈ PYj{[fj′]j′<j}(σ′1,...,σ′n),

provided that already

sa �!,(X1)∈ P!X1()∧· · ·∧sa �!,(Xn)∈ P!Xn(σ′1,...,σ′n−1)∧sa �,(Yj)∈ PYj{[fj′]j′<j}(σ′1,...,σ′n).

4. Games for Dependent Types 159

The last conjunct is what we are looking for, or rather its reformulation sab �,(Yj)∈

PYj{[σ′i]i;[fj]j}.

Note that for [Xi]i
[fj]j−→ [Yj]j and [Yj]j

〈[gk]k,[hl]l〉−→ [Zk]k.[Wl]l, (Cons-Nat) holds in

the sense that

[fj]j; 〈[[gk]k, [hl]l〉 = 〈[fj]j; [gk]k, [hl]l{[fj]j}〉,

if we define −{−}Tm by

[hl]l{[fj]j} := [〈f1, . . . , fm〉†;hl]l,

which then automatically type checks because of (Cons-Nat).

Id. Law, Assoc., (Ty-Id), (Tm-Id), (Ty-Comp), (Tm-Comp), (Cons-L), (Cons-R)

All these identities are direct consequences of the identity and associativity laws of

the usual composition of strategies in Game!.

Remark 4.2.6. Note that, in Ctxt(DGame!), [A,B] ∼= [A&B] if A and B are games

(without mutual dependency) and [] ∼= [I].

4.3 Semantic Type Formers 1, Σ, Π and Id

We show that our CwF supports 1-, Σ-, Π-, and Id-types. We leave the verification

of all term equations (which are inherited from their simply typed equivalents) to

section 4.5. As for type equations, we can note that all type formers are preserved

by substitution. We characterise some of the properties of the Id-types, marking

their place in the intensionality spectrum.

1-types 1-types are interpreted by the context game of length 0. 〈〉 is interpreted

by the list of strategies of length 0.

160 4.3. Semantic Type Formers 1, Σ, Π and Id

Σ-Types Σ-types are (formally) defined by concatenation of lists. For [Zk]k≤l ∈

Ty([Xi]i≤n.[Yj]j≤m), we define a Σ-type

Σ[Yj]j [Zk]k := [Yj]j.[Zk]k ∈ Ty([Xi]i≤n).

We can interpret 〈−,−〉 by concatenation [σ1, . . . , σm, τ1, . . . , τl] of lists of stra-

tegies [σj]j and [τk]k, while we interpret fst as [der[Xi]i.[Yj]j .[Zk]k,Yj′]j′ and snd as

[der[Xi]i.[Yj]j .[Zk]k,Zk′]k′ .

Π-Types We have already seen Π-types

Π[Yj]j≤m [Z] := [ΠY1 · · ·ΠYmZ] ∈ Ty([Xi]i≤n)

of dependent games [Z] ∈ Ty([Xi]i≤n.[Yj]j≤m). They let us define λ-abstraction

and evaluation as on the usual simply typed function game ,(Y1) ⇒ · · · ⇒

,(Ym) ⇒ ,(Z). What remains to be defined are Π-types Π[Yj]j [Zk]k of general

dependent context games [Zk]k ∈ Ty([Xi]i≤n.[Yj]j≤m). These can be reduced to

the former, as Σf :Πx:ABΠx:AC[f(x)/y] satisfies the rules for Πx:AΣy:BC. Conclusion:

our CwF supports Π-types.

Corollary 4.3.1. This means that Ctxt(DGame!) is in particular a ccc.

Id-Types We turn to identity types next, which are essentially defined as one

would expect from their definition as an inductive family. Interestingly, due to

the intensional nature of function types in game semantics, these identity types

acquire a very intensional character as well, refuting FunExt.

For [Yj]j ∈ Ty([Xi]i), define Id[Yj]j ∈ Ty([Xi]i.[Yj]j.[Yj′]j′):

Id[Yj]j([σi]i, [τj]j, [τ ′j]j) := [{refl}∗ if [τj]j = [τ ′j]j
∅∗ else].

Here,,(Id[Yj]j) := {refl}∗. Note that, by definition, the plays of Id[Yj]j ([σi]i, [τj]j, [τ ′j]j)

are closed under all Opponent moves in ,(Id[Yj]j). Note that this means that

O-sat(Id[Yj]j([σi]i, [τj]j, [τ ′j]j)) = Id[Yj]j([σi]i, [τj]j, [τ ′j]j).

4. Games for Dependent Types 161

Id-I is interpreted by the non-strict strategy

refl([fj]j) := [{ε, ∗, ∗refl}] ∈ Tm([Xi]i, Id[Yj]j{〈[derXi]i, [fj]j, [fj]j〉})

= {[σ] | σ ∈ str{refl}∗}.

For the (strong) Id-E rule, suppose we are given

• [Zk]k ∈ Ty([Xi]i.[Yj]j.[Yj]j.Id[Yj]j);

• [fk]k ∈ Tm([Xi]i.[Yj]j, [Zk]k{〈der[Xi]i , der[Yj]j , der[Yj]j , refl(der[Yj]j)〉}).

Then, we produce

[f ′k]k ∈ Tm([Xi]i.[Y (1)
j]j.[Y (2)

j]j.Id[Yj]j , [Zk]k).

Here, f ′k is the strategy which responds to the initial move in ,(Zk) by opening

,(Id[Yj]j), encoding the initial move in the index, and if Opponent responds refl

continues playing fk using the left hand side copy of Yj . (Hence, [f ′k]k does not ever

visit [Y (2)
j]j.) Note that such f ′k are well-defined strategies, as

• all fibres of Id-types contain the intial O-move, allowing f ′k to always play it;

• the moment that Opponent plays refl, she excludes the fibres for which the

two arguments of type [Yj]j are not equal as we have a bijection

Ctxt(DGame!)([], [Xi]i.[Yj]j) ∼= Ctxt(DGame!)([], [Xi]i.[Yj]j.[Yj]j.Id[Yj]j)

〈[σi]i, [τj]j〉 - 〈[σi]i, [τj]j, [τj]j, [refl]〉.

Hence we can continue playing fk from that point.

Noting that Player always has a response in the initial protocol and next follows

fk, it follows that f ′k are winning iff fk are.

Remark 4.3.2. There is an alternative, more extensional, definition of Id-types

which is tempting and which gives Id-types satisfying the principle of function

extensionality. One reason we have chosen to work with these Id-types instead is

that the other definition does not generalise to a situation where we are working

with non-winning or non-deterministic strategies.

162 4.3. Semantic Type Formers 1, Σ, Π and Id

The idea is to restrict the model to dependent games which send applicatively

equivalent strategies3 to equal subgames. In that case, we can define the identity type

Id[Yj]j([σi]i, [τj]j, [τ ′j]j) := [IdYj]j([σi]i, [τj]j, [τ ′j]j) := [τappj ∩ τ ′japp]j.

Here, ,(IdYj) := ,(Yj) and we write φapp for the closure of a set of plays φ

under applicative equivalence. Then, Id-I is interpreted by refl([fj]j) := [fj]j ∈

Tm([Xi]i, Id[Yj]j{〈[derXi]i, [fj]j, [fj]j〉}) = {[gj]j | gj ∈ str(O-sat(Π[Xi]if
app
j {[gk]k<j}))},

where we interpret the non-deterministic strategy fappj {[gk]k<j} as a game (which

contains all Opponent moves) depending on [Xi]i, noting that for any [σi]i ∈

str(,(X1)) × · · · × str(,(Xn)) we have that fappj {[gk]k<j}{[σi]i} defines a non-

deterministic strategy on ,(Yj) and hence a subgame of ,(Yj). To interpret the

Id− E-rule, we define f ′k as the strategy fk where we identify Yj with IdYj . (Hence,

[f ′k]k does not ever visit [Y (1)
j]j or [Y (2)

j]j.) Note that such f ′k are well-defined

strategies, as long as we are only imposing the type dependency condition for a class

of maximal strategies (like winning deterministic strategies).

Remark 4.3.3 (Interpretation of subst). Note that Γ, x : A, x′ : A, p : IdA(x, x′) `

subst(p,−) : B ⇒ B[x′/x] gets interpreted as an initial protocol querying the identity

type, followed by a simple copycat between the two copies of [[B]] after Opponent

plays refl.

In addition to being non-extensional (i.e. refuting the principle of equality

reflection), the intensionality of these identity types can be characterised as follows.

Theorem 4.3.4. Streicher’s Criteria of Intensionality are satisfied, i.e.

(I1) there exist ` A type such that x, y : A, z : IdA(x, y) 6` x ≡ y : A;

(I2) there exist ` A type and x : A ` B type such that x, y : A, z : IdA(x, y) 6`

B ≡ B[y/x] type;

(I3) for all ` A type, ` p : IdA(t, s) implies ` t ≡ s : A.
3That is, strategies which cannot be distinguished through their interaction with applicative

contexts of ground type.

4. Games for Dependent Types 163

Proof. (I1) Let us write p[B∗(i)] for p[B∗(1),B∗(2),IdB∗],[B∗(i)] and [[−]] for the interpreta-

tion functor from the syntax of DTTCBN− into Ctxt(DGame!). (I1) relies on

the interpretation of terms carrying intensionality. Take [[A]] := [B∗]. Then,

we have to show that p[B∗(1)] 6= p[B∗(2)] ∈ Tm([B∗].[B∗].Id[B∗], [B∗]). We note

that p[B∗(1)]{〈[⊥], [tt], [⊥]〉} = [⊥] while p[B∗(2)]{〈[⊥], [tt], [⊥]〉} = [tt], which

shows that (I1) holds.

(I2) This property replies on semantic types having intensional features. In

this case, our source of intensionality is that dependent games contain

redundant information on their value for inconsistent tuples of strategies.

For instance, take [[A]] := [B∗] and [[B]] := (ff 7→ [I], tt 7→ [B∗]). Then, we

have to show that [[B]]{p[B(1)]} 6= [[B]]{p[B∗(2)]} ∈ Ty([B∗].[B].Id[B]). Now,

[[B]]{p[B(1)]}(ff, tt, refl) = [[B]](ff) = [I] while [[B]]{p[B∗(2)]}(ff, tt, refl) =

[[B]](tt) = [B∗], so we conclude that (I2) holds.

(I3) Given [σi]i, [τi]i ∈ Tm([], [Xi]i) and

[pi]i ∈ Tm([], Id[Xi]i([σi]i, [τi]i)) := {[q] | q ∈ str
(
O-sat

(
{refl}∗ if [σi]i = [τi]i
∅∗ else

))
}

∼=
{

str({refl}∗) if [σi]i = [τi]i
str(∅∗) else

∼=
{
{refl} if [σi]i = [τi]i
∅ else ,

it clearly follows that [σi]i = [τi]i.

Similar proofs also suffice to establish (I1) and (I2) for the domain model of

DTTCBN. (I3) relies on a crucial difference between the domain and games models:

our identity types compare strategies in intension rather than in extension. For

similar reasons, FunExt is seen to fail in the games model.

The principle FunExt of function extensionality intuitively states that, from

the point of view of the Id-types, functions are extensional objects: black boxes

164 4.4. Ground Types: Finite Dependent Games

which merely send inputs to outputs without any internal temporal structure.

It is refuted in our model.

Theorem 4.3.5. FunExt is refuted: for ` f, g : Πx:AB, we do not generally have

z : Πx:AIdB(f(x), g(x)) ` FunExtf,g : IdΠx:AB(f, g).

Proof. For our counter example, we let [[A]] = [[B]] = [B∗].

Let f be the usual strict strategy that outputs tt (and examines its argument

once) and let g by the strategy which always outputs tt but first examines its input

twice. Noting that always [[f]]{x} = [[g]]{x} for all strategies x on B∗, we have an

inhabitant refl ∈ str(O-sat(ΠB∗{refl}∗)) = Tm([B∗], Id[B∗]([[f]], [[g]])). However, as

not [[f]] = [[g]], we do not have an inhabitant of

Tm([], [IdΠ[B∗][B∗]]([[f]], [[g]])) = Tm([], [∅∗]) = str(∅∗) = ∅.

On the other hand, it turns out that we do have the principle of uniqueness

of identity proofs UIP, as the strict strategy which first examines the first copy of

[[IdA]] and then the second, before replying refl in [[IdIdA]]. We choose this more

complicated witness rather than a non-strict one as this will generalise to settings

where we consider a broader class of strategies. This principle intuitively says that

types have trivial (discrete) spatial structure, from the point of view of the Id-types.

Theorem 4.3.6. We have x, y : A, p, q : IdA(x, y) ` UIPA : IdIdA(x,y)(p, q).

Proof. Player can open a copy of [[IdA]] as the initial move ∗ is in each fibre. After

Player opens a copy of [[IdA]], Opponent can only reply refl. Player can then play

refl in [[IdIdA]] as it is in all possible fibres.

4.4 Ground Types: Finite Dependent Games

In this section, we show how we can additionally give finite inductive type fami-

lies an interpretation if we restrict to a full subcategory Ctxt(DGame!)fin1ΣΠId of

Ctxt(DGame!). Indeed, we use the full subcategory Ctxt(DGame!)fin1ΣΠId on the

4. Games for Dependent Types 165

hierarchy of context games generated by the semantic constructions interpreting 1-,

Σ-, Π- and Id-types and substitution, starting from finite dependent games (as defined

below). These finite dependent games will play the rôle of semantic ground types to

build a type hierarchy for which we prove completeness results in the next section.

We consider the interpretation of DTTCBN− in Ctxt(DGame!)fin1ΣΠId and will

denote the interpretation functor by [[−]].

Theorem 4.4.1 (Finite Dependent Game). A finite inductive type family B :=

(ai 7→i {bi,j | j})(x) in context x : A, where B[ai/x] is generated by {bij | 1 ≤ j ≤

mi}, has an interpretation in Ctxt(DGame!)fin1ΣΠId as a finite dependent game:

[[B]] : [[ai]] - {bi,j | j}∗ else - ∅∗

and

,([[B]]) = {bi,j|i, j}∗.

Proof. To be explicit, we interpret the casep,q-constructs rather than the (equivalent)

case-constructs, as we shall be using the former later.

The interpretation of the I-rules is clear: [[bi,j]] is the unique strategy on [[B[ai/x]]]

that replies to ∗ with the move bi,j.

We inductively construct [[casep,qB[a/x],C(b, {ci,j}i,j)]] : [[·]] −→ [[ΠA′C[b/y]]], with

structural induction on C (apart from the case of C = 1, which is trivial). We

consider the (more general) base case of arbitrary [[C]] that assign to each σ ∈

str(,([[A′]])&,([[B]])) a finite inductive game with initial move ∗. After that, the

case constructs for more general C are obtained from the commutative conversions

for Σ- and Π-types induced from those of figure 2.3. Note that substitutions and

Id-types are already dealt with because we have been considering the more general

base case where some of the constructors of [[C]] can coincide, while substitution

commutes with Π and Σ.

Let us consider our base case. We define [[casep,qB[a/x],C(b, {ci,j}i,j)]] by noting that

[[caseBT ,CT]]([[bT]], {[[cTi,j]](derA′ , refl, refl)}i,j)

166 4.4. Ground Types: Finite Dependent Games

in fact defines a (winning) strategy on [[ΠA′C[b/y]]], where (−)T is the syntactic

translation from section 2.1.1.

We verify that this yields a strategy [[casep,qB[a/x],C(b, {ci,j}i,j)]] on [[ΠA′C[b/y]]]

(which clearly automatically is winning, as usual, as we never restrict O-moves in

games of dependent functions). Let us write [[A′]] = [Xi]i, so [[casep,qB[a/x],C(b, {ci,j}i,j)]]

will be a strategy on O-sat(ΠX1 · · ·ΠXn [[C[b/y]]]). Let sab ∈ [[casep,qB[a/x],C(b, {ci,j}i,j)]].

Then, we verify that for all sab �!,(X1) ⊆ σ′1 ∈ str(X1()), . . . sab �!,(Xn) ⊆ σ′n ∈

str(Xn(σ′1, . . . , σ′n−1)), we have that (∗)

sab �!,(X1)∈ P!X1()∧· · ·∧sab �!,(Xn)∈ P!Xn(σ′1,...,σ′n−1)∧sab �,([[C]])∈ P[[C[b/y]]](σ′1,...,σ′n),

provided that already

sa �!,(X1)∈ P!X1() ∧ · · · ∧ sa �!,(Xn)∈ P!Xn(σ′1,...,σ′n−1) ∧ sa �,([[C]])∈ P[[C[b/y]]](σ′1,...,σ′n).

Because of the type [[ΠA′B[a/x]]] of [[b]], all Player moves of [[casep,qB[a/x],C(b, {ci,j}i,j)]]

respect the type [[ΠA′C[b/y]]] at least until some [[ci,j]] is called. Now, the crux

is that [[ci,j]] is only ever called after [[b]] has already replied with the move bi,j.

This means that for any [σ′i]i we are considering, we have that [σ′i]i; [[b]] = [[bi,j]].

Moreover, because of the type of b, we have that [[bi,j]] = [σ′i]i; [[b]] = [[b]]{[σ′i]i} is

a winning strategy on [[B]]{[[a]]{[σ′i]i}}, while [[a]]{[σ′i]i} is a winning strategy on

[[A]]. Therefore, because of the definition of [[B]], we conclude that [σ′i]i; [[a]] =

[[ai]], as the fibres of B are disjoint. The upshot is that the semantic type

[[Πx′:A′Πpi,j :IdA(ai,a)Πqi,j :IdB[a/x](subst(pi,j ,bi,j),b)C[b/y]]] of [[ci,j]] now gives us that the

continuation of the play along [[ci,j]](derA′ , refl, refl) still respects our condition

(∗).

We have obtained the following.

Corollary 4.4.2. DTTCBN− has a sound interpretation in Ctxt(DGame!)fin1ΣΠId.

We turn to the issue of soundness of the interpretation of DTTCBN in the next

section.

4. Games for Dependent Types 167

4.5 Soundness, Faithfulness and Completeness

In this section, we show that the interpretation of DTTCBN in Ctxt(DGame!)fin1ΣΠId

is sound and faithful and, if we limit Id-types to only occur strictly positively and

at most once, that it is, additionally, fully complete. The proof of soundness and

faithfulness follows from the fact that our game semantics for DTTCBN factors

faithfully over the usual game semantics for simple type theory. The proof of

definability proceeds in five steps:

1. interpreting a dependently typed strategy f on a larger (simply typed) game;

2. for a strict f , performing the decomposition of [22] in the simply typed world,

as usual, to obtain simply typed strategies gj and hy that are called in the

execution of f ;

3. noting that these gj and hy can actually be assigned a more precise dependent

type, the trick being that we accumulate appropriate negatively occurring

Id-types as the decomposition proceeds inductively;

4. observing that the iterated decomposition of strict strategies strictly decreases

a positive integer norm and therefore eventually terminates after finitely many

steps, producing only non-strict strategies;

5. for a non-strict f , noting that f is directly definable using the constructors

bi,j for finite type families and Ty-Ext.

4.5.1 Soundness and Faithfulness

We first prove faithfulness of the interpretation of DTTCBN in our model.

Theorem 4.5.1 (Soundness and Faithfulness). The interpretation [[−]] of DTTCBN

in Ctxt(DGame!)fin1ΣΠId is sound and faithful. The rule Ty-Ext is sound for all type

families x : A ` B over a type A for which definability holds.

168 4.5. Soundness, Faithfulness and Completeness

Proof. We note that we have the following commutative diagram of (non-dashed)

functors, where, in the light of corollary 4.4.2, soundness amounts to arguing that

our interpretation of DTTCBN− factors over DTTCBN (denoting the factorisation

with the dashed functor)

DTTCBN−

DTTCBN
[[−]]
-

--

Ctxt(DGame!)fin1ΣΠId

[[−]]
-

STTCBN

(−)T

?

∩

⊂
[[−]]

-

(−
) T

-

Gamefin1×⇒
! .

,(−)
?

∩

Here, the top and bottom sides of the outer quadrangle, respectively are the

interpretation functor of DTTCBN− in our model, which exists according to corollary

4.4.2, and the usual interpretation of simple type theory with finite ground types

(or, a total finitary PCF, if you will) in the cartesian category of games and

(winning) strategies of [22]. Recall that the latter is (full and) faithful according to

theorem 2.4.12. The left side of the inner rectangle is the faithful (non-full) functor

defined in section 2.1.1.4. Note that faithfulness of the interpretation of DTTCBN

automatically follows from the faithfulness of these two functors, if we can prove

soundness. Finally, the right side of either quadrangle is the semantic equivalent of

this syntactic translation, which we define next.

We have an inductively defined translation Ctxt(DGame!)
,(−)−→ Game!:

,([Ai]1≤i≤m) :=
¯

1≤i≤m
,(Ai)

,([]) := I.

Note that this also satisfies

,(ΠA1 · · ·ΠAnB) = ,(A1)⇒ · · · ⇒ ,(An)⇒ ,(B)

,(IdC) = {refl}∗.

4. Games for Dependent Types 169

, automatically extends to a faithful (non-full) functor by interpreting the

winning dependently typed strategies on A as simply typed strategies on ,(A),

which are obviously also winning as we never restrict Opponent moves in our games

of dependent functions. Faithfulness of this functor together with commutativity

of the outer quadrangle gives us that the dashed arrow is a (unique) well-defined

functor, i.e. we have a sound interpretation of DTTCBN in Ctxt(DGame!)fin1ΣΠId.

We also note that Ty-Ext has a sound interpretation in our model for types B

depending on a type A = [Ai]i for which all morphisms are definable. Indeed, it

follows that ΠAB1 = ΠAB2 if ,(B1) = ,(B2) and for all [] t−→ [Ai]1≤i≤n we have

that B1(t) = B2(t). The reason is that the definition of Π-games only relies on ,(B)

and the evaluation of Bi on these consistent tuples t. If all such t are definable,

Ty-Ext follows.

4.5.2 Full Completeness

Next, we first prove two technical lemmas, which encompass steps 2. and 3. and, re-

spectively, step 4. in the definability proof. We use the notation [Id][Ai]i([ai]i, [a′i]i) :=

[IdAi(ai, a′i)]i.

Lemma 4.5.2 (Decomposition). Let us suppose we have a context game [Ai]i≤n
in Ctxt(DGame!)fin1ΣΠId with Ai = ΠBi,1 . . .ΠBi,qiY

i
∗ = Π[Bi,j]jY

i
∗{ci} where Y i

∗

is a finite inductive dependent game depending on the context game [Ci
l]l and

[Ak]k<i.[Bi,j]j ci−→ [Ci
l]l. Let us say Y i

∗ has constructors y in fibre Y i
∗{[ciy]i}.

Then, it follows that, when given a strategy f that does not visit [Id][Dk]k ,

f ∈ str(O-sat(Π[Ai]iΠ[Id][Dk]k ([d0
k
]k,[dk]k)X∗)),

with str(,(A1)& · · ·&,(An)) X−→ P(,(X)) a function, where ,(X) is some finite

set, and context morphisms [dk]k, [d0
k]k : [Ai]i −→ [Dk]k, we can decompose it

(uniquely) as follows:

• if f is non-strict, then f = [Ai]i −→ [] x−→ [,(X∗)] for some x ∈ ⋃ im(X)

such that x ∈ X∗([τi]i) for all [] [τi]i−→ [Ai]i such that [dk]k{[τi]i} = [d0
k]k{[τi]i};

170 4.5. Soundness, Faithfulness and Completeness

• if f is strict, then f = Ci(g1, . . . , gqi , (hy | y ∈
⋃ im(Y i))) where Ci embodies

a case-construct that we shall define in the proof,

where

gj ∈ str(O-sat(Π[Ai]iΠ[Id][Dk]k
([d0

k
]k,[dk]k)B

i,j{〈[derAl]l<i, [gj
′]j′<j〉}))

and

hy ∈ str(O-sat(Π[Ai]iΠ[Id][Dk]k.[C
i
l
]l.[Y

i
∗](〈[d

0
k
]k,[ciy],[y]〉,〈[dk]k,[̃ci],[φ]〉)X∗)),

where c̃i := 〈[derAi′]i′<i, [gj]j〉; c
i and φ := λ[τk]kτi{[gj]j{[τk]k}} (and we write im(Y i)

for the image of Y i and λ[τk]k for the obvious semantic λ-abstraction). Here, neither

gj nor hy visits the Id-type.

Proof. Note that we can consider ,(f) as a strategy on ,(A1)⇒ · · · ⇒ ,(An)⇒

,(X∗) as f does not visit the Id-type. The decomposition lemma [22, 56] for the

game semantics of (finitary) PCF now gives us three cases:

• ,(f) = ⊥

• ,(f) =
˘

i,(Ai) −→ I
x−→ ,(X∗) for some x ∈ ⋃ im(X);

• ,(f) = C′i(g′1, . . . , g′qi , (h′y | y ∈
⋃ im(Y i))), for a (unique) 1 ≤ i ≤ n and

(unique) g′j ∈ str(,(A1)⇒ · · · ⇒ ,(An)⇒ ,(Bi,j)) and h′y ∈ str(,(A1)⇒

· · · ⇒ ,(An) ⇒ ,(X∗)), where (writing πi for the derelicted projection to

the i-th component, ev for the obvious evaluation morphism, and denoting

the semantic case construct with [[case]])

C′i(g′1, . . . , g′qi , (h′y | y ∈
⋃

im(Y i))) :=

!
¯
i

,(Ai)
id!

˘
i,(Ai) - !

¯
i

,(Ai)

!
¯
i

,(Ai)
diag†̆

i,(Ai) -
⊗

!
¯
i

,(Ai)
〈g′1, . . . , g′qi〉†

- !
¯
j

,(Bi,j)
⊗ [[case]],(Y i∗),,(X∗)

(−, [h′y]y)
- ,(X∗).

!
¯
i

,(Ai)
diag†̆

i,(Ai) -
⊗ ⊗ ev

- ,(Y i
∗)

!
¯
i

,(Ai)
πi

- ,(Ai)

4. Games for Dependent Types 171

Note that the first case cannot occur as f is winning.

For the second case, due to the restriction on P -moves in Π-games and the

interpretation of Id-types, a non-strict f needs to respond to ∗ with a move in⋃ im(X) such that x ∈ X∗([τi]i) for all [] [τi]i−→ [Ai]i such that [dk]k{[τi]i} = [d0
k]k{[τi]i}.

For the third case, note the following.

• g′j = ,(gj) for (unique)

gj ∈ str(O-sat(Π[Ai]iΠ[Id][Dk]k
([d0

k
]k,[dk]k)B

i,j{〈[derAl]l<i, [gj
′]j′<j〉})).

This will follow once we show that

((gj)†)† ∈ str(O-sat(Π[Ai]iΠ[Id][Dk]k
([d0

k
]k,[dk]k)!!Bi,j{〈[derAl]l<i, [gj

′]j′<j〉})), .

The argument will proceed by complete induction on j. Assume the claim

holds for gk with k < j. We show it also holds for gj.

We need to show that for sj = s′ab ∈ ((gj)†)†, for any s′ab �!,(A1) ⊆

τ1 ∈ str(A1()), . . . , s′ab �!,(An) ⊆ τn ∈ str(An(τ1, . . . , τn−1)) s.t. [τi]i; [d0
k]k =

[τi]i; [dk], s′a ∈ PA1()⇒···⇒An(τ1,...,τn−1)⇒!!Bi,j(τ1,...,τi−1,〈τ1,...,τn〉;g1,...,〈τ1,...,τn〉;gj−1) im-

plies that s′ab ∈ PA1()⇒···⇒An(τ1,...,τn−1)⇒!!Bi,j(τ1,...,τi−1,〈τ1,...,τn〉;g1,...,〈τ1,...,τn〉;gj−1).

Let us assume that the hypothesis of this implication is true. Now, note

that sj ∈ ((gj)†)† extends to tab = ∗X∗(0, ∗)!Y i∗ s
1 · · · sj−1sj ∈ f for any

sk ∈ ((gk)†)†, for 1 ≤ k ≤ j − 1. We can choose sk ∈ 〈τ1, . . . , τn〉||((gk)†)†

such that ⋃ sk �!!,(Bi,k) = 〈τ1, . . . , τn〉; gk. (We write s to indicate we apply

(−) first to s and then again to each member of the resulting set of plays.)

Note that we can do this as 〈τ1, . . . , τn〉; gk is finite as a partial function on

moves. In fact,

sk ∈ PA1()⇒···⇒An(τ1,...,τn−1)⇒!!Bi,k(τ1,...,τi−1,〈τ1,...,τn〉;g1,...,〈τ1,...,τn〉;gk−1),

as a consequence of our induction hypothesis.

172 4.5. Soundness, Faithfulness and Completeness

Then, as tab ∈ f is a play in

O-sat(ΠA1 · · ·ΠAi−1Π(Π
Bi,1 ···ΠBi,qi Y

i
∗)ΠAi+1 · · ·ΠAnΠ[Id][Dk]k

([d0
k
]k,[dk]k)X∗),

we have that for all

tab �!,(A1) ⊆ τ ′1 ∈ str(A1()), . . . , tab �!,(An) ⊆ τ ′n ∈ str(An(τ ′1, . . . , τ ′n−1))

s.t. [τ ′i]i; [d0
k]k = [τ ′i]i; [dk], ta ∈ PA1()⇒···⇒An(τ ′1,...,τ ′n−1)⇒X∗(τ ′1,...,τ ′n) implies that

also tab ∈ PA1()⇒···⇒An(τ ′1,...,τ ′n−1)⇒X∗(τ ′1,...,τ ′n). Note that by construction of tab,

[τi]i is one such [τ ′i]i and is in fact the only one we are interested in, so we

simply write [τi]i for both. Note that the hypothesis of the implication under

consideration actually holds by our assumptions about s′a and sk. Therefore,

its conclusion tab ∈ PA1()⇒···⇒An(τ1,...,τn−1)⇒X∗(τ1,...,τn) follows.

Now, it follows immediately from the restriction on plays tab in

O-sat(ΠA1 · · ·ΠAi−1Π(Π
Bi,1 ···ΠBi,qi Y

i
∗)ΠAi+1 · · ·ΠAnΠ[Id][Dk]k

([d0
k
]k,[dk]k)X∗)

that if ((gj)†)† makes the move b in !,(Al), then it also satisfies the rules of

O-sat(Π[Ai]iΠId[Dk]k
([d0

k
]k,[dk]k)!!Bi,j{〈[derAl]l<i, [gj

′]j′<j〉}). The interesting case

is when b is a move in !!Bi,j. Let us presume that Opponent has not been

naughty. (Otherwise, anything goes.) To deal with this case, we note that

the restriction on plays tab in

O-sat(ΠA1 · · ·ΠAi−1Π(Π
Bi,1 ···ΠBi,qi Y

i
∗)ΠAi+1 · · ·ΠAnΠ[Id][Dk]k

([d0
k
]k,[dk]k)X∗)

combined with the definition of (ΠBi,1 · · ·ΠBi,qiY
j
∗)(τ1, . . . , τi−1) gives us that

there exist ⋃ tab �!!,(Bi,1) ⊆ σ1 ∈ str(Bi,1(τ1, . . . , τi−1)), . . . ,
⋃
tab�!!,(Bi,qi) ⊆

σqi ∈ str(Bi,qi(τ1, . . . , τi−1, σ
1, . . . , σqi−1)), such that

tab �!,(Ai)∈ P!(Bi,1(τ1,...,τi−1)⇒···⇒Bi,qi (τ1,...,τi−1,σ1,...,σqi−1)⇒Y i∗(τ1,...,τi−1,σ1,...,σqi))

so, in particular, tab �!,(Ai)�!!,(Bi,j)∈ P!!Bi,j(τ1,...,τi−1,σ1,...,σj−1).

To complete the argument, we note that by construction of t, we have that⋃
tab �!!,(Bi,k) = 〈τ1, . . . , τn〉; gk, for 1 ≤ k ≤ j − 1. We conclude that

s′ab �!!Bi,j∈ P!!Bi,j(τ1,...,τi−1,〈τ1,...,τn〉;g1,...,〈τ1,...,τn〉;gj−1).

4. Games for Dependent Types 173

• h′y = ,(hy) for (unique)

hy ∈ str(O-sat(ΠA1 · · ·ΠAnΠ[Id][Dk]k.[C
i
l
]l.[Y

i
∗](〈[d

0
k
]k,[ciy],[y]〉,〈[dk]k,[̃ci],[φ]〉)X∗)).

Indeed, note that ∗s ∈ hy iff ∗(0, ∗)t(0, y)s ∈ f for some ∗ty ∈ φ ∈

str(O-sat(ΠA1 · · ·ΠAnΠ[Id][Dk]k
([d0

k
],[dk]k)Y

i
∗{〈[derAl]l<i, [gj]j〉})). It then follows

that ∗s ∈ O-sat(ΠA1 · · ·ΠAnΠ[Id][Dk]k.[C
i
l
]l.[Y

i
∗](〈[d

0
k
]k,[ciy],[y]〉,〈[dk]k,[̃ci],[φ]〉)X∗) by the

following observation. Observing that φ{[t �!Ai]i} = y, note that, for winning

[τi]i ≥ [∗s �!Ai]i, we also have that [τi]i ≥ [∗(0, ∗)t(0, y)s �!Ai]i for some ∗ty ∈ φ

iff φ{[τi]i} ≥ y i.e. φ{[τi]i} = y as y is a maximal strategy on ,(Y∗). (Indeed,

we can take ∗ty ∈ 〈τ1, . . . , τn〉||φ.) It automatically then follows that also

c̃i{[τi]i} = ciy, by the type of 〈[c̃i], [φ]〉 and the disjointness of fibres.

• We can now note that f = Ci(g1, . . . , gqi , (hy | y ∈
⋃ im(Y i))), where Ci is

defined exactly as C′i but using instead the dependently typed substitution

and the dependently typed construct [[casep,q]]Y i∗{〈[derAl]l<i,[g
j]j≤qi 〉},X∗

. (That is,

Ci and C′i are the same, except for typing.) Note that ev(πi, 〈g1, . . . , gqi〉)

and hy feed into this case construct.

• Finally, to see that gj and hy define winning strategies, we note that their

infinite plays are Player-wins as they arise as labelled subtrees of f which is

winning. We need to verify that they are total. This also follows immediately

from the totality of f together with the fact that Opponent moves are, by

definition, not restricted in (O-saturated) games of dependent functions.

Indeed, if s ∈ gj and sa is a valid extension of the play, then ∗(0, ∗)sa is a

valid extension of ∗(0, ∗)s ∈ f to which f hence gj has a response b. Similarly,

if ∗s ∈ hy and ∗sa is a valid extension of the play, then there exists a suitable

t such that ∗(0, ∗)t(0, y)sa is a valid extension of ∗(0, ∗)t(0, y)s ∈ f to which

f has a response b, being a total strategy. Therefore, ∗sab ∈ hy.

174 4.5. Soundness, Faithfulness and Completeness

Lemma 4.5.3 (Norm for dependent strategies). Let [Ai]i
[dk]−→ [Dk]k and X∗ as in

the previous lemma. Let us write E := Π[Ai]iΠ[Id][Dk]k
([d0

k
],[dk]k)X∗. Then, we have a

norm || − ||E : str(O-sat(E)) −→ N (we sometimes leave out the subscript E) for

any such E such that f = Ci(g1, . . . , gqi , (hy | y ∈
⋃ im(Y i))) implies that

||gi||, ||hy|| < ||f ||.

Proof. We define a norm ||−||,(E) : str(,(E)) −→ N for games ,(E) of the I&⇒-

hierarchy over finite flat games and extend this to a norm on str(O-sat(E)) by

precomposition with the injection str(O-sat(E)) ,(−)−→ str(,(E)). The idea behind

this norm is that winning strategies on games of the I& ⇒-hierarchy over finite

flat games are finite objects in the sense that they only contain finitely many finite

plays if we do not allow Opponent to open multiple threads of the same game –

remember that infinite plays in winning strategies are always due to Opponent

opening an infinite number of threads of the same game.

Inductively, if T is a type of STTCBN (i.e. formed from finite ground types G by

the grammar T ::= G | > | & | ⇒), we define a type LT of intuitionistic linear

logic over finite types (i.e. formed from finite ground types G by the grammar

LT ::= G | !LT | LT (LT | LT ⊗ LT | LT< | I | >, where we note that

in our interpretation [[>]] = [[I]] and where we identify the cartesian type A⇒ B

with the linear type !A(B) by removing each positive occurrence of ! in T or,

equivalently, replacing each even-depth occurrence of ⇒ with(. Essentially, [[LT]]

is obtained from the game [[T]] by not allowing Opponent to open more than one

thread of any game. Note that we have a canonical winning strategy representing a

generalised dereliction [[T]]
gder[[LT]]−→ [[LT]] which is defined in the obvious way from

dereliction maps on subtypes using the functoriality of >, &, ⇒ and(.

Now, if we can show that W[[LT]] = ∅, it follows that the norm ||σ||[[T]] :=

Σs∈σ;gder[[LT]]/≈[[LT]] length(s) is well-defined for σ ∈ str([[T]]). (Here, we mean some

skeleton for σ; gder[[LT]] when we write σ; gder[[LT]]/ ≈[[LT]] ,) Indeed, there are only

finitely many Opponents for [[LT]] as Opponent can only make a choice between

finitely many alternatives for each connective in formula LT , of which there are

4. Games for Dependent Types 175

finitely many. Moreover, interactions with Player never become unboundedly long

because W[[LT]] = ∅.

We show that W[[LT]] = ∅. Define classes of formulas AllWin, NoWin by mutual

induction as follows. In this definition, we use G to stand for any game all of whose

maximal positions are of length 2, FA (respectively, FN) and their subscripted

versions to range over AllWin (respectively, NoWin) games.

AllWin :: G | FA
1 ⊗ FA

2 | FA
1 &FA

2 |!FA | FN (FA

NoWin :: G | FN
1 ⊗ FN

2 | FN
1 &FN

2 | FA(FN .

It follows from a simple inductive argument that

• for all AllWin games FA, WFA = P∞FA ;

• for all NoWin formulas FN , WFN = ∅.

Now, to conclude that W[[LT]] = ∅, we observe that LT ∈ NoWin, as all occurrences

of ! are negative.

Finally, if f = Ci(g1, . . . , gqi , (hy | y ∈
⋃ im(Y i))), then, plays of gj and hy

properly extend to plays of f as discussed in the previous proof. Therefore, it

follows that ||gi||, ||hy|| < ||f ||.

Now, we combine steps 1.-4. to reduce the definability of strict strategies

to that of non-strict ones.

Lemma 4.5.4 (Defining Strict Strategies from Non-Strict Ones). All morphisms in

Ctxt(DGame!)fin1ΣΠ are definable in DTTCBN if we assume that the non-strict ones

are, where we write Ctxt(DGame!)fin1ΣΠ for the full subcategory of Ctxt(DGame!)

on the objects formed by the interpretation of types of DTTCBN formed without

Id-constructors.

Proof. Let T be a type of DTTCBN with Π, Σ, 1 and finite inductive type families

and let f ∈ Ctxt(DGame!)([], [[T]]). If T = Σx1:T 1 . . .Σxn−1:Tn−1T n (including the

case of T = 1 if n = 0), then, we know that both in the syntax and semantics f

176 4.5. Soundness, Faithfulness and Completeness

decomposes as 〈f1, . . . , fn〉. The interesting remaining case to deal with therefore

is definability for T = Πx:T ′S[q/x′] where x′ : Q ` S type and x : T ′ ` q : Q,

i.e. for T = Πx:T ′S[q/x′] where S is a finite inductive type family. (In that case

[[S[q/x′]]] = X∗ has finite inductive games as fibres.)

From here, the argument to show that f ∈ Ctxt(DGame!)([], [[T]]) =

str(O-sat([[T]])) is definable in DTTCBN will proceed by complete induction on ||f ||,

which terminates according to lemma 4.5.3. For the sake of our inductive argument,

let us consider the more general case of f ∈ str(O-sat([[Πx:T ′Π[Id]D(d,d0)S[q/x′]]]))

which does not visit the Id-type. Note that we may assume WLOG that T ′ =

ΣT 1 . . .ΣTn−1T n with T i = ΠT ′1 · · ·ΠT ′qiU [v/x′′], where x′′ : V ` U type and

x1 : T 1, . . . , xi−1 : T i−1, x′1 : T 1′, . . . , x′qi : T qi ′ ` v : V and where [[U [v/x′′]]] = Y i
∗ .

This is where we invoke lemma 4.5.2.

If f is strict, then f can be expressed as

Ci(g1, . . . , gqi , (hy | y ∈
⋃ im(Y i))) =

[[λx:T ′casep,qU [v/x′′][fst(x)/x1,...,(i−1)−th(x)/xi−1,G1x/x′1,...,G
qix/x′qi],S[q/x′](xi(G1x) · · · (Gqix), {Hyx}y)]],

where by the induction hypothesis gi = [[Gi]] and hy = [[Hy]].

If f is non-strict, it is definable by assumption.

We conclude that f is definable in DTTCBN.

Next, we complete the definability proof by showing how to define non-strict

strategies from the syntax of DTTCBN using the extensionality of types.

Theorem 4.5.5 (Full Completeness at Id-free type hierarchy). All morphisms in

Ctxt(DGame!)fin1ΣΠ are definable in DTTCBN, where we write Ctxt(DGame!)fin1ΣΠ for

the full subcategory of Ctxt(DGame!) on the objects formed by the interpretation of

types of DTTCBN formed without Id-constructors.

Proof. To show definability, by lemma 4.5.4, all that remains to be done is

demonstrate definability for non-strict f .

If f is non-strict, we know from lemma 4.5.2 that f answers with some move a s.t.

for all ` t : T ′ and ` −→k : −→Id−→
D [t/x′](

−→
d0 [t/x′],−→d [t/x′]), [] a−→ [[S[q[t/x]/x′]]]. (Where,

4. Games for Dependent Types 177

to keep notation light, we write −→D for the list of types D1, . . . , Dm and similarly

for terms.) Now, as S is a finite inductive type family, we know that a = [[s0]] for

some ` s0 : S[q0/x
′] where we write q0 := q[t/x] (noting that q[t/x] is independent

of t as the fibres of S are disjoint and the interpretations of constructors of finite

inductive types is faithful).

Now, in particular, S[q[t/x]/x′] = S[q0/x
′]. Moreover, clearly, S[q[t/x]/x′]T =

ST = S[q0/x
′]T . Therefore, by Ty-Ext (which, by theorem 4.5.1, we know to hold for

S[q/x′] and S[q0/x
′], as, by induction4, we may assume that we have already establis-

hed definability for Σx′:T ′
−→
Id−→

D
(
−→
d0 ,
−→
d)), it follows that ` Πx′:T ′Π−→p :

−→
Id−→
D

(
−→
d0,
−→
d)
S[q/x′] =

Πx′:T ′Π−→p :Id−→
D

(
−→
d0,
−→
d)
S[q0/x

′]. Therefore, by Ty-Conv, we have x′ : T ′,−→p : Id−→
D

(
−→
d0 ,
−→
d) `

s0 : S[q/x′] which is interpreted as f .

We have obtained the following, combining theorems 4.5.1 and 4.5.5.

Corollary 4.5.6 (Full and Faithful Completeness at Id-free type hierarchy). All

morphisms in Ctxt(DGame!)fin1ΣΠ are faithfully definable in DTTCBN.

Next, we show that full (and faithful) completeness still holds if we allow one

strictly positive occurrence5 of an Id-type. This shows, in particular, that the

notion of propositional identity coincides in syntax and semantics for open terms

of the Id-free type hierarchy.

Theorem 4.5.7 (Full and Faithful Completeness for strictly positive Id-types). All

morphisms in Ctxt(DGame!)([], [[Πx:AIdB(f, g)]]) for x : A ` f, g : B are faithfully

definable in DTTCBN, if ` A type and x : A ` B type are types built without

Id-constructors.
4Indeed, definability is only non-trivial for function types constructors. By induction, we have

already established definability for T ′. It then follows trivially for Σx′:T ′
−→
Id−→
D

(
−→
d0,
−→
d), as all closed

witnesses of Σ- and Id-types are canonical, both in syntax and semantics.
5Recall that we say that a subformula B occurs strictly positively in a type A if it does not

appear as the antecedent of any function types. In particular, in the case of DTTCBN, we say that
B occurs strictly positively in A if it does not occur as the left hand side argument of a Π-type
constructor.

178 4.6. Dependent Games for Effects

Proof. Faithfulness has already been argued in theorem 4.5.1.

Given an inhabitant p of Ctxt(DGame!)([[1]], [[Πx:AIdB(f, g)]]), for any · ` a : A,

evaluating p at [[a]] gives p{[[a]]} ∈ Ctxt(DGame!)([[1]], [[IdB(f [a/x], g[a/x])]]), which

by (I3) of theorem 4.3.4 implies that [[f [a/x]]] = [[f]]{[[a]]} = [[g]]{[[a]]} = [[g[a/x]]].

Seeing that our model is faithful at the 1ΣΠ-hierarchy over finite inductive type

families, we conclude that · ` f [a/x] ≡ g[a/x] : B for all · ` a : A.

Noting that ` IdB(f, g)T = {refl} = IdB(f, f)T , we conclude, by Ty-Ext, that

` Πx:AIdB(f, g) = Πx:AIdB(f, f). Ty-Conv now reduces full completeness for the

former type to full completeness for the latter. We further note that we have

an isomorphism of types ` Πx:AId(f, f) ∼= Πx:A{refl}. For this last type, full

completeness has already been established in theorem 4.5.5. Our claim therefore

follows.

Remark 4.5.8. We would like to point out to the reader the phenomenon that (full)

completeness at types involving positively occurring Id-type constructors crucially

relies on faithfulness of the model. This is illustrated here for the case of one

strictly positively occurring Id-type. The question rises what the status is of full

completeness results for general types of DTTCBN, in which Id-types are also allowed

to occur negatively and (non-strictly) positively. It seems very believable that our

completeness proof could be adapted to this setting as well as the more general setting

of arbitrary inductive families [23, 100] of which Id-types are a special case. Indeed,

the idea will just be to perform the decomposition in the simply typed translation,

accumulating Id-types as we progress in the decomposition, after which definability

of non-strict strategies should follow by using constructors for inductive families

together with Ty-Ext. We note, in particular, that let p be refl(x) in d is entirely

analogous to a simple case construct and refl(x) simply behaves as a constructor

refl for an inductive type.

4.6 Dependent Games for Effects

The whole previous development was carefully set up to be robust under failure

of any combination of the conditions on strategies of being winning, history-free,

4. Games for Dependent Types 179

well-bracketed or deterministic. All stated definitions would stay the same, where

one should just interpret the word strategy and the set str(A) differently. All results

would remain true with the exception of completeness results. In particular, we

get sound faithful interpretations of DTTCBN. As we shall see, the completeness

properties will be more subtle and require further study.

Remark 4.6.1 (Types as Homomorphisms?). The reader may wonder if we should

not require that types are continuous or at the very least monotone. Indeed, the

intuition may be that types should arise from strategies into some universe. However,

we believe this point of view is not the most productive. Indeed, as we shall see

in chapter 5, types are best thought of as functions on values (like thunks of

computations) rather than some sort of homomorphism into which we can effectfully

substitute computations. It should be noted that even if we work with a type universe,

it is not clear that the codes (which strategies on the universe represent) correspond

to types in a monotone way. However, universes U should be thought of as value

types (as we have a family El depending on them), hence cannot be expected to exist

in the same way in a type theory with unrestricted effects. For instance, we should

not expect diverge U to code for a type.

As a concrete example, we note that, in Martin-Löf’s partial type theory [83],

essentially Martin-Löf type theory with fixpoint combinators for all type families,

types are not monotone. Indeed, IdB⇒B(λx:Bcase(x, tt, diverge), λx:Bcase(x, tt,ff)) has

diverge as only inhabitant while IdB⇒B(λx:Bcase(x, tt, diverge), λx:Bcase(x, tt, diverge))

has two distinct inhabitants diverge and refl(λx:Bcase(x, tt, diverge)). At the same

time, λx:Bcase(x, tt, diverge) ≤ λx:Bcase(x, tt,ff). Type monotonicity is seen to be

restored, for instance, if we impose the axiom of function extensionality on the

Id-types, but it is not a feature of bare intensional type theory with recursion.

In the simply typed world, the idea is precisely (in the sense that we get

full abstraction results) that dropping winning conditions allows us to interpret

fixpoint combinators [22], dropping history-freeness allows us to interpret local

references of ground type [64], dropping determinism allows us to interpret erratic

180 4.6. Dependent Games for Effects

non-deterministic choice primitives [60] and switching from well-bracketed to weakly

well-bracketed strategies allows us to interpret the universal control operator call/cc

[61]. We make some observations on the extent to which our context games with

morphisms composed of the suitable strategies give a sound interpretation of various

primitives for effects and we briefly discuss the status of definability results.

4.6.1 Recursion

We note that we can interpret fixpoint combinators in the world of partial (i.e.

non-winning) strategies for all context games of length 1 exactly as in [22]. The

only difficulty is posed by Σ-types. We can obtain an interpretation of fixpoint

combinators from a general construction (see [22]) if we can show that Ctxt(Game!)

is a rational category. This is not at all guaranteed if we impose no conditions on

dependent games and define them simply as unconstrained functions on strategies.

Indeed, while our homsets are always pointed partial orders, we cannot always take

the colimit of chains f (k) of repeated function applications (starting from ⊥).

To achieve this, it would be sufficient to demand that dependent games are

continuous functions. However, this is easily seen to be inconsistent with our

interpretation of Id-types. A weaker and still sufficient condition is to demand

that for a dependent game B, for each infinite ascending chain [σ0
i]i, [σ1

i]i, . . . in

str(,(A1)& · · ·&,(An)) and for every s ∈ P,(B), if there exists some integer N6

such that s ∈ PB(σk1 ,...,σkn) for all k ≥ N , then s ∈ PB(
⋃
k
σk1 ,...,

⋃
k
σkn). This condition is

easily seen to be preserved by all our type formers. We obtain a model of DTTCBN

extended with fixpoint combinators at all types.

Further, we suspect7 that for compact elements (noting that these have a

finite norm [22]), our definability proof of theorem 4.5.5, can be adapted to this

setting by making hy explore the newly accumulated Id-type. The decomposition

lemma then leaves us to define a strategy which visits all Id-types from right to
6 Indeed, given f = 〈f1, . . . , fn〉 : Σ(A1, . . . , An) −→ Σ(A1, . . . , An), define the increasing

ω-chain σN := fN (⊥). We want that
⋃
N∈N fk(σN) ∈ str(Ak{[fk′]k′<k}(

⋃
N∈N σ

N)). We have
that fk(σN) ∈ str(Ak{[fk′]k′<k}(σN)), so we precisely need the extra condition that B does not
shirk in the limit N →∞.

7The details remain to be verified.

4. Games for Dependent Types 181

left and then gives a non-strict reply. This can then be defined using constructors,

subst-operators (to visit all Id-types) and Ty-Ext.

4.6.2 Local Ground References

Local references of ground type (for instance, of integer type) can be added to

DTTCBN in exactly the same way as they are to a simply typed language. Indeed,

the new terms for handling state have types only involving (closed) inductive types

X and reference types Ref(X). This is described very clearly in [64] where a slightly

different definition of ! and(are used (threads are not distinguished by labelling

moves with a thread number), meaning that justifiers are not uniquely determined

by the type structure and have to be specified as part of the play. All results of

[64] transfer to our setting, as long as we take care to include the obvious thread

labelling in our interpretation of the terms for manipulating state. In particular, we

get a sound interpretation of DTTCBN extended with local ground type references.

Definability8 (and with that full abstraction) in the simply typed world, depends

on the result that there is a universal history-sensitive (well-bracketed deterministic)

strategy cellX on !Ref(X), for any ground type X, such that any history-sensitive

strategy σ on a game A in the simply typed hierarchy over ground types factors

as cellX for a suitably large X (this needs to be countably infinite, at least, to

encode the whole history of the play in A) followed by a history-free strategy

τ on Ref(X) ⇒ A (which keeps updating Ref(X) to hold the current history of

the play in A and then responds as σ would). We note that we should impose a

visibility condition on strategies (a condition to exclude the use of higher-order

references, which follows automatically from the restriction on plays for our type

hierarchy) if we want the same factorisation result for more general games A.

The factorisation theorem (and with that the definability result) of [64] does not

have an obvious generalisation to all types of Ctxt(Game!). Indeed, context games

of length greater than 1 (Σ-types) can pose problems. If we apply the simply

typed factorisation construction to a consistent tuple [σi]i of strategies, there is no
8The usual definability proof relies crucially on having partial strategies. It is not clear if it

can be made to work in the world of winning strategies.

182 4.6. Dependent Games for Effects

guarantee that the resulting tuple [τi]i is still consistent. Indeed, we only know

that its interaction with cellX would be consistent.

4.6.3 Finite Non-Determinism

Lifting the determinacy condition for strategies gives us a model of dependent

type theory with non-deterministic features. In fact, following [60], we can clearly

interpret the non-deterministic choice primitive ` orA : A⇒ A⇒ A for any type

A which gets interpreted as a game (rather than proper context game), by using

the (well-bracketed history-free winning) strategy which plays a copycat between

both A(3) and, non-deterministically, both A(1) and A(2). It is not clear that we

can interpret this primitive for context games (or types containing Σ-constructors),

however. Indeed, to get the correct simply typed translation, we should define or[Aj]

by [fj]j or [gj]j := [fj or gj]j. However, we can easily see that this is well-defined

for all context morphisms if and only if the dependent games Aj are monotone

functions of their inputs. (Indeed, fj or gj represents the union of fj and gj .) This is

a condition that is incompatible with the current interpretation of Id-types. Hence,

we are faced with a choice: interpreting Id-types or or-primitives at Σ-types.

Definability (and, with that, full abstraction with respect to “may-observational-

equivalence”) in the simply typed world depends on the result that there is a universal

non-deterministic strategy oracle on N∗ ⇒ N∗ (which is strict and responds to a

number n, non-deterministically, with some number between 0 and n) such that

any finitely non-deterministic strategy σ on A factors as oracle, followed by some

deterministic strategy det(σ) (it responds with the number of different moves that

σ could make, in the left most copy of N∗, and makes the n-th move of σ in A

in response to n; it is winning, well-bracketed and history-free if σ was such) on

(N∗ ⇒ N∗) ⇒ A. However, it is easily seen9 that the simply typed factorisation,

when performed on arbitrary context morphisms [] [σi]i−→ [Ai]i (rather than just
9 Indeed, take contradict be a game depending on B∗ such that contradict : B∗ 7→ B∗ and

contradict : else 7→ ∅∗. We have a strategy σ = 〈B∗, tt〉 on Σ(B∗, contradict). Then (λx1); det(σ) =
〈tt, tt〉, which is not a strategy on Σ(B∗, contradict).

4. Games for Dependent Types 183

individual strategies, or context morphisms of length 1), can result in inconsistent

lists of strategies [τi]i, not defining a context morphism [N∗ ⇒ N∗] −→ [Ai]i.

4.6.4 Control Operators

The interpretation of control operators in game semantics seems to be more fragile

than that of the other effects we have considered (partiality, local ground references,

non-determinism). That is, [61] shows that Game!, for weakly well-bracketed

strategies, interprets (with a history-free winning deterministic strategy violating

the well-bracketing condition) the universal control operator10 call/ccX∗,Y∗ : ((X∗ ⇒

Y∗) ⇒ X∗) ⇒ X∗ (which plays a copycat between X
(1)
∗ and X

(3)
∗ and between

X
(2)
∗ and X(3)

∗ and which opens X(1)
∗ in response to the initial question in Y∗) for

flat games X∗ and Y∗. Next, it shows that any strategy σ on a game A in the

simply typed hierarchy over ground types (rather than a general game) can

be factored as call/ccX∗,X∗ ; τ for (appropriate X∗ and) a well-bracketed strategy

τ on (((X∗ ⇒ Y∗) ⇒ X∗) ⇒ X∗) ⇒ A.

We note that we can define

call/ccI,C() := 〈〉

call/ccA&B,C(f, g) := 〈call/ccA,C(λφf(λxφ(fst (x))), call/ccB,C(λφf(λxφ(fst (x)))〉

call/ccA⇒B,C(f) := call/ccB,C(λφt(λyφ(y(x))(x))).

That is, adding the control operator call/cc at ground types to an intuitionistic

type theory with 1,×,⇒-types gives us the control operator at all types, making

it into a constructive classical type theory. In particular, we can interpret these

control operators in our game semantics.

Now, it is well-known that constructive classical dependent type theory is

degenerate in the sense that it identifies all terms (propositionally) [101]. The

situation in our model is that the obvious candidate for call/cc on Σ-types (based

on the simply typed translation) does not define a context morphism. Indeed,
10This is also known as Peirce’s law in logic, which is easily seen to be equivalent to the principle

of double negation elimination (take Y∗ to be a false formula). This law (with its computation
rules) is the defining feature of constructive classical logic.

184 4.6. Dependent Games for Effects

in particular, for the type A = Σx:BIdB(tt, x) used by Herbelin to derive his

degeneracy result, our candidate for call/cc (for C = IdB(tt,ff) an inconsistent

proposition) does not type check. Indeed, such an appropriate term call/ccA
of type ((A ⇒ IdB(tt,ff)) ⇒ A) ⇒ A would decompose as 〈call/cc1

A, call/cc2
A〉,

where ` call/cc1
A : ((Σx:BIdB(tt, x) ⇒ IdB(tt,ff)) ⇒ Σx:BIdB(tt, x)) ⇒ B and

` call/cc2
A : Πt:(Σx:BIdB(tt,x)⇒IdB(tt,ff))⇒Σx:BIdB(tt,x)IdB(tt, call/cc1

A(t)). The equivalent of

the usual interpretation of call/cc of [61], which plays a copycat back and forth

between A(3) and A(2), which plays the initial move in A(1) if IdB(tt,ff) is opened

by Opponent and which copies back Opponent’s response in A(1) to A(3), is seen

not to yield a sound interpretation of call/ccA in our model. Indeed, [[call/cc2
A]]

violates the rules of the game

O-sat([[Πt:(Σx:BIdB(tt,x)⇒IdB(tt,ff))⇒Σx:BIdB(tt,x)IdB(tt, call/cc1
A(t))]]),

in particular, its play ∗(0, ∗)(0, (0, ∗))(0, (0, (0, ∗)))(0, (0, (0, refl)))refl does so with

its last move. Indeed, this Player move excludes the value

τ = [[λk:A⇒IdB(tt,ff)〈ff, k(〈tt, refl(tt)〉)〉]]

for [[t]], while only Opponent is allowed to restrict the fibre.

Moreover, the factorisation construction of [61] does not give valid well-bracketed

context morphisms when applied naively in Ctxt(Game!), so it is not clear how a

definability result could be established for this model.

4.6.5 Lessons for Combining Dependent Types and Effects

The models of dependent type theory presented in this section can be seen as

assigning dependent types to effectful programs under a CBN equational theory.

We mean that in the following way. The strategies we have considered are known

to correspond very closely to programs with recursion, local ground references,

finite non-determinism and control operators with CBN evaluation [22, 60, 62, 64].

Rather than the usual simple types, modelled in usual game semantics, we have

considered more precise types for these programs here, modelled by dependent

4. Games for Dependent Types 185

games. While what we arrive at clearly represents game theoretic model of a

CBN dependent type theory with some effects, it should be further examined how

freely these effects are allowed to occur.

One thing that the semantics suggests is the interpretation of fixpoint com-

binators and non-deterministic choice may be difficult at (projection) Σ-types,

unless types behave as suitable homomorphisms. This, however, seems to cause

a tension with the interpretation of Id-types. There is a real question, therefore,

whether types should act as homomorphisms. Even stronger is the result that

we saw that the interpretation of universal control operators at Σ-types can fail

in this model and, generally, is known to cause degeneracy. In many cases, we

see that the interpretation of effects at (projection) Σ-types can be problematic.

That does not mean, however, that we should not include primitives for effects

(like fixpoint combinators) at other types.

A more general, but related question that this semantics raises is whether one

should aim for dependent type theory with unrestricted effects in the first place as

this seems to lead to many technical challenges. We address this question further in

the next chapter. In hindsight, based on lessons learnt both in this chapter and in

the other chapters of this thesis, we now believe the answer should be no. In most

cases, it appears both safer and more useful to us to restrict the use of effects with

the type system. A prime aim for future work should, therefore, in our opinion, be

the development of a game semantics for dependently typed CBPV.

186

The impossible often has a kind of integrity which
the merely improbable lacks.

— Douglas Adams

5
Dependently Typed Call-by-Push-Value

(dCBPV)

Dependent types [20] are slowly being taken up by the functional programming

community and are in the transition from a quirky academic hobby into a practical

approach to building certified software. Purely functional dependently typed

languages like Coq [102] and Agda [103] have existed for a long time. If the technology

is to become more widely used in practice, however, it is crucial that dependent

types can be smoothly combined with the wide range of effects that programmers

make use of in their day to day work, like non-termination and recursion, mutable

state, input and output, non-determinism, probability and non-local control.

Although some languages exist which combine dependent types and effects,

like Cayenne [104], ΠΣ [105], Zombie [106], Idris [107], Dependent ML [108] and

F? [109], there have always been some strict limitations. For instance, the first

four only combine dependent types with unrestricted recursion (although Idris

has good support for emulating other effects), Dependent ML constrains types to

depend only on static natural numbers and F? does not allow types to depend on

effectful terms at all (including non-termination). Somewhat different is Hoare Type

Theory (HTT) [110], which defines a programming language for writing effectful

programs as well as a separation logic encoded in a system of dependent types

187

188 5. Dependently Typed Call-by-Push-Value (dCBPV)

for reasoning about these programs. We note that the programming fragment is

not merely an extension of the logical one, which would be the elegant solution

suggested by the Curry-Howard correspondence.

The sentiment of most papers discussing the marriage of these ideas seems

to be that dependent types and effects form a difficult though not impossible

combination. However, as far as we are aware, treatment has so far been on a

case-by-case basis and no general theoretical analysis has been given which discusses,

on a conceptual level, the possibilities, difficulties and impossibilities of combining

general computational effects and dependent types.

In a somewhat different vein, there has long been an interest in combining

linearity and dependent types. This combination was first studied from the point of

view of syntax in Cervesato and Pfenning’s LLF [69]. To this, the author added a

semantic perspective, as described in chapter 3, which has proved important e.g. in

the development of the game semantics for dependent types of chapter 4. One aspect

that this abstract semantics as well as the study of particular models highlight is –

more so than in the simply typed case – the added insight and flexibility obtained

by decomposing the !-comonad into an adjunction1. This corresponds to working

with dependently typed version of Benton’s LNL calculus [33] rather than Barber

and Plotkin’s DILL [34], as was done in [78].

Similarly, it has proved problematic to give a dependently typed version of

Moggi’s monadic metalanguage [32]. We hope that this chapter illustrates that also

in this case a decomposed adjunction perspective, like that of CBPV [30], is more

flexible than a monadic perspective. (Recall that if we decompose both linear logic

and the monadic metalanguage into an adjunction, we can see the former to be a

restricted case of the latter which only describes (certain) commutative effects.) In

particular, it turns out that the distinction that CBPV makes between dynamic

computations and static values (including thunks of computations) is crucial.
1Indeed, connectives seem to be most naturally formulated on either the linear or cartesian

side: Σ- and Id-constructors operate on cartesian types while Π-constructors operate on linear
types.

5. Dependently Typed Call-by-Push-Value (dCBPV) 189

In this chapter, we show that the analysis of dDILL of chapter 3 generalises

straightforwardly to general (non-commutative) effects to give a dependently typed

CBPV calculus that we call dCBPV-, which allows types to depend on values

(including thunks of computations) but which lacks a Kleisli extension (or sequencing)

principle for dependent functions. This calculus is closely related to Harper and

Licata’s dependently typed polarized intuitionistic logic [111]. Its categorical

semantics is obtained from that (see section 3.3) for the dependent LNL calculus,

by relaxing a condition on the adjunction which would normally imply, among

other things, the commutativity of the effects described (and by dropping the

symmetric monoidal closed structure on D).

It straightforwardly generalises Levy’s adjunction models for CBPV [37] (from

locally indexed categories to more general comprehension categories [25]) and, in a

way, simplifies Moggi’s strong monad models for the monadic metalanguage [32],

as was already anticipated by Plotkin in the late 80s: in a dependently typed

setting the monad strength follows straightforwardly from the natural demand that

its adjunction is compatible with substitution and, similarly, the distributivity of

coproducts follows from their compatibility with substitution. In fact, we believe

the categorical semantics of simply typed CBPV is most naturally understood

as a special case of a that of dCBPV-. Particular examples of models are given

by models of the dependent LNL calculus and by Eilenberg-Moore adjunctions

for strict indexed monads on models of pure DTT. The small-step operational

semantics for CBPV of [30] transfers to dCBPV- without any difficulties with

the expected subject reduction and (depending on the effects considered) strong

normalization and determinacy results.

When formulating candidate CBV and CBN translations of DTT into dCBPV-,

it becomes apparent that the latter is only well-defined if we work with the weak

(non-dependent) elimination rules for positive connectives, while the former is

ill-defined altogether. To obtain a CBV translation and the CBN translation in

all its glory, we have to add a principle of Kleisli extensions (or sequencing) for

dependent functions to dCBPV-. Such a principle also seems appealing from the

190 5. Dependently Typed Call-by-Push-Value (dCBPV)

point of view of compositionality of the system. We call the resulting calculus

dCBPV+, to which we can easily extend our categorical and operational semantics.

Normalization and determinacy results for the operational semantics of the pure

calculus remain the same. However, depending on the effects we consider, subject

reduction may fail. We analyse on a case-by-case basis the principle of dependent

Kleisli extensions in dCBPV- models of a range of effects. We see that it is

not always valid, depending on the effects under consideration. These technical

challenges make it questionable if the extra expressive power of dCBPV+ is worth

the extra complications. Therefore, as an alternative, we discuss the possibility of

extending dCBPV- with some extra connectives to a dependently typed eriched

effect calculus (EEC) [112]. This increases its expressive power in a slightly different

way, but we argue that, similarly to dependent Kleisli extensions, it also restores

compositionality, in a sense that we make precise.

On the one hand, we hope this analysis gives a helpful theoretical framework in

which we can study various combinations of dependent types and effects from an

algebraic, denotational and operational point of view. It gives a robust motivation

for the equations we should expect to hold in both CBV and CBN versions of

effectful DTT, through their translations into dCBPV, and it guides us in modelling

dependent types in effectful settings like game semantics.

On the other, noting that not all effects correspond to sound logical principles,

an expressive system like CBPV or a monadic language, with fine control over

where effects occur, is an excellent combination with dependent types as it allows

us to use the language both for writing effectful programs and pure logical proofs

about these programs. Similar to HTT in aim, but different in implementation,

we hope that dCBPV can be expanded in future to an elegant language, serving

both for writing effectful programs and for reasoning about them.

In section 5.1, we explain why the combination of effects and dependent types is

not straightforward. Next, in sections 5.2 and 5.3, we study the syntax, categorical

semantics, a range of concrete models and operational semantics for, respectively,

dCBPV- and dCBPV+. After that, we discuss dependent projection products

5. Dependently Typed Call-by-Push-Value (dCBPV) 191

(additive Σ-types) in section 5.4 and show that we encounter technical challenges,

similar to those caused by dependent Kleisli extensions. In section 5.5, we discuss the

pros and cons of dependent Kleisli extensions, to introduce the dependently typed

enriched effect calculus in section 5.6 as a better behaved extension of dCBPV-.

We end on a brief comparison with HTT in section 5.7.

Remark 5.0.1 (Related Publications). This chapter is largely based on [16, 17]. In

these preprints we incorrectly conjectured that subject reduction of dCBPV+ could be

restored through appropriate subtyping conditions. While necessary, we have since

realised that such subtyping conditions are likely not to be sufficient. Independently

from our work [16] on dependently typed CBPV, [113] arrived at a syntax very

similar to dCBPV- and an equivalent categorical semantics, presented in terms of

fibrations rather than indexed categories. Where we additionally give a study of

operational semantics, dCBPV+ and CBV and CBN translations, concrete models

coming from indexed monads and dLNL and more connectives, [113] gives a detailed

exposition of algebraic effects in dCBPV-.

5.1 Dependent Types and Effects?

We believe that it is clear that the combination of dependent types and effects

is important, being both of a fundamental theoretical interest and of a very

practical interest in verifying real world code. Why is the combination not

straightforward, however?

A first obstacle that we discussed in chapter 1 is that dependent types are largely

useful for verification purposes. Therefore, it is important to be able to guarantee

the logical consistency of a dependently typed language. At the same time, effects

tend to introduce inconsistency. This is easily addressed by encapsulating effects

in (strong) monads, to be thought of as logical modalities on the type system.

This suggests we should pursue a dependently typed version of Moggi’s monadic

metalanguage rather than a dependent type theory with unrestricted effects.

192 5.1. Dependent Types and Effects?

A second conundrum that we face in formulating such a (monadic) dependently

typed language is related to sequencing of computations. A pure dependent type

theory involves the crucial dependent composition operation

f : A⇒ B, g : Πy:BC ` f ; g : Πx:AC[f(x)/y],

which can be interpreted as saying that if we can prove that a predicate is universally

true and we provide a witness, we can derive that the predicate holds for the witness.

Similarly, a monadic effectful simple type theory gets much of its power

from the sequencing operation

f : A⇒ TB, g : B ⇒ TC ` f ; g∗ : A⇒ TC,

which lets us first perform one effectful computation f and then take its result as

an input when we perform g next. One would expect an effectful dependent type

theory to combine both substitution operations. In particular, we would perhaps

expect to be able to substitute effectful computations into dependent functions like

f : A⇒ TB, g : Πy:BTC ` f ; g∗ : Πx:ATC[f(x)/y].

What could this mean? TC is a type depending on y : B, while we are trying to

substitute a value f(x) : TB in it. Semantically, this principle would correspond to

having a Kleisli extension principle for dependent functions, which has so far – as

far as we are aware – only been considered in [89] for a limited class of modalities T

and where TC is a predicate on TB which can be restricted to B along B ηB−→ TB.

A third, closely related challenge is how we should interpret a type B[M/x] into

which we have substituted an effectful computation M . That is, what does type

checking N : B[M/x] constitute? We seem to have at least two choices. Do we

first evaluate M (as a dynamic computation) and substitute the result V into the

type and type check N : B[V/x]? Or do we consider B as expressing a property of

the effectful computation M and not just its outcome, meaning that we normalise

the thunk of M (as a static value) and type check N : B[(thunk M)nf/x]? We see

that the dual rôles of M as a dynamic computation and thunk M as a static value

5. Dependently Typed Call-by-Push-Value (dCBPV) 193

are crucial. This suggests that a CBPV perspective which distinguishes between

values and computations is more suitable for understanding effectful dependent

type theory than a monadic language without such an explicit distinction.

In formulating a dependently typed version of CBPV, we need to decide whether

types can depend on identifiers of computation types or on those of value types (or

on both). This precisely corresponds to the two interpretations of type checking

N : B[M/x] described above: type checking N : B[M/nil] or N : B[thunk M/x].

We believe that type dependency on computations is problematic in a similar way

that type dependency on identifiers of linear type is. (See chapter 3.) Indeed,

the dynamic nature of computations means that their evaluation might be non-

deterministic or non-terminating or might even produce other side effects like write

to disk. This means that type dependency on computations would mean throwing

overboard the idea of types as providing static guarantees; it would erase the

significance of the phase distinction in typed programming. One could argue that

what we are left with could also be achieved by writing an untyped program with

some suitably placed Assert statements. Non-determinism (and reading state)

would mean that type checking no longer provides guarantees. Indeed, our program

may have passed the type check by chance as it happened to have chosen a safe

trace. Non-termination would clearly make type checking undecidable. Other side

effects like writing to disk could change type checking from a harmless procedure

to something to think about carefully. We hope to have convinced the reader that

we should focus on types depending solely on values.

Having addressed the first and third concerns though, the second concern still

remains and we shall answer it in the course of this chapter. Indeed, part of the

original motivation for CBPV was that both CBV and CBN versions of effectful

type theories can be encoded in it. For that purpose, it is crucial to have sequencing

operations for computations. Accordingly, we shall see that we need a dependent

Kleisli extension like sequencing principle for dependently typed computations to

obtain CBV and CBN translations from dependent type theory with unrestricted

194 5.2. dCBPV without Dependent Kleisli Extensions (dCBPV-)

effects. We study both a calculus, dCBPV-, without and one, dCBPV+, with such

a dependent effectful sequencing principle and discuss their virtues and vices.

5.2 dCBPV without Dependent Kleisli Extensi-
ons (dCBPV-)

In this section, we show how the results of section 2.2 have an elegant dependently

typed generalization, by allowing types to depend on values. We first consider a

system in which we only allow sequencing M to x in N of a dependent function

N if the result type of N does not depend on the identifier x that the result

of M is bound to.

5.2.1 Syntax

The syntax of CBPV generalises straightforwardly to dependent types. As antici-

pated already by Levy [30], we only need to take care in the rule for M to x in N .

He suggested that the return type B of N should not depend on x in this rule.

We shall apply this restriction as well for the moment. We call the resulting

system dependently typed call-by-push-value without dependent Kleisli

extensions, or dCBPV-. We shall later revisit this assumption and study a system

dCBPV+ in which we do allow such Kleisli extensions for dependent functions.

We distinguish between the following objects: contexts Γ; ∆, where Γ is a

(cartesian) region consisting of identifier declarations of value types and ∆ is

a (linear) region for identifier declarations of computation type and where we

write Γ as a shorthand for Γ; ·, value types A, computation types B, values V ,

computations M and stacks K. The type theory talks about these objects using

the judgements of figure 5.1.

To derive these judgements, we have, to start with, rules, which we shall not

list, which state that all judgemental equalities are equivalence relations and that

all term, type and context constructors as well as substitutions respect judgemental

equality. In similar vein, we have conversion rules which state that we may swap

contexts and types for judgementally equal ones in all judgements. Additionally,

5. Dependently Typed Call-by-Push-Value (dCBPV) 195

Judgement Intended meaning
` Γ; ∆ ctxt Γ; ∆ is a valid context
Γ ` A vtype A is a value type in context Γ
Γ ` B ctype B is a computation type in context Γ
Γ ` V : A V is a value of type A in context Γ
Γ; ∆ ` K : B K is a computation/stack of type B in context Γ; ∆
` Γ; ∆ = Γ′; ∆′ Γ; ∆ and Γ′; ∆′ are judgementally equal contexts
Γ ` A = A′ A and A′ are judgementally equal value types in context Γ
Γ ` B = B′ B and B′ are judgementally equal computation types in context Γ
Γ ` V = V ′ : A V and V ′ are judgementally equal values of type A in context Γ
Γ; ∆ ` K = K ′ : B K and K ′ are judgementally equal computations/stacks of type B in context Γ; ∆

Figure 5.1: Judgements of dependently typed CBPV.

·; · ctxt

` Γ; ∆ ctxt Γ ` A vtype
` Γ, x : A; ∆ ctxt

` Γ; · ctxt Γ ` B ctype
` Γ;B ctxt

Figure 5.2: Rules for forming contexts, where x and nil are assumed to be fresh
identifiers.

Γ, x : A,Γ′ ` A′ vtype Γ ` V : A
Γ,Γ′[V/x] ` A′[V/x] vtype

Γ, x : A,Γ′ ` B ctype Γ ` V : A
Γ,Γ′[V/x] ` B[V/x] ctype

Γ ` B ctype
Γ ` UB vtype

Γ ` A vtype
Γ ` FA ctype

{Γ ` Ai vtype}1≤i≤n

Γ ` Σ1≤i≤nAi vtype
{Γ ` Bi ctype}1≤i≤n

Γ ` Π1≤i≤nBi ctype

Γ, x : A ` A′ vtype
Γ ` Σx:AA

′ vtype
Γ, x : A ` B ctype
Γ ` Π(F (x:A)B ctype

` Γ ctxt
Γ ` 1 vtype

Γ ` V : A Γ ` V ′ : A
Γ ` IdA(V, V ′) vtype

Figure 5.3: Rules for type formation.

we demand the obvious (admissible) substitution rules for both kinds of identifiers

in all judgements as well as weakening rules for identifiers of value type (but not

computation type). To form contexts, we have the rules of figure 5.2.

To form types, we have the rules of figure 5.3. For these types, we consider the

values, computations and stacks formed using the rules of figure 5.4.

We generate judgemental equalities for values and computations through the

rules of figure 2.9 and 5.5. Note that we are using extensional Id-types, in the sense

of Id-types with an η-rule. This is only done for the aesthetics of the categorical

196 5.2. dCBPV without Dependent Kleisli Extensions (dCBPV-)

Γ, x : A,Γ′ ` x : A
Γ ` V : A Γ, x : A,Γ′ ` W : A′

Γ,Γ′[V/x] ` let x be V in W : A′[V/x]

Γ ` V : A Γ, x : A,Γ′; ∆ ` K : B
Γ,Γ′[V/x]; ∆[V/x] ` let x be V in K : B[V/x]

Γ; nil : B ` nil : B
Γ; ∆ ` K : B Γ; nil : B ` L : C

Γ; ∆ ` let nil be K in L : B

Γ ` V : A
Γ; · ` return V : FA

Γ; ∆ ` K : FA Γ, x : A,Γ′; · ` N : B ` Γ,Γ′; nil : B ctxt
Γ,Γ′; ∆ ` K to x in N : B

Γ; · `M : B
Γ ` thunk M : UB

Γ ` V : UB
Γ; · ` force V : B

Γ ` Vi : Ai
Γ ` 〈i, Vi〉 : Σ1≤i≤nAi

Γ ` V : Σ1≤i≤nAi {Γ, x : Ai ` Wi : A′[〈i, x〉/z]}1≤i≤n

Γ ` pm V as 〈i, x〉 in Wi : A′[V/z]

Γ ` V : Σ1≤i≤nAi {Γ, x : Ai; ∆[〈i, x〉/z] ` Ki : B[〈i, x〉/z]}1≤i≤n

Γ; ∆[V/z] ` pm V as 〈i, x〉 in Ki : B[V/z]

Γ ` 〈〉 : 1
Γ ` V : 1 Γ ` W : A′[〈〉/z]
Γ ` pm V as 〈〉 in W : A′[V/z]

Γ ` V : 1 Γ; ∆[〈〉/z] ` K : B[〈〉/z]
Γ; ∆[V/z] ` pm V as 〈〉 in K : B[V/z]

Γ ` V1 : A1 Γ ` V2 : A2[V1/x]
Γ ` 〈V1, V2〉 : Σx:A1A2

Γ ` V : Σx:A1A2 Γ, x : A1, y : A2 ` W : A′[〈x, y〉/z]
Γ ` pm V as 〈x, y〉 in W : A′[V/z]

Γ ` V : Σx:A1A2 Γ, x : A1, y : A2; ∆[〈x, y〉/z] ` K : B[〈x, y〉/z]
Γ; ∆[V/z] ` pm V as 〈x, y〉 in K : B[V/z]

Γ ` V : A
Γ ` refl(V) : IdA(V, V)

Γ ` V : IdA(V1, V2) Γ, x : A ` W : A′[x/x′, refl(x)/p]
Γ ` pm V as (refl(x)) in W : A′[V1/x, V2/x

′, V/p]

Γ ` V : IdA(V1, V2)
Γ, x : A; ∆[x, x/x′, refl(x)/p] ` K : B[x/x′, refl(x)/p]

Γ; ∆[V1/x, V2/x
′, V/p] ` pm V as (refl(x)) in K : B[V1/x, V2/x

′, V/p]

{Γ; ∆ ` Ki : Bi}1≤i≤n

Γ; ∆ ` λiKi : Π1≤i≤nBi

Γ; ∆ ` K : Π1≤i≤nBi

Γ; ∆ ` i‘K : Bi

Γ, x : A; ∆ ` K : B
Γ; ∆ ` λxK : Π(F (x:A)B

Γ ` V : A Γ; ∆ ` K : Π(F (x:A)B

Γ; ∆ ` V ‘K : B[V/x]

Figure 5.4: Values and computations of dCBPV-. To aid legibility, we have left
implicit one of the obvious assumptions Γ, z : A′′ ` A′ vtype, Γ, z : A′′ ` B ctype,
Γ, x, x′ : A, p : IdA(x, x′) ` A′ vtype and Γ, x, x′ : A, p : IdA(x, x′) ` B ctype, in each of
the rules for forming pattern matching eliminators pm V as R in S for values V of type
A′′.

semantics. They may not be suitable for an implementation, however, as they can

(in the presence of Π-types, c.f. section 5.6) make type checking undecidable for

the usual reasons [20]. The syntax and semantics can just as easily be adapted to

5. Dependently Typed Call-by-Push-Value (dCBPV) 197

pm refl(V) as (refl(x)) in R = R[V/x] R[V1/x, V2/y, V/z] #w= pm V as (refl(w)) in R[w/x,w/y, refl(w)/z]

Figure 5.5: Equations for terms involving reflexivity witnesses. Again, these rules
should be read as equations of typed terms in context: they are assumed to hold if we can
derive that both sides of the equation are terms of the same type in the same context.

CBV type CBPV type CBV term CBPV term
Γ ` A[M/x] type UF Γv ` Av[(thunk M v)∗/x] vtype x1 : A1, . . . , xm : Am x1 : Av1, . . . , xm : Avm[. . . tr xi/zi . . .]

`M : A ; · `M v : F (Av[tr x1/z1, . . . , tr xn/zn])
x return x
let x be M in N M v to x in N v

Σ1≤i≤nAi Σ1≤i≤nA
v
i 〈i,M〉 M v to x in return 〈i, x〉

pm M as 〈i, x〉 in Ni M v to z in (pm z as 〈i, x〉 in N v
i)

Π1≤i≤nAi UΠ1≤i≤nFA
v
i λiMi return thunk (λiM v

i)
i‘N N v to z in (i‘force z)

Πx:AA
′ U(Π(F (x:Av)FA

′v[tr x/z]) λxM return thunk λxM v

M ‘N M v to x in (N v to z in (x‘force z))
1 1 〈〉 return 〈〉

pm M as 〈〉 in N M v to z in (pm z as 〈〉 in N v)
Σx:AA

′ Σx:AvA
′v[tr x/z] 〈M,N〉 M v to x in (N v to y in return 〈x, y〉)

pm M as 〈x, y〉 in N M v to z in (pm z as 〈x, y〉 in N v)
IdA(M,N) IdUFAv(thunk M v, refl(M) M v to z in return refl(tr z)

thunk N v) pm M as (refl(x)) in N M v to z in (pm z as (refl(y)) in
(force y to x in N v))

Figure 5.6: A translation of dependently typed CBV into dCBPV. We write tr as
an abbreviation for thunk return , UF Γ := z1 : UFA1, . . . , zn : UFAn for a context
Γ = x1 : A1, . . . , xn : An and V ∗ for thunk (force z1 to x1 in . . . force zn to xn in force V).

CBN type CBPV type CBN term CBPV term
Γ ` B[M/x] type UΓn ` Bn[thunk M/x] ctype x1 : B1, . . . , xm : Bm `M : B x1 : UBn

1 , . . . , xm : UBn
m; · `Mn : Bn

x force x
let x be M in N let x be (thunk Mn) in Nn

Σ1≤i≤nBi FΣ1≤i≤nUB
n
i 〈i,M〉 return 〈i, thunk Mn〉

pm M as 〈i, x〉 in Ni Mn to z in (pm z as 〈i, x〉 in Nn
i)

Π1≤i≤nBi Π1≤i≤nB
n
i λiMi λiM

n
i

i‘M i‘Mn

Πx:BB
′ Π(F (x:UBn)B

′n λxM λxM
n

N ‘M (thunk Nn)‘Mn

1 F1 〈〉 return 〈〉
pm M as 〈〉 in N Mn to z in (pm z as 〈〉 in Nn)

Σx:BB
′ F (Σx:UBnUB

′n) 〈M,N〉 return 〈thunk Mn, thunk Nn〉
pm M as 〈x, y〉 in N Mn to z in (pm z as 〈x, y〉 in Nn)

IdB(M,M ′) F (IdUB(thunk Mn refl(M) return refl(thunk Mn)
, thunk M ′n)) pm M as (refl(x)) in N Mn to z in (pm z as (refl(x)) in Nn)

Figure 5.7: A translation of dependently typed CBN into dCBPV. We write UΓ :=
x1 : UA1, . . . , xn : UAn for a context Γ = x1 : A1, . . . , xn : An.

intensional Id-types, which are the obvious choice for an implementation.

Figures 5.6 and 5.7 indicate the natural candidate CBV and CBN translations

of DTT into dCBPV, where we interpret Σ-types as having a pattern matching

eliminator, as opposed to projection eliminators2.
2To give the translations of projection Σ-types, we would need dependent connectives

generalising Π1≤i≤n on computation types. These are the equivalents of additive Σ-types and

198 5.2. dCBPV without Dependent Kleisli Extensions (dCBPV-)

However, it turns out that without dependent Kleisli extensions, the CBV

translation is not well-defined as it results in untypable terms. The CBN translation

is, but only if we restrict to the weak (non-dependent) elimination rules for Σ1≤i≤n-,

1-, Σ- and Id-types, meaning that the type we are eliminating into does not depend on

the type being eliminated from. For an alternative to the CBV translation, we would

expect the CBV translation to factorise as a translation into a dependently typed

equivalent of Moggi’s’ monadic metalanguage, followed by a translation from this

monadic language into dCBPV. It is, in fact, the former that is ill-defined if we do not

have a principle of Kleisli extensions in our monadic language (or, correspondingly,

in dCBPV). What we can define is a translation from a dependently typed monadic

language (without dependent Kleisli extensions) into dCBPV-. In this case, we can

use the strong (dependent) elimination rules for all positive connectives.

By analogy with the simply typed scenario, it seems very likely that one would

be able to state soundness and completeness results for these translations, if one

used the canonical equational theories for CBV and CBN dependent type theory.

As we are not aware of any such equational theories being described in literature,

one could imagine defining the CBV and CBN equational theory on dependent

type theories through their translations into CBPV.

5.2.2 Categorical Semantics

We have now reached the point in the story that was our initial motivation to study

dependently typed CBPV: its very natural categorical semantics. Note that we

have the following elegant generalization of our reformulated notion of categorical

model for simple CBPV of section 2.2.2.

Definition 5.2.1 (dCBPV- Model). By a categorical model of dCBPV-, we shall

mean the following data.

• an indexed category Bop C−→ Cat of values with full and faithful democratic

comprehension (including an indexed terminal object 1);

they are similarly problematic. We discuss them in section 5.4.

5. Dependently Typed Call-by-Push-Value (dCBPV) 199

• an indexed category Bop D−→ Cat of computations and stacks;

• strong 0,+-types in C such that, additionally, the following induced maps are

bijections:

D(C.Σ1≤i≤nCi)(D,D′) −→ Π1≤i≤nD(C.Ci)(D{pC,〈i,idCi 〉}, D
′{pC,〈i,idCi 〉});

• an indexed adjunction D
�

F

⊥
U

- C;

• Π(F (−)-types in D in the sense of having right adjoint functors −D(pA,B) a

Π(F (B) satisfying the right Beck-Chevalley condition for p-squares;

• finite indexed products (>,&) in D;

• strong Σ-types in C;

• strong extensional Id-types in C3.

Again, this semantics is sound and complete.

Theorem 5.2.2 (dCBPV- Semantics). We have a sound interpretation of dCBPV-

in a dCBPV- model:

[[·]] = · [[Γ; ·]] = F1
[[Γ, x : A]] = [[Γ]].[[A]] [[Γ; nil : B]] = [[B]]
[[Γ ` A]] = C([[Γ]])(1, [[A]]) [[Γ; ∆ ` C]] = D([[Γ]])([[∆]], [[C]])
[[A[V/x]]] = [[A]]{q〈id[[Γ]] ,[[V]]〉,[[Γ′]]} [[B[V/x]]] = [[B]]{q〈id[[Γ]] ,[[V]]〉,[[Γ′]]}
[[UB]] = U [[B]] [[FA]] = F [[A]]
[[Σ1≤i≤nAi]] = (·([[A1]] + [[A2]]) + · · ·) + [[An]]) [[Π1≤i≤nBi]] = (·([[B1]]&[[B2]])& · · ·)&[[Bn]])
[[Σx:AA

′]] = Σ[[A]] [[A′]] [[Π(F (x:A)B]] = Π(F ([[A]])[[B]]
[[1]] = 1
[[IdA(V, V ′)]] = Id[[A]]{〈〈id[[Γ]] , [[V]]〉, [[V ′]]〉},

together with the obvious interpretation of terms. The interpretation in such

categories is complete in the sense that an equality of terms of types holds in all

interpretations iff it is provable in the syntax of dCBPV-. In fact, the interpretation
3In case we work with intensional Id-types, we should add the additional condition, which corre-

sponds to pattern matching for stacks, that says that the canonical mapD(A.A′.A′.IdA′)(B,B′) −→
D(A.A′)(B{〈diagA,A′ , refl(A′)〉}, B′{〈diagA,A′ , refl(A′)〉}) is a retraction. This map is automatically
an isomorphism in our case of extensional Id-types.

200 5.2. dCBPV without Dependent Kleisli Extensions (dCBPV-)

defines a 1-1 correspondence between categorical models and syntactic theories in

dCBPV- which satisfy mutual soundness and completeness results.

Proof (sketch). The proof goes almost entirely along the lines of the soundness

and completeness proofs for linear dependent type theory in chapter 3. Nothing

surprising happens in the soundness proof. For the completeness result, we build a

syntactic category.

Performing the CBN translation in the semantics, this leads to an induced

notion of model for CBN dependent type theory.

Theorem 5.2.3 (Dependent CBN Semantics 1). The (semantic equivalent of the)

CBN translation of DTT with Σ1≤i≤n-, 1-, Σ-, Id-, Π1≤i≤n-, Π-types, where we

use the weak (non-dependent) elimination rules for all positive connectives, into

dCBPV-, lets us construct a categorical model of CBN dependent type theory with

the connectives above out of any model of dCBPV- by taking the co-Kleisli (indexed)

category for ! := FU . The interpretation of CBN dependent type theory is sound

and complete for the equational theory induced from dCBPV-:

[[B1, · · · , Bn ` B]] = D(U [[B1]]. · · · .U [[Bn]])(F1, [[B]]) ∼= D!(U [[B1]]. · · · .U [[Bn]])(>, [[B]]).

We note that this co-Kleisli category, our notion of a model of CBN dependent

type theory, is very close to the usual notion of a model of pure DTT. (We have

seen this in chapter 4, in the context of CBN game semantics!) We note that

even if we start with extensional Id-types in dCBPV-, we may obtain intensional

Id-types in dependent CBN.

Theorem 5.2.4 (Dependent CBN Categories). The co-Kleisli category D! is an

indexed category with full and faithful (possibly undemocratic) comprehension with

fibred finite products Π1≤i≤n as well as Π(F (−)-types. It supports weak Σ1≤i≤n-, Σ-

and Id-types (non-dependent elimination rules, failure of the general η-rules).

5. Dependently Typed Call-by-Push-Value (dCBPV) 201

Proof. ! being an indexed comonad, it follows that D! is an indexed category. D!

satisfies the comprehension axiom in the sense that we have homset isomorphism

D!(Γ′)(>, B{f}) = D(Γ′)(FU>, B{f})

∼= D(Γ′)(F1, B{f})

∼= C(Γ′)(1, U(B{f}))

= C(Γ′)(1, U(B){f})

∼= B/Γ(f,pΓ,UB).

As the comprehension functorD!(Γ)(B,B′) ∼= C(Γ)(UB,UB′) −→ B/Γ(pΓ,UB,pΓ,UB′)

is a special case of the comprehension functor for C, we know it to be full and

faithful. Note that the comprehension may be undemocratic as D!(·) is equivalent

to the full subcategory of C on the objects in the image of U , which may give a

proper subcategory of C(·) ∼= B.

We know from the simply typed case that fibre-wise products in D give rise to

products in D!. These are stable under change of base, by assumption.

Note that Π-types directly follow as a special case of Π(F (−)-types in D:

D!(Γ.UA)(B{pΓ,UA}, C) = D(Γ.UA)(FU(B{pΓ,UA}), C)

= D(Γ.UA)((FUB){pΓ,UA}, C)

∼= D(Γ)(FUB,Π(F (UA)C)

= D!(Γ)(B,Π(F (UA)C).

For Σ-types, we note that we have maps back and forth, given by the unit and

counit of the adjunction between F and U which satisfy a β-law given by one of

202 5.2. dCBPV without Dependent Kleisli Extensions (dCBPV-)

the triangle identities for the adjunction:

D!(Γ.UA)(B,C{pΓ,UA}) = D(Γ.UA)(FU(B), C{pΓ,UA})

∼= C(Γ.UA)(UB,U(C{pΓ,UA}))

= C(Γ.UA)(UB, (UC){pΓ,UA})

∼= C(Γ)(ΣUAUB,UC)

∼= D(Γ)(FΣUAUB,C)

� D(Γ)(FUFΣUAUB,C)

= D!(Γ)(FΣUAUB,C).

The same argument gives us the corresponding statement for Σ1≤i≤n- and Id-types,

using their definition as left adjoint functors.

We postpone the categorical discussion of models for dependently typed CBV

until we add dependent Kleisli extensions to dCBPV- in section 5.3. For now, we

would just like to point out that C equipped with the indexed monad T := UF

defines what should be regarded as a model of a dependently typed equivalent of

Moggi’s monadic metalanguage, without dependent Kleisli extensions.

Theorem 5.2.5 (Dependent monadic metalanguage models). Given a model C � D

of dCBPV-, T := UF defines an indexed monad on C, which has a generalized

notion of strength ΣATB
sA,B−→ TΣAB.

Proof. As F a U is an indexed adjunction, T is an indexed monad. We note that,

starting from idΣAB, we can obtain a generalised notion of strength for T :

C(Γ)(ΣAB,ΣAB) ∼= C(Γ.A)(B, (ΣAB){pΓ,A})
T−→ C(Γ.A)(TB, T (ΣAB){pΓ,A})

= C(Γ.A)(TB, (TΣAB){pΓ,A})

∼= C(Γ)(ΣATB, TΣAB).

In particular (for the case where Γ = ·, using full and faithful comprehension), we

get Γ.TA −→ T (Γ.A) ∈ B.

5. Dependently Typed Call-by-Push-Value (dCBPV) 203

Remark 5.2.6. Note that we cannot, in general, define a costrength ΣTAB −→

TΣAB{pΓ,ηA} or, therefore, a pairing ΣTATB −→ TΣAB{pΓ,ηA}. This asymmetry

does not occur in the simply typed setting. It can be mended by the addition of

Kleisli extensions for dependent functions.

In the simply typed setting, one can factor the CBV translation from the λ-

calculus into CBPV through the monadic metalanguage. While the translation from

the dependently typed monadic metalanguage with dependent Kleisli extensions in

dCBPV- works fine, we cannot define the obvious CBV translation from dependent

type theory into the dependently typed monadic metalanguage, unless we have

dependent Kleisli extensions.

5.2.3 Some Basic Models

We can first note that any model of pure dependent type theory is, by using the

identity adjunction, in particular, a model of dependently typed CBPV, which

shows consistency of the calculus.

Theorem 5.2.7. dCBPV- is consistent both in the sense that not all terms are

identified and in the sense that not all types are inhabited.

More interestingly, any model of the dependent LNL calculus supporting the

appropriate connectives (see chapter 3) gives rise to a model of dependently typed

CBPV without dependent Kleisli extensions, modelling commutative effects.

Theorem 5.2.8. The notion of model given by section 3.3 for the dLNL calculus of

[78] with the additional connective of finite disjunctions for cartesian types (indexed

finite distributive coproducts in C) is precisely a dCBPV- model such that we have

symmetric monoidal closed structures (I,⊗,() on the fibres of D, stable under

change of base, (D is an indexed symmetric monoidal closed category) s.t. F consists

of strong symmetric monoidal functors (sending nullary and binary products in C

to I and ⊗ in D) and which supports Σ⊗F (−)-types (see section 5.6).

204 5.2. dCBPV without Dependent Kleisli Extensions (dCBPV-)

As in the simply typed setting, models of pure DTT on which we have an

indexed monad are again a source of examples of dCBPV- models. This shows

that dCBPV- is compatible with a wide range of effects.

Theorem 5.2.9. Let Bop C−→ Cat be a model of pure DTT (with all type formers

discussed) on which we have an indexed monad T . Then, the indexed Eilenberg-

Moore adjunction C � CT gives a model of dCBPV-.

Proof. A product of algebras is just the product of their carriers equipped with the

obvious algebra structure. Indeed, it is a basic result in category theory that the

forgetful functor from the Eilenberg-Moore category creates limits. Given an object

TB
k−→ B of CT (Γ.A), we note that we also obtain a canonical T -algebra structure

on Π-types of carriers (starting from the identity on ΠAB):

C(Γ)(ΠAB,ΠAB) ∼= C(Γ.A)((ΠAB){pΓ,A}, B)
T−→ C(Γ.A)(T ((ΠAB){pΓ,A}), TB)

∼= C(Γ.A)((TΠAB){pΓ,A}, TB)
−;k−→ C(Γ.A)((TΠAB){pΓ,A}, B)

∼= C(Γ)(TΠAB,ΠAB).

We leave the verification of the T -algebra axioms to the reader. We define the

result to be Π(F (A)k. Note that it is precisely defined so that, for an algebra

TC
l−→ C, the isomorphism C(Γ.A)(C{pΓ,A}, B) ∼= C(Γ)(C,ΠAB) restricts to

CT (Γ.A)(l{pΓ,A}, k) ∼= CT (Γ)(l,Π(F (A)k).

A concrete example to which we can apply the previous theorem is obtained for

any monad T on Set. Indeed, we can lift T (point-wise) to an indexed monad on

the usual families of sets model Fam(Set) of pure DTT4. In a different vein, given a

model C of pure DTT, the usual exception ((−) + E), global state (S ⇒ (−× S)),

reader (S ⇒ (−)), writer ((−)×M) and continuation monads (((−)⇒ R)⇒ R),

which we form using objects of C(·), and, if we are dealing with a higher-order
4Recall that Fam(Set) is defined as the restriction to Set ⊆ Cat of the (Cat-enriched) hom-functor

into Set: Setop ⊆ Catop Cat(−,Set)−→ Cat.

5. Dependently Typed Call-by-Push-Value (dCBPV) 205

Transitions
pm refl(V!nf) as (refl(x)) in M , K ; pm refl(Vnf) as (refl(x)) in M , K
pm refl(Vnf) as (refl(x)) in M , K ; M [Vnf/x] , K

Terminal Configuration
pm V x′

nf as (refl(x)) in M , K

Figure 5.8: The additional transition and terminal configuration that specify the
operational behaviour of identity witnesses.

logic, power set monad P(−) give rise to indexed monads, hence we obtain models

of dCBPV-. More exotic examples are the many indexed monads that arise from

homotopy type theory, like truncation modalities or cohesion (shape and sharp)

modalities [89, 114, 115]. A caveat there is that the identity types in the model are

intensional and that many equations are often only assumed up to propositional

rather than judgemental equality.

5.2.4 Operational Semantics and Effects

We define an operational semantics for dCBPV-. It is a basic result in dependent type

theory that the (parallel nested) β-reductions for values are strongly normalizing

[68] (according to a variation on Tait’s logical relations argument). Let us write

again, Vnf for the normal form of a value V and V!nf to make explicit that V is not

in normal form. We again define a configuration to be a pair M,K of a dCBPV-

computation Γ; · ` M : B and a stack Γ; nil : B ` K : C. The CK-machine that

evaluates our computations is again just that of figure 2.12 where we add the extra

transitions and terminal configuration of figure 5.8. As before, we can add the effects

of figure 2.13 together with their operational semantics of figures 2.14 and 2.15

and equations of figure 2.17. We get the same determinism, strong normalization

and subject reduction results as in the simply typed case.

Theorem 5.2.10 (Determinism, Strong Normalization and Subject Reduction).

Every transition respects the type of the configuration. No transition occurs precisely

if we are in a terminal configuration. In absence of erratic choice, at most one

transition applies to each configuration. In absence of divergence and recursion,

every configuration reduces to a terminal configuration in a finite number of steps.

206 5.2. dCBPV without Dependent Kleisli Extensions (dCBPV-)

Proof. The important observation will be that types only depend on values. There-

fore, the only real difference in this proof from the simply typed case are the rules

involving the reduction of values.

We recall from [68] that value types are closed under the untyped β-reductions

for values. (This result applies as values form a conventional cartesian dependent

type theory.) This implies that Γ ` V!nf = Vnf : A for any Γ ` V!nf : A. Therefore, it

follows that Γ ` B[V!nf/x] = B[Vnf/x] for any Γ, x : A ` B ctype. It follows that

the rules involving value normalization also satisfy subject reduction.

As all transitions are defined on untyped terms, determinism and strong

normalization results are no different from the simply typed case.

Remark 5.2.11 (Type Checking). While the operational semantics discussed here

is very relevant as it describes the execution of a program of dCBPV-, one could

argue that a type checker is as important an operational aspect to the implementation

of a dependent type theory. We leave the description of a type checking algorithm to

future work. We note that the core step in the implementation of a type checker is

a normalization algorithm for directed versions (from left to right) of the equations

for values of figures 2.9 and 5.5 (with congruence laws) and perhaps some equations

for values induced from computation equations of figure 2.17 and from the specific

equational theories for the effects under consideration, as this would give us a

normalization procedure for types. One might be able to construct such an algorithm

using normalization by evaluation by combining the techniques of [116] and [117].

Our hope is that this will lead to a proof of decidable type checking of the system

at least in absence of the η-law for Id-types. We note that the complexity of a type

checking algorithm can vary widely depending on which equations we include for

specific effects. The idea is that one only includes a basic set of program equations

as judgemental equalities to be able to decide type checking and one postulates other

equations as propositional equalities, which can be used for manual or tactic-assisted

reasoning about effectful programs.

5. Dependently Typed Call-by-Push-Value (dCBPV) 207

Γ, z : UFA,Γ′ ` B ctype Γ; · `M : FA Γ, x : A,Γ′[tr x/z]; · ` N : B[tr x/z]
Γ,Γ′[thunk M/z]; · `M to x in N : B[thunk M/z].

Figure 5.9: The rule for dependent Kleisli extensions in dCBPV. As before, we write
tr as an abbreviation for thunk return .

5.3 dCBPV with Dependent Kleisli Extensions
(dCBPV+)

While the system dCBPV- is very clean in its syntax, operational semantics,

categorical semantics and admits plenty of concrete models, it may be a bit of a

disappointment to the reader who was expecting to see a proper combination of

effects and dependent types, rather than a system that keeps both features side

by side without them interacting meaningfully5. In particular, one might find it

unsatisfactory that the CBV translation from dependent type theory into dCBPV-

fails and that the CBN translation only goes through to a limited extent.

To address these issues, we introduce a more expressive system in this section

which we call dCBPV+ and which extends dCBPV- with Kleisli extensions for

dependent functions. We shall later discuss, in section 5.5, whether such dependent

Kleisli extensions are desirable.

5.3.1 Syntax

We have seen the need to add dependent Kleisli extensions in the form of the rule

shown in figure 5.9 if we want to obtain a dependently typed equivalent of the

CBV translation into CBPV or if we want to model dependent elimination rules

for the positive connectives in the CBN translation. We use the name dCBPV+

to explicitly refer to the resulting system of the rules of dCBPV- (figures 5.2, 5.3,

5.4, 2.9 and 5.5) and dependent Kleisli extensions (figure 5.9).

We note that, in the presence of this extra rule, the translations of figures

5.6 and 5.7 are finally well-defined. We would like to highlight the fact that a

type x1 : A1, . . . , xn : An ` A type gets translated into a type z1 : UFA1, . . . , zn :
5As we shall discuss later, this is not entirely fair on dCBPV-, as it does allow us to form types

(predicates) depending on thunks of effectful computations.

208 5.3. dCBPV with Dependent Kleisli Extensions (dCBPV+)

UFAn ` Av vtype by the CBV translation. Briefly, this is necessitated by the CBV

translation of substitution of terms in types. For example, to substitute a term

x : B ` M : A into x : A ` C type in the CBV translation, we have to be able

to substitute (x : B)v; · ` M v : FA (or equivalently (x : B)v ` thunk M v : UFA)

into (x : A)v ` Cv vtype. This forces us to define the CBV translation (x : A)v

of an identifier declaration in the context of a type well-formedness judgement

as z : UFA if we are to use the usual type substitution of CBPV (after taking

the Kleisli extension of thunk M v).

We would like to say that the CBV and CBN translations are sound and

complete. However, as no notion of a CBV or CBN equational theory has been

formulated for dependent type theory, as far as we are aware, we take the equational

theories induced by these translations as their definitions. Unsurprisingly, Σ-types

behave equationally exactly like ×-types and Π(F (−)-types do as F(-types. The

interesting connective to study is the Id-type.

Theorem 5.3.1. Figures 5.6 and 5.7 define CBV and CBN translations of depen-

dent type theory with Σ1≤i≤n-, 1-, Σ-, Id-, Π1≤i≤n- and Π-types (with dependent

elimination rules for all positive connectives) into dCBPV+. In fact, they allow

us to transfer an arbitrary theory in CBV or CBN dependent type theory to one

on dCBPV+ such that we again get well-defined CBV and CBN translations. As

expected, CBN Id-types (even extensional ones) satisfy the β-law but may not satisfy

the η-law. More surprising, perhaps, is that the same is true for CBV Id-types.

Proof. It is easily seen that dependent Kleisli extensions make the translations of

figures 5.6 and 5.7 well-defined.

In the previous section, we have already seen the statement about CBN Id-

types in case we use a non-dependent elimination rule. The case with a dependent

elimination rules works similarly.

5. Dependently Typed Call-by-Push-Value (dCBPV) 209

The interesting case here are the Id-types in the CBV translation. For the β-rule,

note that

(pm refl(M) as (refl(x)) in N)v =

((M v) to z in return refl(tr z)) to ζ in pm ζ as (refl(y)) in (force y) to x in N v =

M v to z in pm refl(tr z) as (refl(y)) in (force y) to x in N v =

M v to z in (force thunk return z) to x in N v =

M v to z in (return z) to x in N v =

M v to x in N v =

(let x be M in N)v.

To see that the η-rule may fail, consider dCBPV+ with divergence. We note that

in case the η-law held for Id-types in CBV type theory, it would imply the following

principle of reflection [28]:

x1 : A1, . . . , xn : An ` P : IdA(M,N)
x1 : A1, . . . , xn : An `M = N : A,

which, in dCBPV+ translates to the rule that

x1 : Av1, . . . , xn : Avn[. . . tr xi/zi . . .]; · ` P : F IdAv(thunk M v∗, thunk N v∗)
x1 : Av1, . . . , xn : Avn[. . . tr xi/zi . . .]; · `M v = N v : FAv,

In particular, presence of divergence would make CBV type theory identify all

terms in that case. In particular, this would mean that the terms x : Av, y : Av; · `

return x : FAv and x : Av, y : Av; · ` return y : FAv are judgementally equal in

dCBPV+ with divergence, which they clearly are not. For a formal proof that they

are not, we note that we can see this in the families of domains model given in

section 5.3.3. For a more syntactic intuition, we note that Id-η is less harmful in

CBPV with effects than it is in CBV or CBN with effects due to the strict distinction

between values and computations, as the obvious reflection rule it implies is the

following which does not identify all terms in the presence of divergence, as it does

not trivially let us satisfy the hypothesis of the rule, in the way it did in CBV type

theory, given that divergence is a computation and not a value.

Γ ` V : IdA(V1, V2)
Γ ` V1 = V2 : A.

210 5.3. dCBPV with Dependent Kleisli Extensions (dCBPV+)

5.3.2 Categorical Semantics

To formulate a categorical semantics of dCBPV+, we need a dependently typed

generalization of the notion of Kleisli triple. A similar notion of dependently typed

Kleisli extension has been proposed before in [89] (section 7.7), be it for a more

limited class of modalities. In practice, we shall see that, for a given indexed

adjunction, dependent Kleisli extensions may not exist.

Definition 5.3.2 (dCBPV+ Model). By a dCBPV+ model, we shall mean a

dCBPV- model F a U : C � D equipped with dependent Kleisli extensions.

That is, maps

C(Γ.A.Γ′{pΓ,ηA})(1, UB{qpΓ,ηA ,Γ
′}) (−)∗−→ C(Γ.UFA.Γ′)(1, UB),

where η is the unit of the adjunction F a U , such that the following laws hold for

members of the same homset:

• unitality: b∗{qpΓ,ηA ,Γ
′} = b;

• composition: b∗{q〈idΓ,a∗〉,Γ′} = (b∗{q〈idΓ,a〉,Γ′})∗;

• agreement with the usual non-dependent Kleisli extension (−)? for the ad-

junction F a U :

C(Γ)(A,UB)
∼=- C(Γ.A)(1, UB{pΓ,A}) = C(Γ.A)(1, UB{pΓ,UFA}{pΓ,ηA})

C(Γ)(UFA,UB)

(−)?

? ∼= - C(Γ.UFA)(1, UB{pΓ,UFA}).

(−)∗

?

Remark 5.3.3. Note that it is enough to just specify the dependent Kleisli extensions

of the form

C(Γ.A.Γ′{pΓ,ηA})(1, UFA′{qpΓ,ηA ,Γ
′}) (−)∗−→ C(Γ.UFA.Γ′)(1, UFA′).

Then, we can define, more generally, f ∗ := λx:Γ.UFA.Γ′(f ; ηUB)∗{x};UεB(x), where η

is the counit of the adjunction F a U .

5. Dependently Typed Call-by-Push-Value (dCBPV) 211

Remark 5.3.4 (Dependent Costrength). Note that dependent Kleisli extensions

allow us, in particular, to define the dependent costrength s′A,B for the monad

T := UF that we were missing (starting from the identity on FΣA(B{pΓ,ηA})):

D(Γ)(FΣA(B{pΓ,ηA}), FΣA(B{pΓ,ηA}))

∼= C(Γ)(ΣAB{pΓ,ηA}, TΣA(B{pΓ,ηA}))

∼= C(Γ.A.B{pΓ,ηA})(1, TΣA(B{pΓ,ηA}){pΓ,A}{pΓ.A,B{pΓ,ηA}})

∼= C(Γ.A.B{pΓ,ηA})(1, TΣA(B{pΓ,ηA}){pΓ,TA}{pΓ.TA,B}{qpΓ,ηA ,B
})

(−)∗−→ C(Γ.TA.B)(1, TΣA(B{pΓ,ηA}){pΓ,TA}{pΓ.TA,B})

∼= C(Γ)(ΣTAB, TΣA(B{pΓ,ηA})).

As a consequence, we are able to define both a left and a right pairing (which will in

general not coincide for non-commutative effects):

ΣTATB
s′
- TΣATB{pΓ,ηA}

Ts
- T 2ΣAB{pΓ,ηA}

µ
- TΣAB{pΓ,ηA}

ΣTATB
s

- TΣTAB
Ts′
- T 2ΣAB{pΓ,ηA}

µ
- TΣAB{pΓ,ηA}.

Theorem 5.3.5 (dCBPV+ Semantics). We have a sound interpretation of dCBPV+

in a dCBPV+ model. The interpretation in such categories is complete in the sense

that an equality of values or computations holds in all interpretations iff it is provable

in the syntax of dCBPV+. In fact, the interpretation defines a 1-1 correspondence

between categorical models and syntactic theories in dCBPV+ which satisfy mutual

soundness and completeness results.

Proof. This follows from theorem 5.2.2 together with the observation that we can

interpret the rule of figure 5.9 by dependent Kleisli extensions combined with

composition. Conversely, we can apply the rule of figure 5.9 with Γ, x : UFA; · `

force x : FA for M to derive the rule for dependent Kleisli extensions.

Theorem 5.3.6 (Dependent CBN Semantics 2). The (semantic equivalent of

the) CBN translation of DTT with Σ1≤i≤n-, 1-, Σ-, Id-, Π1≤i≤n-, Π-types, where

we use the strong (dependent) elimination rules for all positive connectives, into

dCBPV+, lets us construct a categorical model of CBN dependent type theory with

212 5.3. dCBPV with Dependent Kleisli Extensions (dCBPV+)

the connectives above out of any model of dCBPV+ by taking the co-Kleisli category

for ! = FU . The interpretation of CBN dependent type theory is sound and complete

for the equational theory induced from dCBPV+:

[[B1, · · · , Bn ` B]] = D(U [[B1]]. · · · .U [[Bn]])(F1, [[B]]) ∼= D!(U [[B1]]. · · · .U [[Bn]])(>, [[B]]).

Theorem 5.3.7 (Dependent CBV Semantics). The (semantic equivalent of the)

CBV translation of DTT with Σ1≤i≤n-, 1-, Σ-, Id-, Π1≤i≤n-, Π-types, where we use the

strong (dependent) elimination rules for all positive connectives, into dCBPV+, lets

us construct a categorical model of CBV dependent type theory with the connectives

above out of any model of dCBPV+ by taking the Kleisli category for T = UF .

The interpretation of CBN dependent type theory is sound and complete for the

equational theory induced from dCBPV+:

[[A1, · · · , An ` A]] = D([[A1]]. · · · .[[An]]{η[[A1]],...,[[An]]})(F1, F [[A]]{η[[A1]],...,[[An]]})

∼= CT ([[A1]]. · · · .[[An]]{η[[A1]],...,[[An]]})(1, [[A]]{η[[A1]],...,[[An]]}).

Here, η[[A1]],...,[[An]] is inductively defined by

η[[A1]],...,[[Ak]] := qη[[A1]],...,[[Ak−1]] ,[[Ak]] ; p[[UFA1]].··· .[[UFAk−1]],η[[Ak]] .

Remark 5.3.8. We have finally arrived at a notion of a model for CBV dependent

type theory. It seems much less straightforward than the corresponding notion of a

model for CBN dependent type theory as a particular kind of model of pure dependent

type theory in which the η-laws for positive connectives may fail. Then again, a

similar phenomenon is already seen in the simply typed case.

5.3.3 Some Basic Models and Non-Models

As for dCBPV-, we can note that the identity adjunction on any model of pure

DTT (in particular, the families of sets model) gives a model of dCBPV+, which

demonstrates consistency.

Theorem 5.3.9 (Consistency). dCBPV+ is consistent both in the sense that not

all terms are identified and in the sense that not all types are inhabited.

5. Dependently Typed Call-by-Push-Value (dCBPV) 213

Indeed, the identity monad on any model of DTT trivially admits dependent

Kleisli extensions.

However, as we shall see, it is not the case that any model of dCBPV- extends

to a model of dCBPV+. In particular, not every indexed monad on a model of

pure DTT admits dependent Kleisli extensions. As it turns out, the existence of

dependent Kleisli extensions needs to be assessed on a case-by-case basis. As we

shall see, in the case of various set-theoretic models, dependent Kleisli extensions

naturally lead to certain subtyping conditions as a necessary requirement which

can’t always be satisfied. Therefore, we treat some dCBPV- models for common

effects and discuss the (im)possibility of dependent Kleisli extensions.

5.3.3.1 A Non-Model and A Model: Writing

We let B be Set and C be Fam(Set). Let M be a non-trivial monoid, for instance

a monoid of strings of ASCII characters. Then, we let D be the Eilenberg-Moore

category for the indexed monad − ×M . Now, we note that dependent Kleisli

extensions do not have a sound interpretation in this model of dCBPV-. Indeed,

it would amount to giving appropriate maps

Fam(Set)(Γ.A)(1, B{〈idΓ, idA, 1M〉} ×M) (−)∗
- Fam(Set)(Γ.(A×M))(1, B ×M)

Π〈c,a〉∈Γ.AB(c, a, 1M)×M (−)∗
- Π〈c,a,m〉∈Γ.(A×M)B(c, a,m)×M

f = 〈fB, fM〉 - λc,a,m〈?, fM (c, a) ∗m〉.

We see that this is not always possible. For instance, let Γ = 1 = A and let

B be a predicate that expresses that m = 1M (a predicate which says that no

printing happens). In that case, any f ∗ cannot be a total function as it cannot

send, for instance, (∗, ∗, hello world) anywhere.

We would like to stress that this does not show that dependent Kleisli extensions

are incompatible with printing. Indeed, it only shows that this particular model

of printing does not admit dependent Kleisli extensions. One could conceive of,

for example, a model of printing where types depending on TA are not allowed

to refer to what is being printed, in which case we could define f ∗(c, a,m) :=

214 5.3. dCBPV with Dependent Kleisli Extensions (dCBPV+)

〈fB(c, a), fM(c, a) ∗ m〉. More generally, such a definition could work if, for all

m ∈ M , B(c, a, 1M) ⊆ B(c, a,m).

A concrete instantiation of this idea can be given by considering the setoid

model of dependent type theory instead [27], which has as objects sets with an

equivalence relation, as morphisms functions which send equivalent elements to

equivalent elements and as dependent types equivalence respecting families. Note

that any monoid M in Set can be equipped with the codiscrete equivalence relation

which identifies all elements to give a monoid internal to the category of setoids.

This, in turn, defines an indexed monad −×M on the setoid model of type theory,

which lets us model printing. Note that in this case, predicates cannot distinguish

between functions with the same input output behaviour but different printing

behaviour. The result is a model of dCBPV+ which models printing (which happens

to have intensional Id-types). However, note that from the point of view of the

identity types, M only appears to have one element (although the judgemental

equality can distinguish between the elements of M).

5.3.3.2 A Non-Model: Reading

We let B be Set and C be Fam(Set). Let S be some non-trivial set (that is, not 0

or 1), which we think of as a set of states for a storage cell. Then, we let D be

the Eilenberg-Moore category for the indexed monad (−)S. Now, we note that

dependent Kleisli extensions do not have a sound interpretation in this model of

dCBPV-. Indeed, it would amount to giving appropriate maps

Fam(Set)(Γ.A)(1, B{λs〈idΓ, idA〉}S) (−)∗
- Fam(Set)(Γ.(AS))(1, BS)

Π〈c,a〉∈Γ.AB(s 7→ 〈c, a〉)S (−)∗
- Π(s 7→〈c,as〉)∈Γ.(AS)B(s 7→ 〈c, as〉)S

f - λs 7→〈c,as〉λs′?.

We see that this is not always possible. For instance, let Γ = 1 and A = 2 and let

B be a predicate that expresses that s 7→ 〈∗, as〉 is constant. In that case, any f ∗

cannot be a total function as it cannot send a non-constant s 7→ 〈∗, as〉 anywhere.

5. Dependently Typed Call-by-Push-Value (dCBPV) 215

If we want to define, as usual, f ∗(s 7→ 〈c, as〉)(s′) := f(c, as′)(s′), we require

that for all fixed s′ ∈ S, B(s 7→ 〈c, as′〉) ⊆ B(s 7→ 〈c, as〉), which is easily seen

to be equivalent to B being constant on AS.

5.3.3.3 A Non-Model: Global State

Similarly, for global state, we let B be Set and C be Fam(Set) and we take

T := (− × S)S, where S is a non-trivial set, and let D be the Eilenberg-Moore

category for T . Then, dependent Kleisli extensions would amount to appropriate

maps

Fam(Set)(Γ.A)(1, (B{λs〈idΓ, idA〉} × S)S) (−)∗
- Fam(Set)(Γ.((A× S)S))(1, (B × S)S)

Π〈c,a〉∈Γ.A(B(s 7→ 〈c, a, s〉)× S)S (−)∗
- Π(s 7→〈c,as,ts〉)∈Γ.((A×S)S)(B(s 7→ 〈c, as, ts〉)× S)S

f - λs 7→〈c,as,ts〉λs′?.

Now, B could express the property that as = a (as is independent of s) and

ts = s. In that case, no such dependent Kleisli extension exists.

One could imagine a different model of global state, however, in which, for

every fixed s′ ∈ S, B(s 7→ 〈c, as′ , s〉) ⊆ B(s 7→ 〈c, as, ts〉). In that case, one

could define as one normally (for non-dependent Kleisli extensions) would f ∗(s 7→

〈c, as, ts〉)(s′) := f(c, as′)(s′). At present, it is not clear to the author if non-trivial

models along these lines exist.

5.3.3.4 A Model: Exceptions or Divergence

We consider a model for exceptions or divergence, where we use the monad T =

E + (−) on Fam(Set), for some fixed set E whose elements we think of as either

exceptions or, perhaps, in the case of E = 1, divergence. We let B be Set and

C be Fam(Set) and we take for D the Eilenberg-Moore category for T . In this

216 5.3. dCBPV with Dependent Kleisli Extensions (dCBPV+)

case, we in fact have maps

Fam(Set)(Γ.A)(1, E +B{〈idΓ, inr〉}) (−)∗
- Fam(Set)(Γ.(E + A))(1, E +B)

Π〈c,a〉∈Γ.AE +B(c, inr a) (−)∗
- Π〈c,t〉∈Γ.(E+A)E +B(c, t)

f - λc[inl, f(c,−)].

These are easily seen to give a sound interpretation of dependent Kleisli extensions.

They indeed model the propagation of exceptions one would expect.

5.3.3.5 A Dubious Model: Erratic Choice

We consider a model for erratic choice, where we use the powerset monad T = P on

Fam(Set). We let B be Set and C be Fam(Set) and we take for D the Eilenberg-Moore

category for T . Dependent Kleisli extensions would amount to appropriate maps

Fam(Set)(Γ.A)(1,PB{〈idΓ, x 7→ {x}〉})
(−)∗
- Fam(Set)(Γ.(PA))(1,PB)

Π〈c,a〉∈Γ.APB(c, {a}) (−)∗
- Π〈c,t〉∈Γ.(PA)PB(c, t)

f - λc,t?.

We can, in principle, define f ∗(c, t) := (⋃a∈t f(c, a)) ∩B(c, t) to obtain a dependent

Kleisli extension. However, this model might not correspond to the expected

operational semantics. It would be preferable to consider, instead, a model of type

theory C in which it is always the case that ⋃a∈tB(c, {a}) ⊆ B(c, t), in which case

we can just define f ∗(c, t) := ⋃
a∈t f(c, a) (cf. reader monad). At present, it is not

clear to the author how a model with such properties can be constructed.

5.3.3.6 A Puzzle: Control Operators

We consider a dCBPV- model for control operators, where we use a continuation

monad T = R(R−) on Fam(Set), for some non-trivial set R. We let B be Set and

C be Fam(Set) and we take for D the Eilenberg-Moore category for T . Dependent

5. Dependently Typed Call-by-Push-Value (dCBPV) 217

Kleisli extensions would amount to appropriate maps

Fam(Set)(Γ.A)(1, (R(RB{〈idΓ,x 7→evx〉})) (−)∗
- Fam(Set)(Γ.(R(RA)))(1, R(RB))

Π〈c,a〉∈Γ.A(R(RB(c,eva))) (−)∗
- Π〈c,t〉∈Γ.(R(RA))(R

(RB(c,t)))

f - λc,t?.

In order to match the expected operational semantics, it is tempting to try to

define, just as in the simply typed case, f ∗(c, t)(k) := t(λaf(c, a)(k)). However,

this is only well-defined if we have ∀a∈A(c)R
B(c,t) ⊆ RB(c,eva). In particular, we

would have that B(c, eva) = B(c, eva′) for all a, a′ ∈ A(c). This suggests a kind of

incompatibility between control operators and dependent Kleisli extensions. We

would like to further investigate the combination of dCBPV with control operators

in future work, especially given the correspondence with classical logic. In the

light of [101], we already know that the combination of dependent types and

control operators can easily lead to degeneracy of the system (in the sense that

all programs get equated propositionally).

5.3.3.7 A Model: Recursion

Note that the model of the dependent LNL calculus of section 3.5.4 in particular

gives us a model of dCBPV-. The model clearly supports recursion, as we can

define our usual fixpoint combinators. This model is easily seen further to support

dependent Kleisli extensions: similar to our previous model of divergence, for a

dependent function f , we define the Kleisli extension f ∗ as sending the new bottom

element to bottom and otherwise acting as f .

5.3.4 Operational Semantics and Effects

Using the CK-machine, we can again define an operational semantics for dCBPV+.

The definition of the operational semantics does not change in the presence

of dependent Kleisli extensions and is exactly as that described in section 5.2.4.

In particular, figures 2.12 and 5.8 define a CK-machine on which we evaluate the

computations of pure dCBPV+. As before, we can add the effects of figure 2.13

218 5.3. dCBPV with Dependent Kleisli Extensions (dCBPV+)

together with their operational semantics of figures 2.14 and 2.15 and equations of

figure 2.17. We still have the same determinacy and strong normalization results

as before, as the essentially untyped proofs remain valid.

Theorem 5.3.10 (Determinacy, Strong Normalization). No transition occurs

precisely if we are in a terminal configuration. In absence of erratic choice, at most

one transition applies to each configuration. In absence of divergence and recursion,

every configuration reduces to a terminal configuration in a finite number of steps.

However, the results of section 5.3.3 are reflected at the level of the operational

semantics. While for some effects like divergence, exceptions and recursion, subject

reduction can be established, certain subtyping conditions are necessary to obtain

subject reduction in the presence of printing, global state and erratic choice. It is at

present not clear if a these conditions are compatible with, for instance, Π(F (−)-types.

Theorem 5.3.11 (Limited Subject Reduction). In absence of printing, global state

and erratic choice, if the sequence of reductions of a well-typed computation M

passes through a well-typed configuration M,K and later another configuration

M ′, K, then the latter configuration is also well-typed and has the same type as the

former.

Proof. It is easy to see that all transitions preserve the type of a configuration as

for dCBPV-, with the exception of the transitions for M to x in N and return Vnf .

Both involve a stack [·] to x in N :: K which is untypable when x is free in the type

of N . The crux, however, is that these transitions always occur in pairs and, in this

case, two wrongs make a right. Say that we are evaluating a well-typed computation

and that the former transition occurs from M to x in N,K to M, [·] to x in N :: K

where Γ; · ` M to x in N : B[thunk M/z]. After that, several other transitions

may occur, but if we return to another configuration M ′, K, we know that the last

transition that occurred was that from return Vnf , [·] to x in N :: K ; N [Vnf/x], K

(and so, M ′ = N [Vnf/x]).

Our claim is that also Γ; · ` N [Vnf/x] : B[thunk M/z] (if so, then the theorem

follows). The important thing to notice is that, from inversion on Γ; · `M to x in N :

5. Dependently Typed Call-by-Push-Value (dCBPV) 219

Γ; ∆ ` K : B[thunk M/z]
Γ; ∆ ` K : B[thunk (print m . M)/z]

Γ; ∆ ` K : B[thunk Mi′/z]
Γ; ∆ ` K : B[thunk (choosei(Mi))/z]

Γ; ∆ ` K : B[thunk M)/z]
Γ; ∆ ` K : B[thunk (write s . M)/z]

Γ; ∆ ` K : B[thunk Ms′/z]
Γ; ∆ ` K : B[thunk (readtos(Ms))/z]

Figure 5.10: Extra rules that are necessary in dCBPV+ to establish subject reduction
in the presence of printing, global state and erratic choice.

B[thunk M/z], we have that Γ, x : A; · ` N : B[thunk return x/z]. Therefore, it

follows that Γ; · ` N [V/x] : B[thunk return V/z]. Our claim follows by noting that

return V = M as all reductions that could have been applied toM are also equalities

(seeing that the only effects we allow are recursion, divergence and errors, all of

whose transitions are equations, as are β-reductions).

The proof above shows why subject reduction may fail in the presence of printing,

global state and erratic choice: their transitions M,K ;M ′, K of figures 2.14 and

2.15 on computations are not contained in the judgemental equalities we consider

(see figure 2.17) in the sense that not M = M ′. They represent real dynamics.

In this sense, they differ from the other transitions we have considered. In fact,

it is not reasonable to demand such an equality. In particular, in the case of

reading global state and erratic choice, that would lead to all computations of

the same type being equated.

Remark 5.3.12. On closer inspection, however, it seems that what we really needed

to establish subject reduction was an inclusion of computation types, whenever

M,K,m, s;M ′, K,m′, s′,

Γ; ∆ ` K : B[thunk M ′/z]
Γ; ∆ ` K : B[thunk M/z].

The idea is that the type of a computation becomes more determined in the compu-

tation progresses. We list concrete instantiations of this rule in figure 5.10. It is

clear that admissability of these rules is a necessary condition to establish subject

reduction property for dCBPV+ (compare this to the results in section 5.3.3!). What

220 5.4. Dependent Projection Products?

` Γ, z1 : UB1, . . . , zn : UBn ctxt
Γ ` Πz1,...,zn

1≤i≤n Bi ctype
{Γ; · `Mi : Bi[thunk M1/z1, . . . , thunk Mi−1/zi−1]}1≤i≤n

Γ; · ` λiMi : Πz1,...,zn
1≤i≤n Bi

Γ; · `M : Πz1,...,zn
1≤i≤n Bi

Γ; · ` i‘M : Bi[thunk 1‘M/z1, . . . , thunk (i− 1)‘M/zi−1]

Figure 5.11: Rules for dependent projection products. We also demand the obvious β-
and η-laws.

is less clear, is if as adding them to the type system is sufficient, as this complicates

the usual subject reduction proof, which relies on inversion on the typing rules.

5.4 Dependent Projection Products?

It was somewhat surprising, perhaps, that while dependent pattern matching

products arise so naturally in CBPV, dependent projection products seem less

natural. The reader should compare this to the status of additive Σ-types, their

cousins in linear logic, which often fail to be supported in natural models. In

principle, we could include the system of rules of figure 5.11 in dCBPV to replace

Π1≤i≤n-types. This allows us to define the appropriate CBV and CBN translations

for dependent projection products in dCBPV, exactly as one defines the translation

for simple projection products. This translation re-enforces the idea that the CBV

translation of a type x1 : A1, . . . , xn : An ` A type should be z1 : UFAv1, . . . , zn :

UFAvn ` Av vtype. We note that we have CBV and CBN translations of dependent

projection products (which have a dependent/strong elimination principle) even in

dCBPV-. Moreover, we can use the usual operational semantics of computations

of type Π1≤i≤nBi for these types.

Although we can formulate a sound and complete categorical semantics for

dependent projection products (we demand strong n-ary Σ-types in D in the sense

of objects Πdep
1≤i≤nBi such that pΓ,UΠdep1≤i≤nBi

= pΓ.UB1.··· .UBn−1,UBn ; . . . ; pΓ,UB1), many

models fail to support these connectives in practice. In particular, they are hard to

obtain in models of linear logic, where they would give additive Σ-types in the sense

of objects Σ&
AB such that !Σ&

AB
∼= Σ⊗!A!B, and are difficult to give a satisfactory

5. Dependently Typed Call-by-Push-Value (dCBPV) 221

interpretation in models of the monadic metalanguage, where they would correspond

to the construction of a T -algebra structure on ΣUkUl, given l ∈ CT (Γ.Uk).

A related phenomenon is that subject reduction for dependent projection

products can be problematic to establish (for the obvious operational semantics on

untyped terms which is identical to that for Π1≤i≤n-types). We encourage the reader

to think of dependent projection products in a similar way to dependent Kleisli

extensions, as their problems with subject reduction have a similar origin. That is,

they lead to types depending on (thunks of) computations which might not be static

objects during reduction (in the sense that some reductions might not be equalities in

the presence of some effects). In that case, we are faced with a choice, either subject

reduction fails or we have to make types into dynamic objects as well, meaning that

they no longer provide the static guarantees which are their primary raison d’être.

Theorem 5.4.1 (Limited Subject Reduction). Let us consider dCBPV- with

dependent projection products. In absence of printing, global state and erratic

choice, if the sequence of reductions of a well-typed computation M passes through

a well-typed configuration M,K and later another configuration M ′, K, then the

latter configuration is also well-typed and has the same type as the former.

Proof. The proof is very similar to that of theorem 5.3.11. Indeed, starting from a

well-typed configuration Γ; · ` j‘M : Bj[thunk 1‘M/z1, . . . , thunk (j − 1)‘M/zj−1],

Γ; nil : Bj[thunk 1‘M/z1, . . . , thunk (j − 1)‘M/zj−1] ` K : C, we transition

into M, j :: K, where j :: K := let nil 1 be j‘nil 2 in K is an untypable stack.

Eventually, if have transitioned into a configuration λiMi, j :: K, we next tran-

sition into Mj, K, where we can derive by inversion on λiMi that Γ; · ` Mi :

Bi[thunk M1/z1, . . . , thunk Mi−1/zi−1]. We have now arrived at a well-typed

configuration again if we can show that Bj[thunk M1/z1, . . . , thunk Mj−1/zj−1] =

Bj[thunk 1‘M/z1, . . . , thunk (j − 1)‘M/zj−1]. This follows if we can show that

Mi = i‘M for all 1 ≤ i ≤ j − 1, which we know to be generally true in absence of of

printing, global state and erratic choice and false otherwise.

222 5.4. Dependent Projection Products?

One could add similar negative versions of the other positive connectives like

identity types (which we have called additive identity types in the context of linear

logic). Their categorical semantics would correspond to having computation type

formers R(B1, . . . , Bn) that U maps to R′(UB1, . . . , UBn) where R′ is the corre-

sponding positive type former. In the obvious operational semantics, destructors

push to the stack and constructors pop the stack and substitute.

Let us briefly consider some specific models. We have already seen in section 3.5.4

that the domain model of dCBPV+ supports additive Σ-types as well. Similarly,

the error monad admits a satisfactory definition of dependent projection products.

We define the algebra structure Σkl, as expected, by (Σkl)(e) := 〈k(e), l(k(e))(e)〉.

Note that for the writer monad, we cannot use the expected generalisation of

the product algebra structure on ΣUkUl. Instead, we can use the trivial algebra

structure. (Note that dependent projection products are only a generalisation of

the product in a weak sense. In particular, they are far from unique.) That may

not be what we are hoping for though, as the individual algebra structures k and

l on Uk and Ul are ignored in the construction. (The product action may not

respect the fibres of the Σ-type if l is not invariant under k.) Similarly, for the

reader and global state monads, we can equip ΣUkUl with an algebra structure

by evaluating at an arbitrary state. Again, similarly, note that an algebra for the

powerset monad is a join-semi-lattice. Therefore, assuming the axiom of choice

(or rather, its equivalent, the well-ordering principle), we can define dependent

projection products by equipping ΣUkUl with some well-order. However, this is not

the algebra structure we would be expecting (the product order), as this may fail

to be a join-semi-lattice (take, for instance, k = {0 ≤ 1} = l(0) and l(1) = {0};

then 〈0, 1〉 and 〈1, 0〉 do not have a join).

We have already seen in section 3.5.5 that additive Σ-types are not always

supported in models of linear dependent type theory.

As projection products are more natural than pattern matching products in

CBN (or, at least, more customary), we see that the CBN-translation into dCBPV

runs into similar problems as the CBV. Where the latter requires us to extend

5. Dependently Typed Call-by-Push-Value (dCBPV) 223

dCBPV- with dependent Kleisli extensions, the former at least strongly suggests

adding dependent projection products to dCBPV-6. Both these extensions lead

to similar challenges with constructing concrete models and with establishing

subject reduction.

5.5 Dependent Kleisli Extensions: a Bug or a
Feature?

5.5.1 Unrestricted Effects and Dependent Types?

In sections 5.2 and 5.3, we introduced two systems which combine dependent types

with computational effects: dCBPV- and dCBPV+. Recall that the latter extends

the former with a rule for Kleisli extensions of dependent functions.

One motivation for studying dCBPV+ is the possible criticism that can be made

that in dCBPV- dependent types and effects sit side-by-side and do not interact

meaningfully. (More about that later.) Another is the observation that we need

dependent Kleisli extensions to obtain a well-defined CBV or CBN translation of

dependent type theory with unrestricted effects (which are not encapsulated by the

type system) into dCBPV. This may be interesting as real world languages like Agda

and Idris include unrestricted recursion and only exclude non-terminating terms

at a later stage through a termination check which is separate from type checking

[103, 118]. Moreover, models of dependent type theory in categories of domains

and games naturally model unrestricted effects. Therefore, we believed it to be

important, from a theoretical point of view at least, to study the system dCBPV+.

It should be clear to the reader, however, that the expressive power of dCBPV+

comes at a cost of simplicity and, in particular, in many cases, subject reduction. The

question is if dCBPV- or dCBPV+ is more suitable for practical implementations.

We would like to argue that dCBPV+ does not add much practical value over

dCBPV- as a programming language.
6 For instance, we require these if we want the co-Kleisli category for ! = FU to give a model

of DTT indexed over D(·)! (recall that this category is equivalent to full category of B on the
objects in image of U), rather than merely over B.

224 5.5. Dependent Kleisli Extensions: a Bug or a Feature?

Indeed, let us return to the primary practical motivation for wanting to combine

dependent types and effects: having a single elegant language in which we can both

write practical software and perform its verification. For these purposes, as argued in

section 1.1.5, it is crucial that we constrain where effects are allowed to occur using

the type system, for instance using modalities, as effects usually do not correspond

to sound logical principles so should be excluded from proofs. For this reason,

dependent type theory with unrestricted effects (and with it the corresponding CBV

and CBN translations) is not what we are most interested in. Rather, a modal and

ideally adjunction language like dCBPV is closer to what we are looking for.

5.5.2 Fundamentalist vs Pragmatic Dependent Types

Observe that, in practice, dependent types tend to be used in two closely related but

slightly different styles7. On the one hand we have a style of programming where

we build up the program immediately from dependently typed building blocks

c : C, where C may be formed using inductive families and other dependently

typed constructs, by writing the code and proving its properties simultaneously,

fundamentalist dependently typed programming, if you will. Some examples for C

include a type of lists of a fixed length, sorted lists, heaps or binary search trees,

red-black trees, suitably balanced trees and a type of λ-terms up to βη-equality.

On the other hand, we can write simply typed programs a : A first, where A is

a datatype formed from simple inductive types and simple connectives, like mere

lists or binary trees, and only later prove the required properties a′ : A′[a/x] (where

A′ is a proof-relevant predicate, like the BST property, formed using inductive

families and other dependently typed constructions). This is a more pragmatic

stance where dependent types are simply seen as a tool for expressing appropriate

program properties that we want to verify.

The latter style seems to be more popular in practice and more suitable for the

creation of large modular code bases. The reason for this is that we often only
7These can be seen to be closely related to the two traditional schools of thought about types:

typing à la Church and à la Curry [119]. Also closely related to the fundamentalist school is the
correctness-by-construction programming methodology advocated by Dijkstra and others [120].

5. Dependently Typed Call-by-Push-Value (dCBPV) 225

decide on the properties we need to verify after we have already written code and,

in fact, we often need to verify different properties of the same code in different

contexts. It should be noted that both points of view are equivalent, that the

distinction is mostly a matter of style and that both styles can be combined well.

To illustrate the distinction, let us consider lists of length n. We can either view

them directly as single inductive family x : N ` ListOfLen(x) vtype (corresponding

to the former style) or as a predicate x : N, y : List ` has− length(y, x) vtype from

which we form x : N ` Σy:Listhas− length(y, x) vtype (corresponding to the latter).

If we want to write a program that for every x : N returns a list of length x, we write,

in the fundamentalist view, directly, proof-carrying code ` f : Πx:NListOfLen(x),

which can be though of as both an algorithm producing a list and a proof that

that list has length x in one. Meanwhile, in the more pragmatic view of post hoc

verification using dependent types, we first write the algorithm ` g : N⇒ List and

then a separate proof ` p : Πx:Nhas− length(g(x), x) about g.

The latter point of view generalises without problems to dCBPV-. Indeed, by

keeping the (simply typed and effectful) algorithm separate from the (dependently

typed and pure) proof, all we need is a sequencing operation from simply typed

effectful computations and a regular composition operation for pure dependent

functions, both of which are available in dCBPV-. To be precise, we write an

effectful simply typed algorithm ` g : N F(FList and a separate pure dependently

typed proof ` p : my − favourite− property(thunk g) about g. Here, we would like to

point out that z : U(N F(FList) ` my − favourite− property(z) vtype. Therefore,

to make dCBPV- into a practical system for verification of effectful programs, it

is crucial that we extend it with mechanisms for defining interesting (value) types

depending on types of thunks of effectful computations. In the case that we are

working with printing with values in some monoid M internal to the type theory,

a simple example of a property to express using a type family could be that the

program does not print anything or that its return value has a specific property. In

particular, any type depending on A×M should give rise to a type depending on

226 5.6. Dependent Enriched Effect Calculus and More Connectives

UFA. The design of good mechanisms for defining types depending on types of

thunks of effectful computations is planned to be a central theme in our future work.

The former point of view, however, is more difficult to generalise without

dependent Kleisli extensions, it would seem at first sight. Indeed, if our basic building

blocks are dependent effectful functions ` f : Π(F (x:N)FListOfLen(x), we want to be

able to compose them with each other, at the very least. In particular, we want to

be able to precompose f with some effectful function ` h : N F(FN. To do this,

however, we precisely need a sequencing principle for dependent effectful functions,

or a principle of dependent Kleisli extensions. As it turns out, compositionality in

this paradigm can be restored to a satisfying extent by considering dCBPV- with

Σ⊗F (−)-types, a much less intrusive and more well-behaved extension than dependent

Kleisli extensions. We discuss this in section 5.6.

On the whole, we are inclined to view dependent Kleisli extensions as technical

devices that were important to study for theoretical reasons, but which may not

be very suitable for practical implementations of dCBPV. The extra complexity

they introduce into the implementation of a type checker for may not be justified.

Therefore, in the rest of this chapter, we focus on dCBPV- and add extra type

formers to it to increase its expressive power.

5.6 Dependent Enriched Effect Calculus and More
Connectives

In this section, we show how to increase the power of dCBPV- by extending it with

Π-, Σ⊗F (−)- and
U
(-types. First we motivate why we might want to include them in

our calculus. Next, we show that they are unproblematic from the points of view

of categorical semantics, concrete models and operational semantics.

Levy did not include function type formers for value types in his CBPV as he

was mainly interested in (the CBV and CBN translations for) effectful programs,

for which they are unnecessary. We, however, are also interested in pure proofs

of universally quantified formulas. For those purposes, value function types are

of crucial importance. This leads us to consider Π-types.

5. Dependently Typed Call-by-Push-Value (dCBPV) 227

As discussed in section 5.5.2, it is not as important as one might think to be able

to substitute effectful computations into dependent functions. However, it might

sometimes still be practically convenient. We would like to suggest that Σ⊗F (−)-

types give an alternative, more lightweight method of achieving this compared

to dependent Kleisli extensions.

Recall that, given a dependent function Γ, x : A ` M : B in pure type theory,

we can transform it into a simple function Γ, x : A ` 〈x,M〉 : Σx:AB by viewing it

as a section of Γ, z : Σx:AB ` fst (z) : A. Precomposition with Γ, y : C ` N : A then

gives Γ, y : C ` 〈N,M [N/x]〉 : Σx:AB. We can employ a similar trick to get around

the effectful composition of certain dependent functions in bare dCBPV- already.

Indeed, we can represent any effectful dependent function Γ, x : A; · `M : FA′ as

an effectful simple function Γ, x : A; · ` M to z in return 〈x, z〉 : FΣx:AA
′. In this

representation, we can use usual simple sequencing of effectful computations to

achieve effectful precomposition: given Γ, y : C; · ` N : FA, we have the effectful

composition Γ, y : C; · ` N to z in M to z in return 〈x, z〉 : FΣx:AA
′ without

using dependent Kleisli extensions.

We are in trouble, however, if M is of the more general form Γ, x : A; · `M : B.

In order to repeat the trick above, we introduce the type Σ⊗F (x:A)B to generalise

FΣx:AA
′ ∼= Σ⊗F (x:A)FA

′. This lets us define a simply typed effectful function

Γ, x : A; · ` return x ⊗M : Σ⊗F (x:A)B out of M and therefore a precomposition

Γ, y : C; · ` N to x in return x ⊗M : Σ⊗F (x:A)B. The problem with sequencing an

effectful computation N into a dependent function M was, essentially, that we do

not know what fibre of the return type B the result would land in. Indeed, N may,

for instance, exhibit non-determinism or use state. Σ⊗F (−) solves this problem by

bundling all fibres together and saying that we are not interested in the particular

fibre it lands is, as long as there is one.

Finally, to reason about effectful programs and their evaluation, it can be

very useful to include a type not just of arbitrary functions, but also a type of

homomorphisms or stacks. While it is well-known that the sets of homomorphisms

for a commutative monad T on a cartesian closed category admit a natural T -algebra

228 5.6. Dependent Enriched Effect Calculus and More Connectives

Γ, x : A ` A′ vtype
Γ ` Πx:AA

′ vtype

Γ, x : A ` V : A′
Γ ` λxV : Πx:AA

′
Γ ` V : A Γ; ∆ ` W : Πx:AA

′

Γ; ∆ ` V ‘W : A′[V/x]

Γ, x : A ` B ctype
Γ ` Σ⊗F (x:A)B ctype

Γ ` V : A Γ; ∆ ` K : B[V/x]
Γ; ∆ ` return V ⊗K : Σ⊗F (x:A)B

Γ, x : A; nil : B ` K : C Γ ` C ctype Γ; ∆ ` L : Σ⊗F (x:A)B

Γ; ∆ ` L to return x⊗ nil in K : C

Γ ` B ctype Γ ` C ctype

Γ ` B
U
(C vtype

Γ; nil : B ` K : C

Γ ` λnil K : B
U
(C

Γ ` V : B
U
(C Γ; ∆ ` K : B

Γ; ∆ ` K‘V : C

Figure 5.12: Rules for forming Π-, Σ⊗F (−)- and
U
(-types and their terms.

V ‘λxW = W [V/x] V
#x= λxx‘V

return V ⊗K to return x⊗ nil in L = L[V/x,K/nil] K[L/nil 1] #x,nil 2= K to return x⊗ nil 2 in L[return x⊗ nil 2/nil 1]
K‘λnil L = L[K/nil] K

#nil= λnil nil ‘K

Figure 5.13: Equations we impose for the terms of Π-, Σ⊗F (−)- and
U
(-types.

structure themselves [48] (leading us to models of linear logic), it should be familiar

from the theory of monoids that such an algebra structure might not be available for

non-commutative monads [52]. This shows that, in general, for non-commutative

effects, we cannot expect the type of homomorphisms/stacks from B to C to be a

computation type itself. Luckily, we can often interpret it as a value type B
U
(C.

We include type and term forming rules for Π-, Σ⊗F (−)- and
U
(-types in figure

5.12, their equations in figure 5.13 and their operational semantics in figure 5.14.

We then see that the results on the categorical semantics, concrete models and

operational semantics of dCBPV- smoothly extend to these connectives.

Theorem 5.6.1 (Categorical Semantics). A dCBPV- model F a U : C � D

supports

• Π-types iff we have Π-types in C;

• Σ⊗F (−)-types iff we have Σ⊗F (−)-types in D in the sense of having left adjoint

functors Σ⊗F (A′) a D(pA,A′) satisfying the left Beck-Chevalley condition for

5. Dependently Typed Call-by-Push-Value (dCBPV) 229

Transitions
M to return x⊗ nil in L , K ; M , [·] to return x⊗ nil in L :: K
return V!nf ⊗M , K ; return Vnf ⊗M , K
return Vnf ⊗M , [·] to return x⊗ nil in L :: K ; L[Vnf/x,M/nil] , K
M ‘V!nf , K ; M ‘Vnf , K
M ‘λnil L , K ; L[M/nil] , K

Terminal Configurations
return Vnf ⊗M , nil
M ‘return V x′

nf , K

Figure 5.14: The additional transitions and terminal configurations that specify the
operational behaviour of terms of Π-, Σ⊗F (−)- and

U
(-types. Here, we use the abbreviation

[·] to return x⊗ nil in L :: K for let nil 1 be nil 2 to return x⊗ nil 3 in L in K. Note that the
transitions for Π-types simply are contained in the (β) normalization rules of values.

p-squares;

•
U
(-types iff we have objects B

U
(C in C that are stable under change of base

in the sense that (B
U
(C){f} ∼= B({f}

U
(C{f} such that we have natural

bijections

D(Γ)(B,C) ∼= C(Γ)(1, B
U
(C).

This semantics is both sound and complete in the usual sense of categorical seman-

tics, leading to a 1-1 correspondence between models and theories supporting the

appropriate connectives.

Proof. • This is a standard result in the semantics of dependent type theory

[28], seeing that the value judgements form an ordinary (cartesian) dependent

type theory.

• This is precisely analogous to the situation in linear dependent type theory

of chapter 3. The introduction rule, by definition, corresponds to a natural

transformation

ΣV ∈C(Γ)(1,A)D(Γ)(∆, B{〈idΓ, V 〉}) −→ D(Γ)(∆,Σ⊗F (A)B),

which can be equivalently represented, by taking V = vΓ,A for the first

argument and idB for the second, as another natural transformation

D(Γ.A)(∆, B) −→ D(Γ.A)(∆,Σ⊗F (A)B{pΓ,A}).

230 5.6. Dependent Enriched Effect Calculus and More Connectives

This, by naturality in ∆ is precisely determined by the image of idB which is

an element of

D(Γ.A)(B,Σ⊗F (A)B{pΓ,A}).

By a simple variation on the Yoneda lemma, we see that this is the same as

specifying a natural transformation

D(Γ)(Σ⊗F (A)B,C) −→ D(Γ.A)(B,C{pΓ,A}).

(This is one of the two defining natural transformations of the adjunction.)

The elemination rule corresponds by definition to a natural transformation

D(Γ.A)(B,C{pΓ,A})×D(Γ)(∆,Σ⊗F (A)B) −→ D(Γ)(∆, C),

which by naturality in ∆ is equivalent to a natural transformation

D(Γ.A)(B,C{pΓ,A}) −→ D(Γ)(Σ⊗F (A)B,C)

(where we have specialised to ∆ = Σ⊗F (A)B and have substituted idΣ⊗
F (A)B

for

the second argument). (This is the other defining natural transformation of

the adjunction.) The β- and η-rules precisely state that both defining natural

transformations of the adjunction are inverse. As usual, the Beck-Chevalley

condition corresponds to the compatibility of Π(F (−)-types with substitution.

• Note that the introduction rule, by definition, corresponds precisely with the

natural transformation from left to right in the categorical semantics. The

elimination rule by definition corresponds to a natural transformation

C(Γ)(1, B
U
(C)×D(Γ)(∆, B) −→ D(Γ)(∆, C),

which by naturality in ∆ is equivalent to a natural transformation

C(Γ)(1, B
U
(C) −→ D(Γ)(B,C)

(where we have specialised to ∆ = B and have substituted idB for the second

argument). The β- and η-laws precisely translate to these functions being

5. Dependently Typed Call-by-Push-Value (dCBPV) 231

inverse. Naturality of the bijections corresponds to compatibility of term

formers with substitution. Compatibility of the syntactic type formers with

substitution corresponds with stability under change of base in the semantics.

Let us provide some context for thinking about Σ⊗F (−)- and
U
(-types. As observed

by Benton and Wadler [38], linear logic can be seen as the term calculus of stacks

for certain commutative effects. The question remained, if more general, possibly

non-commutative effects would give rise to a certain kind of generalized, possibly

non-commutative linear logic. In particular, the question was if one could define a

monoidal-like structure on stacks in a general model of CBPV which generalizes the

tensor of linear logic and similarly for the lollipop. A partial positive answer to this

was given by the Enriched Effect Calculus (EEC) [112], telling us that any model

of simple CBPV fully and faithfully embeds into a model where we have a binary

operation F (−) ⊗ − (conventionally, somewhat misleadingly, written !(−) ⊗ −)

which takes a value type and a computation type and produces a computation

type and a binary operation −
U
(− (conventionally written −(−) which takes

two computation types to a value type. Our notation is chosen to be suggestive

as these operations do not generalize the plain linear logic operations ⊗ and (

but rather the composite connectives F (−) ⊗ (−) and U(− (−) that one can

define in the LNL calculus [33].

Independently, linear dependent type theory forces a similar operation on us if

we wish to extend −⊗− to a dependent connective [12]. Because types are only

allowed to depend on cartesian assumptions and not linear ones, the best we can

do is a multiplicative Σ-type Σ⊗F (−)−. Seemingly for two very different reasons, the

connective F (−)⊗− seems to be a preferred over −⊗−, if one wants to generalize.

We believe this is not a coincidence as the semantics of simply typed CBPV already

forces various notions from dependent type theory on us.

In analogy with linear logic, we have the following isomorphisms of types,

motivating some of our use of notation.

232 5.6. Dependent Enriched Effect Calculus and More Connectives

Theorem 5.6.2 (Type Isomorphisms). We have type isomorphisms

UΠ(F (x:A)B
∼= Πx:AUB FA

U
(B ∼= U(A F(B) FΣx:AA

′ ∼= Σ⊗F (x:A)FA
′

Σ⊗F (x:1)B
∼= B

Σ⊗F (x:A)F1 ∼= FA.

Proof. These are straightforward consequences of the universal properties in the

categorical semantics of the various connectives involved, together with their

compatibility with substitution.

Let us say a few words about the interpretation of these connectives on some

concrete classes of models.

Theorem 5.6.3 (Concrete Models). We have the following results on interpreting

these connectives in concrete models.

• An indexed Eilenberg-Moore CT category for an indexed monad T on a model

Bop C−→ Cat of pure dependent type theory with 1-, ×-, 0-, +-, Σ-, Id- and

Π-types gives a model of dCBPV- with Π-types. If C has indexed equalisers,

we can interpret
U
(-types and if CT has indexed reflexive coequalisers, then we

can interpret Σ⊗F (−)-types. All these conditions are satisfied for C = Fam(Set)

and T any finitary indexed monad like one of the usual reader, writer, state

or exceptions monads.

• A model for the dependently typed LNL calculus with sum types, in the style

of section 3.3 gives a model of dCBPV- with Π, Σ⊗F (−)- and
U
(-types. The

dependent LNL calculus model of continuous families of predomains and

domains is a specific example of this (see section 3.5.4).

Proof. • The interpretation of Π-types is obvious.

Let us write F a U for the Eilenberg-Moore adjunction inducing T . As

T = UF is an indexed monad, recall that we have a dependent strength

ΣAUFUk
sA,Uk−→ UFΣAUk. We note that we have a reflexive fork

F (ΣAUk) FΣAηUk- F (ΣAUFUk)
FΣAk -

F (sA,Uk); εFΣAUk
- F (ΣAUk).

5. Dependently Typed Call-by-Push-Value (dCBPV) 233

Now, we can define Σ⊗F (A)k as the coequaliser of the reflexive pair. Note that

a morphism k
φ−→ l gives a natural transformation between the coequaliser

diagrams for Σ⊗F (A)k and Σ⊗F (A)l, or equivalently, a morphism Σ⊗F (A)k
Σ⊗
F (A)φ−→

Σ⊗F (A)l. This is easily seen to make Σ⊗F (A)− into a functor. Let us convey to

the reader how we arrived at this definition: noting that F (ΣAA
′) ∼= Σ⊗F (A)FA

′

if we can prove that Σ⊗F (A)− a −{pΓ,A}, we are defining Σ⊗F (A)k above as the

coequaliser of

Σ⊗F (A)FUFUk
Σ⊗F (A)Fk-

Σ⊗F (A)εFUk
- Σ⊗F (A)FUk,

showing that we are simply computing a B-indexed variation of Linton’s

construction of Set-indexed coproducts of algebras [49]. We now verify that

indeed Σ⊗F (A)− a {pΓ,A}. We can easily8 see that we have natural bijections

between the following morphisms

φ ∈ C(Γ)T (Σ⊗F (A)k, l)
φ′ ∈ C(Γ)T (F (ΣAUk), l) s.t. F (ΣAk);φ′ = F (sA,Uk); εFΣAUk;φ′
ψ ∈ C(Γ)(ΣAUk, Ul) s.t. F (ΣAk);F (ψ); εl = F (sA,Uk); εFΣAUk;F (ψ); εl
ψ ∈ C(Γ)(ΣAUk, Ul) s.t. F (ΣAk;ψ); εl = F (sA,Uk;Tψ; l); εl
ψ ∈ C(Γ)(ΣAUk, Ul) s.t. ΣAk;ψ = sA,Uk;Tψ; l
ψ′ ∈ C(Γ.A)(Uk, Ul{pΓ,A}) s.t. ΣAk; ΣAψ

′; snd = sA,Uk;T (ΣAψ
′; snd); l

ψ′ ∈ C(Γ.A)(Uk, Ul{pΓ,A}) s.t. ΣA(k;ψ′); snd = ΣATψ
′; sA,Ul{pΓ,A};T snd ; l

ψ′ ∈ C(Γ.A)(Uk, Ul{pΓ,A}) s.t. ΣA(k;ψ′); snd = ΣATψ
′; snd ; l

ψ′ ∈ C(Γ.A)(Uk, Ul{pΓ,A}) s.t. ΣA(k;ψ′); snd = ΣA(T (ψ′); l{pΓ,A}); snd
ψ′ ∈ C(Γ.A)(Uk, Ul{pΓ,A}) s.t. k;ψ′ = T (ψ′); (l{pΓ,A})
ψ′′ ∈ C(Γ.A)T (k, l{pΓ,A})

Note that a sufficient condition to have reflexive coequalisers in CT is to

have them in C and to have T preserve them. For a cartesian closed category

C, a broad class of monads that preserve reflexive coequalisers are those arising

from a finitary algebraic theory [51] (section D5.3).

8These bijections can, in order, be motivated by the universal property of the coequaliser
defining Σ⊗F (A)k, the homset bijection of F a U , naturality of ε and the observation that εl = l,
the homset bijection of F a U , the homset bijection of ΣA a −{pΓ,A}, the naturality of s and
functoriality of T , a triangle identity for ΣA a −{pΓ,A}, the naturality of snd , the homset bijection
of ΣA a −{pΓ,A}, and, finally, the definition of a homorphism from k to l.

234 5.6. Dependent Enriched Effect Calculus and More Connectives

Note that
U
(-types can be constructed exactly as in the proof of theorem

2.3.3. We cannot usually construct an appropriate algebra structure on k
U
(l

(unless T is a commutative monad).

• We interpret B
U
(C as U(B(C). The rest should be obvious.

As an example, consider the writing monad −×M on Set (which, as we have

seen, does not admit dependent Kleisli extensions). We can note that its Eilenberg-

Moore category is equivalent to the indexed category Fam(SetM) of families of

M -modules (also known as M -sets or sets with an M -action). Being a presheaf

category (if we consider M as a one-object category), this is a topos and, in

particular, we can construct Σ⊗F (−)-types. If we calculate the coequaliser above

(as colimits are computed pointwise), we find that Σ⊗F (A)k(s) has as carrier the

quotient of (ΣAUk)(s) ×M by the relation (a, b,m ·m′) ∼ (a, b ·m,m′) and the

algebra structure that the quotient induces starting from the free one. Similarly,

we have a (non-symmetric) indexed premonoidal structure ⊗ on Fam(SetM), where

the carrier of (k ⊗ l)(s) is obtained by the quotient of (Uk × Ul)(s) ×M by the

transitive closure of (a, b,m ·m′ ·m′′) ∼ (a ·m, b ·m′,m′′) and the algebra structure

is obtained from the free one under the quotient. We can easily compute that

k
U
(l consists of the set of equivariant functions from k to l. Note that k

U
(l

does not admit an appropriate algebra structure by [52]. In this example, obviously,

we have Π-types as usual sets of dependent functions.

Next, we consider the operational behaviour of terms of these new types. It

turns out to be entirely well-behaved.

Theorem 5.6.4 (Determinism, Strong Normalization, Subject Reduction). Π-,

Σ⊗F (−)- and
U
(-types do not alter any of the determinism, strong normalization or

subject reduction results for dCBPV- of theorem 5.2.10.

Proof. For Π-types, we note that we can still rely on the subject reduction and

strong normalization proofs for β-reductions in pure dependent type theory of [68].

5. Dependently Typed Call-by-Push-Value (dCBPV) 235

Determinism and strong normalization of reductions for Σ⊗F (−)- and
U
(-types is

no different than for the other type formers. We verify subject reduction. In both

cases it is clear from the subject reduction results for pure type theory that the

transitions involving normalization of values satisfy subject reduction, so we focus

on the remaining two transitions.

Let us assume that we start with a well-typed configuration Γ; · ` return Vnf⊗M :

Σ⊗F (A)B , Γ; nil : Σ⊗F (A)B ` [·] to return x ⊗ nil in L :: K : C. Then, on

the one hand, by inversion on the introduction rule for Σ⊗F (−)-types, we have

that Γ ` Vnf : A and Γ; · ` M : B[Vnf/x] (where Γ, x : A ` B ctype). On

the other hand, noting that [·] to return x ⊗ nil in L :: K is an abbreviation

for let nil 1 be nil 2 to return x ⊗ nil 3 in L in K by inversion on the rules for

let nil 1 be in and the elimination rule for Σ⊗F (−)-types, we have that Γ, x : A; nil :

B ` L : D for some Γ ` D ctype and that Γ; nil : D ` K : C. Therefore,

because of the substitution property, we have that Γ; · ` L[V/x,M/nil] : D. Hence,

L[V/x,M/nil], K is a well-typed configuration.

Let us assume that we start with a well-typed configuration Γ; · ` M ‘λnil L :

B , Γ; nil : B ` K : C. Then, inversion on the elimination and introduction

rules for
U
(-types gives us that Γ; ·M : D and that Γ; nil : D ` L : B for some

Γ ` D ctype. Therefore, the substitution property gives us that Γ; · ` L[M/nil] : B,

which means that L[M/nil], K is a well-typed configuration.

Remark 5.6.5 (Id⊗F (−)-types). We could have included rules for Id⊗-types, similarly

to chapter 3, connectives such that F IdA ∼= Id⊗FA. While such connectives seem

interesting from the point of view of linear logic, their use in CBPV is less clear.

We are really interested in pure proofs of equality, rather than effectful ones (as, for

instance, divergence can trivially inhabit any type Id⊗FA), so the use of Id⊗F (−)-types

from the point of view of program verification is unclear.

Remark 5.6.6 (Universes). We have so far not considered higher-order quanti-

fication, which can be expressed in dependent type theory through universes, or

types whose terms are (codes for) types. Universes (à la Tarski) arise as a special

236 5.7. Comparison with HTT

case of induction-recursion, a generalisation of more traditional, weaker induction

schemes [121]. As a rule of thumb, inductive-recursive families are more like an

inductive than a coinductive construction, hence one would expect them to arise

most naturally as value types. In the particular case of universes, we would expect

separate universes Uv and Uc (both of which are value types) to classify value and

computation types respectively. Like in pure type theory, one could include rules like

` Γ ctxt
Γ ` 1 : Uv
to build values of the universes which code for types and rules like

x : Uv ` Elv(x) vtype

to make types out of codes.

Very recently, [122] has further pursued a system resembling dCBPV- extended

with universes.

5.7 Comparison with HTT

We make a few observations on the relationship between dCBPV and an existing

successful framework for certified effectful programming which is also based on de-

pendent type theory: Hoare Type Theory (HTT) [110] (implemented in Ynot [123]).

Regarding the motivation behind both systems, HTT seems to have been

developed from the start with the practical syntactic goal in mind of a language

for verifying effectful programs. By contrast, dCBPV arose almost entirely from

semantic considerations. In particular, dCBPV was motivated by the study of

models of DTT which naturally model effects, like its domain semantics [83] and

game semantics [14], the question if dDILL [13] could be interpreted as a DTT

with commutative effects and the existing categorical semantics of CBPV which

strongly suggests a dependently typed generalization [37].

Regarding their implementation, HTT expresses a property φ of an effectful

program V of type A by saying that V inhabits a type TφA, where Tφ are monads

which are indexed by formulae φ formed using an (external) separation logic. dCBPV

5. Dependently Typed Call-by-Push-Value (dCBPV) 237

sticks closer to the Curry-Howard correspondence in its formulation of properties

φ of an effectful program M of type FA: they are types φ depending on thunks

of type UFA and into which we can, in particular, substitute thunk M to see if

we can construct an inhabitant witnessing the truth of φ(thunk M).

238

I may not have gone where I intended to go, but I
think I have ended up where I intended to be.

— Douglas Adams

6
Conclusions and Future Work

6.1 Conclusions

In this thesis, we have examined the relationship between programming langua-

ges and formal logic, specifically the combination of computational effects with

dependent types. We did this by analysing dependent types from three separate

but related points of view on effects:

1. linear logic, which, as we argued, represents a type system for computations

exhibiting commutative effects;

2. game semantics, a setting to provide, in a unified way, models with strong

completeness properties for a wide range of effectful type theories;

3. CBPV, an elegant framework for representing type theories with a wide

range of effects with a fine-grained evaluation strategy that encompasses both

traditional CBN and CBV.

We believe these three perspectives often complement and sometimes reinforce each

other.

Firstly, we constructed a dependently typed version of DILL, and showed

it admits an elegant categorical semantics as well as a wide range of concrete

239

240 6.1. Conclusions

models. Secondly, We constructed a CBN game semantics for dependent type

theory, validated it by showing that it exhibits the usual completeness properties

one expects of a game semantics and showed that it can be generalised to model

effectful dependent type theory by relaxing the conditions on strategies. Thirdly, we

studied a dependently typed version of CBPV and showed it has a simple categorical

semantics, admits classes of models arising from both linear dependent type theory

and indexed monads and that it has a well-behaved operational semantics.

We learned that one principal source of the tension between type dependency

and effects is the phenomenon that effectful computations are dynamic (in the

sense that their evaluation can break equality) while we use types to provide static

guarantees about programs. If types depend on effectful computations, therefore,

they are at risk of losing their static nature.

Working in an adjunction language like CBPV (or the LNL calculus, for

commutative effects) which distinguishes between (dynamic) computations and their

thunks (which are static values), we can use types depending on thunks of effectful

programs to express complex properties that we might want to verify for effectful

programs. Analogously, in linear logic, while types depending on linear terms are

problematic, (linear) types depending on cartesian terms are entirely harmless.

If we impose this restriction, one consequence is that we do not have CBV

and CBN translations of type theory with unrestricted effects into CBPV (or

dependently typed Girard translations, in the case of linear logic). Our view is that

this is not at all a problem. Indeed, dependently typed languages with unrestricted

effects are of limited value, anyway, as effects render the language inconsistent

as a logic, while the prime purpose of dependent types is to prove properties

about programs. Moreover, the substitution of effectful computations in types

introduces various technical challenges, as witnessed by our effectful game semantics

for dependent type theory. One effect that could possibly be interesting to include

in a dependent type theory in unrestricted fashion is that of non-local control

operators because of its close relation to the classical principle of double negation

elimination. However, it is already known that a constructive classical dependent

6. Conclusions and Future Work 241

type theory (i.e. a dependent type theory with call/cc at each type) is degenerate

in the sense that it equates all programs [101] (propositionally). Therefore, any

language that combines dependent types and effects in a meaningful way needs

to have a mechanism for controlling the occurrence of effects. We hope to have

demonstrated that modalities on the type system are an excellent tool for this

purpose, in particular half-modalities (or adjunctions).

If one wants to obtain full CBV and CBN translations for dependent type theory

with unrestricted effects, we showed that one needs to include Kleisli extensions for

dependent functions in dCBPV. We have seen that these are not always supported in

concrete models and can lead to problems with subject reduction in the operational

semantics1. Especially given that a similar effect can be achieved with the entirely

unproblematic Σ⊗F (−)-types, we believe such dependent Kleisli extensions are not

a desirable feature of a dependently typed effectful language. Similar technical

challenges arise with dependent projection products (or their linear logic equivalent,

additive Σ-types). Indeed, the fact that these connectives were not naturally

supported in categories of games and strategies is one of the prime reasons that

a game semantics for dependent type theory had so far been absent and, more

generally, that models of dependent type theory in computational settings of

categories of cofree !-coalgebras had been missing.

Summarising, dependent types and computational effects form a delicate though

not impossible combination. We hope to have demonstrated that robust systems

can be achieved, as long as one is prepared to restrict type dependency to static

values and exclude dependency on dynamic computations.

1We would like to point out that dependent types are indeed combined with certain unrestricted
effects, like recursion, in practice: Agda and Idris support unrestricted recursion and perform a
separate optional termination check. It is no coincidence that recursion is precisely one of the
effects for which dependent Kleisli extensions are well-defined. Indeed, its computations are not
really dynamic in the sense that their evaluation respects equality. Therefore, they are much easier
to combine with type dependency.

242 6.2. Future Work

6.2 Future Work

We describe some interesting directions for future research, suggested by the work

presented in this thesis.

6.2.1 Linear Dependent Functions

McBride [124] presented a type system in which linear types depend on linear

assumptions and with a type Π(x:AB of dependent functions from A to B that use x

exactly once (and in which types are allowed to refer to identifiers arbitrarily often).

His solution relies on an unorthodox new view on linear logic in which we do not have

separate classes of cartesian and linear types, but only one kind of type, achieving

the linearity through annotation of identifier declarations with a count. We would

like to analyse, using semantic methods, how this system relates to our work.

6.2.2 Stable Homotopy as Effectful Homotopy?

An indexed category of spectra up to homotopy, indexed over topological spaces,

has been studied in e.g. [74, 76], as a setting for stable homotopy theory. We can

interpret this as a model of the dLNL calculus. It has been shown to admit I-,

⊗-, (-, and Σ⊗F -types. The natural candidate for a comprehension adjunction,

here, is that between the infinite suspension spectrum and the infinite loop space:

F a U = Σ∞ a Ω∞. What is particularly fascinating is that the corresponding

monad T = Ω∞Σ∞ seems to be very closely related (if not identical) to an important

homotopical construction known as the Goodwillie exponential [125]. This raises

the question whether one could phrase stable homotopy theory as an (commutative)

effectful version of homotopy type theory and, if so, what the computational

interpretation of the Goodwillie calculus in terms of effects should be.

6.2.3 Dependently Typed Quantum Programming?

Another fascinating possibility is that of models related to quantum mechanics.

Non-dependent linear type theory has found very interesting interpretations in

quantum computation (see e.g. [126]). The question rises if the extension to

6. Conclusions and Future Work 243

dependent linear types has a natural counterpart in physics. In [77], it was recently

sketched how linear dependent types can serve as a language to talk about quantum

field theory and quantisation. On a related note, one could well imagine using

an extension of the dLNL calculus as a type system for a language in which we

both have (cartesian) types for classical data and (linear) types for quantum data

which may depend on the former. Such a precise type system may be useful for

catching bugs in quantum programs.

6.2.4 Extending CBN Game Semantics for Dependent Ty-
pes

We see a few interesting directions for continuing the work we started in chapter

4. One obvious continuation would be to try to extend the (full and faithful)

completeness proof to the complete type hierarchy of DTTCBN. A next step is to

study the interpretation of more general inductive families [23, 127] and inductive-

recursive definitions (of which type universes are an obviously interesting example)

[121]. Such a study of universes should also lead to a more intensional notion

of a dependent game as a kind of strategy.

On a different note, it would be desirable to find an alternative, less technical

presentation of a suitable category of !-coalgebras extending Ctxt(Game!) which

also models dependent type theory (cf. section 3.4).

Finally, note that our games model of dependent types has identity types that

are intensional in orthogonal ways compared to the homotopy semantics [88]. In our

case, all non-trivial propositional identities concern a kind of homotopy in the time

direction (applicative equivalence of functions), rather than in the space direction,

in the sense that our ground types are discrete and we accumulate non-trivial

propositional identities if we ascend the function hierarchy. By contrast, in the

homotopy semantics of dependent types, all non-trivial propositional identities exist

on ground types and we do not acquire any non-trivial identifications of functions

(beyond their pointwise identity). We propose to pursue a notion of what one might

call a category of homotopy games, which should factor over the pullback of the

244 6.2. Future Work

spatial and temporal extensional collapse of the two models,

HtpyGame

∞− Gpd×Set Game --

...................--
Game-- A

∞− Gpd
??

collapsing space-like identity, a.k.a. 0-truncation
--

--

Set

collapsing time-like identity,
a.k.a. extensional collapse

??
str(A)/app.equiv.

?

X - ||X||0.

That is, we are looking for a setting to model DTT which combines the possibility

of non-trivial propositional identity on ground types of the (∞-)groupoid model

of DTT [88] with the failure of function extensionality of the game semantics. We

hope this would not only result in a satisfactory game semantics for quotient types

and higher inductive types, but would also give deeper insights into the subtle

shades of intensionality that arise in dependent type theory, by cleanly separating

out the time-like and space-like aspects of propositional identity.

6.2.5 Game Semantics for dCBPV

The practical challenge of constructing a CBN game semantics for dependent type

theory was important for us in developing our understanding of the interaction bet-

ween effects and type dependency. Moreover, we hope that it can be a useful addition

to the large family of game semantics for various logics and programming languages.

However, in hindsight, we believe that dependently typed languages with

unrestricted effects such as those modelled by our CBN game semantics are not

the most interesting combination of dependent types and effects (though also not

uninteresting). What would be really interesting is to construct a game semantics for

dCBPV in the style of [30, 37]. We hope it could both be simpler are more practically

relevant. It should be emphasized though that the experience of working with the

CBN game semantics of dependent types was necessary for us to reach this insight.

6.2.6 Certified Real-World Programming in dCBPV-

Cervesato and Pfenning pioneered the use of systems combining dependent types

and linearity to reason about effectful computations in [69]. We hope that our

6. Conclusions and Future Work 245

system dCBPV- can be a step forward for this purpose, through its generalisation to

non-commutative effects and the extra expressive power obtained by distinguishing

between values and computations, where the value judgement can be seen as a

pure logic that be used for reasoning about (thunks of) effectful computations,

defined with the computation judgement. It is particularly salient that this

distinction allows us to use Id-types, which were painfully absent from Cervesato

and Pfenning’s system.

In particular, we hope that dCBPV- can serve as an alternative to Hoare Type

Theory that sticks closer to the elegance of the Curry-Howard correspondence and

that it can be extended to a practical language for both writing and verifying real

world effectful code. For that purpose, the next step is to add mechanisms for forming

types that express delicate properties of thunks of computations exhibiting specific

effects, like properties of the state before and after a computation is run. [128]

recently proposed using effect handlers, which have a semantics as monad algebras

TA
k−→ A, as a way of lifting predicates on A to ones on TA. We believe this idea

sounds very promising and deserves to be explored further. Another important step

would be the implementation of a type checker for the resulting system.

246

Appendices

247

Huh?!

— Sylvester Stallone

A
Summary for a General Audience

Over the past decades, we – both as individuals and as a society as a whole – have

very rapidly become reliant on computer systems, to the point that we trust them

with our private data (e.g. mobile phone communications and medical records),

our critical resources (e.g. bank transactions), the smooth running of society (e.g.

elections, financial markets, and classified government documents) and even our

lives (e.g. auto-pilots in air planes, self-driving cars, medical devices and missile

detection systems on which decisions whether or not to engage in nuclear war are

based). While many people will agree that computers have changed our lives for

the better, there have been enough incidents to make us question how much trust

we should put into computer systems for critical applications: e.g.1 false alarms in

both US (in 1980) and Soviet (in 1983) missile detection systems which could have

easily led to nuclear war, Therac-25 medical radiation therapy devices administering

deadly doses of radiation, the destruction of the Ariane 5 rocket (costing $370

million dollar) and regularly uncovered cryptography bugs like Heartbleed which

enable hackers to get into critical computer systems (like those of the Democratic

National Convention, in the context of the 2016 US election). Moreover, software

1Links to news stories on many fascinating software bugs can be found on [129].

249

250 A. Summary for a General Audience

bugs are unbelievably expensive, annually costing an estimated $312 billion2, with

software developers spending on average half their time debugging [131].

These bugs are often not introduced into software due to negligence on behalf of

the programmer. Rather, we learn from experience that bugs are almost unavoidable

when writing software. The human mind is simply rather ill-suited for writing

watertight computer software. Many bugs can be found through testing, but,

depending on the application, that may not be enough: real world software,

particularly concurrent software, can have a space of possible executions that

is simply too large to explore through testing. For instance, new critical bugs

are found in web-protocols every week despite extensive testing. For the most

critical of applications, only a formal machine-checked proof is enough to guarantee

the correctness of a piece of code.

Currently, while very suitable programming languages for writing computer

software exist as well as good logical frameworks for writing proofs (formal arguments

demonstrating the truth of a proposition), there is no single satisfactory system in

which we can both write production code and write and check a proof about the

correctness of this code. We believe an important reason for the absence of such

a system is a lack of fundamental understanding of how real-world programming

languages relate to logical frameworks. The aim of this thesis is to improve on

the state of the art of such an understanding and, as a consequence, to work

towards the dream of having a single elegant language for writing provably correct

production code.

It is clear that programs written in very simple programming languages, so-

called purely functional languages, are effectively the same thing as mathematical

proofs. This idea is called the Curry-Howard correspondence. Similar to how we can

organise proofs by the proposition (e.g. A and B implies C or D) whose

validity they demonstrate, we can classify computer programs according to their

so-called type (e.g. the type of programs that take two inputs, one of type A, one
2To give a sense of scale, according to a 2015 U.N. report, it would cost around $267 billion

annually to bring the roughly 800 million people world-wide living in extreme poverty up to the
World Bank’s poverty line immediately [130].

A. Summary for a General Audience 251

of type B and produce an output which will either be of type C or type D). That

is, under the Curry-Howard correspondence, types correspond to propositions in

the same way that purely functional programs correspond to proofs. Types can

be thought of as expressing properties of programs. Some examples of types are

the type of booleans, the type of integers, the type whose elements consist of a

pair of a boolean and a string, the type whose elements are either a boolean or

an integer, the type of programs that take two integers as input and produce five

booleans and the type of programs that take a program from booleans to integers

as input and produce an integer as output.

Real world programming languages and useful logical frameworks are not the

same thing, however! On the one hand, there are more good computer programs

than acceptable proofs. For instance (this is just one of many examples), a computer

program can loop indefinitely (like an operating system), but a circular argument

is unacceptable as a proof. These extra programs are very useful in practical

software development. On the other hand, the most useful logics include more

propositions than there are types in real world programming languages. Indeed, while

these programming languages include so-called simple types, which correspond to

propositions formed by the logical connectives “and”, “or” and “implies”, dependent

types are missing, corresponding to the crucial propositions of the form “P (x) holds

for all x” or “P (x) holds for some x”. (An example would be the statement

“all Buddhists are happy”.)

This thesis examines how this gap between programming languages and logical

frameworks can be bridged and how a single language can be designed that can

serve for writing both real world code as well as formal, machine-checked proofs that

this code has the properties that one desires. Before tackling, head on, the question

of how effectful programs (programs that do not correspond to proofs) can be given

dependent types, we first study the closely related topics of how so-called linear

logic can be extended with dependent types and how a game theoretic interpretation

can be given to logical frameworks with dependent types.

252 A. Summary for a General Audience

Linear logic is a logic in which we keep track of how often each assumption is

used in a proof: assumptions cannot be copied or discarded freely. Linear logic

proofs are closely related to effectful programs. The intuition is that effectful

programs could, for instance, make a random choice, meaning that two executing

copies of the same program may later cease to be equal.

A formal logic can be equivalently phrased in terms of game theory by interpreting

a proposition as a turn-based two-player game (think of it as the game of formal

debates about the proposition, analogous to Socratic dialogues) and a proof of

that proposition as a certain kind of winning strategy for that game (if we can

win any debate about a proposition, it must be true and vice versa). The charm

of game semantics is that we can weaken the conditions we put on the strategies

we consider to obtain various effectful programs. For instance, partial strategies

(in which we do not always have a response to everything our opponent says in a

debate, meaning that we do not always win) correspond to programs which may

loop for ever and never return an output.

This thesis first presents a dependently typed linear logic and game theoretic

interpretation for dependent types. This helps us build an understanding that is

useful to, next, present an elegant language which can both serve as an effectful

programming language for writing software and as a pure logic to prove properties

about the software we write in it. We hope that this work, on the one hand,

contributes to a better understanding of the foundations of the disciplines of

mathematics and computer science and their relationship and, on the other,

ultimately will help us to work towards a world in which one can safely rely

on critical computer systems, both as individuals and as a society.

References

[1] Stephen C Kleene. “Origins of recursive function theory”. In: Annals of the
History of Computing 3.1 (1981), pp. 52–67.

[2] Robin Gandy. “The confluence of ideas in 1936”. In: The Universal Turing
Machine a Half-Century Survey (1995), pp. 51–102.

[3] Robert I Soare. “The history and concept of computability”. In: Studies in
Logic and the Foundations of Mathematics 140 (1999), pp. 3–36.

[4] TIOBE Software BV. TIOBE Index. September 2016. url:
http://www.tiobe.com/tiobe-index/.

[5] Conor McBride. on termination. May 2003. url: https:
//mail.haskell.org/pipermail/haskell-cafe/2003-May/004343.html.

[6] Eugenio Moggi. Computational lambda-calculus and monads. 1989,
pp. 14–23.

[7] Philip Wadler. “Monads for functional programming”. In: International School
on Advanced Functional Programming. Springer. 1995, pp. 24–52.

[8] P Nick Benton, Gavin M. Bierman, and Valeria CV de Paiva. “Computational
types from a logical perspective”. In: Journal of Functional Programming
8.02 (1998), pp. 177–193.

[9] Timothy G Griffin. “A formulae-as-type notion of control”. In: Proceedings of
the 17th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages. ACM. 1989, pp. 47–58.

[10] Joachim Lambek and Philip J Scott. Introduction to higher-order
categorical logic. Vol. 7. Cambridge University Press, 1988.

[11] Samson Abramsky et al. “Applying game semantics to compositional software
modeling and verification”. In: International Conference on Tools and
Algorithms for the Construction and Analysis of Systems. Springer.
2004, pp. 421–435.

[12] Matthijs Vákár. “Syntax and Semantics of Linear Dependent Types”. In: arXiv
preprint arXiv:1405.0033 (2014).

[13] Matthijs Vákár. “A categorical semantics for linear logical frameworks”. In:
Foundations of Software Science and Computation Structures. Springer.
2015, pp. 102–116.

[14] Samson Abramsky, Radha Jagadeesan, and Matthijs Vákár. “Games for
Dependent Types”. In: Automata, Languages and Programming. Springer,
2015, pp. 31–43.

253

http://www.tiobe.com/tiobe-index/
https://mail.haskell.org/pipermail/haskell-cafe/2003-May/004343.html
https://mail.haskell.org/pipermail/haskell-cafe/2003-May/004343.html

254 References

[15] Matthijs Vákár, Radha Jagadeesan, and Samson Abramsky. “Game Semantics for
Dependent Types”. In: Information & Computation (2016). To appear. url:
http://users.ox.ac.uk/~magd3996/research/I%26C%20Submission.pdf.

[16] Matthijs Vákár. “A Framework for Dependent Types and Effects”. In: arXiv
preprint arXiv:1512.08009 (2015).

[17] Matthijs Vákár. “An Effectful Treatment of Dependent Types”. In: arXiv
preprint arXiv:1603.04298 (2016).

[18] John Cartmell. “Generalised algebraic theories and contextual categories”. In:
Annals of Pure and Applied Logic 32 (1986), pp. 209–243.

[19] Andrew M Pitts. “Categorical logic”. In: Handbook of Logic in Computer
Science, Volume 5. Ed. by S. Abramsky, D.M. Gabbay, and T.S.E. Maibaum.
OUP, 2000, pp. 39–128.

[20] Martin Hofmann. Extensional Constructs in Intensional Type Theory.
Springer, 1997.

[21] Neil Ghani. “βη-Equality for Coproducts”. In: In Typed -calculus and
Applications, number 902 in Lecture Notes in Computer Science.
Springer Verlag, 1995, pp. 171–185.

[22] Samson Abramsky, Radha Jagadeesan, and Pasquale Malacaria. “Full abstraction
for PCF”. In: Information and Computation 163.2 (2000), pp. 409–470.

[23] Peter Dybjer. “Inductive families”. In: Formal aspects of computing 6.4
(1994), pp. 440–465.

[24] F William Lawvere. “Equality in hyperdoctrines and comprehension schema as an
adjoint functor”. In: Applications of Categorical Algebra 17 (1970),
pp. 1–14.

[25] Bart Jacobs. “Comprehension categories and the semantics of type dependency”.
In: Theoretical Computer Science 107.2 (1993), pp. 169–207.

[26] Peter Dybjer. “Internal type theory”. In: International Workshop on Types
for Proofs and Programs. Springer. 1995, pp. 120–134.

[27] Thomas Streicher. Investigations into intensional type theory. Habilitation
thesis. 1993. url: http://www.mathematik.tu-
darmstadt.de/~streicher/HabilStreicher.pdf.

[28] Bart Jacobs. Categorical logic and type theory. Elsevier, 1999.
[29] Claudio Hermida and Bart Jacobs. “Structural induction and coinduction in a

fibrational setting”. In: Information and computation 145.2 (1998),
pp. 107–152.

[30] Paul Blain Levy. Call-by-push-value: A Functional/imperative Synthesis.
Vol. 2. Springer Science & Business Media, 2012.

[31] Hagen Huwig and Axel Poigné. “A note on inconsistencies caused by fixpoints in
a cartesian closed category”. In: Theoretical Computer Science 73.1 (1990),
pp. 101–112.

[32] Eugenio Moggi. “Notions of computation and monads”. In: Information and
computation 93.1 (1991), pp. 55–92.

http://users.ox.ac.uk/~magd3996/research/I%26C%20Submission.pdf
http://www.mathematik.tu-darmstadt.de/~streicher/HabilStreicher.pdf
http://www.mathematik.tu-darmstadt.de/~streicher/HabilStreicher.pdf

References 255

[33] P Nick Benton. “A mixed linear and non-linear logic: Proofs, terms and models”.
In: Computer Science Logic. Springer. 1995, pp. 121–135.

[34] Andrew Barber and Gordon Plotkin. Dual intuitionistic linear logic.
University of Edinburgh, Department of Computer Science, 1996.

[35] Gordon D. Plotkin. “Call-by-name, call-by-value and the λ-calculus”. In:
Theoretical computer science 1.2 (1975), pp. 125–159.

[36] Paul Blain Levy. “Jumbo λ-calculus”. In: Automata, Languages and
Programming. Springer, 2006, pp. 444–455.

[37] Paul Blain Levy. “Adjunction models for call-by-push-value with stacks”. In:
Theory and Applications of Categories 14.5 (2005), pp. 75–110.

[38] Nick Benton and Philip Wadler. “Linear logic, monads and the lambda calculus”.
In: Logic in Computer Science, 1996. LICS’96. Proceedings., Eleventh
Annual IEEE Symposium on. IEEE. 1996, pp. 420–431.

[39] Anders Kock. “Strong functors and monoidal monads”. In: Archiv der
Mathematik 23.1 (1972), pp. 113–120.

[40] William W Tait. “Intensional interpretations of functionals of finite type I”. In:
The journal of symbolic logic 32.02 (1967), pp. 198–212.

[41] Paul Blain Levy. “Call-by-push-value: Decomposing call-by-value and
call-by-name”. In: Higher-Order and Symbolic Computation 19.4 (2006),
pp. 377–414.

[42] Gordon Plotkin and John Power. “Notions of computation determine monads”. In:
Foundations of Software Science and Computation Structures. Springer.
2002, pp. 342–356.

[43] Jean-Yves Girard. “Linear logic”. In: Theoretical computer science 50.1
(1987), pp. 1–101.

[44] Samuel Eilenberg and G Max Kelly. “Closed categories”. In: Proceedings of
the Conference on Categorical Algebra. Springer. 1966, pp. 421–562.

[45] Samson Abramsky. “No-cloning in categorical quantum mechanics”. In:
Semantic Techniques in Quantum Computation (2009), pp. 1–28.

[46] Paul-André Melliès. “Categorical semantics of linear logic”. In: Panoramas et
Syntheses 27 (2009), pp. 15–215.

[47] GM Bierman. On intuitionistic linear logic. Tech. rep. UCAM-CL-TR-346.
University of Cambridge, Computer Laboratory, 1994.

[48] Anders Kock. “Closed categories generated by commutative monads”. In: Journal
of the Australian Mathematical Society 12.04 (1971), pp. 405–424.

[49] Fred EJ Linton. “Coequalizers in categories of algebras”. In: Seminar on triples
and categorical homology theory. Springer. 1969, pp. 75–90.

[50] William F Keigher. “Symmetric monoidal closed categories generated by
commutative adjoint monads”. In: Cahiers de Topologie et Géométrie
Différentielle Catégoriques 19.3 (1978), pp. 269–293.

[51] Peter T Johnstone. Sketches of an elephant: A topos theory
compendium. Vol. 2. Oxford University Press, 2002.

256 References

[52] François Foltz, Christian Lair, and GM Kelly. “Algebraic categories with few
monoidal biclosed structures or none”. In: Journal of Pure and Applied
Algebra 17.2 (1980), pp. 171–177.

[53] Anders Kock. “Commutative monads as a theory of distributions”. In: Theory
and Applications of Categories 26.4 (2012), pp. 97–131.

[54] John Power and Edmund Robinson. “Premonoidal categories and notions of
computation”. In: Mathematical structures in computer science 7.05
(1997), pp. 453–468.

[55] Brian Day. “On closed categories of functors”. In: Reports of the Midwest
Category Seminar IV. Springer. 1970, pp. 1–38.

[56] Samson Abramsky. “Axioms for Definability and Full Completeness”. In: Proof,
Language and Interaction: Essays in Honour of Robin. MIT Press, 2000,
pp. 55–75.

[57] Ana C Calderon and Guy McCusker. “Understanding game semantics through
coherence spaces”. In: Electronic Notes in Theoretical Computer Science
265 (2010), pp. 231–244.

[58] J Martin E Hyland and C-HL Ong. “On full abstraction for PCF: I, II and III”.
In: Information and computation 163.2 (2000), pp. 285–408.

[59] Samson Abramsky and Radha Jagadeesan. “Game semantics for access control”.
In: Electronic Notes in Theoretical Computer Science 249 (2009),
pp. 135–156.

[60] Russell Harmer and Guy McCusker. “A fully abstract game semantics for finite
nondeterminism”. In: Logic in Computer Science, 1999. Proceedings.
14th Symposium on. IEEE. 1999, pp. 422–430.

[61] James Laird. “Full abstraction for functional languages with control”. In: Logic
in Computer Science, 1997. LICS’97. Proceedings., 12th Annual IEEE
Symposium on. IEEE. 1997, pp. 58–67.

[62] James David Laird. A semantic analysis of control. University of Edinburgh.
College of Science and Engineering. School of Informatics., 1999.

[63] Samson Abramsky, Kohei Honda, and Guy McCusker. “A fully abstract game
semantics for general references”. In: Logic in Computer Science, 1998.
Proceedings. Thirteenth Annual IEEE Symposium on. IEEE. 1998,
pp. 334–344.

[64] Samson Abramsky and Guy McCusker. “Linearity, sharing and state: a fully
abstract game semantics for Idealized Algol with active expressions”. In:
Electronic Notes in Theoretical Computer Science 3 (1996), pp. 2–14.

[65] Samson Abramsky et al. “Game semantics for programming languages”. In:
Lecture notes in computer science 1295 (1997), pp. 3–4.

[66] Guy McCusker. “Games and full abstraction for FPC”. In: Logic in Computer
Science, 1996. LICS’96. Proceedings., Eleventh Annual IEEE
Symposium on. IEEE. 1996, pp. 174–183.

[67] G. McCusker. Games and Full Abstraction for a Functional
Metalanguage with Recursive Types. Distinguished Dissertations. Springer
London, 2012. url: https://books.google.co.uk/books?id=0oXbBwAAQBAJ.

https://books.google.co.uk/books?id=0oXbBwAAQBAJ

References 257

[68] Per Martin-Löf. “An intuitionistic theory of types”. In: Twenty-five years of
constructive type theory. Vol. 36. Oxford University Press, 1998, pp. 127–172.

[69] Iliano Cervesato and Frank Pfenning. “A linear logical framework”. In: LICS’96.
Proceedings. IEEE. 1996, pp. 264–275.

[70] Ugo Dal Lago and Marco Gaboardi. “Linear dependent types and relative
completeness”. In: LiCS 2011. Proceedings. IEEE. 2011, pp. 133–142.

[71] Barbara Petit et al. “Linear dependent types in a call-by-value scenario”. In:
Proceedings of the 14th symposium on Principles and practice of
declarative programming. ACM. 2012, pp. 115–126.

[72] Marco Gaboardi et al. “Linear dependent types for differential privacy”. In:
ACM SIGPLAN Notices. Vol. 48. 1. ACM. 2013, pp. 357–370.

[73] Kevin Watkins et al. A concurrent logical framework I: Judgments and
properties. Tech. rep. DTIC Document, 2003.

[74] J Peter May and Johann Sigurdsson. Parametrized homotopy theory. 132.
American Mathematical Soc., 2006.

[75] Michael Shulman. “Enriched indexed categories”. In: Theory and
Applications of Categories 28.21 (2013), pp. 616–695.

[76] Kate Ponto and Michael Shulman. “Duality and traces for indexed monoidal
categories”. In: Theory and Applications of Categories 26.23 (2012),
pp. 582–659.

[77] Urs Schreiber. “Quantization via Linear homotopy types”. In: arXiv preprint
arXiv:1402.7041 (2014).

[78] Neelakantan R Krishnaswami, Pierre Pradic, and Nick Benton. “Integrating
Linear and Dependent Types”. In: Proceedings of the 42nd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. ACM. 2015, pp. 17–30.

[79] Bart Jacobs. “Semantics of weakening and contraction”. In: Annals of pure
and applied logic 69.1 (1994), pp. 73–106.

[80] Lewis Carroll, John Tenniel, and Martin Gardner. The Annotated Alice.
Penguin books, 1965.

[81] Nax Paul Mendler. “Predictive type universes and primitive recursion”. In: Logic
in Computer Science, 1991. LICS’91., Proceedings of Sixth Annual
IEEE Symposium on. IEEE. 1991, pp. 173–184.

[82] Martin Hyland and Andrea Schalk. “Glueing and orthogonality for models of
linear logic”. In: Theoretical computer science 294.1-2 (2003), pp. 183–231.

[83] Erik Palmgren and Viggo Stoltenberg-Hansen. “Domain interpretations of
Martin-Löf’s partial type theory”. In: Annals of Pure and Applied Logic
48.2 (1990), pp. 135–196.

[84] Claude Bertrand. “A Natural Semantics of First-order Type Dependency”. In:
Theor. Comput. Sci. 123.1 (Jan. 1994), pp. 31–53. url:
http://dx.doi.org/10.1016/0304-3975(94)90067-1.

[85] Antonio Bucciarelli et al. “On linear information systems”. In: arXiv preprint
arXiv:1003.5518 (2010).

http://dx.doi.org/10.1016/0304-3975(94)90067-1

258 References

[86] James McKinna. “Why dependent types matter”. In: ACM Sigplan Notices.
Vol. 41. 1. ACM. 2006, pp. 1–1.

[87] Conor McBride. “Faking it Simulating dependent types in Haskell”. In: Journal
of functional programming 12.4-5 (2002), pp. 375–392.

[88] Steve Awodey and Michael A Warren. “Homotopy theoretic models of identity
types”. In: Mathematical Proceedings of the Cambridge Philosophical
Society 146.01 (2009), pp. 45–55.

[89] U HoTTbaki. Homotopy Type Theory: Univalent Foundations of
Mathematics. Institute for Advanced Study:
http://homotopytypetheory.org/book, 2013.

[90] Samson Abramsky and Radha Jagadeesan. “Games and full completeness for
multiplicative linear logic”. In: The Journal of Symbolic Logic 59.02 (1994),
pp. 543–574.

[91] Hanno Nickau. “Hereditarily sequential functionals”. In: International
Symposium on Logical Foundations of Computer Science. Springer.
1994, pp. 253–264.

[92] Samson Abramsky and Radha Jagadeesan. “A game semantics for generic
polymorphism”. In: Annals of Pure and Applied Logic 133.1 (2005),
pp. 3–37.

[93] Andrzej S Murawski and Nikos Tzevelekos. “Game semantics for good general
references”. In: Logic in Computer Science (LICS), 2011 26th Annual
IEEE Symposium on. IEEE. 2011, pp. 75–84.

[94] Vincent Danos and Russell S Harmer. “Probabilistic game semantics”. In: ACM
Transactions on Computational Logic (TOCL) 3.3 (2002), pp. 359–382.

[95] Samson Abramsky et al. “Nominal games and full abstraction for the nu-calculus”.
In: Logic in Computer Science, 2004. Proceedings of the 19th Annual
IEEE Symposium on. IEEE. 2004, pp. 150–159.

[96] Samson Abramsky and Guy McCusker. “Call-by-value games”. English. In:
Computer Science Logic. Ed. by Mogens Nielsen and Wolfgang Thomas.
Vol. 1414. Lecture Notes in Computer Science. Springer Berlin Heidelberg, 1998,
pp. 1–17. url: http://dx.doi.org/10.1007/BFb0028004.

[97] Marc Bezem, Thierry Coquand, and Simon Huber. “A model of type theory in
cubical sets”. In: 19th International Conference on Types for Proofs and
Programs (TYPES 2013). Vol. 26. 2014, pp. 107–128.

[98] Norihiro Yamada. “Game Semantics for Martin-Löf Type Theory”. In: arXiv
preprint arXiv:1610.01669 (2016).

[99] Catarina Coquand. “A realizability interpretation of Martin-Löf’s type theory”.
In: Twenty-Five Years of Constructive Type Theory (1998).

[100] Peter Dybjer. “Inductive sets and families in Martin-Löf’s type theory and their
set-theoretic semantics”. In: Logical frameworks. Ed. by G. Huet and
G. Plotkin. Vol. 2. Cambridge Univ Press, 1991, p. 6.

[101] Hugo Herbelin. “On the degeneracy of Σ-types in presence of computational
classical logic”. In: Typed Lambda Calculi and Applications. Springer,
2005, pp. 209–220.

http://dx.doi.org/10.1007/BFb0028004

References 259

[102] The Coq development team. The Coq proof assistant reference manual.
Version 8.0. LogiCal Project. 2004. url: http://coq.inria.fr.

[103] Ulf Norell. Towards a practical programming language based on
dependent type theory. Vol. 32. Chalmers University of Technology, 2007.

[104] Lennart Augustsson. “Cayenne — a language with dependent types”. In: ACM
SIGPLAN Notices. Vol. 34. 1. ACM. 1998, pp. 239–250.

[105] Thorsten Altenkirch et al. “ΠΣ: Dependent types without the sugar”. In:
Functional and Logic Programming. Springer Berlin Heidelberg, 2010,
pp. 40–55.

[106] Chris Casinghino, Vilhelm Sjöberg, and Stephanie Weirich. “Combining proofs
and programs in a dependently typed language”. In: ACM SIGPLAN Notices
49.1 (2014), pp. 33–45.

[107] Edwin Brady. “Idris, a general-purpose dependently typed programming language:
Design and implementation”. In: Journal of Functional Programming 23.05
(2013), pp. 552–593.

[108] Hongwei Xi and Frank Pfenning. “Dependent types in practical programming”. In:
Proceedings of the 26th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages. ACM. 1999, pp. 214–227.

[109] Nikhil Swamy et al. “Dependent types and multi-monadic effects in F”. In: ACM
SIGPLAN Notices. Vol. 51. 1. ACM. 2016, pp. 256–270.

[110] Aleksandar Nanevski, Greg Morrisett, and Lars Birkedal. “Polymorphism and
separation in hoare type theory”. In: ACM SIGPLAN Notices. Vol. 41. 9.
ACM. 2006, pp. 62–73.

[111] Daniel R Licata and Robert Harper. “Positively dependent types”. In:
Proceedings of the 3rd workshop on Programming languages meets
program verification. ACM. 2009, pp. 3–14.

[112] Jeff Egger, Rasmus Ejlers Møgelberg, and Alex Simpson. “Enriching an Effect
Calculus with Linear Types.” In: CSL. Vol. 5771. Springer. 2009, pp. 240–254.

[113] Danel Ahman, Neil Ghani, and Gordon D Plotkin. “Dependent types and fibred
computational effects”. In: International Conference on Foundations of
Software Science and Computation Structures. Springer. 2016, pp. 36–54.

[114] Michael Shulman. “Brouwer’s fixed-point theorem in real-cohesive homotopy type
theory”. In: arXiv preprint arXiv:1509.07584 (2015).

[115] Urs Schreiber and Michael Shulman. “Quantum gauge field theory in cohesive
homotopy type theory”. In: arXiv preprint arXiv:1408.0054 (2014).

[116] Andreas Abel, Klaus Aehlig, and Peter Dybjer. “Normalization by evaluation for
Martin-Löf type theory with one universe”. In: Electronic Notes in
Theoretical Computer Science 173 (2007), pp. 17–39.

[117] Danel Ahman and Sam Staton. “Normalization by evaluation and algebraic
effects”. In: Electronic Notes in Theoretical Computer Science 298
(2013), pp. 51–69.

[118] Ana Bove and Peter Dybjer. “Dependent types at work”. In: Language
engineering and rigorous software development. Springer, 2009, pp. 57–99.

http://coq.inria.fr

260 References

[119] Henk Barendregt, Wil Dekkers, and Richard Statman. Lambda calculus with
types. 2013.

[120] Derrick G Kourie and Bruce W Watson. The Correctness-by-Construction
Approach to Programming. Springer Science & Business Media, 2012.

[121] Peter Dybjer. “A general formulation of simultaneous inductive-recursive
definitions in type theory”. In: The Journal of Symbolic Logic 65.02 (2000),
pp. 525–549.

[122] Pierre-Marie Pédrot and Nicolas Tabareau. “An Effectful Way to Eliminate
Addiction to Dependence”. In: Logic in Computer Science (LICS), 2017
32nd Annual ACM/IEEE Symposium on. Reykjavik, Iceland, June 2017,
p. 12. url: https://hal.inria.fr/hal-01441829.

[123] Aleksandar Nanevski et al. “Ynot: dependent types for imperative programs”. In:
ACM Sigplan Notices. Vol. 43. 9. ACM. 2008, pp. 229–240.

[124] Conor McBride. “I got plenty o’nuttin’”. In: A List of Successes That Can
Change the World. Springer, 2016, pp. 207–233.

[125] Gregory Arone and Marja Kankaanrinta. The Goodwillie tower of the
identity is a logarithm. Citeseer, 1995. url:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.53.8306.

[126] Samson Abramsky and Ross Duncan. “A categorical quantum logic”. In:
Mathematical Structures in Computer Science 16.03 (2006), pp. 469–489.

[127] Pierre Clairambault. “Least and greatest fixpoints in game semantics”. In:
International Conference on Foundations of Software Science and
Computational Structures. Springer. 2009, pp. 16–31.

[128] Danel Ahman. Handling fibred algebraic effects. Preprint. url: https://
danelahman.github.io/drafts/handling_fibred_algebraic_effects.pdf.

[129] Thomas Huckle. Collection of software bugs. 2015. url:
https://www5.in.tum.de/~huckle/bugse.html.

[130] Joseph D’Urso. How much would it cost to end hunger? 2015. url:
https://www.weforum.org/agenda/2015/07/how-much-would-it-cost-to-
end-hunger/.

[131] Tom Britton et al. “Reversible debugging software”. In: University of
Cambridge-Judge Business School, Tech. Rep (2013).

https://hal.inria.fr/hal-01441829
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.53.8306
https://danelahman.github.io/drafts/handling_fibred_algebraic_effects.pdf
https://danelahman.github.io/drafts/handling_fibred_algebraic_effects.pdf
https://www5.in.tum.de/~huckle/bugse.html
https://www.weforum.org/agenda/2015/07/how-much-would-it-cost-to-end-hunger/
https://www.weforum.org/agenda/2015/07/how-much-would-it-cost-to-end-hunger/

	Introduction
	Motivation
	The Limits of Logic and the Conception of Computers
	Terms and Types
	Programming Requires More Terms: Effects
	Logic Requires More Types: Dependent Types
	Effects as Proofs of Modal Propositions
	CBV, CBN and Half-Modalities
	The Relationship Between Proving and Programming
	Why Unify Proving and Programming?

	Goals of This Thesis
	Key Contributions
	Thesis Outline

	Preliminaries
	Cartesian Type Theory
	Syntax of Type Theories
	Categorical Semantics

	Call-By-Push-Value and Effectful Simple Type Theory
	Syntax
	Categorical Semantics
	A Few Words about Models
	Operational Semantics
	Adding Effects

	Linear Types
	Categorical Semantics
	Syntax
	Girard Translations
	Concrete Models

	AJM Game Semantics

	Linear Dependent Type Theory
	Syntax of dDILL
	Semantics of dDILL
	Models of dDILL (Tautologically)
	Categorical Semantics of dDILL

	dLNL Calculus
	Girard Translations
	Concrete Models
	Some Discrete Models: Monoidal Families
	Commutative Effects
	A Double Glueing Construction
	Scott Domains and Strict Functions
	Coherence Spaces

	Games for Dependent Types
	An Indexed Category of Dependent Games
	A Category with Families of Context Games
	Semantic Type Formers 1, , and Id
	Ground Types: Finite Dependent Games
	Soundness, Faithfulness and Completeness
	Soundness and Faithfulness
	Full Completeness

	Dependent Games for Effects
	Recursion
	Local Ground References
	Finite Non-Determinism
	Control Operators
	Lessons for Combining Dependent Types and Effects

	Dependently Typed Call-by-Push-Value (dCBPV)
	Dependent Types and Effects?
	dCBPV without Dependent Kleisli Extensions (dCBPV-)
	Syntax
	Categorical Semantics
	Some Basic Models
	Operational Semantics and Effects

	dCBPV with Dependent Kleisli Extensions (dCBPV+)
	Syntax
	Categorical Semantics
	Some Basic Models and Non-Models
	Operational Semantics and Effects

	Dependent Projection Products?
	Dependent Kleisli Extensions: a Bug or a Feature?
	Unrestricted Effects and Dependent Types?
	Fundamentalist vs Pragmatic Dependent Types

	Dependent Enriched Effect Calculus and More Connectives
	Comparison with HTT

	Conclusions and Future Work
	Conclusions
	Future Work
	Linear Dependent Functions
	Stable Homotopy as Effectful Homotopy?
	Dependently Typed Quantum Programming?
	Extending CBN Game Semantics for Dependent Types
	Game Semantics for dCBPV
	Certified Real-World Programming in dCBPV-

	Summary for a General Audience
	References

