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Abstract

The objective of this thesis is to study the concept of causality and

its interplay with the arrow of time in quantum process theories and

beyond. The framework of process theories is particularly intuitive

since it is accompanied by a diagrammatic formalism. Its formal un-

derpinnings lie in Categorical Quantum Mechanics, a field which has

recently seen enormous success both in the foundations of physics and

in quantum information theory.

Taking a process-theoretic viewpoint we examine possible ways to time-

symmetrize quantum theory. We identify the causality condition as the

root of the asymmetry and we proceed by eliminating it in a variety of

ways. We furthermore view that process theories can be faithfully cap-

tured by operad algebras, which is an alternative to their identification

with symmetric monoidal categories. The landscape of operad algebras

allows us to introduce novel notions of process theories, namely time

neutral process theories. To provide more intuition about them, we

establish a link with compact closed categories. Finally, we present

an algebraic framework to describe the evolution of fields, perceived

as causal process theories, in discretised spacetimes. We form connec-

tions with algebraic quantum field theory (AQFT) as well as quantum

cellular automata (QCA).
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Introduction

0.1 Background literature

The vast majority of this work relies heavily on the framework of categorical quan-

tum mechanics[AC09, CK15]. The motivation for combining categories with quan-

tum theory is the reassessment of fundamental physics. Indeed, categorical quan-

tum mechanics gives primary focus on the way quantum processes compose and

interact with their environment, contrary to the traditional Hilbert space formal-

ism which relies on complex linear structure with the emphasis being given on the

states.

In particular, the framework of symmetric monoidal categories is considered

suitable to describe physical theories and is accompanied by a diagrammatic for-

malism [JR91, CK15, BS09]. Diagrams provide a more intuitive understanding

of abstract mathematical notions and consequently constitute a more flexible way

to reason about things [CK16, SSC21, Sel17]. Due to its emphasis on processes

rather than states, the framework of symmetric monoidal categories bears the

name process theories.

The highlight of process theories is their extreme versatility since the same

diagrams can be interpreted in different kinds of monoidal categories. When it

comes to the foundations of physics, this feature offers a significant advantage since

it provides a wide landscape to explore alternative theories to quantum theory. In

the same spirit, it yields intuition of the precise fundamental characteristics that

make quantum and classical physics radically different, an intuition that we would
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2 Introduction

not acquire with the traditional Hilbert space formalism[Bae06].

It is noteworthy that the diagrammatic representation of quantum processes

has seen enormous success in the field of quantum information, with the develop-

ment of a graphical calculus, namely ZX calculus, which reasons about interac-

tions between qubits[Bac14, JPV17, NW17]. Of particular relevance to this thesis

though, is the success of the process theoretic formalism related to the axioma-

tization of quantum field theories [Hal11, HM06, HK64, Wit88, Ati88]. There, a

quantum field theory is defined as a functor from a suitable category related to

spacetime structure to a category related to quantum processes.

0.2 Synopsis of this thesis

In the first chapter, we introduce the category-theoretic concepts and the frame-

work of process theories, that will be used throughout the thesis. We do so by in-

voking the category Hilb of Hilbert spaces as the central example, to demonstrate

how the standard formalism of quantum theory can be presented in a category-

theoretic language. We present the process theory of quantum physics, QPhys,

which treats classical systems as internal to quantum theory.

Processes in QPhys are completely positive trace preserving (CPTP) maps.

We identify trace preservation with the notion of causality in general process the-

ories and we indicate the particular conditions that a process theory has to obey

to be considered causal.

In the second chapter, we provide three ways to incorporate time-symmetry

in quantum theory from a process-theoretic perspective. The first one has close

connections with Refs.[Har21, DBDR20] and restricts the process theory QPhys

to one that satisfies an additional retrocausality constraint. The second one is,

according to our knowledge, a completely new approach, which extends the no-

tions of causality and retrocausality to apply to systems (along with processes).

Based on this approach we create a toy model for particle physics, where the causal

and retrocausal systems correspond to particles and antiparticles respectively and

2



0.2. Synopsis of this thesis 3

processes describe interactions between these. Finally, the third approach extends

QPhys to a super theory that satisfies neither causality nor a retrocausality con-

straint. To avoid unphysical predictions we can either modify its composition rule,

which is a similar approach taken in Refs. [AV08, APTV09, O+08, OC15, SGS+17,

SGB+14, OC16, Oec16], or its processes. The material presented in Chapter 2 is

a joint forthcoming work with John Selby and Bob Coecke[SSCng].

In the third chapter, we claim that the approach of viewing process theories

as symmetric monoidal categories can be proved limited. Inspired by the work of

Ref. [PSV21] we argue that process theories are better understood as a particular

type of operad algebra. We demonstrate the utility of the operadic perspective by

showing that it subsumes causal process theories as well as time neutral process

theories. The latter possess no distinction between inputs and outputs of processes,

which could be relevant to quantum gravity approaches. To provide a deeper

intuition of time neutral process theories we establish a link with compact closed

categories. The material presented in Chapter 3 is a joint forthcoming work with

John Selby[SSng].

In the fourth chapter, we present an algebraic framework to describe the

evolution of quantum fields, perceived as causal process theories, in discretized

spacetimes. While in the first two chapters time and space were implicit, in this

chapter they become explicit. More specifically, we formulate theory-independent

notions of fields over causal orders in a functorial manner. We draw strong con-

nections to quantum cellular automata [Arr19] and algebraic quantum field theory

[HK64, HM06]. Our constructions are shown to greatly generalize those in the

existing literature. This is a joint published work with Stefano Gogioso and Bob

Coecke [GSC21].
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Chapter 1

Categorical Quantum

Mechanics

1.1 Categories

Categorical quantum mechanics starts with the idea that the behaviour of physical

systems should be studied concerning other systems and never in isolation. A

prominent example is the measurement process where we acquire knowledge of the

physical system of interest through its interaction with a measurement apparatus.

Categories provide a natural mathematical language to model such interactions

and come with a diagrammatic formalism [JR91, JRD96].

Definition 1.1. A category consists of a set of objects, that correspond to physical

systems and a set of morphisms that correspond to physical processes. Every

morphism has a source and a target object. If the morphism f has A as a source

object andB as a target object, then this is expressed as f : A→ B. The morphism

f can be interpreted as a process from a physical system A to a physical system

B.

A category obeys the following axioms:

• For two processes f : A → B and g : B → C, there is a process g ◦ f : A →

C, namely the composite of f and g. We will say that f and g compose

5



6 Chapter 1. Categorical Quantum Mechanics

sequentially.

• Composition of processes is associative, that is (g ◦ f) ◦ h = g ◦ (f ◦ h).

• For every system A, there is an identity process idA : A→ A.

• Given f : A→ B, there is an identity law, namely idB ◦ f = f = f ◦ idA.

From the definition of a category, we can already realize that processes have a

more prominent role than systems. This is in contrast with the standard perspec-

tive in physics, where the primer role is on systems (e.g. Hilbert spaces) rather

than processes (e.g. linear maps).

To visualise systems (objects) and processes (morphisms) we can use what

category theorists call ‘string diagrams’. The spirit of string diagrams is that

systems are labels of ‘strings’ or ‘wires’:

A

Wires can also be thought of as identity processes idA : A→ A, since by definition

systems A are in one to one correspondence with them.

General processes are represented as boxes with an input wire A and an output

wire B:

A

B

f

Sequential composition is achieved by composing the output of one box to the

input of another. For instance, the composition of f : A → B with g : B → C is

represented as:

A

B

f

C

g

The associativity of composition is latent in the string diagram notation. That is

6



1.1. Categories 7

the diagram
D

h

A

B

f

C

g

represents both h ◦ (g ◦ f) and (h ◦ g) ◦ f . That is, the associativity law is ‘built

in’ the diagrammatic notation. The same holds for the identity law. The fact

that the associativity and identity laws are inherent in the diagrammatic language

indicates an advantage over the algebraic language.

Prominent examples of categories are

• Set: systems are sets A,B, .. and processes are functions f : A→ B between

these. Sequential composition of f : A → B and g : B → C is the function

g ◦ f : α 7→ g(f(α)), with α ∈ A. The identity process is the function

idA : α→ α.

• Rel: systems are sets A,B, .. and processes are relations R ⊆ A×B. Com-

position of relations R : A→ B and T : B → C is the relation

{(α, c) ∈ A× C | ∃b ∈ B : (α, b) ∈ R, (b, c) ∈ T}.

The identity process for A is the relation {(α, α) ∈ A×A|α ∈ A}.

• Hilb: systems are Hilbert spaces and processes are linear maps between

these. The composition of processes is the composition of linear maps as

ordinary functions. The identity process is the identity linear map.

The category Set is relevant to classical physics, whereas the category Hilb

is relevant to quantum physics. The category Rel is somewhere in between. Al-

though one would expect that its properties are closer to Set, it looks more like

Hilb. For this reason, it is considered to provide useful insight when studying

quantum mechanics from a categorical point of view.

7



8 Chapter 1. Categorical Quantum Mechanics

We have mentioned what a category is and we walked through some examples.

The next step is to define mappings between categories.

Definition 1.2. A functor F : C → D from a category C to a category D is a map

that

• sends an object A in C to an object F (A) in D.

• sends a morphism f : A → B in C to a morphism F (f) : F (A) → F (B) in

D, such that the following conditions are satisfied:

– F preserves identities, i.e. F (idA) = idF (A) for an object A in C.

– F preserves composition, i.e. F (g ◦ f) = F (g) ◦ F (f) for morphisms

f : A→ B and g : B → C in C.

In physics, usually, a functor describes a theory: In particular, quantum field

theories are axiomatized as functors [Ati88, HK64]. For instance, a topological

quantum field theory is a functor F : Bordn → Vect which maps n−1-dimensional

manifolds (i.e. a slice of space) to vector spaces of quantum states (i.e. Hilbert

spaces) and n-dimensional manifolds (i.e. spacetime) to linear maps.

1.2 Monoidal categories

In physics, we usually want to describe how a joint system constitutes of smaller

parts. To manipulate joint systems, we use some sort of tensor product H ⊗ K

for any pair of systems H and K. As we will see below, categories with a tensor

product are called monoidal and the corresponding composition of systems, H⊗K

is called parallel composition. For example parallel composition in Hilb is the usual

tensor product of Hilbert spaces.

Quite generally, given processes f : A → B and g : C → D their parallel

composition is f ⊗ g : A ⊗ C → B ⊗ D. That is, f ⊗ g is a process from the

joint system A⊗C to the joint system B⊗D. Graphically, we can depict parallel

8



1.2. Monoidal categories 9

composition in multiple ways as follows:

f g = f ⊗ g = f ⊗ g

A

B

C

D

A C

B D

A⊗ C

B ⊗D

More formally, parallel composition is captured by monoidal categories. These are

categories as in definition 1.1 equipped with extra structure.

Definition 1.3. A monoidal category consists of the following ingredients:

• a category C,

• a functor ⊗ : C × C → C, that performs the following assignment to pairs of

systems and processes:

(A,B) 7→ (A⊗B)

(f : A→ B, g : C → D) 7→ (f ⊗ g : A⊗ C → B ⊗D)

• a trivial (or unit) system I ∈ C

• a natural isomorphism αA,B,C for every triple of objects A,B,C, which is

called the associator :

αA,B,C : (A⊗B)⊗ C ∼−→ A⊗ (B ⊗ C)

• natural isomorphisms

ρA : A⊗ I ∼−→ A

λA : I ⊗A ∼−→ A

called the right and left unit laws respectively.

The associator αA,B,C and the unit laws ρ and λ satisfy certain conditions known

9



10 Chapter 1. Categorical Quantum Mechanics

as coherency conditions, which in plain words guarantee that we can treat isomor-

phisms as if they are equalities[CP11, ML98].

Definition 1.3 obviously requires explanation. First of all, the functor ‘⊗′ as-

signs a tensor product both to systems and processes automatically placing them

on equal footing. For instance, in the case of Hilbert spaces the functor ‘⊗’ assigns

to a pair of Hilbert spaces H,H ′ their tensor product H ⊗ H ′ and to a pair of

linear operators f : H → K, g : H ′ → K ′ their tensor product

f ⊗ g : H ⊗H ′ → K ⊗K ′.

Physically, the tensor product of processes means that they run in parallel : f ⊗ g

translates as ‘f happens while g happens’. This is in contrast with sequential

composition, f ◦ g, which translates as ‘f happens after g happens’. However

different, sequential and parallel composition distribute over each other, meaning

that the following condition holds:

(g1 ⊗ g2) ◦ (f1 ⊗ f2) = (g1 ◦ f1)⊗ (g2 ◦ f2)

That said, f1 being in the past of g1 while f2 being in the past of g2 , is the

same as the pair (f1, f2) being in the past of the pair (g1, g2). Graphically, the

distributivity condition is depicted as

g1

f1

g2

f2

=

g1 g2

f1 f2

.

We have now used parentheses to indicate the way diagrams are formed on each

side. By dropping them we realize that the distributivity condition comes out

naturally in the diagrammatic language which is a manifestation of its advantage

over algebraic equations.

10



1.2. Monoidal categories 11

Turning now to the bullet (3) of the definition 1.3, the trivial system acts as

a multiplicative identity up to an isomorphism. That is, A⊗ I ' I ' I ⊗ A. For

instance, in the category Hilb, the unit system is the complex numbers C. In that

case, the left and right unit laws are the isomorphisms

ρH : H ⊗ C→ H

λH : C⊗H → H.

In general, it is beneficial to think of processes of the form I → I as the scalars of

the theory with idI being their identity. In our example category Hilb, processes

I → I are linear maps f : C→ C. They are defined by f(1) since by linearity we

have that f(z) = zf(1) for z ∈ C. Therefore, complex numbers are in correspon-

dence with processes I → I. Graphically, scalars are represented as processes with

trivial input or output, i.e.

s

while their identity idI is either represented as an empty diagram

or it can be omitted for simplicity.

The existence of I allows us to define some special kinds of processes, namely

states and effects. States are processes of the form I → A and they can be perceived

as bringing the system A into being. In the case of Hilb for example, every element

ψ ∈ H is in correspondence with states Sψ : C → H via Sψ(1) = ψ. Effects, on

the other hand, are processes of the form A → I and they can be perceived as

destroying system A. In the context of quantum theory, we can view them as

describing postselection: Many rounds of the experiment can be performed and

only the ones with a certain outcome dictated by the particular effect are accepted.

11



12 Chapter 1. Categorical Quantum Mechanics

Diagrammatically, states and effects are drawn respectively as

A

ρ

e

A

Proceeding to the bullet (4) of the definition naturality of the associator means

that there are processes f : A→ A′, g : B → B′, h : C → C ′ such that the following

diagram commutes:

(A⊗B)⊗ C
αA,B,C

A⊗ (B ⊗ C)

A′ ⊗ (B′ ⊗ C ′)

f ⊗ (g ⊗ h)

(A′ ⊗B′)⊗ C ′
(f ⊗ g)⊗ h

α′A,B,C

Similar conditions hold for the right and left unit laws. The usefulness of the

naturality condition will be demonstrated in the following when considering a

special kind of a monoidal category, namely a symmetric monoidal category.

Definition 1.4. A symmetric monoidal category is a monoidal category with an

additional natural isomorphism

σA,B := A⊗B → B ⊗A

The isomorphism σA,B swaps the order of the systems A and B and is represented

as a wire crossing:

A B

AB

It should satisfy some coherence conditions such as σI,A ◦ λA = ρA which ensure

that it interplays nicely with the rest of the morphisms in the monoidal category.

12



1.3. Dagger categories 13

The naturality condition for σA,B is the commutative square below:

B′ ⊗A′

B ⊗AA⊗B

A′ ⊗B′

σA,B

g ⊗ f

σA′,B′

f ⊗ g

.

Graphically, the naturality condition is more intuitive being depicted as

A B

CD

g f
=

D C

A

g

B

f

This is translated as ‘first applying the processes on two systems and then swapping

them is the same as first swapping the systems and then applying the processes’.

The example categories Set, Rel and Hilb are symmetric monoidal:

• In Set, σA,B : A × B → B × A is defined as (α, b) 7→ (b, α) for α ∈ A and

b ∈ B.

• In Rel, σA,B : A × B → B × A is defined as (α, b) ∼ (b, α) for α ∈ A and

b ∈ B.

• In Hilb, σH,H′ : H ⊗H ′ → H ′ defined as ψ1⊗ψ2 7→ ψ2⊗ψ1 for ψ1 ∈ H and

ψ2 ∈ H ′.

1.3 Dagger categories

Prominent features of quantum theory, such as unitarity and the braket notation,

are tightly connected to the inner product of states in a Hilbert space. However,

when we view quantum theory from a categorical perspective, such as when work-

ing within the category Hilb of Hilbert spaces and bounded linear operators, the

inner product is a feature that does not play a crucial role and is usually ignored.

This seems to leave the categorical thinking ‘incomplete’: on the one hand, the

13



14 Chapter 1. Categorical Quantum Mechanics

inner product is unimportant when defining the category Hilb but on the other

hand it plays an essential role in quantum theory. The answer to this puzzle lies

in the categorical formulation of adjoints.

Any bounded linear operator f : H1 → H2 between Hilbert spaces H1 and H2

admits an adjoint , i.e. a bounded linear map f † : H2 → H1. Taking the adjoint

of f can be viewed as a functor † : Hilb→ Hilb that acts as the identity on objects

and sends every morphism f to its ajoint f †.

Knowing the adjoints amounts to recovering the inner product. Indeed, suppose

that ψ is a state in a Hilbert space H. Then there exists an operator Sψ : C→ H

defined as Sψ(1) = ψ and such that

〈k, ψ〉 = S†kSψ.

The right-hand side is a linear map from C to C, which as we have mentioned in

the previous section is in correspondence with complex numbers. The left-hand

side is the familiar inner product of states in Hilbert space. Therefore, the dagger

structure in Hilb encodes the inner product. Furthermore, this way of viewing

the inner product formalizes the bra-ket notation in quantum mechanics since the

operators Sψ and S†k correspond to a Dirac ket and bra respectively.

The notion of adjoints does not concern only Hilb, but can be generalized to

arbitrary categories:

Definition 1.5. A dagger category is a category D equipped with a functor

† : D → D, which acts as the identity on objects and associates every morphism

f : A→ B to its adjoint f † : B → A. Furthermore, the following conditions should

be satisfied for every f : A→ B and g : B → C:

• idA = id†A

• (g ◦ f)† = f † ◦ g† : C → A

• (f †)† = f

14



1.4. Dagger-Compact categories 15

If, furthermore, f ◦ f † = idB and f † ◦ f = idA, then f is a unitary map.

Turning to our example categories, Rel is a dagger category whereas Set is not.

• In Rel, given the relation R : A→ B, the dagger is defined as the relational

converse R† : B → A. That said,

R† = {(b, α) ∈ B ×A|(α, b) ∈ R}

• We will demonstrate that Set is not a dagger category through a counterex-

ample: Suppose that Set has a dagger structure. Consider a non-empty set

A and let the function f : ∅ → A. Then, f † is the function f † : A→ ∅. This

is a contradiction, since there are no functions from a non-empty set to an

empty set.

1.4 Dagger-Compact categories

A dagger compact category is a symmetric monoidal dagger category that is also

compact closed. In what follows, we will analyse what this means [Sel07, AC04,

AC09].

Definition 1.6. A dagger symmetric monoidal dagger category is simply a sym-

metric monoidal category with a dagger structure. More precisely,

• For every pair of morphisms f , g we have that (f ⊗ g)† = f † ⊗ g†

• The associator, the left and right unit laws and symmetry are unitary maps.

So far, we have discussed string diagrams for symmetric monoidal categories.

Compact closed categories, on the other hand, provide an additional feature to

the diagrammatic formalism: They provide us with the ability to bend the wires

around, interconverting inputs with outputs.

Definition 1.7. A compact closed category comprises the following ingredients:

• a symmetric monoidal category C

15



16 Chapter 1. Categorical Quantum Mechanics

• For every object A ∈ C, there is a dual object A∗. They are represented as

wires pointing upwards and downwards respectively:

A:= A A∗ := A

• There are morphisms ηA : I → A∗ ⊗A, called the cup or unit and

εA : A⊗A∗ → I called the cap or the counit, drawn as

A AA∗ A

η
=

A AA∗

ε

A

= .

In a sense, the compact structure adds orientation to the diagrams. The

cup ηA : I → A∗ ⊗ A is a state of A∗ ⊗ A and in particular it represents an

entangled state.

• Cups and caps must satisfy the following conditions known as snake equa-

tions:
A

=

A

A

A A

A

=

A

A

They convey that bending wires with a cup and a cap is the same with a

single wire.

Furthermore, the composition of cups and caps with the symmetry isomorphism

leads to the following equations:

:= and :=

Definition 1.8. A dagger compact category is a dagger symmetric monoidal cat-

egory that is also compact closed and for which the equation ε†A = ηA∗ holds.

In a dagger compact category, there are two kinds of involutive symmetries.

16



1.5. Process theories 17

The first one comes from the dagger and sends a process f : A→ B to its adjoint

f † : B → A. The second one comes from the compact structure and sends a

process f : A→ B, to its transpose f∗ : B∗ → A∗ defined as

f∗ := f

A

B

A

B

The transpose of a map g : H → H ′, g∗ : H ′∗ → H∗, is realized as acting on effects

rather than states. Indeed, if e : H ′ → C is an element of H
′∗, then g∗ acts as

g∗(e) := e ◦ g taking the effect e to the effect g ◦ e : H → C.

Finite quantum mechanics is naturally formed in the language of dagger com-

pact categories [AC04, AC09]. In particular, the category FHilb of finite dimen-

sional Hilbert spaces and bounded operators is dagger compact closed: The dual

of a Hilbert space H is H∗, i.e. the space of linear functionals H → C. The cap

ε : H ⊗H∗ → C is defined as

ε : |ψ〉 ⊗ 〈k| 7→ 〈k|ψ〉

and the cup η : C→ H∗ ⊗H is defined as

η : 1→
∑
i

〈i| ⊗ |i〉

where |i〉 is an orthonormal basis.

1.5 Process theories

The main objective of the categorical quantum mechanics programme was to re-

assess the foundations of quantum theory by introducing new mathematics. In the

previous sections, we saw that this has been achieved successfully by describing

quantum mechanics in the language of dagger-compact categories [AC04, AC09],

17



18 Chapter 1. Categorical Quantum Mechanics

which is accompanied by a diagrammatic calculus. This pictorial representation

of systems and processes falls into a wide class of theories, known as process the-

ories and it is the highlight of the categorical quantum mechanics programme

[CK16, Coe05, Coe09].

A process theory [CK16, SSC21, Sel17] is defined as a collection of systems and

processes obeying certain constraints that we mention below. For example,

f

A B

A C C

is a process with input systems A andB and output systems A, C, and C. Processes

must be closed under wirings. For instance, the diagram

f

A

B

A C

C

E

D

e

g

s

F

corresponds to another process in the theory.

Wirings are subject to the following constraints:

i. outputs cannot be wired to outputs, and inputs cannot be wired to inputs;

ii. acyclicity;

iii. system labels match.

Furthermore, two diagrams are equal if they have the same connectivity. For

example,

f

A

B

A C

C

E

D

e

g

s

F
=

f

A

B

A C

C

E

D

e

g

s

F

18



1.5. Process theories 19

Remark 1.9. Every symmetric monoidal category (SMC) is a process theory.

However, the converse is not necessarily true since we have not made any require-

ment on the existence of identity processes within a process theory. We argue in

Ref. [SSng] that process theories are more faithfully captured by a particular kind

of operad algebra.

The most advertised advantage that process theories have to offer apart from

being intuitive, is their extreme generality. For instance, we can interpret the

diagrams intended for quantum theory (such as those in Hilb) in the context of

different categories and thus learn what is particular about quantum.

There are many frameworks apart from process theories in the literature that

have attempted to explore alternative theories to quantum. These include work in

quantum logic[BvN36, BC84, CHK13] and in operational theories[Har01b, Bar07].

However, those approaches describe physics from the perspective of isolated sys-

tems, since compound systems constitute a technical challenge. Process theories

on the other hand take the compositionality of systems and their interaction with

their environment as fundamental notions shedding new light on quantum foun-

dations. For instance, in the context of quantum theory, process theories embrace

classical information, treating it as internal to the theory. This is better illustrated

in the process theory QPhys, in the following subsection.

1.5.1 The process theory of Quantum Physics

We introduce the process theory which describes (finite-dimensional) quantum

theory, QPhys. There are two different kinds of systems in QPhys: Quantum

systems, denoted by purple wires and labelled by a (finite-dimensional) Hilbert

space H, and classical systems, denoted by grey wires and labelled by a (finite)

set, A. Quantum systems are the fundamental systems of interest within quantum

theory, whilst classical systems represent how we interact with the quantum world.

That is, they represent control variables on devices and pointers which encode

measurement outcomes.

19



20 Chapter 1. Categorical Quantum Mechanics

A general quantum instrument is denoted by:

E
H X

K A

It has a quantum system H together with a classical control variable X as an

input and a quantum system K and a classical outcome variable A as an out-

put. Formally this can be understood as a completely positive trace preserv-

ing (CPTP) map between complex matrix algebras, E : B[H] ⊗
(⊕

x∈X B[C]
)
→

B[K]⊗
(⊕

y∈Y B[C]
)

. If there is no classical input or output then this is expressed

as the singleton set ? := {∗} and if there is no quantum input or output then this

is expressed as the one-dimensional Hilbert space C.

A process with no inputs and a quantum output

ρ

H

,

corresponds to a CPTP map ρ : B[C] → B[H]. Such processes are in one-to-one

correspondence with trace-one elements of B[H], i.e. quantum states.

A process with a quantum input and a classical output,

M

H

A

,

corresponds to a CPTP map M : B[H] →
⊕

a∈A B[C]. These are in one-to-

one correspondence with sets of positive operators in B[H] indexed by a ∈ A,

{Ma}a∈A and such that
∑

a∈AMa = 1H. In other words, they are in one-to-one

correspondence with destructive POVM measurements.

When we compose a quantum state with a quantum measurement we end up

with a process that has only classical outputs,

p

A

:= M

H

A

ρ

,

20



1.5. Process theories 21

corresponding to a CPTP map p : B[C] →
⊕

a∈A B[C]. This is simply the se-

quential composition of the CPTP maps ρ and M , i.e., p = M ◦ ρ. Processes of

this form are in one-to-one correspondence with probability distributions over the

set A and in particular, to the probability distribution defined by p(a) = tr(Maρ)

for all a ∈ A. Hence, we see that the Born rule is encoded as a special case of

sequential composition of CPTP maps.

A process with only classical inputs and outputs,

S

A

X

,

corresponds to a CPTP map S :
⊕

x∈X B[C] →
⊕

a∈A B[C]. These are in one-

to-one correspondence with stochastic maps from X to A. They therefore map

probability distributions over X to probability distributions over A via:

p
X 7→ S

A

p
X

.

Other special cases that are common in the literature are:

E
H

K A

, E

K

X

, and E
H

K

X

They describe non-destructive measurements, classically controlled state prepara-

tions, and classically controlled CPTP maps respectively.

Finally, we consider the set of processes that have no outputs:

E

H X

They correspond to CPTP maps E : B[H]⊗
(⊕

x∈X B[C]
)
→ B[C]. Note, however,

that, due to the trace-preservation condition, these processes are unique. On the

quantum side, they correspond to the (partial) trace while on the classical side

to marginalisation. Since they are unique, we will introduce a special symbol to

21



22 Chapter 1. Categorical Quantum Mechanics

denote them:

H X

A special case of the above processes is when there is no input system. Then, there

is a unique process with neither input nor output which corresponds to the unique

CPTP map from B[C] to itself. This can be thought of as the scalar 1 which maps,

for example, ρ 7→ 1 ·ρ = ρ. We diagrammatically denote the scalar 1 by the empty

diagram:

1.6 Causal process theories

The trace-preservation condition for quantum processes in QPhys can be ele-

gantly expressed in process-theoretic terms. Furthermore, trace-preservation is an

equivalent way to express that QPhys is a causal theory.

Definition 1.10 (Causality [CDP10, CK16]). A process theory is causal if for

every system A, there is a unique process from A to the trivial system I, known

as discarding map.

We denote discarding maps in general process theories by

A , (1.1)

a diagrammatic representation we have already met in the special case of QPhys.

Below we provide the conditions that any causal process theory has to obey:

i. Discarding a composite system is the same as discarding its components:

AB = A B . (1.2)

22



1.6. Causal process theories 23

ii. Discarding the output of a process is the same as discarding its input:

f

B

A

=

A

(1.3)

This is the abstract characterisation of trace preservation of quantum theory.

We will refer to it as the causality condition.

iii. There is a unique process with no inputs nor outputs, denoted by the empty

diagram:

. (1.4)

It is a special case of the (unique) discarding effect with trivial input. The

uniqueness of the empty diagram implies that the theory is deterministic,

i.e.the only scalar in the theory is the empty diagram.

In what follows, we show that causality implies determinism.

Proof. Consider any scalar s in the process theory. The causality postulate

takes the form

s =

(1.5)

where the dashed edges indicate trivial inputs and outputs. The discarding

effect with trivial input is the empty diagram. Thus, the causality postulate

becomes

s

=
(1.6)

In order for (1.6) to hold, we must have:

s = (1.7)

Thus, every scalar in a causal theory is the empty diagram.

23



24 Chapter 1. Categorical Quantum Mechanics

Remark 1.11. While causality implies determinism, the converse is not necessar-

ily true. In Sec. 2.7 we will define the process theory QNeut that is deterministic

but not causal.

The causality condition ensures that the theory is no-signalling between causally

separated regions [Coe14] and, more generally, is compatible with relativistic causal

structure [KHC17]. More specifically, suppose that we have two space-like sepa-

rated parties which may not be able to directly signal to one another but might

have a common past and future, where their light cones intersect. This would be

represented as a diamond-shaped diagram:

f>

fα

f⊥

fβ

Then, to describe the local physics from the perspective of the left-hand party, we

discard the right-hand output which is inaccessible to them:

f>

fα

f⊥

fβ .

Then, using the fact that the only effect is the discarding map, and that fβ satisfies

eq. (1.3), we find that:

f>

fα

f⊥

fβ = fα

f⊥

fβ = fα

f⊥

.

That is, the right-hand input is simply discarded and is disconnected from the

left-hand side. Thus, the left-hand party can not infer the input of the right-hand

24



1.6. Causal process theories 25

party from his input-output pair.

Remark 1.12. In a category-theoretic language, a causal process theory can be

thought of as a symmetric monoidal category in which the monoidal unit is terminal

[Coe14].
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Chapter 2

Time symmetry in process

theories

It is a commonly held belief that quantum theory, or indeed nature itself, is time-

symmetric. This claim, however, requires qualification – whilst the unitary dynam-

ics of the theory may be time-symmetric, the theory as a whole certainly is not.

This is exemplified by the fact that while there are many pure states in the theory

– corresponding to rays in a Hilbert space – there are no pure effects that can be

realised without invoking post-selection, i.e., conditioning on the outcomes when

performing measurements. Beyond the pure theory, we find that every density ma-

trix corresponds to a preparable state while there is but a single effect – discarding

– that can be implemented without post-selection. Indeed as demonstrated in

Ref. [CGS17] the time reverse of quantum theory is a remarkably different theory:

It has but a single state and describes a theory of eternal noise.

Time-asymmetry within quantum theory is not a new observation. It has

been attempted several times in the literature to formulate quantum theory in

an explicitly time-symmetric or even time-neutral way. There are many different

motivations for doing so. Firstly, for philosophical reasons, we may believe that

nature should not have a preferred direction of time at a fundamental level, and

hence, quantum theory as a fundamental description of nature should be time-

27



28 Chapter 2. Time symmetry in process theories

symmetric. If this is the case, the asymmetry that we observe in our experiments

must be an emergent phenomenon, perhaps arising due to particular choices of

boundary conditions for the universe[OC15]. Secondly, in our attempts to reconcile

the theories of quantum theory and gravity there are hints that modifying the role

of time in quantum theory will be essential. In particular, it may be the case that

we cannot have a predetermined causal structure and so the ‘past’ and ‘future’

could be inextricably mixed[Har07]. If that is the case then formulating quantum

theory in a time-neutral way may be essential to making progress on the unification

of quantum theory and general relativity. The final reason however is much more

pragmatic. To perform calculations for quantum theory we often allow ourselves

to go beyond the physically realisable processes (for example, embedding density

matrices within the space of all Hermitian matrices). In doing so, one can end

up with a time-symmetric ‘theory of calculation’ [Har13] which contains the time-

asymmetric ‘theory of physics’ as a subtheory.

In this thesis, we consider the possible ways in which we can describe quantum

theory in a time-symmetric/neutral way. We see that the existing works in this

direction [O+08, Oec16, OC16, OC15, APTV09, AV08] have a particularly concise

process-theoretic description. Moreover, they all correspond to essentially the same

process theory, differing only in choices of convention and philosophical perspective

rather than in their fundamental mathematics.

In Sections from 2.1 to 2.5 we provide the relevant tools needed to time-

symmetrize quantum theory from a process theoretic perspective. In Section 2.6 we

explore three different approaches to obtain a time-symmetric version of quantum

theory. The first has close connections with existing literature, whilst the second

is a novel approach. Finally, the third approach is analyzed further in Section 2.7,

where we recast various other approaches to time symmetry and time neutrality

in two different (but equivalent) ways within a process-theoretic formalism.
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2.1. Time reversed process theories 29

2.1 Time reversed process theories

From a process theoretic viewpoint Proc there is a very simple way to reverse the

arrow of time. We simply read the diagrams in the theory from top to bottom

rather than bottom to top. The inputs of a process are then considered outputs

and the outputs are considered inputs. It is often, however, more convenient to

take an active view of time reversal – that is, we keep the bottom to the top reading

of the diagrams but we flip all of the diagrams upside down. This defines a new

process theory ProcR which has the same systems as Proc and processes that go

in the opposite direction. That is:

f

A B

A C C

∈ ProcR ⇐⇒ f

A B

A C C

∈ Proc

Composing the time-reversed processes is the time reverse of composing the original

processes. For example:

f

A B

C C

g

A

B

A

= h

A B

C C

A

A

∈ ProcR ⇐⇒
f

A B

C C

g

A

B

A

= h

A B

C C

A

A

∈ Proc.

It is therefore straightforward to see that time-reversing a theory twice leaves it

invariant. That is, ProcRR = Proc.

Remark 2.1. Categorically time reversal is the contravariant functor R : Proc→

ProcR.

If the process theory, Proc is a causal process theory, then, as noted in

Ref.[CGS17], the time-reversed theory will be remarkably different. It describes

a theory in which there is a single state for every system and is left invariant by

every transformation – it is a theory of eternal noise.

Definition 2.2 (Retrocausality). We say that a process theory is retrocausal, if

for each system A, there is a unique state.

29



30 Chapter 2. Time symmetry in process theories

The relevant result of Ref. [CGS17] states that the time reverse of a causal

theory is a retrocausal theory. In particular, in any retrocausal theory, the unique

state for every system A is denoted as

A
,

and can be thought of as a state of uniform noise. Uniqueness implies that states

compose as

AB
=

A B
,

and moreover that every process satisfies the retrocausality constraint:

f
B

A

=

A

2.2 Time-symmetric process theories

In the works [O+08, Oec16, OC16, OC15, APTV09, AV08] quantum theory is

formulated in a time-symmetric way. From a process-theoretic perspective, what

this means is that time-reversal is internal to the process theory. That said, the

time-reversed theory is the same as the original theory. Formally, we say that a

process theory is time-symmetric if and only if it permits a dagger.

Definition 2.3 (Dagger). A dagger is a map, †, from the process theory to itself

that reflects diagrams. Specifically, it acts on processes as

f

A B

A C C †
�
†

f

A B

A C C

30



2.2. Time-symmetric process theories 31

and on diagrams as

f

A

B

A C

C

E

D

e

g

s

F

†
�
† f

A

B

A C

C

E

D

e

g

s

F

If a process theory has a dagger, then for every process f : A→ B there exists

a process f † : B → A (that is, the symbolic notation for the upside-down f). The

process f † can be interpreted as the time-reversed of process f . Hence, we say

that process theories with daggers are time-symmetric.

Remark 2.4. If the process theory is representing a SMC then any involutive

contravariant endofunctor † : Proc → Proc that acts as the identity on objects

provides a dagger for the process theory. The existence of a dagger implies that

Proc and ProcR are covariantly isomorphic. We define the covariant isomorphism

simply by R◦† : Proc→ ProcR. It is covariant as both † and R are contravariant.

Thus, covariance is the key to having a time-symmetric theory.

Theorem 2.5. [CGS17, Thm. 3] A time-symmetric theory is causal if and only

if it is retrocausal.

We have already mentioned that there is a unique state for each system in the

theory given by the dagger of the discarding map:

A
:= †

(
A

)

It is clear that QPhys is not a time-symmetric theory – it is causal but not

retrocausal. Indeed, there are multiple states for any (non-trivial) system, such as

the computational basis states of a qubit:

0

C2

6= 1

C2
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32 Chapter 2. Time symmetry in process theories

2.3 Time-neutral process theories

In the work of [OC16], the authors aim to go a step beyond time symmetry and

create a time neutral version of quantum theory. Process-theoretically this means

that we want to forget about the distinction between inputs and outputs. This is

possible if the theory has cups & caps. Consequently, time neutral theories allow

for a freer notion of wiring which neglects the input-output structure. For example,

the following diagram is permissible:

f

A

C

CE

D

g

C

E

D

.

Moreover, there is no meaningful causal order that can be assigned to the

processes within a diagram as this freer notion of wiring allows for cycles. For

example, in the diagram below

g

E

D

f E

D

,

f is both in the ‘causal future’ and the ‘causal past’ of g.

Process-theoretically time-neutrality is a stronger notion than time-symmetry.

That is, any time-neutral theory is also necessarily time-symmetric since we can

define a dagger using cups and caps:

†

(
B

A

f

)
:=

B

A

f

Theorem 2.6. If a time-neutral theory is causal then there is a unique process

between any two systems.

Proof. As time neutrality implies time symmetry, we immediately have that causal-
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ity implies retrocausality. Hence, for every system, we have a unique state and

effect. In particular, this means that:

= and = .

The snake equation implies that:

= = = .

Therefore, for any f we have:

B

A

f =
B

A

f

B

=
B

A

f

B

=
A

B

=

A

B

.

Thus, there is a unique process per pair of systems in the theory, namely:

A

B

.

It is clear that the process theory QPhys is not a time-neutral theory as there

are multiple distinct processes with the same inputs and outputs. For example:

H

H

6=
H

H

.

Remark 2.7. Categorically the cups and caps, in this case, correspond to the unit

and counit in a compact closed category in which the objects are equal to their

dual.

One could argue that process theories with cups and caps are not truly time-

neutral since the individual processes still have a distinction between input and
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34 Chapter 2. Time symmetry in process theories

output systems, even if we can now freely interchange them. In Chapter 3 we will

see how to go to fully time-neutral process theories, where there is no distinction

between inputs and outputs.

2.4 Example : Quantum Calculations

We have seen that our first example QPhys is a causal process theory that fails

to be either time-neutral or time-symmetric. There is, however, a closely related

theory QCalc which is a supertheory of QPhys that is both time-symmetric and

time-neutral. This is the theory in which we often perform calculations about

quantum physics – for example, when computing the probabilities of measurement

outcomes.

The systems in QCalc are the same as those of QPhys and thus we will use the

same diagrammatic notation for them as we did in QPhys. The entire difference

between the two theories is then in the definition of processes. In QPhys processes

were defined as CPTP maps. However, in QCalc we drop the trace preservation

condition and thus allow for arbitrary completely positive maps. In particular,

states of quantum systems H are given by arbitrary positive operators and so are

not necessarily trace-1, and states of classical systems X are arbitrary functions

over X valued in R+ rather than probability distributions over X.

Notably, this theory is not a causal process theory. Indeed, many processes

have a system H as an input and no output:

e

H

They correspond to arbitrary CP maps e : B[H]→ B[C]. Similarly, many processes

have a system X as an input and no output:

r

X

They correspond to arbitrary CP maps r :
⊕

x∈X B[C]→ B[C].
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2.4. Example : Quantum Calculations 35

The fact that it is not a causal process theory removes the obstacles that we

had with QPhys regarding time symmetry and time neutrality. Indeed, QCalc

has a dagger as well as cups and caps. More specifically, a suitable dagger for

QCalc is given by the Hermitian adjoint, †H as argued in Refs. [SC17, SSC21]

because it has the property that when applied to a state it defines an effect which

tests for that state:

†H :: ρ 7→ tr(ρ · ),

Moreover, it inverts reversible dynamics for any unitary supermap U .:

†H :: U 7→ U−1,

As far as the cups and caps in QCalc are concerned, we express them as

H H ∼
∑
ij

|ii〉〈jj| ∼
H H

,

for some basis |i〉 ∈ H. That is, the cup is a supernormalised version of the Bell

state and the cap is a Bell effect. For classical systems A we express the cup and

cap as

A A ∼
∑
a∈A
|a〉〈a| ∼

A A
,

i.e., as the supernormalised perfectly correlated state and the perfectly correlated

effect respectively.

Note that the dagger given by the Hermitian adjoint interacts with the cups

and caps in the way we would expect, namely:

H H †H
�
†H

H H
.

Since we have dropped the trace preservation condition, CP maps in QCalc

can in addition be trace-decreasing or trace-increasing. The trace-decreasing maps

can be seen as processes that occur in some branch of a causal process. However,

the presence of the trace-increasing maps leads to a theory that gives nonsensical
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predictions since it permits ‘probabilities’ that are greater than 1. One example

of this comes from the cups and caps themselves:

= |H|2H H and = |A|A A . (2.1)

As the scalars that are greater than one do not have any physical interpretation,

the process theory QCalc cannot be a good description of nature. It is, however,

extremely useful as a theory in which we perform calculations relevant to quantum

theory. For example, if we want to compute the probability of some measurement

outcome given a state, then we can simply compose the associated effect with the

state:

ρ

σ
H = tr(σρ)

This gives a sensible probability provided that the state and effect are both trace

non-increasing.

2.5 Process theories with dual systems

So far, we have assumed that systems are invariant under time reversal. In this

section, we present a process theory in which this assumption does not hold and

provide the category of representation as an illustrative example.

To indicate that systems possess a time orientation we add arrows to the wires

representing them:

A
,

A
.

We say that these systems are dual to one another, and can be symbolically denoted

by A↑ and A↓ respectively. It is then clear that when we consider time reversal,

systems will get mapped to their duals. For example,

f

A B

A C C

∈ ProcR ⇐⇒ f

A B

A C C

∈ Proc.
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2.5. Process theories with dual systems 37

This means that the notion of the dagger and hence the condition for time

symmetry for process theories with duals should be refined.

Definition 2.8 (Dagger for process theories with duals). A dagger is a map, †,

from the process theory to itself that reflects diagrams. In particular, it acts on

systems and processes as

f

A B

A C C †
�
†

f

A B

A C C

and moreover, on diagrams as

f

A

B

A C

C

E

D

e

g

s

F

†
�
† f

A

B

A C

C

E

D

e

g

s

F

We can then say that a process theory with duals is time-symmetric iff it has

a dagger.

Along these lines, cups and caps themselves possess a time orientation

, , , .

while satisfying the obvious diagrammatic equations. A process theory with duals

is then said to be time-neutral iff it possesses the above cups and caps.

2.5.1 Example: Quantum Representations of Groups

An example of a category with duals is the category of representations of a group G

within quantum theory, QRepG. It has representations of a group G on systems

in QCalc as objects and some special kind of processes within QCalc, called

intertwiners, as morphisms.

37



38 Chapter 2. Time symmetry in process theories

In Sec. 2.6.2 we motivate QRepG physically by creating a toy model for particle

physics, where a particle is identified with a representation of G on a quantum sys-

tem B(H). Generally speaking, a particle is defined in the literature as a particular

irreducible representation of the Poincare group, which has infinite dimensionality.

In our case, however, we construct a toy model by assuming that we have only fi-

nite representations of the group G. We conjecture though that the generalization

to groups with infinite representations is also possible.

This toy model has the potential to put particle physics under a new light,

since it provides a neat description for the interaction of particles with classical

systems introducing, for example, the very concept of measurements within particle

physics. In addition, it creates a passage from the standard pure state to mixed

state particle physics.

We now define the category QRepG using a diagrammatic notation for groups

and their representations that we introduce in the Appendix.

Definition 2.9. Consider a group G. The category QRepG consists of the fol-

lowing data:

• Objects are pairs Q,
G

π

Q

Q


where Q is an object in QCalc and πQ is a causal representation (see

Eq. (4.65)) of G on Q.

• The tensor product of (Q, πQ) and (Q′, π′Q′) is given by

Q⊗Q′,
Q′

π′

Q′

Q

Q

π

G


• The tensor unit is the pair (C, πC), where πC is the trivial representation:

G

π

= G .
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• Morphisms from (Q, πQ) to (Q′, π′Q′) are intertwiners in QCalc. That is,

they are CP maps, E , satisfying the covariance condition:

E
Q

π

GQ

Q′

=

Q′

π′

G

Q′

E
Q

.

• Composition is the familiar composition of processes E as in QCalc. It can be

easily checked that indeed the composition of intertwiners is an intertwiner.

• The identity is the identity process which can also be seen to be an inter-

twiner.

• Finally, if we denote the system (Q, πQ) as

(Q, πQ)

then we can represent the dual system as

(Q∗, π∗Q∗)

where the π∗ is the conjugate representation defined in Eq. (4.72).

In (Eq. (4.76)) we prove that cups and caps are intertwiners and hence, QRepG

is a compact closed category with duals. Like QCalc, however, QRepG cannot

be directly interpreted as a theory of physics – that is, it does not necessarily

make sensible probabilistic predictions. We, therefore, need to find a condition

on the processes in QRepG, akin to the restriction of QCalc to QPhys via the

causality condition. In Sec. 2.6.2, we propose a way to implement this in a way

that preserves time symmetry of QRepG.
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2.6 Three approaches to time symmetry

We have seen in the previous sections that the causality condition in QPhys serves

as the main obstacle towards time symmetry and time neutrality. In particular,

time symmetry together with causality implies that there should be a single state

per system, and time neutrality together with causality imply that there should

be a single transformation between any pair of systems, neither of which is true

within QPhys.

Having identified the root of time asymmetry within quantum theory, we can

then ask how we could obtain a time-symmetric theory. We have identified several

ways to approach the problem:

1. We can restrict QPhys to a subtheory that additionally satisfies the retro-

causality constraint – that is, every system is both causal and retrocausal.

This approach is related to the works of Refs. [Har21] and [DBDR20]

2. We extend the systems in QPhys to have time-symmetric counterparts for

every system – that is, every system is either causal or retrocausal. This

approach is relevant to our toy model of particle physics.

3. We can extend the processes in QPhys to a supertheory in which the causal-

ity constraint no longer holds – that is, every system is neither causal nor

retrocausal. To avoid unphysical predictions we can:

1. Modify the composition rule. This is closely related to the works of

Refs. [AV08, APTV09, O+08, OC15, SGS+17, SGB+14, OC16, Oec16]

.

2. Modify the processes. This is equivalent to (1) but is a more elegant

and adaptable presentation of the theory.

The first two approaches lead to a time-symmetric theory (but not a time-neutral

theory) and thus we discuss them in this section, while the third leads to a time-

neutral theory and thus we discuss it in the following section.
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2.6.1 Causal and retrocausal

Given that causality is the main obstacle towards time symmetry within quantum

theory, perhaps the most obvious way to time symmetrise the theory is by restrict-

ing the processes to those that additionally satisfy a retrocausality condition.

Definition 2.10 (Bicausality). A process theory that is both causal (Def. 1.10)

and retrocausal (Def. 2.2) is said to be bicausal1. Bicausality implies that there

exists a unique effect and a unique state for each system.

In such theories, the simple argument against time symmetry in causal theories

(namely, that there are more states than effects) breaks down. Therefore, it is

plausible that bicausal theories can be considered time-symmetric. In the following,

we explore how to construct bicausal theories out of causal theories.

Given any causal process theory, we construct a subtheory that additionally

satisfies a retrocausality constraint. To do so, we pick a particular state for each

system that we demand to be unique. The candidate states should satisfy certain

consistency conditions for the resulting theory to be well-defined. We denote them

as:

µ

A

Since they belong to a causal theory, they automatically satisfy the causality con-

straint:

µ
A =

Furthermore, the resulting theory should be close under composition. Therefore

the following condition should hold:

µ

AB

=
µ

A

µ

B

1Known as double causality in [Har21].
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We further restrict the allowed processes within the theory to those that satisfy:

µ
A

f

B

=
µ

B

(2.2)

Having so restricted the theory, the remaining subtheory satisfies the retrocausality

constraint where we take

A
:=

µ

A

for all systems A.

Generally speaking, there is no reason to believe that this approach will surely

result in a time-symmetric theory. There are process theories (e.g. those that are

not self-dual on objects as in Sec. 2.6.2) in which this is not possible, at least not

without imposing further constraints on the sets of processes.

Returning to the case of QPhys the natural choice to make concerning the

unique state is µH := 1
|H|1H, i.e. the maximally mixed state for the system:

H
:=

1

|H| 1
H

It is simple to verify that these indeed satisfy the compositionality condition of

eq. (2.2). The constraint that is then imposed on the processes of QPhys to define

the subtheory is:

H
E
K

=
K

This means that E maps the maximally mixed state to the maximally mixed state,

i.e. that E is a unital CPTP map. In the special case that the inputs and outputs

are classical, we find that

X

S

A

=
A

This means that S is a bistochastic map2. The subtheory of unital CPTP maps

2Bistochastic maps are typically taken to be square matrices but this constitutes the natural
notion which applies also to the non-square case [Har21].
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is denoted as QPhys|unital.

One may then be tempted to define the dagger using the Hermitian adjoint,

†H , as we did for QCalc. However, the Hermitian adjoint maps the discarding

map to the supernormalised state 1H rather than the unique state 1
|H|1H. To take

care of the normalisation issues we define the dagger via:

†

 E
H X

K A
 := †H

 E
H X

K A
 |K||A|
|H||X|

(2.3)

Proposition 2.11. QPhys|unital is a time-symmetric process theory with the dag-

ger being defined as in eq. (2.3)

On the face of it, however, QPhys|unital does not seem to be a good candi-

date to describe our world: there is but a single state and effect for every system.

Nevertheless, the theory is not entirely trivial as it still has interesting transfor-

mations. In particular, it still contains unitary evolution. Moreover, QPhys|unital

makes classical ‘predictions’ in the form of bistochastic matrices. However, it is

not straightforward to conjecture how these bistochastic matrices suffice to explain

our everyday experiences. For example, they do not allow for copying classical in-

formation, which is an operation that we would expect to be able to implement.

2.6.2 Causal or retrocausal

In contrast to the previous section (in which we tried to impose both the causality

and retrocausality condition for every system), we will formulate a theory in which

every system satisfies either the causality or the retrocausality condition.

To do so, we work with process theories with duals, where we will view a sys-

tem A↑ as a causal system and A↓ as its retrocausal counterpart. To enforce this

interpretation we demand that systems A↑ have a unique effect and systems A↓

have a unique state. Hence, processes from A↑ → B↑ necessarily satisfy the causal-

ity condition (Def. 1.10), whilst processes from A↓ → B↓ satisfy the retrocausality

condition (Def. 2.2).
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44 Chapter 2. Time symmetry in process theories

A general process, however, has both causal as well as retrocausal inputs and

outputs. Diagrammatically it is denoted as:

F

We, therefore, ask what ‘causality’ type of condition should this process satisfy

so that the (retro)causality conditions are satisfied for the systems A↑ and A↓

individually.

To get to grips with this condition we work within our example category

QRepG. In this case, systems A↑ correspond to pairs (Q, πQ) and systems A↓

to dual pairs (Q∗, π∗Q∗). This correspondence can be thought of as a toy model for

particle physics: particles are defined as the (causal) pairs (Q, πQ) while antipar-

ticles as (retrocausal) pairs (Q∗, π∗Q∗). In a sense, this takes seriously Feynmann’s

interpretation of antiparticles as being particles travelling back in time. The flexi-

bility of our construction allows particles to interact with classical systems a feature

that does not exist in the standard particle physics literature.

Below we formulate the conditions that process theory with particles and an-

tiparticles needs to satisfy to be both causal and time-symmetric.

As mentioned above, if we only have causal inputs and outputs then the process

should be causal:

A

B

f =
A

(2.4)

Similarly, if we only have retrocausal inputs and outputs then the process should

be retrocausal:
A

B

g =

A

(2.5)

Conditions (2.4) and (2.5) imply that effects or states with both causal and

retrocausal systems should satisfy:

F = and
F

= (2.6)
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Examples of such processes are given by cups and caps :

= and = (2.7)

However, this example indicates the need for further constraints on states and

effects over eq. (2.6) as we can use these cups and caps to violate Eqs. (2.4) and

(2.5). Specifically, as noted in Eq. (2.1), if we compose a cup with a cap then we

end up with a scalar other than the empty diagram:

H H 6= 6= X X .

If we furthermore compose either of these with a causal process, f , we will acquire

a process that violates the causality condition, i.e.:

X X

A

B

f = X X

A

6=
A

The example (2.7), however, also gives us a hint about the necessary and

sufficient condition that should be imposed on general processes to ensure that

Eqs. (2.4) and (2.5) always hold. In particular, the classical cup can be viewed as

perfect signalling from a retrocausal to a causal system, whilst the classical cap

can be viewed as perfect signalling from causal to a retrocausal system:

x
= x and

x
= x ∀x ∈ X.

Therefore, signalling between the causal and retrocausal systems leads us to prob-

lems. This is perhaps not surprising as many well-known paradoxes arise from the

closed time loops which we could construct via

X

X

X

.

To prevent such loops from occurring we impose non-signalling conditions on our
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46 Chapter 2. Time symmetry in process theories

processes. What this means is that every process F must satisfy both

F = Fr and F = Fc , (2.8)

for some retrocausal Fr and some causal Fc.

Note that we could impose no-signalling in one direction, and therefore avoid

loops, but to maintain time symmetry, we demand no-signalling in both directions.

The no-signalling conditions (2.8) imply that a general process in QRepG must

satisfy the condition:

F =

It rules out interactions that send information from a particle to an antiparticle

since,

F = .

Note also that there is a single scalar satisfying this constraint,

which means that the theory is deterministic.

Finally, this condition is closed under composition. For example, if F and G

are non-signalling then so is their sequential composite:

G
=

Gr

F F
=

Gr

Fr
and

G
=

F
=

Fc

G

Fc

Gc
.

Thus, restricting to such processes does indeed define a legitimate process theory.

We have therefore argued about the constraints that a toy model of particle

physics, with particles viewed as finite representations of a groupG, needs to satisfy

to be both causal and time-symmetric. This leads us to the following definition:

Definition 2.12. We define the process theory QPartG as the restriction of
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QRepG to the subtheory of processes satisfying the non-signalling conditions (2.8)

from particles to antiparticles and vice versa.

It is straightforward that QPartG inherits the dagger from QRepG and hence

QPartG is a time-symmetric process theory.

Returning now to general process theories, we take the no-signalling conditions

(from causal to retrocausal and vice versa) as the definition of a well-behaved

theory with causal and retrocausal systems:

Definition 2.13 (Dual-causal). A process theory with dual systems is said to be

dual-causal if it is no-signalling from causal to retrocausal and vice versa, namely

if

F = Fr and F = Fc

for all processes F .

Given any causal process theory, there is a fairly boring way to construct a time-

symmetric theory by forbidding any interactions between causal and retrocausal

systems.That said, we demand that

∀F ∃Fc and Fr such that F Fc= Fr

where Fc belongs to the original causal process theory Proc and Fr belongs to

the retrocausal theory ProcR. We then define a dagger by using the time-reversal

map R :

Fc Fr

†
�
†

Fc Fr ,

Now Fc ∈ ProcR is a retrocausal process and Fr ∈ Proc is a causal process.

Remark 2.14. Categorically what we are defining is Proc × ProcR. Note that

we can use the R functor to define a dagger as Proc×ProcR ∼= ProcR ×Proc.

This however does not seem like a particularly useful or insightful theory. For

it to be of interest we need non-trivial interactions between causal and retrocausal
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48 Chapter 2. Time symmetry in process theories

systems. We would like to build a generic construction that takes a causal process

theory to a dual-causal process theory such that there are non-trivial interactions

between causal and retrocausal systems. We leave this construction for future

research.

2.7 Two equivalent approaches to time neutrality

The above approaches may lead to interesting time-symmetric theories, even though

they do not address time neutrality. The only time-neutral theory that we have

encountered so far is the process theory QCalc. However, since it does not always

make valid probabilistic predictions it can not be considered a suitable physical

theory. This section addresses whether it is possible to adapt QCalc such that it

remains time-neutral and at the same time makes sensible probabilistic predictions.

There are various approaches in the literature aiming (directly or indirectly) at

formulating a time-symmetric formulation of quantum theory such as Refs. [AV08,

APTV09, O+08, OC15, SGS+17, SGB+14, OC16, Oec16]. Whilst they have many

philosophical differences, they are captured by the general formalism we present

below.

These approaches are typically presented as a modification of the measurement

postulate of quantum theory. They begin, by extending the set of measurements

to allow for measurements, M , in which the POVM elements do not necessarily

sum to the identity:

M = {{Ma}a∈A|Ma ≥ 0}

Then they ensure that the probabilistic predictions are sensible via a suitable mod-

ification of the Born rule. Namely, if the “probability distribution” over measure-

ment outcomes predicted by the standard quantum formalism is not normalised,

i.e., if

NM (ρ) :=
∑
a∈A

tr(Maρ) 6= 1,
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then the new rule for computing probabilities is as follows:

Prob(a|ρ) :=
1

NM (ρ)
tr(Maρ)

The new rule differs from the standard Born rule whenever NM (ρ) 6= 1 and ensures

that the theory makes valid probabilistic predictions. (At least, aside from the case

of NM (ρ) = 0 which is treated as a special case, to return to later.)

Simply modifying the probability rule is not, however, particularly satisfying

from a process-theoretic perspective. The reason is that it is not manifestly com-

positional. What we show in this section is that we can recover the modified Born

rule in a manifestly compositional way. We do so via the construction of two

(equivalent) new process theories.

The first process theory that we construct to achieve this can be defined by

starting from QCalc and modifying the composition rule of its processes such that

it reduces to the modified Born rule when a state is composed with a measurement.

The second process theory that we construct achieves this in a simpler, more

elegant, and more adaptable way by defining an appropriate quotienting of QCalc.

2.7.1 Modified composition rule

Within QCalc the modified Born rule can be presented as

Standard rule M

ρ
H

A

7→ M

ρ
H

A
M

ρ

−1

Modified rule

for a CP map M from a quantum to a classical system and a quantum state ρ.

Provided that the normalisation factor is non-zero, this defines a valid probability

distribution over A.

As mentioned above, we want to define a process theory that has the same

processes and systems as QCalc but in which composition is redefined. The new
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50 Chapter 2. Time symmetry in process theories

composition rule • should be such that

M • ρ := M ◦ ρ(tr(M ◦ ρ))−1,

where ◦ is the composition rule in QCalc. We denote the new process theory by

QCalc•.

To obtain a consistent process theory, however, we cannot simply redefine

composition for the special case where a state is composed with a CP map. Instead,

we must redefine composition in general, and obtain the above as a particular

instance of the new rule. Explicitly, we define • via:

F

J B

K A

• E
H X

K A

:=


F

J B

K A

E
H X

 F

E


−1

if
F

E
6= 0

0 otherwise.

Then, as a special case, we have

M

H

A

•
ρ
H :=


M

ρ
H

A
M

ρ

−1

if M

ρ

6= 0

0 otherwise.

That said, the probabilities that we expect from the time neutral theories are

reproduced.

For QCalc• to define a valid process theory, various conditions must be satis-

fied. In particular one can show by direct computation, that • is associative and

that it interacts suitably with parallel composition. The more interesting case,

however, comes from considering the identity processes. In any process theory we

have that 1B ◦ f = f = f ◦ 1A for every process f : A→ B. However, in our case,
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if we try to impose this condition with • we find that

E
H X

K A

= K A • E
H X

K A

=


E
H X

K A (
E

)−1

if E 6= 0

0 otherwise.

This holds only in the special cases where

E = 1 or E
H X

K A

= 0. (2.9)

Therefore, to define the process theory QCalc•, we must both modify the compo-

sition rule and restrict the set of allowed processes to the above special cases.

Definition 2.15 (QCalc•). The process theory QCalc• has the same objects as

QCalc and as processes the subset of processes in QCalc satisfying Eq. (2.9).

Sequential composition is defined as in Eq. (2.7.1) and parallel composition is as

in QCalc.

After modifying QCalc to obtain QCalc•, it is no longer immediately clear

that time neutrality or even time symmetry of QCalc have been preserved. It

turns out that this is the case. We return to this in the following section once we

have the more elegant characterisation of this process theory.

2.7.2 Modified processes

The construction of QCalc• of the previous section can be more elegantly captured

by defining a new theory in which the processes correspond to equivalence classes

of processes in QCalc. Specifically, we define two processes to be equivalent if

they are equal up to non-zero scalar:

E
H X

K A

∼ F
H X

K A

⇐⇒ ∃r > 0 s.t. E
H X

K A

= r F
H X

K A
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We denote the equivalence class for a process E as Ẽ . The new process theory,

QCalc/∼, has the same systems as QCalc and processes that correspond to

equivalence classes of processes in QCalc under the above equivalence relation.

Composition within QCalc/∼ is defined as

Ẽ
H X

K

A

F̃

X

K B

:=

˜

E
H X

K

A

F

X

K B

(2.10)

where E is an arbitrary element of Ẽ and F is an arbitrary element of F̃ .

The scalars of QCalc/∼ are severely restricted: While scalars in QCalc are

R+, in QCalc/∼ they are equivalent to Z2 as we have only two equivalence classes

{0̃, 1̃}, where 0̃ = {0} and 1̃ = (0,∞). This may at first glance seem problematic

since we still want our time-symmetric theory to make probabilistic predictions.

The resolution is to consider the probabilistic predictions as being encoded into

classical states rather than in individual scalars. This is the case for instance,

with the causal theory QPhys, which has only a single scalar. In particular,

probabilities in QPhys are encoded in

p

X

.

We can similarly ask what predictions are made by the theory QCalc/∼ in terms

of processes with a classical output, i.e., what are the processes of the form

p̃

X

.

It is not hard to see that these will be in one-to-one correspondence with probability

distributions with one extra classical state left over, namely, the zero-state:

0̃

X

52



2.7. Two equivalent approaches to time neutrality 53

This theory, therefore, makes predictions that can be interpreted probabilisti-

cally most of the time. We simply view the equivalence class containing a proba-

bility distribution p as describing the same prediction with the probability distri-

bution itself. The exception to this interpretation is the zero state for which there

is no obvious interpretation as a probability distribution. If we want the process

theory to only represent physical processes, then this serves as a challenge as it

is difficult to give a physical interpretation of a zero-process. In a nutshell, the

existence of the zero state means that the process theory is not deterministic. We

return to this shortly. Before doing so, we show that this theory is time-symmetric,

and moreover time-neutral:

Proposition 2.16. The Hermitian adjoint †H is a dagger for QCalc/∼.

Proof. It is easy to see that †H preserves equivalence classes as †H(rF) = r †H (F)

for all processes F and scalars r.

Proposition 2.17. QCalc/∼ is time-neutral.

Proof. The equivalence class containing the cup and the equivalence class con-

taining the cap will define cups and caps for QCalc/∼. These satisfy the snake

equations, which immediately follows from the definition of composition of equiv-

alence classes in Eq. (2.10).

2.7.3 Comparing QCalc/∼ and QCalc•

In this section, we compare the process theory QCalc/∼ with the process theory

QCalc• and we show that they are equivalent process theories.

To begin, note that any process in QCalc is in the same equivalence class as

one satisfying one of the conditions in Eq. (2.9). Moreover, each equivalence class

will contain a unique such element. The crux of this is the following property of

processes in QCalc

E = 0 ⇐⇒ E
H X

K A

= 0.
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which follows from the fact that QCalc is locally tomographic. We provide the

relevant proof below:

Proof.

E = 0 =⇒ E

σ r

ρ p

+ · · ·+ E
σ⊥ r⊥

ρ⊥ p⊥

= 0 ∀σ, r, ρ, p (2.11)

=⇒ E

σ r

ρ p

= 0 ∀σ, r, ρ, p (2.12)

=⇒ E
H X

K A

= 0, (2.13)

In the first step, we use that the maximally mixed state and the discarding effect

are internal to the cones of states and effects respectively. In the second step, we

use that if a sum of non-negative terms is zero then each term is zero and in the

final step that QCalc is locally tomographic.

The processes in QCalc• can therefore be viewed as a particular conventional

choice of representative elements for the equivalence classes. The modified com-

position rule can then be derived by replacing each process with its equivalence

class, then composing the equivalence classes and finally picking the representative

element for the equivalence class of the composite.

We, therefore, infer that

QCalc/∼ ∼= QCalc•,

as QCalc• is simply a way to describe QCalc/∼ using representative elements of

the equivalence classes. Moreover, the inelegant nature of QCalc• can be viewed

as a consequence of the somewhat arbitrary nature in which the representative

elements are chosen. Picking a different convention for how to pick a representative

element would lead to a distinct composition rule (and hence a different probability

rule). Nevertheless, it would ultimately be describing the same process theory.
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This equivalence, together with Props. 2.16 and 2.17, immediately tells us that

QCalc• is also time-symmetric and time neutral as we claimed earlier.

2.7.4 Determinism

As we have already mentioned, in QCalc/∼ (or equivalently QCalc•) we have

a problem with determinism – we have zero-processes that describe things that

cannot occur. In other approaches, this issue has been handled in an arbitrary

way by simply stating that when NM (ρ) = 0 then Prob(a|ρ) = 0 for all a ∈ A.

However, how are we to operationally understand a measurement in which all of

the possible outcomes occur with probability zero?

The problem with determinism manifests in our approach by the fact that we

have a pair of scalars in QCalc/∼ rather than the single scalar that we would

expect in a deterministic theory. Furthermore, our constructions have a somewhat

arbitrary nature to them: the modified composition rule in QCalc• includes two

cases depending on whether or not a zero appears. In addition, when we quotient

in QCalc/∼, we do so concerning non-zero scalars rather than arbitrary scalars.

In the following, we present a solution that results in a deterministic theory and

where these zero-cases naturally do not arise. This is achieved by considering a

different starting point from QCalc.

We begin by conjecturing that in any real-world experiment, we will never

manage to completely suppress all sources of noise. That is, in the lab we never

actually prepare a pure state or perform a projective measurement (at least not on

the system of interest). In particular, we take the set of experimentally realisable

quantum processes to be those of the form

Eε := E + ε(1− ε) 1 > ε > 0 (2.14)

i.e, processes that have a non-zero epsilon of noise. Indeed, we can define a re-

striction of QCalc, denoted as QCalc|noise, which has only processes of the form

(2.14). It is straightforward to verify that this restriction defines a valid process
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theory as its processes are closed under composition.

QCalc|noise and QCalc, are equivalent to one another, at least from an op-

erational point of view. There is no real-world experiment that could distinguish

between a process E and the noisy version Eε provided that ε is small enough.

(We can approximate E using processes Eε and taking the limit of ε → 0). In

some sense then, choosing between working with QCalc rather than QCalc|noise

is purely a matter of convenience. However, when we move over to the respective

time-neutral theories, QCalc/∼ and QCalc|noise/∼ we obtain strikingly different

theories. This is highlighted by considering the scalars of the theory. In particular,

the scalars in QCalc are [0,∞) whilst in QCalc|noise they are (0,∞). This im-

plies that in QCalc/∼ we have two scalars {0̃, 1̃}, in contrast with QCalc|noise/∼,

where we have only the scalar 1̃ (as 0 is not a scalar in QCalc|noise). Thus,

QCalc|noise/∼ is a deterministic process theory, and so every process has a valid

operational interpretation. The states for a classical system are those of the form:

p̃

X

as the zero state

0̃

X

,

is no longer part of the theory. Therefore, every classical state can simply be

thought of as a probability distribution.

Proposition 2.18. QCalc|noise/∼ is time-symmetric.

This is because it obtains a dagger from the Hermitian adjoint of QCalc.

However, it is not time-neutral as it does not have cups & caps. It does not even

possess identities or swaps. Indeed, cups & caps, identities, and swaps in QCalc

are not processes of the form of Eq. (2.14).

Remark 2.19. As discussed above, in QCalc|noise we do not have identity pro-

cesses. From a categorical point of view, this would mean that we do not have

identity morphisms. Hence, this theory is a process theory but it is not a symmet-
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ric monoidal category, demonstrating that the framework of process theories is a

more general approach to describe physical theories.

We can however freely add all of these wiring processes back into the theory

without changing anything that we have discussed so far. We denote this process

theory, constructed by appending wiring processes to QCalc|noise/∼, as QNeut.

More specifically, QNeut is the subtheory of QCalc/∼ generated by the noisy

processes, caps, cups, swaps and identities.

Theorem 2.20. QNeut is a deterministic and time-neutral process theory.

Proof. Time neutrality follows immediately from the existence of cups and caps

that we just added. We note that the set of noisy processes (i.e., of the form of

Eq. (2.14)) are closed under composition with wiring processes, e.g.:

Eε = E + ε(1− ε) (2.15)

= E + ε(1− ε) . (2.16)

If we have some generic diagram, we can therefore always absorb these wiring

processes into noisy processes unless the wiring processes are disconnected such as

below:

Eε

A general scalar (i.e., closed diagram) can therefore be written as some scalar rε

in QCalc|noise composed in parallel with some closed wiring. For example:

rε

A closed wiring as above is simply the parallel composition of closed loops and since

closed loops are equal to the dimension of the system, this is a strictly positive
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number w. Hence, rεw > 0 and therefore when we quotient we obtain the scalar

1̃. Thus, there is a unique scalar in the theory.

We have constructed QNeut, a time-neutral and at the same time determinis-

tic version of quantum theory. Although we have focused on quantum theory, we

conjecture that the philosophy of this construction is applicable even in theories

beyond quantum. In particular, the key construction of quotieting by non-zero

scalars makes sense for any process theory in which the scalars are R+. This

includes arbitrary generalised probabilistic theories (GPTs) [Har01a, Bar07], op-

erational probabilistic theories (OPTs) [CDP10, CDP11, DCP17], or categorical

probabilistic theories [GS17]. We suggest that the specification of the properties

that a probabilistic theory G needs to satisfy to be time-neutral, is a direction for

future research.
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Chapter 3

An operadic approach to

process theories

As we have already noted in Chapters 1 and 2 process theories can be viewed

as symmetric monoidal categories. (Depending on the type of process theory, the

corresponding category might have an additional structure such as a dagger or cups

and caps). The categorical perspective on process theories is extremely useful, as

it provides a formal connection between process theories and a well-established

branch of mathematical research, allowing one to use all of the examples, results,

and concepts therein. However, this view is not necessarily natural for a few

reasons outlined below.

• Firstly, we have to introduce a trivial system to our process theory that

corresponds to the monoidal unit for the SMC. This is unnatural because

there are sensible process theories in which we do not need a trivial system.

One such example is the process theory of unitary transformations of sets of

qubits which would be relevant for the study of the circuit model of quantum

computation.

• Secondly, we have to turn certain types of wirings, such as those that corre-

spond to the identity and swap morphisms within the SMC, into processes.

This is also unnatural since we can think of a process theory in which it does
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60 Chapter 3. An operadic approach to process theories

not make sense to consider these as processes. The process theory of noisy

quantum operations, which are the operations implemented in the lab, is a

relevant example since it does not allow for the application of an identity

process.

• Thirdly, as we discuss below, simple changes within the definition of a process

theory do not necessarily correspond to simple changes in the respective

categorical language.

In practice, none of the first two issues serves as a great impediment to viewing

process theories as SMCs. For example, in the SMC corresponding to unitary

operations on qubits, we would gain a trivial object that we would never use,

yet its existence does not constitute a problem. However, the third case does

constitute a problem since it hinders the ability to describe process theories within

a well-studied mathematical framework.

Suppose then that we want to make a fairly subtle modification to our notion

of a process theory, such that processes no longer have an input-output distinction.

These can be thought of as time-neutral process theories.

Definition 3.1. A time-neutral theory is defined by a collection of processes, such

as

f

A
B

C

C
A

which is closed under wirings. For example,

f

A

C

E

g

D

C

corresponds to another process in the theory. Moreover, two diagrams are equal if
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they have the same connectivity.

The correspondence between process theories and SMCs no longer holds for

time-neutral process theories. Integral to the notion of a morphism in a category is

the specification of its domain and codomain. However, in a time neutral process

theory there is no meaningful way to divide up the systems associated with a

process into inputs and outputs, and thus no meaningful way to specify the domain

and codomain of the morphism that we would associate with the process. One

can get around this – to some extent – by working with compact closed SMCs.

Nevertheless, as we will see this is not a satisfactory resolution.

The purpose of this chapter is to show that there is an alternative way to con-

nect process theories to well-studied mathematics, which avoids all of the aforemen-

tioned problems. The crux of this is the recent work of Patterson et al., [PSV21],

in which the authors present an equivalence between symmetric monoidal cate-

gories and the algebras of a particular kind of operad, namely an acyclic wiring

operad. This equivalence, together with the correspondence between process theo-

ries and SMCs, implies that we can view process theories as certain kinds of operad

algebras.

We conjecture that the operadic formalism captures more faithfully the notion

of a process theory and thus can be considered more fundamental. Furthermore,

we argue that it is more flexible when it comes to defining new kinds of process

theories such as time-neutral process theories.

3.1 Operad basics

In this section, we provide a brief introduction to the operadic language using an

intuitive graphical representation. We then discuss how process theories can be

re-expressed in this language and showcase the advantages of this perspective.

Operads, much like categories, consist of a collection of objects, a collection

of morphisms, and a means of morphism composition obeying the relevant asso-

ciativity and identity laws. They differ from categories in the sense that their
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62 Chapter 3. An operadic approach to process theories

morphisms can have multiple inputs instead of a single input.

Definition 3.2. An operad O consists of:

• A collection |O| of objects, t.

• A set of operations O(t1, ..., tn; t), for each (t1, .., tn; t). We think of an opera-

tion f ∈ O(t1, ..., tn; t) as receiving the tuple of objects (t1, ..., tn) as an input

and providing the object t as an output. We diagrammatically represent this

as:
t1

...
tn

f t

• A composition function

◦i : O(g1, ..., gm; ti)×O(t1, ..., tn; t)→ O(t1, ..., ti−1, g1, ..., gm, ti+1,...,tn;t)

called substitution. For instance, for f ∈ O(t1, ..., tn; t) and f ′ ∈ O(g1, ..., gm; ti)

substitution is the following diagram:

g1

...
gm

f ′

t1

..

tn

f t

.

..

.
ti

ti−1

ti+1

..

.

..

.

.

• An identity operation idt ∈ O(t; t) for each t ∈ |O|, which is represented as

a single wire:

t

.

The composition functions are associative with units the identity operations.

For this work, we will follow the interpretation of operads of Ref. [FS18] as

being abstract theories of composition. That is, the operations are thought of

as describing different ways to compose small things into bigger things: Each
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operation in O(t1, ..., tn; t) tells us a way in which the objects t1, ..., tn can be

combined into an object t. There may well be times in which there is a unique

way that they can be combined, i.e. O(t1, ..., tn; t) would be a singleton set, and

there may well be times in which there is no way that they can be combined, i.e.

O(t1, ..., tn; t) would be the empty set.

From this perspective, operation composition is very natural: Consider the

operation g in O(g1, ..., gm; ti), i.e. g takes m objects as inputs and gives the

object ti as an output. Suppose that we plug its output ti to the ith input of an

operation f in O(t1, ..., tn; t). The composition of g and f results in an operation

f ◦ig in O(t1, ..., ti−1, g1, ...gm, ti+1..., tn; t), the substitution function, that provides

us with the object t. Below we provide an intuitive picture of the way composition

works. The output ti of an operation g is the big red square, whereas the ith

input of an operation f is the small red square in the blue circle. The substitution

function behaves then as advertised, providing the object t, i.e. the blue circle in

the right hand side.

An example of operads relevant to this work is the class of operads OC that fol-

low from symmetric monoidal categories C. In particular, any symmetric monoidal

category C defines an operad OC by restricting C to having only morphisms with a

single output. That said, morphisms C1⊗C2⊗ ...⊗Cn → D in C can be viewed as

operad operations OC(C1, ..., Cn;D). Representative examples are the operad Set

which has sets as objects and functions from the cartesian product of the input

sets to the output set as operad operations as well as the operad VectK which

has vector spaces as objects and linear maps from the tensor product of the input

spaces to the output space as operations.

Given two operads O and O′, we can define a functor between these.
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64 Chapter 3. An operadic approach to process theories

Definition 3.3. An operad functor F : O → O′ maps the objects of t ∈ |O| to

the objects of F (t) ∈ |O′| and the operad operations o ∈ O(t1, ..., tn; t) to F (o) ∈

O′(F (t1), ..., F (tn);F (t)) such that composition and identities are preserved. We

diagrammatically denote these morphisms by shaded regions:

t1
...
tn

f t

F

F (t1)

F (tn)

F (t)

The condition that the functor preserves the operadic composition translates dia-

grammatically as:

F (g1)
...

F (gm)
f ′

F (t1)

..

F (tn)

f F (t)

.

..

.
ti

F (ti−1)

F (ti+1)

..

.

..

.
F

=

F

F (g1)
...

F (gm)
f ′

F (t1)

..

F (tn)

f F (t)

.

..

.
F (ti)

F (ti−1)

F (ti+1)

..

.

..

.
F

Definition 3.4. An operad algebra for some operad O is an operad functor

F : O → Set .

Conceptually, again following Ref [FS18], the functor F provides a concrete

instantiation of the abstract notion of composition provided by O. That is, to each

object t ∈ O there is some associated set F (t), which we think of as describing

the set of possible ways that t can be formed. Then, to each operad operation

f ∈ O(t1, ..., tn; t) telling us how t1, ..., tn are to be combined to make t, F assigns

a function F (t1) × ... × F (tn) → F (t). This function indicates for each way that

t1, .., tn can be to make t, how the output t will be. Diagrammatically, we represent

the elements of the set F (t) (i.e. the possible ways that t can be) as:

s F (t) .
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Then, we can represent the action of the function on the elements of the sets via

F (t1)s1

F (tn)sn

f F (t)
..
.

..

.

F

= s F (t)

where s = F (f)(s1 × · · · × sn). Functoriality of F ensures that this is a sensible

interpretation. For example, in the case of the “do nothing” operation, which is

represented by the identity function, we have that:

F (t)
F

tF (t) = F (t) .

Realizing operad algebras as concrete instantiations of abstract theories of com-

position will be central to this chapter. In particular, this perspective places pro-

cess theories in a new light since they will be viewed as concrete instantiations of an

abstract theory of how boxes can be wired together. More specifically, the abstract

theory will have the form of a particular kind of operad, a ‘wiring operad’, which

when varying its precise definition will lead to different kinds of operad algebras

and consequently process theories.

We end this section by defining natural transformations between operad func-

tors.

Definition 3.5. A natural transformation η : F : O → O′ =⇒ G : O → O′

can be defined as a collection of operad operations in O′ indexed by the objects in

O. We denote these as ηt and require that they satisfy:

t1
...
tn

f t ηt

F

F (t1)

F (tn)

F (t) G(t) =

t1
...
tn

f t

G

G(t1)

G(tn)

G(t)

ηt1
F (t1)

ηt1
F (t1)

..

.

for all operations f ∈ O.

These will be useful later on for relating the operad algebras of a wiring operad

with the operad algebras of another.
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3.2 Wiring Operads and Process Theories

We begin by defining the wiring operad which captures the notion of composition

in standard process theories.

Definition 3.6. An acyclic wiring operad WA consists of:

• Boxes as objects. For example:

B1 Bm

A1 An
...

...

These can be expressed symbolically as a pair of ordered lists ((A1, .., An), (B1, ..., Bm)),

where (A1, ..., An) are the inputs and (B1, ..., Bm) are the outputs.

• Acyclic wirings of boxes as operations. For example, the wiring

A
A

B

B

A C

AB

AA

B

B

B

A C

A

A C

takes four boxes as input and wires them together to form a new box as an

output, namely the box ((A), (A,C)).

• The identity operation for every box, which is the trivial wiring. For instance,

the identity for a box (A,B) is given by:

(A,B) =
A

B

• Operation composition, which is given by diagram substitution. For example,

=

That said, the wiring diagram on the left is substituted into the bottom
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box of the wiring diagram on the right. In this way diagram substitution

provides us with a more detailed wiring diagram than the one we had in the

beginning.

• Finally, there is a special kind of box, the trivial box symbolized as ‘( )’. If

we compose any box (A,B) with the trivial box we are left with the same

box (A,B).

The acyclic wiring operad WA allows us to study the properties of wirings of

abstract boxes. However, typically we are not interested in abstract boxes, but an

actual realization of those. In particular, we are concerned with boxes that de-

scribe physical processes. The corresponding algebras F : WA → Set , implement

exactly that: They turn the abstract boxes and wirings of WA into actual pro-

cesses and their composition. More specifically, it was shown in Ref. [PSV21]that

there is an equivalence between operad algebras for WA and symmetric monoidal

categories. In the following we provide an intuition for this result, aided by the

diagrammatic notation that we have set up.

To present the connection between operad algebras and process theories, it is

useful to mention two particular wirings, that is sequential and parallel wiring.

The former is the operation

seqA,B,C : (A,B), (B,C)→ (A,C)

that takes boxes (A,B) and (B,C) as inputs and produces the box (A,C) as an

output:

A

B

C

.

The latter, is the operation

parA,A′,B,B′ : (A,B), (A′, B′)→ ((A,A′), (B,B′))

67



68 Chapter 3. An operadic approach to process theories

that takes boxes (A,B) and (A′, B′) as inputs and produces the box ((A,A′), (B,B′))

as an output:

A

B

A′

B′

.

We are now in position to realize how F : WA → Set encodes all the informa-

tion that constitutes a symmetric monoidal category (SMC) CF : on boxes (A,B),

F assigns a set F (A,B) which we will take to be the homset of CF with objects

A,B, ... That is,

CF (A,B) := F (A,B).

More specifically, the morphisms in CF , which would process theoretically be de-

noted by

m

A

B

,

correspond to the elements of F (A,B) that have the following operadic represen-

tation:

m
F
( )

= m CF (A,B) .

The information about various elements of CF , i.e. identity, composition, tensor

product, trivial system and symmetry will be extracted as we apply F to suitable

wiring diagrams of WA.

To obtain the identity in CF , we apply F to the wiring diagram uA : ()→ (A,A)

in WA, which is represented as

A .

That said, it is an operad operation with the trivial box as input, represented with

a dashed edge, and a box (A,A) as output.

Remark 3.7. In what follows, we omit the dashed edge whenever the trivial box is

an input or output following the convention adopted in process theories regarding

trivial systems.
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The functor F associates the trivial box in WA, i.e. ‘()′, to the trivial object

in Set, i.e. the singleton set, ‘? = {∗}’. The wiring diagram uA is then mapped to

the function F (uA) : ?→ F (A,A) := CF (A,A):

1A
CF (A,A) := A

F

CF (A,A)

The function F (uA) picks out a particular element of CF (A,A), which we take to

be the identity morphism for A.

Similarly, to obtain the symmetry morphism in CF , we apply F to the wiring

diagram sA,B : ()→ ((A,B), (B,A)) in WA, which is represented as

A B

B A

.

That said, the wiring diagram sA,B is mapped to the function F (sA,B) : ? →

F ((A,B), (B,A)) := CF (A⊗B,B ⊗A):

SAB CF (A⊗B,B ⊗A) :=
A B

B A

F

CF (A⊗B,B ⊗A)

F (sA,B) then, picks out a particular element of CF (A ⊗ B,B ⊗ A), which we will

take to be the symmetry morphism.

Consider now the objects A,B,C of CF . Sequential composition in CF can be

associated with a collection of functions ◦A,B,C : CF (A,B)×CF (B,C)→ CF (A,C).

These can be obtained from the wiring operad algebra by applying F to the wiring

diagram seqABC : (A,B), (B,C)→ (A,C) in WA, i.e.

◦A,B,C := F (seqABC) = F (A,B)× F (B,C)→ F (A,C)

or diagrammatically:

C(B,C)

C(A,B)

C(A,C)◦A,B,C :=

A

B

C

F

C(B,C)

C(A,B)

C(A,C) .
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Process theoretically we would denote the sequential composition by:

◦ ::

(
f

A

B

, g

B

C
)
7→

f

A

B

g

C

This is expressed in our operadic language as:

C(B,C)

C(A,B)

C(A,C)◦A,B,C

f

g

.

Similarly, parallel composition in CF can be associated with a collection of

functions ⊗A,A′,B,B′ : CF (A,B) × CF (A′, B′) → CF (A ⊗ A′, B ⊗ B′) which are

obtained by applying F to the wiring diagram parAA′BB′ : (A,B), (A′, B′) →

((A,A′), (B,B′)) in WA for objects A,A′, B,B′. That said,

⊗A,A′,B,B′ := F (parAA′BB′) = F (A,B)× F (A′, B′)→ F (A⊗A′, B ⊗B′)

or diagrammatically:

C(A′, B′)

C(A,B)

C(A⊗A′, B ⊗B′)⊗A,A′,B,B′ :=
A

B

A′

B′

F

C(A′, B′)

C(A,B)

C(A⊗A′, B ⊗B′) .

Finally, we need to demonstrate that these definitions satisfy all of the axioms

of a symmetric monoidal category. We will not provide complete proof here but

instead, indicate an illustrative example with the aid of our diagrammatic repre-

sentation. Specifically, we show unitality of the identity morphisms, that is the

following condition:

1B
C(B,B)

C(A,B)

C(A,B)◦A,B,B = C(A,B) .
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The proof of this is straightforward. The left hand side is given by:

A

B

B

F

C(A,B)

C(A,B)

B

F

C(B,B)

=

A

B

B

F

C(A,B)

C(A,B)

B

(3.1)

=

A

B

B

F

C(A,B)

C(A,B) (3.2)

=
F

C(A,B) C(A,B) (3.3)

= C(A,B) (3.4)

The first equality is given by functoriality of F , the second by the definition of

composition in WA, the third from the definition of the identity in WA, and the

fourth again from functoriality of F .

The proof technique to show the other conditions is practically identical. It

follows from straightforward applications of the definitions that we have set up,

namely functoriality of F and composition in the wiring operad.

We have so far established that the algebra F : WA → Set gives rise to a

SMC CF . The reverse also holds, i.e. given a SMC C, we can define the al-

gebra FC : WA → Set by determining the action of FC on boxes and wiring

diagrams of WA. In particular, homsets C(⊗iAi,⊗jBj) are assigned to homsets

WA((A1, ..Ai), (B1, ..Bj)) of Set, that is to the action of FC on boxes of WA.

Sequential composition in C, i.e. a function of the form ◦A,B,C : C(A,B) ×

C(B,C) → C(A,C), is assigned to sequential composition in Set, i.e. the func-

tion WA(A,B) ×WA(B,C) → WA(A,C), which determines the action of FC on

sequential composition seqA,B,C : (A,B), (B,C) → (A,C) in WA. The case for

parallel composition and symmetry follows similarly.

Note, however, an important subtlety that we have so far glossed over. That

is, there is not a unique wiring operad but one for each possible choice of labels for
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the inputs and outputs to boxes. The wiring operad that we get from a particular

SMC will therefore be the one in which the box labels correspond to the objects

of the SMC. For more details on this see Ref. [PSV21].

3.3 Causality

In this section, we ask ourselves how we should modify WA, so that the corre-

sponding operad algebra will necessarily give rise to a causal SMC C. 1. For this

purpose, we define a new kind of wiring operad, namely a causal wiring operad

W by relaxing the constraints on the wirings in WA, and imposing conditions

that the new wirings must satisfy.

To understand the first step, note that in WA every wire must begin on some

box which could be an input box or the output box. Similarly, every wire must end

on some box, which again could be an input box or the output box. To incorporate

causality we break this symmetry by allowing for wires which do not end on any

box, as in the following case:

A
A

B

B

A C

AB

AA

B

B

A C

A

A C

(3.5)

We use the ground symbol to indicate the termination of a wire that does not end

on any box. We think of this as discarding the system B.

The wiring diagrams in W can be created from the same wirings as WA, with

an additional wiring diagram, B : ()→ (B, ()), depicted as:

B
B

.

1That is, one in which the monoidal unit is terminal
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For example, we can construct Eq. (3.5) via:

A
A

B

B

A C

AB

AA

B

B

A C

A

A C

=
A
A

B

B

A C

AB

AA

B

B

A C

A

A CB
B

.

For B to fully capture the notion of causality, we must impose an extra

condition: If we ‘discard’ the output of a process, we may as well have directly

discarded the input. An instantiation of this condition with diagrams is below:

B

A

B
B

B .

Nonetheless, to be able to define a causal SMC, we must introduce a way to

also discard the objects of W . Since these are boxes, the analog of the process

theoretic discarding effect in W should accept a box as an input and give the

trivial box as an output. That said, it should be a map of the form (A,B) :

(A,B) → (). We call the diagram‘ ’ operadic discarding and we represent it

diagrammatically as

.

The dashed edge indicates that the output of the operadic discarding is the trivial

system. As we have already noted, we omit the dashed edge by the process-

theoretic convention regarding trivial systems. Having said that, the causality

condition takes the following form:

B

A

B
B

B =
B

A

B =
A

B

(A,B) (3.6)

The condition (3.6) manifests the interplay between operadic and physical dis-

carding operations in a way that is analogous to the ignorability condition of

Ref. [SSS20, Eq. 96]. In that case, the interplay is between ignoring causal and

inferential systems. More generally, it states that if we discard the output of an
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operation, then the nature of the operation is irrelevant and we may as well have

directly discarded the input.

The operadic discarding must satisfy one further condition. That is, if we are

not interested in the output box from some wiring, then we should be equivalently

disinterested in the input boxes. For example:

A
A

B

B

A C

AB

AA

B

B

A C

A

A C

=

AB

AA

B

B

A C

. (3.7)

Definition 3.8. We call a wiring operad WA endowed with a discarding diagram

and an operadic discarding operation such that conditions (3.6) and (3.7) are

satisfied, a causal wiring operad, or in short W .

We are now in a position to show that an algebra of a causal wiring operad,

F : W → Set gives rise to a causal SMC CF . To begin, we can construct the

SMC in exactly the same way as for the wiring operad WA. However, we now

need to specify additional data for the SMC by considering the action of F on

the discarding diagram B : () → (B, ()). This gives a function F ( B) : ? →

F (B, ()) = C(B, I). We interpret its image to be the discarding effect in CF ,

since F ( B) picks out a morphism in the homset C(B, I). Diagrammatically it is

depicted as:

B
B

F

C(B, I)

Moreover, the action of F on the operadic discarding ‘(A,B) ’ is F ((A,B) ) :

F (A,B)→ ?. Note that for any set X, there is a unique function to the singleton

set ?. Hence, the action of F on operadic discarding is uniquely fixed. These

unique functions act as operadic discarding maps for the operad Set. That said,

C(A,B) = C(A,B)

Below we prove that the resulting process theory is causal, i.e. if we compose
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the output of any process with the discarding effect then we obtain the discading

effect on the input. Indeed, we have that

B
B

F

C(B, I)

f C(A,B)

C(A, I)sA,B,B =

B
B

F

C(B, I)

f

B

A

B

F

C(A,B)

C(A, I) (3.8)

= B
B

f

B

A

B

F

C(A,B)

C(A, I) (3.9)

= f

F

C(A,B) C(A, I)
A

B (3.10)

= f

F

C(A,B) C(A, I)
A

B

F

(3.11)

= f

F

C(A,B) C(A, I)
A

B (3.12)

= A
B

F

C(A, I)
, (3.13)

for all morphisms f ∈ C(A,B).

To sum up, we have extended the wiring operad WA to allow for wirings in

which systems do not end on a box, and thus be discarded. We additionally

introduced a new type of discarding, operadic discarding, and ensured that it

interacts nicely with the discarding diagram. Consequently, the operad W gives

rise to a causal process theory or SMC C, which is the kind of process theory we

typically use to describe physical theories.

3.4 Cups and caps

In this section, we extend WA with wiring diagrams in which inputs and outputs

can be freely connected. This is in contrast with WA, where we can only connect

outputs to inputs in an acyclic way. For example, we now permit wiring diagrams
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such as:

A

B

B

A

C

CA

B

B

B

A C

A

.

We can construct any such wiring from the wirings in WA together with two

additional core wirings: That is, the wiring diagram cup : ()→ ((), (A,A)), which

is diagrammatically represented as

A A

and the wiring diagram cap : () → ((A,A), ()),which is diagrammatically repre-

sented as

A A

.

The diagrams cup and cap allow us to freely interchange inputs with outputs of

boxes. For instance,

A A

A

A

B

D

=
A

A

B

D

.

i.e. the input A of the box ((A,D), B) is turned into output by applying a cup.

The diagrams cup and cap satisfy the following conditions, called closure and

commutativity respectively:

and

A A

AA

=

A A

A A

=
A A

A
=

=

A
A

A

AA .

The commutativity condition for the cap follows similarly. Note that closure and

commutativity are not conditions that we impose ourselves. They simply follow

from the definition of the operad. The first equality in both is due to the definition
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of composition as diagram substitution, and the second equality is a tautology. For

example,

AandA
A

A

describe the same wiring. The reason for picking out these conditions, however,

will be clear when we consider the operad algebras for this operad.

Definition 3.9. A wiring operad endowed with cups and caps satisfying the clo-

sure and commutativity conditions will be called a cyclic wiring operad, denoted

as WC .

The algebras of the cyclic wiring operad F : WC → Set correspond to compact

closed categories. That said, in addition to the data specified by WA, the functor

F picks out special elements of the homsets C(I, A⊗ A) and C(A⊗ A, I). This is

achieved via the functions F (cup) : ? → F ((), (A,A)) which is diagrammatically

drawn as

A A

F

C(I, A⊗A)

and F (cap) : ?→ F ((A,A), ()) which is diagrammatically drawn as

A A

F

C(A⊗A, I) .

These special morphisms in C(I, A ⊗ A) and C(A ⊗ A, I) can easily be shown to

satisfy the conditions required to define a compact closed symmetric monoidal
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category. For example:

F

C(A,A)

F

C(A,A)

F

C(A⊗A, I)

F

C(I, A⊗A)

C(A,A)◦A,B,B

C(A⊗A,A)⊗A,A,A,I

C(A,A⊗A)⊗I,A,A,A

(3.14)

=

F

C(A,A)

F

C(A,A)

F

C(A⊗A, I)

F

C(I, A⊗A)
C(A,A)

C(A⊗A,A)

C(A,A⊗A)

F

F

F

(3.15)

= C(A,A)

F

= C(A,A)

F

(3.16)

= C(A,A)

F

= C(A,A)

F

. (3.17)

One may be tempted to ask whether we can define a wiring operad that allows for

both discarding as well as cups and caps. This, however, quickly runs into diffi-

culties since the cap must be discarding, and thus the resulting theory trivializes.

In this sense, these two extensions of WA are incompatible with one another.

3.5 The wiring operad of dots and time neutral process

theories

In the previous section, we demonstrated how an operad algebra for the cyclic

wiring operad WC corresponds to a process theory with compact structure. As
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discussed in Ref. [SSCng], however, these are not truly time neutral theories as

we still have a distinction between input and output systems. To describe theories

that do not have this distinction we must revisit the basics of the definition of the

wiring operad. In this section, we demonstrate how to eliminate the distinction be-

tween inputs and outputs of the operad operations and how the associated operad

algebras can be thought of as entirely time-neutral process theories. We moreover

establish their connection with process theories that possess compact structure.

Intuitively, a time-neutral theory is defined by a collection of processes, such

as

f

A
B

C

C
A

which is closed under wirings. For example,

f

A

C

E

g

D

C

corresponds to another process in the theory. Moreover, two diagrams are equal

if they have the same connectivity. Those processes, represented as circles, come

with an associated list of systems such that there is no separation of this list into

input and output systems – all systems are on a completely equal footing.

We will now see how to define an operad that faithfully captures this intuition

by switching from a wiring operad in which objects are ‘boxes’ to a wiring operad

in which objects are ‘circles’.

Definition 3.10. The wiring operad of dots, WD consists of

• dots as objects, expressed symbolically as lists (A1, ...An) . They are repre-
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sented as
A1 A2

An

.

..

where the black dot on the L.H.S of the circle separates the start from the

end of the list.

• wiring diagrams as morphisms. For example:

A
A

B

B

A
C

AB

A
A

B

B

B

A
C

A

A C

Along these lines we define the analogue of sequential composition. For

example, the composition of the third element of (A,B,C) with the first

element of (C,C) is

3wire1 : (A,B,C), (C,C)→ (A,B,C) (3.18)

and has a corresponding diagrammatic representation as

A
B

C

C

.

Similarly, we define the analogue of parallel composition of the objects (A,B,C)

and (C,C) as

par : (A,B,C), (C,C)→ (A,C,B,C,C) (3.19)

The systems in the codomain of par are “paired up” according to their planar

orientation, i.e. the first system of the first dot is paired up with the first sys-

tem of the second dot and so on. This can be diagrammatically represented
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as

A
B

C

C
C

.

• an identity morphism that accepts a dot as an input, for example (A,B,C)

and provides the same dot as an output. It is represented as

(A,B,C) =

A
B

C .

• a means of composition, which is diagram substitution. For instance,

A
B

C

C
C

C

A B

=

A
B

C

C

A B

.

In analogy with the wiring operad WA, there are diagrams in WD that remind

us of core operations in process theories. A relevant paradigm is the single wire

uA : ()→ (A,A) represented as

A

A

A
.

It can also be drawn in other equivalent ways which are reminiscent of the cups

and caps in the cyclic wiring operad WC :

=
A A

A

A

=
A

A

A A

A

A

The above equality is an echo of time neutrality and constitutes a hint to the
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connection with compact closed categories. Another example, is the symmetry

operation stn : ()→ ((A,B), (B,A)) represented as

A B

AB

Moreover, there are also wirings, such as π : (A,B,C) → (C,B,A), that simply

permute the ordering of the systems:

A

B
C

.

A time neutral theory can be formally defined as an algebra for WD, i.e. a

functor G : WD → Set. On circles (A,B,C), G assigns a set, which we interpret

as the set of time neutral processes with systems A,B,C denoted as NABC . On

wiring diagrams, F assigns composition functions. For instance, the morphism

3wire1 : (A,B,C), (C,C) → (A,B,C) corresponding to sequential composition in

WD is assigned to the function

G(3wire1) : NABC ×NCC → NABC (3.20)

which wires the time neutral processes together over C. The parallel composition

follows similarly from the function

G(par) : NABC ×NCC → NACBCC .

To the diagram uA : () → (A,A) in WD, G maps the function G(uA) : ? → NAA

from the trivial system in Set, to the set of time neutral processes that involve two

copies of the same system A. This can be thought of as picking out an “identity”

process from NAA. Functorialiy of G and the definition of the wiring operad WD

ensure that all of the composition functions will interact in exactly the way we
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would expect.

3.6 Relating time neutral theories and compact closed

SMCs

In this section we demonstrate a connection between time neutral process theories

and compact closed SMCs (viewed as algebras of WC), to acquire more intuition

about time neutral process theories.

More specifically, we define a pair of operad functors α and β which allows us

to turn algebras for WD into algebras for WC and vice versa:

WC WD

SetSet

F G

α

β

In particular, the functor α allows us to map a time neutral theory G to an

associated process theory with compact structure F = G ◦ α, whereas the functor

β allows us to map a process theory with compact structure F to a time neutral

theory G = F ◦ β.

To begin we define the functor α : WC → WD. Its action on objects is given

by:

α

 B1 Bm

A1 An
...

...
 =

B1 Bm

A1 An
...

...

.

Note that this is not an injective mapping as it forgets the distinction between

inputs and outputs. However, it preserves the planar orientation of systems. For

example
B

A

,
A B

,B A 7→
A

B

α ::

as well as
A

B

,
B A

,A B 7→
B

A
α ::

.

The action of α on the wirings of WC simply gives the wiring in WD which has
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the same connectivity. For example:

α

:=

This implies that α acts on cups, caps, and identity wirings in WC , as follows:

α α α

= ==

=
A A

A

A

=
A

A

A A

A

A

The above equality indicates that cups and caps are simply redundant once time

neutrality is present.

The functor β is not quite so obvious to define. Moving from WC to WD

amounted to forgetting structure, that is, forgetting the input-output distinction.

To go back from WD to WC we are therefore forced to artificially reintroduce this

distinction. Indeed, there is a degree of arbitrariness as to how we should approach

the problem. Here we will work with the convention that all of the systems are

assigned to be outputs. That is, the action of β on objects is:

β

 A1 A2

An

.

..

 :=
A1 AnA2

.

The action of β then maps wirings of dots to wirings of states while preserving

the connectivity. For example,

=

β

.

Given functors α and β, we can construct WC operad algebras from WD operad
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algebras and vice versa. We now ask ourselves if we end up with the same operad

algebra starting from WC(resp.WD) to WD (resp. WC) and going back again.

In other words, we want to understand the two possible ways the functors α and

β compose. The first possibility, namely the composite α ◦ β is straightforward.

Specifically, we argue that

α ◦ β = IWD .

This is not surprising since β artificially adds in extra structure and then α forgets

about it. This implies that if we map some operad algebra for WC to an algebra

for WD and back again, we end up with the same operad algebra that we started

with.

However,the second composite, β ◦ α is not so simple, since β ◦ α 6= IWC . The

composite β ◦ α it is not even injective on objects. For instance,

B

A

,
A B

,B A
α7→

A

B

β7→
B A

However, we will demonstrate that there is a natural isomorphism η : IWC →

β ◦ α. According to Def. 3.5, to define η we must determine a particular family

of operations in WC indexed by the objects in WC . We take these to be the

operations that map an input box to an output state, in a way that preserves the

planar ordering of the systems. For example:

.

Note that such operations are invertible,i.e. the above operation has the following

inverse:

.

To show that this family of operations does define a natural transformation,
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we must show that the following holds for all operations in WC :

α
β

=

Indeed, the RHS can be rewritten to

and similarly so can the LHS:

β

=

(3.21)

= (3.22)

= . (3.23)

The natural isomorphism η : 1WC → β ◦α implies that any algebra F : WC →

Set is naturally isomorphic to the algebra F ◦ β ◦ α. That is, any compact closed

category can be thought of as one that originated from a time neutral process

theory.

86



Chapter 4

Causal process theories in

discretised spacetimes: Fields

In the previous chapters we examined the concept of time symmetry within process

theories and provided a framework for time neutral process theories. Furthermore,

we studied how time symmetry and time neutrality interplay with causality, which

is a necessary ingredient for our theories to be considered physical.

In all these approaches the notions of time and space are implicit. For instance,

the causality condition translates as ‘the future can not signal to the past ’, while the

non-signalling condition indicates that there can be no communication between two

parties that are spacelike separated. In this chapter we provide a framework that

includes spacetime explicitly within process theories. In particular, we establish

a link with mathematical approaches for quantum field theories that exist in the

literature, where quantum field theories are perceived as certain kinds of process

theories.

Quantum field theories depend heavily on topology and geometry. Recently,

however this traditional approach has seen a shift towards more abstract algebraic

perpectives, which identify spacetime structure with causal order.

Given a Lorentzian manifold M , we can define the causal order between its

events by setting x ≤M y iff x causally precedes y in M , i.e. iff there exists a
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future-directed causal curve from x to y.1 In that case, we say that y(resp-x) lies

in the causal future (resp. causal past) of x (resp-y). If it happens that x, y ∈ M

have the same exact causal future (resp. past), then they are necessarily identical

and we say that M is future- (resp. past-) distinguishing. 2.

The identification of spacetime structure with causal order originates in a much-

celebrated result by Malament [Mal77], itself based on previous work by Kron-

heimer, Penrose, Hawking, King and McCarthy [KP67, HKM76]. In [Mal77]it is

shown that continuous timelike curves determine spacetime topology, a result that

characterises causal structure as a more primitive notion.

Theorem 4.1. Let M and M ′ be two Lorentzian manifolds, both manifolds being

future-and-past–distinguishing. If f : M → M ′ preserves the causal order, then it

also preserves continuous timelike curves.

The result by Malament identifies future-and-past–distinguishing manifolds

with their causal order. However, it does not provide any information about which

partial orders arise as causal orders on manifolds. This lack of criteria governing

the connection of causal order and topology is the motivation behind the work of

[MP10, MP12], which aims to relate causal orders with partial orders and domain

theory. However, the characterisation of which partial orders arise as the causal

orders of Lorentzian manifolds remains an open question.

A different approach to the order-theoretic study of spacetime is given by

the causal sets research programme (cf. [BLMS87, Bom06]). A causal set is

a poset which is locally finite, i.e. such that for every x, y ∈ C the subset

{ z ∈ C |x ≤ z ≤ y } is finite. Given a fixed causal set the question whether there

exists an embedding into a Lorentzian manifold is central to the causal set pro-

gramme and to the best of our knowledge one that is yet to be answered [Bom06,

Sur19, WH20].

1A Lorentzian manifold is a pair (M, g), where M is a differentiable manifold and g is a
Lorentzian metric.

2The requirement for a manifold M to be future- and past- distinguishing is essentially one of
well-behaviour, e.g. excluding causal violations such as closed timelike curves (all points of which
necessarily have the same causal past and future).
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When it comes to incorporating quantum fields into the spacetimes, there are

three significant directions of focus: algebraic approaches, topological approaches

and quantum cellular automata.

The algebraic approaches take a functorial view of quantum fields, studying

the local structure of fields through the assignment of algebras of observables—

usually C*-algebras or von Neumann algebras—over spacetime regions. Prominent

examples include Algebraic Quantum Field Theory (AQFT) [HK64, HM06] and the

topos-theoretic programmes [HLS09, DI08]. The association of spacetime regions

with observable algebras is implemented via special functors, called presheaves,

in a way that respects causality and locality constraints imposed by space-time

topology. We will take a deeper look at this approach in Section 4.4.

The topological approaches focus instead on global aspects of relativistic quan-

tum fields, foregoing any possibility of studying local structure by requiring that

field theories be topological, i.e. invariant under large scale deformations of space-

time. The resulting Topological Quantum Field Theories (TQFTs) [L+09, Ati88,

Wit88] have achieved enormous success in fields such as condensed matter theory

and quantum error correction. Like AQFT, TQFTs have a categorical formulation

as functors from a category of spacetime “pieces” to categories of Vector spaces

and algebras. The difference is in the nature of those “pieces”: in AQFT a space-

time is given and the order structure of its regions is considered; in TQFT, on the

other hand, (equivalence classes of) basic topological manifolds are given, which

can be combined together to form myriad different spacetimes.

The approaches based on Quantum Cellular Automata (QCA) [DP16, Arr19,

vN66], finally, attempt to tame the issues with the formulation of quantum field

theory by positing that full-fledged quantum fields in spacetime can be understood

as the continuous limit of much-more-manageable theories, dealing with quantum

fields living on discrete lattices and subject to discrete time evolution (known as

Quantum Cellular Automata).

In this chapter, we propose to use tools from category theory to unify key

aspects of the approaches above under a single generalised framework. Specifi-
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cally, our work is part of an effort to gain an operational, process-theoretic un-

derstanding of the relationship between quantum theory and Relativistic causality

[Coe16, CL13, KU17, PGC19]. Our key contribution, across the next four sections,

will be the formulation of a functorial and theory-independent notion of field the-

ory based solely on the order-theoretic structure of causality. To exemplify the

flexibility of our construction, in Section 4.4 we will build a strong connection to

Algebraic Quantum Field Theory, based on a sheaf-theoretic formulation of states

over regions. In Section 4.5, finally, we will formulate a notion of cellular au-

tomaton which encompasses and greatly generalises notions of QCA from existing

literature.

4.1 Causal orders

In this work, we will consider partial orders as an abstract model of spacetimes.

For the remainder of this chapter, we will use the termcausal orders to mean partial

orders, highlighting the relationship to spacetimes.

Definition 4.2. By a causal order we mean a poset Ω = (|Ω|,≤), i.e. a set |Ω|

equipped with a partial order ≤ on it. We refer to the elements of Ω as events.

Given two events x, y ∈ Ω we say that x causally precedes y (equivalently that y

causally follows x) iff x ≤ y. We say that x and y are causally related iff x ≤ y or

y ≤ x. A causal sub-order Ω′ of a causal order Ω is a subset |Ω′| ⊆ |Ω| endowed

with the structure of a poset by restriction. 3

In what follows we demonstrate familiar concepts from Relativity on partial

orders.

4.1.1 Causal Paths

Definition 4.3. Let Ω be a causal order and let x, y ∈ Ω be two events. A causal

path from x to y is a maximal totally ordered subset γ ⊆ Ω such that x = min γ

and y = max γ. Maximality of the subset γ ⊆ Ω here means that there is no total

3I.e. such that for all x, y ∈ |Ω′| we have that x ≤ y in Ω′ if and only if x ≤ y in Ω.
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order γ′ ⊆ Ω strictly containing gamma and such that x = min γ′ and y = max γ′.

We write γ : x y to denote that γ is a causal path from x to y.

The causal diamond from x to y in a causal order Ω is the union of all causal

paths x y in Ω. Furthermore, causal paths in Ω can be naturally organised into

a category as follows:

• the objects are the events x ∈ Ω;

• the morphisms from x to y are the paths x y;

• the identity morphism on x is the singleton path {x} : x x;

• composition of two paths γ : x  y and ξ : y  z is the set-theoretic union

of the subsets γ, ξ ⊆ Ω:

ξ ◦ γ := (ξ ∪ γ) : x z (4.1)

Definition 4.4. Let Ω be a causal order and let x ∈ Ω be an event. The causal

future J+ (x) of x is the set of all events y which causally follow it:

J+ (x) := { y ∈ Ω |x ≤ y } (4.2)

Similarly, the causal past J− (x) of x is the set of all events y which causally

precede it:

J− (x) := { y ∈ Ω | y ≤ x } (4.3)

We also define causal future and past for arbitrary subsets A ⊆ Ω by union:

J+ (A) :=
⋃
x∈A

J+ (x) J− (A) :=
⋃
x∈A

J− (x) (4.4)

Remark 4.5. A causal order Ω is automatically future-and-past–distinguishing.

To see this, assume that J+ (x) = J+ (y) for some x, y ∈ Ω: then both x ∈ J+ (x) =

J+ (y), implying y ≤ x, and y ∈ J+ (y) = J+ (x), implying x ≤ y, so that x = y
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by antisymmetry of the partial order ≤. The assumption that J− (x) = J− (y)

analogously implies that x = y.

Definition 4.6. Let Ω be a causal order and let x ∈ Ω be an event. By a causal

path γ : x +∞ (resp. γ : −∞ x) we denote a maximal totally ordered subset

γ ⊆ Ω such that x = min γ (resp. x = max γ). If Ω has a global maximum (resp.

global minimum), then we denote it by +∞ (resp. −∞) for consistency with our

previous definition of causal paths, otherwise the symbol +∞ (resp. −∞) is never

used to denote an actual element of C.

The causal future (resp. causal past) of an event x is the union of all causal

paths x +∞ (resp. −∞ x).

4.1.2 Space-like slices

Space-like slices generalize the concept of spacelike hypersurfaces in Relativity and

are the main focus of this work.

Definition 4.7. Let Ω be a causal order. We say that two events x, y are space-

like separated if they are not causally related, i.e. if neither x ≤ y nor y ≤ x.

Consequently, we define a (space-like) slice Σ in Ω to be a subset Σ ⊆ Ω such that

any two distinct x, y ∈ Σ are space-like separated.

Definition 4.8. Let Ω be a causal order and let A ⊆ P(Ω) be a collection of

subsets of Ω. We say that the subsets in A are space-like separated if the following

conditions holds for all distinct A,B ∈ A:

A ∩
(
J+ (B) ∪ J− (B)

)
= ∅ (4.5)

In particular, a space-like slice is the union of a collection of space-like separated

singleton subsets.

Slices have domains of dependence, that is collection of events in spacetime

causally influenced by events in the slice. Below we provide the relevant definition
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Figure 4.1: Left: the Hasse diagram for a causal order on 6 events {a, b, c, d, e, f}.
Right: the maximal slices for the causal order highlighted (all other slices can be
obtained as subsets of the maximal slices)[GSC21]

for any subset A ⊆ Ω (with A being a slice is regarded as a special case).

Definition 4.9. Let Ω be a causal order and let A ⊆ Ω be any subset. The

future domain of dependence D+ (A) of A is the subset of all events x ∈ Ω which

“necessarily causally follow A”, in the sense that every causal path −∞  x

intersects A:

D+ (A) := {x ∈ Ω | ∀ γ : −∞ x. γ ∩A 6= ∅ } (4.6)

The past domain of dependence D− (A) of A is the subset of all events x ∈ Ω which

“necessarily causally precede A”, in the sense that every causal path x  +∞

intersects A:

D− (A) := {x ∈ Ω | ∀ γ : x +∞. γ ∩A 6= ∅ } (4.7)

The domains of dependence of a subset A are related to its past and future by

the following two Propositions.

Proposition 4.10. Let Ω be a causal order and let A ⊆ Ω be any subset. Then

D+ (A) ⊆ J+ (A) and D− (A) ⊆ J− (A).

Proof. Let x ∈ D+ (A) be any event in the future domain of dependence of A.

The set of causal paths −∞ x is necessarily non-empty, because there must be
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at least one such path extending the singleton path {x} : x x. Let γ : −∞ x

be one such path. Because x ∈ D+ (A), γ must intersect A at some point y ≤ x,

and we define γ′ := γ ∩ J+ ({y}) 6= ∅. By definition, y = min γ′. Because J+ ({y})

is upward-closed, x = max γ′ and γ′ : y  x is such that γ′ ⊆ J+ ({y}) ⊆ J+ (A),

so we conclude that x ∈ J+ (A). The proof that D− (A) ⊆ J− (A) is analogous.

�

Proposition 4.11. Let Ω be a causal order and let A ⊆ Ω be any subset. If

B ⊆ D+ (A) then J+ (B) ⊆ J+ (A) and J− (B) ⊆ J− (A) ∪ J+ (A). Dually, if

B ⊆ D− (A) then J− (B) ⊆ J− (A) and J+ (B) ⊆ J− (A) ∪ J+ (A).

Proof. Without loss of generality, assume B ⊆ D+ (A)—the case B ⊆ D− (A) is

proven analogously. From Proposition 4.10 we have that B ⊆ D+ (A) ⊆ J+ (A),

so we conclude that J+ (B) ⊆ J+ (A) by upward-closure of J+ (A). Now consider

x ∈ J− (B). Let γ : x  y be any path with y ∈ B and let γ′ : −∞  y be any

path extending γ. Because B ⊆ D+ (A), the intersection γ′ ∩ A contains at least

some point z. Because γ′ is totally ordered, we have two possible cases: z ≤ x and

z ≥ x. If z ≤ x, then γ′ ∩ J+ ({z}) ∩ J− ({x}) : z  x shows that x ∈ J+ (A). If

z ≥ x, then γ′ ∩ J− ({z}) ∩ J+ ({x}) : x z shows that x ∈ J− (A). �

Slices can be organized into a category denoted by Slices (Ω).

Definition 4.12. Let Ω be a causal order. The category of all slices on Ω, denoted

by Slices (Ω), consists of the following data:

• Objects of Slices (Ω) are the (space-like) slices of Ω. In what follows, we use

the terms space-like slices and slices interchangeably.

• The category is a poset and the unique morphism from a space-like slice Σ

to another space-like slice Γ is denoted Σ � Γ if it exists. Specifically, we

say that Σ � Γ if and only if Γ ⊆ D+ (Σ), i.e. iff Γ lies entirely into the

future domain of dependence of Σ.
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• The monoidal product on objects Σ ⊗ Γ is only defined when Σ and Γ are

space-like separated, in which case it is the disjoint union Σ t Γ.

• The unit for the monoidal product is the empty space-like slice ∅ ⊆ Ω.

• The partial monoidal product on objects extends to morphisms because

whenever Σ′ ⊆ D+ (Σ) and Γ′ ⊆ D+ (Γ)—i.e. whenever Σ � Σ′ and

Γ� Γ′—we necessarily have:

Σ′ t Γ′ ⊆ D+ (Σ) ∪D+ (Γ) ⊆ D+ (Σ t Γ) , i.e. Σ⊗ Γ� Σ′ ⊗ Γ′ (4.8)

The order relation Σ� Γ on slices guarantees that the field state local to the

the codomain slice Γ will be entirely determined by evolution and marginalisation

of the field state on the domain slice Σ. As for marginalisation, the definition is

such that any sub-slice Σ′ ⊆ Σ necessarily satisfies Σ� Σ′. That is, by marginal-

isation/discarding on the field state on Σ, we can obtain the field state on Σ′. In

Subsection 4.3.1 we will elaborate more on the connection to marginalisation.

Figure 4.2: Left: two slices Σ,Γ such that Σ� Γ. Right: two slices Σ,Γ such that
Σ 6� Γ, highlighting a past-directed path γ starting from an event of Γ and not
intersecting Σ at any point[GSC21].
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96 Chapter 4. Causal process theories in discretised spacetimes: Fields

Figure 4.3: Left: the Hasse diagram for a causal order. Centre: the maximal slices
for the causal order highlighted. Right: the category of all slices for the causal
order[GSC21].

4.1.3 Diamonds and Regions

Causal diamonds and their set-theoretic unions thereof hold a special status in

Relativity as they generate the topology of Lorentzian manifolds. Definitions 4.13

and 4.14 provide the order-theoretic incarnation of such requirement.

Definition 4.13. Let Ω be a causal order. If x, y are two events in Ω, the causal

diamond from x to y in Ω is the causal sub-order (♦x,y,≤) ↪→ Ω defined as follows:

♦x,y := { z ∈ Ω |x ≤ z ≤ y } =
⋃

γ:x y

γ (4.9)

Definition 4.14. Let Ω be a causal order. A region in Ω is a causal sub-order

(R,≤) ↪→ Ω such that for all events x, y ∈ R the causal diamond from x to y in Ω

is a subset of R (i.e. R contains all paths γ : x y in Ω).

We could have equivalently stated 4.14 as saying that regions in Ω are all the

possibly unions of causal diamonds in Ω (including the empty one). A special case
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of region of particular interest is the region between two slices Σ� Γ.

Definition 4.15. Let Ω be a causal order and consider two slices Σ � Γ. We

define the region between Σ and Γ as follows:

♦Σ,Γ :=
⋃
x∈Σ

⋃
y∈Γ

♦x,y (4.10)

In particular, a causal diamond ♦x,y is the region between the slices {x} and

{y}. More generally, a region between slices Σ and Γ is the intersection ♦Σ,Γ =

J+ (Σ) ∩ J− (Γ) of their future and past respectively.

The slices Σ and Γ bounding the region ♦Σ,Γ can be obtained respectively as

the sets of its minima Σ = min♦Σ,Γ and of its maxima Γ = max♦Σ,Γ. As a special

case, a slice Σ is the region between Σ and Σ. Conversely, every closed bounded

region R—and in particular every finite region—is in the form R = ♦minR,maxR.

Figure 4.4: Left: the region between two slices on the honeycomb lattice. Right:
an unbounded (necessarily infinite) region on the honeycomb lattice[GSC21].

4.2 Categories of slices

The category Slices (Ω) might contain exotic slices for physical fields to be de-

fined over. To overcome this issue we define the category of slices C, which is a
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subcategory of Slices (Ω) obeying certain requirements.

Definition 4.16. Let Ω be a causal order. A category of slices on Ω is the full

sub-category C of Slices (Ω) defined by a given set obj (C) of slices chosen in such

a way that the following three conditions hold.

(1) For any two events x, y ∈ Ω with x ≤ y, there exist slices Σ,Γ ∈ obj (C) such

that x ∈ Σ, y ∈ Γ and Σ� Γ.

(2) If Σ,Γ and ∆ are three slices in C, then the restriction (∆ ∩ ♦Σ,Γ) of ∆ to

the region ♦Σ,Γ is also a slice in C.

(3) The category of slices C is a partially monoidal subcategory of Slices (Ω). In

particular, ∅ ∈ obj (C) and whenever Σ⊗Γ exists in C for some Σ,Γ ∈ obj (C)

then Σ⊗Γ also exists in Slices (Ω). (Associativity and unitality of ⊗ are strict

in C as they are in Slices (Ω).)

As an example of particularly well-behaved slices, we define a notion of Cauchy

slices—akin to that of Cauchy surfaces from Relativity.

Definition 4.17. A slice Σ on Ω is a Cauchy slice if every causal path γ : −∞ 

+∞ in Ω intersects Σ at some (necessarily unique) event. Cauchy slices are in

particular maximal slices. A category of Cauchy slices on Ω is a category C of

slices on Ω such that every slice Σ ∈ obj (C) is a subset Σ ⊆ Γ of some Cauchy

slice Γ ∈ obj (C).

Proposition 4.18. A foliation on a causal order Ω is a set F of Cauchy slices on

Ω such that:

(1) the slices in F are totally ordered according to �;

(2) every event x ∈ Ω is contained in some slice Σ ∈ F ;

(3) the slices in F are pairwise disjoint.

If F is a foliation, write CauchySlices (F) for the full sub-category of Slices (Ω) gen-

erated by all slices which are subsets of some Cauchy slice in F . Then CauchySlices (F)

is a category of Cauchy slices on Ω.
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Proof. Let CauchySlices (F) denote the full sub-category of Slices (Ω) generated

by all slices which are subsets of some Cauchy slice in F .

For any two events x ≤ y in Ω, let Σ,Γ ∈ obj (CauchySlices (F)) be two Cauchy

slices such that x ∈ Σ and y ∈ Γ, the existence of such slices guaranteed by the

definition of foliation. Because the foliation is totally ordered, we have that Σ� Γ

or Γ � Σ (or both, if Σ = Γ and x = y). If x = y, either works, while if x < y

then necessarily Σ � Γ. Either way, condition (1) for CauchySlices (F) to be a

category of slices is satisfied.

Let Σ′, Γ′ and ∆′ be three slices, respectively contained in three Cauchy slices

Σ, Γ and ∆ inside the foliation. Because of total ordering and disjointness of

slices in F , the only instance in which ∆ ∩ ♦Σ,Γ 6= ∅ is when Σ � ∆ � Γ.

In this case, ∆ ∩ ♦Σ,Γ = ∆ ∈ obj (CauchySlices (F)). Otherwise, ∆ ∩ ♦Σ,Γ =

∅ ∈ obj (CauchySlices (F)). Either way, condition (2) for CauchySlices (F) to be

a category of slices is satisfied when Σ, Γ and ∆ are Cauchy slices. This result

immediately generalises to Σ′, Γ′ and ∆′: we have that ∆′∩♦Σ′,Γ′ ⊆ ∆∩♦Σ,Γ ⊆ ∆,

so that ∆′∩♦Σ′,Γ′ ∈ obj (CauchySlices (F)) and condition (2) for CauchySlices (F)

to be a category of slices is satisfied.

Finally, if Σ,Γ are two slices such that Σ ⊗ Γ is defined in CauchySlices (F),

then Σ,Γ are necessarily disjoint subsets of the same Cauchy slice ∆. It is then

immediate to conclude that condition (3) for CauchySlices (F) to be a category of

slices is satisfied.

4.3 Causal field theories

In the previous section we have presented the analogue of several concepts from

Relativity in the context of causal orders. In this section, we endow our causal

orders with fields that live in a symmetric monoidal category.

Examples of symmetric monoidal categories that could model quantum fields

vary depending on the context. In particular, if the context is finite dimensional,
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quantum fields can live in the category CPM[Fhilb] of finite dimensional Hilbert

spaces and completely positive maps. If the context is infinite-dimensional, e.g. in

the case of AQFT [HM06, HLS09], the categories usually considered for quantum

fields are the category Hilb of Hilbert spaces and bounded linear maps, the cate-

gory C*alg of C*-algebras and its subcategories W*alg of W*-algebras (sometimes

known as “abstract” von Neumann algebras) and vNA of (concrete) von Neumann

algebras.

In the framework we present here any symmetric monoidal category can be

considered as a suitable category for quantum fields.

Definition 4.19. Let Ω be a causal order. A causal field theory Ψ on Ω is a

monoidal functor Ψ : C → D from a category C of slices on Ω to some symmetric

monoidal category D, which we refer to as the field category.

The functor Ψ encodes the following physical information: To each spacelike

slice Σ, Ψ associates the space of fields over that slice, Ψ(Σ).

Remark 4.20. If Σ is finite and the singleton slices {x} for the individual events

x ∈ Σ are all in the chosen category C of slices, then the action of Ψ on Σ always

factorises into the tensor product of its action on the individual events:

Ψ(Σ) =
⊗
x∈Σ

Ψ({x}) (4.11)

To each morphism Σ � Γ, Ψ associates the morphism Ψ(Σ) → Ψ(Γ). This

action of Ψ on morphisms specifies how the field evolves from Σ to Γ. In particular,

this defines the map sending a field state |φ〉 over the initial slice Ψ(Σ) to the

evolved field state Ψ (Σ� Γ) |φ〉 over the final slice Ψ(Γ). It also explains why

we chose the morphisms in Slices (Ω) the way we did: Σ � Γ if and only if the

field data on Σ is sufficient to derive the field data on Γ. This identification of

functorial action with field evolution is the core idea of our work.

The functor Ψ is monoidal meaning that the union of disjoint slices corresponds

to the monoidal product of spaces of fields, i.e. the tensor product, when working

100



4.3. Causal field theories 101

in the familiar linear settings of Hilbert spaces, C*-algebras, on the individual

slices.

Functoriality and monoidality on morphisms manifest the principle of locality

in field theories. Let Σ � Σ′ and Γ � Γ′, where Σ and Γ is a pair of space-like

separated slices and Σ′ and Γ′ another pair of space-like separated slices. Consider

the field evolution between the two disjoint unions of slices:

Ψ
(
(Σ⊗ Γ)� (Σ′ ⊗ Γ′)

)
: Ψ(Σ)⊗Ψ(Γ)→ Ψ(Σ′)⊗Ψ(Γ′) (4.12)

Due to monoidality on morphisms the field evolution above factors as the prod-

uct of the individual field evolutions Ψ(Σ)→ Ψ(Σ′) and Ψ(Γ)→ Ψ(Γ′):

Ψ
(
(Σ⊗ Γ)� (Σ′ ⊗ Γ′)

)
= Ψ(Σ� Σ′)⊗Ψ(Γ� Γ′) (4.13)

We prove this by considering the following proposition.

Proposition 4.21. Let Ω be a causal order. If Σ and Γ are space-like separated

slices in Ω and Σ� Σ′, then Σ′ and Γ are also space-like separated slices.

Proof. If Σ and Γ are space-like separated, then Γ∩(J+ (Σ)∪J− (Σ)) = ∅. Because

Σ� Σ′, furthermore, Proposition 4.11 tells us that J+ (Σ′) ∪ J− (Σ′) ⊆ J+ (Σ) ∪

J− (Σ). We conclude that Γ ∩ (J+ (Σ′) ∪ J− (Σ′)) = ∅, i.e. that Σ′ and Γ are also

space-like separated.

Proposition 4.21 above together with monoidality on morphisms imply that

whenever the entire region between Σ and Σ′ on one side and the entire region

between Γ and Γ′ on the other side are space-like separated, any causal field evo-

lution from Σ⊗ Γ to Σ′ ⊗ Γ′ would be expected to factor. This is the analogue of

the clustering principle in standard field theory which refers to the independence

of the local processes to space-like separated environments.

Remark 4.22. Please note that the principle of locality obtained above only

implies that the evolution of fields must factorise over space-like separated regions.
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This imposes no constraints on the field state, which can be any state of the space

of fields. In particular, if the field category has entanglement (e.g. categories of

Hilbert spaces with the usual tensor product) then the field state can entangle

space-like separated regions, while field evolution cannot.

4.3.1 Causality and no-signalling

Any category C of slices is a subcategory of Slices (Ω) and thus contains the empty

slice (the monoidal unit). Therefore, we can define the following family of effects

Σ := Ψ(Σ� ∅) (4.14)

which respect the monoidal structure:

Σ⊗Γ = Ψ
(
(Σ⊗Γ)� ∅

)
= Ψ

(
(Σ� ∅)⊗(Γ� ∅)

)
= Ψ(Σ� ∅)⊗Ψ(Γ� ∅) = Σ⊗ Γ

(4.15)

By functoriality we furthermore have that

Γ ◦Ψ(Σ� Γ) = Ψ(Γ� ∅) ◦Ψ(Σ� Γ) = Ψ(Σ� ∅) = Σ (4.16)

Therefore, the family of effects act as discarding effects. This is a manifestation

of non-signalling in the evolution of fields: The field state over a given slice Σ does

not depend on the field state over slices which are in the future of Σ or are space-like

separated from Σ.

This emergence of causality and no-signalling from functoriality is in fact a

consequence of a breaking of time symmetry which happened in the very definition

of the ordering between slices. Indeed, consider the “time-reversed” causal order

Ωrev, obtained by reversing all causal relations in Ω (i.e. y ≤ x in Ωrev if and only

if x ≤ y in Ω). The slices for Ωrev are exactly the slices for Ω, i.e. the categories

of all slices Slices (Ωrev) and Slices (Ω) have the same objects. If time symmetry

were to hold, we would expect the arrows in Slices (Ωrev) to be exactly the reverse

of the arrows in Slices (Ω). However, the conditions defining the arrows in both
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categories are as follows:

• Σ� Γ in Slices (Ω) iff Γ ⊆ D+ (Σ) in Ω;

• Γ� Σ in Slices (Ωrev) iff Σ ⊆ D+ (Γ) in Ωrev, i.e. iff Σ ⊆ D− (Γ) in Ω.

The two conditions that Γ ⊆ D+ (Σ) and Σ ⊆ D− (Γ), both in Ω, are not in

general equivalent: this shows that time symmetry is broken by our definition of

the relationship between slices, ultimately leading to the emergence of causality

and no-signalling constraints on functorial evolution of quantum fields.

4.4 Connection with Algebraic Quantum Field Theory

The framework of causal field theories has many similarities with Topological

Quantum Field Theories (TQFTs), which can be considered as an axiomatiza-

tion of the Schrodinger picture of quantum mechanics. In particular, TQFTs are

defined as functors that assign states to space and linear maps to spacetimes. The

main difference with the causal field theories we defined above is that TQFTs con-

sider field evolution over arbitrary spacetimes, while causal field theories consider

field evolution over a single given spacetime.

An alternative approach in axiomatizing quantum field theories is known as

Algebraic Quantum Field Theory (AQFT), which can be considered as the ax-

iomatization of the Heisenberg picture of quantum mechanics, and thus as a dual

approach to TQFTs. AQFTs are again defined as functors, known as presheaves,

which encapsulate the relationship between fields and the topology of spacetime.

In particular, they map each Minkowski spacetime region (causal diamond) to an

algebra of observables, a C*-algebra, localized in that region. Locality and causal-

ity in this context manifest themselves through the requirement that algebras of

observables in spacelike separated regions commute (in that case, local effects can-

not be entangling over space-like separated regions).

The difference between TQFT and AQFT lies in the duality between a com-

positional and a decompositional perspective.
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In compositionality, larger objects are created by composing together given el-

ementary building blocks in all possible ways: this is the approach behind an ever

growing zoo of process theories (e.g. see [CK17] and references therein)and the

philosophy of TQFTs. In decompositionality, on the other hand, larger objects

are given as a whole and subsequently decomposed into smaller constituents, with

composition of the latter constrained by the context in which they live: this ap-

proach, based on partially monoidal structure, was recently introduced by [Gog19]

as a way to talk about compositionality in physical theories where a universe is

fixed beforehand. This is the approach behind AQFT. While TQFTs are compo-

sitional [Koc03, L+09], causal field theories are more naturally understood from

the decompositional perspective.

To see this, we draw a connection of our causal field theories with an AQFT

approach turning our functors, defined on slices, into presheafs defined on “regions”

(generalising unions of causal diamonds in AQFT). However, our approach differs

from the AQFT approach in a number of ways:

• We dispense of the algebras themselves. That said, our approach is indepen-

dent of the specific process theory chosen for the fields.

• Instead of looking at the space of local observables/effects, we take the (equiv-

alent) dual perspective and work with the space of local states.

• Local states can be entangling, so the formulation of locality and causality

as “commutativity” is no longer applicable, even in the case where the field

category is a category of C*-algebras. Instead, locality and causality arise

as a consequence of factorisation of field evolution over space-like separated

slices.

Firstly, we show that categories of slices can be restricted to regions provided

that regions are defined in a way that respects the requirements imposed by a

choice of category of slices.
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Definition 4.23. A bounded region in a category of slices C on a causal order Ω

is a region on Ω in the form ♦Σ,Γ for some Σ,Γ ∈ obj (C). Bounded regions in C

form a poset Regionsbnd (C) under inclusion.

Definition 4.24. A region in a category of slices C is a region R on Ω which can

be obtained as a union R =
⋃
λ∈Λ ♦Σλ,Γλ of a family (♦Σλ,Γλ)λ∈Λ, closed under

finite unions, of bounded regions in C. Regions in C also form a poset Regions (C)

under inclusion, with Regionsbnd (C) as a sub-poset.

Remark 4.25. A region is more general than a bounded region. For instance, a

region could be defined as an infinite union of bounded regions.

We now show that if we restrict C to a region R in C, then this restriction C|R

is a valid category of slices.

Proposition 4.26. Let C be a category of slices and R be a region in it. The

restriction C|R of C to the region R, defined as the full sub-category of C spanned

by the slices ∆ ∈ obj (C) such that ∆ ⊆ R, is itself a category of slices.

Proof. If R = ♦Σ,Γ is a bounded region in C, then the statement is an immediate

consequence of requirement (2) for categories of slices. Now assume that R =⋃
λ∈Λ ♦Σλ,Γλ is a union of bounded regions in C.

If x ≤ y are two events in R, then it must be that x ∈ ♦Σλx ,Γλx
and y ∈ ♦Σλy ,Γλy

for some λx, λy ∈ Λ: closure under finite union of the family (♦Σλ,Γλ)λ∈Λ then

guarantees that there exists some λx,y ∈ Λ with x, y ∈ ♦Σλx,y ,Γλx,y
. Because C is

a category of slices, we can find two slices ∆x � ∆y in C such that x ∈ ∆x and

y ∈ ∆y. Then the restrictions (∆x ∩ ♦Σλx,y ,Γλx,y
) and (∆y ∩ ♦Σλx,y ,Γλx,y

) satisfy

requirement (1) for C|R to be a category of slices.

If Σ, Γ and ∆ are three slices in C|R, then in particular the diamond ♦Σ,Γ is a

subset of R (the latter is a region) and so is the intersection ∆∩♦Σ,Γ, which exists

in C because the latter is a category of slices. Hence requirement (2) for C|R to be

a category of slices is satisfied.
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Requirement (3) for C|R to be a category of slices is satisfied, because if Σ,Γ ⊆

R then also Σ⊗ Γ ⊆ R whenever the latter is defined.

Therefore, given a causal field theory Ψ : C → D, the restrictions Ψ|R : C|R → D

are again causal field theories. To establish a connection with AQFT we need two

more ingredients: the assignment of a space of states StatesΨ (R) over a region

R and the definition of restrictions StatesΨ (R)→ StatesΨ (R′) between spaces of

states associated with inclusions R′ ⊆ R of regions.

Definition 4.27. Given a region R in a category of slices C, the space of states

StatesΨ (R) over the region is defined to be the set comprising all families ρ of

states over the slices in C|R

ρ ∈
∏

∆∈obj(C|R)

StatesD (Ψ(∆)) (4.17)

such that for all ∆,∆′ ∈ obj (C|R) with ∆� ∆′ the following condition is satisfied:

Ψ(∆� ∆′) ◦ ρ∆ = ρ∆′ (4.18)

By StatesD (Ψ(∆)) we have denoted the states on the object Ψ(∆) of the symmetric

monoidal category D, i.e. the homset HomD [I,Ψ(∆)] where I is the monoidal unit

of D.

Proposition 4.28. Given a causal field theory Ψ : C → D, we can construct a

presheaf StatesΨ : Regions (C)op → Set by associating each region R ∈ obj (Regions (C))

to the space of states StatesΨ (R) over the region, and each inclusion i : R′ ⊆ R

to the restriction function StatesΨ (R)→ StatesΨ (R′) defined by sending a family

ρ ∈ StatesΨ (R) to the family StatesΨ(i)(ρ) ∈ StatesΨ (R′) given as follows:

StatesΨ(i)(ρ)∆′ = ρi(∆′) (4.19)

We refer to StatesΨ as the presheaf of states over regions of C.

106



4.4. Connection with Algebraic Quantum Field Theory 107

Proof. The only thing to show is functoriality of StatesΨ. If i = idR : R ⊆ R is

the identity on a region R, then we have:

StatesΨ(i)(ρ)∆ = ρi(∆) = ρ∆ (4.20)

i.e. StatesΨ(i) = idStatesΨ(R) is the identity on the space of states over the region.

If now j : R′′ ⊆ R′ and i : R′ ⊆ R, then i ◦ j : R′′ ⊆ R and we have:

StatesΨ(j) (StatesΨ(i)(ρ))∆′′ = StatesΨ(i)(ρ)j(∆′′) = ρi(j(∆′′)) = StatesΨ(i◦j)(ρ)∆′′

(4.21)

Hence StatesΨ is a presheaf StatesΨ : Regions (C)op → Set

Definition 4.29. A global state ρ for a causal field theory Ψ : C → D is a

global compatible family for StatesΨ, i.e. a family ρ =
(
ρ(R)

)
R∈Regions(C) such

that StatesΨ(i)(ρ(R)) = ρ(R′) for all inclusions i : R′ ⊆ R in Regions (C). We refer

to the set of all global states as the space of global states.

Definition 4.27 provides us with additional information regarding the specific

structure of regions, which is redundant. However, under certain circumstances an

equivalent description of the space of states over regions can be given.

To start with, consider two slices Σ � Γ and note that the state on any slice

∆ ⊆ ♦Σ,Γ in a bounded region ♦Σ,Γ is uniquely determined by applying Ψ(Σ� ∆)

to the state on Σ:

ρ∆ = Ψ(Σ� ∆)(ρΣ) (4.22)

This is, for example, the case for all bounded regions between Cauchy slices in a

category of slices CauchySlices (F) generated by some foliation F . If the foliation F

has a minimum Σ0—an initial Cauchy slice—then any global state ρ ∈ StatesΨ (Ω)

is entirely determined by its component ρΣ0 over the initial slice Σ0:

ρ∆ = Ψ(Σ0 � ∆) ◦ ρΣ0 (4.23)
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for any ∆ ∈ F and any region R in CauchySlices (F) such that ∆ ⊆ R.

Inspired by Relativity, we would like the state on any Cauchy slice in the

foliation to determine the global state, not only that on an initial Cauchy slice.

For this to happen, we need to strengthen our requirements on the causal field

theory, which needs to be causally reversible.

Definition 4.30. Let Ω be any causal order. By the causal reverse of Ω we mean

the causal order Ωrev on the same events as Ω and such that x ≤ y in Ωrev if and

only if x ≥ y in Ω.

Definition 4.31. A category of slices C on a causal order Ω is said to be causally

reversible if the full sub-category of Slices (Ωrev) spanned by obj (C) is a category of

slices on the causal reverse Ωrev. If this is the case, we write Crev for said category

of slices over Ωrev and refer to it as the causal reverse of C. We write
rev
� for the

morphisms of Crev.

Definition 4.32. Let Ψ : C → D be a causal field theory on a causal order Ω. If

C is causally reversible, a causal reversal of Ψ is a causal field theory Φ : Crev → D

such that:

(1) the functors Ψ and Φ agree on objects, i.e. for all Σ ∈ obj (C) we have that

Ψ(Σ) = Φ(Σ);

(2) whenever we have two chains of alternating morphisms in C and Crev which

start and end at the same slices Σ,Γ, say in the form

Σ� ∆1
rev
� ∆2 � ...∆2n � Γ

Σ� ∆′1
rev
� ∆′2 � ...∆′2m � Γ (4.24)

for some n,m ≥ 0, the composition of the images of the morphisms under Ψ
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and Φ always yield the same morphism Ψ(Σ)→ Ψ(Γ):

Ψ(∆2n � Γ) ◦ ... ◦ Φ(∆1
rev
� ∆2) ◦Ψ(Σ� ∆1)

=Ψ(∆′2m � Γ) ◦ ... ◦ Φ(∆′1
rev
� ∆′2) ◦Ψ(Σ� ∆′1) (4.25)

We say that Ψ : C → D is causally reversible—or simply reversible—if C is causally

reversible and Ψ admits a causal reversal.

Proposition 4.33. Let CauchySlices (F) be the category of slices on a causal

order Ω generated by some foliation F . Then CauchySlices (F) is always causally

reversible and for any two Cauchy slices ∆,Σ we have that ∆ � Σ if and only

if Σ
rev
� ∆. Furthermore, if a causal field theory Ψ : CauchySlices (F) → D is

reversible, then a global state ρ is entirely determined by the state ρΣ on any

Cauchy slice Σ ∈ F as follows:

ρ∆ =


Ψ(Σ� ∆) ◦ ρΣ if Σ� ∆

Φ(Σ
rev
� ∆) ◦ ρΣ if ∆� Σ

(4.26)

where Φ : CauchySlices (F)rev → D is any causal reversal of Ψ.

Proof. The main observation behind this result is as follows: if Σ,∆ are two Cauchy

slices, then the conditions ∆ ⊆ D+ (Σ) and Σ ⊆ D− (∆) are equivalent. Hence

CauchySlices (F) is always causally reversible and ∆ � Σ if and only if Σ
rev
� ∆

for any two Cauchy slices ∆,Σ.

Now let Ψ be causally reversible, let Σ ∈ F be a Cauchy slice in the foliation

and consider any global state ρ. If Σ� ∆ for some other Cauchy slice ∆ ∈ F , then

the definition of a global state implies that ρ∆ = Ψ(Σ� ∆)◦ρΣ. If instead ∆� Σ,

then Σ
rev
� ∆ and the definition of a global state implies that ρΣ = Ψ(∆� Σ)◦ρ∆.

But the definition of a causal reverse also implies that:

Φ(Σ
rev
� ∆)◦ρΣ = Φ(Σ

rev
� ∆)◦Ψ(∆� Σ)◦ρ∆ = Ψ(Σ� Σ)◦ρ∆ = idΨ(Σ)◦ρ∆ = ρ∆

(4.27)
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Hence the value ρΣ completely determines the global state ρ (since the value on

all other slices in CauchySlices (F) is determined by restriction from the value on

a corresponding Cauchy slice).

4.5 Connection to quantum cellular automata

The idea of a cellular automaton was first introduced by von Neumann, aimed

at designing a self replicating machine [vN66]. A Cellular Automaton (CA) over

some finite alphabet A has its state stored as a d-dimensional lattice of values

in A, i.e. as a function ψ : Zd → A. The state is updated at discrete time

steps, each step updated as ψ(t+1) := F (ψ(t)) according to some fixed function

F : (Zd → A)→ (Zd → A). The function F acts locally and homogeneously : there

is some fixed finite subset N ⊂ Zd (typically a neighbourhood of 0 ∈ Zd) and some

function f : N → A such that the value of each lattice site x at time step t + 1

only depends on the finitely many values in the subset x+N at time t:

F (ψ) := x 7→ f(ψ|x+N ) (4.28)

A Quantum Cellular Automaton (QCA) is a generalization of a CA where the

lattice states ψ : Zd → A are replaced by (pure) states in the tensor product

of Hilbert spaces
⊗

x∈Zd Hx (all Hx finite-dimensional and isomorphic) and the

function F is replaced by a unitary U :
⊗

x∈Zd Hx →
⊗

x∈Zd Hx, with requirements

of locality and homogeneity.

Remark 4.34. There are several slightly different formulations of the infinite

tensor product above that can be used, each with its own advantages and disad-

vantages: though it is not going to be a concern for this work, the authors are

partial to the construction by von Neumann [vN39].

An early formulation of the notion of QCA is due to Richard Feynman, in the

context of simulations of physics using quantum computers [Fey82]. More recent

work on quantum information and quantum causality has shown that the evolution
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of certain free quantum fields can be recovered as the continuous limit of certain

quantum cellular automata (cf. [DP16, Arr19] and references therein). In the final

section of this work, we show that our framework is well-suited to capture notions

of QCA such as those appearing in the literature. Specifically, our construction

encompasses and greatly generalises that presented in [Arr19].

4.5.1 Causal cellular automata

The first requirement in the definition of a QCA is that of homogeneity—called

“translation invariance” in [Arr19]—i.e. the requirement that the automaton act

the same way at all points of spacetime. Because presentations of QCAs are usually

given in terms of discrete updates of states on a lattice by means of a unitary U ,

only the requirement of homogeneity in space is usually mentioned. However, such

presentations also have homogeneity in time as an implicit requirement, namely in

the assumption that the same unitary U be used to update the state at all times.

Instead of updating the state time-step by time-step in a compositional fashion,

our formulation of quantum cellular automata will see the entirety of spacetime at

once, with states over slices and regions recovered in a decompositional approach.

Nevertheless, the requirement of homogeneity for a QCA can still be formulated

as a requirement of invariance under certain symmetries of spacetime, so we begin

by formulating such a notion of invariance for causal field theories.

Definition 4.35. A symmetry on a causal order Ω is an action of a group G

on Ω by automorphisms of causal orders, i.e. a group homomorphism G →

Aut CausOrd [Ω]. If C is a category of slices on Ω, a symmetry on C is a sym-

metry on Ω which extends to an action on C by partially monoidal functors, i.e.

one such that the following conditions are satisfied:

(1) for all g ∈ G, if Σ ∈ obj (C) then g(Σ) ∈ obj (C);

(2) for all g ∈ G and all Σ,Γ ∈ obj (C), if Σ� Γ then g(Σ)� g(Γ);

(3) for all g ∈ G and all Σ,Γ ∈ obj (C), if Σ⊗ Γ is defined in C then g(Σ⊗ Γ) =
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g(Σ)⊗ g(Γ) is also defined in C.

Note, for all g ∈ G, that g(∅) = ∅ and that g(Σ) is automatically a slice whenever

Σ is a slice.

Definition 4.36. Let C is a category of slices with a symmetry action of a group

G. A G-invariant (or simply symmetry-invariant) causal field theory on C is a

causal field theory Ψ : C → D equipped with a family of natural isomorphisms

Ψ
αg⇒ Ψ ◦ g such that αh·g = αhg ◦ αg, where we have again identified elements

g ∈ G with their action as partially monoidal functors g : C → C.

Remark 4.37. The spirit behind the definition of symmetry-invariant causal field

theories is that the functors Ψ (sending slices 7→ fields) and Ψ◦g (sending slices 7→

g-translated slices 7→ fields) should be the same. However, we have remarked when

first defining causal field theories that—be it for ease of physical interpretation or

for conformity with existing literature on causal categories—it may sometimes be

desirable that the images Ψ(Σ) of different slices be different. Not being able to

impose the equality Ψ = Ψ ◦ g in such a setting, the next best thing is to ask for

natural isomorphism Ψ ∼= Ψ ◦ g.

Because we are dealing with symmetries, however, it is sensible to require for

the natural isomorphisms αg themselves to respect the group structure. Again the

first instinct might be to require something in the form αh·g = αh ◦ αg, but this

expressions does not type-check: we have a natural transformation αh·g : Ψ ⇒

Ψ ◦ h ◦ g, a natural transformation αg : Ψ ⇒ Ψ ◦ g and a natural transformation

αh : Ψ⇒ Ψ◦h. In order to compose αh and αg we instead have to take the action

of αh translated to Ψ ◦ g:

αhg : Ψ ◦ g ⇒ (Ψ ◦ h) ◦ g (4.29)

Explicitly, the natural transformation αhg is defined by (αhg)(Σ) := αh(g(Σ)).

The second requirement in the definition of a QCA is that of locality (or causal-

ity). When quantum cellular automata are considered in a relativistic context—
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e.g. as discrete models of quantum field theories—the requirement of locality is

meant to capture the idea that the action of the automaton should respect the

causal structure of spacetime (so that the state on a point x at time t+ ∆t should

not depend on the state at the previous time t on points y which are “too far

away”, i.e. such that (x, t+ ∆t) and (y, t) are space-like separated).

In [Arr19], the requirement of locality is formulated as the requirement that

the output state of the automaton over a point x of the lattice at time t+ 1 only

depend on the state over a finite neighbourhood x +N at time t: this is both in

terms of local state (causality) and in the stronger sense that the field evolution

should factor into a product of local maps (localisability). In our framework, on

the other hand, causality and localisability are both automatically enforced: the

field evolution always factors over space-like separated regions, as a consequence

of monoidality, and the local state over a slice never depends on the state on any

other slice which is space-like separated from it (as a consequence of factorisation).

Remark 4.38. The causal order Ω which captures the causality requirement from

[Arr19] with finite neighbourhood N ⊂ Zd can be constructed by endowing the set

|Ω| := Zd × Z with the reflexive-transitive closure of the relation (y, t) ≤ (x, t+ 1)

for all times t ∈ Z, for all points of the lattice x ∈ Zd and for all points y ∈ x+N

in the neighbourhood of x.

The third and final requirement in the definition of a QCA is that of unitarity.

In our framework, this is a problem for two (mostly unrelated) reasons.

• Our formulation of causal field theories aims to be agnostic to the choice

of process theory. On the other hand, unitarity is a strongly quantum-

like feature, the formulation of which would require a significant amount of

additional structure on the field category.

• The usual formulation of quantum cellular automata only considers global

evolution, never directly dealing with restrictions—situations e.g. in which

the state is evolved unitarily but part of the output state is discarded as
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environment. Our framework instead treats such restrictions as an integral

part of evolution.

Luckily, unitarity per se is not necessary from an abstract foundational standpoint:

the real feature of interest is reversibility, a feature of causal field theories which we

have already explored. For the sake of generality, we will not include reversibility

in the definition below, leaving it as an explicit desideratum.

Remark 4.39. In categories of Hilbert spaces and completely positive maps, it is

legitimate to imagine that causality and reversibility would jointly imply that the

cellular automata also be unitary. This is indeed the case under the conditions

of Proposition 4.33: because the state on any Cauchy slice automatically deter-

mines the state on all the other slices—and because that state on a single slice is

arbitrary—evolution between Cauchy slices must be unitary.

Definition 4.40. A Causal Cellular Automaton (CCA) consists of the following

ingredients.

(1) A foliation F on a causal order Ω.

(2) A category of Cauchy slices C such that each slice in C is a subset of some

Cauchy slice in F . 4

(3) A symmetry action of a group G on C, inducing—via the G-action on Ω—a

transitive action of G on the Cauchy slices in the foliation F .

(4) A G-invariant causal field theory Ψ : CauchySlices (F)→ D.

A reversible CCA is one where the causal field theory Ψ is reversible.

Definition 4.40 is much more general than the definition of QCA from [Arr19]

and hence captures more sophisticated examples. However, its ingredients are

directly analogous to those appearing in that definition of a QCA.

4Each Cauchy slice Σ in F is then automatically the union of all slices ∆ ∈ obj (C) such that
∆ ⊆ Σ.
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• The foliation F on Ω generalises the discrete time steps in the definition of

a QCA.

• The slices in C generalise the equal-time hyper-surfaces which support the

state of a QCA at fixed time.

• The symmetry action of G on CauchySlices (F) and its transitivity on the

foliation F generalise homogeneity in both space and in time of the lattices

supporting a QCA.

• The G-invariance of the causal field theory Ψ generalises both the translation

symmetry in space and the time-translation symmetry of a QCA.

4.5.2 Partitioned causal cellular automata

We now proceed to construct a large family of examples of CCAs based on the

partitioned QCAs of [Arr19]. In doing so, we generalise the scattering unitaries to

arbitrary processes and allow for the definition of state restriction to non-Cauchy

equal-time surfaces. We refer to the resulting CCA as partitioned CCA.

4.5.2.1 Causal order

As our causal order Ω we consider the following subset of (1 + d)-dimensional

Minkowski spacetime (setting the constant c for the speed of light to c =
√
d):

Ω :=
{

(t, x)
∣∣∣ t ∈ Z, x ∈ (t, ..., t) + 2Zd

}
(4.30)

where (t, ..., t) + 2Zd is the set of all x ∈ Zd such that xi = t (mod 2). For d = 1

we get the (1 + 1)-dimensional diamond lattice discussed before. In general, the

immediate causal predecessors of a point (t, x) are the following 2d points:

(t− 1, x−N ) = { (t− 1, x− δ) | δ ∈ N } (4.31)
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where we defined the “neighbourhood” N := {±1}d. Similarly, the immediate

successors of (t, x) are the following 2d points:

(t+ 1, x+N ) = { (t− 1, x+ δ) | δ ∈ N } (4.32)

4.5.2.2 Foliation and category of slices

The causal order Ω admits a foliation F where each slice is a constant-time Cauchy

slice Σt for some t ∈ Z:

Σt :=
{

(t, x)
∣∣∣x ∈ (t, ..., t) + 2Zd

}
(4.33)

A suitable category of slices C to associate to this foliation is given by taking as

slices all the finite sets Σt,X ⊂ Σt of events having the same time coordinate t:

Σt,X = { (t, x) |x ∈ X } (4.34)

where X ⊂ (t, ..., t) + 2Zd is some finite subset. The morphisms � of C are given

as follows for k ≥ 0:

Σt,X � Σt+k,Y if and only if
⋃
y∈Y

((
t, y +N (k)

))
⊆ X (4.35)

where the “iterated neighbourhood” N (k) is defined as N + ... + N by adding

together k ≥ 0 copies of N (and we set N (0) := {0}). Explicitly we have:

N (k) :=


{−k,−k + 2, ...− 1,+1, ..., k − 2, k} if k odd

{−k,−k + 2, ...− 2, 0,+2, ..., k − 2, k} if k even

(4.36)

It is easy to check (by a t 7→ −t symmetry argument) that C is reversible.
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4.5.2.3 Symmetry

The category C admits a symmetry action of the group G := ZN ∼= Z2d . We index

the coordinates of vectors in ZN by the 2d points δ ∈ N = {±1}d. We denote by

τδ the vector in ZN which is 1 at the coordinate labelled by δ and 0 at all other

coordinates. The action is then specified by setting:

τδ(t, x) := (t+ 1, x− δ) (4.37)

That is, the 2d generators of ZN send a generic event (t, x) to each of its 2d

immediate causal successors in Ω, one for each possible choice of sign ±1 along

each of the d directions of the space lattice Zd. 5 Each generator τδ for the

symmetry action sends a Cauchy slice Σt in the foliation to the next Cauchy slice

Σt+1, so the action of G on the foliation is transitive.

4.5.2.4 Causal field theory - field over slices

As our field category we consider a generic causal process theory D, i.e. a sym-

metric monoidal category equipped with a family of discarding maps H : H → I

for all objects H ∈ obj (D), respecting the tensor product ⊗ and tensor unit I of

D: H⊗K = H⊗ K and I = 1. Discarding maps generalise the partial trace of

quantum theory: normalised states ρ : I → H—generalising density matrices—are

defined to be those such that H ◦ ρ = 1 and normalised morphisms U : H → K—

generalising CPTP maps—are defined to be those such that K ◦ U = H. See

e.g. [GS17, CL13, CK17] for more information.

To create a G-invariant causal field theory Ψ, we consider some object H ∈

obj (D) together with some endomorphism U : H⊗2d → H⊗2d , which we will refer

to as the scattering map. For reasons that will soon become clear, it is more

convenient to index the factors of H⊗2d by the 2d points in the neighbourhood N ,

hence writing U : H⊗N → H⊗N .

5The reason for the negative sign in x − δ is that N was originally defined to be the neigh-
bourhood in the past.
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We define the action of Ψ on the slices in C as follows:

Ψ(Σt,X ) :=
(
H⊗N

)⊗X
= H⊗(N×X ) (4.38)

The tensor product is well-defined in all symmetric monoidal categories, since X

is always finite. Physically, the field takes values in a copy of H⊗N over each event

(t, x) of spacetime, each individual H factor of H⊗N encoding the contribution

to the field state at (t, x) from the field state at each of its immediate causal

predecessors in (t− 1, x+N ).

4.5.2.5 Causal field theory - restriction and evolution

From their definition in Equation 4.35, it is easy to see that morphisms Σt,X0 �

Σt+k,Xk on C can always be factored in the following way:

Σt,X0 � Σt,Y0 � Σt+1,X1 � Σt+1,Y1 � ...� Σt+k,Xk (4.39)

where Yi ⊆ Xi for all i = 0, ..., k − 1 and the following holds for each i = 1, ..., k:

Yi−1 =
⋃
x∈Xi

{ (t+ i− 1, x+ δ) | δ ∈ N } (4.40)

This means that we only need to care about the action of Ψ on two kinds of

morphisms:

• the restrictions Σt,X � Σt,Y , where Y ⊆ X ;

• the 1-step evolutions Σt,Y � Σt+1,X , where Y =
⋃
x∈X { (t, x+ δ) | δ ∈ N }.

The existence of the factorisation above can be proven by induction, observing

that any morphism Σt,X0 � Σt+1,X1 factors into the product:

(Σt,Y0 � Σt+1,X1)⊗
(
Σt,X0\Y0

� ∅
)

(4.41)

where Y0 is defined as before so that Σt,Y0 is exactly the set of immediate causal

118



4.5. Connection to quantum cellular automata 119

predecessors of the codomain Σt+1,X1 .

On restrictions Σt,X � Σt,Y , where Y ⊆ X , the functor Ψ is defined to act by

marginalisation, discarding the field state over all those events in the larger slice

Σt,X which don’t belong to the smaller slice Σt,Y :

Ψ(Σt,X � Σt,Y) :=
⊗
x∈X

Fx where Fx :=


idH⊗N if x ∈ Y

H⊗N if x /∈ Y
(4.42)

On 1-step evolutions Σt,Y � Σt+1,X , where Y =
⋃
x∈X { (t, x+ δ) | δ ∈ N }, the

functor Ψ is defined to act by a combination of evolution by U and marginalisation.

The evolution component is simply an application of U to the state at each event

of Y:

U⊗Y : H⊗(N×Y) → H⊗(N×Y) (4.43)

The marginalisation component then needs to go from the codomain H⊗(N×Y)

of the map above to the desired codomain H⊗(N×X ). To do this, we recall that

the H factor of H⊗(N×X ) corresponding to a given δ ∈ N and a given x ∈ X is

intended to encode the component of the state at (t+ 1, x) coming from (t, x+ δ).

Analogously, the H factor of H⊗(N×Y) corresponding to a given δ ∈ N and a

given y ∈ Y is intended to encode the component of the evolved state going to

(t+1, y−δ). Hence to go from H⊗(N×Y) to H⊗(N×X ) we need to discard all factors

in H⊗(N×Y) corresponding to components of the evolved state which are not going

to some (y − δ) ∈ X :

 ⊗
(δ,y)∈N×Y

Fδ,y

 : H⊗(N×Y) → H⊗(N×X ) where Fδ,y :=


idH if (y − δ) ∈ X

H if (y − δ) /∈ X
(4.44)

Putting the evolution and marginalisation components together we get the action
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of Ψ on 1-step evolutions:

Ψ (Σt,Y � Σt+1,X ) :=

 ⊗
(δ,y)∈N×Y

Fδ,y

 ◦ U⊗Y
 : H⊗(N×Y) → H⊗(N×X ) (4.45)

By construction, the above is a G-invariant causal field theory, completing the

definition of our partitioned causal cellular automaton. If U is an isomorphism,

the same construction on Crev using U−1 provides a causal reversal for Ψ, showing

that the partitioned causal cellular automata above is reversible under those cir-

cumstances. Finally, Figure 4.5 below depicts an example of action on morphisms

for a (1 + 1)-dimensional partitioned causal cellular automaton.

Figure 4.5: Action of a partitioned causal cellular automaton over a complicated
morphism Σ � Γ in the (1 + 1)-dimensional example of the diamond lattice.
Here N = {±1}, so each event in the causal order is associated to a copy of
H⊗N ∼= H ⊗ H. The restriction action of the CCA (Equation 4.42) can be seen
on the two events at the bottom left. The pure evolution action of the CCA
(Equation 4.43) can be seen on the central pyramid of ten events, as the application
of U without discarding. The evolution + marginalisation action of the CCA
(Equation 4.45) can be seen on the eight events at the sides of the central pyramid,
as the application of U followed by discarding of one of the two outputs. The input
of the morphism depicted consists of eight copies of H⊗H, one for each event of
Σ, while the output of the morphism depicted consists of two copies of H⊗H, one
for each event of Γ[GSC21].
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The broad aim of this project was to study causality and the arrow of time in quan-

tum process theories and beyond. In particular, we developed different approaches

to time-symmetrize quantum theory from a process-theoretic perspective both by

taking into account (retro)causality constraints and by completely removing them

(Chapter 2). Along these lines we developed a toy model for particle physics by

treating causal systems as particles and retrocausal systems as antiparticles.

We furthermore argued that process theories can better realized as certain

kinds of operad algebras (Chapter 3). The versatility of the operadic framework

allowed us to capture causal as well as time neutral process theories. To gain

further intuition, we established a connection between compact closed categories

and time neutral process theories. To our knowledge, this is the first application

of operadic tools for the foundations of physics. The diagrammatic representation

that we have established for operads and their algebras aims at making those

mathematical tools accessible to a wider audience.

Finally, we created a compositional algebraic framework to study the evolution

of fields, realized as causal process theories, in discretised spacetimes (Chapter 4).

The highlight of this work is that the notion of the ‘field’ is theory-independent

and thus applies to theories more general than quantum. We establish a link

with algebraic quantum field theory and cellular automata. In particular, our

cellular automata treat the interaction with the environment as an integral part of

evolution, generalising those from existing literature, where evolution is unitary.

The results of this thesis suggest many possible research avenues. We will
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mention some of them.

In Chapter 2 we created a toy model for particle physics by perceiving particles

as finite representations of a group G. In the literature, however, particles are

defined as the irreducible representations of the Poincare group, which has infinite

dimensionality. We would therefore like to extend our toy model to the infinite

dimensional case. This will provide a new perspective to particle physics, since

it will allow particles to interact with classical systems and furthermore to be

in mixed states. Furthermore, we can ask whether it is possible to acquire a

reconstruction of quantum theory that reproduces the process theory QNeut,

rather than QPhys.

In Chapter 3 we define the operad algebras as functors F : W → Set. The

image of F determines the homset of the symmetric monoidal category that is

constructed. However, there are many times where the process theories that we

are interested are enriched. That said, processes from a particular set of inputs

to outputs do not form a set, but have additional structure. We conjecture that

enriched process theories could be captured by changing the codomain of F from

Set to the category of interest.

A particularly useful example comes from the study of operational theories, in

which we are not just interested in which processes are occuring, but in what we

know about which processes are occuring. This naturally means that the hom-sets

have the structure of a simplex describing the set of states of knowledge that one

can have about the transformation.

In order to capture this situation we define the operad Stoch in which objects

are finite sets and operations are stochastic maps between these. Then, a novel

kind of operad algebra is a functor F : W → Stoch. On objects, it conveys the

same information with the standard operad algebras. That said, it simply conveys

the set of possibilities for what a box can be. However, on operations, we gain

additional flexibility, since now they are mapped to stochastic processes rather
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than functions. For example:

A

B

C

F

C(B,C)

C(A,B)

C(A,C)

is a stochastic map which tells us how to propagate our beliefs about the transfor-

mation from A to B and the transformation from B to C to a belief about how A

transforms into C, given that the output of the first transformation is fed into the

input of the second.

This view seems to be closely related with the framework of causal inferen-

tial theories in Ref. [SSS20], a connection we would like to explore further. In

particular, one of the main research questions in Ref. [SSS20] is to understand

how non-classical theories of inference could be defined to obtain a realist account

of quantum theory. While this is not clear how to achieve for the full causal-

inferential framework, we conjecture that it could be handled within the operadic

framework by simply changing the codomain of the operad algebra. In particular,

rather than taking the codomain as Stoch we can take it to be CPM. In that way,

we are dealing with quantum states of knowledge about transformations, rather

than classical.

Finally, we believe that the connection with AQFT in Chapter 4 can be strength-

ened to the point that it will be a tool for the construction of new models. Fur-

thermore, we would like to explore the possibilities in working in the continuum

limit of QCAs and relate them to perturbative quantum field theory. Finally, it

would be interesting to see how time neutral process theories behave in a spacetime

context and principles like non-signalling maifest themselves in this context.
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4.6 Diagrams for groups and their representations

4.6.1 Diagrams for groups

We will denote a group G by a new kind of wire,

G , (4.46)

such that the elements of the group, g ∈ G are then states of this wire,

g
G
. (4.47)

In particular, we denote the identity element of the group as

I
G
. (4.48)

We then introduce the defining operations for a group, namely, group multiplica-

tion and group inverse as
G

G G

and
G

G

(4.49)

respectively. These can be defined by their action on the group elements via:

g′
G

g
G

G

= g′ · g
G

and
g
G

G

= g−1
G
. (4.50)

Various important properties of groups can be elegantly captured using these di-
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agrams. These include associativity of multiplication, i.e.

G G

G

G

G

=
GG

G

G

G

, (4.51)

that the identity element is the unit, i.e.

G

G
I
G

= G =
G

G
I
G

, (4.52)

that the group inverse is idempotent, i.e.

G

G

G

= G , (4.53)

and that multiplication is “antisymmetric”, i.e.

G

GG

G G

=

G

GG

G

. (4.54)

To capture more of the group structure diagrammatically, we introduce a copy

map and a discard map for these new systems,denoted as

G

G G

and
G

(4.55)

respectively. These too can be defined by their action on group elements via:

gG

G G
=

g
G

g
G and

g
G = . (4.56)

Important properties of these can also be captured diagrammatically such as: as-
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sociativity of copy,

G

G

G

G G

=

G

G

G

GG

, (4.57)

that the discard is the counit for copy,

G

GG
= G =

G

G G
, (4.58)

and that copying is symmetric

G

G G =
G

G G

. (4.59)

Finally, we can use the interaction of these new processes with the group multipli-

cation and inverse in order to capture more structure of the group. In particular,

the equation

G

G

G

G

G
=

G

G

I
, (4.60)

ensures that the group inverse behaves as expected. Moreover, one can show that

copying and multiplication form a bialgebra, i.e.

G

GG

G

G

G G

= G

GG

GG

, (4.61)

group multiplication is causal, i.e.

G

GG

=
G G

, (4.62)
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and that the inverse is copied by the copy operation i.e.

G

GG

G G

= G

GG

. (4.63)

4.6.2 Group representations

We exploit the above material to define group representations on systems in QCalc

(or QPhys) as an interaction between the new systems G and systems from

QCalc. Formally we can think of the systems G as being particular (potentially

infinite dimensional) classical systems where the point distributions correspond to

the group elements.

A causal group representation of G on some system Q in QCalc is a process,

π, of the form

G

π

Q

Q

(4.64)

such that the following equations are satisfied:

G

π

Q

Q

G

π

Q

=

G

Q

G

π

Q G

,

Q

G

π

Q I

=
Q

and
G

π

Q

Q

=
GQ
, (4.65)

The first two equations guarantee that this is a valid representation and the third

guarantees that this is a causal representation. Note that if we are working with

QPhys rather than QCalc then this last condition is automatically satisfied.

If Q is strictly quantum, that is, a system H, then these causal representations

are necessarily unitary representations. In other words, they satisfy the following

equation
H

G

π

H g

=

H

Ug

H

:: ρ 7→ UgρU
†
g (4.66)

for all g ∈ G. To see this note that the axioms for group representations imply
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that the processes on the left hand side are necessarily reversible, and reversible

CPTP maps are necessarily unitary supermaps.

For finite dimensional classical systems X with a non-finite group G, the only

possible representation is the trivial representation, namely:

X

G

π

X

=
GX

(4.67)

We can compose representations of single systems to define representations of

composite systems via:

Q′

G

π

Q′

Q

Q

=

Q′

π′

Q′

Q

Q

π

G

(4.68)

Thus, if we compose a quantum and a classical representation we end up with a

representation:

G

π

XH

H X

=
X

H

π

GH

X

=
X

H

π

GH

X

(4.69)

That is, the quantum part of the composite system may transform non-trivially

under the action of the group, contrary to the classical part, which is left invariant.

Finally, note that the representation on a trivial system is necessarily trivial, that

is:

G

π

= G (4.70)

4.6.3 Intertwiners

In this section we introduce intertwiners. They are processes in QCalc (or QPhys)

that are symmetric with respect to the group. In particular, they are characterised
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by the covariance condition:

E
Q

π

GQ

Q′

=

Q′

π′

G

Q′

E
Q

(4.71)

This implies that states and measurements that are intertwiners are invariant under

the group action, namely:

ρ

Q′

G

=

Q′

π′

G

Q′

ρ
and

M

Q

π

GQ

X

=

G

X

M

Q

(4.72)

4.6.4 Dual systems and conjugate representations

Finally, we introduce dual systems and their representations. Systems in QCalc

have duals, which we will now explicitly denote with arrows. That is, a generic

process is represented as

E

H H′

K K′

X X′

Y′Y

(4.73)

and its symbolic notation is the CP map

E : B[H]⊗

(⊕
x∈X
B[C]

)
⊗B[H′]∗⊗

(⊕
x′∈X′

B[C]

)∗
→ B[K]⊗

⊕
y∈Y
B[C]

⊗B[K′]∗⊗

⊕
y′∈Y′

B[C]

∗ .
(4.74)

That is, when the arrow is pointing up we use the primal vector space, and when

the arrow is pointing down we use the dual vector space.

Given a representation on a system Q↑ we define the conjugate representation,
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π∗ on the system Q↓ as follows:

π∗

Q

Q

G

:= π

Q

Q
Q

Q

G

(4.75)

Note that if Q↑ is classical, X↑, then as the representations on X↑ were necessarily

trivial so is the conjugate representation on X↓.

It is now easy to see that cups and caps are intertwiners, for composite repre-

sentations on the inputs. That is,

Q

Q

π

Q

Q G

= π

Q

Q

Q

Q

π

Q

Q G

=

π

Q

Q

π

Q

Q G

=

π

Q

Q Q G

=

π

Q

Q

I

Q G

=

Q Q G

(4.76)

In the first equality we use the assumption that the representation on the input is a

composite of representations and the above definition of conjugate representation.

In the second equality we are using the definition of cups and caps. In the third we

use the definition of a representation. In the fourth we use one of the key results

about groups, and the final stems again from the definition of a representation.
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[JRD96] André Joyal, Street Rose, and Verity Dominic. Traced monoidal cate-

gories. Mathematical proceedings of the Cambridge Philosophical Soci-

ety, 119:447–468, 1996.

[KHC17] Aleks Kissinger, Matty Hoban, and Bob Coecke. Equivalence of

relativistic causal structure and process terminality. arXiv preprint

arXiv:1708.04118, 2017.

[Koc03] Joachim Kock. Frobenius algebras and 2D topological quantum field

theories. Cambridge University Press, 2003.

[KP67] Erwin H. Kronheimer and Roger Penrose. On the structure of causal

spaces. Mathematical Proceedings of the Cambridge Philosophical So-

ciety, 63(2):481–501, 1967.

[KU17] Aleks Kissinger and Sander Uijlen. A categorical semantics for causal

structure. In Logic in Computer Science (LICS), 2017 32nd Annual

ACM/IEEE Symposium on, pages 1–12. IEEE, 2017.

[L+09] Jacob Lurie et al. On the classification of topological field theories.

Current developments in mathematics, 2008:129–280, 2009.

[Mal77] David B. Malament. The class of continuous timelike curves deter-

mines the topology of spacetime. Journal of Mathematical Physics,

18(7):1399–1404, 1977.

[ML98] S. Mac Lane. Categories for the working mathematician. Springer-

verlag, 1998.

[MP10] Keye Martin and Prakash Panangaden. Domain theory and general

relativity. In New structures for physics, pages 687–703. Springer, 2010.

[MP12] Keye Martin and Prakash Panangaden. Spacetime geometry from

causal structure and a measurement. Mathematical Foundations of

138



Bibliography 139

Information Flow: Clifford Lectures Information Flow in Physics, Ge-

ometry, and Logic and Computation, March 12-15, 2008, Tulane Uni-

versity, New Orleans, Louisiana, 71:213, 2012.

[NW17] Kang Feng Ng and Quanlong Wang. A universal completion of the

zx-calculus. arXiv preprint arXiv:1706.09877, 2017.

[O+08] Robert Oeckl et al. General boundary quantum field theory: Foun-

dations and probability interpretation. Advances in Theoretical and

Mathematical Physics, 12(2):319–352, 2008.

[OC15] Ognyan Oreshkov and Nicolas J Cerf. Operational formulation of time

reversal in quantum theory. Nature Physics, 11(10):853–858, 2015.

[OC16] Ognyan Oreshkov and Nicolas J Cerf. Operational quantum theory

without predefined time. New Journal of Physics, 18(7):073037, 2016.

[Oec16] Robert Oeckl. A local and operational framework for the foundations

of physics. arXiv preprint arXiv:1610.09052, 2016.

[PGC19] Nicola Pinzani, Stefano Gogioso, and Bob Coecke. Categorical seman-

tics for time travel. In 34th Annual ACM/IEEE Symposium on Logic

in Computer Science (LICS 2019). IEEE Computer Society, 2019.

[PSV21] Evan Patterson, David I Spivak, and Dmitry Vagner. Wiring diagrams

as normal forms for computing in symmetric monoidal categories. arXiv

preprint arXiv:2101.12046, 2021.

[SC17] John H Selby and Bob Coecke. A diagrammatic derivation of the

hermitian adjoint. Foundations of Physics, 47(9):1191–1207, 2017.

[Sel07] P. Selinger. Dagger compact closed categories and completely positive

maps. Electronic Notes in Theoretical Computer Science, 170:139–163,

2007.

139



140 Bibliography

[Sel17] John H Selby. A process theoretic triptych. PhD thesis, PhD thesis,

Imperial College London, 2017.

[SGB+14] Ralph Silva, Yelena Guryanova, Nicolas Brunner, Noah Linden, An-

thony J Short, and Sandu Popescu. Pre-and postselected quantum

states: Density matrices, tomography, and kraus operators. Physical

Review A, 89(1):012121, 2014.

[SGS+17] Ralph Silva, Yelena Guryanova, Anthony J Short, Paul Skrzypczyk,

Nicolas Brunner, and Sandu Popescu. Connecting processes with in-

definite causal order and multi-time quantum states. New Journal of

Physics, 19(10):103022, 2017.

[SSC21] John H Selby, Carlo Maria Scandolo, and Bob Coecke. Reconstructing

quantum theory from diagrammatic postulates. Quantum, 5:445, 2021.

[SSCng] John H. Selby, Maria E. Stasinou, and Bob Coecke. Time symmetry

in quantum process theories and beyond. forthcoming.

[SSng] Maria E. Stasinou and John H. Selby. An operadic approach to process

theories. forthcoming.

[SSS20] David Schmid, John H Selby, and Robert W Spekkens. Unscrambling

the omelette of causation and inference: The framework of causal-

inferential theories. arXiv preprint arXiv:2009.03297, 2020.

[Sur19] Sumati Surya. The causal set approach to quantum gravity. Living

Reviews in Relativity, 22:5, 2019.

[vN39] John von Neumann. On infinite direct products. Compositio Mathe-

matica, (6):1–77, 1939.

[vN66] John von Neumann. Theory of Self-Reproducing Automata. University

of Illinois Press, Champaign, IL, USA, 1966.

140



Bibliography 141
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