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Abstract

Quantum theory is manifestly in tension with the classical notion of causality. How do
we recover causal reasoning in the quantum regime? In this dissertation, we propose a
framework where such causal idiosyncrasies are identified as obstructions to the existence
of global sections for presheaves of causal data. We do so by extending the Abramsky-
Brandenburger framework for non-locality and contextuality [6] to situations where
measurement contexts are allowed to be signalling. This results in a theory-independent
phenomenology of causality, which can be used to reason about causal structure in any
theory exhibiting contextuality.

In the first part of this dissertation, we study the specific phenomenology of coherent
control of quantum channels, giving rigorous operational meaning to the superposition
of causal order. We pursue a bottom-up approach—alternative to the process matrix
formalism—by investigating how indefiniteness of causality emerges from specific
characteristics of operational theories. This provides the recipe for building processes
with indefinite causality, which are then causally analysed using tools described in the
second part of the thesis.

The second, more substantial part of this dissertation is devoted to building the sheaf-
theoretic framework unifying non-locality, contextuality and indefinite causality. We
provide a combinatorial description of the operational assumptions underlying definite
and indefinite causal order, and characterise the emergent topologies of classical contexts.
We explain how to associate causal data to such topologies and detail the relationship
between the covers for a topological space and varying degrees of classicality. We
develop a complementary geometric understanding of the space of empirical models for
this presheaf, and show how it can be used to perform theory-independent causal analysis
of empirical data. We conclude by providing novel examples of such causal analysis,
showcasing the existence of the phenomenon of contextual causality. Importantly, our
examples demonstrate that such phenomenon can be witnessed in quantum theory, as
long as coherently control of causal order is allowed for quantum processes.
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Chapter 1

Introduction

1.1 Prolegomenon

In providing a classical causal explanation for a Bell experiment, the appeal to superluminal causality
is unavoidable; no classical causal description fits the operational assumptions underlying the
realisation of such protocols. Where does this irreconcilability lie? Studies about the application
of classical causal algorithms to quantum theory, an endeavour attempted by Spekkens in [144]
and generalised to a broader class of contextuality scenarios in the works of Cavalcanti and Pearl
[35, 105], are aimed at a precise explanation of how our classical understanding of causality fails to
capture the meaning of Bell’s correlations. They show that any causal explanation must contradict the
‘no fine-tuning assumption’, the principle that the statistical independence between variables should
not be explained by the fine-tuning of the causal parameters. For this reason, it seems that quantum
theory allows for what we would call—in light of the principles of classical causal modelling—either
‘superluminal causes’ which are fine-tuned to avoid any possibility of faster than light communication,
or the introduction of additional causes entailing superdeterminism.

What structural property of quantum theory makes these fine-tuned correlations possible, if not
ubiquitous? How do we characterise this departure from classicality at a purely empirical level?
Many foundational research programs have been developed to settle these questions with causality
and construct its phenomenology in the broader context imposed by quantum theory. To motivate
the kind of interplay one would expect between causality and quantum correlations, we can start by
understanding the consensus about the role of probabilities in the ‘classical’ study of causality.

A comprehensive account of how causal mechanisms are related to uncertainty can be found
in Judea Pearl’s seminal book [104] where, in the very first sentences, it is made clear that his
framework relies on an essential conceptual distinction: ‘[c]ausality connotes lawlike necessity,
whereas probabilities denote exceptionality, doubt, and lack of regularity’ [104]. Causality is
seen as the embodiment of fundamentally deterministic mechanisms which relate the properties
of multipartite systems in an intricate net of causes and effects, in fundamental opposition with
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probabilities understood as a direct consequence of obfuscating the ontic ‘regularity’. For Pearl,
probabilistic uncertainty is described antithetically to the functional relationship between causes and
effects even though, in many instances, the causal mechanism breaks through the barrier of uncertainty.
Pearl mainly provides two reasons to justify the introduction of an intrinsically probabilistic treatment
of causality: the finite granularity of language unavoidably fails to capture the precision needed to
reveal the complete underlying functional mechanism, and natural language is unavoidably plagued
with uncertainties.

Both justifications for the need for probabilities become controversial in the presence of a
fundamental theory of nature, so we should not be too surprised to learn about the failure of causal
discovery in framing quantum interactions. The emergence of probabilistic behaviour cannot result
from linguistic imprecision or ignorance about objective facts but witnesses a more fundamental
descriptive limitation. This intrinsic probabilistic behaviour replaces functions as the machinery of
causal mechanisms. It should not be seen as a theoretical limitation but, on the contrary, as what
enables the understanding of new types of regularities that ‘exclude analysis on classical lines’[82]
and become manifest when one appeals to the unification of complementary perspectives.

This understanding of the nature of probabilities and, therefore, of the failure of classical
approaches to causality is strengthened by numerous proofs of the contextual features of the theory,
corroborating the implausibility of recovering a fundamental causal description. As Niels Bohr puts
it, we are here concerned with ‘new uniformities which cannot be framed into the frame of ordinary
causal description’ [26], the exploration of ‘harmonies which cannot be comprehended in the pictorial
conceptions adapted to the account of more limited fields of physical experience’[82]: harmonies not
amenable to standard causal understanding but governed by precise rules and regularities appearing
in a new domain of applicability. Bohr uses these words only two years after the proposal of EPR
and decades before Bell or Kochen-Specker proved their seminal theorems but is already hinting
at the impression that there is something truly essential in the role played by contextuality. This
work is permeated by the belief that the failure to analyse quantum processes with the tools of causal
discovery may reveal what Bohr would have described as the unavoidability of synthesising (and not
visualising) quantum phenomena by ‘combined use of contrasting pictures’[28].

Given that a completely causal account of quantum mechanics turns out to be so conflicting
with the basic principles of the theory, what can be offered as a replacement for classical causal
reasoning? If we can easily recognise some idiosyncrasies, finding the conceptual framework that
allows a complete diagnosis is more complicated. We need to broaden the conceptual toolbox; one
possibility is to find a direct generalisation of classical causal models, replace the deterministic
functional relations between classical relata with a quantum generalisation thereof and hope that
the classical limit reflects our current understanding of causality [86, 46, 17]. Another perspective,
which is the one we endorse in this work, is to consider quantum processes to be a mathematical
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synthesis of observations, inextricably interconnected with the classical contexts determined by the
experimental parameters. The critical point to notice is that, although quantum contextuality rules
out the possibility of a simple generalised explanation that works for all contexts, it does not rule out
a collection of functional explanations, each one working for a single context. The impossibility of
coalescing the classical perspectives showcases the failure of a global functional—and thus causal
in the classical sense—description. This second alternative, which is the generalisation that Bohr
vehemently proposes in [27], can be characterised by the appropriation of the notion of ‘causality’ by
the more general ‘complementarity’: causes and effect can be connected across contexts in a way
which requires to transcend deterministic functional connections.

In this novel situation, even the old question of an ultimate determinacy of natural
phenomena has lost its conceptional basis, and it is against this background that the
viewpoint of complementarity presents itself as a rational generalisation of the very ideal
of causality. [27]

The two directions for generalising causal reasoning are radically different, but this is not to say
that they cannot coexist; they use different language and have different levels of dependency on the
structure of the theory. While an understanding of a quantum notion of causality is conservative
insofar as it hopes to preserve certain elements characterising classical causal reasoning while
dealing with explicitly quantum processes, our perspective continues to look at a protocol with
external ‘classical’ eyes relaxing the desideratum of underlying functional explanations. The apparent
compatibility, however, hides a lot of philosophical nuances. A successful quantum generalisation of
causality would be a powerful argument for anyone who understands unitary processes as ontic, as
pertaining to the ‘real stuff’ that connects causes with effects; our approach can be seen as leaning
towards a more agnostic perspective in which unitary transformations and quantum states are at the
very least symbolic devices unifying classical perspectives. Any specific philosophical commitment
from our side is far from being a necessity; the type of causal discovery described in this work
can uncontroversially be used for the practical study of protocols independently of any ontological
commitment.

The synthesis of empirical data into the theory of Hilbert spaces and unitary transformations
presupposes the existence of some more fundamental rules of coordination. The classical notion
of causality, undressed by her all-encompassing aura, will always be necessary for quantum theory
as it underlies the classical description of experimental arrangements. A classical, and therefore
causal, understanding will only constitute one of the possible complementary descriptions; the theory
exhibits its fundamentally non-classical or ‘fine tuned’ correlations, precisely coalescing them into a
single process parametrised by the classical settings identifying the contexts. Bohr’s suggestion to
supersede causality always recognised a privileged role for classical structures. Complementarity is
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only a ‘wider frame’ that ‘directly expresses [. . . ] the account of fundamental properties of matter
presupposed in the classical physical description, but outside its scope’ [27]. The description of the
measurement devices ‘must always be based on spacetime pictures’, distinctly from the object under
investigation, for which ‘observable predictions can in general only be derived by the non-visualizable
mechanism’ [27] and a causal account is unavoidable as is unavoidable the description of the
parameters of measurement devices:

It is essential to note that, in any well-defined application of quantum mechanics, it is
necessary to specify the whole experimental arrangement and that, in particular, the
possibility of disposing of the parameters defining the quantum mechanical problem
just corresponds to our freedom of constructing and handling the measuring apparatus,
which in turn means the freedom to choose between different complementary type of
phenomena to study. [27]

How does this fit in our narrative? In a nutshell, we aim to create a mathematical framework to
understand spacetime processes where complementary choices of parameter settings are allowed
to causally influence distributions at other events. The ‘new uniformities’ exposed by the quantum
theory are to be found in the interplay between the alternative ‘classical snapshots’ specified by the
joint local choices of settings, described as a table of conditional probabilities, which we refer to
as empirical models. Even though compatible with a relativistic notion of no-signalling from the
future, a collection of assignments for a family of contexts may nevertheless show a degree of global
incoherence —witnessing the impossibility of an underlying causal and classical description— which
is nevertheless realisable by quantum instruments.

We propose a general language that can be used to understand contextual phenomena under
complex causal assumptions and, at the same time, understand the consequences of quantum causality
from the perspective of contextuality. The reconciliation of ‘causality’ and ‘contextuality’ allows
us to understand what type of causal inferences can be abstracted from observable distributions of
outcomes. The causal relata will be the data which describe a complete classical context, and the
quantum mechanical ‘regularities of nature’ are to be captured within the probabilistic description of
the outputs conditioned by a given context. In some instances, the table of conditional probabilities
will be explainable by classical causal mechanisms; we will call such protocols ‘local’ or ‘classical’.
In other, the regularities of nature will express themselves by exhibiting contextuality or nonlocality,
and the connection between the events may require other principles of explanation.

Methodologically, the work in this thesis can be seen as a dialogue between the principles of
compositionality and decompositionality, the first referring to the possibility of synthesis: deriving
behaviours from some constitutive elements. The second one of a more analytical flavour: under-
standing structural properties intrinsic in the data. Categorical probabilistic theories (CPTs) [66]
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will provide the glue between these two notions. A categorical probabilistic theory (CPT) is a
mathematical description of processes that makes explicit the classical data used to describe some
interaction. Given a CPT, we can construct processes with various causal structures by composing
these constitutive elements sequentially and in parallel. When all the inputs and the outputs of a
diagram are solely constituted of ‘classical systems’, we obtain the probability of outcomes for some
measurements conditioned on the classical inputs. The decompositional part will be studied through
the lenses of the sheaf-theoretic approach to contextuality: a framework developed by Abramsky
and Brandenburger in [6] which fits into the broader research program of applying categorical
methods to the study of quantum foundations. The sheaf-theoretic approach has been used very
successfully to understand the meaning of local and global assignment of classical data that would
explain no-signalling protocols; we will show that this use of the sheaf-theoretic machinery is a
special case of a more general theory which includes the possibility of signalling.

1.2 Summary of this work

Chapter 1 introduces the theoretical background relevant to the rest of the thesis. We introduce
categorical probabilistic theories by accompanying the reader through the main conceptual ideas
underlying categorical quantum mechanics. After that, we also briefly and comprehensively introduce
the sheaf-theoretic approach to contextuality and non-locality, which is essential for understanding
the sheaf theoretically flavoured Chapter 4 and Chapter 5. We give a combinatorial account of causal
orders, which will be greatly generalised in Chapter 3. The rest of the chapter is devoted to an
extensive review of the literature that has inspired this dissertation.

Chapter 2 is mainly based on the paper ‘Giving Operational Meaning to the Superposition of
Causal Orders’ [107] and other unpublished notes. In this chapter, we discuss the notion of coherent
control of casual orders and the problems arising from general descriptions of the quantum control of
arbitrary families of channels. We show that —in contrast with the control for arbitrary channels—
controlling casual orders is a well-defined notion and provide a procedure to construct circuits
between arbitrary laboratories expressing ‘indefinite causality’. Chapter 2 aims to assert that a theory
of processes where the causal order is coherently or incoherently controlled can be constructed from
the standard circuital description of quantum processes and that this construction exhibits a degree of
canonicity not usually found in the control of arbitrary families of channels. In particular, we use this
framework to construct examples and protocols that are then analysed from a causal perspective in
Chapter 6, without relying on the computationally inefficient and unnecessarily general description
given by process matrices.

Chapter 3 is based on ‘The Combinatorics of Causality’ [63] and introduces the main combinatorial
object describing causal assumptions, spaces of input histories. They provide a generalisation of
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standard causal orders explicitly accounting for causal interventions at each node. These spaces
form a hierarchy of causal assumptions which generalises the lattice of causal orders introducing
the possibility for the inputs to have an explicit influence on the causal structure. Once the general
theory describing the spaces is established, we study their properties and show that not all spaces
of histories correspond to a causally complete scenario, i.e. scenarios where there is no ambiguity
about the causal unwrapping of the histories. In a causally complete space, every history represents a
sequence of timelike choices and is univocally associated with a compatible causal ordering of its
underlying events; this fails with more general causally incomplete spaces. We characterise non-tight

spaces of histories, cases in which there is an overabundance of possible causal unwrapping, and
which describe the conjunction of different assumptions about the causal order between events. We
conclude the section by characterising the classes of causally complete spaces on two and three events
with binary inputs.

Chapter 4 is based on ‘The Topology of Causality’ [65] and is devoted to using the sheaf-theoretic
language to describe the compatible empirical models. We equip every space of causal histories with
a suitable topology describing the hierarchy of contexts induced by the mutual interaction of timelike
histories. We provide a description of empirical models as a bundle of compatible data. We explain
the importance of the open covers of these topological spaces and explicitly discuss the importance
of different covers associated with a space, among which are the ‘classical cover’, ‘the standard cover’
and the ‘solipsistic cover’. We discuss how the standard notion of locality and contextuality are
phrased in our language and provide a general definition of empirical models obtained by fixing a
space of input histories and an open cover for its topology.

In Chapter 5, we explore the geometric picture that emerges by assigning compatible families
of distributions to open covers and introduce the notion of a causaltope. This chapter is based on
‘The Geometry of Causality’ [64]. We describe causaltopes as polytopes for conditional probability
distributions constrained by equations synthesised from the orders between the contexts. The
connection between the description of the causaltopes and the empirical models defined in Chapter 4
is made rigorous by constructing a convex linear isomorphism between the causaltope defined for a
given space and cover and the space of empirical models on that cover. We define causal separability
and inseparability over the causal completions of a given space, providing a more fine-grained notion
of what is represented by causal separability in the literature about causal inequalities.

In Chapter 6, based on the last part of [64], we provide several examples of standard empirical
models, computing the causal fractions supported by sub-spaces of interest. Through a sequence
of novel examples based on quantum switches and entangled states, we prove the existence of
‘contextual causality’, connecting non-locality—the impossibility of classically explaining outputs at
events—with causal inseparability—the impossibility of explaining causal structure between events.
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1.3 Background

1.3.1 Categorical Probabilistic Theories

1.3.1.1 Symmetric Monoidal Categories

Category theory can be used to provide a mathematically rigorous description of process theories, the
backbone of the operational approaches to physics. The formalisation of general theories of processes
is based on the monoidal paradigm, according to which processes can be composed sequentially

and in parallel, respectively representing timelike and spacelike connections. This section aims
to introduce categories to a practicing quantum foundationalist by following a slightly different
narrative, one that explains symmetric monoidal categories by focusing on how they interlace with
relativistic causality. We want to convey the idea that general categories can be used to axiomatise
the algebra of processes under various spatio-temporal assumptions: from a ‘Newtonian spacetime’
with totally ordered events to the algebra of processes living in a Minkowski spacetime. For detailed
explanations of the relationship between causality and monoidal categories, we invite the reader to
consult [80, 44, 43].

We start by describing the ingredients that characterise a process theory 𝐶, starting with systems:
entities that evoke the properties of a portion of the universe that we care about and are used to
coalesce the possible manipulations and observations that can be made about them. We fix a set of
symbols obj 𝐶 1 which identify the general types of systems inhabiting our theory. The elements of
this set constitute the objects of our process theory. The importance of an explicit description of
objects is relative, fundamental to the process-theoretical or categorical approach is the understanding
that the relevant properties should be instead inferred from the structure of the possible interactions
and transformations between systems. So, what are the essential ingredients that allow us to speak
about processes with a spatio-temporal connotation in the first place? First, we assume that there exists
for every object a canonical evolution which identifies their geneidentity, operationally embodying
the properties which define the object, which can be (at least in principle) considered stable in ‘time’.
We call these special transformations identity transformations, they are inextricably interconnected
with the notion of the object itself. A world where objects can be witnessed only by their potential
immutability in time would not be particularly exciting: to allow for the possibility of change, we say
that given objects 𝐴, 𝐵 ∈ obj 𝐶 there exists a set of transformations, of morphisms which we denote
by 𝐶 (𝐴, 𝐵).

Given two morphism 𝑓 ∈ 𝐶 (𝐴, 𝐵) and 𝑔 ∈ 𝐶 (𝐵,𝐶) the theory must provide a way to compose
the two evolutions; we define an abstract function − ◦ − : 𝐶 (𝐵,𝐶) × 𝐶 (𝐴, 𝐵) → 𝐶 (𝐴,𝐶) called
the composition of morphisms which describes the concatenation of processes. We require this
concatenation to be associative so that 𝑓 ◦ (𝑔 ◦ ℎ) = ( 𝑓 ◦ 𝑔) ◦ ℎ. We know that the sets 𝐶 (𝐴, 𝐴)

1the word ‘symbol’ tries to convey the objects’ abstract nature freeing them from any ontological bias

7



cannot be empty as it contains at least the canonical identity transformation. This map interacts
trivially with any other morphism, in particular we say that if 𝑓 ∈ 𝐶 (𝐴, 𝐴) we have that 𝑖𝑑𝐴 ◦ 𝑓 = 𝑓

and 𝑓 ◦ 𝑖𝑑𝐴 = 𝑓 .
The most general theory for which we are only guaranteed the associativity of composition is

formalised by the notion of a category [53], first proposed by Samuel Eilenberg and Sounders Mac
Lane to formalise the notion of ‘natural equivalence’ of mathematical structures.

Definition 1.1 (Category). A category A consists of:

1. a collection of objects objA;

2. for each 𝐴, 𝐵 ∈ objA, a collection A(𝐴, 𝐵) of arrows or morphisms from 𝐴 to 𝐵;

3. for each 𝐴, 𝐵, 𝐶 ∈ objA, a function

A(𝐵,𝐶) × A(𝐴, 𝐵) → A(𝐴,𝐶) (1.1)

(𝑔, 𝑓 ) ↦→ 𝑔 ◦ 𝑓 (1.2)

called composition;

4. for each 𝐴 ∈ objA, an element 1𝐴 of A(𝐴, 𝐴), called the identity on 𝐴,

satisfying the following axioms:

1. associativity: for each 𝑓 ∈ A(𝐴, 𝐵), 𝑔 ∈ A(𝐵,𝐶) and ℎ ∈ A(𝐶, 𝐷) we have

(ℎ ◦ 𝑔) ◦ 𝑓 = ℎ ◦ (𝑔 ◦ 𝑓 ); (1.3)

2. identity laws: for each 𝑓 ∈ A(𝐴, 𝐵), we have 𝑓 ◦ 1𝐴 = 𝑓 = 1𝐵 ◦ 𝑓 .

Example 1.2 (Examples of common categories). Categories are very general; with no additional

structure, they can look like anything resembling physical processes. Here are some commonly found

examples:

• Let S be a set of sets, we can consider the category SetS for which objects are given by the

elements of S and the morphisms SetS (𝑈,𝑉) are given by the functions𝑈 → 𝑉 .

• We can construct the category RelS with the same objects as SetS but where the morphisms

RelS (𝑈,𝑉) are given by relations. Given 𝑅 : 𝑈 → 𝑉,𝑇 : 𝑉 → 𝑊 we can define the

composition 𝑇 ◦ 𝑅 such that:

𝑥(𝑇 ◦ 𝑅)𝑦 ⇐⇒ ∃𝑧 ∈ 𝑉 s.t. 𝑥𝑇𝑧 and 𝑧𝑅𝑟
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• The category fHilb of finite dimensional Hilbert spaces where morphisms fHilb(𝐻, 𝐾) are

given by linear maps of the type 𝐻 → 𝐾 .

• For a commutative semiring 𝑅, the category 𝑅 -Mat has the positive integers𝑚, 𝑛, . . . as objects

and the morphisms 𝑅 -Mat(𝑚, 𝑛) are given by the 𝑚 × 𝑛 𝑅-valued matrices. The composition

is given by matrix multiplication.

• Let 𝑉 be a poset, the 𝑉 is a category where the objects are given by the element of 𝑉

and 𝑉 (𝜔, 𝜔′) = {(𝜔, 𝜔′)} where (𝜔, 𝜔′) is the ordered pair for which 𝜔 ≤ 𝜔′ otherwise

𝑉 (𝜔, 𝜔′) = ∅. The existence of a (unique) function composing the morphisms is guaranteed

the transitivity of the order relation.

The class of all (small) categories forms a category itself, the morphisms between categories are
transformations mapping objects to objects and morphisms to morphisms that preserve the essential
structure of a category provided in Definition 1.1, we call such morphisms functors.

Definition 1.3. A functor 𝐹 from a category A to a category B consists of

1. a mapping

objA → objB

the image of 𝐴 ∈ A will be denoted 𝐹𝐴.

2. for every pair of objects 𝐴, 𝐴′ of A, a mapping

A(𝐴, 𝐴′) → B(𝐹𝐴, 𝐹𝐴)

subject to the following axioms:

1. For every pair of morphisms 𝑓 ∈ A(𝐴, 𝐴′), 𝑔 ∈ A(𝐴′, 𝐴′′)

𝐹 (𝑔 ◦ 𝑓 ) = 𝐹 (𝑔) ◦ 𝐹 ( 𝑓 );

2. for every object 𝐴 ∈ A
𝐹 (1𝐴) = 1𝐹𝐴

For the purpose of this thesis, we will use the terms morphisms and processes interchangeably.
Definition 1.1 only requires a well-defined sequential composition and the existence of a special
identity morphism. We can graphically depict any category by using boxes to denote morphisms and
wires for the identities (with the direction of composition flowing from the bottom to the top of the
page). The most general graphical algebra of boxes for a category is not particularly interesting as we
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are only guaranteed to be able to compose processes sequentially. For example, we can pre-compose
and post-compose a process with the identity:

𝑎

=

𝑎

𝑎 = (1.4)

or compose three processes together:

𝑎

𝑏

𝑐

(1.5)

We see that associativity and the properties of identities are absorbed by the topology of the diagrams.
At this level of generality, there is no meaning to the notion of parallel interactions of systems. The
axioms of a category, when interpreted as a theory of processes, would represent a ‘universe’ where
we can identify a univocal notion of ‘time foliation’, and for which the possibility of carving out
subsystems is fundamentally limited. It is holistic and totally time-ordered. To say that a mathematical
structure faithfully represents the possibility of juxtaposing parallel processes, we would at least need
to adopt the machinery of a pre-monoidal category that we are about to describe.

Any notion of disjointness between systems will require that morphisms acting on one of the two
parts can cohabit with the identity of the other ‘part’ so that there is a meaning to describing processes
graphically as follows, passing from a one-dimensional to a two-dimensional denotation of processes:

𝑎 (1.6)

Even though the ability to freely construct such morphisms may seem intuitive, introducing them
formally in the framework of categories comes with some subtleties. First we associate to every
ordered pair (𝐴, 𝐵) ∈ objA × objA an object called 𝐴 ⊗ 𝐵, the whole which includes both parts.
We are then required to describe additional morphisms obtained by the actions of the functors 𝐴 o −
and − o 𝐴 on a general 𝑓 ∈ 𝐶 (𝐴, 𝐵), which corresponds to the juxtaposition of the identity:

𝐴′ o 𝑓 : 𝐴′ ⊗ 𝐴→ 𝐴′ ⊗ 𝐵 (1.7)

𝑓 (1.8)
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𝑓 o 𝐴 : 𝐴 ⊗ 𝐴′→ 𝐵 ⊗ 𝐴′ (1.9)

𝑓 (1.10)

In this minimal setting, any morphism can be ‘trivially extended’ to encompass parts of the
environment. The functoriality requirement guarantees that ( 𝑓 ◦ 𝑔) o 𝐴 = ( 𝑓 o 𝐴) ◦ (𝑔 o 𝐴), so
that juxtaposing the identity wire is always compatible with composition. A category equipped
with the two endofunctors (a functor mapping a category to itself) 𝑓 o 𝐴 and 𝐴 o 𝑓 for any object
𝐴 is a binoidal category [114]. In a binoidal category, therefore, there is still no general meaning
to the construction of simultaneous evolution from the description of two individual independent
transformations. However, there might exist individual processes for which ‘simultaneity’ becomes
meaningful:

Definition 1.4 (Central morphism). In a binoidal category A, a morphism 𝑓 : 𝐴 → 𝐵 is central

when for every 𝑔 : 𝐴′→ 𝐵′ one has that the following diagrams are equal

𝑓

𝑔

=

𝑓

𝑔 𝑔

𝑓

=

𝑔

𝑓

(1.11)

In this case, we denote the equal morphisms on the left by 𝑓 ⊗ 𝑔 and the equal morphisms on the
right 𝑔 ⊗ 𝑓 and we recover a notion of parallel composition of 𝑓 and 𝑔. To define a premonoidal

category one only needs to add the following ingredients to a binoidal category:

1. an empty diagram, i.e. a special object 𝐼 representing the environment, with identity 1𝐼 : 𝐼 → 𝐼

graphically denoted as the empty diagram

(1.12)

Morphisms from and into the empty diagram are called states 𝐼 → 𝐴 and effects 𝐴 → 𝐼

respectively and are usually denoted as

𝜙
𝜙 (1.13)

2. for each triple of objects (𝐴, 𝐵, 𝐶), a central isomorphism 𝛼𝐴,𝐵,𝐶 : (𝐴⊗𝐵) ⊗𝐶 → 𝐴⊗ (𝐵⊗𝐶)
which has the role of unambiguously define products of type 𝐴 ⊗ 𝐵 ⊗ 𝐶 without worrying
about bracketing.
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3. for each object 𝐴, two central isomorphisms 𝜆𝐴 : 𝐴 ⊗ 𝐼 → 𝐴 and 𝜌𝐴 : 𝐼 ⊗ 𝐴→ 𝐴.

Additionally, we require the following pentagonal diagram to commute:

𝑥 ⊗ (𝑦 ⊗ (𝑧 ⊗ 𝑤)) (𝑥 ⊗ 𝑦) ⊗ (𝑧 ⊗ 𝑤) ((𝑥 ⊗ 𝑦) ⊗ 𝑧) ⊗ 𝑤

𝑥 ⊗ ((𝑦 ⊗ 𝑧) ⊗ 𝑤) (𝑥 ⊗ (𝑦 ⊗ 𝑧)) ⊗ 𝑤

𝛼𝑥,𝑦,𝑧⊗𝑤

1𝑎⊗𝛼𝑦,𝑧,𝑤

𝛼𝑥⊗𝑦,𝑧,𝑤

𝛼𝑥,𝑦⊗𝑧,𝑤

𝛼𝑎,𝑏,𝑐⊗1𝑑 (1.14)

and the so-called triangle law specifying that 𝛼 interacts as expected with 𝜆 and 𝜌.

(𝑥 ⊗ 1) ⊗ 𝑦 𝑥 ⊗ (1 ⊗ 𝑦)

𝑥 ⊗ 𝑦

𝛼𝑥,1,𝑦

𝜌𝑥 ⊗1𝑦 𝜋𝐵 (1.15)

Those properties can be taken to describe the fundamental axioms of a process theory. The pentagon
and the triangle equations make sure that the structural morphisms introducing the notion of an empty
diagram/trivial system and the introduction of ‘spacelike’ associativity (similarly to the timelike
counterpart, which is essential in the definition of a category) are well behaved. This means that we
can interpret morphisms in a premonoidal category as foliated diagrams where 𝛼, 𝜌 and 𝜆 and the
associated coherency laws are absorbed by the topology of the diagram.

Observation 1.4. The central morphisms 𝑍 (C) of a premonoidal category C form a category.

Definition 1.5 (Monoidal Category). We say that C is monoidal precisely when C coincides with its

centre 𝑍 (C).

A monoidal category is a premonoidal category where boxes are always allowed to slide past
each other in the sense of Proposition 1.4.

In monoidal categories, there is no guarantee that 𝐴 ⊗ 𝐵 and 𝐵 ⊗ 𝐴 are equal or even isomorphic.
There is, therefore, a spacial asymmetry in the definition of joint systems which, for many applications,
results redundant. For this reason, SMCs or symmetric monoidal categories are equipped with an
additional natural isomorphism denoted

𝐴 𝐵

𝐵 𝐴
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naturality can be described graphically by allowing the boxes to slide through the braid:

𝐶 𝐷

𝐵 𝐴

𝑓 𝑔

=

𝐵 𝐴

𝐶 𝐷

𝑔 𝑓

Definition 1.6 (Symmetric Monoidal Category). A symmetric monoidal category is a monoidal

category equipped with a natural family of isomorphisms 𝐵𝑥,𝑦 : 𝑥 ⊗ 𝑦 → 𝑦 ⊗ 𝑥 such that

𝐵𝑥,𝑦 = 𝐵
−1
𝑦,𝑥

so that we can disentangle the double application of the braid:

𝐴 𝐵

𝐴 𝐵

=

𝐴 𝐵

𝐴 𝐵

Typically the categorical operational approaches to quantum processes make use of symmetric
monoidal categories: systems are associated with Hilbert spaces, and non-interacting tensor factors
evolve independently. A notable exception is the use of premonoidal categories by Richard Blute and
Marc Comeau [24] with the aim of abstracting categorical quantum mechanics a la Abramsky and
Coecke [7] to include relativistic effects in the style of Algebraic Quantum Field Theory (AQFT).
In the field theoretic description, the algebras of operators associated with 𝑈 and 𝑉 will commute
only if𝑈 and 𝑉 are spacelike separated regions. More recently, and also in the context of modelling
spacetime, premonoidal categories have been used by Hefford and Kissinger in [73] to construct a
category of spacetime regions and future-directed causal curves.

The treatment of physical processes using quantum circuits or SMCs is based on the assumption
that we can always carve out different copies of a physical system which evolve independently. For a
study of how an operational theory (a partial SMC) arises by carving out subsystems from global
symmetries, we direct the reader to [60].

Example 1.7 (Symmetric monoidal categories). Symmetric monoidal categories are a very ubiquitous

and general object. We now provide a couple of paradigmatic examples which are used in the context

of categorical quantum mechanics:

1. The category Set is a monoidal category where the monoidal product is given by the cartesian

product of sets 𝐴 × 𝐵 and the tensor unit is given by the singleton set. The parallel composition

13



of morphisms 𝑓 : 𝐴→ 𝐵, 𝑔 : 𝐶 → 𝐷 is defined as:

( 𝑓 × 𝑔) (𝑥, 𝑦) = ( 𝑓 (𝑥), 𝑔(𝑥))

where (𝑥, 𝑦) ∈ 𝐴×𝐶 and ( 𝑓 (𝑥), 𝑔(𝑥)) ∈ 𝐵×𝐷. The associator 𝛼𝐴,𝐵,𝐶 is given by the function

(𝑎, (𝑏, 𝑐)) ∈ 𝐴 × (𝐵 × 𝐶) ↦→ ((𝑎, 𝑏), 𝑐) ∈ (𝐴 × 𝐵) × 𝐶

The left and right unitors 𝜆𝐴 and 𝜌𝐴 are given by:

𝜌𝐴 [(𝑎, ∗) ∈ 𝐴 ⊗ {∗}] ↦→ 𝑎 ∈ 𝐴

and

𝜆𝐴 [(∗, 𝑎) ∈ {∗} ⊗ 𝐴] ↦→ 𝑎 ∈ 𝐴

2. The category 𝑅 -Mat is a monoidal category, where objects are given by 𝑅𝑛, and morphisms

𝑅 -Mat(𝑅𝑛, 𝑅𝑚) are given by 𝑛 × 𝑚 matrices with entries in 𝑅. The product of matrices gives

the sequential composition of morphisms. The tensor product is given by the Kronecker product

⊗. For 𝑅 = C we recover a category equivalent to fHilb, the category of finite dimensional

Hilbert spaces. The tensor unit is given by underlying semiring 𝑅

3. Finite probability distributions and stochastic maps form a category used to model non-

deterministic processes. The objects are given by finite sets, and fStoch(𝑈,𝑉) are given by

matrices𝑈 ×𝑉 values in R+ such that each column sums to 1. The usual Kronecker product of

matrices gives the tensor product. A state 𝑝 : {∗} → 𝐴 is a probability distribution over 𝐴.

1.3.1.2 Axiomatising Quantum-classical Interaction

The spirit of categorical quantum mechanics is to show that much of the logic inherent in the
interaction of quantum processes can be recast as abstract structural properties related to their
spacelike and timelike composition. The focus is usually on categorical axiomatisation rather than
specific models. This notwithstanding, several categories appear in the study of categorical quantum
theory; some reflect different treatments of classical systems. The category fHilb of finite dimensional
Hilbert spaces and linear maps (introduced in the context of finite dimensional quantum theory in the
seminal [7, 8]) is prototypical but does not possess a typing structure which is expressive enough
to deal explicitly with classical systems. To do so, one must pass to a category where the objects
are mixed states and evolutions given by general quantum channels. Selinger developed a formal
categorical bridge between a theory describing the evolution of pure systems and the introduction of
mixtures by introducing the abstract CPM construction [129].

Applying the CPM construction to the category of Hilbert spaces gives us CPM[fHilb], where
the objects are Hilbert spaces and the morphisms are given by completely positive maps of the
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form 𝑓 : 𝐴∗ ⊗ 𝐴→ 𝐵∗ ⊗ 𝐵. A step towards introducing classicality, but an explicit introduction of
classical systems is still missing. Classical systems can be recovered through the CP∗ []-construction
described by Coecke, Heunen and Kissinger in [42]. Applying the CP∗ []-construction to fHilb gives
CP∗ [fHilb], the category of 𝐶∗-algebra and completely positive maps. Both CPM[fHilb] and fStoch
embed fully and faithfully in CP∗ [fHilb].

In the 𝐶𝑃∗-construction, the focus is on describing quantum observable and classical systems in
an elegant algebraic way, but an explicit axiomatisation of the quantum-classical interface is still
missing. Referring to this interface is notably important in formulating operational probabilistic

theories (OPT), introduced by [38, 47]. In OPTs, the probabilistic structure is explicitly axiomatised,
but classical systems are not treated compositionally as part of the theory. The formulation of
probabilistic theories by Gogioso and Scandolo [66] merges the compositional treatment of classical
systems with the explicit axiomatisation of probabilistic structure from OPTs.

Definition 1.8. A probabilistic theory is a (strict) symmetric monoidal category (SMC) C which

satisfies the following requirements:

• there is a full sub-SMC of C, denoted by C𝐾 , which is equivalent to the SMC R+ -Mat modelling

classical theory (itself a probabilistic theory);

• the SMC C is enriched in commutative monoids, and the induced enrichment on C𝐾 coincides

with the one given by the linear structure of R+ -Mat;

• the SMC C comes with an environment structure, i.e. with a family of effects >𝐴 : 𝐴 → 𝐼

which satisfy the following requirements:

H ⊗ K H K

=

𝐼

= (1.16)

The environment structure induced on C𝐾 coincides with the one given by marginalisation in

R+ -Mat. Marginalisation is here understood as the linear map sending a row vector to the

sum of its coordinate components, i.e the column vector with unit entries:

(
𝑎0 𝑎1 . . . 𝑎𝑛

) ©­­­­«
1
1
...

1

ª®®®®¬
=

𝑛∑︁
𝑖=0

𝑎𝑖

The requirements above imply that processes 𝐴→ 𝐵 in C have the structure of a convex cone, i.e.

they are R+-modules. The effects >𝐴 : 𝐴 → 𝐼 are known as discarding maps. The systems in the

full sub-category C𝐾 are known as classical systems and the processes between them as classical
processes.
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The probabilistic theory most relevant to this work is quantum theory, defined by taking completely
positive maps together with classical theory and introducing the quantum-classical interface by
linearity from families of quantum processes (cf. resolution of the classical identity below).

From a diagrammatic perspective, dashed wires are used to denote systems which are guaranteed
to be classical, while solid wires denote generic systems. It is convenient to assume the following
general form for processes in probabilistic theories, with distinguished classical input and output
systems (finite sets 𝑋 and 𝑌 respectively):

𝑓

𝐴 𝑋

𝐵 𝑌

(1.17)

The linear structure of R+ -Mat can be used to perform resolutions of the classical identity explicitly:

𝑋

𝑋

=
∑
𝑥∈𝑋

𝑋

𝑥

𝑥

𝑋

(1.18)

The resolution of the classical identity can be used to equate the following two perspectives,
establishing a direct link to the OPT formalism and the empirical models described in [6]:

• processes 𝐹 : 𝐴 ⊗ 𝑋 → 𝐵 ⊗ 𝑌 , with 𝑋 and 𝑌 classical systems (i.e. finite sets);

• families 𝐹 (𝑦 |𝑥) : 𝐴→ 𝐵 of processes indexed by the classical values 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌 .

The discarding maps axiomatise the notion of marginalisation (aka partial trace in the context of
quantum systems). They can also be used to define a sub-SMC of normalised processes:

Definition 1.9. A process 𝑓 : 𝐴→ 𝐵 is said to be normalised if it satisfies the following equation:

𝑓 = (1.19)

A process 𝑓 : 𝐴→ 𝐵 is said to be sub-normalised if there exists some 𝑔 : 𝐴→ 𝐵 such that 𝑓 + 𝑔 is

normalised (in which case 𝑔 is also sub-normalised).

In particular, the normalised states on a classical system 𝑋 are the probability distributions on 𝑋 , the
normalised processes 𝑋 → 𝑌 are the 𝑌 -by-𝑋 stochastic matrices, and discarding on a classical output
of a classical process is the same as marginalisation.
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The axiomatisation of causality as ‘no-signalling from the future’ [47] is embodied in probabilistic
theories by the following observation about normalised processes:

𝑔

𝑓

=

𝑓

(1.20)

In the above, we see that the classical outcome of a test 𝑓 cannot be influenced by a controlled process
𝑔 in its future (i.e. it is independent of the classical input used to control 𝑔).

The framework also adopts a notion of purity, defined as the lack of non-trivial interaction with a
discarded environment.

Definition 1.10. A process 𝑔 : 𝐴→ 𝐵 is said to be pure if whenever we can find a system 𝐸 and a

process 𝑓 : 𝐴→ 𝐸 ⊗ 𝐵 such that the following equality holds:

𝑓

𝐴

𝐵

= 𝑔

𝐵

𝐴

Then there exists a normalised state 𝜓 : 𝐼 → 𝐸 , dependent on 𝑓 , such that the following equality also

holds:

𝑓

𝐸

𝐴

𝐵

= 𝑔𝜓

𝐸 𝐵

𝐴

Note that neither 𝑔 nor 𝑓 are required to be normalised as part of this definition.

In quantum theory, a process is pure and normalised if and only if it is an isometry. Finally,
we recall the definition of a sharp preparation-observation pair, capturing the idea of perfect
encoding/decoding of classical information in arbitrary systems.

Definition 1.11. A sharp preparation-observation pair (SPO pair) is a pair (𝑝, 𝑚) of a preparation
process 𝑝 : 𝑋 → 𝐻 and an observation process 𝑚 : 𝐻 → 𝑋 on some classical system 𝑋 and some
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arbitrary system 𝐻, such that the following equation holds:

𝑝

𝑚

𝑋

𝑋

=

𝑋

𝑋

(1.21)

If (𝑝, 𝑚) is a sharp preparation-observation pair, we can construct its associated decoherence map:

:= (1.22)

where the symbols:

(1.23)

are respectively used to denote the preparation and measurement process.

1.3.2 Introduction to the Sheaf Theoretic approach

1.3.2.1 Theoretical Minimum

The sheaf theoretic approach describes contextuality as the impossibility of finding a global assignment
of values that accounts for observed conditional distributions. Putting aside (for now) the mathematical
formalism that lies at its core, the sheaf theoretic formalism can be intuitively introduced by using
bundle diagrams [4] which on their own give a particularly intuitive and insightful account of the
logical structure of contextuality. In this section, we briefly introduce the framework developed in [6]
starting by building an intuition using bundle diagrams and then introducing the relevant rigorous
and general description. Understanding the formalism will be important to grasp the content of
this dissertation. The initial aim of the theory developed in [6] was to build a conceptual bridge
between causality and contextuality, and we will show that this bridge can be extended to a complete
unification with causality.

The analysis of the importance of measurement contexts has been ignited by the celebrated EPR
article [54], which claimed that it is possible to measure two complementary observables on an
entangled pair of particles and, by doing so, violate the theoretical impossibility of assigning definite
values to conjugate observables. The reply by Bohr exposed, for the first time, the importance of
measurements contexts. The EPR result does not witness the incompleteness of the newly born theory
but reveals a much deeper aspect of its connection with the observable reality. Specifically, Bohr
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believed that ‘the procedure of measurements has an essential influence on the conditions on which
the very definition of the physical quantities’ [25] so that we can assign elements of ‘physical reality’
only conditioned on the global contexts in which they emerge. Believing that an observable can have
a well-defined value for contexts in which its measurement excluded a priori leads to incongruence.
It is believing that both a value for the momentum and the position of a particle is allowed to exist
independently of the context of their realisation that exposes this fallacy. The EPR article is not yet
exposing non-locality or contextuality, which strengthens the logical dependence on contexts and
will require decades of maturity to be appropriately understood, but it already showcases one of its
fundamental ingredients.

Consider the stereotypical quantum scenario where Alice and Bob are two spacelike separated
agents, each one with a binary choice of local measurements. The measurements {𝑎0, 𝑎1} are assigned
to Alice, and similarly {𝑏0, 𝑏1} is the set of choices for Bob. The measurements are dichotomic so
that we can—without loss of generality—associate to each the set of outcome values {0, 1}. The
agents perform several rounds of some protocol before meeting up to collect the global measurement
statistics. In each round, one of the four possible contexts {(𝑎0, 𝑏0), (𝑎0, 𝑏1), (𝑎1, 𝑏0), (𝑎1, 𝑏1)} is
jointly selected by both parties.

Suppose that the agents find their outcomes to be perfectly anti-correlated when both of them
choose to perform the measurement 0 and perfectly correlated otherwise, as in Figure 1.1 (p.19).

The first question that we might reasonably ask is whether this empirical behaviour is compatible
with a notion of relativistic causality. Fortunately, it is easy to see, by marginalising the outcomes of
one of the two agents, that the table of conditional probabilities in Figure 1.1 (p.19) does not allow
any type of superluminal signalling. In other words, spacelike separated agents cannot infer what
global context has been selected from local observations.

AB 00 01 10 11
𝑎0𝑏0 0 1/2 1/2 0
𝑎0𝑏1 1/2 0 0 1/2
𝑎1𝑏0 1/2 0 0 1/2
𝑎1𝑏1 1/2 0 0 1/2

Figure 1.1: We can represent the observed empirical correlations using a table of conditional
probabilities. The rows are indexed by the possible contexts, and the columns by the joint outcome
assignments.

Despite its apparent innocuousness and the adherence to the no-signalling principles, the support
of the correlations in Figure 1.1 (p.19) hides an interesting topological structure which makes its
non-classicality glaring. We start by representing the local measurements as points connected with
edges (or hyperedges when the size of a measurement context is greater than two) when they lie in
the same context, i.e. when they can be considered jointly measurable (See Figure 1.2 (p.19)).
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We refer to this description of measurements and the associated contexts as the base of a
bundle diagram. Each measurement 𝑖 ∈ 𝑀 is supplemented with a set 𝑂𝑖 describing the possible
measurement outcomes, this is represented by assigning to each element of the base a stalk of points

as shown in Figure 1.3 (p.20).

• •

••

𝑎0 𝑏0

𝑎1 𝑏1

Figure 1.2: Four measurements 𝑎0, 𝑎1, 𝑏0, 𝑏1 are distributed into contexts denoted by the connecting
edges.

• •

••

𝑏0 𝑎0

𝑎1 𝑏1

0

1

0

1

0

1

0

1

• •

• •

• •

••

Figure 1.3: The base of the bundle diagram represents the measurements grouped by contexts, the
dotted lines denote the stalks, i.e. the sets of possible local outcomes.

The stalks describe the local outcomes. A joint outcome for each context is an edge connecting
two local values, one for each measurement in the context. This is graphically denoted by an edge (or
again a hyperedge for larger contexts) as in Figure 1.4 (p.20)).

• •

••

𝑏0 𝑎0

𝑎1 𝑏1

• •

• •

• •

••0

1

0

1

0

1

0

1

Figure 1.4: Possibilistic structure of the empirical correlations described in Figure 1.1

Starting from the correlations in Figure 1.4 (p.20) and reasoning ‘across the contexts’, with
the underlying assumption that there always exist hidden values for unperformed counterfactual
measurements, leads to a contradiction. If Alice observes 1 after having performed the measurement
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𝑎0, we can draw, based on the knowledge of the possibilistic structure of the conditional probability
table, the following chain of logical implications:

1. 𝑎1 ↦→ 1 implies that 𝑏1 ↦→ 1

2. 𝑏1 ↦→ 1 implies that 𝑎1 ↦→ 1

3. 𝑎1 ↦→ 1 implies that 𝑏0 ↦→ 0

4. 𝑏0 ↦→ 0 implies that 𝑎1 ↦→ 0

These take the form of the path shown in Figure 1.4 (p.20): starting with a given outcome value for a
measurement in a context and traversing the unperformed measurements, we deduce a contradictory
valued for a performed measurement. Notice that in this particular scenario, an analogous argument
can be drawn by starting from the outcome of any other measurement and choice of context.

A deterministic hidden variable is a function which represents a value assignment to all

measurements simultaneously and independently on the context. A mechanism that—conditioned
on the past information common to both measurement sites—assigns a definite joint value to all
the 4 possible measurements. Deterministic hidden variables would look look like surfaces in our
bundle diagram, connecting a single value for every measurement (see Figure 1.5 (p.21)). A table of
conditional probabilities has a realisation in terms of deterministic hidden variable theories exactly
when it can be reproduced by taking a probabilistic mixture of these deterministic assignments. Here
probabilistic mixtures allow for the possibility that the determination of the value is correlated to
some latent variable.

We note that this description of hidden variables assumes that the assignment cannot depend on
the local choice performed to select the context, the deterministic outcome assigned by the hidden
mechanisms is statistically independent of the choice of measurement context.

From the bundle diagram in Figure 1.4 (p.20), it is clear that no joint outcome can occur as a
deterministic assignment of values to all measurements. This particular no-signalling protocol is
known in the literature as the Popescu-Rohrilch box (PR box) [112] and exhibits the strongest possible
version of non-locality.

To give a simple example of correlations which are local—classically realisable—and for which
a hidden variable model exists, we can consider the case where the outcomes are always perfectly
correlated with 00 and 11 occurring with the same probability.

This gives rise to the bundle diagram presented in Figure 1.7 (p.22), which has a simple description
in terms of deterministic hidden variables by assigning to the measurements (𝑎0, 𝑎1, 𝑏0, 𝑏1) the
outcomes (1, 1, 1, 1) or (0, 0, 0, 0) with equal probability.

We have described the way non-locality is intuitively treated in Abramsky and Brandenburger’s
framework. To provide a more formal characterisation, we introduce the language of presheaves and
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𝑎0

𝑎1 𝑏1
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•0
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0
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•
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•
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• •
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𝑎0

𝑎1 𝑏1

0

1

1

0

1

0

1

•

•
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•

• •

•

𝑏0

Figure 1.5: Examples of deterministic assignments of values for all measurements. The picture
on the left represents the assignment (𝑎0, 𝑏0, 𝑎1, 𝑏1) ↦→ (0, 0, 1, 1) and the picture on the right
(𝑎0, 𝑏0, 𝑎1, 𝑏1) ↦→ (1, 1, 1, 1)

AB 00 01 10 11
𝑎0𝑏0 1/2 0 0 1/2
𝑎0𝑏1 1/2 0 0 1/2
𝑎1𝑏0 1/2 0 0 1/2
𝑎1𝑏1 1/2 0 0 1/2

Figure 1.6: The measurements are always correlated independently of the choice of context.

sheaves, of which the usefulness lies in particular in its mathematical generality, a feature that will be
exploited in this thesis to include the discussion about causal structures. The tension between local
and global assignments of values is a recurring phenomenon, and this toolbox provides the perfect
mathematical grammar to describe it.

The first fundamental ingredient is the notion of a presheaf, a (contravariant) set-valued functor:
concrete data assigned to the objects of some category C. Although a presheaf can be described over
arbitrary categories, we are here interested in their application to topological spaces:

Definition 1.12 (Presheaves). Let 𝑋 be a topological space and let T (𝑋) ⊆ P(𝑋) be its collection

of open sets, which we also refer to as contexts. A (set-valued) presheaf 𝑃 on 𝑋 is an association of:

• a set 𝑃(𝑈) to each𝑈 ∈ T (𝑋), specifying the possible values for contextual data on𝑈;

• a restriction 𝑃(𝑈,𝑉) : 𝑃(𝑈) → 𝑃(𝑉) for each open set 𝑈 and each open subset 𝑉 ⊆ 𝑈,

restricting contextual data on𝑈 to corresponding contextual data on 𝑉 .

The restrictions are required to satisfy the following conditions:

1. 𝑃(𝑈,𝑈) = 𝑖𝑑𝑃 (𝑈 ) , i.e. the trivial restriction from𝑈 to𝑈 is the identity on 𝑃(𝑈);

2. 𝑃(𝑉,𝑊) ◦ 𝑃(𝑈,𝑉) = 𝑃(𝑈,𝑊), i.e. restrictions are stable under function composition.

In more categorical terms, a presheaf is a functor

𝐹 : T (𝑋) → Setop (1.24)
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Figure 1.7: Bundle diagram for the conditional distribution in Figure. On the right, we have a choice
of hidden variables realising the perfect correlation.

where the partial order (T (𝑋), ⊆) is seen as a posetal category of opens associated with the topological
space 𝑋 . When the presheaf is clear from the context, we will denote the restriction of contextual
data 𝑎 ∈ 𝑃(𝑈) to some open subsets 𝑉 ⊆ 𝑈 as follows:

𝑎 |𝑉 := 𝑃(𝑈,𝑉) (𝑎)

The two restriction conditions can then be rewritten as follows, for all 𝑎 ∈ 𝑃(𝑈)

(i) 𝑎 |𝑈 = 𝑎 (ii) ( 𝑎 |𝑉 )|𝑊 = 𝑎 |𝑊 (1.25)

We denote a choice of some element assigned to the open sets as follows:

1. given an open set𝑈 ∈ O(𝑋) we call the elements of 𝐹 (𝑈) the sections at𝑈

2. the elements of 𝐹 (𝑋) are the global sections of the presheaf.

A compatible family for a family of objects {𝐶𝑖}𝑖∈𝐼 is then a choice of sections which agrees on
the ‘intersections’:

Definition 1.13 (Compatible Family). Let 𝑋 be a topological space and let 𝑃 be a presheaf on 𝑋 . Let

U ⊆ T (𝑋) be a family of open sets in 𝑋 and let 𝑎 = (𝑎𝑈 )𝑈 ∈U be a family specifying contextual data

on the open sets inU. We say that 𝑎 is a compatible family (for 𝑃) is for every𝑈,𝑈 ′ ∈ U we have:

(𝑎𝑈 ) |𝑈∩𝑈 ′ = (𝑎𝑈 ′) |𝑈∩𝑈 ′ (1.26)

We say that 𝑃 is a separated presheaf if every compatible family has at most one gluing. At most one

element 𝑒 ∈ ∨
𝑈 ∈U 𝑈 such that 𝑒 |𝑈 = 𝑎𝑈 . We say that 𝑃 is a sheaf is every compatible family has

exactly one gluing.

A presheaf can be thought of as an assignment of local data to the open set of a topological space.
We are not a priori requiring the data to be globally consistent, i.e. that pairwise compatible local
sections can always be glued in a consistent way. When consistent gluing is always well defined and
unique, the presheaf forms a sheaf.
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The definition of presheaves would not be complete if we did not explain what it means for
different assignments of data to be isomorphic, i.e. what it means to assign data in an essentially
equivalent way:

Definition 1.14. Let 𝑋 be a topological space and let T (𝑋) ⊆ P(𝑋) be its collection of open sets.

We day that two presheaves 𝑃 and 𝑃′ on 𝑋 are naturally isomorphic, written 𝑃 ' 𝑃′, if there is a

family 𝜙 = (𝜙𝑈 )𝑈 ∈T of bijections 𝜙𝑈 : 𝑃(𝑈) → 𝑃′(𝑈) such that for all inclusions 𝑉 ≤ 𝑈 of open

sets we have:

𝜙𝑉 ◦ 𝑃(𝑈,𝑉) = 𝑃′(𝑈,𝑉) ◦ 𝜙𝑈 (1.27)

The commutation condition can be written more succinctly as follows, for all 𝑎 ∈ 𝑃(𝑈):

𝜙𝑉 ( 𝑎 |𝑉 ) = 𝜙𝑈 (𝑎) |𝑉 (1.28)

If we wish to specify a specific natural isomorphism 𝜙, we can also write 𝜙 : 𝑃 ' 𝑃′.

An implicit assumption in Abramsky and Brandenburger is to endow the set of measurements
𝑋 with the discrete topology. In general, what makes the sheaf theoretic machinery work is the
fact that in an arbitrary topological space 𝑋 , the set of opens T (𝑋) has the structure of a ‘locale’,
which for the specific case of [6] is the locale P(𝑋) of all subsets of 𝑋 ordered by inclusion. The
general definition of sheaves (although not the most general) can be given by replacing the opens of a
topological space with one of these abstract order-theoretic structures:

Definition 1.15. A locale is a partially ordered set (L, ⊆) satisfying the following properties:

1. (L, ≤) has all finite meets, i.e. for all finite 𝐹 ⊆ L there is a
∧
𝐹 ∈ L such that:

• 𝑓 ≥ ∧
𝐹 for all 𝑓 ∈ 𝐹

• 𝑓 ≥ 𝑔 for all 𝑓 ∈ 𝐹 then
∧
𝐹 ≥ 𝑔

2. (L, ≤) has all joins, i.r. for all 𝐹 ⊆ L there is a
∨
𝐹 ∈ L such that:

• 𝑓 ≤ ∨
𝐹 for all 𝑓 ∈ 𝐹

• if 𝑓 ≤ 𝑔 for all 𝑓 ∈ 𝐹 then
∨
𝐹 ≤ 𝑔

satisfying the infinite distributive law:

𝑥 ∨
(∨
𝑖

𝑦𝑖

)
=

∨
𝑖

(𝑥 ∨ 𝑦𝑖)

For a topological space, the axioms for the topology T (𝑋) ⊆ P(𝑋) are equivalent to asking that
(T (𝑋, ⊆) is a locale. A locale describes the minimal abstract axiomatisation of ordered objects that
can be glued together arbitrarily and of which we can take finitely many intersections; we do not
require them to arise explicitly as open sets of some topological space.
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Going back to empirical data, the fundamental structure is the notion of a measurement scenario,
a tuple Σ = (𝑋,M, {𝑂𝑥}𝑥∈𝑋 ) composed of a set of measurements, a measurement coverM, and a
set of outcomes 𝑂 = {𝑂𝑥}𝑥∈𝑋 parametrised by the inputs.

A measurement coverM is given by a family of subsets of 𝑋 satisfying:

•
⋃M = 𝑋 .

• M is an anti-chain, i.e. for𝑈,𝑉 ∈ M,𝑈 ⊆ 𝑉 implies that𝑈 = 𝑉 .

Here is where the implicit choice of topology on the set 𝑋 becomes relevant. The notion of a
measurement cover that can be found in [6] is the particular case of the more general notion of open

cover for a general topological space T (𝑋).

Definition 1.16. Let 𝑋 be a topological space and T (𝑋) ⊆ P(𝑋) be its topology. An open cover, or

simply cover, for 𝑋 is an antichain in the partial order T (𝑋), i.e. a collection C ⊆ T (𝑋) of open

sets which are incomparable:

∀𝑈,𝑉 ∈ C.𝑉 ≤ 𝑈 ⇒ 𝑉 = 𝑈

and such that: ∨
𝑈 ∈C

𝑈 = 𝑋

If C and C′ are covers on 𝑋 , we say that C′ is finer than C, written C′ ≺ C, if the following holds:

C′ ≺ C ⇔ ∀𝑉 ∈ C′.∃𝑈 ∈ C. s.t. 𝑉 ⊆ 𝑈

Equivalently, we sat that C is coarser than C′. Note that ≺ is a partial order on covers for 𝑋 , known

as the refinement order.

Given two covers C′ and C such that C′ ≺ C, a compatible family for the finer cover automatically
induces a compatible family on the coarser. In particular global assignments forM = {𝑋} restrict to
compatible families for arbitrary measurement covers.

Observation 1.16. Let 𝑋 be a topological space and let 𝑃 be a presheaf on 𝑋 . Let C be a cover

for 𝑋 and 𝑎 = (𝑎𝑈 )𝑈 ∈C be a compatible family over C. If C′ ≺ C is a finer cover for 𝑋 , then the

following is a compatible family over 𝐶 ′, known as the restriction of 𝑎 to C′:

𝑎 |C′ := ( 𝑎𝑈𝑉

��
𝑉
)𝑉 ∈C′

where𝑈𝑉 ∈ C is any open such that 𝑉 ⊆ 𝑈𝑉 .

The presheaf, which is relevant for the study of contextuality and nonlocality, can be defined
in two stages. First, to each subset𝑈 of 𝑋 , we associate a set of sections E(𝑈) = 𝑂𝑈 representing
the possible joint outcomes for the set of events 𝑈. The map E is a functor E : P(𝑋) → Set, and

25



therefore a presheaf : for any 𝑈,𝑈 ′ ∈ 𝑋 such that 𝑈 ⊆ 𝑈 ′ we can associate to it a restriction map
E(𝑈 ⊆ 𝑈 ′) = res𝑈 ′

𝑈

res𝑈
′

𝑈 : E(𝑈 ′) → E(𝑈) :: 𝑠→ 𝑠 |𝑈 (1.29)

Locally compatible assignment of outcomes can always univocally be glued into a coherent whole,
making E a sheaf.

In a purely deterministic theory, it is unreasonable to expect any tension between local and global

assignments of data; the presence of fundamental indeterminism gives the theory the necessary
flexibility to exhibit such discrepancy. Compatible partial functions can always be glued together
univocally. 2

Definition 1.17 (R-distribution [6]). Let 𝑅 be a commutative semiring, an 𝑅-distribution on 𝑋 is a

function 𝑑 : 𝑋 → 𝑅 which has finite support such that∑︁
𝑥∈𝑋

𝑑 (𝑥) = 1 (1.30)

We can construct a functor D𝑅 : P(𝑋)op → Set assigning to a subset 𝑈 the set D𝑅 (𝑈) of
𝑅-distribution on𝑈.

Definition 1.18. The distribution monad D𝑅 is the following mapping on sets and functions:

• If 𝑋 is a set, D (𝑋)𝑅 is the set of probability distributions over 𝑋 with finite support:

D (𝑋) :=

{
𝑑 : 𝑋 → 𝑅

����� ∑︁
𝑥∈𝑋

𝑑 (𝑥) = 1, supp (𝑑) is finite

}
(1.31)

where the support of a distribution is the set of points over which it is non-zero:

supp (𝑑) := { 𝑥 ∈ 𝑋 | 𝑑 (𝑥) ≠ 0 } (1.32)

• If 𝑓 : 𝑋 → 𝑌 is a function between sets, D ( 𝑓 )𝑅 is the function D (𝑋)𝑅 → D (𝑌 )𝑅 defined

as the linear extension of 𝑓 to probability distributions with finite support:

D ( 𝑓 ) := 𝑑 ↦→
∑︁
𝑥∈𝑋

𝑑 (𝑥)𝛿 𝑓 (𝑥) (1.33)

where 𝛿𝑦 ∈ D (𝑌 ) is the delta distribution at 𝑦:

𝛿𝑦 := 𝑦′ ↦→
{

1 if 𝑦′ = 𝑦
0 otherwise (1.34)

2This will cease to be true for an entire class of causal assumptions that we introduce in Chapter 3 and Chapter 4 in
which even the deterministic causal data will at times require a type of global compatibility which makes the presheaf of
‘joint outcomes’ separable but not a sheaf.
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For 𝑓 : 𝑈 → 𝑉 , D𝑅 ( 𝑓 ) is defined as

D𝑅 ( 𝑓 ) : D𝑅 (𝑈) → D𝑅 (𝑉) (1.35)

𝑑 ↦→ [𝑦 ↦→
∑︁
𝑓 (𝑥)=𝑦

𝑑 (𝑥)] (1.36)

Remark 1.19. The term ‘monad’ comes from category theory, where it defines a functor with specific

additional structure. We do not need this additional structure in our work, but we have preserved the

name for compatibility with other sheaf-theoretic work.

The distribution monad is an endofunctor of the type Set → Set, the composition D (𝐷)𝑅 E
describes a presheaf T (𝑋) → Set. The functor is not a sheaf, and the failure to extend local
compatible families into global sections constitutes the essence of contextuality. An empirical model
is then an assignment of empirical behaviours to each set in the measurement cover: a compatible
family overM:

Definition 1.20 (Empirical model). An empirical model for the measurement scenario (𝑋,M, 𝑂) is

a compatible family for D (𝐷)𝑅 E : P(𝑋) → Set over the coverM.

In non-locality scenarios, spacelike separability induces a particular measurement cover. The set
of measurements is given by:

𝑋 =
∐
𝑠∈𝑆

𝐼𝑠 (1.37)

where 𝑆 represents the set of spacelike separated sites and 𝐼𝑠 is the set of local measurements available
at 𝑠 ∈ 𝑆. The measurement cover by sets identifying a single choice of measurement for each site
(See for example [88]):

M =
∏
𝑠∈𝑆

𝐼𝑠 (1.38)

The compatibility with respect to the aforementioned coverM encompasses the usual no-signalling
requirement:

Observation 1.20. Suppose that (𝑒𝑀 )𝑀 ∈M is a compatible family for the cover for non-locality

M and fix two arbitrary disjoint subsets 𝑆1, 𝑆2 ⊆ 𝑆. Compatibility implies that the choice of

measurement at 𝑆2 cannot influence the distribution of outcomes at 𝑆1. Take 𝑀, 𝑀 ′ ∈ M such that,

𝑀 |𝑆\𝑆2 = 𝑀
′ |𝑆\𝑆2 . Set 𝐶 := 𝑀 |𝑆\𝑆2 . Compatibility implies that for all 𝑡 ∈ E(𝐶):

𝑒𝑀 |𝐶 (𝑡) = 𝑒′𝑀
��
𝐶
(𝑡) =⇒

∑︁
𝑡′∈E (𝑀 )
𝑡′ |𝐶=𝑡

𝑒𝑀 (𝑡 ′) =
∑︁

𝑡′∈E (𝑀 ′)
𝑡′ |𝐶=𝑡

𝑒𝑀 ′ (𝑡 ′) (1.39)

no choice performed at 𝑆2 can influence the ‘local’ outcomes at 𝑆1. The compatible families for this

scenario coincide with conditional distributions satisfying the multipartite no-signalling principle.
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The table of Figure 1.1 (p.19) describes a compatible family for the scenario where 𝑆 = {𝐴, 𝐵}
and 𝐼𝐴 = {𝑎0, 𝑎1}, 𝐼𝐵 = {𝑏0, 𝑏1}. This compatible family does not arise by marginalising a global
section.

In the Abramsky and Brandenburger approach, the measurement contexts are allowed to be
arbitrary subsets of 𝑋 , and the choice of the discrete topology guarantees that all the possible
restrictions have to be ‘operationally accessible’: the distributions defined on𝑈 ∈ M need to have
the property that for every 𝑉 ⊆ 𝑈 the marginalisation from the bigger to the smaller set is always
well defined. Generalising the framework to arbitrary causal structures requires us to transcend this
limitation by letting us play with the underlying topology imposed on a set of measurements 𝑋 . We
will see in Chapter 4 that the choice of a particular topological space can be used to reflect a signalling
structure on the measurements.

The global sections can be thought of as context-independent assignments of outcomes to every
measurement. The functor D𝑅E(𝑋) describes the 𝑅-distributions of this local assignment. We call
such assignments deterministic hidden variable assignment (DHV). Artur Fine, in his work ‘Hidden
variables, joint probability, and the bell inequalities’ [55] proves the following theorem in the context
of nonlocality scenarios:

Theorem 1.21 (Fine’s theorem [55]). There exists a factorizable stochastic hidden-variable model

for a correlation experiment if and only if there exists a deterministic hidden-variables model for the

experiment.

One of the salient aspects of the mathematical generality achieved by the sheaf theoretic approach
is that it can be used to extend the equivalence of DHV assignments and factorisability beyond
non-locality. We know that DHVs are just global sections 𝑒 ∈ DRE(𝑋). Factorisable hidden variable
models (such as the one implied by Bell’s local realism) can be recast in the sheaf theoretic language
as follows:

Definition 1.22 (Hidden variable model [6]). Given a measurement coverM a stochastic hidden

variable model is given by a set Λ and a distribution ℎΛ ∈ D𝑅 (Λ). Each value of the hidden variable

describes a compatible family {ℎ𝜆
𝐶
}𝐶∈M . 3

A hidden variable model realises an empirical model 𝑒 if the conditional distribution 𝑒 can be
obtained by averaging over the value of the hidden variable:

𝑒𝐶 (𝑠) =
∑︁
𝜆∈Λ

ℎ𝜆𝐶 (𝑠)ℎΛ(𝜆) (1.40)

This definition may seem strictly more general then DHVs, however, Abramsky and Brandenburger
show that finding a realisation in terms of stochastic hidden variables is, in general, equivalent to 𝑒

3Compatibility here is equivalent to the assumption that the knowledge of 𝜆 cannot be used to infer any information
about the ‘global’ context given some ‘local’ measurement outcomes.
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having a global section. When restricting to the case where the set of measurements is of the form of
Equation 1.37, and the set of contexts is given by Equation 1.38, Abramsky-Brandenburger’s theorem
restricts to Fine’s.

The sheaf theoretic framework can be used to recast and unify several paramount results in the
study of non-locality and contextuality. Abramsky and Brandenburger show that substituting the
semiring of the positive reals with the ring of reals, thus admitting a quasi-probabilistic description
of the outcomes assigned to each context, is enough to equiparate no-signalling empirical model
with global sections: the linear spaces generated by the non-contextual models and the no-signalling
models coincide.

The sheaf theoretic analysis can be used to go beyond a merely qualitative understanding of
the phenomenon of contextuality and provides a valuable characterisation of a variety of different
contextual behaviours. Abramsky and Brandeburger distinguish a hierarchy of contextuality: strong

contextuality, the strongest form in which no joint outcome in a context can be extended by a global
section (e.g. PR boxes), possibilistic non-locality, i.e. models which have no global section when the
probabilities of the empirical model are substituted by the values of the boolean semiring representing
possibilities (e.g. see Hardy [71]), and the usual probabilistic non-locality exemplified by the Bell
theorem.

In a paper by Abramsky, Barbosa and Mansfield [5], the authors also introduce a measure which
can be used to quantify the degree of non-classicality of a given empirical model:

Definition 1.23 (Non-contextual Fraction [5]). Given two empirical model 𝑒 and 𝑒′ on a measurement

scenario 𝑆 = (𝑋,M, 𝑂) and 𝜆 ∈ [0, 1] the convex sum 𝜆𝑒 + (1 − 𝜆)𝑒′ forms a well defined empirical

model over 𝑆. For an empirical model 𝑒, we can find

𝑒 = 𝜆𝑒𝑁𝐶 + (1 − 𝜆)𝑒𝐶

such that 𝑒𝑁𝐶 is non-contextual and 𝑒𝐶 is contextual. The maximal value of 𝜆 in such decompositions

id the non-contextual fraction of 𝑒.

In Chapter 6 of this dissertation, we will directly compare these quantitative measures with
the output of our causal analysis, the causal fractions. We will showcase the correspondence
between contextuality and indefinite causality when we endow quantum theory with the possibility of
controlling the causal order of the application of the instruments.

1.3.2.2 Extending the framework?

The existing framework for contextuality and non-locality is limited to spacelike separated protocols
and Kochen-Specker type of contextuality arguments. Abramsky and Brandenburger implicitly
assume that any subset of a maximal measurement context can be considered a measurement context
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for some operational restriction of the protocol, i.e. by marginalising some event’s output or by
restricting the possible choices of inputs. This is true when considering the usual Bell scenario, i.e.
when the contexts are given by {𝑎0, 𝑏0}, {𝑎1, 𝑏0}, {𝑎0, 𝑏1} and {𝑎1, 𝑏1}, and any subset of arbitrary
measurements induces a valid probability distribution, either by marginalising some of the outcomes
or by conditioning on particular sets of inputs.

This property cannot be upheld in the presence of signalling, an observation that originally
motivated our extension of the sheaf-theoretic approach. Suppose that we are given classically
controlled quantum instruments: {M𝑜

𝑖
} (𝑖,𝑜) ∈𝐼𝐴×𝑂𝐴

and {N𝑜
𝑖
} (𝑖,𝑜) ∈𝐼𝐵×𝑂𝐵

.

Definition 1.24. A classically controlled quantum instrument is a set of CPTPS S with a given Kraus

decomposition {S𝑖𝑜}𝑜∈𝑂𝐴
for every choice of input 𝐼𝐴. Such an instrument can be described in the

framework of categorical probabilistic theories as a box parametrised by a classical input and a

classical output wire:

M

𝐼𝐴

𝑂𝐴

(1.41)

every quantum instrument, when applied to some initial state and when the final system is discarded,

induces an empirical model with rows 𝐼𝐴 and columns indexed by 𝑂𝐴.

We can imagine applying them sequentially and in parallel, as shown in Figure 1.8. Both ways of

Ψ

M

N

𝐼𝐴 𝐼𝐵

N M

Φ

𝐼𝐴 𝐼𝐵

Figure 1.8: Sequential (on the left) and parallel application of quantum instruments (on the right).

using the ‘same’ resources, the same channelsM and N , induce a different joint instrument with
input values 𝐼𝐴 × 𝐼𝐵 and output values 𝑂𝐴 × 𝑂𝐵. More importantly, composing the instruments
sequentially or in parallel is reflected in what sub-contexts can be considered well-defined. For
non-locality (right hand side of Figure 1.8 (p.30)), the no-signalling property allows us to identify any
subset of 𝐼𝐴 t 𝐼𝐵 as a well defined operational context (see Figure 1.9 (p.30)), while in the signalling
case, the contexts ‘Bob performs the measurement 𝑏0’ is not necessarily associated to a well defined
distribution of outcomes and it can crucially depend on the choices at Alice’s side.

For no-signalling scenarios, the Abramsky-Brandenburger framework endows the set of mea-
surements 𝑋 with the discrete topology P(𝑋), indicating that every subset should be thought of as a
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N

𝑖𝑏

M

Ψ

𝐼𝐴

=

𝑖𝑏

M

Φ

𝐼𝐴

Figure 1.9: The outcome distribution associated with the context 𝑖𝑏 ∈ 𝐼𝐴 t 𝐼𝐵 is well-defined since
independent on the choice of Alice, as witnessed by the disconnected diagram on the right

well defined context. To give causal semantics to a broad set of possible causal structures, we need
to update the notion of measurement from being a point of a discrete finite topological space to a
sequence of spacetime events inducing what we call a ‘space of input histories’. Nonlocal scenarios,
conditional distributions that agree on all intersections, will be thought of as a ‘one-dimensional’
case of a more general topological and geometrical study of the hierarchy of contexts.

1.3.3 Causal Graphs

The attempt to describe spacetime involving discrete atomic components is as old as special relativity
itself. Notably, the first appearance of a structure resembling a causal set can be found in the 1914
book by Alfred Robb [121] ‘A Theory of Time and Space’. Robb attempts an axiomatic derivation of
special relativity involving only relations of temporal succession of individual events. The relativity
of simultaneity is then captured by introducing a different type of time ordering, one which considers
the possibility that individual events may be incomparable with respect to the succession of time.
This desideratum is embodied in the description of a partial order of events. What is the matter of
fact of these connections between events? Robb responds that they represent the possibility of causal
dependence:

In an instant 𝐵 be distinct from an instant 𝐴, then 𝐵 will be said to be after 𝐴, if and
only if, it be abstractly possible for a person at the instant 𝐴 to produce an affect at the
instant 𝐵 [121]

This description in terms of agency and the ‘abstract possibility of causation’ seemed to Norbert
Weiner, reviewing the work in [142] ‘utterly pointless’ by appealing to the fact that the notion of
causality itself is at least as obscure to the one of time succession. In this work, we provide a
combinatorial description of a generalisation of causal orders, in which interventions are explicit and
fundamental.

The celebrated result by Malament [87] extended the reconstruction of Robb to general relativity.
Malament’s theorem shows that an isomorphism of causal structures between two different spacetime
(M, 𝑔𝑎𝑏) and (M ′, 𝑔′

𝑎𝑏
) which are future- and past-distinguishing can be extended to a smooth

conformal isometry, so that an isomorphism of the causal structures preserves the topological, the
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differential, and the conformal structure, showing that the geometry of spacetime up to a conformal
structure is entirely determined by its causal structure.

Chapter 3 will generalise this idea by transcending deterministic events to a more operational
space of ‘eventualities’. Every ‘event’ will be endowed with a set of inputs characterising the possible
‘input values’. The combinatorial picture that emerges, which can be thought of as a direct operational
generalisation of causal sets, allows for the flexibility to go beyond definite causality by describing
situations where the input at some event can even affect the causal structure of subsequent events.
The picture that emerges is that of a poset where the individual elements describe timelike histories
instead of individual events.

Malament’s result is the motivation behind many past and current lines of enquiry in causality:
examples include the "causal sets" research programme [29], the domain-theoretic investigations of
Martin and Panangaden [93, 94], and the functorial approach to quantum field dynamics [67].

The works mentioned above are all concerned with recovering relativistic structures or under-
standing quantum fields in an approximation of the spacetime continuum. Our efforts are directed
towards the needs of quantum information protocols and experiments, where operations are per-
formed locally at a finite set of spacetime events. Furthermore, our approach is independent of the
theory underpinning the experiments and the concrete realisation of the local operations involved.
Consequently, we will work directly with finite order structures without ever needing Lorentzian
geometry to be involved.

Definition 1.25. A causal order Ω is a preorder: a set |Ω| of events—finite, in this work—equipped

with a symmetric transitive relation ≤, which we refer to as the causal relation. In cases where

multiple cause orders are involved, we might also use the more explicit notation ≤Ω, to indicate that

the relation is order-dependent.

There are four possible ways in which two distinct events 𝜔, 𝜉 ∈ Ω can relate to each other
causally:

• 𝜔 causally precedes 𝜉 if 𝜔 ≤ 𝜉 and 𝜉 � 𝜔, which we write succinctly as 𝜔 ≺ 𝜉 (to distinguish
it from 𝜔 < 𝜉, meaning instead that 𝜔 ≤ 𝜉 and 𝜔 ≠ 𝜉)

• 𝜔 causally succeeds 𝜉 if 𝜉 ≤ 𝜔 and 𝜔 � 𝜉, which we write succinctly as 𝜔 � 𝜉 (to distinguish
it from 𝜔 > 𝜉, meaning instead that 𝜔 ≥ 𝜉 and 𝜔 ≠ 𝜉)

• 𝜔 and 𝜉 are causally unrelated if 𝜔 � 𝜉 and 𝜉 � 𝜔

• 𝜔 and 𝜉 are in indefinite causal order if 𝜔 ≠ 𝜉, 𝜔 ≤ 𝜉 and 𝜉 ≤ 𝜔, which we write succinctly as
𝜔 ' 𝜉
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We say that a causal order is definite when the last case cannot occur, i.e. when ≤ is anti-symmetric
(𝜔 ≤ 𝜉 and 𝜔 ≥ 𝜉 together imply 𝜔 = 𝜉); otherwise, we say that it is indefinite. A definite causal
order is thus a partial order, or poset: in this case, 𝜔 ≺ 𝜉 is the same as 𝜔 < 𝜉, and 𝜔 � 𝜉 is the
same as 𝜔 > 𝜉.

Definition 1.26. We say that two events 𝜔, 𝜉 are causally related if they are not causally unrelated,

i.e. if at least one of 𝜔 ≤ 𝜉 or 𝜔 ≥ 𝜉 holds. We also define the causal past 𝜔↓ and causal future 𝜔↑
of an event 𝜔 ∈ Ω, as well as its causal equivalence class [𝜔]':

𝜔↓ := { 𝜉 ∈ Ω | 𝜉 ≤ 𝜔 } (1.42)

𝜔↑ := { 𝜉 ∈ Ω | 𝜉 ≥ 𝜔 } (1.43)

[𝜔]' := { 𝜉 ∈ Ω | 𝜉 ' 𝜔 } = 𝜔↓ ∩ 𝜔↑ (1.44)

Note that the 𝜔 always lies in both its own causal future and its own causal past, but also that their

intersection can comprise more events (if the order is indefinite).

Differently from Robb we treat causality ‘negatively’: when 𝜔 causally precedes 𝜉 we are not so
much interested in the "possibility" of causal influence from 𝜔 to 𝜉 (because 𝜔 ≤ 𝜉) as we are in
the "impossibility" of causal influence from 𝜉 to 𝜔 (because 𝜉 � 𝜔). This generalises the "spatial"
no-signalling case, where one is interested in the statements 𝜔 � 𝜉 and 𝜉 � 𝜔. Far from being merely
an interpretation, such no-signalling approach to causality permeates the entirety of this work. From
a topological perspective, it points to the lattice of lowersets Λ(Ω) of a causal order Ω as the correct
combinatorial object to consider. Indeed, the inclusion order𝑈 ⊆ 𝑉 of lowersets is equivalent to the
following condition.

𝑈 ⊆ 𝑉 ⇔ ∀𝜉 ∈ 𝑉\𝑈. ∀𝜔 ∈ 𝑈. 𝜉 � 𝜔

Definite causal orders have an equivalent presentation as directed acyclic graphs (DAGs), known
as Hasse diagrams: vertices in the graph correspond to events 𝜔 ∈ Ω, while edges 𝑥 → 𝑦 correspond
to those causally related pairs 𝜔 ≤ 𝜉 with no intermediate event (i.e. where there is no 𝜁 ∈ Ω such
that 𝜔 < 𝜁 < 𝜉). For example, below are the Hasse diagrams for three definite causal orders on three
events A, B and C.

On the left, A causally precedes B, which in turn causally precedes C: this is an example of a total

order, one corresponding to a line Hasse diagram. In the middle, A causally precedes both B and C,
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which are causally unrelated to one another. On the right, C causally succeeds both A and B, which
are causally unrelated to one another.

More precisely, there is a bijective correspondence between finite partial orders and finite
intransitive DAGs—loosely speaking, those without unnecessary edges [108]. The correspondence
further generalises to locally finite partial orders—where any two elements have finitely many
elements in between—and arbitrary intransitive DAGs [67].

The Hasse diagram representation extends to arbitrary causal orders, by making vertices in the
graph correspond to causal equivalence classes instead of individual events; in the case of definite
orders, the equivalence classes are all singletons, and can be safely identified with the unique event
they contain. For example, below are the Hasse diagrams for three indefinite causal orders on three
events A, B and C.

On a given set of events, all orders lie between two extremes: the discrete order, where all elements
are causally unrelated, and the indiscrete order, where all elements lie in the same equivalence class.
Additionally, the 𝑛! possible total orders on 𝑛 events are often of interest.

Definition 1.27. For any finite set 𝑋 of events, we write discrete (𝑋) for the discrete order on the

events and indiscrete (𝑋) for the indiscrete order. For any finite sequence 𝜔1, . . . , 𝜔𝑛 of events, we

write total (𝜔1, . . . , 𝜔𝑛) for the total order on the events which matches the sequence order.

1.3.3.1 Join/union of causal orders

Definition 1.28. The join of a family (Ω 𝑗)𝑛𝑗=1 of causal orders, denoted by
∨𝑛
𝑗=1 Ω 𝑗 , is the union

of their events equipped with the transitive closure of the union of the respective causal relations.

Explicitly, two events 𝜔 and 𝜉 are related by 𝜔 ≤ 𝜉 in the join
∨𝑛
𝑗=1 Ω 𝑗 iff there is a sequence of events

(𝜔𝑘)𝑚𝑘=0 and a sequence of causal orders (Ω 𝑗𝑘 )𝑚𝑘=1 such that 𝜔0 = 𝜔, 𝜔𝑚 = 𝜉 and 𝜔𝑘−1 ≤Ω 𝑗𝑘
𝜔𝑘 for

all 𝑘 = 1, ..., 𝑚.

The join operation is commutative (order does not matter), associative (bracketing does not
matter) and idempotent (repetition does not matter). When two causal orders are disjoint, i.e. when
they share no common events, their join represents a scenario where all events from one order are
causally unrelated to all events from the other, as in the following example.
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∨
=

Because of this behaviour, we will refer to disjoint joins as parallel composition. When two causal
orders have events in common, their join ‘glues’ them along the common events. Below is an example
of two orders sharing an initial totally-ordered segment A → B, followed by two distinct events.
Their join then has the same initial totally ordered segment, with a fork at B that leads to two causally
unrelated events.

∨
=

Below is a second example, where the two order share a pair of causally unrelated events B and
C. Taking their join glues the two orders into a diamond, with causally unrelated events B and C
separating the bottom event A from the top event D.

∨
=

In the two examples above, the common events had an identical mutual causal relation in both others.
However, it is generally the case for causal orders involved in a join to impose different causal relations
on their common events. In particular, if two events are causally related in different ways in two
causal orders, then the same two events will be in indefinite causal order in the join. For example,
event B causally precedes C in the first causal order below, while the same event B causally succeeds
C in the second causal order: in join (on the right), events B and C are therefore in indefinite causal
order.

∨
=

The space above is not a total order, but its Hasse diagram takes the same shape, so we extend our
notation slightly and write total (A, {B,C},D) to denote it.
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1.3.3.2 Meet/intersection of causal orders

Definition 1.29. The meet of a family (Ω 𝑗)𝑛𝑗=1 of causal orders, denoted by
∧𝑛
𝑗=1 Ω 𝑗 , is the intersection

of the events from the individual orders, equipped with the intersection of the respective causal

relations. Explicitly, two events 𝜔 and 𝜉 are related by 𝜔 ≤ 𝜉 in the meet
∧𝑛
𝑗=1 Ω 𝑗 iff they are related

in all orders, i.e. if 𝜔 ≤Ω 𝑗
𝜉 for all 𝑗 = 1, ..., 𝑛.

For example, below is the intersection of two total orders on the same 4 events {A,B,C,D}: in
both orders, we have that event A causally precedes events B and C, which in turn causally precede
event D. However, B precedes C in the first order, while it succeeds it in the second, resulting in B
and C being causally unrelated in the meet. We will sometimes refer to this as the diamond order.

∧
=

Below is a more complicated example, involving events in indefinite causal order. Events B and C are
in indefinite causal order on the left, but B causally precedes C on the right, so B causally precedes
C in the meet. Similarly, events C and D are in indefinite causal order on the right, but C causally
precedes D on the left, so C causally precedes D in the meet. The situation leading to events A and B
being causally unrelated in the meet is analogous to the one from the previous example.

∧
=

1.3.3.3 Hierarchy of Causal Orders

For the scope of the dissertation is important not only to mention causal orders in isolation but to see
them embedded in a hierarchy of possible causal assumptions on a finite set of events. This idea will
be generalised in Chapter 3 where it will be shown that a more general notion of causal assumptions
can be used to refine the hierarchy.

Causal orders are naturally ordered by inclusion: Ω ≤ Ξ if |Ω| ⊆ |Ξ| as sets and ≤Ω⊆≤Ξ
as relations (i.e. as subsets { (𝜔, 𝜔′) |𝜔 ≤Ω 𝜔′ } ⊆ |Ω|2 and { (𝜉, 𝜉 ′) | 𝜉 ≤Ξ 𝜉 ′ } ⊆ |Ξ|2). The
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requirement that ≤Ω⊆≤Ξ explicitly means that for all 𝜔, 𝜔′ ∈ Ω the constraint 𝜔 �Ξ 𝜔′ in Ξ implies
the constraint 𝜔′ �Ω 𝜔′. Put in different words:

• If 𝜔 and 𝜔′ are causally unrelated in Ξ , then they are causally unrelated in Ω.

• If 𝜔 causally precedes 𝜔′ in Ξ, then it can either causally precede 𝜔′ in Ω or it can be causally
unrelated to 𝜔′ in Ω; it cannot causally succeed 𝜔′ or be in indefinite causal order with it.

• If𝜔 and𝜔′ are in indefinite causal order inΞ, then their causal relationship inΩ is unconstrained:
𝜔 can causally precede 𝜔′, causally succeed it, be causally unrelated to it or be in indefinite
causal order with it.

From a causal standpoint, Ω ≤ Ξ means that Ω imposes on its own events at least the same causal
constraints as Ξ, and possibly more. In particular, if Ξ is definite (no two events in indefinite causal
order) then so is Ω; conversely, if Ω is indefinite, then so is Ξ.

Observation 1.29. Causal orders on a given set of events form a finite lattice, which we refer to as

the hierarchy of causal orders. The join and meet operations on this lattice are those described in

the previous subsections, the indiscrete order is the unique maximum (all events in indefinite causal

order, i.e. no causal constraints), while the discrete order is the unique minimum (all events are

causally unrelated).

The hierarchy of causal orders on three events {A,B,C} is displayed by Figure 1.10 (p.37), with
definite causal order coloured red and indefinite ones coloured blue. The definite causal order always
form a lowerset in the hierarchy—if Ξ is definite then all Ω ≤ Ξ are also definite—and the maxima
for this lowerset are exactly the total orders. However, total orders do not form a separating set: there
are inclusions of definite orders into indefinite ones that do not factor through a total order (cf. Figure
1.10, arrows from red notes in the second layer to blue nodes in the fourth layer).

1.3.3.4 Lattice of Lowersets

When we discuss causality from a theory independent perspective we will be concerned with a
certain class of operational scenarios: blackbox devices are operated locally at events in spacetime,
determining a probability distribution on their joint outputs conditional to their (freely chosen) joint
inputs. In such scenarios, causality constraints essentially state that the output at any subset of events
cannot depend on inputs at events which causally succeed them or are causally unrelated to them.
Furthermore, the output at any event is only well-defined conditional to inputs for all events in its
past: we are not interested in all sub-sets of events of a causal order, but rather in its lowersets.
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Figure 1.10: Hasse diagram for the hierarchy of causal orders on three events {A,B,C}, left-to-right
in inclusion order. Definite causal orders (left and middle) are coloured red, while indefinite causal
orders (middle and right) are coloured blue. Inclusions between definite orders are coloured red,
inclusions between indefinite orders are coloured blue, inclusions of a definite order into an indefinite
one are coloured violet. In the order labels, a space is used to indicate causal unrelatedness, arrows
are used to indicate that the event at the tail causally precedes the event at the head, and braces are
used to indicate that the events contained are in indefinite causal order.

The discussion above indicates that the object we seek to understand is not the causal order Ω
itself, but rather its lattice of lowersets Λ (Ω). This is the subsets of events closed in the past, ordered
by inclusion:

Λ (Ω) := {𝑈 ⊆ Ω | ∀𝜔 ∈ 𝑈. 𝜔↓⊆ 𝑈 } (1.45)

In this case, being a lattice means that lowersets are closed under both intersection and union; we
always omit the empty set from our Hasse diagrams, for clarity.

Inclusions between lowersets determine the causality constraints for the causal order: if𝑈,𝑉 ∈
Λ (Ω) are such that𝑈 ⊆ 𝑉 , then the output at events in𝑈 cannot depend on the inputs at events in
𝑉\𝑈. Consider the total order A → B → C, and its associated lattice of lowersets: the inclusion
{A,B} ⊆ {A,B,C}, for example, tells us that the outputs at events A and B cannot depend on the
input at event C; the inclusion {A} ⊆ {A,B}, additionally, tells us that the outputs at event A cannot
depend on the input at event B.
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Figure 1.11: Hasse diagram for the hierarchy of sub-orders of the diamond order, left-to-right in
inclusion order. All orders are definite, so no colour-coding of nodes and edges is necessary. In the
order labels, a space is used to indicate causal unrelatedness, arrows are used to indicate that the
event(s) at the tail causally precedes the event(s) at the head, and brackets are used to group multiple
causally unrelated events together (for ease of notation). For example, A→(B C)→D on the right
indicates that event A precedes events B and C, which are causally unrelated to each other and both
precede event D.

Λ

©­­­­­­«
ª®®®®®®¬

=

Below is a more complicated example, for the diamond order: the inclusion {A,B} ⊆ {A,B,C,D},
for example, tells us that the outputs at events A and B cannot depend on the input at events C and D.
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Λ

©­­­­­­«
ª®®®®®®¬

=

Here, we note for the first time how lowersets are more general than downsets: we have A↓= {A},
B↓= {A,B}, C↓= {A,C} and D↓= {A,B,C,D}, but lowerset {A,B,C} does not originate from any
individual event. Hence, lowersets strictly generalise the notion of causal past from individual events
to arbitrary subsets of events:

{A,B,C} = B↓ ∪C↓= {B,C}↓

When the causal order is indefinite, lowersets cannot split causal equivalence classes: either no event
from the class is in the lowerset, or all events are. We can see this in the lattice of lowersets for the
indefinite causal order A→ {B,C} → D, where events {B,C} form a causal equivalence class.

Λ

©­­­­­­«
ª®®®®®®¬

=

An interesting question arises when we consider the interaction of causal constraints for multiple
causal orders. A scenario is explainable by two causal orders Ω and Ω′ if it satisfies the causal
constraints of both: in terms of lowersets, such constraints correspond to the union Λ (Ω) ∪Λ (Ω′) of
the lowersets for the individual orders. Consider, for example, the total orders Ω = A→ B→ C→ D
and Ω′ = A→ C→ B→ D, together with the associated lowersets.

Λ

©­­­­­­­­«

ª®®®®®®®®¬
=
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Λ

©­­­­­­­­«

ª®®®®®®®®¬
=

For a scenario to satisfy both orders, it has to satisfy the constraints derived from
Λ (A→ B→ C→ D) ∪ Λ (A→ C→ B→ D), depicted below.

Λ

©­­­­­­­­«

ª®®®®®®®®¬
⋃

Λ

©­­­­­­­­«

ª®®®®®®®®¬
=

We immediately recognise the lowersets as those of the diamond order, which we also know to take
the form:

diamondABCD = (A→ B→ C→ D) ∧ (A→ C→ B→ D)

So the question arises: is simultaneously satisfying the causal constraints for two (or more) causal
orders always the same as satisfying the causal constraints for their meet? To answer it, we first
note that the hierarchy of causal orders is (contravariantly) related to the hierarchy formed by the
corresponding lattices of lowersets under inclusion.

Proposition 1.29. For any two causal orders Ω and Ω′ such that |Ω| = |Ω′ |, we have:

Ω ≤ Ω′ ⇔ Λ (Ω) ⊇ Λ (Ω′) (1.46)

Proof. We separately prove the two sides of the equivalence:

1. Ω ≤ Ω′ =⇒ Λ (Ω) ⊇ Λ (Ω′). Let 𝑈 ∈ Λ (Ω′), then 𝑈 ⊆ |Ω|. We need to show that
𝑈 ∈ Λ (Ω) let 𝑢 ∈ 𝑈, then for 𝑣 ∈ Ω such that 𝑢 ≤Ω 𝑣 we have that 𝑢 ≤Ω′ 𝑣 and since
𝑈 ∈ Λ (Ω′) we conclude that 𝑢 ∈ 𝑈.

2. Let Λ (Ω) ⊇ Λ (Ω′), and 𝑢 ≤Ω 𝑣. Since |Ω| = |Ω′ |, we also have that 𝑢, 𝑣 ∈ Ω′. Consider
𝑢 ↓∈ Λ(Ω′), then 𝑣 ∈ 𝑢 ↓ since 𝑢 ↓ is a lowerset in Ω and by assumption 𝑢 ≤Ω 𝑣, therefore
𝑣 ≤Ω′ 𝑢.

�
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Corollary 1.30. For any two causal orders Ω and Ω′ such that |Ω| = |Ω′ |, we have:

Λ (Ω) ∪ Λ (Ω′) ⊆ Λ (Ω ∧Ω′) (1.47)

Unfortunately, the above inclusion cannot be strengthened to an equality: in general,Λ (Ω)∪Λ (Ω′)
is not even a lattice! For a counterexample, we consider the following orders on four events and their
associated lattices of lowersets.

Λ

©­­­­­­«
ª®®®®®®¬

=

Λ

©­­­­­­«
ª®®®®®®¬

=

The union of the corresponding lattices of lowersets is the following set, which is evidently not closed
under intersection: the intersections {C} = {A,C} ∩ {B,C} and {C,D} = {A,C,D} ∩ {B,C,D} are
both conspicuously missing.

Λ

©­­­­­­­­«

ª®®®®®®®®¬
⋃

Λ

©­­­­­­­­«

ª®®®®®®®®¬
=

In particular, the collection of lowersets displayed above is not the lattice of lowersets for the meet of
the two orders, which (in this case) is obtained by including the two missing lowerset intersections.

Λ

©­­­­­­«
ª®®®®®®¬

=
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Dually to the above, we can ask whether the intersection of the lattices of lowersets for two (or
more) causal events is the lattice of lowersets for their join, i.e. whether it holds that Λ (Ω) ∩Λ (Ω′) =
Λ (Ω ∨Ω′). This is more promising: at the very least, the intersection Λ (Ω) ∩ Λ (Ω′) is always
a lattice! As a motivating example, we go back to the total orders Ω = A → B → C → D and
Ω′ = A→ C→ B→ D.

Λ

©­­­­­­­­«

ª®®®®®®®®¬
⋂

Λ

©­­­­­­­­«

ª®®®®®®®®¬
=

Indeed, we immediately recognise the intersection as the lattice of lowersets for the join of the two
total orders, where the events B and C are in indefinite causal order:

Λ

©­­­­­­­­«
∨ ª®®®®®®®®¬

= Λ

©­­­­­­«
ª®®®®®®¬

=

In this dual scenario, the contravariant relation between the hierarchy of causal orders and the
associated lattices of lowersets implies that Λ (Ω) ∩ Λ (Ω′) ⊇ Λ (Ω ∨Ω′). This time, the inclusion
can be strengthened to an equality.

Proposition 1.30. For any two causal orders Ω and Ω′ we have:

Λ (Ω) ∩ Λ (Ω′) = Λ (Ω ∨Ω′) (1.48)

Proof. We need to show that Λ(Ω) ∩ Λ(Ω′) ⊆ Λ(Ω ∨Ω′). Take 𝑣 ∈ 𝑈 and 𝑢 such that 𝑢 ≤Ω∨Ω′ 𝑣:
by definition of the join order, there is a sequence of events (𝜔𝑘)𝑚𝑘=0 such that 𝜔0 = 𝑢, 𝜔𝑚 = 𝑣 and
for all 𝑘 = 1, ..., 𝑚 either 𝜔𝑘−1 ≤Ω 𝜔𝑘 or 𝜔𝑘−1 ≤Ω′ 𝜔𝑘 . We follow the sequence backwards, starting
from 𝜔𝑚 = 𝜉: for each 𝑘 = 𝑚, ..., 1, 𝜔𝑘 ∈ 𝑈 implies 𝜔𝑘−1 ∈ 𝑈. Hence 𝑢 = 𝜔0 ∈ 𝑈, so that 𝑈 is a
lowerset for Ω ∨Ω′. �

The above result provides operational meaning to joins of causal orders: the causal constraints
imposed by the join order are exactly the constraints common to all causal orders involved.
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1.4 Literature review

The conflict between classical causality and quantum theory animated the foundational discussions
from their earliest stages. Despite persisting in the background of any foundational work, it took
centre stage only relatively recently. Ideas about indefinite causal order and dynamical spacetime have
shaped the recent work on process matrices; Judea Pearl’s systematic account of causal inference has
opened the doors for a formal analysis of the clash between quantum experiments and causal intuition;
contextuality has exposed the tensions of quantum theory with a classical account of observable facts.
In the following subsections, we will review the works that interlace with this study and, to facilitate
the reading, we have divided this review into four parts: no-signalling correlations and generalisations
thereof, the study of indefinite causality, quantum causal models, and contextuality. The purpose of
this section is to discuss works which share both similarities and fundamental differences from our
narrative. It is not essential to understanding the dissertation’s content but exposes the works that
were influential in the maturing process of our framework. This thesis aims to provide a cohesive
mathematical language that restores conceptual unity among several independent research directions.
Due to the inherent variety of topics, we cannot hope to be exhaustive enough, and we content
ourselves with weaving a thread before entering the labyrinth.

1.4.1 Signalling and No-signalling correlations

The study of non-local correlations has a long history, starting with John Bell’s work and his
account of violations of local realism. Despite its seminal character and the importance that it
had in shaping quantum foundations, it is noteworthy to mention that (as explained by Pitowsky in
[109, 110]) Bell’s inequalities can be thought of as a special case of a much earlier George Boole’s
formulation of ‘conditions for possible experience’ [30]. Boole’s aimed to derive the conditions that
logical dependencies impose on relative frequencies. Suppose we are given a set of probabilities
𝑝1, 𝑝2, . . . , 𝑝𝑛 all arising as relative frequencies of logically disconnected sets. The only requirements
to be imposed is that: 𝑝𝑖 ≥ 0, and 𝑝𝑖 ≤ 1 for 1 ≤ 𝑖 ≤ 𝑛. If 𝑝1, 𝑝2, 𝑝3 represent the relative frequencies
of occurrence of elements from the sets 𝐸1, 𝐸2 and 𝐸1 ∩ 𝐸2 then the latter condition implies that
the probability 𝑝3 is correlated by the values observed for 𝑝1 and 𝑝2 by an additional requirement,
namely:

−𝑝1 − 𝑝2 + 𝑝3 + 1 ≥ 0 (1.49)

Suppose we are performing an experiment by extracting balls from a box and that the balls can be
wooden or plastic, red or black, and find out that that there is a probability of 60% of extracting
a red ball, 75% of them are wooden, and 30% are both red and wooden. We therefore have that
𝑝1 = 0.6, 𝑝2 = 0.75 and 𝑝3 = 0.3 violating the inequality of Equation 1.49. If we observe these
relative frequencies, we immediately conclude that there is something wrong with some of the logical
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assumptions of the experiment or about the way this probabilistic behaviour is associated with the
underlying objective properties of the samples.

Boole’s contribution was to realise that for finite sets of events, with finitely many logical
connections, these always induce a finite set of linear constraints. Logical constraints, therefore,
form a polytope of compatible probabilistic behaviours. Bell’s type inequalities can all be seen as a
particular case of Boole’s conditions in which the logical relations are derived from the assumption
of local causality [109].

The impossibility of superluminal signalling required to establish the compatibility between
quantum theory and special relativity has often been abstracted and studied as a theory independent
principle, notably in the seminal work by Popescu and Rohrilch [112, 113]. The connection between
no-signalling correlations and polytopes originates in [16], where the authors explicitly characterise
various sets of no-signalling boxes and pave the way for a more systematic study of such correlations.

Let us denote by 𝑝(𝑎, 𝑏 |𝑥, 𝑦) the probability that the outcomes 𝑎 ∈ 𝑂𝐴 and 𝑏 ∈ 𝑂𝐵 are observed
given the settings 𝑥 ∈ 𝐼𝐴 and 𝑦 ∈ 𝐼𝐵. For the bipartite case, the standard no-signalling conditions are
given by the following equations:∑︁

𝑏

𝑝(𝑎, 𝑏 |𝑥, 𝑦) =
∑︁
𝑏

𝑝(𝑎, 𝑏 |𝑥, 𝑦′) ∀𝑦, 𝑦′, 𝑥, 𝑎 (1.50)

The probability that 𝐴 observes an output 𝑎 is independent of 𝐵’s local setting. This family of
equations can be interpreted as linear constraints together with the additional requirement of positivity:

𝑝(𝑎, 𝑏 |𝑥, 𝑦) ≥ 0 ∀𝑥, 𝑦 (1.51)

and normalisation: ∑︁
𝑎,𝑏

𝑝(𝑎, 𝑏 |𝑥, 𝑦) = 1 ∀𝑥, 𝑦 (1.52)

These constraints bound the non-signalling polytope. A table of correlations for the bipartite scenario
has 24 entries; subtracting the number of independent constraints, we get an 8-dimensional polytope
with 24 vertices. In [16] they also characterise a ‘local’ sub-polytope which is the convex hull of 16
of the total 24 vertices, obtained by the deterministic no-signalling functions correlating joint inputs
to joint outputs.

A correlations is said to admit a deterministic hidden variable (DHV) if for a (finite) set of hidden
values Λ there exist response functions

𝑝𝐴 : 𝐼𝐴 × Λ→ 𝑂𝐴 (1.53)

𝑝𝐵 : 𝐼𝐵 × Λ→ 𝑂𝐵 (1.54)

and a distribution 𝑝Λ(𝜆) on Λ such that the observed statistics can be reproduced by averaging over
the possible values of the hidden variable (here the response functions described above are treated as
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deterministic conditional distributions):

𝑝(𝑎, 𝑏 |𝑥, 𝑦) =
∑︁
𝜆∈Λ

𝑝Λ(𝜆)𝑝𝐴(𝑎 |𝑥, 𝜆)𝑝𝐵 (𝑏 |𝑦, 𝜆) (1.55)

The functions 𝑝𝐴 and 𝑝𝐵 represent an underlying deterministic mechanism through which chosen
inputs and hidden variables concur to influence the outcome. We already encountered these hidden
variables when reviewing the sheaf theoretic approach.

One may think about a more general hidden variable theory, where the response mechanisms are
themselves allowed to be genuinely stochastic under the assumption that they are mutually independent
given knowledge of the hidden variable. We call such models factorisable hidden variable models

(FHVs). We observe that DHVs are a subset of FHVs where 𝑝𝐴 and 𝑝𝐵 are deterministic maps.
Conversely, we can always dilate a stochastic map 𝑝 : 𝐼 → 𝑂 to a deterministic 𝑝 : 𝐼 × Λ → 𝑂

such that there exist a distribution 𝑝Λ for which 𝑝(𝑜 |𝑖) = ∑
𝑎∈Λ 𝑝(𝑜 |𝑖, 𝑎)𝑝Λ(𝑎). This means that

for any factorisable hidden variable model, we can shift the randomness of the response functions
into additional hidden variables and convert them into a DHV. Both notions of hidden variables are
equivalent for the no-signalling case (as shown in [6] also for more general contextuality scenarios).
This result is often associated with Arthur Fine [55] and is known in its more general formulation as
the Fine-Abramsky-Brandenburger theorem [6].

The same work by Barrett et al. [16] also shows that generalising the bipartite no-signalling
condition comes with some subtleties. In general tripartite no-signalling is identified as follows:∑︁

𝑎

𝑝(𝑎, 𝑏, 𝑐 |𝑥, 𝑦, 𝑧) =
∑︁
𝑎

𝑝(𝑎, 𝑏, 𝑐 |𝑥 ′, 𝑦, 𝑧) ∀ 𝑏, 𝑐, 𝑦, 𝑧, 𝑥, 𝑥 ′ (1.56)

However, if we only focus on pairwise signalling, we can imagine situations where no agent alone is
allowed to signal to any other party, but the scenario does not form an empirical model compatible
with three spacelike separated agents. An example of this is given by the correlations described in
Figure 1.15 (p.52). Even though no single party sends direct signals to any other party, the table does
not satisfy all the constraints given by Equation 1.56.

If we marginalise the output of 𝐶, local choices at 𝐶 will determine if the measurements of 𝐴 and
𝐵 are correlated or anti-correlated. For example, fixing 𝑖𝑐 = 0 and marginalising the output at 𝐶, the
probability of obtaining 𝑜𝐴 = 0, 𝑜𝐵 = 0 given 𝑖𝐴 = 0, 𝑖𝐵 = 0 is:∑︁

𝑜𝑐 ∈𝑂𝐶

𝑝(𝑜𝑐 , 𝑜𝑎 := 0, 𝑜𝑏 := 0|𝑖𝑐 := 0, 𝑖𝑎 := 0, 𝑖𝑏 := 0) = 1/2 (1.57)

setting 𝑖𝐶 = 1 instead:∑︁
𝑜𝑐 ∈𝑂𝐶

𝑝(𝑜𝑐 , 𝑜𝑎 := 0, 𝑜𝑏 := 0|𝑖𝑐 := 1, 𝑖𝑎 := 0, 𝑖𝑏 := 0) = 0 (1.58)
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Even though the protocol is not compatible with a genuine tripartite spacelike separation, the fact
that no agent alone can signal is witnessed by constraints of the type:∑︁

𝑎,𝑏

𝑝(𝑎, 𝑏, 𝑐 |𝑥, 𝑦, 𝑧) =
∑︁
𝑎,𝑏

𝑝(𝑎, 𝑏, 𝑐 |𝑥 ′, 𝑦, 𝑧) ∀ 𝑐, 𝑦, 𝑧, 𝑥, 𝑥 ′ (1.59)

When we marginalise the outputs of 𝐴 and 𝐵, the choices at 𝐴 cannot influence the outcome
distribution at 𝐶 and similarly for any other permutation of agents. We can therefore marginalise
any subset comprising of two agents and obtain a well defined probability distribution. This does
not mean that the marginalisation of the output of any single agent will leave us with a well defined
conditional distribution.

The table in Figure 1.15 (p.52) is not compatible with a causal structure where all three agents
are spacelike separated, but it is also not univocally compatible with a specific signalling structure
synthesised from a causal graph between three agents. We will see later that several different causal
orders can reproduce the correlations exhibited by such an empirical model. In particular, we can
reproduce the correlations by assigning conditional stochastic maps to the vertices of the following
three different causal graphs (nota bene, we need to allow the possibility of arbitrary shared resources
in the causal past of the agents, in direct generalisation of multipartite Bell scenarios):

• A after C, with no-signalling to/from B

• B after C, with no-signalling to/from A

• A and B after C

There is no unique minimal causal graph—we understand minimality as witnessing all the possible
no-signalling constraints—that characterises the signalling structure of the empirical model. One
would need to appeal to a more fine-grained description of causal structures: fewer restrictions than
genuine tripartite no-signalling, and more restrictions than any other causal ordering between the
events 𝐴, 𝐵, 𝐶. One of the aims of our investigation is to provide the tools to characterise polytopes
of correlations that are compatible with various operational assumptions.

No-signalling constraints describe properties of the conditional distribution in a theory independent
way. It is just about the well-definedness of the marginals attributed to independent subsystems.
Of different nature is the additional logical requirements characterising local causality. When the
number of parties increases, we expect a greater interplay between the possible explanatory causal
mechanisms. In [16] Barrett et al. discuss the observation (originally by Svetlichny [136] and
generalised in [45]) that for the tripartite case there is already room for various ‘degrees’ of nonlocality.
What they call ‘local correlations’ satisfy a straightforward symmetric tripartite generalisation of
local causality:

𝑝(𝑎, 𝑏, 𝑐 |𝑥, 𝑦, 𝑧) =
∑︁
𝜆∈Λ

𝑝(𝜆)𝑝(𝑎 |𝑥, 𝜆)𝑝(𝑏 |𝑧, 𝜆)𝑝(𝑐 |𝑥, 𝜆) (1.60)
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Given the knowledge of the shared variable 𝜆 ∈ Λ, the response distributions factor in three local
stochastic maps. The weaker notion of ‘two-way locality’ describes correlations that may not be
fully local but admit a classical explanation concerning some bipartition of the boxes. These are
correlations that can be decomposed as follows:

𝑝(𝑎, 𝑏, 𝑐 |𝑥, 𝑦, 𝑧) = 𝑝12
∑
𝜆∈Λ12 𝑝(𝜆)𝑝(𝑎, 𝑏 |𝑥, 𝑦, 𝜆)𝑝(𝑐 |𝑧, 𝜆) (1.61)

+𝑝13
∑
𝜆∈Λ13 𝑝(𝜆)𝑝(𝑎, 𝑐 |𝑥, 𝑧, 𝜆)𝑝(𝑏 |𝑧, 𝜆) (1.62)

+𝑝23
∑
𝜆∈Λ23 𝑝(𝜆)𝑝(𝑏, 𝑐 |𝑦, 𝑧, 𝜆)𝑝(𝑎 |𝑥, 𝜆) (1.63)

Two-way local correlations can be considered classical under a ‘coarse-graining’ of two of the
three events. Similarly to how in the sheaf theoretic description, locality is seen as the possibility of
finding a global section that accounts for the empirical model; in our work we will show that the
hierarchy of multipartite locality is related to the possibility of lifting compatible families onto finer
measurement covers.

The set of the quantum realisable correlations (although convex) does not form a polytope
[68, 111, 9, 48, 98] and it is of a less straightforward characterisation. Navascues et al. have
introduced an infinite hierarchy of conditions which are necessarily satisfied by any quantum
correlation in [97] and showed that it is complete, i.e. that every correlation satisfying all conditions
has a quantum realisation, in [98]. Our work will not be concerned with identifying quantum
realisable correlations, and we leave the possible extension of the work by Navascues et al. to our
causal polytopes for future work.

Extensions of multipartite non-locality can be found in [59, 115, 143, 120, 137, 57]. These allow
common sources to be distributed only to specific subsets of agents, differing from the generalisation
that we want to present in this work. It has been shown in [32, 56, 120, 57] that—with the extra
assumption of factorisability of common sources—quantum nonlocality becomes detectable without
any reference to freely chosen inputs. For us, free choice of inputs will be an essential ingredient of
the notion of an event, a requirement for the definition of empirical models. Moreover, assuming
factorisability of common sources may result in a space of compatible correlations (local and
non-local), which is no longer convex. Our approach to causal discovery will rely on the spaces being
convex polytopes, enabling the crucial employment of convex geometry and linear programming.

An example exhibiting the failure of convexity can be found in the triangle scenario discussed
in [120, 57]. Three observers perform a single measurement and are pairwise connected by three
independent sources as shown in Figure 1.12 (p.48). The deterministic response 𝑅0, where everyone
measures the outcome 0 and the deterministic response 𝑅1, where the outcome for each measurement
is 1 are compatible with this bipartite repartition of the common causes. However, the convex mixture
of the two possible global outcomes 1/2(𝑅0 + 𝑅1) requires common resources to be shared among
all three parties simultaneously and is therefore incompatible with the original assumptions.
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•

•

Figure 1.12: The bigger dots are agents, while the smaller ones indicate shared common resources.
The picture on the left represents the assumption that three sources are separated, and the picture
on the right describes a standard tripartite no-signalling scenario. The pairwise correlated common
sources on the left cannot realise the distribution 1/2(𝑅0 + 𝑅1), while the scenario on the right can
reproduce any tripartite distribution of outputs if we do not allow the introduction of measurement
settings.

There have been proposals for a generalisation of the study of non-locality to arbitrary Causal
Bayesian networks, most notably by Henson et al. and Fritz [58, 74]. Fritz in [58] shows that all the
relevant assumptions in a Bell scenario can be directly derived from the causal structure shown in
Figure 1.13 (p.49). If we write 𝑜[𝑉] for the vector or tuple (𝑜[𝑣])𝑣∈𝑉 consisting of all the outcomes
𝑜[𝑣] for the nodes 𝑣 ∈ 𝑉 of a causal network 𝐺, then a necessary condition for a joint distribution
𝑃(𝑜[𝑉]) to be explainable in terms of hidden variables on a given causal structure is that of being a
‘correlation’:

Definition 1.31 (Correlation [57]). 𝑃(𝑜[𝑉]) is a correlation if for any collection of subsets

𝑉1, . . . , 𝑉𝑚 ⊆ 𝑉 with disjoint causal past, the distribution factors as

𝑃(𝑜[𝑉1] . . . 𝑜[𝑉𝑚]) = 𝑃(𝑜[𝑉1]) . . . 𝑃(𝑜[𝑉𝑚]) (1.64)

This condition is far from sufficient. In particular, any assignment of deterministic quantum
processes (even the ones violating Bell’s inequalities) to the nodes will respect the factorisation
assumptions of Definition 1.31. In fact, for the particular case of Figure 1.13 (p.49), 𝑃(𝑜[𝑉]) is a
correlations if and only if it satisfies the usual no-signalling and free will equations. This way of
treating quantum protocols allows generalising Bell’s theorem by avoiding explicit dependencies on
free-will assumptions [57].

In our work, the philosophy will be different in quite a fundamental way. Causality is represented
as the possibility of signalling between subsets of intervening agents, and we do not want to associate
a particular distribution with the settings themselves. Our assumption allows us to explore the
correlations induced by more complicated operational assumptions, such as indefinite causality,
without worrying about re-deriving tailored free-will conditions for particular causal models (cfr.
the discussion of [77]). For us, free will is a global structural assumption describing the class of
admissible dynamical hidden mechanisms: the inputs should be chosen freely and are paramount for
describing the structure of operational contexts.

Another framework to analyse quantum causal correlation beyond standard no-signalling has
recently been described by Guryanova et al. [70, 76, 117]. They consider the restrictions to
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Figure 1.13: Causal structure of the two-party Bell scenario as described in [58]. The dots represent
observable random variables, and the links are causal dependencies. In particular, we see that there is
no distinction between settings and outcomes. The free will condition, similarly to no-signalling, is
encoded in the causal relationship between the variables.

correlations imposed by the ‘no-backwards-in-time signalling condition’ (NBTS). For Guryanova
et al., a closed laboratory is described by an agent receiving a classical random variable only after
performing a fixed measurement on his incoming system. The agent can then use measurement
results and the classical random variable to apply a correction before sending the system outside the
laboratory. In their framework, this no-signalling condition already limits the correlations that are
realisable by a single laboratory, i.e. for every external input 𝑥 and measurement outcome 𝑎 we must
have that 𝑝(𝑎 |𝑥) = 𝑝(𝑎), the probability of outcomes is independent of the input communicated from
outside the laboratory.

In the context of our work, it is important to allow correlations between classical variables
parametrising an event (the choices of possible interventions) and the classical variables describing
the results of chosen measurements. In particular, the convex polytope of correlations associated with
causally ordered agents will be different if one uses the NBTS condition proposed in [70] against
the usual ‘no-signalling from the future’ which is ubiquitous in operational approaches to quantum
theory (a formulation of this principle can be found for example in [38, 47] or in Section 1.3.1.2
where we present CPTs, i.e. categorical probabilistic theories).

1.4.2 Indefinite causality

The idea of intertwining indefinite causality with quantum information dates back to work by
Hardy [72], where he proposes a generalised notion of computation consistent with a dynamical
background spacetime. More recently, discussions on indefinite causality were reignited with the
work of Chiribella et al. [39, 69] on the quantum switch, and the attempts to justify the experimental
realisability of indefinite causal orders [69, 122, 22, 50, 124, 116, 123]. It has been shown in
[141, 107] that superposing the causal orders of channels overcomes the subtleties about the general
notion of ‘quantum control’ exposed in [40, 3, 99] and can be given a sound operational semantic.
Discussions about the feasibility of indefinite causal order triggered from one side the attempt to
understand the most general way of composing quantum instruments without breaking the local
structure of the theory, and from the other, the realisation that a clear understanding of the correlations
compatible with more or less exotic descriptions of causal composition was still missing. This
prompted a characterisation of general quantum supermaps that would generalise the sequential
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and parallel composition of laboratories. Assuming that a theory enhanced with the possibility of
exotic causal orders would be locally embodied by the usual quantum theory, Oreshkov, Costa and
Bruckner introduced the concept of process matrices [101] which developed in an active research
area [31, 12, 1, 141]. Process matrices describe the spaces of general quantum ‘supermaps’, i.e.
operations mapping quantum instruments or classically controlled quantum instruments to valid
empirical models.

This formalism showcases that beyond the standard paradigm of the sequential and parallel
composition of quantum process, other types of supermaps interact well with the linear and
probabilistic nature of the theory. While the idea of process matrices is very distant from the external
and theory independent treatment of signalling relations that we want to discuss here, the notion of
causal inequalities which has been developed from the study of process matrices, can be used—by
virtue of it theory independent nature—to draw fruitful connections between the two perspectives. In
[101], these inequalities are presented as linear bounds which are respected by distributed protocols
exhibiting definite causal order or a probabilistic mixture thereof. The causal GYNI (Guess Your
Neighbour’s input) inequality provided in [101] is derived from the following bipartite game: Bob
has the task of communicating a bit to Alice or guessing Alice’s bit depending on the value of a
classical random variable 𝑏′. If we assume that Alice causally precedes Bob or vice versa, or if
the order is given by a classical mixture of the two causal orders, the probability of success for this
game is always bounded by 3/4. It can be shown that the framework of process matrices allows for a
violation of causal inequalities [101, 20, 21]. The OCB protocol gives the archetypical example of a
violation of causal inequalities. In this protocol, two agents freely choose the bits 𝑎, 𝑏, 𝑏′ and record
the output of their measurement in 𝑥, 𝑦:

• Alice: always measures the incoming qubit in the 𝑧 basis, assigning the value 𝑥 = 0 to the
outcome 0 and 𝑥 = 1 to the outcome 1. Then prepares a qubit encoding 𝑎 in the computational
basis.

• Bob: for 𝑏′ = 0 he measures in the 𝑥 basis and, if the outcome of the measurement is |+〉,
encodes 𝑏 in the 𝑧 basis of the outgoing qubit as follows: 0 ↦→ |0〉 and 1 ↦→ |1〉. Otherwise, if
the outcome of the measurement is |−〉, 𝑏 is encoded as: 0 ↦→ |1〉, 1 ↦→ |0〉. The value of 𝑦 is
not relevant to the protocol and can be set arbitrarily. When 𝑏′ = 1, Bob measures the incoming
qubit in the 𝑧 basis and saves the outcome of the measurement in the bit 𝑦 independently on
whether 𝑏 = 0 or 𝑏 = 1.

The receipt above can be turned into well defined classically controlled quantum instruments, which
can be inputted into the process matrix given by:

𝑊 𝐴1𝐴2𝐵1𝐵2 = 1/4
[
1𝐴1𝐴2𝐵1𝐵2 + 1/

√
2
(
𝜎𝐴2
𝑧 𝜎𝐵1

𝑧 + 𝜎𝐴1
𝑧 𝜎𝐵1

𝑥 𝜎𝐵2
𝑧

)]
(1.65)
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CAB 000 001 010 011 100 101 110 111
000 0 0 1/2 0 0 1/2 0 0
001 1/2 0 0 0 0 0 0 1/2
010 0 1/2 0 0 0 0 1/2 0
011 0 0 1/2 0 0 1/2 0 0
100 0 0 1/2 0 0 1/2 0 0
101 0 1/2 0 0 0 0 1/2 0
110 1/2 0 0 0 0 0 0 1/2
111 0 0 1/2 0 0 1/2 0 0

Figure 1.14: The maximally tripartite causally nonseparable process from [19]

CAB 000 001 010 011 100 101 110 111
000 1/4 0 0 1/4 1/4 0 0 1/4
001 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8
010 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8
011 1/4 0 0 1/4 0 1/4 1/4 0
100 0 1/4 1/4 0 0 1/4 1/4 0
101 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8
110 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8
111 1/4 0 0 1/4 0 1/4 1/4 0

Figure 1.15: A tripartite process where single parties do not signal to each other and 𝐶 encodes a
signal in the correlations of the outcomes measured by 𝐴 and 𝐵.

The probability of success in the GYNI game is, in this case, given by (2 +
√

2)/4 > 3/4 proving the
violation of a causal inequality.

Another interesting example can be found in [21]. In this work, Baumeler and Feix classify
the set of ‘classical’ process matrices, i.e. process matrices which can be thought of as stochastic
matrices from sets of classical inputs to sets of classical outputs and which are compatible with any
classical local operation. Here by local operation we mean a stochastic process 𝑃 : 𝐴 × 𝐼 → 𝑂 × 𝑋
where 𝑋 is a classical output (i.e. the result of a measurement), 𝐴 is a choice of intervention, 𝐼, 𝑂 are
respectively the local incoming and outgoing systems which are then fed into the classical process
matrix.

Of particular interest is trying to understand the relationship between the ‘internal’ description of
the exotic causality described by process matrices and the ‘external’ class of correlations that this
formalism induces. It is well-known [13, 102] that causal non-separability, i.e. the impossibility of
decomposing the general process matrix as two causally ordered super-operators, is not sufficient
to induce a violation of causal inequalities. An example of this is provided by the process matrix
representing the quantum switch, which cannot be written as a sum of two causally ordered matrices,
and for which no choice of quantum instruments can lead to a violation of causal inequalities.
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Most of the early literature on process matrices focuses on the bipartite case. Going beyond this
assumption, the notion of definite causality becomes particularly subtle. In the three-partite case,
we encounter situations where the causal order can be chosen contextually to some agents’ choices.
Similarly to signalling, this form of contextuality (not to be distinguished from the contextuality
generalising non-locality) would have to be tamed to avoid influences from the future to the past.
Oreshkov and Giarmatzi in [102] provide the following inductive description of multipartite definite
causality, flexible enough to describe protocols where events can determine the causal orders of
subsequent parties4:

Definition 1.32 (Multipartite causality [102]). A conditional distribution 𝑝(𝑜 |𝑖) is causal if it can be

constructed inductively as follows:

• For 𝑁 = 1, any valid probability distribution 𝑃(𝑎1 |𝑥1) is causal;

• For 𝑁 ≥ 2, an 𝑁-partite correlation is causal if and only if it can be decomposed in the form

𝑃(𝑎 |𝑥) =
∑︁
𝑘∈N

𝑞𝑘𝑃𝑘 (𝑎𝑘 |𝑥𝑘)𝑃𝑘,𝑥𝑘 ,𝑎𝑘 (𝑎\𝑘 |𝑥\𝑘) (1.66)

with 𝑞𝑘 ≥ 0 for each 𝑘 ,
∑
𝑘 𝑞𝑘 = 1 where (for each 𝑘) 𝑃𝑘 (𝑎𝑘 |𝑥𝑘) is a single-party (and

hence causal) probability distribution and (for each 𝑘 ,𝑥𝑘 ,𝑎𝑘), 𝑃𝑘 (𝑎𝑘 |𝑥𝑘)𝑃𝑘,𝑥𝑘 ,𝑎𝑘 (𝑎\𝑘 |𝑥\𝑘) is

a causal (𝑁 − 1)-partite correlation.

This notion of definite causality is used by Abbott et al. [1] to generalise causal inequalities to
an arbitrary number of parties. Abbott et al. also show that any causal process can be written as
a convex sum of deterministic functions satisfying Equation 1.66. They form a polytope in which
vertices are given by causal deterministic functions, and its facets define all causal inequalities.

The consequences of this simple observation are far-reaching even though not explicitly discussed
in the paper; it suggests that when we allow maximal flexibility in the causal structure explaining the
empirical behaviour, the difference between local and non-local scenarios vanishes. Every causal
conditional distribution of outcomes satisfying causal inequalities can be described as arising from
some underlying functional (classical) behaviour where hidden random variables obfuscate the causal
structure. Any non-local behaviour can be explained classically if we allow explanations exhibiting
arbitrary causal structures. We will explain that this ceases to be the case for more restrictive but still
operationally meaningful causal assumptions, which preserve a crucial distinction between local and
non-local processes allowing us to define contextual causality.

A focus on different types of subtleties that must be considered when talking about causal
correlations is given in [2]: one of the problems associated with device independent verification of
genuinely non-causal behaviour lies in the assumption that agents are ‘causally localised’. We can

4Note that we take this definition in the form provided by [1]
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expect such non-casual behaviour to vanish when two or more parties are coalesced, similarly to
how certain tripartite correlations could have been considered local for some coarse-graining of the
agents. One of the possibilities is, as done by the authors of [1], to tackle this problem by providing
definitions for non-causal behaviours that cannot be coarse-grained into causal definiteness.

In this dissertation, we offer a description of ‘definite’ causality which subsumes the one provided
in [102] and where the burden gets shifted from an inductive description of the allowed distributions
to the description of topological spaces onto which data can be assigned to construct the relevant
polytopes. We will substantially generalise the causal inequalities found in [1] and [2] to show how
to derive a convex space of correlations from a plethora of operational assumptions. The observation
from [1] that any causal process can be written as a convex sum of deterministic behaviours will then
amount to the fact that the set of global sections for space of histories, which are associated with
the indiscrete causal order, coincides with polytope obtained taking the convex hull of causaltope
exhibiting definite causality (more about this in Chapter 5 and Chapter 6). In general, however, the
requirement of satisfying causal inequalities may be too strict; substituting the indiscrete preorder
with a different overarching preorder leads to the phenomenon of ‘contextual causality’, which will
be exemplified in Chapter 6.

No ‘realisable quantum process (even though there is some ambiguity in defining what a realisable
quantum process means) is known for violating the most general causal inequalities. On the contrary,
it has been proved in [118] and [141] that quantum processes endowed with the possibility of the
quantum control of causal orders cannot violate them and, independently from the observation in [1],
that they can always be decomposed as probability distributions on the set of deterministic functions
with definite causality. The work by Wechs et al. [141] describes classes of circuits where the order
of gates is classically and causally controlled, similarly to what we propose in [107] to allow a broader
class of dynamically controlled causal orders.

There is an extensive literature on the study of how process matrices [75, 100, 31, 13, 1, 102,
12, 141] interface with causality. The generality of their definition trades off with the compositional
ambitions of operational quantum theory: they must be thought of as describing the entire ‘mediating
spacetime’ surrounding some sets of laboratories. We cannot input into the arguments of a process
matrices two laboratories which are signalling without expecting the creation of paradoxical time
loops. Therefore, a compositional theory of how general higher-order maps interact with non-trivial
causal structures as inputs has to consider the different possible ‘signalling types’ of multipartite
instruments. This is studied in [81, 23]. In [75], Oreshkov and Hoffreumon generalise process
matrices to allow their inputs to be not just simple quantum instruments but general quantum combs
with arbitrary causal structures.

54



1.4.3 Quantum and Classical Causal Modelling

A different approach from the attempts to frame quantum causality inside classical outcomes and
interventions is based on describing it directly as a quantum mechanical phenomenon. For the
classical case, Judea Pearl [104] considers a causal structure on a set of variables 𝑉 to be described
by a directed acyclic graph where each node corresponds to a random variable, and each directed
edge witnesses causal dependency. A causal model 𝑀 = (𝐷,Θ𝐷) is a directed acyclic graph 𝐷 and a
set of causal parameters Θ𝐷 given by a function for every 𝑥𝑖 ∈ 𝑉 such that 𝑥𝑖 = 𝑓𝑖 (𝑝𝑎𝑖 , 𝑢𝑖), where
𝑝𝑎𝑖 denotes the set of causal parents of 𝑣𝑖 in 𝐷 and 𝑢𝑖 a local disturbance described by a probability
measure 𝑝(𝑢𝑖). Complete knowledge of all the values 𝑢𝑖 and the structural equations can be used to
deterministically predict the value of a node given values for its ancestors. The assumption that the
local noise represented by the 𝑢𝑖’s is independently distributed makes the casual model Markovian
for 𝐷, i.e. the distribution on each variable (conditional on values for its parents) is independent of
its non-descendants.

Fine-tuning, or stability as it is known in [104], is the property that the relationship of independence
for a given causal explanation is stable with respect to a change of the causal parameters:

Definition 1.33 (Stability [104]). Let 𝑃(𝑀) be the distribution arising from the causal model 𝑀 , and

let 𝐼 (𝑃) denote the set of all conditional independence relationships embodied in 𝑃. A causal model

𝑀 = (𝐷,Θ𝐷) generates a stable distribution if and only 𝑃(𝑀) contains no extraneous independences

- that is, if and only if 𝐼 (𝑃((𝐷,Θ𝐷))) ⊆ 𝐼 (𝑃((𝐷,Θ′𝐷))) for any set of parameters Θ′
𝐷

.

We cannot always recover a stable causal model explaining quantum correlations. Wood and
Spekkens have provided a novel characterisation of Bell’s theorem in [144] by showing that: choice
independence (no super-deterministic correlation between the choices of the agents), local setting
dependence (the local measurement output is allowed to be causally dependent on the settings),
no-signalling (conditional independence of each local outcome from the distant local setting), and
no fine-tuning (or stability) imply bell inequalities. A quantum violation of such inequalities
witnesses the impossibility of stable causal discoveries. Cavalcanti extends this result, proving that
Bell inequalities can be recovered from a subset of the original assumptions: no-signalling and
no-fine-tuning [35, 105]. The result in [35] has been generalised in [105] to an arbitrary number of
parties and general contextual scenarios, going beyond the particular structure of contexts imposed
by nonlocality.

While works like [35, 144, 105] look at quantum correlations from the perspective of classical
causal modelling, there have been several proposal of a quantum generalisation of causal modelling
itself [17, 18, 36, 74, 106, 37, 10, 46], including quantum generalisations [17, 18] of Reichenbach’s
Principle [119]. Barrett, Lorentz and Oreshkov generalise Pearl’s framework by going from a
fundamentally functional description of causal mechanisms to unitary transformations, taking the
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causal relata to be ‘loci of possible interventions’, i.e. pairs of Hilbert spaces representing an incoming
and outgoing system. One of the main consequences is a generalisation of the notion of the Causal
Markov condition to the quantum domain:

Theorem 1.34 (Factorization of a unitary channel from no-influence conditions [17]). Let

𝜌𝐵1...𝐵𝑘 |𝐴1...𝐴𝑛
be the CJ representation of a unitary channel with 𝑛 input and 𝑘 output sys-

tems. Let 𝑆𝑖 ⊆ {𝐴1, . . . , 𝐴𝑛}, 𝑖 = 1, . . . , 𝑘 , be the 𝑘 subsets of input systems such that there is no

influence from the complementary sets to 𝐵𝑖 . Then the operator factorizes in the following way

𝜌𝑈
𝐵1,...𝐵𝑘 |𝐴1...𝐴𝑛

=

𝑘∏
𝑖=1

𝜌𝐵1 |𝑆𝐼 (1.67)

where the marginal channels commute pairwise, [𝜌𝐵𝑖 |𝑆𝑖 , 𝜌𝐵 𝑗 |𝑆 𝑗
] = 0 for all 𝑖, 𝑗 .

Barrett et al. understand causal relationships as structural properties of unitary transformation. As
such, the notion of causal influence is more general than requiring factorisability of a unitary matrix
into causally faithful quantum circuits as in [46]. Causal nodes are not understood operationally, with
compositional semantics, but are of a more decompositional flavour. While it is possible to show
that the absence of a causal relation between 𝐴 and 𝐵 (respectively, a tensor factor of the input and
output of the unitary operator) can be witnessed by a circuital realisation of the process that makes
this particular causal disconnection evident, in general, no circuit faithfully models all the causal
constraints simultaneously. Attempts to understand the decomposition of the unitary operators using
a causally faithful graphical language can be found in [86, 139].

1.4.4 Contextuality and the sheaf-theoretic approaches

Almost simultaneously to the proof of the inadequacy of local realism, Simon Kochen and Ernst
Specker tackled the classical quantum dichotomy without relying on the causal structure of a protocol.
They considered the possibility of assigning deterministic values to measurements [132] in a way
which adheres to our classical intuition. The failure of such classical assignments initiated the
study of quantum contextuality. Similarly to non-locality, contextuality is a property exhibited by
quantum systems which limits the possible classical explanation of a quantum phenomenon. Finding
a clear understanding of how and where quantum formalism diverges from classical reasoning is as
multifaceted as the study of the dichotomy between classical and quantum causality: many different
notions of contextuality appeared in the literature, some of which will be briefly discussed in this
section.

In their seminal paper, Kochen and Specker [132] explain that a reasonable notion of hidden
variables would have to entail an embedding from the set of quantum observables to a commutative
algebra (such as the space of real-valued functions of phase space). The set of quantum mechanical
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observables constitutes a partial algebra if we restrict the operation of sum and product to be defined on
commutative operators, and they show that its partial subalgebra of idempotents cannot be embedded
into a Boolean algebra and, as a consequence, that the desired embedding from the observables to a
commutative algebra describing the assignment of a classical evaluation is impossible.

Kochen and Specker’s work aims at proving a mathematical statement about quantum theory,
and it differs in intentions from Bell’s violation of local causality. This is because the theorem
relies on assumptions about the algebraic structure of quantum observables, while Bell inequalities
depend on general assumptions about the background’s causal structure. Kochen and Specker’s
contextuality tells us that using quantum theory to describe specific empirical observations reveals
an intrinsic degree of non-classicality implicit in the theory, keeping open, at least in principle, the
possibility that a different theoretical description of the same empirical behaviour might cease to
exhibit this contextual behaviour. A violation of Bell’s inequality certifies (upholding the assumption
of non-disturbance between spacelike separated interactions) the inadequacy of local causality as a
descriptive principle of nature, independently of the theory used to describe the correlations.

Some operational assumptions will need to persist in both arguments. However, the cogent
question is whether it is possible to develop a more general phenomenology of contextuality, which
describes it as a general property of empirical observations under operational assumptions that are as
theory-independent as possible.

Contextuality in quantum theory is studied with a plethora of different mathematical tools and
representation [134, 6, 34, 51, 134, 135, 127]. It is beneficial for our research to make an initial
distinction between two approaches which are often not very clearly differentiated in the literature.
Using the terminology introduced by Budroni et al. in [33], contextuality can be understood either
from the effect perspective or from the observable perspective. In the effect perspective, single
measurements constitute contexts which are then inhabited by self adjoint positive operators. In
the observable perspective, the content of these contexts inextricably depends on the high-level
description of the theory, specifically on how the theory describes individual ‘effects’ updating the
state upon the record of a measurement outcome. In the observable perspective, the primary objects
are the observables themselves, to which one has to impose additional operational criteria that allow
one to discriminate the sets of observables which constitute a context.

Any attempt to experimentally ‘verify’ contextuality is controversial, not only for the technical
difficulties that ‘noisy’ measurements may entail, but also conceptually [79, 15, 96, 131]. The
original aim of contextuality was to exclude a possible classical description of the standard quantum
formalism. What happens if one wants to assume as little as possible about the theory explaining
an empirical model? What structural assumptions must one impose to be able to speak about a
contextual or a non-contextual explanation of raw data?
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Kent and Barrett have eloquently expressed an argument questioning the relevance of contextuality
in [15], where they suggest that the very notion of empirical verification of contextuality may not
stand on substantial conceptual grounds:

We only wish to note that the class of such alternatives is not merely as general and natural
as the class of locally causal theories. So far as the project of verifying the contextuality
of Nature is concerned (as opposed to the contextuality of hidden variable interpretations
of standard quantum formalism), the question is of rather limited relevance and interest.
[15]

In our work, we are not particularly worried about what constitutes a context or whether there
is or there is not an experimentally meaningful way of justifying that two measurements lie in the
same context. Contexts are merely considered part of the operational description of the experimental
protocol, regardless of whether they come from causal assumptions related to no-signalling or more
general assumptions of non-disturbance.

The observable and the effect perspective are equivalent for the ur-case, which was of interest
to Kochen and Specker. For a three-dimensional Hilbert space, a family of commuting dichotomic
observables {Π𝑖}𝑖=0,1,2 where 𝑃𝑖 is the projector associated to the value 1 and 1 − 𝑃𝑖 the projector
associated to the value 0 can be equivalently described as a single observable with effects {𝑃0, 𝑃1, 𝑃2}.
There is no particular benefit in adhering to a particular view, but this coincidence of perspectives
might be an exclusive feature of quantum theory. Quantum nonlocality can be seen as a particular
example of contextuality, and it naturally speaks the language of the ‘operational perspective’:
contexts are given by sets of sharp measurements which must be non-disturbing due to the causal
relationship between the two agents.

The approach developed by Spekkens in [134], generally known as Spekkens’s contextuality, has
been developed out of the ‘effect perspective’ to account for the possibility of noisy measurements
and to provide contexts of effects with more solid operational foundations. Spekkens contextuality
has been further developed, including several discussions about experimental verifiability in [83,
128, 126, 127, 95]. This redefinition of contextuality, even if it may, at first sight, seem akin to our
operational spirit (also considering the extensive use of the notion of process theories [126, 127]) will
not be relevant to our work, which will not assume the structure which is implicit in the definition of
an operational theory or an ontic model.

Despite the apparent differences, Bell’s nonlocality (focusing on correlations between spacelike
separated events) and KS contextuality (dealing with ideal measurements that do not disturb the
outcome statistics of compatible observables) can be easily reconciled. Abramsky and Brandenburger
[6] make this unification explicit. Nonlocality and contextuality are instances of the same mathematical
problem: finding a global section to some compatible family of distributions for a given presheaf.
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The sheaf theoretic approach to non-locality is not only a robust unifying framework but also provides
a general category-theoretical flavoured description of many of the notions ubiquitous in the literature
about hidden variables. Parameter independence, 𝜆-independence, factorisability and determinism

are all cast out in great generality and the same mathematical arena using the language of monads
and presheaves. The generality of the sheaf-theoretic machinery guarantees that once we redefine the
topological spaces and the presheaves that are relevant to our investigation, the formalism will be
automatically suited to generalise many of the results that already shaped the study of non-locality
and contextuality and bring them into the domain of definite and indefinite causality.

One of the salient features of the Abramsky-Brandenburger approach is the possibility of
discussing contextuality and nonlocality both qualitatively and quantitatively. The contextual fraction
for a given empirical model 𝑒 is defined in [5] as the maximal value of 𝜆 in the decomposition:

𝑒 = 𝜆𝑒𝑁𝐶 + (1 − 𝜆)𝑒′ (1.68)

where 𝑒𝑁𝐶 is a non-contextual model and 𝑒′ is a non-signalling empirical model. It parametrises the
distance between the classical polytope and the faces of the non-contextual polytope characterising
maximally contextual scenarios.

For example, Figure 1(a) of [5] shows the degree of nonlocality exhibited by quantum instruments
on the Bell state where the agents have the choice to either measure in the 𝑋𝑌 plane by an angle
𝜙1 or an angle 𝜙2 from the 𝑋 axis in the clockwise direction. In the context of our work, these
quantitative approaches will prove particularly relevant (in particular, we will reference Figure 1 of
[5] again in Chapter 6). Quantifying contextuality is mainly concerned with the interplay between
the classical and the contextual polytope. On the other hand, when considering causal scenarios,
different polytopes represent different causal assumptions (causaltopes). The quantitative part of
our sheaf-theoretic formalism will not only allow us to quantify the ‘non-classical’ behaviour but
also to perform causal discovery. For example, by finding the decomposition of an empirical model
for the polytopes associated with causally definite scenarios, we can quantify the degree of casual
indefiniteness showcased by empirical data.

Most of the literature in quantum contextuality assumes hidden variables as being static; not
much has been said about the possibility of hidden variables being allowed to evolve in time, let
alone general causal scenarios. A notable exception is 1985 Leggett and Garg [84, 14, 92] work on
macro-realism where, under some rather strong assumption of classicality: macroscopic realism and
non-invasive measurability they construct an inequality aimed at ruling out macro-realist explanations.

The work of Legget-Garg is the first example where sequentiality in time and contextuality are
seen as interconnected. Suppose that a quantity 𝑄 which can take values −1, +1 is measured at three
different times 𝑡0, 𝑡1, 𝑡2. In between the measurements, the system evolves according to its natural
dynamics. To construct the table of conditional probabilities, we consider three contexts: the cases
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in which the measurements are performed at times (𝑄0, 𝑄1), (𝑄1, 𝑄2), (𝑄0, 𝑄2) and record the
respective outcomes. No-signalling from the future implies that:

𝑝(𝑄0 = 𝑞𝑖 , 𝑄1 = 𝑞 𝑗) =
∑︁

𝑞𝑘 ∈(1,−1)
𝑝(𝑄0 = 𝑞𝑖 , 𝑄1 = 𝑞 𝑗 , 𝑄2 = 𝑞𝑘) (1.69)

Furthermore, non-disturbing measurability can be mathematically rephrased as:

𝑝(𝑄0 = 𝑞𝑖 , 𝑄1 = 𝑞 𝑗) =
∑︁

𝑞𝑘 ∈(1,−1)
𝑝(𝑄0 = 𝑞𝑖 , 𝑄1 = 𝑞 𝑗 , 𝑄2 = 𝑞𝑘) (1.70)

𝑝(𝑄0 = 𝑞𝑖 , 𝑄1 = 𝑞 𝑗) =
∑︁

𝑞𝑘 ∈(1,−1)
𝑝(𝑄0 = 𝑞𝑖 , 𝑄1 = 𝑞 𝑗 , 𝑄2 = 𝑞𝑘) (1.71)

With these inequalities at hand, we can infer the following condition on the expected value of the
correlations

−1 ≤ 〈𝑄0𝑄1〉 + 〈𝑄0𝑄2〉 + 〈𝑄1𝑄2〉 ≤ 3 (1.72)

Leggett-Garg shows that a violation of less than −1 can be obtained in quantum theory.
There is a bit of a controversy regarding what Leggett-Garg inequalities actually show. Maroney

and Timpson [92] argue that despite the formal similarity of the approach to Bell’s inequalities,
they are methodological very different and cannot be used to rule out macro-realism in a suitable
model-independent manner. The class of theories violating the inequality cannot be characterised in
a simple way without appealing to Spekkens’ operational formalism as done in [92]. The opinion
of Timpson and Maroney is that if a methodological parallel between Bell and Leggett-Garg, then
"it must be drawn between non-invasive measurability and non-locality". Bacciagaluppi has posed
similar criticisms in [14]. Rephrasing Legget-Garg in our framework will support this view and show
that a violation of the above inequalities is entirely ascribable to a failure of no-signalling and not to a
generalised notion of contextuality as it is often thought.

Another work on this line is Mansfield and Kashefi’s [89] proof that contextuality in time is
necessary and sufficient to get an advantage for the deterministic computation of non-linear functions.
A notion of non-contextuality in time can be recovered from the ontological model framework:
a system is contextual when the empirical data obtained by sequential transformations cannot be
reproduced by analogous modular transformation on the ontic states. In our work, the relationship
between contextuality and causality is different; we never appeal to the existence of an ontic theory
that describes the evolution of hidden variables but to mere logical consistency.

The relationship between contextuality and indefinite causality has been previously investigated
in [130]. They approach the problem from the ontological framework perspective and show that, in
general, it is not possible to construct an ontological theory which is both instrument and process
non-contextual that can provide an explanation for all protocols described by process matrices.

From our perspective, however, which differs from Spekken’s approach, contextuality is seen as
the incompatibility of the empirical model expressed by quantum theory with a possible explanation
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in terms of classical functions coordinating the inputs with the outputs. As shown in [1], every
process which does not violate causal inequalities can be deemed as non-contextual if we allow the
classical explanation to exhibit arbitrary definite causality between the events. It follows that, at
least for quantum controlled processes, the possibility of arbitrary causal explanation renders such
correlations always local.
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Chapter 2

Giving operational meaning to indefinite
causality

2.1 Introduction

The first appearance of the notion of ‘indefinite causality’ in the context of quantum information
can be traced back to [72]. Whether two events are timelike or spacelike separated depends on the
spacetime metric, which is a dynamical variable in the context of GR. In a putative theory of quantum
gravity, we expect to be able to promote these degrees of freedom from classical to quantum. In the
seminal [72] Hardy attempts to provide a description of what indefinite causal structure could refer
to:

Indefinite causal structure is when there is, in general, no matter of fact as to whether the
separation between two events is time-like or not. (Lucien Hardy [72])

These words suggest that a description of indefinite causality must be amenable to empirical
testing. Matters of facts are extracted analytically from observational data. Suppose indefinite
causality is witnessed by the impossibility of describing systems’ evolution in time, as Hardy develops
in his paper. In that case, this must come at odds with our empirical access to quantum phenomena
being unavoidably described as evolving in time. Interactions giving rise to measurements take place
in spacetime, and the empirical detectability of indefinite causality will be interconnected with the a
priori causal assumptions making measurement well defined in the first place.

So can we even make sense of indefinite causality operationally? We will see in Chapter 5 and
Chapter 6 what it means to certify indefinite causality from the bare correlations alone. In this
chapter, however, we start with a more straightforward task: we extend a theory by giving semantics
to indefinite causality from the bottom up. If this reminds us of the process matrix formalism, we
underline that while they dictate a top-down approach by considering all causal correlations that
are compatible with local quantum experiments, here we investigate how the concept of indefinite
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causality can be supplemented to a theory where compositionality and the importance of the monoidal
composition of processes are at the forefront.

A discussion about the realisability and the advantages offered by indefinite causality in the
context of quantum theory can be found in [39] where they introduce a hypothetical device which can
coherently control the order of two arbitrary quantum channels: the quantum switch:

Definition 2.1 (Quantum switch [39]). Given two arbitrary quantum channels 𝑓 and 𝑔 with Kraus

forms 𝑓 (𝜌) = ∑
𝑖 𝑓𝑖𝜌 𝑓

†
𝑖

and 𝑔(𝜌) = ∑
𝑗 𝑔 𝑗𝜌𝑔

†
𝑗
. We say that switching the causal order of 𝑓 and 𝑔

gives the channelW𝑓 ,𝑔 (𝜎):
W𝑓 ,𝑔 (𝜎) =

∑︁
𝑖, 𝑗

𝑊 𝑓𝑖 ,𝑔 𝑗
𝜎𝑊

†
𝑓𝑖 ,𝑔 𝑗

(2.1)

where the Kraus operator𝑊 𝑓𝑖 ,𝑔 𝑗
is given by:

𝑊 𝑓𝑖 ,𝑔 𝑗
:= |0〉〈0| ⊗ ( 𝑓𝑖 ◦ 𝑔 𝑗) + |1〉〈1| ⊗ (𝑔 𝑗 ◦ 𝑓𝑖) (2.2)

Chiribella et al. point out that this definition is independent of the Kraus decomposition of 𝑓 and
𝑔, and that the assignmentW : 𝑓 ⊗ 𝑔 ↦→ W𝑓 ,𝑔 is linear and positive, thus being an example of a valid
supermap (or process matrix using the language of [101]). The following years saw a proliferation
of attempts to pinpoint the information theoretical and communication advantages provided by the
ability of superposing channels and their causal order [99, 3, 40, 11, 125, 101] and the possibility of
experimentally detecting such superpositions [91, 91, 41]. In particular, there has been some recent
speculation about the possibility of realising a genuine quantum switch by coherently controlling
the ‘spatial degree of freedom’ [103]. Unfortunately, the issue of delimiting a tight operational
setting in which to interpret the results is not ordinarily viewed as a necessity, sometimes leading to
misinterpretation of their physical significance. The goal of this section is first to provide a rigorous
standpoint from which to discuss the operational phenomenology of causal superposition and control
in quantum theory (without referring to the full generality offered by process matrices) and to provide
a recipe to construct empirical models which exhibit exotic causality. These models will be used as
proofs of concepts for our investigation in Chapter 6.

Reasoning about operational theories in the context where spacetime itself becomes a dynamical
variable carries a number of additional complications. For example, thinking about the setup and
outcomes of an experiment presupposes the existence of causally stable surroundings, where the
notions of cause and consequence take their familiar form independently of the specific processes
being performed. Failing these assumptions, how can we ensure that a mathematical model of
quantum theory in the presence of dynamical spacetimes is empirically testable? This is an important
question upon which many others stumbled before us. For example, the following reflection can be
found in a prominent piece of literature on the application of sheaves and topoi to quantum theory
[78, 52]:
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“[A]round fifteen years ago, I came to the conclusion that the use of standard quantum

theory was fundamentally inconsistent, and I stopped working in quantum gravity proper

[...] [W]hat could it mean to ‘measure’ properties of space or time if the very act of

measurement requires a spatiotemporal background within which it is made?” (Chris J.
Isham [78])

We want to provide a sound way of constructing and characterising localised processes which
do not take place against a fixed causal background but rather against a ‘superposition’ of causal
backgrounds, determined by some “wave-function” over the set of all fixed causal backgrounds
compatible with the processes in question. We do so by first defining a general notion of ‘control’ of
processes, accommodating both the classical case—where the choice of process to execute can be
captured by some hidden variable—and the coherent case—where it might not be possible to establish
which one process was executed without reference to a specific measurement context. Armed with
such a notion, we show how to construct superposition of diagrams, giving semantics to the execution
of processes and operations against a dynamical causal background.

Control of causal orders is a case of a more general notion of control of quantum channels. The
recent years have been very prolific for the study of the quantum control of processes [138, 3, 107, 49].
A problem underlined by several works is that the notion of the quantum control of a general family
of quantum channels is itself ambiguous. An example of this is the claim made by [3] that ‘the output

of the interferometric circuit depends [...] on a more detailed description of the implementation of the

channels’. A similar problem has been highlighted by Daniel Oi [99], which unequivocally concludes
that ‘interferometry can be applied to the case of non-unitary processes to extract information about

the underlying physical processes which implement them’. This has been successively investigated
in several foundationally flavoured works [3, 40, 99, 138, 107] and prima facie seems to impose
a rupture of the notion of essentially unique purifications: channels acting on a single arm of an
interferometer can be physically purified in ‘inequivalent ways’, giving rise to different observational
statistics.

2.2 Controlled processes

Daniel Oi claimed [99] that by using interferometry to control quantum channels, the output
interference pattern depends on their particular Kraus decomposition. On the other hand, we have
seen that interferometry can hardly be interpreted as implementing the quantum control of a channel
but refers to a genuinely different resource. Araujo et al. proved in [11] that there can be no
well-defined higher order maps realising the control of channels, arguing that the circuit formalism
should be extended to allow for the description of the elementary interferometric setup for quantum
control. Similarly, Abbott et al. [3] explain this dependence on the Kraus decomposition as a
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physical phenomenon standing ‘in contrast to the usual paradigm of quantum channel’ and hinting at
fundamental inequivalence of different purifications that would require the description of channels
to be integrated by a transformation matrix depending on their physical realisation. We proceed to
formally study the notion of control of quantum channels and clarify some of the conceptual fog
surrounding it by providing an exact characterisation of the possible notion of ‘quantum control’.

We start by spelling out the most general definition of a controlled family of processes. Our
definition captures the idea of an agent being able to control the choice of morphisms by suitably
encoding and/or decoding classical information about their choice into and/or from a physical system.

Definition 2.2. Let C be a probabilistic theory, and let 𝐴, 𝐵 ∈ obj C be any two systems in the theory.

Let (𝐹𝑥)𝑥∈𝑋 be a family of processes 𝐹𝑥 : 𝐴→ 𝐵, not necessarily normalised or sub-normalised. A

controlled process for the family is a triple (𝐺, 𝑝, 𝑚) consists of a sharp preparation-observation

(SPO) pair (𝑝 : 𝑋 → 𝐻, 𝑚 : 𝐻 → 𝑋)—where 𝑋 is a classical system and 𝐻 is a generic

system—together with a process 𝐺 : 𝐻 ⊗ 𝐴→ 𝐻 ⊗ 𝐵 satisfying the following equations:

𝐺

𝑝

𝐵

𝐴𝑋

𝐻

=
∑︁
𝑥∈𝑋

𝑝

𝑥

𝑥

𝐹𝑥

𝐵

𝐴𝑋

𝐻

𝐺

𝑚

𝐵

𝐴

𝑋

𝐻

=
∑︁
𝑥∈𝑋

𝑚

𝑥

𝑥

𝐹𝑥

𝐵

𝐴

𝑋

𝐻

(2.3)

Conversationally, we will also say that (𝐺, 𝑝, 𝑚) is a ‘control of’ the family (𝐹𝑥)𝑥∈𝑋 .

The system 𝐻 acts as a physical control system, while the classical system 𝑋 contains the logical
information about the process choice. The SPO pair is used to encode the logical information into the
physical system and/or to decode it from the physical system. From the perspective of an actor using
the SPO pair to encode/decode the logical information, the controlled process is no different from
classical control.

Example 2.3. The following classically controlled process always exists in every probabilistic

theory:

∑︁
𝑥∈𝑋

𝐹𝑥

𝑥

𝑥

𝑋 𝐴

𝑋 𝐵

(2.4)

Conversationally, we will also refer to the above as the ‘classical control of’ the family (𝐹𝑥)𝑥∈𝑋 . Note

that if (𝐺, 𝑝, 𝑚) is any control of (𝐹𝑥)𝑥∈𝑋 then the triple ((𝑚 ⊗ 𝑖𝑑𝐵) ◦ 𝐺 ◦ (𝑝 ⊗ 𝑖𝑑𝐴), 𝑖𝑑𝑋 , 𝑖𝑑𝑋 ) is

always the classical control of the same (𝐹𝑥)𝑥∈𝑋 .
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The definition allows for much more general notions of control, as we shall shortly see, but it also
limits the amount of leakage between the input/output systems 𝐴, 𝐵 and the physical control system
𝐻. In particular, an agent without access to the output system 𝐵 cannot, through the SPO pair alone,
extract any information about the input state on system 𝐴 if the maps 𝐹𝑥 are normalised:

𝐺

𝑚

𝐴

𝑋

𝐻

=
∑︁
𝑥∈𝑋

𝑝

𝑚

𝑥

𝑥

𝐹𝑥

𝐴𝑋

𝑋

=
∑︁
𝑥∈𝑋

𝑋

𝑥

𝑥

𝑋

𝐴

=

𝑋

𝑋

𝐴

(2.5)

2.3 Coherent Control in Quantum Theory

Coherent control of families of pure maps is well defined up to the choice of a phase gate on the
control system.

Example 2.4. If (𝐹𝑥)𝑥∈𝑋 is a family of pure CP maps in quantum theory (e.g. isometries), a generic

coherently controlled process for the family uses C𝑋 as a control system and takes the following

form:

𝛼 𝐹 :=
𝐹

𝛼
(2.6)

where 𝛼 denotes an arbitrary phase in the canonical basis ( |𝑥〉)𝑥∈𝑋 for the control system. Conversa-

tionally, we will also say that the above is a ‘coherent control of’ the family (𝐹𝑥)𝑥∈𝑋 .

To prove the next proposition, we will need the following lemma, which establishes the uniqueness
up to a phase of two bipartite completely positive maps when they differ by local decoherence:

Lemma 2.5. Suppose that two pure completely positive channels are equal under local decoherence,

so that:

𝐺

𝐴C𝑋

𝐵C𝑋

= 𝐹

𝐴C𝑋

𝐵C𝑋

(2.7)

66



Then there exists a unitary phase 𝛼 : C𝑋 → C𝑋 such that

𝐺

𝐴C𝑋

𝐵C𝑋

= 𝐹

𝛼

𝐴C𝑋

𝐵C𝑋

(2.8)

Proof. We start by expressing the decohered channels as a sum in which local projectors are applied
to the decohered systems:

∑︁
𝑥

𝐺

𝐴

𝐵

𝑥

𝑥

C𝑋

C𝑋

=
∑︁
𝑥

𝐹

𝐴

𝐵

𝑥

𝑥

C𝑋

C𝑋

(2.9)

by postselecting by an arbitrary |𝑥〉 we have that for all ( |𝑥〉)𝑥∈𝑋 :

𝐺

𝐴

𝐵

𝑥

C𝑋

= 𝐹

𝐴

𝐵

𝑥

C𝑋

(2.10)

The equivalence between pure morphisms in the category of completely positive maps is witnessed
by an equality of the underlying linear maps up to a global phase so that for all |𝑥〉 in {|𝑥〉}𝑥∈𝑋 we get:

𝐺 ′

𝐴

𝐵

𝑥

C𝑋

= 𝑒𝑖𝜙𝑥 𝐹 ′

𝐴

𝐵

𝑥

C𝑋

(2.11)

where 𝐺 ′ and 𝐹 ′ are two Kraus operators of the corresponding channels 𝐺 (𝜌) = 𝐺 ′†𝜌𝐺 ′ and
𝐹 (𝜌) = 𝐹 ′†𝜌𝐹 ′. Using Equation 2.11 we can show that the Kraus operators for the original pure
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channels differ by a phase gate:

𝐺 ′

𝐴C𝑋

𝐵C𝑋

=
∑︁
𝑥

𝐺 ′

𝐴

𝐵

𝑥

𝑥

C𝑋

C𝑋

=
∑︁
𝑥

𝐹 ′

𝐴

𝐵

𝑥

𝑥

C𝑋

C𝑋

𝑒𝑖𝜙𝑥

= 𝐹 ′

𝛼

𝐴C𝑋

𝐵C𝑋

(2.12)

proving Equation 2.8. �

Proposition 2.5. Let (𝐹𝑥)𝑥∈𝑋 be a family of pure CP maps in quantum theory, not necessarily

normalised (i.e. not necessarily trace-preserving). Assume that (𝐺, 𝑝, 𝑚) is a controlled process for

the family with control system C𝑋 , where (𝑝, 𝑚) is the SPO for the canonical basis ( |𝑥〉)𝑥∈𝑋 and

where 𝐺 is itself a pure CP map. Then 𝐺 takes form (2.6) for some phase 𝛼.

Proof. In quantum theory, the normalised SPO pairs connecting a classical system 𝑋 and the quantum
system C𝑋 are exactly the preparations and measurements in some orthonormal basis of C𝑋 . Without
loss of generality, assume that the SPO pair is for the canonical basis ( |𝑥〉)𝑥∈𝑋 of the system C𝑋 :

𝑝 = 𝑚 = (2.13)

Now assume that (𝐺, 𝑝, 𝑚) is a controlled process for the family (𝐹𝑥)𝑥∈𝑋 . In particular, it satisfies
the following equalities for all 𝑥 ∈ 𝑋 , where on the right we have used the coherent control of
Example 2.4:

𝐺

𝑥

𝐴C𝑋

𝐵

=
𝑥

𝐹𝑥

𝐴C𝑋

𝐵

= 𝐹

𝑥

𝐴C𝑋

𝐵

(2.14)

Equation 2.14 together with the resolution of classical identity implies that:

𝐺

𝐴C𝑋

𝐵C𝑋

= 𝐺

𝐴C𝑋

𝐵C𝑋

= 𝐹

𝐴C𝑋

𝐵C𝑋

= 𝐹

𝐴C𝑋

𝐵C𝑋

(2.15)

By Lemma 2.5 the two maps are equivalent up to a local phase, proving Proposition 2.5. �
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Moving away from pure maps, the question arises what the ‘coherent’ control for arbitrary CP maps
should be. We adopt the following definition within our framework.

Definition 2.6. Let (𝐹𝑥)𝑥∈𝑋 be a family of CP maps in quantum theory, not necessarily normalised

(i.e. not necessarily trace-preserving). A coherently controlled process for the family is a controlled

process (𝐺, 𝑝, 𝑚) for the family such that 𝐺 is obtained as Tr𝐸 (𝐺 ′) for some pure CP map

𝐺 ′ : 𝐻 ⊗ 𝐴→ 𝐻 ⊗ 𝐵 ⊗ 𝐸 . Conversationally, we will also say that the above is a ‘coherent control

of’ the family (𝐹𝑥)𝑥∈𝑋 .

If each map 𝐹𝑥 in a family (𝐹𝑥)𝑥∈𝑋 of CP maps comes with a chosen purification 𝐹𝑥 = Tr𝐸 (�̂�𝑥)—
without loss of generality, using the same environment system 𝐸 for all purifications—then it is easy
to construct a coherent control of the family, by taking (𝐺 ′, 𝑝, 𝑚) to be the coherent control of the
family (�̂�𝑥)𝑥∈𝑋 of purifications and then discarding the environment 𝐸 of 𝐺 ′. However, it would be
desirable for such a construction to be a function of the family (𝐹𝑥)𝑥∈𝑋 alone, without dependence
on additional information. As shown by Proposition 2.5, this is indeed possible when all CP maps in
the family are pure. However, the following no-go result shows this to no longer be the case when
generic CP maps are considered.

Proposition 2.6. Let (𝐹𝑥)𝑥∈𝑋 be a family of CP maps in quantum theory. It is not generally possible

to construct a coherent control of the family which is a function of the family (𝐹𝑥)𝑥∈𝑋 alone, i.e. one

which is independent of a choice of purification for the CP maps in the family.

Proposition is the same as the statement that it is not generally possible to construct a coherent
control (Tr𝐸 (𝐺 ′), 𝑝, 𝑚) of the family (𝐹𝑥)𝑥∈𝑋 in such a way that the following equation holds for all
choices of unitaries𝑈𝑥 : 𝐸 → 𝐸 :

𝐺 ′

𝐻

𝐴𝐻

𝐵

𝐸 =

𝐺 ′

𝐻

𝐴𝐻

𝐵

𝑈

𝐸

𝐸 (2.16)

Note that the unitaries (𝑈𝑥)𝑥∈𝑋 correspond to all possible choices of purification for the CP maps
(𝐹𝑥)𝑥∈𝑋 .

Proof. Consider a coherent control (Tr𝐸 (𝐺 ′), 𝑝, 𝑚) of a family (𝐹𝑥)𝑥∈𝑋 of CP maps, where 𝐺 ′ is
pure. In particular, by Equation 2.3, the following equality is satisfied:
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𝐺′

𝐴𝐻

𝐵𝑋

=
∑︁
𝑥∈𝑋

𝑥

𝑥

𝐹𝑥

𝐴𝐻

𝐵𝑋

(2.17)

If �̂�𝑥 is a chosen purification of 𝐹𝑥 for each 𝑥 ∈ 𝑋—without loss of generality all with environment
𝐸—then we can create the coherent control of the family (�̂�𝑥)𝑥∈𝑋 and obtain the following equality:

𝐺′

𝐴𝐻

𝐵

𝑥

=
𝑥

�̂�𝑥

𝐴𝐻

𝐵

= �̂�

𝑥

𝐵

𝐻 𝐴

(2.18)

By essential uniqueness of purification, the following equality of pure CP maps must hold for some
choice of unitary 𝑉𝑥 : 𝐸 → 𝐸 , dependent on each specific value of 𝑥 ∈ 𝑋:

𝐺′

𝑥

𝐴𝐻

𝐵 𝐸

= �̂�

𝑉𝑥
𝑥

𝐴𝐻

𝐸𝐵

(2.19)

The equality above is equivalently an equality of linear maps up to a global phase 𝜑𝑥 , also dependent
on each specific value of 𝑥 ∈ 𝑋 . We can therefore put all 𝑥 ∈ 𝑋 together and obtain the following
equality of pure CP maps:

𝐺 ′

𝐻

𝐴𝐻

𝐵 𝐸

=
�̂�

𝑉𝜑

𝐴𝐻

𝐻 𝐵 𝐸

(2.20)

Any alternative choice of purification for each CP maps 𝐹𝑥 can be obtained by applying some unitary
𝑊𝑥 : 𝐸 → 𝐸 to the environment of our current choice of purification �̂�𝑥 . If the coherent control is to
be invariant under this choice of purification, the following equality must hold for all possible choices
of unitaries (𝑊𝑥)𝑥∈𝑋 :
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�̂�

𝑊

𝐴𝐻

𝐻 𝐵

𝑉𝜑

=

�̂�

𝑉𝜑

𝐴𝐻

𝐻 𝐵

(2.21)

For each 𝑥 ∈ 𝑋 , we can define a unitary𝑈𝑥 := 𝑉𝑥𝑊𝑥𝑉
†
𝑥 such that𝑈𝑥𝑉𝑥 = 𝑉𝑥𝑊𝑥 , so that the equality

above for all possible choices of unitaries (𝑊𝑥)𝑥∈𝑋 can be equivalently recast as the equality below
for all possible choices of unitaries (𝑈𝑥)𝑥∈𝑋 :

�̂�

𝑉𝜑

𝐴𝐻

𝐻 𝐵

𝑈

=

�̂�

𝑉𝜑

𝐴𝐻

𝐻 𝐵

(2.22)

The above is equivalent to Equation (2.16) in the statement of this Proposition holding for all (𝑈𝑥)𝑥∈𝑋 :

𝐺 ′

𝐻

𝐴𝐻

𝐵

𝐸 =

𝐺 ′

𝐻

𝐴𝐻

𝐵

𝑈

𝐸

𝐸 (2.23)

For a general such 𝐺 ′—i.e. for a general choice of (�̂�𝑥)𝑥∈𝑋—this equation cannot always be made to
hold for all (𝑈𝑥)𝑥∈𝑋 , leading to the statement of the proposition.

�

The classical control of arbitrary families of CP maps is trivially possible, as shown in Example 2.3.
The formulation of Proposition 2.3 shows that, on the other hand, the question of coherently controlling
families of CP maps is much more sophisticated, leading to some confusion in the literature about its
feasibility.

Oi in [99] interprets the failure to construct such a coherent control independently of the choice
of purification (aka choice of Kraus operators) as a sign that an interferometric realisation of such
coherent control would extract information about the underlying physical implementation of the
CP maps themselves. We have seen that this statement can be easily misinterpreted: the CP maps
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involved in the experiment are already the ‘physical’ ones—defined on the direct sum of the vacuum
sector and the 1-particle sector—and the results of the experiment are independent of the choice of
purification for them. This is obvious since the experiment itself can be easily written as a circuit.
What the results of the experiment actually depend on is the choice of purification for the ‘logical’
CP maps involved, those restricted to the 1-particle sector. This is due to the specific design of the
experiment: the implementation of the ‘physical’ CP maps is such that they react to the vacuum
state on their input by emitting a non-vacuum state |𝑒〉 on the environment 𝐸 . This is not physically
unreasonable, e.g. if the environment system comprises some static massive particle which is made
to interact with the photons passing in the interferometric setup. However, this dependence on the
choice of purification for the ‘logical’ CP maps goes away as soon as we allow the environment ‘rest’
state |𝑒〉 to be transformed covariantly with the choice of purification, i.e. if we set |𝑒〉 ↦→ 𝑈 |𝑒〉
whenever we change the purification by applying a unitary𝑈 : 𝐸 → 𝐸 to the environment.

It is this last observation which helps us frame the discussion by [99] within the context of
Proposition 2.3: given the two CP maps, acting on the vacuum and non-vacuum sectors respectively,
it is very much possible to find a coherent control which is invariant under the application of the same
unitary𝑈 to the environment of both purifications. This is always the case: if all 𝑈𝑥 : 𝐸 → 𝐸 are
chosen to be equal to some fixed𝑈, then Equation (2.16) always holds (because𝑈 is trace-preserving).
What is found to be impossible in the discussion by [99] is to choose such coherent control in a way
which is invariant under application of𝑈 to the environment of the non-vacuum sector map and of
the identity to the environment of the vacuum sector map. This issue indeed generalises and formed
the inspiration for our proof of Proposition 2.3.

2.4 Definite and Indefinite Causal Scenarios

When operational scenarios with definite causal order are depicted diagrammatically in the context
of probabilistic theories, it is easy to conflate the boxes in the diagrams with processes happening
locally at events (i.e. points in spacetime), and the wires in the diagrams with the information flow
establishing the causal relationships between said events. It has been previously argued [108] that
this practice—though natural and notationally pleasant—is not mathematically well-founded, as
there need not be a canonical way to decide how a process should be decomposed into a diagram
compatibly with a given definite causal structure. As a consequence, two ingredients are needed
when talking about such operational scenarios:

(i) a causal graph, representing the events in the scenario and their definite causal order;

(ii) a map assigning each event in the scenario to the process happening at that event.
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The mathematical structure introduced in [108] as the substrate for such operational scenarios is
that of framed causal graphs. For reasons which will become clear later on, we generalise the
original definition to include the possibility of multiple edges between the same pairs of events.
Furthermore, we include some additional information about the classical interface of the local
processes/experiments, in the form of finite sets of input values that can be used to control them and
output values for their outcomes.

Definition 2.7. A framed multigraph is an directed multigraph Γ 1 equipped with the following data:

• a sub-set in (Γ) ⊆ nodes (Γ) of the nodes of Γ—the input nodes—such that each 𝑥 ∈ in (Γ)
has zero incoming edges and a single outgoing edge;

• a sub-set out (Γ) ⊆ nodes (Γ) of the nodes of Γ—the output nodes—such that each 𝑥 ∈ out (Γ)
has zero outgoing edges and a single incoming edge;

• a framing for Γ, which consists of the following:

– a total order on in (Γ);

– a total order on out (Γ);

– for each node 𝑥 ∈ nodes (Γ), a total order on the edges outgoing from 𝑥;

– for each node 𝑥 ∈ nodes (Γ), a total order on the edges incoming to 𝑥;

We refer to nodes in in (Γ) or in out (Γ) as boundary nodes and to all other nodes in Γ as internal
nodes. An acyclic framed multigraph is a framed multigraph which is acyclic (and in particular has

no loops).

Remark 2.8. The input and output nodes of a framed multigraph are designed to behave as ‘half-

edges’: when two framed multigraphs Γ and Γ′ are composed sequentially, the outputs of Γ and the

inputs of Γ′ are joined and disappear, each pair of corresponding output/input resulting in a single

edge of the composite framed multigraph Γ′ ◦ Γ. (We do not use such composition here.)

Definition 2.9. A definite causal scenario is a triple Θ = (Γ, 𝐼, 𝑂) of an acyclic framed multigraph

Γ with:

• a finite set 𝐼𝜔 of classical inputs for each 𝜔 ∈ ev (Θ), i.e. the values available locally to

control the process at the event;

• a finite set 𝑂𝜔 of classical outputs for each 𝜔 ∈ ev (Θ), i.e. the values that the process at the

event can return locally as its outcome.

1A directed multigraph Γ consists of a set nodes (Γ), a set of edges (Γ) and a pair of functions tail : edges (Γ) →
nodes (Γ) and head : edges (Γ) → nodes (Γ) specifying the tail and head of each edge respectively.
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In the above, we have defined the events in the scenario as the set ev (Θ) := nodes (Γ) \(in (Γ) t
out (Γ)) of internal nodes for Γ.

Remark 2.10. Compared to the original [108], we have restricted our attention to chronology
respecting scenarios, i.e. those corresponding to acyclic framed multigraphs. However, one could

easily extend Definition 2.9 to one for chronology violating scenarios, by allowing the framed

multigraph to be cyclic and/or to have loops.

We now define exactly what it means to ‘draw a diagram over’ one such definite causal scenario, with
semantics valid in any probabilistic theory.

Definition 2.11. Let Θ = (Γ, 𝐼, 𝑂) be a definite causal scenario and let C be a probabilistic theory.

A diagram over Θ in C is a pair of functions sys : edges (Γ) → obj C and proc : ev (Γ) → mor (C),
associating each 𝑒 ∈ edges (Γ) to a system sys (𝑒) in C and each 𝜔 ∈ ev (Γ) to a process proc (𝜔) in

C with the following type:

proc (𝜔) : 𝐼𝜔 ⊗
⊗
𝑒∈in(𝜔)

sys (𝑒) −→ 𝑂𝜔 ⊗
⊗

𝑒′∈out(𝜔)
sys (𝑒′) (2.24)

Above we denoted by in (𝜔) := { 𝑒 ∈ edges (Γ) | head (𝑒) = 𝜔 } the edges of Γ coming into 𝜔 and we

similarly denoted by out (𝜔) := { 𝑒 ∈ edges (Γ) | tail (𝑒) = 𝜔 } the edges of Γ going out of 𝜔.

Even though it specifies concrete processes in a probabilistic theory, the definition of diagram Δ

above is still partly abstract, as it does not explicitly state how the processes fit together. What gives
it fully concrete semantics is the following definition of the overall process ÈΔÉ associated to the
diagram Δ. See Figure 2.1 (p.73) for an exemplification.
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•

•

•

•

•

Θ

(𝐼𝜔′, 𝑂𝜔′)

(𝐼𝜔 , 𝑂𝜔)

↦→

𝐹𝜔′

𝑂𝜔′

𝐼𝜔′

𝐶

𝐴 𝐶

𝐹𝜔

𝑂𝜔

𝐼𝜔

𝐶

𝐵

Δ

𝐹𝜔′

𝑂𝜔′

𝐼𝜔′

𝐶

𝐴

𝐹𝜔

𝑂𝜔

𝐼𝜔

𝐶

𝐵

𝐶

ÈΔÉ

Figure 2.1: Graphical exemplification of the association of the process ÈΔÉ to a diagram Δ over a
definite causal scenario Θ.
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Definition 2.12. Let Θ = (Γ, 𝐼, 𝑂) be a definite causal scenario, C be a probabilistic theory and

Δ = (sys, proc) be a diagram over Γ in C. The process associated with Δ is the unique process ÈΔÉ
in C obtained by joining the outputs and inputs of the processes proc (𝜔) in the diagram Δ according

to the directed multigraph Γ, resulting in a process with the following overall type:

ÈΔÉ : ©­«©­«
⊗
𝜔∈ev(Γ)

𝐼𝜔
ª®¬ ⊗ ©­«

⊗
𝑒∈in(Γ)

sys (𝑒)ª®¬ª®¬ −→ ©­«©­«
⊗
𝜔∈ev(Γ)

𝑂𝜔
ª®¬ ⊗ ©­«

⊗
𝑒′∈out(Γ)

sys (𝑒′)ª®¬ª®¬ (2.25)

Each classical input system 𝐼𝜔 of ÈΔÉ is wired to the classical input system 𝐼𝜔 of the process proc (𝜔).
Similarly, each classical output system 𝑂𝜔 of ÈΔÉ is wired to the classical output system 𝑂𝜔 of

proc (𝜔).

Definite causal scenarios and diagrams over them are perfectly adequate when it comes to
discussion of operational scenarios over definite causal orders, but they don’t have the necessary
flexibility to accommodate operational scenarios where causality is indefinite. The main contribution
of this work will now be to define diagrams over indefinite causal scenarios, giving them semantics
in probabilistic theories using controlled processes. As a special case, we will be able to describe the
idea of superposition of causal orders in quantum theory.

Firstly, we define the purely operational canvas against which the indefinite causal scenario takes
place. This includes all the black-box information locally available to the actors in our scenario
but does not include any information about causal order nor any information about the specific
implementation of the local processes.

Definition 2.13. An indefinite causal scenario Φ is specified by the following data:

• the set Ω of events at which the processes (operations, experiments, etc.) take place;

• a set Ξ of system labels, used to abstractly indicate which physical systems are guaranteed to

be the same across different experiments;

• a finite set 𝐼𝜔 of classical inputs for each 𝜔 ∈ Ω, i.e. the values available locally to control the

process at the event;

• a finite set 𝑂𝜔 of classical outputs for each 𝜔 ∈ Ω, i.e. the values that the process at the event

can return locally as its outcome;

• a finite sequence Σ𝑖𝑛𝜔 of elements of Ξ for each 𝜔 ∈ Ω, the system labels for the physical systems

coming into the process from outside the event;

• a finite sequence Σ𝑜𝑢𝑡𝜔 of elements of Ξ for each 𝜔 ∈ Ω, the system labels for the physical

systems coming out of the process and leaving the event;
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• a finite sequence Π𝑖𝑛 of elements of Ξ, the system labels for the physical systems coming in

from outside the region where the scenario is taking place;

• a finite sequence Π𝑜𝑢𝑡 of elements of Ξ, the system labels for the physical systems going out

from the region where the scenario is taking place.

Formally, the scenario is the tuple Φ = (Ω,Ξ, 𝐼, 𝑂,Σ𝑖𝑛,Σ𝑜𝑢𝑡 ,Π𝑖𝑛,Π𝑜𝑢𝑡 ), where the underlined letters

indicate Ω-indexed families (e.g. 𝐼 := 𝜔 ↦→ 𝐼𝜔).

Remark 2.14. Even though the definitions involved are formally different, the definite causal

scenarios of Definition 2.9 arise naturally as a special case of the indefinite causal scenarios from

Definition 2.13. Indeed, consider an indefinite causal scenario Φ = (Ω,Ξ, 𝐼, 𝑂,Σ𝑖𝑛,Σ𝑜𝑢𝑡 ,Π𝑖𝑛,Π𝑜𝑢𝑡 )
and assume that each symbol 𝑒 ∈ Ξ appears exactly twice as follows:

• it appears once either in an output set Σ𝑜𝑢𝑡tail(𝑒) for some tail (𝑒) ∈ Ω or otherwise at some place

tail (𝑒) ∈ {1, ..., |Π𝑖𝑛 |} in the sequence Π𝑖𝑛;

• it appears once either in an input set Σ𝑖𝑛head(𝑒) for some head (𝑒) ∈ Ω or otherwise at some

place head (𝑒) ∈ {1, ..., |Π𝑜𝑢𝑡 |} in the sequence Π𝑜𝑢𝑡 .

This defines a framed multigraph Γ with nodes (Γ) := Ω t {1, ..., |Π𝑖𝑛 |} t {1, ..., |Π𝑜𝑢𝑡 |} and

edges (Γ) := Ξ. The internal nodes of Γ are the events in Ω, yielding a definite causal scenario

(Γ, 𝐼, 𝑂). Conversely, each definite causal scenario (Γ, 𝐼, 𝑂) can be turned into an indefinite causal

scenario by taking Ξ := edges (Γ) and defining the sequences Σ𝑖𝑛𝜔 , Σ𝑜𝑢𝑡𝜔 , Π𝑖𝑛 and Π𝑜𝑢𝑡 from in (𝜔),
out (𝜔), in (Γ) and out (Γ) respectively.

Secondly, we define the set of definite causal scenarios which are compatible with a given indefinite
causal scenario: they correspond exactly to all possible ways of joining the output and input physical
systems into a multigraph in such a way as to respect the system labels for the indefinite causal
scenario. Each indefinite causal scenario gives rise to a set of compatible definite causal scenarios,
each definite causal scenario equipped with a labelling associating each edge of the multigraph to
the corresponding system label from the indefinite causal scenario. See Figure 2.2 (p.76) for an
exemplification.

Definition 2.15. Let Φ = (Ω,Ξ, 𝐼, 𝑂,Σ𝑖𝑛,Σ𝑜𝑢𝑡 ,Π𝑖𝑛,Π𝑜𝑢𝑡 ) be an indefinite causal scenario. A

definite causal scenario Θ = (Γ, 𝐼 ′, 𝑂 ′) is compatible with Φ if the following conditions hold:

(i) the events of Θ (internal nodes of Γ) are the events of the scenario, i.e. we have ev (Θ) = Ω;

(ii) we have 𝐼 ′ = 𝐼 and 𝑂 ′ = 𝑂;
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Figure 2.2: Graphical exemplification of the association of definite causal scenarios to an indefinite
causal scenario Φ.

(iii) for each 𝜔 ∈ Ω, in (𝜔) and Σ𝑖𝑛𝜔 have the same number of elements; write Σ𝑖𝑛𝜔 (𝑒) for the system

label in the totally ordered set Σ𝑖𝑛𝜔 at the same position as edge 𝑒 in the totally ordered set

in (𝜔);

(iv) for each 𝜔 ∈ Ω, out (𝜔) and Σ𝑜𝑢𝑡𝜔 have the same number of elements; write Σ𝑜𝑢𝑡𝜔 (𝑒) for the

system label in the totally ordered set Σ𝑜𝑢𝑡𝜔 at the same position as edge 𝑒 in the totally ordered

set out (𝜔);

(v) the input nodes in (Γ) and Π𝑖𝑛 have the same number of elements; write Π𝑖𝑛 (𝑒) for the system

label in the totally ordered set Π𝑖𝑛 at the same position as tail (𝑒) in the totally ordered set

in (Γ);

(vi) the output nodes out (Γ) and Π𝑜𝑢𝑡 have the same number of elements; write Π𝑜𝑢𝑡 (𝑒) for the

system label in the totally ordered set Π𝑜𝑢𝑡 at the same position as head (𝑒) in the totally

ordered set out (Γ);

(vii) for each edge 𝑒 ∈ edges (Γ), the system label at its tail and at its head coincide, i.e. we have

Σ𝑜𝑢𝑡tail(𝑒) (𝑒) = Σ𝑖𝑛head(𝑒) (𝑒); by convention, we set Σ𝑜𝑢𝑡tail(𝑒) (𝑒) := Π𝑖𝑛 (𝑒) when tail (𝑒) is an input

node and Σ𝑖𝑛head(𝑒) (𝑒) := Π𝑜𝑢𝑡 (𝑒) when head (𝑒) is an output node (both can be true at the

same time).

A definite causal scenario Θ which is compatible with the indefinite causal scenario Φ comes equipped

with an edge labelling syslabelΦ,Θ : edges (Γ) → Ξ, sending each edge 𝑒 ∈ edges (Γ) to the system

label syslabelΦ,Θ (𝑒) ∈ Ξ which the indefinite causal scenario associates to the endpoints of the edge.

We write DCaus (Φ) for the set of definite causal scenarios compatible with Φ.

Finally, we are in a position to define what it means to draw a diagram over an indefinite causal
scenario Φ. This is a generalisation of the abstract notion of drawing a diagram over a definite causal
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scenario from Definition 2.11: processes are associated with the events, but now taking additional
care that the induced diagrams over all definite scenarios compatible with Φ are well-defined. See
Figure 2.3 (p.77) for an exemplification.
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Figure 2.3: Graphical exemplification of how a diagram over an indefinite causal scenario Φ gives
rise to diagrams over the compatible definite causal scenarios (cf. Figure.

Definition 2.16. Let Φ = (Ω,Ξ, 𝐼, 𝑂,Σ𝑖𝑛,Σ𝑜𝑢𝑡 ,Π𝑖𝑛,Π𝑜𝑢𝑡 ) be an indefinite causal scenario and let

C be a probabilistic theory. A diagram over Φ in C is a pair of functions sys : Ξ → obj C and

proc : Ω→ mor (C), associating each system label 𝜉 to a system sys (𝜉) in C and each event 𝜔 ∈ Ω
to a process proc (𝜔) in C with the following type:

proc (𝜔) : 𝐼𝜔 ⊗
⊗
𝜉 ∈Σ𝑖𝑛

𝜔

sys (𝜉) −→ 𝑂𝜔 ⊗
⊗
𝜉 ′∈Σ𝑜𝑢𝑡

𝜔

sys (𝜉 ′) (2.26)

If Δ is such a diagram and Θ = (Γ, 𝐼, 𝑂) is a definite causal scenario compatible with Φ, then the

induced diagram Δ|Θ = ( sys|Θ , proc|Θ) over Θ is defined by setting sys|Θ : edges (Γ) → obj C
to be sys|Θ (𝑒) := sys

(
syslabelΦ,Θ (𝑒)

)
and setting proc|Θ : ev (Θ) → mor (C) to be proc|Θ (𝜔) :=

proc (𝜔).

The semantics for a diagram over an indefinite causal scenario Φ will no longer be given by a single
process with a definite causal order—as was the case for the semantics of diagrams over definite
scenarios—but rather a controlled process for the family of all diagrams over all definite scenarios
compatible with Φ.
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Definition 2.17. LetΦ be an indefinite causal scenario, C be a probabilistic theory andΔ = (sys, proc)
be a diagram over Φ in C. A controlled process associated with Δ is a controlled process (𝐺, 𝑝, 𝑚)
in C associated with the family (ÈΔ|ΘÉ)Θ∈DCaus(Φ) of induced diagrams over all definite causal

scenarios Θ compatible with Φ.

It is worth noting that the semantics for diagrams over indefinite causal scenarios result in a
controlled process (𝐺, 𝑝, 𝑚): the control system is left open on the side, allowing preparations and
observations to be used to control the causal order in all possible ways. Regardless of the specific
controlled process and regardless of the specific probabilistic theory, the following will always work.

If we pre-compose the controlled process𝐺 with 𝑝 on the control system we are able to classically
control the causal order. Specifically, feeding a specific value Θ ∈ DCaus (Φ) as input to 𝑝 results in
the diagram Δ|Θ for the definite causal scenario Θ. More generally, feeding a a probability distribution∑

Θ∈DCaus(Φ) P(Θ)𝛿Θ as input to 𝑝 results in a convex mixture of the diagrams associated with the
definite scenarios, each diagram Δ|Θ happening with probability P(Θ).

If we pre-compose the controlled process 𝐺 with a normalised state 𝜌 on the control system and
we post-compose it with the observation 𝑚 on the control system, we obtain again a convex mixture
of the diagrams associated with the definite scenarios, with probability distribution given by the
classical state 𝑚 ◦ 𝜌. If instead of the observation 𝑚 we use the discarding map on the control system,
we obtain the same convex mixture, but now without being able of extracting information about the
causal order from the classical outcome of the observation 𝑚. 2

The last observation, that discarding the control system always yields a convex mixture of causal
orders, will play an important role in the next section, when we construct superpositions of causal
orders in quantum theory. Indeed, the observation implies that we cannot obtain superposition of
causal orders by preparing the control system in a superposition and then discarding it after we are
done. This is because the act of discarding is an epistemic one: it simply means that information
about the system is not locally available, not that it can never be recovered.

2.5 Superposition of Causal Orders

In this Section, we show how quantum superposition of causal orders can be modelled within our
framework. We start by looking at the quantum switch and then proceed to generalise our construction
to arbitrary indefinite causal scenarios. We conclude by showing that superpositions of causal orders
can be constructed purely as a function of the quantum instruments operated at the events, with no
dependence on a choice of purification for the CP maps. This is somewhat surprising—in light of
Proposition 2.3—and it is a consequence of the fact that each discarded environment refers to the

2This is because applying the discarding map on the control system is the same as first applying the observation 𝑚 and
then discarding its classical outcome, resulting in a mixture.
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same local CP map in all branches of the superposition (something which is not true in general
coherent control of CP maps, e.g. in the circumstances considered by [99]).

In the 𝑛-partite generalisation of the quantum switch, 𝑛 parties operate their quantum instruments
sequentially on the same physical system, resulting in a superposition of 𝑛! causal orders (correspond-
ing to all possible permutations of the parties). It is now straightforward to model such a scenario
within our framework.

Definition 2.18. An 𝑛-partite switch is an indefinite causal scenario satisfying the following

conditions:

• there are 𝑛 events, corresponding to the 𝑛 parties;

• the set Ξ has a single element, as the same physical system is operated upon by all parties;

• the sequences Σ𝑖𝑛𝜔 , Σ𝑜𝑢𝑡𝜔 , Π𝑖𝑛 and Π𝑜𝑢𝑡 each have a single element, forcing the parties to

operate on the same physical system one after the other.

The classical inputs 𝐼𝜔 and classical outputs 𝑂𝜔 are free to choose.

If Φ is an 𝑛-partite switch, the semantics of a diagram Δ over Φ in a probabilistic theory is given by a
controlled process where each choice of permutation 𝜎 ∈ 𝑆𝑛 for the parties {1, ..., 𝑛} results in party
𝜎(1) acting first, followed by party 𝜎(2), followed by all other parties in order until party 𝜎(𝑛).

For the sake of simplicity, we will now restrict our attention to the bipartite (𝑛 = 2) case. The
two parties are our beloved Alice and Bob, the corresponding events are called 𝛼 and 𝛽, the physical
system will be some quantum system 𝑍 and the quantum instruments operated by Alice and Bob
will be 𝐹𝛼 : 𝐼𝛼 ⊗ 𝑍 → 𝑂𝛼 ⊗ 𝑍 and 𝐹𝛽 : 𝐼𝛽 ⊗ 𝑍 → 𝑂𝛽 ⊗ 𝑍 respectively. Each quantum instrument
𝐹𝜔 : 𝐼𝜔 ⊗ 𝑍 → 𝑂𝜔 ⊗ 𝑍 (for 𝜔 ∈ {𝛼, 𝛽}) is defined by a family of CP maps 𝐹𝜔 (𝑜𝜔 |𝑖𝜔) : 𝑍 → 𝑍

indexed by each possible classical input value 𝑖𝜔 ∈ 𝐼𝜔 and classical output value 𝑜𝜔 ∈ 𝑂𝜔 , subject to
the normalisation requirement that

∑
𝑜𝜔 ∈𝑂𝜔

𝐹𝜔 (𝑜𝜔 |𝑖𝜔) be a CPTP map for each choice of classical
input 𝑖𝜔 ∈ 𝐼𝜔 . Let �̂�𝜔 (𝑜𝜔 |𝑖𝜔) : 𝑍 → 𝑍 ⊗ 𝐸𝜔 be a family of purifications for the CP maps, chosen
(without loss of generality) to all have the same environment 𝐸𝜔. This results in the following
scenario Φ and diagram Δ:

�̂�𝛼

𝑍

𝑍

𝑂𝛼

𝐼𝛼

�̂�𝛽

𝑍

𝑍

𝑂𝛽

𝐼𝛽

Δ Δ

•

• •

•

𝛼 𝛽

Φ

𝜁

𝜁

𝜁 𝜁

𝜁

𝜁

(2.27)
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We can construct a controlled process associated withΔ by using our definition of coherently controlled
processes from Section 2.3. Specifically, for each fixed 𝑖 = (𝑖𝛼, 𝑖𝛽) ∈ 𝐼 and 𝑜 = (𝑜𝛼, 𝑜𝛽) ∈ 𝑂 we can
define the following pure controlled processes from the purifications:

𝑀 (𝑜 |𝑖)

𝑍

𝑍

𝐸𝛽 𝐸𝛼C2

C2

where 𝑀0(𝑜 |𝑖)

𝑍

𝑍

𝐸𝛼 𝐸𝛽

:=

𝐹𝛽 (𝑜 |𝑖)

𝑍 𝐸𝛽

𝐹𝛼 (𝑜 |𝑖)

𝑍

𝐸𝛼

and 𝑀1(𝑜 |𝑖)

𝑍

𝑍

𝐸𝛼 𝐸𝛽

:=

𝐹𝛼 (𝑜 |𝑖)

𝑍 𝐸𝛽

𝐹𝛽 (𝑜 |𝑖)

𝑍

𝐸𝛼

(2.28)
If we discard the two environments 𝐸𝛼 and 𝐸𝛽 and we reintroduce the classical inputs and outputs,
we obtain the controlled process for Δ:

𝑀

𝑍

𝑍

C2

C2

𝑂𝛼𝑂𝛽

𝐼𝛼 𝐼𝛽

𝐸𝛼 𝐸𝛽

(2.29)

As mentioned in the previous Section, the controlled process above is very general: amongst other
things, we can plug any qubit state into the control systems and perform any measurement on it
afterwards. In order to obtain a true superposition of the two causal orders, we use some phase
state |𝜑〉 := 1√

2
( |0〉 + 𝑒𝑖𝜑 |1〉) and measure in the Pauli X basis. The two measurement outcomes 〈±|

then correspond to families of processes—indexed by the classical inputs 𝑖 ∈ 𝐼 and classical outputs
𝑜 ∈ 𝑂—which see a superposition with phase of the two causal orders. In traditional notation, the
processes can be written as follows:

1
4

Tr𝐸𝛼⊗𝐸𝛽

[
dbl

[(
�̂�𝛼 (𝑜𝛼 |𝑖𝛼) ⊗ 𝑖𝑑𝐸𝛽

)
◦ �̂�𝛽 (𝑜𝛽 |𝑖𝛽)

]
±

𝑒𝑖𝜑 dbl
[(
𝑖𝑑𝑍 ⊗ 𝜎𝐸𝛽 ,𝐸𝛼

)
◦

(
�̂�𝛽 (𝑜𝛽 |𝑖𝛽) ⊗ 𝑖𝑑𝐸𝛼

)
◦ �̂�𝛼 (𝑜𝛼 |𝑖𝛼)

] ]
where we introduced the short-hand dbl[𝑈] for the CP map dbl[𝑈] := 𝑈𝑈† corresponding to a linear
map 𝑈 and we have freely confused the pure CP maps �̂�𝜔 (𝑜𝜔 |𝑖𝜔) with the corresponding linear
maps.

Proposition 2.3 tells us that, in general, a controlled process such as (2.29) will depend on our
choices of purification �̂�𝜔 . However, this turns out not to be the case for the switch. Indeed, we can
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pull the two environments to the boundary of the scenario, keeping them throughout the superposition
of causal orders and only discarding them afterwards:

�̂�𝛼 (𝑜𝛼 |𝑖𝛼)

�̂�𝛽 (𝑜𝛽 |𝑖𝛽) �̂�𝛼 (𝑜𝛼 |𝑖𝛼)

�̂�𝛽 (𝑜𝛽 |𝑖𝛽)
(2.30)

Any alternative choice of purification can be obtained by applying a suitable unitary to each
environment. However, the same map �̂�𝜔 appears at the bottom of the environment 𝐸𝜔 in all
branches of the superposition, and hence the same unitary appears applied to the environment. This
means that we can pull the unitaries themselves out of the scenario:

�̂�𝛼 (𝑜𝛼 |𝑖𝛼)

�̂�𝛽 (𝑜𝛽 |𝑖𝛽)

𝑈𝛼 (𝑜𝛼 |𝑖𝛼) 𝑈𝛽 (𝑜𝛽 |𝑖𝛽)

�̂�𝛼 (𝑜𝛼 |𝑖𝛼)

�̂�𝛽 (𝑜𝛽 |𝑖𝛽)

𝑈𝛼 (𝑜𝛼 |𝑖𝛼) 𝑈𝛽 (𝑜𝛽 |𝑖𝛽)

(2.31)

The unitaries will then be cancelled by the discarding maps, leading us to conclude that the controlled
process we constructed for the switch was actually independent of our choices of purification �̂�𝜔 and
is, therefore, a function of the original quantum instruments 𝐹𝜔 . This argument is not unique to the
switch, but instead generalises to coherent control for all diagrams over indefinite causal scenarios in
quantum theory, as dictated by our final result below. As a consequence, our framework can be used
to give well-defined semantics to superposition of causal orders in quantum theory.

Definition 2.19. Let Φ = (Ω,Ξ, 𝐼, 𝑂,Σ𝑖𝑛,Σ𝑜𝑢𝑡 ,Π𝑖𝑛,Π𝑜𝑢𝑡 ) be an indefinite causal scenario and Δ

be a diagram over Φ in quantum theory. The purification of Φ is the indefinite causal scenario

obtained from Φ by adding fresh symbols 𝜀𝜔 to Ξ and Π𝑜𝑢𝑡 for all 𝜔 ∈ Ω (in some chosen order). A

purification of Δ with environments (𝐸𝜔)𝜔∈Ω is the diagram over the purification of Φ obtained by

considering purifications of all CP maps in Δ, with fixed environment 𝐸𝜔 for each event 𝜔 ∈ Ω. 3

3The purifications considered here are for each fixed choice of classical input and output values, i.e. they are indexed
families of purifications �̂�𝜔 (𝑜𝜔 |𝑖𝜔) for the CP maps 𝐹𝜔 (𝑜𝜔 |𝑖𝜔) corresponding to each given choice of 𝑖𝜔 ∈ 𝐼𝜔 and
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The purification of a diagram—and the necessary corresponding ‘purification’ of the underlying
indefinite causal scenario—generalise the process seen in (2.30) and (2.31) above, where the
environment wires were ‘pulled to the boundary’ of the diagram. We use purifications of a diagram
Δ to define its coherent control.

Definition 2.20. Let Φ be an indefinite causal scenario and Δ be a diagram over Φ in quantum theory.

Let 𝑃(𝜑) :=
∑

Θ∈DCaus(Φ) 𝑒
𝑖𝜑Θ |Θ〉〈Θ| be a phase gate for the computational basis of CDCaus(Φ) . The

coherent control of Δ with phase 𝑃(𝜑) is defined to be the coherent control—with phase 𝑃(𝜑) and

control system CDCaus(Φ)—of the following family of processes, where Δ𝑝𝑢𝑟𝑒 is a purification of Δ

with environments (𝐸𝜔)𝜔∈Ω and we have defined the global environment 𝐸 :=
⊗
𝜔∈Ω

𝐸𝜔:(
Tr𝐸ÈΔ𝑝𝑢𝑟𝑒 |ΘÉ

)
Θ∈DCaus(Φ)

(2.32)

Note that Tr𝐸ÈΔ𝑝𝑢𝑟𝑒 |ΘÉ is a diagram over Θ for all Θ ∈ DCaus (Φ).

Proposition 2.20. Let Φ be an indefinite causal scenario and Δ be a diagram over Φ in quantum

theory. For each possible choice of phase gate 𝑃(𝜑) for the computational basis of CDCaus(Φ) , the

coherent control of Δ with phase 𝑃(𝜑) is well-defined independently of the choice of purification for

the processes in Δ.

Having shown that the coherent control with phase for diagrams over indefinite causal scenarios is a
well-defined concept, we conclude by providing the following definition for sake of clarity and future
use.

Definition 2.21. Let Φ be an indefinite causal scenario and Δ be a diagram over Φ in quantum

theory. By a superposition of causal orders for Δ with phase 𝑃(𝜑) we mean the quantum instrument

obtained by:

(i) considering the coherent control of Δ with phase 𝑃(𝜑);

(ii) pre-composing the control system with the uniform superposition state |+〉 below:

|+〉 :=
1√︁

|DCaus (Φ) |

∑︁
Θ∈DCaus(Φ)

|Θ〉 (2.33)

(iii) post-composing the control system with some measurement which is unbiased with respect to

the computational basis (e.g. one in the Fourier basis for some group structure on DCaus (Φ)).

Note that the choice of fixed input state |+〉 was made to avoid redundancy in the relative phase

between the different causal orders, which is already controlled by 𝑃(𝜑).

𝑜𝜔 ∈ 𝑂𝜔 .
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In this chapter, we discussed a way to define the control of causal order between laboratories or
classically controlled quantum instruments. Here the explicitly compositional part of the dissertation
ends. We constructed a way to synthesise a table of conditional distributions of probabilities in
a way which pinpoints the type of information and labelling that is necessary to construct the
superposition of arbitrary causal orders unambiguously. In the following chapters, we observe an
inherently decompositional and theory independent approach. If it is possible, as we have discussed
at length in this chapter, to define a notion of superposition of causal orders it is also paramount
to understand what are the traces left by this procedure on the tables of conditional probability
distributions describing the empirically observed correlations in the presence of indefinite causality.

The procedure obtained above will be used at the end of the thesis in Chapter 6 to provide
examples of the type of causal analysis entailed by our sheaf-theoretic perspective. This can be done
without making explicit use of process matrices, which describe a broader class of possible ‘causal
connections’, one of which the semantics has not been fully understood [141, 12].

The following chapters will therefore try to answer the questions: 1) Given a table of probabilities
correlating local interventions with local output, what is the shape of the circuits compatible with
such a table? 2) How ‘non-local’ must a circuit with a given causal structure be to account for these
correlations?
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Chapter 3

The topology of causality I: Spaces of
Histories

3.1 Motivation

If the causal order between events is assumed to be static and the event deterministic, the causal
description given by a poset can be understood as consistently specifying for each element a unique
history of ‘past events’. There is a simple way to understand each element of some causal order
identified with the set of events leading to their realisation. The structure of the causal order is
then reflected in the containment structure between these sets. Such a perspective is employed by
Markopolou in [90] to provide a topos theoretical account of causal sets; the ‘internal viewpoint’ of
an event 𝑝 in a causal set is associated with the events composing its past, providing an algebraic
view to code the causal information of a discrete spacetime.

Formally this means that for a set of events Ω, there is a full and faithful injection of the causal
order into Λ(Ω) which associates to each element of Ω the set corresponding to its downset 𝜔↓. For
example, the causal order Ω given by:

can be embedded into the lattice of lowersets of Ω as follows (see also Figure 3.1):
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•

• • ••

••
• • •

•

𝐴↓

𝐵 ↓ 𝐶 ↓

𝐷 ↓ 𝐸 ↓

Our arena will not be a static net of ‘deterministic’ events; we fundamentally depart from this
perspective: in our case, the set of ‘possible’ operational contexts can vary due to choices made at
earlier events.

To give a conceptual glimpse of what is the direction that characterises our generalisation, we
note that for ‘deterministic spacetimes’, we can always describe subsets of events as partial functions
with a singleton codomain:

PFun
(
𝑌
)

:=
⋃
𝑈 ⊆ |Ω |

∏
𝑥∈𝑈
{∗}

in particular, a downset 𝜔↓ can be associated to the unique partial function for which dom (𝜔↓) = 𝜔↓.
The space of general partial functions—seen as a partial order—is isomorphic to the lattice of all
possible subsets of Ω. This characterisation is a mathematical triviality, but a generalisation of this
way to describe subsets of events turns out to be particularly insightful. We aim to obfuscate the
deterministic nature of events by assigning finite sets of interventions. The strategy is straightforward:
causal histories will assume the structure of a more general class of partial functions, one that
considers general finite sets of possible intervention at each node, in direct generalisation of the
deterministic case represented by the singleton {∗}. From this elementary extrapolation, a rich
mathematical structure interpreting statical and dynamical causality emerges naturally. In this chapter
we formalise the spaces of input histories (the generalised corresponding of Ω) and spaces of extended

input histories (generalising Λ(Ω)).
A causal constraint is reflected in the impossibility for causally disconnected events to share

signals. In the absence of causal constraint, it is possible for the output at each event to depend
arbitrarily on all inputs. Consequently, the only well-defined conditional distribution is one on all joint
outputs for all events. A more refined causal structure guarantees that more conditional distributions
become well defined. For example, from the causal graph given by:
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Figure 3.1: The deterministic history embed fully and faithfully in the poset of lowersets of Ω.

we can extract the following causal constraints between subsets of vertices: 𝐶 and 𝐵 cannot be
mutually signalling, 𝐵 cannot signal to 𝐴, 𝐶 cannot signal to 𝐴, and the joint inputs of 𝐵 and 𝐶
cannot signal to 𝐴 either. Notice that it is the absence of a directed arrow which establishes a causal
constraint. Additionally to the global conditional distribution on {𝐴, 𝐵, 𝐶}, we would in this case
also get distributions on the following lowersets of Ω: {𝐴}, {𝐴, 𝐵}, {𝐴,𝐶}.

The lowersets of a given poset form a complete lattice under inclusion, which is the locale of a
finite topology on the elements of Ω. The intuition we are about to develop in this and the subsequent
chapters is that causal distributions are data assigned to the ‘open sets’ of a topology associated with
Ω. A big part of our investigation will consist of generalising this observation to construct more
abstract topologies than the ones describing definite causal orders. This part of the thesis, which
we describe as the ‘topological study of causality’, will be divided into two chapters, of which the
following constitutes the first part. For now, topologies will not play an explicit role; we will treat the
spaces from a more combinatorial perspective in what could be described as a ‘combinatorial study
of causality’. However, keeping the topological perspective in mind as the story progresses will be
particularly helpful.

Describing contexts as open sets of some topological space can be seen as a direct mathematical
generalisation of the work in [6]. In [6], protocols are not thought to have any timelike component,
and the local choices of measurements always constitute a complete history. Arbitrary subsets of
these points, forming possible contexts in the original sheaf-theoretic framework, can therefore be
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seen as collections of timelike histories trivialised by the absence of any explicit dependence on
past settings. Understanding the points of the space as timelike histories of possible interventions
is, therefore, relatively straightforward but only a posteriori. The form formalised in this chapter
results from intense shifts of perspectives. Of course, there is no arguing that we could define the
same lattice describing the relationship between the possible operational contexts differently. What
matters is only the order theoretic structure represented by the frame of open sets describing what
can be obtained by marginalising more extensive contexts.

In an early attempt showcased in [61], we take a different perspective by trying to characterise
this hierarchy by starting from general lowersets of settings. If it does entail the same frame of
contexts for scenarios with definite causality, this approach’s expressive power is limited and it does
not straightforwardly generalise to indefinite causality. Moreover, the history-based perspective,
providing the elementary building blocks of each context, allows for—as will be discussed in depth
in Chapter 4—a particularly elegant description of the causal functions ascribable to each particular
context.

3.2 Spaces of input histories

3.2.1 Partial functions and operational scenarios

This work is concerned with the study of the causal structure of a particular type of protocols, where
the events are characterised by the local operation of some black box device. At each run of the
protocol, inputs are chosen for each device and each black-box responds with an element from a finite
set of possible outputs. The black boxes act locally, i.e. no information about the rest of the protocol
is explicitly used in the operation, and the dependence between inputs and outputs will be entirely
mediated by the causal structure alone. We partition our study of the causality of such protocols and
experiments into two distinct concerns: the operational scenario, defining the set of events together
with their local inputs and outputs, and the empirical model, assigning probabilities to joint outputs
conditional to joint inputs. The operational scenario is the canvas upon which empirical models are
specified, defining their combinatorial interface without constraining the concrete behaviour of the
devices. The definition of an operational scenario will be different from the ‘definite causal scenarios’
defined in Chapter 2, Section 2.4; here, we do not explicitly require the a priori specification of a
causal structure between the events.

Definition 3.1 (Operational scenario). An operational scenario (𝐸, 𝐼, 𝑂) specifies a finite non-empty

set 𝐸 of events, a finite non-empty set 𝐼𝜔 of inputs, and a finite non-empty set 𝑂𝜔 of outputs for

each event 𝜔 ∈ 𝐸; we write 𝐼 = (𝐼𝜔)𝜔∈𝐸 and 𝑂 = (𝑂𝜔)𝜔∈𝐸 . The set of joint inputs is defined by:∏
𝜔∈𝐸

𝐼𝜔 = { (𝑖𝜔)𝜔∈𝐸 | 𝑖𝜔 ∈ 𝐼𝜔 }
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Similarly, the set of joint outputs is defined by:∏
𝜔∈𝐸

𝑂𝜔 = { (𝑜𝜔)𝜔∈𝐸 | 𝑖𝜔 ∈ 𝑂𝜔 }

Intuitively we want the notion of an input history to characterise the possible ‘timelike’ sequences of
events induced by causal relations. We start by formally defining the set of all ‘partial functions’ for
an operational scenario:

Definition 3.2 (Partial functions). Given a family 𝑌 = (𝑌𝑥)𝑥∈𝑋 of sets, the partial functions PFun
(
𝑌
)

on 𝑌 are defined to be all possible functions 𝑓 having subsets 𝐷 ⊆ 𝑋 as their domain dom ( 𝑓 ) := 𝐷
and such that 𝑓 (𝑥) ∈ 𝑌𝑥 for all 𝑥 ∈ 𝐷.

PFun
(
𝑌
)

:=
⋃
𝐷⊆𝑋

∏
𝑥∈𝐷

𝑌𝑥 (3.1)

Partial functions are partially ordered by restriction:

𝑓 ≤ 𝑔
𝑑𝑒 𝑓
⇔ dom ( 𝑓 ) ⊆ dom (𝑔) and 𝑔 |dom( 𝑓 ) = 𝑓 (3.2)

When 𝑌𝑥 = 𝑌 for all 𝑥 ∈ 𝑋 we recover the usual notion of partial function 𝑋 → 𝑌 for all 𝐷 ⊆ 𝑋 .
There exists a domain function dom : PFun

(
𝑌
)
→ P(𝑋) which is order preserving satisfying:

𝑓 ≤ 𝑔 ⇒ dom ( 𝑓 ) ⊆ dom (𝑔) (3.3)

Partial functions ordered by restriction form a semilattice, with the empty function ∅ as minimum
and meets given by:

dom ( 𝑓 ∧ 𝑔) = {𝑥 ∈ dom ( 𝑓 ) ∩ dom (𝑔) | 𝑓 (𝑥) = 𝑔(𝑥)} (3.4)

𝑓 ∧ 𝑔 = 𝑓 |dom( 𝑓 ∧𝑔) (3.5)

It is always true that dom ( 𝑓 ∨ 𝑔) ⊆ dom ( 𝑓 ) ∨ dom (𝑔) If the domain function preserves the meets
of two partial functions we say that they are compatible.

Definition 3.3 (Compatible functions). We say that 𝑓 and 𝑔 are compatible when:

dom ( 𝑓 ∧ 𝑔) = dom ( 𝑓 ) ∩ dom (𝑔) (3.6)

We say that F ⊆ PFun
(
𝑌
)

is a compatible set of functions if 𝑓 and 𝑔 are pairwise compatible for

every 𝑓 , 𝑔 ∈ F .

Definition 3.4 (Joins of partial functions). Let F be a compatible set of partial functions. The join of

F is given by

dom (∨F ) =
⋃
𝑓 ∈F

dom ( 𝑓 )∨F = 𝑥 ↦→ 𝑓 (𝑥) for any 𝑓 such that 𝑥 ∈ dom ( 𝑓 )
(3.7)
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The requirement of compatibility allows the definition of the join of two or more compatible histories
by ‘stitching’ them about their common values. Well definedness is guaranteed by compatibility. The
maxima of the space PFun

(
𝑌
)

ordered by restriction are the total functions defined on the entirety of
dom

(
𝑌
)
.

3.2.2 Spaces of input histories

3.2.2.1 Space of input histories for causal orders

We associate a casual order to an operational scenario by selecting a set of partial functions which
denotes the compatible timelike sequences of events entailed by the order:

Definition 3.5 (Input histories for a causal order). The input histories for a given choice of order Ω

and inputs 𝐼 = (𝐼𝜔)𝜔∈Ω are defined to be the partial functions:

Hist
(
Ω, 𝐼

)
:=

⋃
𝜉 ∈Ω

∏
𝜔∈𝜉↓

𝐼𝜔 ⊆ PFun
(
𝐼
)

(3.8)

We refer to the partially ordered set Hist
(
Ω, 𝐼

)
–where the order is inherited from the restriction order

of partial functions PFun
(
𝐼
)
–as a space of input histories induced by the causal order Ω.

Example 3.6. Let Ω be a poset and consider 𝐼 =
∏
𝜔∈Ω{∗}. A single classical choice input is

associated with every event. The input histories for this causal order are in bijective correspondence

with its downsets {𝜔↓ |𝜔 ∈ Ω}. For the preorder given by discrete (𝐴) ∨ indiscrete (𝐵,𝐶)(on the

left), the poset of causal histories (on the right) recovers the original causal order:

Example 3.7. Let Ω be the total order on 3 events with binary inputs 𝐼𝜔 = {0, 1}, and consider its

associated lattice of lowersets Λ(Ω)

Λ

©­­­­­­«
ª®®®®®®¬

=

Because the space is a total order, the downsets coincide with the lowersets, and the associated

space of input histories consists of all the possible assignments of joint inputs to the subsets of events

{A}, {A,B} , {A,B,C}. The Hasse diagram of the space of histories associated with this total order

is given by:
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Example 3.8. LetΩ by the poset discrete (𝐴)∨indiscrete (𝐵,𝐶) and assume dichotomic interventions.

The poset on the right gives the associated space of histories.

In this and the previous example, we have colour-coded the histories to highlight the associated

downsets. For the case above {A :0} ,{A :1} are associated to the downset 𝐴↓= {𝐴}, the histories

{B :0, A :0} ,{B :1, A :0} ,{B :0, A :1} ,{B :1, A :1} to the downset 𝐵 ↓= {A,B} and {C :0, A :0}
,{C :1, A :0} ,{C :0, A :1} ,{C :1, A :1} are associated to 𝐶 ↓= {A,C}.

The spaces of input histories are not generally closed under meets or joins. Consider the following
"M"-shaped causal order on 4 events. We observe that both the intersection {A,B} and the union
{A,B,C,D} of the causal pasts C↓= {A,B,C} and D↓= {A,B,D} are not causal pasts of events
themselves.

Λ

©­­­­­­«
ª®®®®®®¬

=

The associated space of input histories doesn’t feature any meets 𝑓 ∧ 𝑔 or joins 𝑓 ∨ 𝑔 for compatible
histories 𝑓 , 𝑔 with domain C↓ and D↓ respectively (we remind the reader that the meets and joins
being referred to are those in PFun

(
𝐼
)
).
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The space above is also an example where the maxima of the space of input histories differ from
those of PFun

(
𝐼
)
: {A,B,C,D} is not the causal past of an event, so the total functions in PFun

(
𝐼
)

are not input histories.
Definition 3.5 does not exclusively refer to situations where a causal poset gives the order between

events of some operational scenario; we can apply the same recipe to preorders:

Example 3.9. Consider the following indefinite causal order Ω on 3 events, and its associated lattice

of lowersets Λ (Ω).

Λ

©­­­­­­«
ª®®®®®®¬

=

Because events B and C are in indefinite causal order, they have the same causal past, and no causal

history separates them. For the associated space of histories, we have 23 histories of size 3 and 21

histories of size 1.

This space of input histories does not entail any causal separability between the events 𝐵 and
𝐶. We will revisit this specific issue later when talking about ‘causal completeness’, but it already
prompts the question: can we extend our spaces of input histories to capture more specific situations
where the causal order between events depends on choices performed in the past?

For example, we might want to consider a ‘3-party causal switch’, in which an event A controls
the order of events B and C, e.g. by setting B→ C when the input is 0, and C→ B when the input is
1. In this case, the output at B is fully determined by the inputs at events A and B when the input at A
is 0, but C also becomes relevant when the input at A is 1. Considering this observation—and the
analogous one about the output at C— we obtain our putative space of input histories.
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The space above describes all the possible ‘time-like histories’ of events that can occur when the
causal order is controlled by A. It is a subset of PFun

(
𝐼
)

but does not arise from Hist
(
Ω, 𝐼

)
for any

causal order Ω: the order between B and C is indefinite overall, but the input histories are now able
to discriminate between the events based on the input assigned at the event A (colour coding of input
histories reflects this fact).

3.2.2.2 Abstract spaces of input histories

We will see that spaces of histories associated with causal orders can be generalised to encompass
a variety of other operational assumptions. How do we axiomatically characterise these sets of
histories? We first notice that the spaces obtained as Hist

(
Ω, 𝐼

)
satisfy two special properties: they

are ∨-prime (read ‘join prime’), and they satisfy the ‘free-choice condition’.
Join primality guarantees that each history is not decomposable in simpler histories and that the

space is composed of causally ‘atomic’ constituents. The free-choice condition guarantees that there
are enough input histories to reconstruct all possible global behaviours characterising a scenario. We
start by formalising join-primality:

Definition 3.10 (Join-prime subsets). A subsetΘ ⊆ PFun
(
𝐼
)

is said to be∨-prime (read ‘join-prime’)

if no ℎ ∈ Θ can be written as the compatible join ℎ =
∨F of a subset F ⊆ Θ such that ℎ ∉ F :(

F ⊆ Θ compatible and
∨
F ∈ Θ

)
⇒

∨
F ∈ F

Dually, a subset 𝑊 ⊆ PFun
(
𝐼
)

is said to be ∨-closed (read ‘join-closed’) if for every pair of

compatible ℎ, 𝑘 ∈ 𝑊 the join ℎ ∨ 𝑘 is itself in𝑊 . This implies that, more generally:

F ⊆ Θ compatible ⇒
∨
F ∈ Θ

Proposition 3.10. For any causal order Ω, Hist
(
Ω, 𝐼

)
⊆ PFun

(
𝐼
)

is always a ∨-prime subset of

PFun
(
𝐼
)
.

Proof. Let F be a set of compatible histories. For all 𝑓 ∈ F we have that dom ( 𝑓 ) = 𝜔 𝑓 ↓. Suppose
that

∨F ∈ Hist
(
Ω, 𝐼

)
then by definition there exists 𝑒 ∈ Ω such that 𝑒↓= ⋃

𝑓 ∈F 𝜔 𝑓 ↓. This can only
be true when 𝑒↓= 𝜔 𝑓 ′ ↓ for some 𝑓 ′ ∈ F . Since

∨F and 𝑓 ′ are compatible they must agree on all
elements of their domain and we conclude that 𝑓 ′ =

∨F and
∨F ∈ F . �
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Equipped with this notion, we describe general spaces of input histories:

Definition 3.11 (Spaces of input histories). A space of input histories is a finite set Θ of partial

functions which is ∨-prime. To every space of input histories we can associate an event set 𝐸Θ and a

family of input sets 𝐼Θ = (𝐼Θ𝜔)𝜔∈𝐸Θ as follows:

𝐸Θ :=
⋃
ℎ∈Θ dom (ℎ)

𝐼Θ𝜔 := { ℎ𝜔 | ℎ ∈ Θ, 𝜔 ∈ dom (ℎ) } (3.9)

We have Θ ⊆ PFun
(
𝐼Θ

)
and the space Θ is equipped with the partial order inherited from PFun

(
𝐼Θ

)
.

We also define the extended version of the spaces by taking their join closure in PFun
(
𝐼
)
:

Definition 3.12 (Spaces of extended input histories). The space of extended input histories Ext (Θ)
associated to Θ is defined to be its ∨-closure:

Ext (Θ) :=
{∨
F

���F ⊆ Θ compatible
}

(3.10)

We have Ext (Θ) ⊆ PFun
(
𝐼Θ

)
and the space Ext (Θ) is equipped with the partial order inherited

from PFun
(
𝐼Θ

)
.

The duality between spaces of input histories and extended spaces (their join closure in PFun
(
𝐼
)
)

will play an important role in this work. We can now appreciate the importance of ∨-primality: it
gives a ‘normal form’ that establishes the one-to-one equivalence between spaces of input histories Θ
and their join closure Ext (Θ). From an arbitrary subset of histories𝑊 ⊆ PFun

(
𝐼
)
, we can always

obtain a space of input histories by considering its ∨-prime elements.

Definition 3.13 (Join prime elements). Given any subset 𝑊 ⊆ PFun
(
𝐼
)

the ∨-prime elements

associated to𝑊 are given by

Prime (𝑊) :=
{
𝑤 ∈ 𝑊

���∀F ⊆ 𝑊 compatible. 𝑤 =
∨
F ⇒ 𝑤 ∈ F

}
(3.11)

In particular, we can recover the space of input histories from its correspondent space of extended
histories:

Prime (Ext (Θ)) = Θ (3.12)

Conversely, any ∨-closed subset𝑊 ⊆ PFun
(
𝐼
)

is the extension of its prime elements

Ext (Prime (𝑊)) = 𝑊 (3.13)

Proposition 3.13. The extended input histories for a given choice of order Ω and inputs 𝐼 = (𝐼𝜔)𝜔∈Ω
are given by:

Ext
(
Hist

(
Ω, 𝐼

) )
=

⋃
𝑈 ∈Λ(Ω)

∏
𝜔∈𝑈

𝐼𝜔 ⊆ PFun
(
𝐼
)

(3.14)
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Proof. Let ℎ ∈ Ext
(
Hist

(
Ω, 𝐼

) )
, by definition there exists a finite compatible set of histories F ⊆ Θ

such that ℎ =
∨F . For every 𝑓 ∈ F , we have 𝜔 𝑓 ∈ Ω such that dom ( 𝑓 ) = 𝜔 𝑓 ↓ by the definition

of Hist
(
Ω, 𝐼

)
. Compatibility imposes that:

dom (ℎ) = dom
(∨
F

)
=

⋃
dom (F )

Let 𝜔 ∈ ⋃
dom (F ) and 𝜔′ ≤ 𝜔, there exists 𝑓 ∈ F such that 𝜔 ∈ dom ( 𝑓 ). Since dom ( 𝑓 ) = 𝜔 𝑓 ↓

for some 𝜔 𝑓 ≥ 𝜔, we conclude that 𝜔′ ∈ ⋃
dom (F ) making dom (ℎ) a lowerset. �

Intuitively extended input histories provide an abstract description of families of joint inputs that
are allowed to affect the outcomes of an entire subset of spacelike events. In contrast, input histories
alone describe the joint inputs affecting a single event. This picture will become clear only when we
attach causal data to the histories.

This abstract characterisation of what it means to assign histories of events to an operational
scenario not only goes beyond the deterministic description of events but also gives, as mentioned
earlier, the additional flexibility needed to describe situations where the order itself is indefinite. We
provide three examples of spaces and their extension: in the first one, the events can ‘choose’ to
causally disconnect themselves from other events, and the second one is the by now familiar case
where the past is allowed to influence the order of subsequent events. The causal meaning of the third
one is more esoteric and will become more apparent when discussing non-tight spaces:

Example 3.14. Consider the space of histories Θ (on the left) and its corresponding space of

extended input histories Ext (Θ). The grey-coloured extended input histories on the right are those

which are not input histories (i.e. they arise by join). We can interpret this space, which does not

occur as a space of histories for a fixed preorder, as a refinement of the total order total (A,B,C) in

which choices at B can cause a causal disconnection from A. Similarly, a choice for C can causally

disconnect it from the past events A and B.

Θ Ext (Θ)

Example 3.15. Recall that the order for the quantum switch is given by:

95



Θ

Ext (Θ)

The interpretation for this space of histories is straightforward {A :0, B :0} ,{A :0, B :1} ,{A :1, C :0}
,{A :1, C :1} witness the possibility of A to control the causal order of the events B,C. The values at

A are always independent of any other input, and this is witnessed by the histories {A :0} ,{A :1} .

Example 3.16. Spaces of histories arising from preorders and switches do not exhaust the expressive

power of ∨-prime spaces. Consider the following example:

Θ

This is an example of a non-tight space of histories. We will formally study this class of spaces later

on, but we can attempt a preliminary analysis. Both A and B are independent of any other choice

performed by C or D: their inputs alone constitute valid input histories. If we focus on the event C, it

seems that there is a dependence on both inputs A and B. However, it is not the type of dependence

induced by space associated with the following order Ω:

Ω Hist
(
Ω, 𝐼

)
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In particular there are no histories {A :𝑎, B :𝑏, C :𝑐} . It seems, therefore, that C can be both

thought of as being in the causal future of A and in the causal future of B but not of the two events

simultaneously. Such spaces of input histories arise as meets of spaces with a more straightforward

causal description, and they are not without operational significance. We conclude our preliminary

analysis by observing that the the choice of C will condition A to be followed by either E or D as

witnessed by the histories {A :𝑎, C :1, E :𝑒} or {A :𝑎, C :0, D :𝑑} and the same happens to the event

B: {B :𝑏, C :1, D :𝑑} , {B :𝑏, C :0, E :𝑒} .

Note that the graphical depiction of the Hasse diagram for Ext (Θ) can be used to illustrate
the ∨-primality and the ∨-closure condition. Consider the space of histories in Example 3.14: for
∨-primality observe that no input histories (the coloured nodes) can be obtained as the minimal
common successor of two other histories. With regards to the ∨-closure condition, note how all
compatible input histories have some common successor in the graph: for some of them—such as
{A :1} and {B :0}—this is an immediate common successor, namely {A :1, B :0} ; for others—such
as {B :0} and {C :0} —this is a common successor further up the graph, e.g. {A :1, B :0, C :0}
. Extended input histories without a join are always incompatible ones, such as {A :0, C :0} and
{A :1, C :0} (differing in value on a common event A).

A crucial ingredient, common to all the examples shown above, is hidden in the important
assumption that the inputs at each event can be chosen independently. This desideratum is embodied
in the following condition:

Definition 3.17 (Free-choice condition). A space of input histories is said to satisfy the free-choice
condition if:

max Ext (Θ) =
∏
𝜔∈𝐸Θ

𝐼Θ𝜔 (3.15)

In spaces satisfying the free-choice condition, we refer to the histories in
∏
𝜔∈𝐸Θ 𝐼Θ𝜔 as the maximal

extended input histories.

Example 3.18. The set of partial functions Θ = {{A :0} , {A :1} , {A :0, B :1}} satisfies ∨-primality

but doesn’t satisfy the free-choice condition. A timelike history exists where measurement is performed

at 𝐵 only if Alice’s input is 0, a clear violation of the requirement that the measurement choices are

locally independent. Also, the space {∅}, containing only the empty function, does not satisfy free

choice for any non-empty 𝐼, but it trivially satisfies ∨-primality.

Proposition 3.18. The space of input histories Hist
(
Ω, 𝐼

)
constructed from causal orders always

satisfy the free-choice condition.

Proof. Let ℎ ∈ ∏
𝜔∈Ω be a maximal input history. Let H be the subset of Hist

(
Ω, 𝐼

)
defined by

H = {ℎ|𝜔↓ |𝜔 ∈ dom (ℎ)}, thenH is composed of compatible histories as they all arise as restriction
of ℎ, and we have that ℎ =

∨H . �
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3.3 Hierarchy of Spaces of Input Histories

We have seen in Chapter 1, Section 1.3.3.3 that for causal order hierarchies can be defined
unproblematically: Ω ≤ Ξ is |Ω| ⊆ |Ξ| as sets and ≤Ω⊆≤Ξ as relations. Generalising the type of
causal explanations to general spaces of input histories, we lose the possibility of describing abstract
causality relations with binary edges. How can we endow spaces of histories with a hierarchy which
naturally extends what we know about causal orders?

We appeal to the extended version of the spaces, where more causal constraints are always
identified with the presence of more extended histories. This is particularly easy to appreciate by
keeping in mind the standard no-signalling case where the events are all spacelike separated. The
space of input histories associated with the scenario endowed with a discrete causal order consists of
all the elements of the form {𝜔 : 𝑖} where 𝜔 ∈ 𝐸 and 𝑖 ∈ 𝐼𝜔 . These elementary histories generate the
entire space of possible partial functions

⋃
𝑈 ∈P(𝑋 )

∏
𝜔∈𝑈 𝐼𝜔 by iteratively constructing all joins.

The no-signalling case is extremal; it entails situations in which all subsets of choices of inputs can
be considered operationally meaningful, i.e. they can always be expressed as unions of compatible
timelike choices for some events.

Consider the following ‘causal fork’ Ω and total order Ξ on 3 events. We know that in the
hierarchy of preorders Ω ≤ Ξ:

≤

Ω Ξ

The corresponding spaces of input histories Hist
(
Ω, 𝐼

)
and Hist

(
Ξ, 𝐼

)
are not related by inclusion in

either direction. To make this fact evident, no colour coding is used for the input histories in these
diagrams: instead, the common input histories have been highlighted with a darker colour.

Hist
(
Ω, 𝐼

)
Hist

(
Ξ, 𝐼

)
If the direct comparison fails for spaces of input histories, the order between the spaces is witnessed
by the associated Ext (Θ) and is compatible with the hierarchy of casual orders:

Proposition 3.18. For any two causal orders Ω and Γ, we have:

Ω ≤ Γ ⇔ Ext
(
Hist

(
Ω, 𝐼

) )
⊇ Ext

(
Hist

(
Γ, 𝐼

) )
(3.16)
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Proof. Suppose that Ω ≤ Γ, by Proposition 1.29 Λ(Γ) ⊆ Λ(Ω). Let ℎ ∈ Ext
(
Hist

(
Γ, 𝐼

) )
then

dom (ℎ) ∈ Λ(Γ) ⊆ Λ(Ω) hence ℎ ∈ ∏
𝜔∈dom(ℎ) 𝐼𝜔 ⊆ Ext

(
Hist

(
Ω, 𝐼

) )
by Proposition 3.13.

Conversely, assume that ExtHist
(
Ω, 𝐼

)
⊇ ExtHist

(
Λ, 𝐼

)
let𝑉 ∈ Λ(Γ) and consider ℎ ∈ ∏

𝜔∈𝑉 𝐼𝜔 . By
assumption ℎ ∈ Ext

(
Hist

(
Ω, 𝐼

) )
=

⋃
𝑈 ∈Λ(Ω)

∏
𝜔∈𝑈 𝐼𝜔, from which we infer that dom (ℎ) ∈ Λ(Ω),

and therefore Λ(Γ) ⊆ Λ(Ω) implying Ω ≤ Γ. �

We proceed to define general spaces on input histories:

Definition 3.19 (Partial order on spaces of input histories). We define the following partial order on

spaces of input histories:

Θ′ ≤ Θ ⇐⇒ Ext (Θ′) ⊇ Ext (Θ) (3.17)

We say that Θ′ is a casual refinement of Θ, or that Θ is a causal coarsening of Θ′.

A causal coarsening for a space will entail fewer causal constraints, a refinement more causal
constraints and therefore more extended histories. It may seem inconsistent that the definition of the
partial order does not explicitly mention the underlying set of events. Recall from Definition 3.11
that these can be thought of as implicit in the definition of spaces of input histories.

Observation 3.19. Recall the definition of the events associated with a space of input histories 𝐸Θ

from Definition 3.11. If 𝜃 is a space of input histories and Θ ≤ Θ′, then for all 𝜔 ∈ 𝐸Θ we have that:

𝐸Θ′ ⊆ 𝐸Θ (3.18)

𝐼Θ
′ ⊆ 𝐼Θ (3.19)

Proof. From Definition 3.11 the event sets of Θ and Θ′ are respectively given by

𝐸Θ =
⋃

ℎ∈Ext(Θ)
dom ℎ and 𝐸Θ′

⋃
ℎ∈Ext(Θ′)

dom ℎ

if Θ ≤ Θ′ then Ext (Θ′) ⊆ Ext (Θ) from which follows that 𝐸Θ′ ⊆ 𝐸Θ. For the input sets 𝐼Θ′𝜔 and 𝐼Θ𝜔 ,
where 𝜔 is any 𝜔 ∈ 𝐸Θ, we have:

𝐼Θ𝜔 = {ℎ𝜔 |ℎ ∈ Ext (Θ) , 𝜔 ∈ dom (ℎ)}

⊇ {ℎ𝜔 |ℎ ∈ Ext (Θ′) , 𝜔 ∈ dom (ℎ)} = 𝐼Θ′𝜔

�

Causal orders for a given set of events form a lattice, the indiscrete order is the maximum (minimal
set of causal restrictions), and the discrete causal order is the minimum (maximal set of causal
restrictions). The complete lattice structure of the hierarchy of preorders extends to general spaces of
input histories:

99



Proposition 3.19. Input histories—with no restriction on the underlying events and input values—

form an infinite lattice Spaces under the partial order of Definition 3.18. The join and meets take the

following form

Θ ∨ Θ′ = Prime (Ext (Θ) ∩ Ext (Θ′)) (3.20)

Θ ∧ Θ′ = Prime (Ext (Θ) ∪ Ext (Θ′)) (3.21)

We can think of the join ∨ in Spaces as the closest common coarsening and of the meet ∧ as the

closest common refinement of two spaces of histories.

Proof. For all spaces we have that Prime (Ext (Θ)) = Θ, because of ∨-primality. For subsets of
histories𝑊 which are ∨-closed, Ext is a retraction of Prime so that Ext (Prime (𝑊)) = 𝑊 .

• For the join. We have that Ext (Θ) ∩ Ext (Θ′) ⊆ Ext (Θ′) and Ext (Θ) ∩ Ext (Θ′) ⊆ Ext (Θ).
The spaces Θ and Θ′ are ∨-prime and therefore:

Θ ≤ Prime (Ext (Θ) ∩ Ext (Θ′))

Θ′ ≤ Prime (Ext (Θ) ∪ Ext (Θ′))

Consider an arbitrary Θ′′ such that Θ′′ ≥ Θ,Θ′. By definition Ext (Θ′′) ⊆ Ext (Θ) ∩ Ext (Θ′).
Recall that for all ∨-prime Θ, Prime (Ext (Θ)) = Θ, so that

Prime (Ext (Θ′′)) = Θ′′ ≤ Prime (Ext (Θ) ∩ Ext (Θ′))

• For the meet. We have that Ext (Θ) ,Ext (Θ′) ⊆ Ext (Θ) ∪ Ext (Θ′) and the ∨-closure of
Ext (Θ) ∪ Ext (Θ′) is the smallest ∨-closed superset, so that

Prime (∨-closure of Ext (Θ) ∪ Ext (Θ′)) ≤ Θ,Θ′

Let Θ′′ ≤ Θ,Θ′ then Ext (Θ) ∪ Ext (Θ′) ⊆ Ext (Θ′′). Since Ext (Θ′′) is ∨-closed, then the
∨-closure of Ext (Θ) ∪ Ext (Θ′) must also be contained by Ext (Θ′′).

Θ′′ = Prime (Ext (Θ′′)) ≥ Prime (∨-closure of Ext (Θ) ∪ Ext (Θ′))

Note that the elements that are in the ∨-closure of Ext (Θ) ∪ Ext (Θ′) which are not in
Ext (Θ) ∪ Ext (Θ′) cannot be ∨-prime, therefore:

Θ′′ ≥ Prime (∨-closure of Ext (Θ) ∪ Ext (Θ′)) = Prime (Ext (Θ) ∪ Ext (Θ′))

�
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Proposition 3.19. Spaces of input histories Θ such that 𝐸Θ ⊆ 𝐸 and 𝐼Θ ⊆ 𝐼 for a fixed set of ‘events’

𝐼 := (𝐼𝜔)𝜔∈𝐸 form a finite upperset of Spaces.

Spaces
(
𝐼
)
↩→ Spaces

Proof. The maximum of Spaces
(
𝐼
)

is the empty space with a unique empty history {∅}, which is
trivially a ∨-prime set of histories for any 𝐼. For the minimum, observe that

Ext
(
Hist

(
discrete (𝐸) , 𝐼

) )
= Ext

( ∏
𝜔∈𝐸

𝐼𝜔

)
=

⋃
𝑈 ∈P(𝐸)

∏
𝜔∈𝐸

𝐼𝜔 = PFun
(
𝐼
)

so that Ext (Θ) ⊆ Ext
(
Hist

(
discrete (𝐸) , 𝐼

) )
for all Θ ⊆ PFun

(
𝐼
)
. Correspondingly, for all

Θ ∈ Spaces
(
𝐼
)

we get Hist
(
discrete (𝐸) , 𝐼

)
≤ Θ. Observe that for Θ ≥ Hist

(
discrete (𝐸) , 𝐼

)
, we

have that Ext (Θ) ⊆ PFun
(
𝐼
)

so in particular Θ ⊆ PFun
(
𝐼
)

and Θ ∈ Spaces
(
𝐼
)
. The set is therefore

upward closed with a minimum and a maximum, i.e. a full-sublattice of Spaces. �

Proposition 3.19. Denote by SpacesFC
(
𝐼
)

the set of spaces satisfying the free-choice condition. The

set SpacesFC
(
𝐼
)

forms a lowerset in Spaces
(
𝐼
)

so that together with Proposition 3.19 we have the

following chain of full inclusions (see Figure 3.3 (p.100)):

SpacesFC
(
𝐼
)
↩→ Spaces

(
𝐼
)
↩→ Spaces

•

•

{∅}

Hist
(
discrete

(
𝐼
) )

Hist
(
indiscrete

(
𝐼
) )

Spaces
(
𝐼
)

Spaces

SpacesFC
(
𝐼
)

Figure 3.2: The empty space {∅} is the maximum of the hierarchy, but it does not satisfy the
free-choice condition for a non-empty 𝐼. For a given 𝐼 the set Spaces

(
𝐼
)

is given by the upperset
covering Hist

(
indiscrete (𝐸) , 𝐼

)
—highlighted in blue. Introducing the free-choice condition singles

out all the spaces between Hist
(
discrete (𝐸) , 𝐼

)
and Hist

(
indiscrete (𝐸) , 𝐼

)
.

Proof. Recall that

Hist
(
indiscrete (𝐸) , 𝐼

)
= Ext

(
Hist

(
indiscrete (𝐸) , 𝐼

) )
=

∏
𝜔∈𝐸

𝐼𝜔
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so that for every space Θ satisfying the free choice condition we get
∏
𝜔∈𝐸 𝐼𝜔 ⊆ Ext (Ω) implying

Θ ≤ Hist
(
discrete (𝐸) , 𝐼

)
. �

It follows from Proposition 3.18 that for every Ω with events inputs 𝐼 we have that Hist
(
Ω, 𝐼

)
∈

SpacesFC
(
𝐼
)

since in particular Hist
(
discrete

(
𝐼
) )
∈ SpacesFC

(
𝐼
)
. We show that the operation

of extracting the space of input histories from a causal order commutes with the join operation.
Hist

(
Ω, 𝐼

)
therefore embeds the hierarchy of causal orders (studied in Chapter 1) in a sup-semilattice

of Spaces
(
𝐼
)
.

Proposition 3.19. For any given 𝐼 = (𝐼𝜔)𝜔∈𝐸 the function

Ω ↦→ Hist
(
Ω, 𝐼

)
commutes with the join operation

Hist
(
Ω, 𝐼

)
∨ Hist

(
Ω′, 𝐼

)
= Hist

(
Ω ∨Ω′, 𝐼

)
Proof. Recall that the join is defined as:

Hist
(
Ω, 𝐼

)
∨ Hist

(
Ω′, 𝐼

)
:= Prime

(
Ext

(
Hist

(
Ω, 𝐼

) )
∩ Ext

(
Hist

(
Ω′, 𝐼

) ) )
The extended histories are obtained by the lowersets Λ(Ω) and Λ(Ω′). For arbitrary preorders the
following equality holds Λ(Θ ∩ Θ′) = Λ(Θ) ∩ Λ(Θ′) from which we conclude

Ext
(
Hist

(
Ω, 𝐼

) )
∩ Ext

(
Hist

(
Ω′, 𝐼

) )
= Ext

(
Hist

(
Ω ∩Ω′, 𝐼

) )
�

Proposition 3.19 shows that the joins for spaces obtained from preorders are compatible with the
hierarchy of causal orders described in Chapter 1. When considering meets, the situation changes as
we need to consider union of extended histories. For example, considerΩ = total (𝐴, 𝐵)∨discrete (𝐶)
and Ω′ = discrete (𝐴) ∨ total (𝐶, 𝐵):

Ω Ω′

The spaces of histories for Hist (Ω, {0, 1}) and Hist (Ω′, {0, 1}) are given by:
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Hist (Ω, {0, 1}) Hist (Ω′, {0, 1})
The meet in the hierarchy of causal orders is the discrete space Ω ∧ Ω′ = discrete (𝐴, 𝐵, 𝐶). To
find the meet of the spaces of histories, we need to consider the ∨-prime elements of the union of
corresponding extended input histories which is given by the poset on the left hand side (the right
hand side represents the histories for the discrete space):

Hist (Ω, {0, 1}) ∧ Hist (Ω′, {0, 1}) Hist (Ω ∧Ω′, {0, 1})
Satisfying the causal constraints for both Ω and Ω′ is different from satisfying tri-partite no-signalling
constraints. This observation is witnessed at the level of generality imposed by input histories. We
will further describe the space Hist (Ω, {0, 1}) ∧Hist (Ω′, {0, 1}), which does not arise from a causal
order and is a non-tight space when talking about the hierarchy of causally complete spaces on three
events Section 3.3.1.3.

3.3.1 Causally Complete Spaces

In our operational interpretation, input histories are the data upon which the output values at individual
events are allowed to depend. When the causal order is given, it is always clear which histories
refer to which outputs: the output at event 𝜔 is determined by the set of input histories with domain
dom (ℎ) = 𝜔↓ concining with its causal past and each one describing a different configurations of
settings in the causal past of 𝜔. In the more general setting of spaces of input histories, where a
definite causal order is not explicit in its definition, is there a way to determine to which event is each
history referring to?

Understanding the phenomenon in Hist
(
Ω, 𝐼

)
will, once more, inform a suitable generalisation.

Consider the example of the causal diamond Ω:
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Looking at the space of input histories for a causal poset we observe that an association between input
histories and events can be made from the order of histories alone without explicitely mentioning Ω.
Indeed, if ℎ is a history with dom (ℎ) = 𝜔 ↓, then we can look at all input histories 𝑘 < ℎ strictly
below it and recover𝜔 as the only event in dom (ℎ) \⋃𝑘<ℎ dom (𝑘): this is the only event not covered
by the domains of the histories strictly below ℎ. Iterating this procedure we can colour-code input
histories according to the events they refer to as follows

If two or more events are in indefinite causal order, they will togheter index some of the histories in
the space. Indeed, consider the following indefinite version of the diamond order above: the space
total (A, {B,C} ,D), where the events B and C are in indefinite causal order:

Because B and C cannot be distinguished by input histories, the histories in the middle layer are
referring to two events instead of one:

The operational interpretation of histories referring to multiple events is challenging: in a naive sense,
the output value is to be produced ‘simultaneously’. This is problematic because indefinite causal
order should not trivialise to causal collapse: under our operational interpretation, distinct events
should retain their independent local nature. It should not, for example, be possible to perform the
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‘swap’ function (𝑏, 𝑐) ↦→ (𝑐, 𝑏) on two events B and C in indefinite causal order: the devices would
have to wait for both inputs to be given before producing their outputs, with the effect of delocalising
the events.

However, there is an alternative way to look at the presence of multiple terminal events as a form
of ‘causal incompleteness’. Rather than interpreting such spaces as allowing event de-localisation, we
think of them as not providing sufficient information for causal inference to be performed. We will
not use causally incomplete spaces directly in our framework: we will focus our efforts on ‘causally
complete’ spaces, and study the incomplete ones through the lens of all possible ‘causal completions’
they admit.

We formalise the notion described above by introducing ‘tip events’: set of events assigned to
single histories which tell us how to think of them as a generalised notion of a complete ‘operational
past’. The tip for a single history is not a property of the history itself, i.e thought of simply as a
partial function, but rather depends on how the histories are intelaced in forming a space of input
histories.

Definition 3.20 (Tip events). Let Θ be a space of input histories. Given an extended input history

ℎ ∈ Ext (Θ), we define the tip events of ℎ in Θ as the events which are in the domain of ℎ but not in

the domain of any history strictly below it:

tipsΘ (ℎ) := dom (ℎ) \⋃𝑘<ℎ dom (𝑘)
= {𝜔 ∈ dom (ℎ) | ∀𝑘 < ℎ. 𝜔 ∉ dom (𝑘) } (3.22)

Proposition 3.20. Every input history ℎ ∈ Θ has at least one tip event. Every extended input history

ℎ ∈ Ext (Θ) which is not an input history—i.e. one such that ℎ ∉ Θ—has no tip events.

Proof. Let ℎ ∈ Θ be an input history. If tipsΘ (ℎ) = ∅ then for every 𝜔 ∈ dom (ℎ) there exists ℎ𝜔
such that 𝜔 ∈ dom (ℎ𝜔) and ℎ𝜔 ≤ ℎ. Clearly {ℎ𝜔}𝜔∈dom(ℎ) is a set of compatible histories since for
all 𝜔 ∈ Ω we have that h𝜔 ≤ ℎ and dom

(∨
𝜔∈dom(ℎ) ℎ𝜔

)
= dom (ℎ). Since

∨
𝜔∈ℎ ℎ𝜔 is compatible

with ℎ we have that
∨(ℎ𝜔) = ℎ contradicting join-primality.

Now let ℎ ∈ Ext (Θ) be an extended input history such that ℎ ∉ Θ. Then ℎ =
∨
𝑘<ℎ 𝑘 implies

that tipsΘ (ℎ) = dom (ℎ) \⋃𝑘<ℎ dom (𝑘) = ∅. �

The definition of causal completeness does not explicitly refer to the free-choice condition. For
the rest of the work, all the relevant causally complete spaces will satisfy free will. We, therefore,
decided to directly include this property in the definition of causally complete spaces.

Definition 3.21 (Causally complete spaces). Let Θ be a space of input histories satisfying the

free-choice condition. We say that Θ is causally complete if all input histories ℎ ∈ Θ have exactly

one tip event and that it is causally incomplete otherwise. If Θ is causally complete and ℎ ∈ Θ, we

define the tip event of ℎ in Θ to be the unique event in tipsΘ (ℎ):

Θ causally complete ⇔ ∀ℎ ∈ Θ. tipsΘ (ℎ) = {tipΘ (ℎ)} (3.23)
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In the following proposition, we show that when restricting to the causal histories of the type
Hist

(
Ω, 𝐼

)
, causal completeness characterises the spaces arising from causal posets.

Proposition 3.21. A space of input histories Θ = Hist
(
Ω, 𝐼

)
induced by a causal order Ω is causally

complete if and only if the causal order Ω is causally definite.

Proof. For all 𝜔 ∈ Ω and all ℎ ∈ Θ with dom (ℎ) = 𝜔↓, we must have:

tipsΘ (ℎ) := dom (ℎ) \
⋃
𝑘<ℎ

dom (𝑘) = 𝜔↓ \
⋃
𝜔′≺𝜔

𝜔′↓= [𝜔]'

Hence, Θ is causally complete if and only if all causal equivalence classes [𝜔]' have size 1. This is
precisely the characterisation of causal definiteness for Θ. �

Observation 3.21. The ‘minimal’ extended input histories 𝑘 ∈ Ext (Θ) are those without sub-histories,

i.e. those such:

∀𝑘 ′ ∈ Ext (Θ) .𝑘 ′ ≤ 𝑘 ⇒ 𝑘 ′ = 𝑘

Such 𝑘 are necessarily ∨-prime, so we refer to them as the minimal input histories. For a minimal

input history ℎ ∈ Θ, we always have tipsΘ (ℎ) = dom (ℎ). If Θ is causally complete, this forces any

minimal input history ℎ to have | dom (ℎ) | = 1.

Definition 3.22 (Causal completion). Let Θ be a space of input histories satisfying the free-choice

condition. The causal completions of Θ are the closest refinements of Θ which are causally complete,

i.e. the maxima of the set of causally complete spaces which are causal refinements of Θ:

CausCompl (Θ) := max {Θ′ ≤ Θ |Θ′ causally complete } (3.24)

Since the discrete space Hist
(
discrete

(
𝐸Θ

)
, 𝐼Θ

)
is always causally complete, the set of causal

completions of Θ is never empty. If Θ is itself causally complete, then CausCompl (Θ) = {Θ}.

As an example of causal completion, we refer back to the indefinite causal order total (A, {B,C}).
The associated space of input histories is causally incomplete because B and C always appear together
as tip events (coloured aquamarine, at the top).

There are four possible causal completions for this space. Two of the causal completions are obtained
by imposing a fixed order on events B and C: either B causally precedes C (left below) or B causally
succeeds C (right below).
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The remaining two causal completions are obtained by imposing an order on events B and C that
depends on the input at event A: either B causally precedes C when the input at A is 0 and causally
succeeds C when the input at A is 1 (left below), or B causally succeeds C when the input at A is 0
and causally precedes C when the input at A is 1 (right below).

3.3.1.1 Hierarchy of Causally Complete Spaces

Causally complete spaces do not admit any casual ambiguity. Each causally complete space constitutes
a causal explanation, and, as is the case for any other space of histories, some can be thought of as
being more constrained than others. In this subsection, we study the properties of the hierarchy of
spaces when restricting them to causally complete spaces. This investigation transcends the mere
mathematical exercise; the hierarchy of causally complete space will constitute the arena for the type
of causal discovery described in Chapter 5.

Proposition 3.22. Let Θ and Θ′ be causally complete spaces satisfying 𝐼Θ = 𝐼. In general, Θ ∨Θ′ is
not a causally complete space.

Proof. By Proposition 3.21 we have that considering Hist
(
Ω, 𝐼

)
and Hist

(
Ω′, 𝐼

)
for Ω = total (𝐴, 𝐵)

and Ω′ = total (𝐵, 𝐴) are causally complete spaces of input histories. By Proposition 3.19 we know
that Hist

(
Ω, 𝐼

)
∨ Hist

(
Ω′, 𝐼

)
= Hist

(
Ω ∨Ω′, 𝐼

)
. However, Ω ∨Ω′ is an indefinite causal order, and

Proposition 3.21 shows that the space cannot be causally complete. �

Proposition 3.22. Causally complete spaces Θ satisfying 𝐼Θ = 𝐼 form a subset CCSpaces
(
𝐼
)
⊆

SpacesFC
(
𝐼
)

which is closed under meet. We refer to the ∧-semilattice CCSpaces
(
𝐼
)

as the hierarchy
of causally complete spaces for 𝐼.

Proof. Regarding closure under meet, consider two causally complete spaces Θ,Θ′ ∈ SpacesFC
(
𝐼
)
.

By Proposition 3.19, the meetΘ∧Θ′ is obtained by taking the∨-prime elements in Ext (Θ)∪Ext (Θ′):
this means that every input history ℎ ∈ Θ ∧ Θ′ (i.e. a ∨-prime element in Ext (Θ) ∪ Ext (Θ′)) is
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either an input history in ℎ ∈ Θ (i.e. a ∨-prime element in Ext (Θ)) or an input history ℎ ∈ Θ′ (i.e. a
∨-prime element in Ext (Θ′)). Without loss of generality, assume ℎ ∈ Θ. We have:

tipsΘ∧Θ′ (ℎ) = dom (ℎ) \⋃𝑘∈Θ∧Θ′ s.t. 𝑘<ℎ dom (𝑘)
⊆ dom (ℎ) \⋃𝑘∈Θ s.t. 𝑘<ℎ dom (𝑘) = tipsΘ (ℎ)

Because Θ is causally complete, tipsΘ (ℎ) is a singleton, which forces tipsΘ∧Θ′ (ℎ) to also be a
singleton (by Proposition 3.20, ℎ ∈ Θ ∧ Θ′ has at least one tip event in Θ ∧ Θ′). �

3.3.1.2 Hierarchy of causally complete spaces on 2 events

As our simplest non-trivial example, we look at the hierarchy of causally complete spaces
CCSpaces

(
({0, 1})𝜔∈{A,B}

)
on 2 events A and B with binary inputs {0, 1}. This hierarchy contains 7

causally complete spaces of input histories, ordered in 3 layers. For additional ease of understanding,
each space of input histories we examine is displayed together with the associated space of extended
input histories: this way, it is easy to check whether a given space refines another.

At the bottom of the hierarchy CCSpaces
(
({0, 1})𝜔∈{A,B}

)
is the discrete space, induced by

the discrete order on two events. This space has 4 histories: because the two events are causally
unrelated, the input histories {A :0} and {A :1} determine the output on event A, while the input
histories {B :0} and {B :1} determine the output on event B.

Θ Ext (Θ)
At the top of the hierarchy are the 2 spaces induced by the two possible total orders on two events.
Below is the space corresponding to the total order A→ B. This space has 6 histories: the input
histories {A :0} and {A :1} determine the output on event A, while the remaining four histories are
needed to determine the output on event B, because the latter causally succeeds A.

Θ Ext (Θ)
The two spaces induced by total orders are related by event permutation symmetry 𝑆({A,B}).
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The middle layer of the hierarchy contains 4 spaces, each of them a coarsening of the discrete space
and a refinement of one of the two total order spaces. Below is one of the four spaces. This space
is a refinement of the space for the total order A → B: by looking at the space of extended input
histories, we note that the input history {B :0} has been added, with tip event B. This means that the
output at B does not depend on the input at A when the input at B is 0: choosing 0 at B causally
disconnects B from A. When the input at B is 1, the output at B can still depend on the input at A, as
demonstrated by the two input histories {A :0, B :1} and {A :1, B :1} with tip event B.

Θ Ext (Θ)
The four spaces in the middle layer are related by event-input permutation symmetry 𝑆({A,B}) ×
𝑆(𝐼A) × 𝑆(𝐼B): that is, by independently permuting the event set {A,B} and each of the input value
sets 𝐼𝜔 (in fact, permuting one of the input sets is enough in this case).

Event-input permutation symmetry is extremely helpful when classifying spaces: because the
event and input labels are arbitrary, permutations do not contribute to our general understanding of
causality. For a general 𝐼 = (𝐼𝜔)𝜔∈𝐸 , it corresponds to the following group, where 𝑆(𝑋) is the group
of permutations on a set 𝑋:

𝑆(𝐸) ×
∏
𝜔∈𝐸

𝑆(𝐼𝜔)

Permutation symmetry is broken once an empirical model is specified because conditional probability
distributions are not, in general, invariant under its action. In those cases where empirical models retain
some symmetry, the latter can be used to reduce the computational burden for causal decomposition.
Figure 3.3 (p.109) shows the action of permutation symmetry on a causally complete space on 3
events with binary inputs: the symmetry group does not act freely on this particular equivalence class
(which features 24 spaces), but it does on other equivalence classes (27 in total, e.g. equivalence
class 30).
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Figure 3.3: All 24 permutations of a causally complete space on 3 events with binary inputs.
Specifically, these are the contents of equivalence class 28 in the hierarchy, as depicted in Figure 3.4.
Each row is a coset for the action of event permutation symmetry 𝑆({𝐴, 𝐵, 𝐶}), which acts freely
(on this equivalence class).Each column is a coset for the action of input permutation symmetry∏
𝜔∈{𝐴,𝐵,𝐶 } 𝑆(𝐼𝜔), which doesn’t act freely (on this equivalence class).

3.3.1.3 Hierarchy of causally complete spaces on 3 events

Having completed our exposition of the hierarchy of spaces on two events with binary inputs, we
now move to the hierarchy CCSpaces

(
({0, 1})𝜔∈{A,B,C}

)
on three events. This hierarchy has 2644

spaces, forming 102 equivalence classes under event-value permutation symmetry. Explaining the
algorithm used to enumerate spaces and equivalence classes is outside the scope of this dissertation.
An in-depth discussion and detailed anatomy of these spaces can be found in [62].

While the full hierarchy is too complex to display, Figure 3.4 (p.110) depicts the corresponding
hierarchy of 102 equivalence classes: in this condensed graph, an edge 𝑖 → 𝑗 indicates that every
space in equivalence class 𝑖 is a closest refinement of some space of equivalence class 𝑗 . To get a
reasonably orderly 3D view of the complete hierarchy, one could imagine stacking all spaces in each
equivalence class vertically: edges between spaces in equivalence classes 𝑖 and 𝑗 would line up, and
their 2D vertical projections would form the edges seen in Figure 3.4 (p.49).

At the bottom of the hierarchy, we find the discrete space, induced by the discrete order
discrete (A,B,C), sitting alone in equivalence class 0. This space has 6 histories—one for each event
and input choice at that event—all unrelated: this is the no-signalling scenario, where the output
at each event depends only on the input at that event. The corresponding space of extended input
histories contains all 26 binary-valued partial functions on the 3 events: histories supported by more
than one event are not ∨-prime in this space.
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Figure 3.4: The hierarchy of causally complete spaces on 3 events with binary inputs, grouped into
102 equivalence classes under event-input permutation symmetry. An edge 𝑖 → 𝑗 indicates that some
space in eq. class 𝑖 is a closest refinement for some space in eq. class 𝑖. Node colour indicates the
number of causal functions for a space which are not causal for any of its subspaces, while edge
colour indicates the number of causal functions for the head space that are not causal for the tail
space. Grey nodes (e.g. eq. class 1) indicate spaces where all causal functions are also causal for
some subspace, while thicker dark blue edges (e.g. edge 0→ 1) indicate that all causal functions for
the head space are also causal for the tail space. Causal functions will be defined and extensively
discussed in the next chapter. Thin purple borders for nodes indicate eq. classes of non-tight spaces
(e.g. eq. class 1). Thick black borders for nodes indicate the eq. classes of spaces induced by causal
orders.

Θ0 Ext (Θ0)

At the top of the hierarchy, we find two equivalence classes of spaces, labelled 100 and 101.
Equivalence class 100 contains the 6 spaces induced by total order: below is the space induced by
order total (A,B,C). This space has 14 histories, covering all possible combinations of inputs for
event A (determining the output at event A), for events {A,B} (determining the output at event B)
and for events {A,B,C} (determining the output at event C). This space coincides with its own space
of extended input histories.
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Θ100 Ext (Θ100)

Equivalence class 101 contains the 6 spaces for a 3-party causal switch: below is the space where the
input of A determines the total order between B and C, with input 0 at A setting B→ C and input 1
at A setting C→ B. This space has 14 histories, covering:

• all inputs for event A, determining the output at A and the total order between B and C

• all inputs for event B when A has input 0, determining the output at B

• all inputs for events {B,C} when A has input 0, determining the output at C

• all inputs for event C when A has input 1, determining the output at C

• all inputs for events {C,B} when A has input 1, determining the output at B

This space coincides with its own space of extended input histories.

Θ101 Ext (Θ101)

The spaces in equivalence class 101 are examples of causally complete spaces not admitting a fixed
definite causal order: they are not refinements of Hist (Ω, {0, 1}) for any definite causal order Ω on
A, B and C. There are 13 equivalence classes consisting of spaces that don’t admit a fixed definite
causal order, highlighted in Figure 3.5 (p.112).

A thick black border marks the 5 equivalence classes of spaces induced by total orders in Figure
3.4 (p.110). We have already seen equivalence class 0 (for the discrete order) and equivalence class
100 (for total orders): we now look at the remaining three. Equivalence class 92 contains the 3 spaces
induced by wedge orders: below is the space induced by order total (A,C) ∨ total (B,C). This space
has 12 histories, covering all possible combinations of inputs for event A (determining the output at
event A), for event B (determining the output at event B), and for events {A,B,C} (determining the
output at event C). The extended input histories supported by {A,B} are not ∨-prime in this space.
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Figure 3.5: The 13 equivalence classes not admitting a fixed definite causal order, highlighted within
the hierarchy of causally complete spaces on 3 events with binary inputs. See Figure 3.4 for a
discussion of colours and markings.

Θ92 Ext (Θ92)

Equivalence class 77 contains the 3 spaces induced by fork orders: below is the space induced by
order total (A,B) ∨ total (A,C). This space has 10 histories, covering all possible combinations of
inputs for event A (determining the output at event A), for events {A,B} (determining the output at
event B), and for events {A,C} (determining the output at event C). The extended input histories
supported by all three events are not ∨-prime in this space.

Θ77 Ext (Θ77)
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Equivalence class 33 contains the 6 spaces induced by the disjoint join of a total order on two events
with a discrete third event: below is the space induced by order total (A,B) ∨ discrete (C). This
space has 8 histories, covering all possible combinations of inputs for event A (determining the output
at event A), for events {A,B} (determining the output at event B), and for event C (determining the
output at event C). The extended input histories supported by either {A,C} or by all three events are
not ∨-prime in this space.

Θ33 Ext (Θ33)

Spaces not induced by causal orders can all be understood as introducing input-dependent causal
constraints. We already saw this in the 3-party causal switch space Θ101: it refines the (non causally
complete) order-induced space Hist (total (A, {B,C}) , {0, 1}), by introducing causal constrains on
{B,C} which depend on the input at event A. The spaces in equivalence class 101 might be the
iconic example of this mechanism, but all 97 equivalence classes of non-order-induced spaces can be
understood this way: we take some order-induced coarsening and study the additional input-dependent
causal constraints.

In the most general case of this procedure, we consider a space Θ ∈ Spaces
(
𝐼
)

and a causal order
Ω such that Θ < Hist

(
Ω, 𝐼

)
, i.e. such that:

Ext (Θ) ⊇ Hist
(
Ω, 𝐼

)
In particular, the above implies that Θ ∈ SpacesFC

(
𝐼
)
. The extended input histories in

Ext (Θ) \Hist
(
Ω, 𝐼

)
correspond to causal constraints that Θ imposes additionally to Hist

(
Ω, 𝐼

)
:

if there is a unique minimal choice for Ω (cf. equivalence class 98, discussed below), then the
additional constraints are truly input-dependent; if there are multiple minimal choices for Ω (cf.
equivalence class 3, discussed below), then the additional constraints might instead be those of a
different causal order, independent of any input values. We can restrict our attention to the input
histories in ℎ ∈ Θ ∩

(
Ext (Θ) \Hist

(
Ω, 𝐼

) )
, because all additional extended input histories arise as

their join. For each such input history ℎ, we consider the set 𝐾ℎ of minimal extended input histories
from the order-induced space which lie above ℎ:

𝐾ℎ := min
(
ℎ↑ ∩ExtHist

(
Ω, 𝐼

) )
⊆ Ext (Θ)
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We then consider the set 𝐸ℎ of all events which are in the domain of some 𝑘 ∈ 𝐾ℎ but not of ℎ:

𝐸ℎ :=
⋃
𝑘∈𝐾ℎ

dom (𝑘) \ dom (ℎ)

The additional constraint imposed by ℎ can then be understood as follows: when the events in dom (ℎ)
have inputs specified by ℎ, the outputs at the tip events tipsΘ (ℎ) are independent of the inputs at
events in 𝐸ℎ.

As the simplest example of input-dependent causal constraints, we consider space Θ98 below, a
representative from equivalence class 98 which is a closest refinement of Hist (total (A,B,C) , {0, 1}).
The only additional history, in this case, is {B :1}, imposing the following constraint: when the input
at B is 1, the output at B is independent of the input at event A.

Θ98 Ext (Θ98)

Another simple example is given by Θ97 below, a representative from equivalence class 97 which is
also a closest refinement of Hist (total (A,B,C) , {0, 1}). The only additional history, in this case, is
{C :1}, imposing the following constraint: when the input at C is 1, the output at C is independent of
the input at event B (but not necessarily of the input at event A).

Θ97 Ext (Θ97)

Both examples above are clear cases of input-dependent causal constraints. However, we mentioned
that additional causal constraints need not be truly input dependent, as witnessed by our previous
example on the meet of order-induced spaces for causal orders Ω = total (A,B) ∨ discrete (C) and
Ω′ = discrete (𝐴) ∨ total (C,B).
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Θ33 = Hist (Ω, {0, 1}) Θ3 = Hist (Ω′, {0, 1}) ∧ Hist (Ω′, {0, 1}) Hist (Ω′, {0, 1})

Indeed, the spaces in equivalence class 3 are exactly the meets of 3 pairs of spaces from equivalence
class 33 (the other 15 non-trivial meets of pairs in equivalence class 33 all yield the discrete space in
equivalence class 0). For space Θ3, specifically, we get the following additional constraints:

• as a coarsening of order-induced space Θ33 = Hist (total (A,B) ∨ discrete (C) , {0, 1}), the
additional constraints come from the 4 histories with domain {B,C}: they state that the output
on B is independent of the input on A for all possible choices of inputs on {B,C}.

• as a coarsening of order-induced space Hist (discrete (A) ∨ total (C,B) , {0, 1}), the additional
constraints come from the 4 histories with domain {A,B}: they state that the output on B is
independent of the input on C for all possible choices of inputs on {A,B}.

Because the additional constraints appear for all possible choices of inputs on their common support,
they are not truly input-dependent in this case.

Θ3 Ext (Θ3)

The description of the constraints for space Θ3 is a bit confusing: one would indeed be forgiven
for thinking that these constraints should be equivalent to the no-signalling ones, generated by the
discrete space. And, in a sense, they are: the spaces in equivalence class 3 have exactly the same
causal functions as the discrete space (as do the spaces in equivalence classes 1, 2, 6, 7, 9, 10 and 13).
Furthermore, we will see in Chapter 6 that the causaltope for space Θ3 (as well as Θ1) coincides with
the no-signalling polytope—the causaltope of the discrete space Θ0—when the ‘non-locality cover’
is considered. However, this does not mean that the spaces Θ3 and Θ0 are causally equivalent: they
are for non-locality purposes, but the former admits strictly more contextual empirical models than
the latter, for certain other choices of cover.
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3.4 On non-tight spaces

Space Θ3 is also an example of a ‘non-tight’ space, where multiple causal orders constrain the events
in some histories. Lack of tightness is a peculiar pathology: it implies a form of contextuality where
deterministic functions defined compatibly on certain subsets of input histories cannot always be
glued together into functions defined on all histories. Put it in more technical terms, we will see later
that the pre-sheaf of causal functions on a non-tight space of input histories is not necessarily a sheaf.

Definition 3.23. Let Θ be a space of input histories. We say that Θ is tight if for every (maximal)

extended input history 𝑘 ∈ Ext (Θ) and every event 𝜔 ∈ dom (𝑘) there is a unique input history

ℎ ∈ Θ such that ℎ ≤ 𝑘 and 𝜔 ∈ tipsΘ (ℎ). We say that Θ is non-tight otherwise.

Non-tight spaces are indicated in Figure 3.4 (p.110) by a thin violet border, and they constitute
the majority of examples: out of 102 equivalence classes, 58 are ‘non-tight’ and 44 are ‘tight’. To
understand what lack of tightness means concretely, let us consider space Θ17 below. In the input
histories below extended input history {A :1, B :1, C :2} (circled in blue), the event C appears as a
tip event in two separate histories, namely {A :1, C :1} and {B :1, C :1}; edges from the latter input
histories to the former extended input histories have also been highlighted blue, for clarity.

Ext (Θ17) Ext (Θ17) with highlights

The effect of these multiple appearances of C as a tip event is that causal functions on space Θ17

must yield identical output values at event C for both input histories {A :1, C :1} and {B :1, C :1},
which would have otherwise been unrelated. Put in other words, in history {A :1, B :1, C :2} the
output at event C must satisfy the constraints of two different causal orders: total (A,C,B) (from
{A :1} → {A :1, C :1} → {A :1, B :1, C :1}) and total (B,C,A) (from {B :1} → {B :1, C :1} →
{A :1, B :1, C :1}).

A further example of non-tight space is given by space Θ21, which does not admit a fixed definite
causal order: B causally precedes C when the input at B is 0 or the input at A is 1, while it causally
succeeds C when the input at C is 0 or the input at A is 1. In this space, there are two extended input
histories with ‘tip event conflicts’ below them: the extended input history {A :0, B :1, C :0} (circled
in green) sees B appearing as tip event in the two input histories {A :0, B :1} and {B :1, C :0} below
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it, while the extended input history {A :1, B :0, C :1} (circled in blue) sees C appearing as tip event
in the two input histories {A :1, C :1} and {B :0, C :1} below it.

Θ21 Ext (Θ21) with highlights

The (unique) closest causal coarsening of Θ21 which is tight is the space in equivalence class 48
obtained by removing the ‘conflicting’ input histories {B :1, C :0} (for event B) and {B :0, C :1} (for
event C). The space is displayed below as Θ48, and it also does not admit a fixed definite causal order.

Θ48,1 Ext
(
Θ48,1

)
A more complicated example of tight space—imposing multiple input-dependent causal

constraints—is given Θ80, a representative of equivalence class 80 and causal refinement of
Hist (total (A,B,C) , {0, 1}).

Θ80 Hist (total (A,B,C) , {0, 1})

In addition to the causal constraints associated with the total order total (A,B,C), space Θ80 imposes
the following input-dependent causal constraints:

• From the additional history {B :1} , with tip event B, we get that the input at B is independent
of the input at A when the input at B is 1.

• From the additional history {A :1, C :0} , with tip event C, we get that the output at C is
independent of the input at B when the input at A is 1 and the input at C is 0.

• From the additional history {B :1, C :1} , with tip event C, we get that the output at C is
independent of the input at A when the input at B is 1 and the input at C is 1.
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We also show that non-tight spaces arise inevitably when meets of causally complete spaces are
considered, even in the simplest case of order-induced spaces (with at least 3 events). Indeed, the
(causally complete) space Θ3 on 3 events which originally sparked our investigation gives an example
of such a non-tight meet of order-induced (causally complete) spaces.

Θ3 Ext (Θ3) with highlights

Proposition 3.23. Let Ω be a causal order and let 𝐼 = (𝐼𝜔)𝜔∈Ω be a family of non-empty input sets.

The space of input histories Θ := Hist
(
Ω, 𝐼

)
is tight.

Proof. Let 𝑘 ∈ ExtHist
(
Ω, 𝐼

)
and 𝜔 ∈ dom (𝑘). The input history ℎ := 𝑘 |𝜔↓ ∈ Θ is the unique input

history ℎ ≤ 𝑘 with 𝜔 ∈ tipsΘ (ℎ). As a consequence, Θ is tight. �

Proposition 3.23. Let Ω and Ω′ be two causal orders on the same set of events 𝐸 := |Ω| = |Ω′ |. Let

Θ := Hist
(
Ω, 𝐼

)
and Θ′ := Hist

(
Ω′, 𝐼

)
be the spaces of input histories induced by the two causal

orders for the same family of input sets 𝐼. The meet Θ ∧ Θ′ is tight if and only if for all 𝜔 ∈ 𝐸 we

have 𝜔↓Ω⊆ 𝜔↓Ω′ or 𝜔↓Ω′⊆ 𝜔↓Ω.

Proof. For every input history ℎ ≤ 𝑘 in the meet Θ ∧ Θ′ we must have that ℎ ∈ Θ or ℎ ∈ Θ′,
because the extended input histories in Ext (Θ ∧ Θ′) arise the the compatible joins of input histories
in the set Θ ∪ Θ′; for the same reason, we must also have that tipsΘ∧Θ′ (ℎ) ⊆ tipsΘ (ℎ) and
tipsΘ∧Θ′ (ℎ) ⊆ tipsΘ′ (ℎ). Let 𝑘 ∈ ∏

𝜔∈𝐸 𝐼𝜔, which is a maximal extended input history for Θ, Θ′

and Θ ∧ Θ′.
In one direction, assume that 𝜔 ∈ tipsΘ∧Θ′ (ℎ) and 𝜔 ∈ tipsΘ∧Θ′ (ℎ) for two distinct input

histories ℎ, ℎ′ ≤ 𝑘: then ℎ and ℎ′ cannot be both in Θ or both in Θ′, because the two spaces are
tight, and without loss of generality we can assume that ℎ ∈ Θ and ℎ′ ∈ Θ′. Since ℎ = 𝑘 |dom(ℎ) and
ℎ′ = 𝑘 |dom(ℎ′) , we must have dom (ℎ) ≠ dom (ℎ′); since ℎ and ℎ′ both have 𝜔 as a tip event, we
must furthermore have dom (ℎ) * dom (ℎ′) and dom (ℎ′) * dom (ℎ). Because dom (ℎ) = 𝜔↓Ω and
dom (ℎ′) = 𝜔↓Ω′, we conclude that 𝜔↓Ω* 𝜔↓Ω′ and 𝜔↓Ω* 𝜔↓Ω′.

In the other direction, assume that 𝜔 ↓Ω* 𝜔 ↓Ω′ and 𝜔 ↓Ω* 𝜔 ↓Ω′ for some 𝜔 ∈ 𝐸 . Let ℎ be
any input history ℎ ∈ Θ ∧ Θ′ such that ℎ ≤ 𝑘 |𝜔↓Ω and 𝜔 ∈ tipsΘ∧Θ′ (ℎ): one must exist, because
𝜔 ∈ dom

(
𝑘 |𝜔↓Ω

)
; analogously let ℎ′ be any input history ℎ′ ∈ Θ ∧ Θ′ such that ℎ′ ≤ 𝑘 |𝜔↓Ω′ and

𝜔 ∈ tipsΘ∧Θ′ (ℎ′). If it were the case that ℎ ∈ Θ′, then 𝜔 ∈ tipsΘ∧Θ′ (ℎ) ⊆ tipsΘ′ (ℎ) would imply
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that dom (ℎ) = 𝜔↓Ω′: this would contradict the definition of ℎ ≤ 𝑘 |𝜔↓Ω , and hence we must have
ℎ ∈ Θ; analogously, we must have ℎ′ ∈ Θ′. We conclude that there exist distinct ℎ, ℎ′ ≤ 𝑘 such that
𝜔 ∈ tipsΘ∧Θ′ (ℎ) and 𝜔 ∈ tipsΘ∧Θ′ (ℎ′), making Θ ∧ Θ′ non-tight. �

3.5 Conclusions

In this chapter, we have explored the combinatorial properties of spaces of input histories. We have
provided an axiomatic description of the spaces of input histories and described the properties of the
associated hierarchy. We explicitly characterised causally complete spaces on 2 and 3 events and
briefly discussed non-tightness. This chapter is based on the preprint [63]; however, we must warn
the reader that to make the narrative more fluent, we decided to omit reference to the part of the paper
dealing with the compositional properties of the spaces of input histories. Unfortunately, this did not
allow us to provide an in-depth description of a significant result proved in ‘The Combinatorics of
Causality’[63], which we briefly mention in these conclusions.

If we have a look at the hierarchy for three events represented in Figure 3.4 (p.110), we see that
the top spaces of the hierarchy are given by the equivalence classes for totally ordered events or by
the switch spaces on three events. Respectively, Θ100 and Θ101. Does this property generalise to
arbitrary events? First, we need to generalise the notion of switch spaces:

Definition 3.24. Let 𝐸 be a set of events and 𝐼 = (𝐼𝜔)𝜔∈𝐸 be a family of non-empty input sets. The

causal switch spaces CSwitchSpaces
(
𝐼
)

are defined as follows. If 𝐸 = ∅, then CSwitchSpaces
(
𝐼
)
= ∅.

Otherwise, for each 𝜔1 ∈ 𝐸 we can consider:

𝐼
��
{𝜔1 } = (𝐼𝜔)𝜔∈{𝜔1 }

𝐼
��
𝐸\{𝜔1 } = (𝐼𝜔)𝜔∈𝐸\{𝜔1 }

Then the set CSwitchSpaces
(
𝐼
)

is defined inductively as follows:⋃
𝜔1∈𝐸

{
Hist

(
{𝜔1}, 𝐼

��
{𝜔1 }

)
 Θ

����Θ ∈ CSwitchSpaces
(
𝐼
��
𝐸\{𝜔1 }

) 𝐼𝜔1
}

(3.25)

Where the operation Θ Θ′ is defined in [63] and is a way to construct the timelike composition of
spaces of input histories. With this general definition of the class of spaces given by CCSpaces

(
𝐼
)
,

we can prove that the maximal causally complete spaces are all causal switch spaces.

Theorem 3.25. Let 𝐸 be a set of events and 𝐼 = (𝐼𝜔)𝜔∈𝐸 be a family of non-empty input sets. The

maxima of CCSpaces
(
𝐼
)

are exactly the causal switch spaces CSwitchSpaces
(
𝐼
)
.

The theorem above will be particularly relevant in Chapter 6. To prove that an empirical model
is causally definite, i.e. entirely supported in the hierarchy of causally complete spaces, it will be
enough to check the decomposition for the switch spaces CCSpaces

(
𝐼
)
, significantly simplifying

causal discovery.
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Chapter 4

The topology of causality II: Causal Data

4.1 Causal functions for tight causally complete spaces

In the previous chapter, we provided a combinatorial description of spaces of input histories and
analysed the order theoretic properties of the emerging hierarchy of spaces. Here we invoke sheaf
theory to describe a way to track causal data assigned to the spaces of histories.

Describing the space of input histories as a topological space can be understood as passing from
a description of the poset of timelike histories, to the explicit description of the hierarchy of contexts
induced by an operational scenario.

Our approach differs from the classical causal modelling perspective in that instead of requiring
a global inter-contextual explanation, we admit explanations which are valid for each element of a
family of contexts provided that a notion of compatibility is retained. We therefore need to explain
what constitutes a contextual assignment of causal data.

A choice of open cover corresponds to the possible families of contexts over which probability
distributions are simultaneously definable. The hierarchy formed by open covers under refinement
corresponds to all possible kinds and degrees of contextuality, including:

• The ‘standard cover’, accommodating generic causal distributions on joint outputs conditional
to the maximal extended input histories. It models settings where it is, at the very least, possible
to define conditional distributions when all events are taken together.

• The ‘classical cover’ is the coarsest cover, lying at the top of the hierarchy. It models settings
admitting a deterministic causal hidden variable explanation.

• The ‘solipsistic cover’ is the finest cover, lying at the bottom of the hierarchy. It models
settings more restrictive than those modelled by the standard cover, where it might only be
possible to define distributions over the events in the past of some event. That is, the solipsistic
cover accommodates all causal distributions on joint outputs conditional to the maximal input
histories.
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We will see in particular see that a conditional distributions for the standard cover, which is the
usual empirical description of a protocol, can be considered classical when it arises by restricting
data definable on the global classical cover. Before we embark to formalise this intuition we need to
explain what it means for a causal function to be compatible with a given causal assumption.

Causal functions are thought of as deterministic assignment of joint outputs to joint inputs
embodying some causal constraints. We, therefore, start with a very general definition in this
direction:

Definition 4.1 (joint IO functions). A joint input-output function for an operational scenario (𝐸, 𝐼, 𝑂)
is any function mapping joint inputs to joint outputs:

𝐹 :
∏
𝜔∈𝐸

𝐼𝜔 →
∏
𝜔∈𝐸

𝑂𝜔

For every choice 𝑘 ∈ ∏
𝜔∈𝐸 𝐼𝜔 of joint inputs and every event 𝜔 ∈ 𝐸 , we refer to the component

𝐹 (𝑘)𝜔 ∈ 𝑂𝜔 as the output of 𝐹 at 𝜔.

We now need to classify general input-output functions with respect to some externally imposed
causal constraints. When is a function causal for the space Θ? In general, the most intuitive answer
would be the following:

Definition 4.2 (Causal joint IO functions). Let 𝐹 :
∏
𝜔∈𝐸 𝐼𝜔 →

∏
𝜔∈𝐸 𝑂𝜔 be a joint IO function

for an operational scenario (𝐸, 𝐼, 𝑂) and let Θ be a space of histories such that 𝐼Θ = 𝐼. We say that

𝐹 is causal for Θ if for all input histories ℎ ∈ Θ, the outputs 𝐹 (𝑘) |tipsΘ (ℎ) at the tips of ℎ are the same

for all joint inputs 𝑘 ∈ ∏
𝜔∈𝐸 𝐼𝜔 such that ℎ ≤ 𝑘 .

Definition 4.2 makes it easy to check whether a function is causal for a given Θ, but it is not
given in a form which is amenable to our discussion. Instead of providing the conditions that a causal
joint IO function has to satisfy to be considered valid, we aim to fully characterise the data needed to
define such causal functions.

For the special case of tight causally complete spaces, this is an easy endeavour, which provides
an equivalent definition to the aforementioned characterisation of causal functions:

Definition 4.3 (Causal functions for tight causally complete spaces). Let Θ be a tight causally

complete space and let 𝑂 = (𝑂𝜔)𝜔∈𝐸Θ be a family of non-empty set of outputs. The causal functions
CausFun

(
Θ, 𝑂

)
for space Θ and outputs 𝑂 are the functions mapping each history in Θ to the output

value for its tip event:

CausFun
(
Θ, 𝑂

)
:=

∏
ℎ∈Θ

𝑂tipΘ (ℎ)

For the case in which𝑂𝜔 is the same for all 𝜔 ∈ 𝐸 then the set of causal functions takes the simplified

form:

CausFun (Θ, 𝑂) = Θ→ 𝑂 (4.1)
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In such cases we use the shorthand CausFun (Θ, 𝑂) to denote CausFun
(
Θ, (𝑂)Θ∈𝐸Θ

)
.

We see that input histories are key to understanding the structure of causal functions: the joint IO
functions which are causal for a tight and causally complete space Θ are in exact correspondence
with functions mapping input histories to the outputs at their tip events. The two characterisations are
however not so straightforwardly equivalent, in particular standard IO functions are defined on the
joint inputs

∏
𝜔∈𝐸Θ 𝐼𝜔 , representing the maximal extended histories of a space (provided that space

satisfies the free-choice condition), while CausFun (Θ, 𝑂) are valued on all the prime histories. In
order to relate the perspectives offered by Definition 4.3 and Definition 4.2 it is useful to describe
general ‘extended causal functions’, defined on all extended input histories.

Definition 4.4 (Extended functions). Let Θ be a space of input histories and let 𝑂 = (𝑂𝜔)𝜔 ∈ 𝐸Θ

be a family of non-empty output sets. The extended functions on Θ (with output 𝑂) are the elements

of the following set:

ExtFun
(
Θ, 𝑂

)
:=

∏
𝑘∈Ext(Θ)

∏
𝜔∈dom(𝑘)

𝑂𝜔

Given a causal function for a tight and causally complete space Θ in the form prescribed by
Definition 4.3 we can turn it into an extended causal functions by gluing the output values of 𝑓 over
compatible input histories:

Definition 4.5 (Extended causal functions). Let Θ be a tight causally complete space and let

𝑂 = (𝑂𝜔)𝜔∈𝐸Θ be a family of non-empty set of outputs. For each causal function 𝑓 ∈ CausFun
(
Θ, 𝑂

)
,

the extended causal function Ext ( 𝑓 ) ∈ ExtFun
(
Θ, 𝑂

)
is defined as follows:

Ext ( 𝑓 ) (𝑘) := ( 𝑓 (ℎ𝑘,𝜔))𝜔∈dom(𝑘) for all 𝑘 ∈ Ext (Θ) (4.2)

where ℎ𝑘,𝜔 is the unique input history ℎ ∈ Θ such that ℎ ≤ 𝑘 and tipΘ (ℎ) = 𝜔. Recall that such a

history is guaranteed to be unique by the tightness of the space.

Definition 4.6. We say that �̂� ∈ ExtFun
(
Θ, 𝑂

)
is causal if it is an extended causal function, i.e if it

takes the form

�̂� = Ext ( 𝑓 )

for same 𝑓 ∈ CausFun
(
Θ, 𝑂

)
. The set of extended causal functions is denoted by ExtCausFun

(
Θ, 𝑂

)
.

Alternatively, one can see causal functions for a space as being the extended functions that satisfy
some compatibility requirement with respect to the underlying space of histories.

Definition 4.7 (Consistency and gluing condition). Let Θ be a space of input histories and let

�̂� ∈ ExtFun
(
Θ, 𝑂

)
be an extended function.

1. We say that �̂� satisfies the consistency condition is �̂� (𝑘 ′) ≤ �̂� (𝑘) for all 𝑘, 𝑘 ′ ∈ Ext (Θ) such

that 𝑘 ′ ≤ 𝑘 .
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2. We say that �̂� satisfies the gluing condition if it respects compatible joins: �̂� (𝑘) and �̂� (𝑘 ′)
are compatible for all compatible 𝑘, 𝑘 ′ ∈ Ext (Θ) and we have �̂� (𝑘 ∨ 𝑘 ′) = �̂� (𝑘) ∨ �̂� (𝑘 ′).

Proposition 4.7. The consistency condition is equivalent to the gluing condition.

Proof. From 𝑘 ′ ≤ 𝑘 we know that 𝑘 ′ and 𝑘 are compatible and 𝑘 ∨ 𝑘 ′ = 𝑘 . Suppose that �̂� satisfies
the gluing condition, we have that �̂� (𝑘) = �̂� (𝑘 ∨ 𝑘 ′) = �̂� (𝑘) ∨ �̂� (𝑘 ′) but �̂� (𝑘 ′) ≤ �̂� (𝑘) ∨ �̂� (𝑘 ′)
therefore �̂� (𝑘 ′) ≤ �̂� (𝑘).

Suppose that �̂� satisfies the consistency condition. Let 𝑘 and 𝑘 ′ be compatible, then 𝑘 ′, 𝑘 ≤ 𝑘∨ 𝑘 ′

and by the consistency condition �̂� (𝑘 ′), �̂� (𝑘) ≤ �̂� (𝑘 ∨ 𝑘 ′). Then �̂� (𝑘 ′) ∨ �̂� (𝑘) ≤ �̂� (𝑘 ∨ 𝑘 ′), which
jointly with dom (𝑘 ∨ 𝑘 ′) = dom (𝑘) ∪ dom (𝑘 ′) implies that �̂� (𝑘 ∨ 𝑘 ′) = �̂� (𝑘) ∨ �̂� (𝑘 ′) since the
two domains must coincide dom

(
�̂� (𝑘 ∨ 𝑘 ′)

)
= dom

(
�̂� (𝑘) ∨ �̂� (𝑘 ′)

)
. �

We denote the set of extended causal function for (Θ, 𝑂) as ExtCausFun
(
Θ, 𝑂

)
. Compatibility with

the join of the space of histories is equivalent to being causal with respect to Definition 4.6 for tight
and causally complete spaces:

Theorem 4.8. Let Θ be a tight causally complete space, and let 𝑂 be a family of non-empty

sets of outputs. The extended function �̂� ∈ ExtFun
(
Θ, 𝑂

)
which are causal are exactly those

which satisfy the consistency condition. Indeed for every consistent �̂� we can find a unique

Prime
(
�̂�
)
∈ CausFun

(
Θ, 𝑂

)
such that Ext

(
Prime

(
�̂�
) )

= �̂�:

Prime
(
�̂�
)

:= ℎ ↦→ �̂� (ℎ)tipΘ (ℎ) (4.3)

Proof. Let 𝑓 ∈ CausFun
(
Θ, 𝑂

)
we want to show that Ext ( 𝑓 ) satisfies the consistency condition.

Let 𝑘 ∈ Ext (Θ) then tightness implies that ℎ𝑘′,𝜔 = ℎ𝑘,𝜔 for all 𝜔 ∈ dom (𝑘 ′) ⊆ dom (𝑘), where
𝑘 ′ ≤ 𝑘 are two extended input histories. The output value at each 𝜔 ∈ dom (𝑘 ′) is then the same for
extended output histories Ext ( 𝑓 ) (𝑘 ′) and Ext ( 𝑓 ) (𝑘): Ext ( 𝑓 ) (𝑘 ′)𝜔 = Ext ( 𝑓 ) (𝑘)𝜔, proving that
Ext ( 𝑓 ) (𝑘 ′) ≤ Ext ( 𝑓 ) (𝑘). This holds for every extended function proving their consistency.

Consider now an extended causal function �̂� which satisfies the consistency condition. From �̂�

we construct a Prime
(
�̂�
)
∈ CausFun

(
Θ, 𝑂

)
given by:

Prime
(
�̂�
)

:= ℎ ↦→ �̂� (ℎ)tipΘ (ℎ)

We see that Prime
(
�̂�
)

is causal by simply being a function of the right type, i.e Θ→ 𝑂. It remains to
show that Ext

(
Prime

(
�̂�
) )

= �̂�. Note that for any 𝑘 ∈ Ext (Θ) and 𝜔 ∈ dom (𝑘) we have ℎ𝑘,𝜔 ≤ 𝑘 ,
so by consistency �̂� (ℎ𝑘,𝜔) ≤ �̂� (𝑘). In particular �̂� (ℎ𝑘,𝜔)𝜔 = �̂� (𝑘)𝜔 for𝜔 ∈ dom

(
ℎ𝑘,𝜔

)
∩dom (𝑘).

By the definition of the operators Ext and Prime respectively acting on causal functions and extended
causal functions, we have that

�̂� (ℎ𝑘,𝜔)𝜔 = Prime
(
�̂�
)
(ℎ𝑘,𝜔) = Ext

(
Prime

(
�̂�
) )
(𝑘)𝜔
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concluding that �̂� (𝑘)𝜔 = Ext
(
Prime

(
�̂�
) )
(𝑘)𝜔 and therefore �̂� (𝑘) = Ext

(
Prime

(
�̂�
) )
(𝑘) for all

𝑘 ∈ Ext (Θ). Also, the definition of Ext ( 𝑓 ) implies that Ext ( 𝑓 ) (ℎ)tipΘ (ℎ) = 𝑓 (ℎ), proving the
uniqueness claim. �

Given a function 𝑓 which is causal for a tight causally complete space Θ, we can restrict the
extended Ext ( 𝑓 ) to the maximal extended input history and get a causal IO map for Θ (Definition 4.2).
Conversely, any causal joint IO function arises from a unique choice of 𝑓 ∈ CausFun

(
Θ, 𝑂

)
:

Proposition 4.8. Let Θ be a tight causally complete space and let 𝑂 = (𝑂𝜔)𝜔∈𝐸Θ be a family of

non-empty sets of outputs. For every 𝑓 ∈ CausFun
(
Θ, 𝑂

)
, the restriction of Ext ( 𝑓 ) to the maximal

extended input histories
∏
𝜔∈𝐸Θ 𝐼𝜔 is a joint function for the operational scenario (𝐸Θ, 𝐼Θ, 𝑂) which

is causal for Θ. Conversely, any joint IO function 𝐹 for (𝐸Θ, 𝐼Θ, 𝑂) which is causal for Θ arises as

the restriction of an extended causal function Ext ( 𝑓 ) to maximal extended input histories, where

𝑓 ∈ CausFun
(
Θ, 𝑂

)
can be defined as follows:

𝑓 (ℎ) := 𝐹 (𝑘)tipΘ (ℎ) for any minimal ext.input history 𝑘 s.t ℎ ≤ 𝑘 (4.4)

Proof. Because of Θ satisfying the free-choice condition we have that:∏
𝜔∈𝐸Θ

𝐼Θ𝜔 ⊆ Ext (Θ)

and Ext ( 𝑓 ) for 𝑓 ∈ CausFun
(
Θ, 𝑂

)
is defined on every extended history. The restriction of Ext ( 𝑓 )

to the maximal extended histories defines a joint IO function for the operational scenario (𝐸Θ, 𝐼Θ, 𝑂).
To show that it is causal we must check that for every ℎ ∈ Θ and 𝑘, 𝑘 ′ ∈ ∏

𝜔∈𝐸Θ such that ℎ ≤ 𝑘, 𝑘 ′

then Ext ( 𝑓 )tipΘ (ℎ) (𝑘) = Ext ( 𝑓 )tipΘ (ℎ) (𝑘
′). By tightness we know that ℎ𝑘,tipΘ (ℎ) = ℎ, so that

Ext ( 𝑓 )tipΘ (ℎ) (𝑘) = 𝑓 (ℎ)

independently of 𝑘 .
Conversely, consider a joint IO function 𝐹 which is causal for Θ. We intend to extend 𝐹 to a

function �̂� ∈ ExtFun
(
Θ, 𝑂

)
as follows:

�̂� (𝑘) := 𝐹 ( �̂�)
��
dom(𝑘) for any maximal ext. input history �̂� s.t. 𝑘 ≤ �̂�

We must show that the function �̂� is well-defined. Given a 𝑘 ∈ Ext (Θ) and an 𝜔 ∈ dom (𝑘), we
have ℎ𝑘,𝜔 ≤ 𝑘 ≤ �̂� for all choices of �̂� in the definition of �̂� (𝑘) above. Causality of the joint IO
function 𝐹 for Θ then implies that the value 𝐹𝜔 ( �̂�) be the same for all such choices of �̂� , making
�̂� (𝑘)𝜔 well-defined for all 𝜔 ∈ dom (𝑘); as a consequence, �̂� is well defined as a whole.
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If 𝑓 is defined as in Equation 4.4, we have �̂� (ℎ)tipΘ (ℎ) = 𝑓 (ℎ), so that �̂� satisfies the first condition
in Theorem 4.8. Furthermore, for any two compatible 𝑘, 𝑘 ′ ∈ Ext (Θ) and any maximal extended
input history �̂� such that 𝑘 ∨ 𝑘 ′ ≤ �̂� , we have that:

�̂� (𝑘 ∨ 𝑘 ′) = 𝐹 ( �̂�)
��
dom(𝑘∨𝑘′)

�̂� (𝑘) = 𝐹 ( �̂�)
��
dom(𝑘)

�̂� (𝑘 ′) = 𝐹 ( �̂�)
��
dom(𝑘′)

From the above, it immediately follows that �̂� (𝑘 ∨ 𝑘 ′) = �̂� (𝑘) ∨ �̂� (𝑘 ′): this means that �̂� also
satisfies the second condition in Theorem 4.8, allowing us to conclude that �̂� = Ext ( 𝑓 ). Restricting
�̂� = Ext ( 𝑓 ) to the maximal extended input histories yields back 𝐹, because on such histories 𝑘 we
have �̂� (𝑘) = 𝐹 (𝑘) by definition of �̂�. �

The definitions that we have seen so far are a bit conceptually convoluted. However, this subsection
delivers the important task of giving a rigorous equivalence between the functions defined via histories
and what is typically understood as being a causal function mapping joint inputs to joint outputs.

4.1.1 Example: causally definite space

As a concrete example, we look at a space induced by causal order total (A,B) ∨ discrete (C) with a
choice of binary inputs for all events.

Θ33 Ext (Θ33)

A generic function 𝐹 : {0, 1}3→{0, 1}3 with binary outputs takes following form:

𝐹 (𝑘A, 𝑘B, 𝑘C) =
©­«
𝐹A(𝑘A, 𝑘B, 𝑘C)
𝐹B(𝑘A, 𝑘B, 𝑘C)
𝐹C(𝑘A, 𝑘B, 𝑘C)

ª®¬
where the binary functions 𝐹𝜔 : {0, 1}{A,B,C} → {0, 1} assign outputs at each of the events 𝜔 ∈ Ω.
In the case of causal order total (A,B) ∨ discrete (C), we expect joint IO functions 𝐹 which are
causal for Θ33 to take the following simplified form, for generic 𝐺A, 𝐺B and 𝐺C:

𝐹 (𝑘A, 𝑘B, 𝑘C) =
©­«

𝐺A(𝑘A)
𝐺B(𝑘A, 𝑘B)
𝐺C(𝑘C)

ª®¬
This is because A and C are independent events but the output of B can depend on A. Indeed, we
show that Definition 4.2 implies the above form for 𝐹 (𝑘):
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• The component 𝐹A(𝑘) must have the same value for all 𝑘 ∈ ∏
𝜔∈𝐸 𝐼𝜔 such that {A : 𝑘A} ≤ 𝑘 ,

for each choice of 𝑘A ∈ {0, 1}:

𝐹A ({A : 𝑘A, B :0, C :0}) = 𝐹A ({A : 𝑘A, B :0, C :1})
= 𝐹A ({A : 𝑘A, B :1, C :0}) = 𝐹A ({A : 𝑘A, B :1, C :1})

This means that 𝐹A(𝑘A, 𝑘B, 𝑘C) = 𝐺A(𝑘A) for a generic function 𝐺A : {0, 1} → {0, 1}.

• The component 𝐹B(𝑘) must have the same value for all 𝑘 ∈ ∏
𝜔∈𝐸 𝐼𝜔 such that

{A : 𝑘A, B : 𝑘B} ≤ 𝑘 , for each choice of 𝑘A, 𝑘B ∈ {0, 1}:

𝐹B ({A : 𝑘A, B : 𝑘B, C :0}) = 𝐹B ({A : 𝑘A, B : 𝑘B, C :1})

This means that 𝐹B(𝑘A, 𝑘B, 𝑘C) = 𝐺B(𝑘A, 𝑘B) for a generic function 𝐺B : {0, 1}2 → {0, 1}.

• The component 𝐹C(𝑘) must have the same value for all 𝑘 ∈ ∏
𝜔∈𝐸 𝐼𝜔 such that {C : 𝑘C} ≤ 𝑘 ,

for each choice of 𝑘C ∈ {0, 1}:

𝐹C ({A :0, B :0, C : 𝑘C}) = 𝐹C ({A :0, B :1, C : 𝑘C})
= 𝐹C ({A :1, B :0, C : 𝑘C}) = 𝐹C ({A :1, B :1, C : 𝑘C})

This means that 𝐹C(𝑘A, 𝑘B, 𝑘C) = 𝐺C(𝑘C) for a generic function 𝐺C : {0, 1} → {0, 1}.

Given such a joint IO function 𝐹, the causal function 𝑓 ∈ CausFun (Θ33, {0, 1}) defined by
Equation 4.4 takes the following form:

{A : 𝑘A}
𝑓
↦→ 𝐺A(𝑘A)

{A : 𝑘A, B : 𝑘B}
𝑓
↦→ 𝐺B(𝑘A, 𝑘B)

{C : 𝑘C}
𝑓
↦→ 𝐺C(𝑘C)

The extended causal function Ext ( 𝑓 ) then takes the following form:

{A : 𝑘A}
Ext( 𝑓 )
↦→ {A :𝐺A(𝑘A)}

{C : 𝑘C}
Ext( 𝑓 )
↦→ {C :𝐺C(𝑘C)}

{A : 𝑘A, B : 𝑘B}
Ext( 𝑓 )
↦→ {A :𝐺A(𝑘A), B :𝐺B(𝑘A, 𝑘B)}

{A : 𝑘A, C : 𝑘C}
Ext( 𝑓 )
↦→ {A :𝐺A(𝑘A), C :𝐺C(𝑘C)}

{A : 𝑘A, B : 𝑘B, C : 𝑘C}
Ext( 𝑓 )
↦→ {A :𝐺A(𝑘A), B :𝐺B(𝑘A, 𝑘B), C :𝐺C(𝑘C)}

The last line of the definition of Ext ( 𝑓 ) above is its restriction to the maximal extended input histories,
which coincides with the original definition of 𝐹.

4.1.2 Example: causally indefinite space

We consider another tight and causally complete space, in this case exhibiting dynamical causal order,
the space for the causal switch:
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Θ101 Ext (Θ101)

Recall that this space is tight, but not order-induced: the definite causal order between events B and C
depends on the input choice at event A. Lets consider again a generic function 𝐹 : {0, 1}3→{0, 1}3

with binary outputs:

𝐹 (𝑘A, 𝑘B, 𝑘C) =
©­«
𝐹A(𝑘A, 𝑘B, 𝑘C)
𝐹B(𝑘A, 𝑘B, 𝑘C)
𝐹C(𝑘A, 𝑘B, 𝑘C)

ª®¬
Definition 4.2 gives the following constraints on a joint IO function 𝐹 which is causal for Θ101:

• The component 𝐹A(𝑘) must have the same value for all 𝑘 ∈ ∏
𝜔∈𝐸 𝐼𝜔 such that {A : 𝑘A} ≤ 𝑘 ,

for each choice of 𝑘A ∈ {0, 1}:

𝐹A ({A : 𝑘A, B :0, C :0}) = 𝐹A ({A : 𝑘A, B :0, C :1})
= 𝐹A ({A : 𝑘A, B :1, C :0}) = 𝐹A ({A : 𝑘A, B :1, C :1})

This means that 𝐹A(𝑘A, 𝑘B, 𝑘C) = 𝐺A(𝑘A) for a generic function 𝐺A : {0, 1} → {0, 1}.

• The component 𝐹B(𝑘)must have the same value for all 𝑘 ∈ ∏
𝜔∈𝐸 𝐼𝜔 such that {A :0, B : 𝑘B} ≤

𝑘 , for each choice of 𝑘B ∈ {0, 1}:

𝐹B ({A :0, B : 𝑘B, C :0}) = 𝐹B ({A :0, B : 𝑘B, C :1})

This means that 𝐹B(0, 𝑘B, 𝑘C) = 𝐺B,0(𝑘B) for a generic function 𝐺B,0 : {0, 1} → {0, 1}.

• The component 𝐹B(𝑘) must have the same value for all 𝑘 ∈ ∏
𝜔∈𝐸 𝐼𝜔 such that

{A :1, B : 𝑘B, C : 𝑘C} ≤ 𝑘 , for each choice of 𝑘B, 𝑘C ∈ {0, 1}. This doesn’t impose
any constraints, as the only such 𝑘 is 𝑘 = {A :1, B : 𝑘B, C : 𝑘C} itself. This means that
𝐹B(1, 𝑘B, 𝑘C) = 𝐺B,1(𝑘B, 𝑘C) for a generic function 𝐺B,1 : {0, 1}2 → {0, 1}.

• The component 𝐹C(𝑘)must have the same value for all 𝑘 ∈ ∏
𝜔∈𝐸 𝐼𝜔 such that {A :1, C : 𝑘C} ≤

𝑘 , for each choice of 𝑘C ∈ {0, 1}:

𝐹C ({A :0, B :0, C : 𝑘C}) = 𝐹C ({A :0, B :1, C : 𝑘C})

This means that 𝐹C(1, 𝑘B, 𝑘C) = 𝐺C,1(𝑘C) for a generic function 𝐺C,1 : {0, 1} → {0, 1}.
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• The component 𝐹C(𝑘) must have the same value for all 𝑘 ∈ ∏
𝜔∈𝐸 𝐼𝜔 such that

{A :0, B : 𝑘B, C : 𝑘C} ≤ 𝑘 , for each choice of 𝑘B, 𝑘C ∈ {0, 1}. This doesn’t impose
any constraints, as the only such 𝑘 is 𝑘 = {A :0, B : 𝑘B, C : 𝑘C} itself. This means that
𝐹C(0, 𝑘B, 𝑘C) = 𝐺B,0(𝑘B, 𝑘C) for a generic function 𝐺C,0 : {0, 1}2 → {0, 1}.

Putting all constraints above together, we get the following characterisation of a generic 𝐹 which is
causal for Θ101, for generic functions 𝐺A, 𝐺B,0, 𝐺B,1, 𝐺C,0, 𝐺C,1:

𝐹 (0, 𝑘B, 𝑘C) =
©­«

𝐺A(0)
𝐺B,0(𝑘B)

𝐺C,0(𝑘B, 𝑘C)

ª®¬ 𝐹 (1, 𝑘B, 𝑘C) =
©­«

𝐺A(1)
𝐺B,1(𝑘B, 𝑘C)
𝐺C,1(𝑘C)

ª®¬
Given one such joint IO function 𝐹, the causal function 𝑓 ∈ CausFun (Θ33, {0, 1}) defined by
Equation 4.4 takes the following form:

{A : 𝑘A}
𝑓
↦→ 𝐺A(𝑘A)

{A :0, B : 𝑘B}
𝑓
↦→ 𝐺B,0(𝑘B)

{A :1, C : 𝑘C}
𝑓
↦→ 𝐺C,1(𝑘C)

{A :0, B : 𝑘B, C : 𝑘C}
𝑓
↦→ 𝐺C,0(𝑘B, 𝑘C)

{A :1, B : 𝑘B, C : 𝑘C}
𝑓
↦→ 𝐺B,1(𝑘B, 𝑘C)

The extended causal function Ext ( 𝑓 ) then takes the following form:

{A : 𝑘A}
Ext( 𝑓 )
↦→ {A :𝐺A(𝑘A)}

{A :0, B : 𝑘B}
Ext( 𝑓 )
↦→

{
A :𝐺A(0), B :𝐺B,0(𝑘B)

}
{A :1, C : 𝑘C}

Ext( 𝑓 )
↦→

{
A :𝐺A(1), C :𝐺C,1(𝑘C)

}
{A :0, B : 𝑘B, C : 𝑘C}

Ext( 𝑓 )
↦→

{
A :𝐺A(0), B :𝐺B,0(𝑘B), C :𝐺C,0(𝑘B, 𝑘C)

}
{A :1, B : 𝑘B, C : 𝑘C}

Ext( 𝑓 )
↦→

{
A :𝐺A(1), B :𝐺B,1(𝑘B, 𝑘C), C :𝐺C,1(𝑘B)

}
The last two lines of the definition of Ext ( 𝑓 ) above are its restriction to the maximal extended input
histories, which coincides with the original definition of 𝐹.

4.2 Causal functions for general tight spaces

For a tight and causally complete space, the assignment of causal functions is unproblematic. This is
because each history defines a unique tip event (causal completion) and to every event and a maximal
extended history we can univocally assign a history having it as tip event which is compatible with
the extended history (tightness). So far we have understood global causal functions for tight and
causally complete spaces, we are still far from the definition of a presheaf of contexts, but first we
need to dive into causally incomplete and non-tight to check how to globally define causal data there.
In this section we drop the causal completeness requirement

Spaces are not causally complete precisely when multiple events can act as tips of a single history.
The general notion of causal functions has to take into account this multiplicity of the tips.
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Definition 4.9 (Causal functions for tight spaces). Let Θ be a tight space and let 𝑂 be a family of

non-empty sets of outputs. The causal functions CausFun
(
Θ, 𝑂

)
for space Θ and outputs 𝑂 are the

functions mapping each history in Θ to the output values for its tip events:

CausFun
(
Θ, 𝑂

)
:=

∏
ℎ∈Θ

∏
𝜔∈tipsΘ (ℎ)

𝑂𝜔

For causally complete spaces we have that tipsΘ (ℎ) = {tipΘ (ℎ)} and Definition 4.9 becomes
equivalent to Definition 4.3 because∏

𝜔tipsΘ (ℎ)
𝑂𝜔 =

∏
𝜔∈{tipΘ (ℎ) }

𝑂𝜔 ' 𝑂tipΘ (ℎ)

Remember that in the previous chapter we have defined a completion of a causally incomplete
space to be a minimal causally complete space which induces at least as many causal constrained as
the original space. The functions which are causal for some completion of Θ will be causal for Θ
itself: it might be tempting to think of causal incompleteness as specifying a coarse-grained causal
description to be made precise by the data assigned to causally complete subspaces (containing more
causal restrictions). However, not all casual functions on a causally incomplete space arise in this
way. There are some function which do not admit a fine-grained and causally complete explanation.

As a concrete example, consider the tight space Θ = Hist (Ω, {0, 1}) of in input histories induced
by the indefinite causal order Ω = total (A, {B,C}) with binary inputs. The space satisfies the
free-choice condition, and the 8 maximal extended input histories have {B,C} as their tip events.

Recall that there are four causal completions for this space: two where B and C are unconditionally
totally ordered, and two where they are totally ordered conditionally to the input at A.
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Definition 4.9 allows us to straightforwardly count the number of causal functions for the causally
complete and causally incomplete spaces. The causally incomplete space Θ has the following number
of causal functions: ∏

ℎ∈Θ
2 |tipsΘ (ℎ) | = 2

∑
ℎ∈Θ |tipsΘ (ℎ) | = 22·1+8·2 = 218 = 262144

Each of the four causal completions has the following number of causal functions:∏
ℎ∈Θ

2 |tipsΘ (ℎ) | = 2
∑

ℎ∈Θ 1 = 2 |Θ | = 214 = 16384

However, some causal functions are common to multiple causal completions, so only 50176 of the
262144 causal functions on Θ arise from one of its completions as defined by the following definition:

Definition 4.10. Let Θ,Θ′ be spaces of input histories such that Θ′ ≤ Θ. Let 𝑓 ∈ CausFun
(
Θ, 𝑂

)
be a causal function on Θ and let 𝑓 ′ ∈ CausFun

(
Θ′, 𝑂 ′

)
be a causal function on Θ′. We say that

𝑓 arises from 𝑓 ′ if the extended causal function Ext ( 𝑓 ′) restricts to the extended causal function

Ext ( 𝑓 ):
𝑓 arises from 𝑓 ′⇔ Ext ( 𝑓 ′) |Ext(Θ) = Ext ( 𝑓 )

where we have used the fact that Θ′ ≤ Θ is defined as Ext (Θ′) ⊇ Ext (Θ).

Proposition 4.10. Let Θ′,Θ ∈ SpacesFC
(
𝐼
)

be such that Θ′ ≤ Θ; define 𝐸 := 𝐸Θ = 𝐸Θ′. Let

𝑂 = (𝑂𝜔)𝜔∈𝐸 and 𝑂 ′ = (𝑂 ′𝜔)𝜔∈𝐸 be families of non-empty output sets such that 𝑂 ′𝜔 ⊆ 𝑂𝜔 for all

𝜔 ∈ 𝐸 . Then the following is an injection:

𝑖Θ′,𝑂′;Θ,𝑂 : CausFun
(
Θ′, 𝑂 ′

)
↩→ CausFun

(
Θ, 𝑂

)
𝑓 ′ ↦→ Prime

(
Ext ( 𝑓 ′) |Ext(Θ)

)
We can use the injection above to identify the causal functions for Θ′ and 𝑂 ′ with a subset of the

causal functions for Θ and 𝑂. This is safe, because the injections are stable under composition:

𝑖Θ′,𝑂′;Θ,𝑂 ◦ 𝑖Θ′′,𝑂′′;Θ′,𝑂′ = 𝑖Θ′′,𝑂′′;Θ,𝑂

Proof. If Θ′ ≤ Θ then Ext (Θ) ⊆ Ext (Θ′). If 𝐹 (𝑘 ∨Θ′ 𝑘 ′) = 𝐹 (𝑘) ∨ 𝐹 (𝑘 ′) then 𝐹 also satisfies
compatibility in Θ and 𝐹 (𝑘 ∨Θ 𝑘 ′) = 𝐹 (𝑘) ∨ 𝐹 (𝑘 ′). From this we conclude that if 𝑓 ′, 𝑔′ ∈
CausFun

(
Θ, 𝑂

)
then Ext ( 𝑓 ′) |Ext(Θ) and Ext (𝑔′) |Ext(Θ) are consistent extended functions. By

Theorem 4.8 we get that

Prime
(
Ext ( 𝑓 ′) |Ext(Θ)

)
= Prime

(
Ext (𝑔′) |Ext(Θ)

)
⇒ Ext ( 𝑓 ′) |Ext(Θ) = Ext (𝑔′) |Ext(Θ)

Because Θ′,Θ ∈ SpacesFC
(
𝐼
)
, then max Ext (Θ) = max Ext (Θ′). In particular Ext ( 𝑓 ′) (𝑘) =

Ext (𝑔′) (𝑘) for all 𝑘 ∈ ∏
𝜔∈𝐸Θ 𝐼𝜔. Since every ℎ ∈ Θ′ satisfies ℎ ≤ 𝑘 for some maximal extended
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input history 𝑘 , the consistency condition in turn implies that 𝑓 ′(ℎ) = 𝑔′(ℎ) for all ℎ ∈ Θ′, proving
that 𝑖Θ′,𝑂′;Θ,𝑂 is an injection. These injections are stable under composition:

Prime
(
Ext

(
Prime

(
Ext ( 𝑓 ′′) |Ext(Θ′)

))���
Ext(Θ)

)
= Prime

( (
Ext ( 𝑓 ′′) |Ext(Θ′)

)���
Ext(Θ)

)
= Prime

(
Ext ( 𝑓 ′′) |Ext(Θ)

)
�

For causally incomplete spaces of histories we differentiate between causally separable and
causally inseparable functions accordingly:

Definition 4.11 (Causally separable functions). Let Θ be a space of input histories and let 𝑂 =

(𝑂𝜔)𝜔∈𝐸Θ be a family of non-empty output sets. A causal function 𝑓 ∈ CausFun
(
Θ, 𝑂

)
is said to be

causally separable if it arises from 𝑓 ′ ∈ CausFun
(
Θ′, 𝑂

)
for some causally complete Θ′ ≤ Θ, and

causally inseparable otherwise.

The space Θ = Hist (total (A, {B,C}) , {0, 1}) is causally incomplete and a simple example of a
non-separable function is given by the following "controlled swap function":

{A : 𝑘A}
cswap
↦→ {A : 𝑘A}

{A :0, B : 𝑘B, C : 𝑘C}
cswap
↦→ {B : 𝑘B, C : 𝑘C}

{A :1, B : 𝑘B, C : 𝑘C}
cswap
↦→ {B : 𝑘C, C : 𝑘B}

The controlled swap function requires true bipartite signalling, where events B and C are delocalised
even conditional to the input at A. Indeed, when the input at A is 1:

1. the output at B depends on the input at C, which must therefore be in B’s past;

2. the output at C depends of the input at B, which must therefore be in C’s past.

As a consequence, the controlled swap function cannot arise from any causal function 𝑓 on any
causally complete subspace Θ′ ≤ Θ (i.e. we cannot have Ext ( 𝑓 ) |Ext(Θ) = Ext (cswap)).

To see why, consider the extended input history {A :1, B :0, C :0} , with tips {B,C}. Any causal
completion Θ′ of our space Θ must necessarily include as an extended input history one of the
following partial functions:

1. {A :1, C :0} , obtained by removing B from the domain of {A :1, B :0, C :0}

2. {A :1, B :0} , obtained by removing C from the domain of {A :1, B :0, C :0}

In either case, the causal function cswap ∈ CausFun (Θ, {0, 1}) cannot arise from any 𝑓 ′ ∈
CausFun (Θ′, {0, 1}), because Ext ( 𝑓 ′) cannot satisfy the consistency condition. If {A :1, C :0} ∈
Ext (Θ′), we are forced to make the following inconsistent assignments:
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• from {A :1, C :0} ≤ {A :1, B :0, C :0}, we must have:

Ext ( 𝑓 ′)C ({A :1, C :0}) = Ext ( 𝑓 ′)C ({A :1, B :0, C :0}) = 0

• from {A :1, C :0} ≤ {A :1, B :1, C :0}, we must have:

Ext ( 𝑓 ′)C ({A :1, C :0}) = Ext ( 𝑓 ′)C ({A :1, B :1, C :0}) = 1

If instead {A :1, B :0} ∈ Ext (Θ′), we are forced to make the following inconsistent assignments:

• from {A :1, B :0} ≤ {A :1, B :0, C :0}, we must have:

Ext ( 𝑓 ′)B ({A :1, B :0}) = Ext ( 𝑓 ′)B ({A :1, B :0, C :0}) = 0

• from {A :1, B :0} ≤ {A :1, B :0, C :1}, we must have:

Ext ( 𝑓 ′)B ({A :1, B :0}) = Ext ( 𝑓 ′)B ({A :1, B :0, C :1}) = 1

The information above, proving that cswap is causally inseparable, can be summarised as follows.
There is an extended input history 𝑘 = {A :1, B :0, C :0} such that for all events 𝜔 ∈ dom (𝑘) the
function Ext (cswap) could not be extended to 𝑘 |dom(𝑘)\{𝜔 }:

1. if 𝜔 = B, 𝑘 |dom(𝑘)\{𝜔 } = {A :1, C :0}

2. if 𝜔 = C, 𝑘 |dom(𝑘)\{𝜔 } = {A :1, B :0}

This is because for each 𝜔 there is an extended input history 𝑘 ′𝜔 ∈ Ext (Θ) with 𝑘 |dom(𝑘)\{𝜔 } ≤ 𝑘 ′𝜔
and an event 𝜉𝜔 ∈ dom (𝑘) \{𝜔} such that Ext (cswap) (𝑘)𝜉𝜔 ≠ Ext (cswap) (𝑘 ′𝜔)𝜉𝜔 :

1. if 𝜔 = B, we can choose 𝑘 ′𝜔 = {A :1, B :1, C :0} and 𝜉𝜔 = C

2. if 𝜔 = C, we can choose 𝑘 ′𝜔 = {A :1, B :0, C :1} and 𝜉𝜔 = B

We refer to such a triple
(
𝑘, (𝑘 ′𝜔)𝜔 , (𝜉𝜔)𝜔

)
as an ‘inseparability witness’, as it proves that the

controlled swap cannot arise from any causal function 𝑓 ′ on any causally complete subspace Θ′ ≤ Θ.
We will now generalise and formalise our discussion thus far, and show that causally inseparable
functions are exactly those with (at least) one such inseparability witness.

Definition 4.12. An inseparability witness for a causal function 𝑓 ∈ CausFun
(
Θ, 𝑂

)
is a triple

(𝑘, (𝑘 ′𝜔)𝜔∈dom(𝑘) , (𝜉𝜔)𝜔∈dom(𝑘) ) where:

• 𝑘 ∈ Ext (Θ) is an extended input history;

• for every 𝜔 ∈ dom (𝑘), 𝑘 ′𝜔 ∈ Ext (Θ) is such that 𝑘 |dom(𝑘)\{𝜔 } ≤ 𝑘 ′𝜔;
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• for every 𝜔 ∈ dom (𝑘), 𝜉𝜔 ∈ dom (𝑘) \{𝜔} is such that Ext ( 𝑓 ) (𝑘)𝜉𝜔 ≠ Ext ( 𝑓 ) (𝑘 ′𝜔)𝜉𝜔 .

Lemma 4.13. Let Θ be a space of input histories and let 𝑂 = (𝑂𝜔)𝜔∈𝐸Θ be a family of non-empty

output sets. If 𝑓 ∈ CausFun
(
Θ, 𝑂

)
is a causal function and (𝑘, 𝑘 ′, 𝜉) is an inseparability witness for

𝑓 , then | dom (𝑘) | ≥ 2 and for all 𝜔 ∈ dom (𝑘) the partial function ℎ𝜔 := 𝑘 |dom(𝑘)\{𝜔 } is not an

extended input history for Θ.

Proof. We necessarily have | dom (𝑘) | ≥ 1, and for any 𝜔 ∈ dom (𝑘) we also have 𝜉𝜔 ∈
dom (𝑘) \{𝜔}, so necessarily | dom (𝑘) | ≥ 2. The partial function ℎ𝜔 cannot be a an extended input
history for Θ, because otherwise the consistency condition on Ext ( 𝑓 ) would imply the following,
contradicting the definition of 𝜉𝜔:

Ext ( 𝑓 ) 𝜉𝜔 (ℎ𝜔) = Ext ( 𝑓 ) 𝜉𝜔 (𝑘)
Ext ( 𝑓 ) 𝜉𝜔 (ℎ𝜔) = Ext ( 𝑓 ) 𝜉𝜔 (𝑘

′
𝜔)

�

Lemma 4.14. Let Θ be a space of input histories and let 𝑂 = (𝑂𝜔)𝜔∈𝐸Θ be a family of non-empty

output sets. Let 𝑓 ∈ CausFun
(
Θ, 𝑂

)
be a causal function and (𝑘, 𝑘 ′, 𝜉) be an inseparability witness

for 𝑓 . If 𝑓 arises from 𝑓 ′ ∈ CausFun
(
Θ′, 𝑂 ′

)
for some Θ′ ≤ Θ, then (𝑘, 𝑘 ′, 𝜉) is an inseparability

witness for 𝑓 ′.

Proof. Be definition, Θ′ ≤ Θ is the same as Ext (Θ′) ⊇ Ext (Θ), so that 𝑘 and all 𝑘 ′𝜔 are extended
histories for Θ′. Also by definition, 𝑓 arising from 𝑓 ′ is the same as Ext ( 𝑓 ′) |Ext(Θ) = Ext ( 𝑓 ), so
that:

Ext ( 𝑓 ′) 𝜉𝜔 (𝑘) = Ext ( 𝑓 ) 𝜉𝜔 (𝑘) ≠ Ext ( 𝑓 ) 𝜉𝜔 (𝑘
′
𝜔) = Ext ( 𝑓 ′) 𝜉𝜔 (𝑘

′
𝜔)

Hence (𝑘, 𝑘 ′, 𝜉) is an inseparability witness for 𝑓 ′. �

Theorem 4.15. A causal function 𝑓 ∈ CausFun
(
Θ, 𝑂

)
is causally inseparable if and only if it has

an inseparability witness.

Proof. In one direction, let (𝑘, 𝑘 ′, 𝜉) be an inseparability witness for 𝑓 . If Θ′ ≤ Θ is causally
complete, then there exists an 𝜔𝑘 ∈ dom (𝑘) such that ℎ𝜔𝑘

:= 𝑘 |dom(𝑘)\{𝜔𝑘 } ∈ Ext (Θ′), because
Lemma 4.13 forces | dom (𝑘) | ≥ 2. Then 𝑓 cannot arise from some 𝑓 ′ ∈ CausFun

(
Θ′, 𝑂

)
: if it did,

Lemma 4.14 would imply that (𝑘, 𝑘 ′, 𝜉) is an inseparability witness for 𝑓 ′, and Lemma 4.13 would
in turn force ℎ𝜔𝑘

∉ Ext (Θ′).
In the other direction, assume that 𝑓 ∈ CausFun

(
Θ, 𝑂

)
does not have an inseparability witness.

For each 𝑘 ∈ Ext (Θ) and each 𝜔 ∈ dom (𝑘), we define ℎ𝑘,𝜔 := 𝑘 |dom(𝑘)\{𝜔 }. The absence of an
inseparability witness for 𝑓 means that for all 𝑘 ∈ Ext (Θ) there is a 𝜔𝑘 ∈ dom (𝑘) such that for
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all 𝑘 ′ ∈ Ext (Θ) with ℎ𝑘,𝜔𝑘
≤ 𝑘 ′ and all 𝜉 ∈ dom (𝑘) \{𝜔} we have Ext ( 𝑓 ) 𝜉 (𝑘) = Ext ( 𝑓 ) 𝜉 (𝑘 ′).

This allows us to consistently extend the definition of Ext ( 𝑓 ) to ℎ𝑘,𝜔𝑘
for all 𝑘:

Ext ( 𝑓 ′) (ℎ𝑘,𝜔𝑘
) :=

∧ {
Ext ( 𝑓 ) (𝑘 ′)

�� 𝑘 ′ ∈ Ext (Θ) , ℎ𝑘,𝜔𝑘
≤ 𝑘 ′

}
The ∨-closure of Θ ∪

{
ℎ𝑘,𝜔𝑘

�� 𝑘 ∈ Ext (Θ)
}

is the space of extended input histories Ext (Θ′) for
a causally complete sub-space Θ′ ≤ Θ. Furthermore, the definition of Ext ( 𝑓 ′) (ℎ𝑘,𝜔𝑘

) above
can be completed—by gluing over compatible joins—to that of an extended causal function
𝑓 ′ ∈ CausFun

(
Θ′, 𝑂

)
such that 𝑓 arises from 𝑓 ′, proving that 𝑓 is causally separable. �

4.3 Causal functions for non-tight spaces

Having investigated the effects of causal incompleteness in the definition of causal functions, we
now proceed to relax the tightness assumption: for each extended input history 𝑘 ∈ Ext (Θ) and
𝜔 ∈ dom (𝑘), we are no longer guaranteed that the input history ℎ ≤ 𝑘 with 𝜔 ∈ tipsΘ (ℎ) will be
unique. This imposes additional constraints to the definition of causal functions 𝑓 ∈ CausFun (Θ): if
ℎ, ℎ′ ≤ 𝑘 are distinct input histories such that 𝜔 ∈ tipsΘ (ℎ) ∩ tipsΘ (ℎ′), then the outputs 𝑓 (ℎ)𝜔 and
𝑓 (ℎ′)𝜔 at event 𝜔 must coincide.

As a concrete example, consider the following causally complete non-tight space:

Θ21 Ext (Θ21) with highlights

There are two violations of tightness in this space:

• The extended input history {A :0, B :1, C :0} has two sub-histories with event B as their tip
event: {A :0, B :1} and {B :1, C :0} .

• The extended input history {A :1, B :0, C :1} has two sub-histories with event C as their tip
event: {A :1, C :1} and {B :0, C :1} .

The two histories are highlighted in Ext (Θ21) above with a border of the same colour as the
corresponding tip event conflicts. For Ext ( 𝑓 )B to be well-defined on the (maximal) extended input
history {A :0, B :1, C :0} , the outputs associated by a causal function 𝑓 to the two input histories
{A :0, B :1} and {B :1, C :0} must coincide:

Ext ( 𝑓 )B ({A :0, B :1, C :0}) = 𝑓 ({A :0, B :1})
= 𝑓 ({B :1, C :0})
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Analogously, for Ext ( 𝑓 )C to be well-defined on the (maximal) extended input history
{A :1, B :0, C :1} , the outputs associated by a causal function 𝑓 to the two input histories {A :1, C :1}
and {B :0, C :1} must coincide:

Ext ( 𝑓 )B ({A :1, B :0, C :1}) = 𝑓 ({A :1, C :1})
= 𝑓 ({B :0, C :1})

At first sight, such constrains make it seem like the definition of causal functions is no longer ‘free’,
but this is not actually the case: instead of a constrained mapping of individual input histories to
outputs at their tip event(s), we can think of a causal function on a non-tight space as a free mapping
of equivalence classes of input histories to outputs on a common tip event. In the case of space Θ21

above, we have 10 input histories arranged into 8 pairs of an equivalence class and a common tip
event for the histories therein:

1. the singleton {{A :1, B :1, C :1}} with tip event B

2. the singleton {{A :0, B :1, C :1}} with tip event C

3. the pair {{A :0, B :1} , {B :1, C :0}} with common tip event B

4. the pair {{A :1, C :1} , {B :0, C :1}} with common tip event C

5. the singleton {{A :0}} with tip event A

6. the singleton {{A :1}} with tip event A

7. the singleton {{B :0}} with tip event B

8. the singleton {{C :0}} with tip event C

Causal functions on Θ21 are then given by a free choice of output for each equivalence class: for
example, the binary case CausFun (Θ21, {0, 1}) features 28 = 256 causal functions.

We now formalise the discussion thus far into a definition of causal functions valid for arbitrary
spaces of input histories, and generalise the results of Propositions 4.8 and Theorem 4.8. We start
by defining the machinery necessary to formulate the constraints associated with lack of tightness,
provide a constrained definition on input histories, and prove that it is equivalent to a free definition.

Definition 4.16. Let Θ be a space of input histories. For each 𝜔 ∈ 𝐸Θ, the tip histories for 𝜔 are the

input histories which have 𝜔 as a tip event:

TipHistsΘ (𝜔) :=
{
ℎ ∈ Θ

��𝜔 ∈ tipsΘ (ℎ)
}

(4.5)
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Definition 4.17. Let Θ be a space of input histories. For any 𝜔 ∈ 𝐸Θ, we say that two histories

ℎ, ℎ′ ∈ Θ are constrained at 𝜔, written ℎ∼𝜔ℎ′, if they both have 𝜔 as a tip event and the consistency

condition from Definition 4.7 forces all extended functions �̂� ∈ ExtFun (Θ, {0, 1}) to output the same

value for 𝜔 on ℎ and ℎ′:

�̂� (ℎ)𝜔 = �̂� (ℎ′)𝜔

Remark 4.18. In Definition 4.17 above, we could have replaced {0, 1} with any family of non-empty

output sets 𝑂 such that |𝑂𝜔 | ≥ 2. Equivalently, we could have universally quantified over all

�̂� ∈ ExtFun
(
Θ, 𝑂

)
for all𝑂, but this would have made it unnecessarily harder to apply the definition.

Corollary 4.19. Let Θ be a space of input histories. Θ is tight if and only if ℎ∼𝜔ℎ′ always implies

ℎ = ℎ′.

Proof. For each 𝑘 ∈ Ext (Θ) and each 𝜔 ∈ dom (𝑘), the tightness requirement is exactly that there is
a unique ℎ ∈ TipHistsΘ (𝜔) with ℎ ≤ 𝑘 . �

Definition 4.20. Let Θ be a space of input histories and let 𝑂 = (𝑂𝜔)𝜔∈𝐸Θ be a family of non-empty

sets of outputs. The causal functions CausFun
(
Θ, 𝑂

)
for space Θ and outputs 𝑂 are the functions

mapping each history in Θ to the output values for its tip events, subject to the the additional

requirement that 𝑓 (ℎ)𝜔 = 𝑓 (ℎ′)𝜔 for any input histories ℎ, ℎ′ which are constrained at an event 𝜔:

CausFun
(
Θ, 𝑂

)
:=

𝑓 ∈
∏
ℎ∈Θ

∏
𝜔∈tipsΘ (ℎ)

𝑂𝜔

������ ℎ∼𝜔ℎ′⇒ 𝑓 (ℎ)𝜔 = 𝑓 (ℎ′)𝜔
 (4.6)

Observation 4.20. Let Θ be a space of input histories and let 𝑂 = (𝑂𝜔)𝜔∈𝐸Θ be a family of

non-empty sets of outputs. For any 𝜔 ∈ 𝐸Θ, let TipEqΘ (𝜔) be the set of equivalence classes for ∼𝜔:

TipEqΘ (𝜔) := TipHistsΘ (𝜔)/∼𝜔=
{
[ℎ]∼𝜔

�� ℎ ∈ TipHistsΘ (𝜔)
}

(4.7)

There is a bijection between the causal functions in CausFun
(
Θ, 𝑂

)
and the functions freely mapping

each event 𝜔 ∈ 𝐸Θ and each equivalence class [ℎ]∼𝜔 ∈ TipEqΘ (𝜔) to the common output value at

𝜔 for all input histories in [ℎ]∼𝜔 :

CausFun
(
Θ, 𝑂

)
←→ ∏

𝜔∈𝐸Θ

(𝑂𝜔)TipEqΘ (𝜔)

𝑓 ↦→
( (
𝜔, [ℎ]∼𝜔

)
↦→ 𝑓 (ℎ)𝜔

)(
ℎ ↦→

(
𝑔

(
𝜔, [ℎ]∼𝜔

) )
𝜔∈tipsΘ (ℎ)

)
← � 𝑔

(4.8)

With Definition 4.20 in hand, we are finally in a position to fully generalise Definition 4.5,
Theorem 4.8 and Proposition 4.8. The changes necessary to achieve this are small: in causally
incomplete spaces, we must account for the possibility that causal functions will produce output
values for multiple tip events, for non-tight spaces we must account for the non-uniqueness of the
ℎ ∈ TipHistsΘ (𝜔) such that ℎ ≤ 𝑘 , used by the definition of extended causal functions. Both changes
cause no trouble to our original proofs, which go through essentially unchanged.
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Definition 4.21. Let Θ be a space of input histories and let 𝑂 = (𝑂𝜔)𝜔∈𝐸Θ be a family of non-empty

sets of outputs. For each causal function 𝑓 ∈ CausFun
(
Θ, 𝑂

)
, define the corresponding extended

causal function Ext ( 𝑓 ) ∈ ExtFun
(
Θ, 𝑂

)
as follows:

Ext ( 𝑓 ) (𝑘) :=
(
𝑓
(
ℎ𝑘,𝜔

)
𝜔

)
𝜔∈dom(𝑘) for all 𝑘 ∈ Ext (Θ) (4.9)

where ℎ𝑘,𝜔 is any input history in ℎ ∈ TipHistsΘ (𝜔) such that ℎ ≤ 𝑘 . We refer to Ext ( 𝑓 ) (𝑘) as the

extended output history corresponding to extended input history 𝑘 . We write ExtCausFun
(
Θ, 𝑂

)
for

the subset of ExtFun
(
Θ, 𝑂

)
consisting of the extended causal functions.

Observation 4.21. The function Ext ( 𝑓 ) is well-defined because the definition of the causal function

𝑓 implies that 𝑓
(
ℎ𝑘,𝜔

)
𝜔

is the same for any choice of ℎ𝑘,𝜔 .

Theorem 4.22. Let Θ be a space of input histories, and let 𝑂 be a family of non-empty sets of

outputs. The extended function �̂� ∈ ExtFun
(
Θ, 𝑂

)
which are causal are exactly those which

satisfy the consistency condition. Indeed for every consistent �̂� we can find a unique Prime
(
�̂�
)
∈

CausFun
(
Θ, 𝑂

)
such that Ext

(
Prime

(
�̂�
) )

= �̂�:

Prime
(
�̂�
)

:= ℎ ↦→ (�̂� (ℎ)𝜔)𝜔∈tipsΘ (ℎ) (4.10)

Proof. Let 𝑓 ∈ CausFun
(
Θ, 𝑂

)
we want to show that Ext ( 𝑓 ) satisfies the consistency condition.

Let 𝑘, 𝑘 ′ ∈ Ext (Θ) such that 𝑘 ≤ 𝑘 ′. By definition of Ext ( 𝑓 ) we have that

Ext ( 𝑓 ) (𝑘) := ( 𝑓 (ℎ𝑘,𝜔)𝜔)𝜔∈dom(𝑘)

where ℎ𝑘,𝜔 is any input history ℎ ∈ TipHistsΘ (𝜔) such that ℎ ≤ 𝑘 . Similarly:

Ext ( 𝑓 ) (𝑘 ′) := ( 𝑓 (ℎ′𝑘′,𝜔)𝜔)𝜔∈dom(𝑘′)

Let 𝜔 ∈ dom (Ext ( 𝑓 ) (𝑘)) ∩ dom (Ext ( 𝑓 ) (𝑘 ′)). Since ℎ𝑘,𝜔 , ℎ𝑘′,𝜔 ≤ 𝑘 ′, it is not any more true that
ℎ𝑘,𝜔 = ℎ𝑘′,𝜔 however we know that ℎ𝑘,𝜔 ∼𝜔 ℎ𝑘′,𝜔 and therefore

Ext ( 𝑓 ) (𝑘)𝜔 = Ext ( 𝑓 ) (𝑘 ′)𝜔

proving that Ext ( 𝑓 ) (𝑘 ′) ≤ Ext ( 𝑓 ) (𝑘). This holds for every extended function proving their
consistency.

Consider now an extended causal function �̂� which satisfies the consistency condition. From �̂�

we construct a Prime
(
�̂�
)
∈ CausFun

(
Θ, 𝑂

)
given by:

Prime
(
�̂�
)

:= ℎ ↦→ (�̂� (ℎ)𝜔)𝜔∈tipsΘ (ℎ)
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We see that Prime
(
�̂�
)

is causal by simply being a function mapping each event 𝜔 ∈ 𝐸Θ and each
equivalence class [ℎ]∼𝜔 ∈ TipEqΘ (𝜔) to the common output value at 𝜔 by taking

Prime
(
�̂�
)
↦→ ((𝜔, [ℎ]∼𝜔 ) ↦→ Prime

(
�̂�
)
(ℎ)𝜔)

which is well defined because �̂� is an extended causal function.
It remains to show that Ext

(
Prime

(
�̂�
) )

= �̂�. Note that for any 𝑘 ∈ Ext (Θ) and 𝜔 ∈ dom (𝑘) we
have ℎ𝑘,𝜔 ≤ 𝑘 for some ℎ𝑘,𝜔 ∈ TipHistsΘ (𝜔) such that ℎ ≤ 𝑘 , so by consistency �̂� (ℎ𝑘,𝜔) ≤ �̂� (𝑘).
In particular �̂� (ℎ𝑘,𝜔)𝜔 = �̂� (𝑘)𝜔 for 𝜔 ∈ dom

(
ℎ𝑘,𝜔

)
∩ dom (𝑘). By the definition of the operators

Ext and Prime respectively acting on causal functions and extended causal functions, we have that

�̂� (ℎ𝑘,𝜔)𝜔 = Prime
(
�̂�
)
(ℎ𝑘,𝜔) = Ext

(
Prime

(
�̂�
) )
(𝑘)𝜔

concluding that �̂� (𝑘)𝜔 = Ext
(
Prime

(
�̂�
) )
(𝑘)𝜔 and therefore �̂� (𝑘) = Ext

(
Prime

(
�̂�
) )
(𝑘) for all

𝑘 ∈ Ext (Θ). �

We can finally express extended causal functions as ‘gluing’ of the output values of causal
functions, via compatible joins.

Proposition 4.22. Let Θ be a space of input histories and let𝑂 = (𝑂𝜔)𝜔∈𝐸Θ be a family of non-empty

sets of outputs. For every 𝑓 ∈ CausFun
(
Θ, 𝑂

)
, we have:

Ext ( 𝑓 ) = 𝑘 ↦→
∨

ℎ∈𝑘↓∩Θ
𝑓 (ℎ) (4.11)

Proof. By Theorem 4.22, the extended functions which are causal are the one satisfying the
consistency condition. By Proposition 4.7 such causal function satisfy the gluing condition. Let
𝑘, 𝑘 ′ ∈ ExtFun (Θ) be consistent histories, since Ext ( 𝑓 ) is causal we have that Ext ( 𝑓 ) (𝑘 ∨ 𝑘 ′) =
Ext ( 𝑓 ) (𝑘) ∨ Ext ( 𝑓 ) (𝑘 ′). Writing an extended history as the joint of compatible histories yields the
proposition. �

Proposition 4.22. Let Θ be a space of input histories satisfying the free-choice condition and let

𝑂 = (𝑂𝜔)𝜔∈𝐸Θ be a family of non-empty sets of outputs. For every 𝑓 ∈ CausFun
(
Θ, 𝑂

)
, the

restriction of Ext ( 𝑓 ) to the maximal extended input histories is a joint IO function for the operational

scenario (𝐸Θ, 𝐼Θ, 𝑂) which is causal for Θ. Conversely, any joint IO function 𝐹 which is causal for

Θ arises as the restriction of Ext ( 𝑓 ) to maximal extended input histories, where 𝑓 ∈ CausFun
(
Θ, 𝑂

)
can be defined as follows for all 𝜔 ∈ tipsΘ (ℎ):

𝑓 (ℎ)𝜔 := 𝐹 (𝑘)𝜔 for any maximal ext. input history 𝑘 s.t. ℎ ≤ 𝑘 (4.12)
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Proof. The proof is essentially the same as for Proposition 4.8: we only need to check that nothing
goes wrong when dropping causal completeness and tightness. The proof for the first part of the
statement only makes use of the free-choice condition, which we have now explicitly required, so
it goes through unaltered. The second part of the statement was modified to account for the more
general definition of causal functions on causally incomplete spaces, potentially involving outputs
at multiple tip events. Aside from this modification, and the explicit assumption of the free-choice
condition, the proof for the second part of the statement also goes through unaltered. �

4.4 The presheaf of (extended) causal functions

Deterministic causal data are joint input and output functions satisfying causal constraints. Global
causal IO functions satisfy all causal constraints associated with a given space. As such, they
can be suitable for a classical description, where the outcome of the measurement is assigned
non-contextually but we want to relax this assumption and use sheaf theory to describe empirical
models which can arise from assigning distribution of local causal data defined on certain contexts
but transcending global compatibility.

From the perspective of sheaf theory, data is associated with the open set of some topological
space with an appropriate definition of restriction which is used to define the notion of compatibility.
The reader should recall that in the standard sheaf theoretic approach (that we described in Chapter 1)
the possible global assignments are identified with particular values of some hidden variable. The
essence of non-locality or contextuality is to be found in the incompatibility between the global
hidden mechanisms and the assignments realised in each individual context. We will treat global
sections similarly, with the crucial difference that we are now considering data respecting additional
causality requirements.

For the standard case of contextuality and non-locality, which as we will show later on is fully
recovered by our framework, the assignment of data is a sheaf, i.e locally assigned deterministic
functions can be always ‘glued’ together in a unique way. In our case, this will still hold for the
tight spaces but fails due to the lack of tightness revealing a phenomenon known as deterministic
casually-induced contextuality. Post-composing the assignment of deterministic causal data with the
probability monad will in general define a presheaf permitting the emergence of general contextual
phenomena.

For the machinery of sheaf theory to become available to us, we must first endow our spaces of
input histories with a suitable topology. Because a space of input histories Θ is a partial order, a
natural choice of topology is given by taking its lower sets Λ (Θ) to be the open sets.

This is the dual of the Alexandrov topology, where the upper sets are taken to be the open sets,
and all techniques applicable to Alexandrov topologies naturally dualise to lowerset topologies. In
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particular, we make the following standard observations:

• The points of Θ, i.e. the input histories ℎ ∈ Θ, can be identified with downsets ℎ↓∈ Λ (Θ).

• The downsets of input histories are exactly the lowersets 𝑈 ∈ Λ (Θ) which are ∪-prime, i.e.
those which cannot be written as𝑈 = 𝑉 ∪𝑊 for some lowersets 𝑉,𝑊 ≠ 𝑈.

• The order on Θ can be reconstructed from the inclusion order on Λ (Θ), by observing that
ℎ ≤ ℎ′ if and only if ℎ↓⊆ ℎ′↓.

The extended input histories 𝑘 ∈ Ext (Θ) can themselves be identified with certain lowersets,
namely with the intersection 𝑘↓∩ Θ of their downset in Ext (Θ) with the space Θ. This identification
is both injective and order-preserving, generalising the previous identification of ℎ ∈ Θ with ℎ↓:

(Ext (Θ) , ≤) ↩−→ (Λ (Θ) , ⊆)
𝑘 ↦→ 𝑘↓∩ Θ

The locale of lowersets Λ (Θ) provides an equivalent way to talk about input histories, extended input
histories and their order. We adopt lowersets as our default topology for spaces of (extended) input
histories as to any other poset inheriting the order from partial functions, and proceed to show that
causality for extended functions is the same as continuity.

Definition 4.23. When talking about spaces of (extended) input histories as topological spaces, we

take them endowed with the lowerset topology. Unless otherwise specified, when talking about subsets

𝑆 ⊆ PFun
(
𝑌
)

we take them endowed with the partial order of PFun
(
𝑌
)

and the lowerset topology.

In the following example, we showcase a poset of open sets arising from an order induced space
of input histories.

Example 4.24. Consider the space Hist (total (A,B) , {0, 1}). Recall that the space of histories is

therefore given by

the lattice of lowersets is the following (not including the minimum, the empty set of histories):
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In the Hasse diagram above each vertex identifies a context, a downward closed set of histories. The

labels identify, in a more succinct way, the histories in the lowerset. For example, the symbol {0, 1}
denotes the histories {A :0} and {A :1} , while labels containing {𝑎𝑏} for 𝑎, 𝑏 ∈ {0, 1} denote the

two events histories {A :𝑎, B :𝑏} . The label {0, 00} represent the context where both inputs for A

and B are chosen to be 0 and contains the histories {A :0} and {A :0, B :0} . The open set {0, 1},
on the other hand, describes the lowerset where the B is ignored but where A still has the choice

of performing either 0 or 1. A more exotic context is given by {0, 01, 1, 10}. In this case, we are

interested in the cases in which the choices of 𝐴 and 𝐵 are anti-correlated in their maximal histories.

A set like {1, 00} is not a valid context as the histories {A :1} and {A :0, B :0} are not consistent

and do not form a lowerset of the set of histories.

We start by proving an elementary property about lowerset topologies:

Proposition 4.24. Let 𝑋,𝑌 be partial orders endowed with the lowerset topology. A function

𝑓 : 𝑋 → 𝑌 is continuous if and only if it is order preserving.

Proof. Let 𝑓 : 𝑋 → 𝑌 be order preserving and take 𝜆 ∈ Λ(𝑌 ). We need to show that 𝑓 −1(𝜆) is a
lowerset. Let 𝑥 ∈ 𝑓 −1(𝜆) and 𝑥 ′ ≤ 𝑥 then by order preservation 𝑓 (𝑥 ′) ≤ 𝑓 (𝑥), 𝜆 is a lowerset and
therefore 𝑓 (𝑥 ′) ∈ 𝜆.

For the other direction assume that 𝑓 : 𝑋 → 𝑌 is continuous. Let 𝑥, 𝑥 ′ ∈ 𝑋 such that 𝑥 ≤ 𝑥 ′.
Consider 𝑓 (𝑥 ′) ↓∈ Λ(𝑌 ). Since 𝑓 is continuous we know that 𝑓 −1 𝑓 (𝑥 ′) ↓ is a lowerset of 𝑋 , this
allows us to conclude that 𝑓 (𝑥) ≤ 𝑓 (𝑥 ′). �
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Proposition 4.24 can be used to show that continuity with respect to the lowerset topology
provides an alternative, mathematically elegant characterisation for extended causal functions.

Observation 4.24. Let Θ be a space of input histories and let 𝑂 = (𝑂𝜔)𝜔∈𝐸Θ be a family of

non-empty output sets. The extended functions on Θ are a subset of the functions from Ext (Θ) to

PFun
(
𝑂

)
:

ExtFun
(
Θ, 𝑂

)
=

∏
𝑘∈Ext(Θ)

∏
𝜔∈dom(𝑘)

𝑂𝜔 ⊆ Ext (Θ) → PFun
(
𝑂

)
In fact, they are exactly the functions �̂� : Ext (Θ) → PFun

(
𝑂

)
which commute with the domain map,

in the following sense:

dom
(
�̂� (𝑘)

)
= dom (𝑘)

Theorem 4.25 (Causality as continuity). Let Θ be a space of input histories and let 𝑂 = (𝑂𝜔)𝜔∈𝐸Θ

be a family of non-empty output sets. An extended function �̂� ∈ ExtFun
(
Θ, 𝑂

)
is causal if and only

if it is continuous as a function �̂� : Ext (Θ) → PFun
(
𝑂

)
where both Ext (Θ) and PFun

(
𝑂

)
are

equipped with the lowerset topology.

Proof. Causality of �̂� is equivalent to the consistency condition by Theorem 4.8. The consistency
condition implies that if 𝑘 ′ ≤ 𝑘 then �̂� (𝑘 ′) ≤ �̂� (𝑘) as partial functions. �̂� is order preserving and by
Proposition 4.24 continuous. �

We now proceed to define the presheaf of causal data. The first question that we need to
investigate is whether an arbitrary open set of the topological space Ξ ∈ Λ(Θ) is itself a space of
input histories for the scenario with events 𝐸Ξ. This stability would guarantee that the assignments of
causal functions described above naturally extend to all open sets of the topology. The following
propositions show that the open sets are valid spaces of histories and that they inherit tightness and
tip events from the parent spaces.

Proposition 4.25. Let Θ be a space of input histories and let𝑂 = (𝑂𝜔)𝜔∈𝐸Θ be a family of non-empty

sets of outputs. Any lowerset 𝜆 ∈ Λ (Θ) is a space of input histories, with Ext (𝜆) ∈ Λ (Ext (Θ)).

Proof. Taking lowerset does not introduce new histories, from this we conclude that every history in
𝜆 is prime. We have that Ext (𝜆) ⊆ Ext (Θ) by definition of Ext, and Ext (𝜆) is a lowerset because 𝜆
is a lowerset. �

Recall that for a non-tight space there may be two different histories ℎ, ℎ′ ∈ Θ and 𝑘 ∈
max ExtHist (Θ) such that ℎ, ℎ′ ≤ 𝑘 and ℎ∼𝜔ℎ′. For example consider the non-tight space Θ21, we
see that the histories {A :0, B :1}∼B{B :1, C :0} and {A :0, B :1} , {B :1, C :0} ≤ {A :0, B :1, C :0}.

Proposition 4.25. Let Θ be a space of input histories and let𝑂 = (𝑂𝜔)𝜔∈𝐸Θ be a family of non-empty

sets of outputs. Let 𝜆 ∈ Λ (Θ) be a lowerset:
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• For all ℎ ∈ 𝜆, we have tips𝜆 (ℎ) = tipsΘ (ℎ).

• For all ℎ, ℎ′ ∈ 𝜆, we have that ℎ∼𝜔ℎ′ in 𝜆 implies ℎ∼𝜔ℎ′ in Θ. Hence, if Θ is tight then so is

𝜆.

Proof. Because 𝜆 is a lowerset, all sub-histories in Θ of a history ℎ ∈ 𝜆 are also sub-histories of ℎ in
𝜆. This means that the tip events of ℎ in Θ are the same as the tip events of ℎ in 𝜆, and in particular
that 𝜆 is causally complete whenever Θ is. In turn, this means that any ℎ ∈ 𝜆 such that ℎ ≤ 𝑘 and
𝜔 ∈ tips𝜆 (ℎ) is also a ℎ ∈ Θ such that ℎ ≤ 𝑘 and 𝜔 ∈ tipsΘ (ℎ), for every 𝑘 ∈ Ext (𝜆) ⊆ Ext (Θ).
This immediately implies that 𝜆 is tight wheneverΘ is, and it also implies that ℎ, ℎ′ ∈ 𝜆 are constrained
at 𝜔 in 𝜆 only if they are in Θ. �

Taken together, the preservation of tips and constraints for input histories immediately implies
that causal functions restrict to causal functions, motivating a very straightforward definition of the
presheaf of causal functions.

Corollary 4.26. Let Θ be a space of input histories and let 𝑂 = (𝑂𝜔)𝜔∈𝐸Θ be a family of non-empty

sets of outputs. Let 𝑓 ∈ CausFun
(
Θ, 𝑂

)
be a causal function for Θ, and 𝜆 ∈ Λ (Θ) be a lowerset.

Then 𝑓 |𝜆 ∈ CausFun
(
𝜆, 𝑂

)
.

Proof. From Proposition 4.25 we know that tips𝜆 (ℎ) = tipsΘ (ℎ) for every 𝜆 ∈ Λ(Θ). Therefore 𝑓 |𝜆
is of the type:

𝑓 |𝜆 ∈
∏
ℎ∈𝜆

∏
𝜔∈tips𝜆 (ℎ)

𝑂𝜔

Proposition 4.25 also states that ℎ ∼𝜔 ℎ′ in 𝜆 implies ℎ ∼𝜔 ℎ′ in Ω, which in turn implies that
𝑓 (ℎ)𝜔 = 𝑓 (ℎ′)𝜔 , because 𝑓 ∈ CausFun

(
Θ, 𝑂

)
. Hence we have 𝑓 |𝜆 ∈ CausFun

(
𝜆, 𝑂

)
. �

Definition 4.27. Let Θ be a space of input histories and let 𝑂 = (𝑂𝜔)𝜔∈𝐸Θ be a family of non-empty

sets of outputs. The presheaf of causal functions CausFun
(
Λ (Θ) , 𝑂

)
for space Θ and outputs 𝑂 is

the presheaf on the topological space Θ defined as follows:

• to lowersets 𝜆 ∈ Λ (Θ), the open sets of Θ, it associates the causal functions for 𝜆:

CausFun
(
Λ (Θ) , 𝑂

)
(𝜆) := CausFun

(
𝜆,𝑂

)
(4.13)

• to inclusions 𝜆′ ⊆ 𝜆 of lowersets, it associates ordinary function restriction:

CausFun
(
Λ (Θ) , 𝑂

)
(𝜆, 𝜆′) := 𝑓 ↦→ 𝑓 |𝜆′ (4.14)
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Theorem 4.28. Let Θ be a space of input histories and let 𝑂 = (𝑂𝜔)𝜔∈𝐸Θ be a family of non-empty

sets of outputs. CausFun
(
Λ (Θ) , 𝑂

)
is a well-defined separated presheaf. Compatible families are

families of functions which are compatible in the sense of Definition 3.3. Their gluing is given by

their compatible join in the sense of Definition 3.4 whenever the compatible join is causal, and no

gluing exists otherwise.

Proof. CausFun
(
Λ (Θ) , 𝑂

)
(𝜆) is well-defined by Proposition 4.25, the restrictions are well-defined

by Corollary 4.26. Because restrictions are ordinary function restrictions, a family of functions is
compatible if any pair of functions in the family agree on the intersections of their domains, agreeing
with Definition 3.3. A gluing for a family of compatible functions, if it exists, must be a function
defined on the union of their domains, which agrees with each function on its domain: the only
option is the compatible join according to Definition 3.4. If the compatible join is causal, then it is
the gluing of the family; otherwise, no gluing can exist. �

If Θ is a tight space, then the assignment of causal functions forms a sheaf, as stated by the
following theorem:

Theorem 4.29. Let Θ be a space of input histories. If Θ is tight, then CausFun
(
Λ (Θ) , 𝑂

)
is a sheaf.

Proof. This is a straightforward consequence of the fact that if Θ is tight so is every 𝜆 ∈ Λ(Θ). The
assignment of causal functions in unconstrained and given a compatible family of causal functions
{ 𝑓𝑖}𝑖 for a family of lowersets {𝜆𝑖}𝑖 where 𝜆𝑖 ∈ Λ(Θ), there is a unique causal 𝑓 for

⋃
𝑖 𝜆𝑖 obtained

by gluing the compatible functions. �

The extended causal functions on a space of input histories can also be arranged into a presheaf,
which is naturally isomorphic to the presheaf of causal functions via the Ext bijection. The reason for
explicitly defining such a presheaf is that the output data of extended causal functions are already
‘glued together’, providing outputs for all events in the domain of any extended input history. This
will prove more convenient when connecting distributions over (extended) causal functions to the
conditional probability distributions used by other works on causality.

Definition 4.30. Let Θ be a space of input histories and let 𝑂 = (𝑂𝜔)𝜔∈𝐸Θ be a family of non-empty

sets of outputs. The presheaf of extended causal functions ExtCausFun
(
Λ (Θ) , 𝑂

)
for space Θ and

outputs 𝑂 is the presheaf on the topological space Θ defined as follows:

• to lowersets 𝜆 ∈ Λ (Θ), it associates the extended causal functions for 𝜆:

ExtCausFun
(
Λ (Θ) , 𝑂

)
(𝜆) := ExtCausFun

(
𝜆, 𝑂

)
(4.15)

• to inclusions 𝜆′ ⊆ 𝜆 of lowersets, it associates the following restrictions:

ExtCausFun
(
Λ (Θ) , 𝑂

)
(𝜆, 𝜆′) := Ext ( 𝑓 ) ↦→ Ext ( 𝑓 ) |Ext(𝜆) (4.16)
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Proposition 4.30. Let Θ be a space of input histories and let 𝑂 = (𝑂𝜔)𝜔∈𝐸Θ be a family of

non-empty sets of outputs. ExtCausFun
(
Λ (Θ) , 𝑂

)
is a well-defined presheaf. The family of

bijections Ext =
(
Ext : CausFun

(
𝜆, 𝑂

)
→ ExtCausFun

(
𝜆, 𝑂

) )
𝜆∈Λ(Θ) defines a natural isomorphism

of presheaves Ext : CausFun
(
Λ (Θ) , 𝑂

)
� ExtCausFun

(
Λ (Θ) , 𝑂

)
:

Ext ( 𝑓 ) |Ext(𝜆) = Ext
(
𝑓 |𝜆

)
(4.17)

As a consequence, ExtCausFun
(
Λ (Θ) , 𝑂

)
is always a separated presheaf and it is a sheaf when Θ

is a tight space.

Proof. Proving Equality 4.17 is equivalent to showing that the following diagram commutes

CausFun
(
𝜆, 𝑂

)
ExtCausFun

(
𝜆,𝑂

)
CausFun

(
𝜆′, 𝑂

)
ExtCausFun

(
𝜆′, 𝑂

)
Ext

_ |𝜆′ _ |Ext(𝜆′)

Ext

since Ext is a bijection this shows that the presheaves are naturally isomorphic. The claim that the
assignment of extended causal functions forms a separated presheaf/sheaf follows directly from
the natural isomorphism. To prove the equation we first notice that the restriction Ext ( 𝑓 ) |Ext(𝜆)

is well-defined because Ext (𝜆) ⊆ Ext (Θ). Let us chase the diagram by evaluating the function
𝑓 ∈ CausFun

(
𝜆,𝑂

)
on a generic input history 𝑘 ∈ Ext (𝜆). On the left side of the equation we have:

Ext ( 𝑓 ) |Ext(𝜆) (𝑘) = Ext ( 𝑓 ) (𝑘)

On the right hand side:

Ext
(
𝑓 |𝜆

)
(𝑘) =

∨
ℎ∈𝑘↓∩𝜆

𝑓 |𝜆 (ℎ) =
∨
ℎ∈𝑘↓

𝑓 (ℎ) = Ext ( 𝑓 ) (𝑘)

The first and the last equalities are a consequence of Proposition 4.22, while the middle follows from
𝜆 being a lowerset. �

Example 4.31. Consider the running example of the space given by Hist (total (A,B) , {0, 1}).
Assigning causal data for all the contexts is made easy by the fact that CausFun

(
Λ (Θ) , 𝑂

)
is a sheaf.

It is therefore enough to assign data to the atoms of the lattice in Example 4.24:
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The causal data assigned to any context can be univocally recovered from this assignment to the

atomic components. Consider for example the context {0, 00, 01} describing the following lowerset

of histories:

𝜆′′ = {{A :0} , {A :0, B :0} , {A :0, B :1}}

This can be recovered from gluing compatible data defined over 𝜆 = {{A :0} , {A :0, B :0}} and

𝜆′ = {{A :0} , {A :0, B :1}}. For example:

𝑓 ∈ CausFun (𝜆, 𝑂) 𝑓 =

{
𝑓 ({A :0}) ↦→ 0
𝑓 ({A :0, B :0}) ↦→ 1

𝑓 ′ ∈ CausFun (𝜆′, 𝑂) 𝑓 =

{
𝑓 ({A :0}) ↦→ 0
𝑓 ({A :0, B :1}) ↦→ 1

Clearly the restriction of 𝑓 |𝐴 = 𝑓 ′ |𝐴 to the lowerset 𝐴 = {{A :0}} and gluing 𝑓 and 𝑓 ′ as defined by

Theorem 4.28 gives a causal function for the context 𝜆:

𝑓 ∨ 𝑓 ′ =


𝑓 ({A :0}) ↦→ 0
𝑓 ({A :0, B :1}) ↦→ 1
𝑓 ({A :0, B :0}) ↦→ 1
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4.5 Causal distributions

In this subsection we show how to recover non-deterministic behaviour by post-composing the sheaf
of causal functions with the distribution monad and discuss the relationship between covers and
empirical models. First, recall the notion of the distribution monad introduced in Chapter 1:

Definition 4.32. The distribution monad D is the following mapping on sets and functions:

• If 𝑋 is a set, D (𝑋) is the set of probability distributions over 𝑋 with finite support:

D (𝑋) :=

{
𝑑 : 𝑋 → R+

����� ∑︁
𝑥∈𝑋

𝑑 (𝑥) = 1, supp (𝑑) is finite

}
(4.18)

where the support of a distribution is the set of points over which it is non-zero:

supp (𝑑) := { 𝑥 ∈ 𝑋 | 𝑑 (𝑥) ≠ 0 } (4.19)

• If 𝑓 : 𝑋 → 𝑌 is a function between sets, D ( 𝑓 ) is the function D (𝑋) → D (𝑌 ) defined as the

linear extension of 𝑓 to probability distributions with finite support:

D ( 𝑓 ) := 𝑑 ↦→
∑︁
𝑥∈𝑋

𝑑 (𝑥)𝛿 𝑓 (𝑥) (4.20)

where 𝛿𝑦 ∈ D (𝑌 ) is the delta distribution at 𝑦:

𝛿𝑦 := 𝑦′ ↦→
{

1 if 𝑦′ = 𝑦
0 otherwise (4.21)
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Proposition 4.32. Let 𝑋 be a topological space and let T (𝑋) ⊆ P(𝑋) be it collection of open sets.

Let 𝑃, 𝑃′ be presheaves on some topological space 𝑋 . If 𝜙 : 𝑃 � 𝑃′ are naturally isomorphic, then

D𝜙 : D𝑃 � D𝑃′ are also naturally isomorphic, where we defined:

D𝜙 := (D (𝜙𝑈 ))𝑈 ∈T (𝑋 )

Proof. The distribution monad is a functor and therefore preserves the bijection 𝜙𝑈 : 𝑃(𝑈) → 𝑃′(𝑈):

D
(
𝜙−1
𝑈
◦ 𝜙𝑈

)
= D

(
𝑖𝑑𝑃 (𝑈 )

)
= 𝑖𝑑D𝑃 (𝑈 )

D
(
𝜙𝑈 ◦ 𝜙−1

𝑈

)
= D

(
𝑖𝑑𝑃′ (𝑈 )

)
= 𝑖𝑑D𝑃′ (𝑈 )

Furthermore, the bijections commute with restrictions:

D (𝜙𝑉 ) ◦ D𝑃(𝑈,𝑉) = D (𝜙𝑉 ◦ 𝑃(𝑈,𝑉))
= D (𝑃(𝑈,𝑉) ◦ 𝜙𝑈 ) = D𝑃(𝑈,𝑉) ◦ D (𝜙𝑈 )

We conclude that D𝜙 is a natural isomorphism between D𝑃 and D𝑃′. �

Proposition 4.32 allows us to define the causal distributions by using either the sheaf of causal
functions or the sheaf of extended causal functions. To simplify our upcoming definition of empirical
models, we choose to extend causal functions as our base for causal distributions.

Definition 4.33. Let Θ be a space of input histories and let 𝑂 = (𝑂𝜔)𝜔∈𝐸Θ be a family of non-empty

input sets. The presheaf of causal distributions for Θ is defined as follows:

CausDist
(
Λ (Θ) , 𝑂

)
:= D ExtCausFun

(
Λ (Θ) , 𝑂

)
(4.22)

We also define the following notation for the individual sets of distributions:

CausDist
(
𝜆,𝑂

)
:= D

(
ExtCausFun

(
𝜆,𝑂

) )
(4.23)

Proposition 4.33. Let Θ be a space of input histories and let 𝑂 = (𝑂𝜔)𝜔∈𝐸Θ be a family of

non-empty output sets. The restrictions of the presheaf CausDist
(
Λ (Θ) , 𝑂

)
act by marginalisation

on probability distributions 𝑑 ∈ CausDist
(
𝜆, 𝑂

)
:

𝑑 |𝜆′ = Ext ( 𝑓 ′) ↦→
∑︁

𝑓 s.t. 𝑓 |𝜆′= 𝑓 ′
𝑑 (Ext ( 𝑓 )) (4.24)

In words, the probability assigned by the marginal 𝑑 |𝜆′ ∈ CausDist
(
𝜆′, 𝑂

)
to a generic extended

causal function Ext ( 𝑓 ′) ∈ ExtCausFun
(
𝜆′, 𝑂

)
is the sum of the probabilities assigned by 𝑑 to all

extended causal functions Ext ( 𝑓 ) ∈ ExtCausFun
(
𝜆,𝑂

)
which restrict to Ext ( 𝑓 ′).

Proof. From the Definition of D we get:

D
(
Ext ( 𝑓 ) ↦→ Ext ( 𝑓 ) |Ext(𝜆′)

)
: D (Ext ( 𝑓 )) → D

(
Ext ( 𝑓 ) |Ext(𝜆)

)
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𝑑 ↦→
∑︁

Ext( 𝑓 )
𝑑 (Ext ( 𝑓 ))𝛿Ext( 𝑓 ) |Ext(𝜆′)

We can rearrange the sum in order to make the dependence on arbitrary Ext ( 𝑓 ′) ∈ ExtCausFun
(
𝜆, 𝑂

)
explicit: ∑︁

Ext( 𝑓 )
𝑑 (Ext ( 𝑓 )) 𝛿Ext( 𝑓 ) |Ext(𝜆′) =

∑︁
Ext( 𝑓 ′)

©­«
∑︁

Ext( 𝑓 ) s.t. Ext( 𝑓 ) |Ext(𝜆′)=Ext( 𝑓 ′)
𝑑 (Ext ( 𝑓 ))ª®¬ 𝛿Ext( 𝑓 ′)

According to Proposition 4.30 an equivalent condition for Ext ( 𝑓 ) |Ext(𝜆′) = Ext ( 𝑓 ′) is that 𝑓 |𝜆′ = 𝑓 ′:

∑︁
Ext( 𝑓 ′)

©­«
∑︁

Ext( 𝑓 ) s.t. Ext( 𝑓 ) |Ext(𝜆′)=Ext( 𝑓 ′)
𝑑 (Ext ( 𝑓 ))ª®¬ 𝛿Ext( 𝑓 ′) =

∑︁
Ext( 𝑓 ′)

©­«
∑︁

𝑓 s.t. 𝑓 |𝜆′= 𝑓 ′
𝑑 (Ext ( 𝑓 ))ª®¬ 𝛿Ext( 𝑓 ′)

�

Definition 4.34. Let Θ be a space of input histories and let 𝑂 = (𝑂𝜔)𝜔∈𝐸Θ be a family of non-empty

sets of outputs. A standard empirical model 𝑒 is a compatible family 𝑒 = (𝑒𝑘↓)𝑘∈max Ext(Θ) for the

presheaf of causal distributions:

𝑒𝑘↓ ∈ CausDist
(
𝑘↓, 𝑂

)
Example 4.35. Consider the following empirical model for the causal fork space:

ABC 000 001 010 011 100 101 110 111
000 1/4 1/4 0 0 0 0 1/4 1/4
001 0 0 1/4 1/4 1/4 1/4 0 0
010 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8
011 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8
100 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8
101 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8
110 1/4 0 0 1/4 0 1/4 1/4 0
111 1/4 0 0 1/4 0 1/4 1/4 0

In this tabular form, each row 𝑖𝐴𝑖𝐵𝑖𝐶 corresponds to a maximal extended input history

{A : 𝑖𝐴, B : 𝑖𝐵, C : 𝑖𝐶} ∈ StdCov (Θ), while each column 𝑜𝐴𝑜𝐵𝑜𝐶 corresponds to an associated

extended output history {A :𝑜𝐴, B :𝑜𝐵, C :𝑜𝐶}. For now, however, each line 𝑖𝐴𝑖𝐵𝑖𝐶 of the same

empirical model has to be defined explicitly as a distribution on extended causal functions:

D (ExtCausFun ({A : 𝑖𝐴, B : 𝑖𝐵, C : 𝑖𝐶}↓, {0, 1}))
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Equivalently, we look at distributions on causal functions, which are freely characterised:

D (CausFun ({A : 𝑖𝐴, B : 𝑖𝐵, C : 𝑖𝐶}↓, {0, 1}))

Because the spaceΘ is both tight and causally complete, the causal functions on {A : 𝑖𝐴, B : 𝑖𝐵, C : 𝑖𝐶}↓
take the following form: ∏

ℎ≤{A:𝑖𝐴, B:𝑖𝐵 , C:𝑖𝐶 }
𝑂tipΘ (ℎ)

where we used the fact that tip{A:𝑖𝐴, B:𝑖𝐵 , C:𝑖𝐶 }↓ (ℎ) = tipΘ (ℎ) to simplify the expression. The input

histories ℎ ≤ {A : 𝑖𝐴, B : 𝑖𝐵, C : 𝑖𝐶} are exactly:

• ℎ = {C : 𝑖𝐶} with tip event C

• ℎ = {C : 𝑖𝐶 , A : 𝑖𝐴} with tip event A

• ℎ = {C : 𝑖𝐶 , B : 𝑖𝐵} with tip event B

Hence the causal functions in CausFun ({A : 𝑖𝐴, B : 𝑖𝐵, C : 𝑖𝐶}↓, {0, 1}) are:

𝑓𝑜𝐴𝑜𝐵𝑜𝐶 |𝑖𝐴𝑖𝐵𝑖𝐶 :=


{C : 𝑖𝐶} ↦→ 𝑜𝐶
{C : 𝑖𝐶 , A : 𝑖𝐴} ↦→ 𝑜𝐴
{C : 𝑖𝐶 , B : 𝑖𝐵} ↦→ 𝑜𝐵

Using these functions, we can reconstruct the desired distribution for each row of the empirical

model above. For example, the second row is indexed by the maximal extended input history

{A :0, B :0, C :1} and it corresponds to the following distribution on extended causal functions:

1
4
𝛿Ext( 𝑓010|001) +

1
4
𝛿Ext( 𝑓011|001) +

1
4
𝛿Ext( 𝑓100|001) +

1
4
𝛿Ext( 𝑓101|001)

Doing this for all rows yields the following standard empirical model:

𝑒 {A:𝑖𝐴, B:𝑖𝐵 , C:𝑖𝐶 }↓ :=


1
4

∑
𝑜𝐴⊕𝑜𝐵=𝑖𝐶

∑
𝑜𝐶

𝛿
Ext

(
𝑓𝑜𝐴𝑜𝐵𝑜𝐶 |𝑖𝐴𝑖𝐵𝑖𝐶

)
1
8
∑
𝑜𝐴

∑
𝑜𝐵

∑
𝑜𝐶

𝛿
Ext

(
𝑓𝑜𝐴𝑜𝐵𝑜𝐶 |𝑖𝐴𝑖𝐵𝑖𝐶

)
What is standard about the definition of the empirical models given above? As discussed earlier,

the literature on causality and causal inequalities is accustomed to tables such as the one provided in
Example 4.35. To the different joint inputs we simply associate a probability distribution over the
joint outputs. The key is to observe that

{
𝑘 ↓

�� 𝑘 ∈ max ExtHist
(
Θ, 𝑂

) }
is an example of an ‘open

cover’ for the topological space Θ, and to explore what happens if we define empirical models on
other such open covers. What we derive is a ‘hierarchy of contextuality’, corresponding to different
operational assumptions. Three covers are of particular interest.
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• The ‘standard cover’
{
𝑘 ↓

�� 𝑘 ∈ max ExtHist
(
Θ, 𝑂

) }
, accommodating generic causal distribu-

tions on joint outputs conditional to the maximal extended input histories. It models settings
where it is, at the very least, possible to define conditional distributions when all events are
taken together. Empirical models on the standard cover are the standard empirical models
defined above.

• The ‘classical cover’ {Θ} is the ‘coarsest’ cover, lying at the top of the hierarchy. It models
settings admitting a deterministic causal hidden variable explanation. Empirical models on the
classical cover can be restricted to every other open cover: the empirical models arising this
way are known as ‘non-contextual’.

• The ‘solipsistic cover’
{
ℎ↓

�� ℎ ∈ max Hist
(
Θ, 𝑂

) }
is the ‘finest’ cover, lying at the bottom of

the hierarchy. It models settings more restrictive than those modelled by the standard cover,
where it might only be possible to define distributions over the events in the past of some event.

Starting from any cover C, we can obtain a coarser cover C′ by fusing certain contexts—open sets of
Θ—together into their union. This corresponds to the operational requirement that distributions be
simultaneously definable on multiple histories.

We say that an empirical model is ‘contextual’ if it doesn’t arise by restriction from an empirical
model on the classical cover. We now proceed to formalise all of the above.

Definition 4.36. Let 𝑋 be a topological space and T (𝑋) ⊆ P(𝑋) be its topology. An open cover, or

simply a cover, for 𝑋 is an antichain in the partial order T (𝑋), i.e. a collection C ⊆ T (𝑋) of open

sets which are incomparable:

∀𝑈,𝑉 ∈ C. 𝑉 ≤ 𝑈 ⇒ 𝑉 = 𝑈

such that ∨
𝑈 ∈C

𝑈 = 𝑋

If C and C′ are covers on 𝑋 , we say that C′ is finer than C, written C′ � C, if the following holds:

C′ � C ⇔ ∀𝑉 ∈ C′. ∃𝑈 ∈ C. s.t. 𝑉 ⊆ 𝑈 (4.25)

Equivalently, we say that C is coarser than C′. Note that � is a partial order on covers for 𝑋 , known

as the refinement order.

A comparison with the standard sheaf theoretic approach of [6] is in order. In the standard sheaf
theoretic literature—differently from our approach—there is no canonical cover associated with the
topologies. The impossibility of defining the standard cover arises because the set of measurements
𝑋 is always and exclusively endowed with the discrete topology P(𝑋).
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Consider the space Θ = Hist (indiscrete (𝐴) , 𝐼𝐴) where 𝐼𝐴 = {0, 1} and the space Θ =

Hist (indiscrete (𝐴, 𝐵) , (𝐼𝐴, 𝐼𝐵)) where 𝐼𝐴 = 𝐼𝐵 = {0}. The spaces Λ(Θ) and Λ(Θ′) are iso-
morphic as locales; they are both equivalent to the powerset P({0, 1}). This notwithstanding, the
standard cover for the two spaces is different: the unique maximal extended history for Θ′ is given by
{A :0, B :0} while Θ has two maximal extended histories: {A :0} and {A :1} .

We see, therefore, that the points of the topological space (the prime histories) have additional
structure informed by causality, which allows us to single out a standard cover canonically. In
the original framework, spacelike separability is reflected by choosing a suitable cover for the
discrete topology. The standard framework cannot cope with causal assumptions beyond nonlocality:
everything has to be embeddable in the powerset locale for some set of measurements. Measurement
contexts are always exclusively characterised by the choice of a cover and not by changing the
underlying topology.

The set of measurements, which in the sheaf theoretic literature is expressed as the disjoint
union

∐
𝑖∈I 𝐼𝑖 is, translated in our language is the set of histories Hist

(
discrete (I) , 𝐼

)
. The

maximal contexts, normally described as
∏
𝑖∈I 𝐼𝑖 can be now identified as the family of histories

𝑘 ∈ max Ext
(
Hist

(
discrete (I) , 𝐼

) )
. Empirical models are defined to be compatible distributions of

functions, assigning joint inputs to joint outputs:∏
𝑖∈I

𝐼𝑖 → D
(∏
𝑖∈I

𝑂𝑖

)
This is isomorphic (as we will formally shown in the next chapter) to assigning compatible data
𝑒𝑘 ∈ CausDist

(
𝑘 ↓, 𝑂

)
for all 𝑘 ↓ where 𝑘 is a maximal extended history for the scenario.

Definition 4.37. Let Θ be a space of input histories and let 𝑂 = (𝑂𝜔)𝜔∈𝐸Θ be a family of non-empty

sets of outputs. Let 𝑒 be an empirical model. We say that 𝑒 is non-contextual if it arises as restriction

𝑒 = 𝑒 |dom(𝑒) of a classical empirical model 𝑒 ∈ EmpMod
(
ClsCov (Θ) , 𝑂

)
; otherwise, we say that 𝑒

is contextual. If 𝑒 is a standard empirical model, we adopt local as a synonym of non-contextual, and

non-local as a synonym of contextual.

Definition 4.38. Let Θ be a space of input histories. The standard cover on Θ is the following open

cover:

StdCov (Θ) :=
{
𝑘 ↓

�� 𝑘 ∈ max ExtHist
(
Θ, 𝑂

) }
(4.26)

The solipsistic cover on Θ is the following open cover:

SolCov (Θ) :=
{
ℎ↓

�� ℎ ∈ max Hist
(
Θ, 𝑂

) }
(4.27)

The classical cover on Θ is the following open cover:

ClsCov (Θ) := {Θ} (4.28)

The hierarchy of covers for Θ is the set Covers (Θ) of open covers ordered by refinement �.
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Proposition 4.38. Let Θ be a space of input histories. The partial order Covers (Θ) is a lattice, with

the solipsistic cover SolCov (Θ) as its unique minimum and the classical cover ClsCov (Θ) as its

unique maximum. In particular:

SolCov (Θ) � StdCov (Θ) � ClsCov (Θ)

Proof. Let C be an arbitrary cover. We have that C � ClsCov (Θ): every 𝜆 ∈ Λ(Θ), 𝜆 ⊆ Θ. To
show that the solipsistic cover lies at the bottom of the hierarchy, notice that for every ℎ ∈ Θ there
exists 𝜆ℎ ∈ C such that ℎ ∈ 𝜆ℎ and ℎ ↓⊆ 𝜆ℎ. This holds for every maximal history entailing
SolCov (Θ) � C. �

A our first and simplest example, we look at the open covers on the discrete space with 1 event
and ternary inputs Hist (A, {0, 1, 2}): we chose this particular example because it is simple enough
that all covers can be enumerated explicitly, but at the same time supports an interesting contextual
empirical model (on cover #7 below). There are 9 open covers for this space, arranged in the following
hierarchy.

Because Hist (A, {0, 1, 2}) = ExtHist (A, {0, 1, 2}), the standard cover and solipsistic cover coincide
for this example.

• Cover #0 (standard/solipsistic cover) contains the following lowersets:{{
{A :0}

}
,
{
{A :1}

}
,
{
{A :2}

}}
• Cover #1 contains the following lowersets:{{

{A :0}
}
,
{
{A :1} , {A :2}

}}
• Cover #2 contains the following lowersets:{{

{A :1}
}
,
{
{A :0} , {A :2}

}}
• Cover #3 contains the following lowersets:{{

{A :2}
}
,
{
{A :0} , {A :1}

}}
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• Cover #4 contains the following lowersets:{{
{A :0} , {A :1}

}
,
{
{A :1} , {A :2}

}}
• Cover #5 contains the following lowersets:{{

{A :0} , {A :2}
}
,
{
{A :1} , {A :2}

}}
• Cover #6 contains the following lowersets:{{

{A :0} , {A :1}
}
,
{
{A :0} , {A :2}

}}
• Cover #7 contains the following lowersets:{{

{A :0} , {A :1}
}
,
{
{A :0} , {A :2}

}
,
{
{A :1} , {A :2}

}}
• Cover #8 (global cover) contains the following lowersets:{{

{A :0} , {A :1} , {A :2}
}}

As our second example, we look at the covers for the no-signalling space
Hist (discrete (𝐴, 𝐵) , {0, 1}) on 2 events with binary inputs. This space has 114 open covers,
arranged into the following hierarchy.
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The standard cover #42 is coloured violet in the hierarchy and it takes the following form:{{
{A :0} , {B :0}

}
,
{
{A :0} , {B :1}

}
,
{
{A :1} , {B :0}

}}
The refinements of the standard cover are coloured red in the hierarchy above. They include the
solipsistic cover #0, which takes the following form:{{

{A :0}
}
,
{
{A :1}

}
,
{
{B :0}

}
,
{
{B :1}

}}
The closest refinements of the standard cover are obtained by removing one of its 4 open sets. For
example, cover #22 takes the following form:{{

{A :0} , {B :0}
}
,
{
{A :0} , {B :1}

}
,
{
{A :1} , {B :0}

}}
The coarsenings of the standard cover are coloured blue in the hierarchy above. They include the
classical cover #113, which takes the following form:{{

{A :0} , {A :1} , {B :0} , {B :1}
}}

The closest coarsenings of the standard cover are obtained by adding both input histories for either
event A (cover #61) or event B (cover #62). For example, cover #61 takes the following form:

{{
{A :0} , {A :1}

}
,
{
{A :0} , {B :0}

}
,
{
{A :0} , {B :1}

}
,
{
{A :1} , {B :0}

}
,
{
{A :1} , {B :1}

}}
Finally, there are covers which don’t lie either below or above the standard cover. The minimal covers
unrelated to the standard cover are #5 and #6: these covers add both input histories for either event
A (cover #6) or event B (cover #5) to the solipsistic cover, much as covers #61 and #62 did for the
standard cover. For example, cover #5 takes the following form:{{

{A :0}
}
,
{
{A :1}

}
,
{
{B :0} , {B :1}

}}
The maximal covers unrelated to the standard cover are #98, #99, #100 and #101. The take the
following form, for all 𝑖𝐴, 𝑖𝐵 ∈ {0, 1}:{{

{A :0} , {A :1} , {B : 𝑖𝐵}
}
,
{
{A : 𝑖𝐴} , {B :0} , {B :1}

}}
As our third example, we look at the following space, one of the four spaces lying in the middle

layer of the hierarchy of causally complete spaces on 2 events with binary inputs:

Θ Ext (Θ)
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This space has 80 open covers, arranged into the following hierarchy.

The standard cover #5 is coloured violet in the hierarchy and takes the following form:

{{
{A :0} , {B :0}

}
,
{
{A :0} , {B :1, A :0}

}
,
{
{A :1} , {B :0}

}
,
{
{A :1} , {B :1, A :1}

}}
The refinements of the standard cover are coloured red in the hierarchy above. They include the
solipsistic cover #0, which takes the following form:{{

{B :0}
}
,
{
{A :0} , {B :1, A :0}

}
,
{
{A :1} , {B :1, A :1}

}}
The two covers #1 and #2 lying between the solipsistic and standard cover take the following form,
for 𝑖𝐴 ∈ {0, 1}{{

{A : 𝑖𝐴} , {B :0}
}
,
{
{A :0} , {B :1, A :0}

}
,
{
{A :1} , {B :1, A :1}

}}
The coarsenings of the standard cover are coloured blue in the hierarchy above. They include the
classical cover #79, which takes the following form:{{

{A :0} , {A :1} , {B :0} , {B :1, A :0} , {B :1, A :1}
}}

As our fourth and final example, we look at the totally ordered space Hist (total (𝐴, 𝐵) , {0, 1})
on 2 events with binary inputs. This space has 380 open covers, arranged into the following hierarchy.
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Because Hist (total (𝐴, 𝐵) , {0, 1}) = ExtHist (total (𝐴, 𝐵) , {0, 1}), the standard and solipsistic covers
coincide in this example:

{{
{A :0} , {B :0, A :0}

}
,
{
{A :0} , {B :1, A :0}

}
,
{
{A :1} , {B :0, A :1}

}
,
{
{A :1} , {B :1, A :1}

}}
The classical cover takes the following form:{{

{A :0} , {A :1} , {B :0, A :0} , {B :1, A :0} , {B :0, A :1} , {B :1, A :1}
}}

The immediate refinements of the standard cover take one of two possible forms. Covers #1, #2, #4
and #5 take the following form, for 𝑖𝐴, 𝑖𝐵 ∈ {0, 1}:

{{
{A :0} , {B :0, A :0}

}
,
{
{A :0} , {B :1, A :0}

}
,
{
{A :1} , {B :0, A :1}

}
,
{
{A :0} , {A :1} , {A : 𝑖𝐴, B : 𝑖𝐵}

}}
Covers #3 and #6 are bit-flips of each other, taking the following form:{{

{A :0} , {B :0, A :0}
}
,
{
{A :0} , {B :1, A :0}

}
,
{
{A :1} , {B :0, A :1} , {B :1, A :1}

}}
{{
{A :1} , {B :0, A :1}

}
,
{
{A :1} , {B :1, A :1}

}
,
{
{A :0} , {B :0, A :0} , {B :1, A :0}

}}
Having seen a few examples of covers, we now move to the definition of empirical models for an

arbitrary cover C. These are a straightforward generalisation of those for the standard cover: they are
simply families of distributions on causal functions for each lowerset 𝜆 ∈ C in the cover.
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Definition 4.39. Let Θ be a space of input histories and let 𝑂 = (𝑂𝜔)𝜔∈𝐸Θ be a family of non-empty

sets of outputs. If C is a cover of Θ, an empirical model 𝑒 on C is a compatible family 𝑒 = (𝑒𝜆)𝜆∈C
for the presheaf of causal distributions CausDist

(
Λ (Θ) , 𝑂

)
. We write EmpMod

(
C, 𝑂

)
for the

empirical models on a cover C of Θ, with outputs valued in 𝑂.

Definition 4.40. We define the following terminology for empirical models defined on the canonical

covers:

• A standard empirical model is an empirical model on the standard cover

• A solipsistic empirical model is an empirical model on the solipsistic cover

• A classical empirical model is an empirical model on the classical cover.

It is important to observe that technically speaking, from the way we have defined empirical
models, they retain the information about the underlying space of histories. The cover can be
recovered as C = dom (𝑒) and similarly Θ can be recovered as the union

⋃C of the open sets in the
cover.

For a familiar example of an empirical model on a cover different from the standard one, we look
at cover #7 for the space Θ := Hist (A, {0, 1, 2}) previously discussed:

C :=
{{
{A :0} , {A :1}

}
,
{
{A :0} , {A :2}

}
,
{
{A :1} , {A :2}

}}
Each lowerset in this cover takes the form 𝜆𝑖,𝑖′ :=

{
{A : 𝑖} , {A : 𝑖′}

}
for distinct 𝑖, 𝑖′ ∈ {0, 1, 2} and it

has the following binary-valued causal functions, for all 𝑜, 𝑜′ ∈ {0, 1}:

𝑓𝑜𝑜′ |𝑖𝑖′ :=
{
{A : 𝑖} ↦→ 𝑜

{A : 𝑖′} ↦→ 𝑜′

We define the following empirical model 𝑒𝑡𝑟𝑖 ∈ EmpMod (C, {0, 1}), sometimes known as the
‘contextual triangle’ and originally due to [133, 85]:

𝑒𝑡𝑟𝑖
𝜆01

:= 1
2𝛿Ext( 𝑓01|01) +

1
2𝛿Ext( 𝑓10|01)

𝑒𝑡𝑟𝑖
𝜆02

:= 1
2𝛿Ext( 𝑓01|02) +

1
2𝛿Ext( 𝑓10|02)

𝑒𝑡𝑟𝑖
𝜆12

:= 1
2𝛿Ext( 𝑓01|12) +

1
2𝛿Ext( 𝑓10|12)

We can represent this empirical model in tabular form, with rows indexed by 𝑖 𝑖′ and columns indexed
by 𝑜 𝑜′:

00 01 10 11
01 0 1/2 1/2 0
02 0 1/2 1/2 0
12 0 1/2 1/2 0
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As the name suggests, this empirical model is an example of a ‘contextual’ empirical model: these
are the models which cannot be explained ‘classically’. Classical empirical models for a space Θ are,
by definition, probability distributions on extended causal functions defined on the entire space:

CausDist
(
ClsCov (Θ) , 𝑂

)
= D

(
ExtCausFun

(
Θ, 𝑂

) )
As a consequence, any empirical model 𝑒 ∈ EmpMod

(
C, 𝑂

)
which arises as restriction 𝑒 |dom(𝑒) of

some classical empirical model 𝑒 ∈ EmpMod
(
ClsCov (Θ) , 𝑂

)
admits a deterministic causal hidden

variable model (HVM): the observed probabilities are fully explained by some probabilistic mixture
of causal functions defined globally on Θ. Empirical model admitting such a deterministic causal
HVM are known as ‘non-contextual’ (or ‘local’, in the special case of the standard cover).

Definition 4.41. Let Θ be a space of input histories and let 𝑂 = (𝑂𝜔)𝜔∈𝐸Θ be a family of non-empty

sets of outputs. Let 𝑒 be an empirical model. We say that 𝑒 is non-contextual if it arises as restriction

𝑒 = 𝑒 |dom(𝑒) of a classical empirical model 𝑒 ∈ EmpMod
(
ClsCov (Θ) , 𝑂

)
; otherwise, we say that 𝑒

is contextual. If 𝑒 is a standard empirical model, we adopt local as a synonym of non-contextual, and

non-local as a synonym of contextual.

Observation 4.41. Let Θ be a space of input histories and let 𝑂 = (𝑂𝜔)𝜔∈𝐸Θ be a family of

non-empty sets of outputs. Let 𝑒 be an empirical model on a cover C, let C′ be a finer cover and let

𝑒′ := 𝑒 |C′ be the restriction of 𝑒 to C′. If 𝑒 = 𝑒 |C is non-contextual, then 𝑒′ = 𝑒 |C′ is non-contextual.

Hence, if 𝑒 |C′ is contextual, then 𝑒 is contextual.

The contextual triangle empirical model 𝑒𝑡𝑟𝑖 previously defined on cover #7 of space Θ :=
Hist (A, {0, 1, 2}) is a known example of a contextual empirical model. The causal functions in
CausFun (Θ, {0, 1}) form the following set:∏

ℎ∈Θ
𝑂tipΘ (ℎ)

Specifically, there are 8 causal functions, taking the following form for (𝑜0, 𝑜1, 𝑜2) ∈ {0, 1}3:

𝑔𝑜0𝑜1𝑜2 :=

{A :0} ↦→ 𝑜0
{A :1} ↦→ 𝑜1
{A :2} ↦→ 𝑜2

Classical empirical models for Θ then take the following form, for probability distributions 𝑑 ∈
D

(
{0, 1}3

)
:

𝑒 (𝑑) :=
∑︁
𝑜0

∑︁
𝑜1

∑︁
𝑜2

𝑑 (𝑜0, 𝑜1, 𝑜2)𝛿Ext(𝑔𝑜0𝑜1𝑜2)

The restrictions of the 8 causal functions for Θ to the lowersets in cover #7 take the following form:

𝑔𝑜0𝑜1𝑜2

��
𝜆𝑖,𝑖′

= 𝑓𝑜𝑖𝑜𝑖′ |𝑖𝑖′
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Hence, the restrictions of the classical empirical models to cover #7 take the following form:

𝑒 (𝑑)
���
𝜆𝑖,𝑖′

=
∑︁
𝑜0

∑︁
𝑜1

∑︁
𝑜2

𝑑 (𝑜0, 𝑜1, 𝑜2)𝛿Ext
(
𝑓𝑜𝑖𝑜𝑖′ |𝑖𝑖′

)
We can represent the generic restriction of a classical model in tabular form:

00 01 10 11
01 𝑑 (000) + 𝑑 (001) 𝑑 (010) + 𝑑 (011) 𝑑 (100) + 𝑑 (101) 𝑑 (110) + 𝑑 (111)
02 𝑑 (000) + 𝑑 (010) 𝑑 (001) + 𝑑 (011) 𝑑 (100) + 𝑑 (110) 𝑑 (101) + 𝑑 (111)
12 𝑑 (000) + 𝑑 (100) 𝑑 (001) + 𝑑 (101) 𝑑 (010) + 𝑑 (110) 𝑑 (011) + 𝑑 (111)

For a non-contextual empirical model for cover #7 of Hist (A, {0, 1, 2}), the table above shows that
the difference between the sum of the elements in the first and fourth columns and the sum of the
elements in the second and third column—that is, the sum of the output correlation coefficients over
the 3 input contexts—is bounded below by -1:

(𝑑 (000) + 𝑑 (001)) + (𝑑 (110) + 𝑑 (111)) + (𝑑 (000) + 𝑑 (010))
+ (𝑑 (101) + 𝑑 (111)) + (𝑑 (000) + 𝑑 (100)) + (𝑑 (011) + 𝑑 (111))
− (𝑑 (010) + 𝑑 (011)) − (𝑑 (100) + 𝑑 (101)) − (𝑑 (001) + 𝑑 (011))
− (𝑑 (100) + 𝑑 (110)) − (𝑑 (001) + 𝑑 (101)) − (𝑑 (010) + 𝑑 (110))

= 3𝑑 (000) − 𝑑 (001) − 𝑑 (010) − 𝑑 (011)
− 𝑑 (100) − 𝑑 (101) − 𝑑 (110) + 3𝑑 (111)

= 4(𝑑 (000) + 𝑑 (111)) − 1 ≥ −1

For the contextual triangle empirical model 𝑒𝑡𝑟𝑖 , the same number comes to −3 instead, proving that
the empirical model is contextual.

In the conclusions of Chapter 3, we briefly mentioned the possibility of providing a characterisation
of the switch spaces. We conclude with a theorem explicitly proving that standard empirical models
defined on switch spaces cannot exhibit any non-locality.

Theorem 4.42. Let Θ ∈ CSwitchSpaces
(
𝐼
)

be a non-empty causal switch space and let 𝑒 ∈
EmpMod

(
StdCov (Θ) , 𝑂

)
be a standard empirical model on Θ. Then 𝑒 is local, i.e. it arises as

a restriction of a classical empirical model 𝑒 ∈ EmpMod
(
ClsCov (Θ) , 𝑂

)
to the standard cover

StdCov (Θ).

The proof of this theorem can be found in [65]. It requires results about the relationship between
the compositional property of spaces of input histories and the assignment of causal data that were
omitted from this thesis for reasons of conciseness.

4.6 Conclusions

In this chapter, we constructed the presheaf of causal distributions CausDist
(
Θ, 𝑂

)
for arbitrary

spaces of input histories. We characterise the ‘deterministic’ causal data definable on a general space
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as the class of continuous functions mapping extended histories to partial assignments of outputs on
the set of events. We have seen that this assignment forms a sheaf when the underlying space is tight.

We provided a topological description of the contexts arising from the spaces of input histories
and explained the significance of open covers in the definition of empirical models. We show that
the hierarchy of covers is reflected in a hierarchy of contextuality; the data assigned to the open sets
covered by the coarsest cover—the classical cover—describes models arising from classical causal
mechanisms correlating the joint inputs and outputs.

With this chapter, we conclude the topological description of causality. By extending the
sheaf theoretic framework, we captured the intuition that causality is to be understood by looking
at the structure of the classical contexts characterising an operational description of a protocol.
In the standard approaches to causal modelling, the underlying assumption is that explanations
are always to be found on the ‘global cover’. This may not be the case for theories allowing a
contextual fragmentation of the observable quantities. Spaces of input histories allow presenting
causal assumptions as topological spaces imposing compatibilities between these globally incoherent
pieces of observable reality.

We will see more examples of empirical models in Chapter 6, but before doing this, we present
an external and geometrical description of the casual compatibility imposed by choosing a topology
and a cover to explain empirical data. For this part of the investigation, we coined the term ‘geometry
of causality’, which can be seen as a generalisation of the convex geometrical techniques employed in
studying non-signalling correlations and contextuality.
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Chapter 5

The geometry of causality

Empirical models define distributions of casual data assigned to open covers of a topological space.
The order between contexts constrains the ‘shape’ of causal data; our study has described these
topological spaces of contexts for various operational assumptions. This ‘internal’ perspective
describes causal assumptions as cohesive principles unifying a ‘fragmented’ contextual description.

In the preliminary Chapter 1, we reviewed the geometrical study of non-locality using polytopes
and inequalities. In this chapter, we reproduce a generalised framework in which the constraints
between contexts are expressed geometrically as linear equation bounding polytopes of compatible
empirical models. Historically, introducing the sheaf-theoretic perspective followed the geometrical
understanding of the correlations. In our case, this process will be reversed; only after describing the
general framework can we recast it in geometrical terms.

This approach follows footsteps that are anterior to the study of the convex-geometrical structure of
non-locality. As already mentioned, the idea of representing conditional distributions as constrained
geometrical objects dates back to the work of Boole [30] on ‘conditions of possible experience’.
Little would he have believed that the violations of such conditions (for example, embodied in
Bell’s inequalities) would be essential for understanding the most fundamental account of natural
phenomena.

We associate a polytope of compatible conditional distributions to every space of input histories
endowed with an open cover, a ‘causaltope’. Different standard causaltopes (obtained considering the
standard cover) for the same empirical scenario will be embedded in the same real space, allowing
us to decompose the empirical scenario by defining a notion of ‘causal separability’, which will be
paramount to our understanding of contextual causality.

5.1 Polytopes

The primary objects underlying our geometrical perspective are provided by convex subsets of points
embedded into a high-dimensional real space. These objects are usually referred to as polytopes.
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Definition 5.1 (V-polytope). A polytope 𝑃 ⊆ R𝑑 is the convex hull a finite set of points

Definition 5.2 (H -polyhedra [145]). AnH -polyhedron denotes an intersection of closed half-spaces:

a set 𝑃 ⊆ R𝑑 presented in the form:

𝑃 = {𝑥 ∈ R𝑑 : 𝐴𝑥 ≤ 𝑧} for some 𝐴 ∈ R𝑚×𝑑 , 𝑧 ∈ R𝑚

The fact that the two definitions given above coincide is often known as the fundamental theorem
for convex polytopes or the Weyl-Minkowski theorem:

Theorem 5.3 (Weyl-Minkowski theorem [145]). A subset 𝑃 ⊆ R𝑑 is the convex hull of a finite point

set (aV-polytope) if and only if it is a bounded intersection of half-spaces (anH -polytope).

The half-space description can provide a minimal canonical description of the polytope where
every facet is associated with an inequality. Such a description is practical when explicitly using
inequalities such as Bell inequalities or Causal inequalities to discriminate models that are not in the
polytope, but it is not easily applicable for the high dimensional cases described by our work. For
convenience, which will become evident as our work progresses, in the rest of this chapter we take a
slightly different perspective and define polytopes more loosely, as follows:

Definition 5.4. A polytope is a bounded subset 𝐾 ⊂ R𝐽 defined by the joint solutions 𝑥 ∈ R𝐽 to a

system 𝐴𝑥 = 𝑏 of linear equations and a system 𝐶𝑥 ≤ 𝑑 of linear inequalities.

This definition gives the descriptive freedom to allow to freely ‘slice’ polytopes, but it comes at
the cost of losing the canonicity of the half-space description:

• Some of the equations or inequalities could be redundant.

• Equations are not necessary: 𝑎𝑇 𝑥 = 𝑏 can be replaced by 𝑎𝑇 𝑥 ≤ 𝑏 and 𝑎𝑇 𝑥 ≥ 𝑏.

• Inequalities can pair up into equations, as above.

The vector space R𝐽 should be understood as the finite-dimensional vector space formed by
functions 𝐽 → R under pointwise addition and scalar multiplication:

Definition 5.5. For any finite set 𝐽, we define R𝐽 as the finite-dimensional real vector space formed

by functions 𝐽 → R under pointwise addition and scalar multiplication. We adopt the Kronecker

delta functions as the standard basis for this space:

𝛿
𝑖

:= 𝑗 ↦→
{

1 if 𝑖 = 𝑗

0 if 𝑖 ≠ 𝑗

If 𝑥 ∈ R𝐽 , we write 𝑥 𝑗 for the 𝑗-th component of 𝑥 in the standard basis, for every 𝑗 ∈ 𝐽:

𝑥 𝑗 := 𝑥( 𝑗) ∈ R
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We take R𝐽 to be equipped with the inner product for the standard basis:

𝑥𝑇 𝑦 :=
∑︁
𝑗∈𝐽

𝑥 𝑗 𝑦 𝑗

We also take R𝐽 to be equipped with the product order:

𝑥 ≤ 𝑦
𝑑𝑒 𝑓
⇔ ∀ 𝑗 ∈ 𝐽. 𝑥 𝑗 ≤ 𝑦 𝑗

For every 𝑛 ∈ N, we write R𝑛 to denote 𝐽 := {1, ..., 𝑛}, where 𝑛 = 0 means 𝐽 = ∅.

The importance of the inner product structure is that it allows describing equations using matrices
so that:

𝐴𝑥 = 𝑏 ⇔ ∀𝑟 ∈ 𝑅.
∑︁
𝑗∈𝐽

𝐴𝑟 𝑗𝑥 𝑗 = 𝑏𝑟

The choice of product order between the vectors allows to extend the matrix representation to linear
inequalities:

𝐴𝑥 ≤ 𝑏 ⇔ ∀𝑟 ∈ 𝑅.
∑︁
𝑗∈𝐽

𝐴𝑟 𝑗𝑥 𝑗 ≤ 𝑏𝑟

We provide a couple of examples of elementary polytopes that will be important in our discussion,
with their associated description in terms of equalities and inequalities:

Example 5.6 (Standard hypercube). The standard hypercube [0, 1]𝐽 ⊂ R𝐽 is defined by the

inequalities 𝑥 𝑗 ≤ 1 and 𝑥 𝑗 ≥ 0 for all 𝑗 ∈ 𝐽. In matrix form, the linear constraints take the form:

©­­­­­­­­­«

1
. . .

1
−1

. . .

−1

ª®®®®®®®®®¬
©­­«
𝑥1
...

𝑥𝑛

ª®®¬ ≤
©­­­­­­­­­«

1
...

1
0
...

0

ª®®®®®®®®®¬

∑
𝑗∈𝐽 𝑥 𝑗 = 1

More generally, for every 𝑢 ∈ R𝐽 with 𝑢 𝑗 > 0 for all 𝑗 ∈ 𝐽, we can define the standard hypercuboid∏
𝑗 [0, 𝑢 𝑗] ⊂ R𝐽 , where the upper-bounding inequalities 𝑥 𝑗 ≤ 1 for the unit hypercube are replaced

by 𝑥 𝑗 ≤ 𝑢 𝑗: ©­­­­­­­­­«

1
. . .

1
−1

. . .

−1

ª®®®®®®®®®¬
©­­«
𝑥1
...

𝑥𝑛

ª®®¬ ≤
©­­­­­­­­­«

𝑢1
...

𝑢𝑛
0
...

0

ª®®®®®®®®®¬
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Example 5.7 (Standard simplex). The standard simplex Δ𝐽 ⊂ R𝐽 is defined by the equations 𝑥 𝑗 ≤ 0
and a single upper-bound

∑
𝑗∈𝐽 𝑥 𝑗 ≤ 1. The following matrix represents the linear equations:

©­­­­«
1 . . . 1
−1

. . .

−1

ª®®®®¬
©­­«
𝑥1
...

𝑥𝑛

ª®®¬ ≤
©­­­­«

1
0
...

0

ª®®®®¬

∑
𝑗∈𝐽 𝑥 𝑗 ≤ 1

The examples described above are all defined by inequalities alone; they also have the same
dimensionality as the ambient space. The polytope of probability distributions however, gives us an
example which is naturally defined by both equalities and inequalities:

Example 5.8 (Probability distributions). Let 𝐽 be a finite set and consider the space D (𝐽) ⊂ R𝐽

of probability distributions over the set 𝐽. The probabilities must be a non-negative real numbers

𝑥 𝑗 ≥ 0 such that sum to unity
∑
𝑗∈𝐽 𝑥 𝑗 = 1. Since we have a mixture of equalities and inequalities, we

represent the linear constraints by the following matrices:

(
1 . . . 1

) ©­­«
𝑥1
...

𝑥𝑛

ª®®¬ = 1
©­­«
−1

. . .

−1

ª®®¬
©­­«
𝑥1
...

𝑥𝑛

ª®®¬ ≤
©­­«

0
...

0

ª®®¬

∑
𝑗∈𝐽 𝑥 𝑗 = 1

For an indexed family of polytopes, we can form their product polytope:

Example 5.9 (Product polytope). From a family of polytopes 𝐾 (𝑦) ⊂ 𝑅𝐽
(𝑦) indexed by a non-

empty finite set 𝑌 , each defined by its own system of linear equations 𝐴(𝑦)𝑥 (𝑦) = 𝑏 (𝑦) and linear

inequalities 𝐵 (𝑦)𝑑 (𝑦) = 𝑏 (𝑦) , we can construct the associated product polytope
∏
𝑦∈𝑌 𝐾

(𝑦) embedded

in
∏
𝑦∈𝑌 R

𝐽 ( 𝑓 ) = Rt𝑦∈𝑌 𝐽
(𝑦) where the disjoint union t𝑦∈𝑌 𝐽 (𝑦) is formally defined as follows:⊔

𝑦∈𝑌
𝐽 (𝑦) :=

{
(𝑦, 𝑗)

��� 𝑦 ∈ 𝑌, 𝑗 ∈ 𝐽 (𝑦) } (5.1)
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In terms of matrices, the product polytope is defined by combining equations and inequalities for

each factor in a block-diagonal way:

©­­­­«
𝐴(1) 0 . . . 0
0 𝐴(2) . . . 0

0 0 . . . 0
0 0 . . . 𝐴(𝑚)

ª®®®®¬
©­­«
𝑥 (1)

...

𝑥 (𝑚)

ª®®¬ =
©­­«
𝑏 (1)

...

𝑏 (𝑚)

ª®®¬
©­­­­«
𝐶 (1) 0 . . . 0

0 𝐶 (2) . . . 0

0 0 . . . 0
0 0 . . . 𝐶 (𝑚)

ª®®®®¬
©­­«
𝑥 (1)

...

𝑥 (𝑚)

ª®®¬ ≤
©­­«
𝑑 (1)

...

𝑑 (𝑚)

ª®®¬
Which is equivalent to the juxtaposition of all the equations and inequalities as follows

∀𝑦 ∈ 𝑌 . 𝐴(𝑦)𝑥 (𝑦) = 𝑏 (𝑦) ∀𝑦 ∈ 𝑌 . 𝐶 (𝑦)𝑥 (𝑦) ≤ 𝑑 (𝑦) (5.2)

Where we index the coordinates of vectors 𝑥 ∈ Rt𝑦∈𝑌 𝐽 (𝑦) as 𝑥 (𝑦)
𝑗

, for 𝑦 ∈ 𝑌 and 𝑗 ∈ 𝐽 (𝑦) , and we have

defined:

𝑥 (𝑦) :=
(
𝑥
(𝑦)
𝑗

)
𝑗∈𝐽 (𝑦)

∈ R𝐽 (𝑦)

Conditional probability distributions give an important example of a product of polytope.
Consider a finite non-empty set 𝑌 , and a family of finite sets indexed by 𝑌 , which will be denoted by
𝐽 =

(
𝐽 (𝑦)

)
𝑦∈𝑌 . The polytope of conditional distributions is given by the convex set

∏
𝑦∈𝑌 D

(
𝐽 (𝑦)

)
.

As a product polytope, it can be explicitly described using the following equalities and inequalities:

©­­­­«
1𝑇 0 . . . 0
0 1𝑇 . . . 0

0 0 . . . 0
0 0 . . . 1𝑇

ª®®®®¬
©­­«
𝑥 (1)

...

𝑥 (𝑚)

ª®®¬ =
©­­«

1
...

1

ª®®¬
©­­­­«
−𝐼 0 . . . 0
0 −𝐼 . . . 0

0 0 . . . 0
0 0 . . . −𝐼

ª®®®®¬
©­­«
𝑥 (1)

...

𝑥 (𝑚)

ª®®¬ ≤
©­­«

0
...

0

ª®®¬
Example 5.10. Let 𝑌 = {0, 1} and consider the conditional sets of outcomes 𝐽 (0) = {∗} and

𝐽 (1) = {𝑎, 𝑏}. The ambient vector space Rt𝑦∈𝑌 𝐽 (𝑦) ' R |𝐽 (0) |+ |𝐽 (1) | = R3. The linear equalities and

inequalities defining the polytope are:(
1 0 0
0 1 1

) ©­«
𝑥∗
𝑥𝑎
𝑥𝑏

ª®¬ =

(
1
1

) ©­«
−1 0 0
0 −1 0
0 0 −1

ª®¬ ©­«
𝑥∗
𝑥𝑎
𝑥𝑏

ª®¬ ≤ ©­«
0
0
0

ª®¬
The equations bound the segment which embedded in Rt𝑦∈𝑌 𝐽 (𝑦) connects (𝛿∗, 𝛿𝑎, 0) to (𝛿∗, 0, 𝛿𝑏).

𝛿∗

𝛿𝑎

𝛿𝑏

Observation 5.10. There is a unique minimal affine subspace A (𝐾) ⊂ R𝐽 which contains a given

polytope 𝐾 ⊂ R𝐽 , and the following procedure can explicitly identify it:

1. Replace every pair of inequalities in the form 𝑐𝑇 𝑥 ≤ 𝑑 and −𝑐𝑇 𝑥 ≤ −𝑑 with the corresponding

equation 𝑐𝑇 𝑥 = 𝑑.
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2. Turn the system of equations into reduced row echelon form (RREF), removing zero rows.

The affine subspace A (𝐾) is the space of solutions for the resulting system of equations, and there

is a bijection between affine subspaces and systems of equations in RREF without zero rows. The

polytope 𝐾 is a regular closed subset of A (𝐾): the topological dimension of 𝐾 is the dimension of

A (𝐾), which is equal to |𝐽 | minus the number of non-zero rows in the system of equations in RREF.

The standard hypercube 𝑘 = [0, 1]𝐽 and the standard simplex 𝐾 = Λ𝐽 all have dimensions |𝐽 |,
therefore A (𝐾) = R𝐽 . The polytope D (𝐽) of probability distributions has dimension |𝐽 | − 1, with
the following minimal affine subspace:

A (D (𝐽)) =
{
𝑥 ∈ R𝐽

�����∑︁
𝑗∈𝐽

𝑥 𝑗 = 1

}
The polytope

∏
𝑦∈𝑌 D

(
𝐽 (𝑦)

)
of conditional probability distributions has dimension

∑
𝑦∈𝑌 ( |𝐽 (𝑦) |−1) =(∑

𝑦∈𝑌 |𝐽 (𝑦) |
)
− |𝑌 |, with the following minimal affine subspace:

A

(∏
𝑦∈𝑌
D

(
𝐽 (𝑦)

))
=

 𝑥 ∈ Rt𝑦∈𝑌 𝐽
(𝑦)

������∀𝑦 ∈ 𝑌 . ∑︁
𝑗∈𝐽 (𝑦)

𝑥
(𝑦)
𝑗

= 1


Note that the system of equations presented for this last example was already in RREF, without zero
rows. Polytopes of conditional distributions are the fundamental building blocks allowing us to define
a general theory of polytopes of conditional distributions constrained by equalities, which is the aim
of the next section.

5.2 Constrained conditional probability distributions

Definition 5.11. Let 𝐾 ⊂ R𝐽 be a polytope. We say that a polytope 𝐾 ′ ⊂ R𝐽 is obtained by slicing
from 𝐾 if it takes the form 𝐾 ′ = 𝐾 ∩𝑊 for some affine subspace𝑊 ⊂ R𝐽 . If we wish to specify the

subspace, we say that 𝐾 ′ is obtained by slicing 𝐾 with𝑊 . We adopt the following notation for it:

Slice𝑊 (𝐾) := 𝐾 ∩𝑊 (5.3)

Proposition 5.11. Let 𝐾 ⊂ R𝐽 be a polytope, defined by a system of equations 𝐴𝑥 = 𝑏 and inequalities

𝐶𝑥 ≤ 𝑑. Let 𝑊 ⊂ R𝐽 be an affine subspace, defined by a system of equations 𝐴′𝑥 = 𝑏′. Then

Slice𝑊 (𝐾) ⊂ R𝐽 is a polytope, defined by the equations and inequalities for 𝐾 together with the

equations for𝑊: (
𝐴

𝐴′

)
𝑥 =

(
𝑏

𝑏′

)
𝐶𝑥 ≤ 𝑑

Proof. We have that 𝑥 lies in the affine subspace𝑊 if and only if 𝐴′𝑥 = 𝑏′. Therefore 𝑥 ∈ 𝐾 ∩𝑊 if
and only if 𝐴𝑥 = 𝑏, 𝐴′𝑥 = 𝑏′ and 𝐶𝑥 ≤ 𝑑. �
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Proposition 5.11. Let 𝐾 ⊂ R𝐽 be a polytope and let 𝑉,𝑊 ⊂ R𝐽 be affine subspaces. Slicing

Slice𝑊 (𝐾) with 𝑉 is the same as slicing 𝐾 with𝑊 ∩𝑉:

Slice𝑉 (Slice𝑊 (𝐾)) = Slice𝑉∩𝑊 (𝐾)

We say that ‘slicing is closed under iteration’.

Proof. This is simply associativity of intersection:

Slice𝑉 (Slice𝑊 (𝐾)) = 𝑉 ∩ (𝑊 ∩ 𝐾) = (𝑉 ∩𝑊) ∩ 𝐾 = Slice𝑉∩𝑊 (𝐾)

�

We can think about the polytope of conditional probability distribution on some 𝑌 to be obtained
by slicing the standard hypercube with a family of normalisation equations stating that the distributions
conditional to each 𝑦 ∈ 𝑌 must sum to 1:

Definition 5.12. Let 𝑌 be a finite non-empty set and let 𝐽 =
(
𝐽 (𝑦)

)
𝑦∈𝑌 be a family of finite non-empty

sets. The corresponding normalisation equations are defined as follows:

∀𝑦 ∈ 𝑌 .
∑︁
𝑗∈𝐽 (𝑦)

𝑥
(𝑦)
𝑗

= 1

We write NormEqs
(
𝐽
)

for the affine subspace of Rt𝑦∈𝑌 𝐽 (𝑦) defined by the equations.

Even though to construct our ‘causaltopes’ we will directly start from polytopes of conditional
distributions; it is nevertheless instructive to think about polytope of conditional distributions on the
parametrised event set 𝐽 = (𝐽 (𝑦) ) as being obtained by slicing the product of the |𝐽 (𝑦) | hypercubes by
the normalisation equations:

Proposition 5.12. Let𝑌 be a finite non-empty set and let 𝐽 =
(
𝐽 (𝑦)

)
𝑦∈𝑌 be a family of finite non-empty

sets. The polytope of conditional probability distributions
∏
𝑦∈𝑌 D

(
𝐽 (𝑦)

)
is obtained by slicing the

standard hypercube [0, 1]t𝑦∈𝑌 𝐽 (𝑦) = ∏
𝑦∈𝑌 [0, 1]𝐽

(𝑦) with the normalisation equations:∏
𝑦∈𝑌
D

(
𝐽 (𝑦)

)
= [0, 1]t𝑦∈𝑌 𝐽 (𝑦) ∩ NormEqs

(
𝐽
)

In particular, we have A
(∏

𝑦∈𝑌 D
(
𝐽 (𝑦)

) )
= NormEqs

(
𝐽
)
.

Proof. Taking the normalisation equations together with the defining inequalities for [0, 1]t𝑦∈𝑌 𝐽 (𝑦) ∩
NormEqs

(
𝐽
)

yields the following system of equations and inequalities:

∀𝑦 ∈ 𝑌 .
∑︁
𝑗∈𝐽 (𝑦)

𝑥
(𝑦)
𝑗

= 1 ∀𝑦 ∈ 𝑌 . ∀ 𝑗 ∈ 𝐽 (𝑦) . 0 ≤ 𝑥 (𝑦)
𝑗
≤ 1
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The normalisation equation
∑
𝑗∈𝐽 (𝑦) 𝑥

(𝑦)
𝑗

= 1 together with the inequalities 0 ≤ 𝑥 (𝑦)
𝑗

for all 𝑗 ∈ 𝐽 (𝑦)

implies the inequalities 𝑥 (𝑦)
𝑗
≤ 1 for all 𝑗 ∈ 𝐽 (𝑦) , making them redundant. We are thus left with the

defining system of equations and inequalities for the polytope of conditional probability distributions∏
𝑦∈𝑌 D

(
𝐽 (𝑦)

)
, as claimed. �

Proposition 5.12 describes the polytope of conditional probability distributions as a slice of the
standard hypercube by an affine subspace. The ‘causaltopes’ we are about to present are obtained by
further slicing the polytope of conditional probability distributions by appropriate affine subspaces
described by the causality equations. There is another polytope of interest that can be associated
with conditional probability distributions, the one obtained by slicing the standard hypercube be the
‘quasi-normalisation equations’:

Definition 5.13. Let 𝑌 be a finite non-empty set, with a total order 𝑌 = {𝑦1, ..., 𝑦𝑛} fixed on it. Let

𝐽 =
(
𝐽 (𝑦)

)
𝑦∈𝑌 be a family of finite non-empty sets. The corresponding quasi-normalisation equations

are defined as follows:

∀𝑖 ∈ {1, ..., 𝑛 − 1}.
∑︁
𝑗∈𝐽 (𝑦𝑖 )

𝑥
(𝑦𝑖)
𝑗

=
∑︁

𝑗∈𝐽 (𝑦𝑖+1 )
𝑥
(𝑦𝑖+1)
𝑗

We write QNormEqs
(
𝐽
)

for the affine subspace of Rt𝑦∈𝑌 𝐽 (𝑦) defined by the equations. The polytope of

quasi-normalised conditional distributions is defined by slicing the standard hypercube [0, 1]t𝑦∈𝑌 𝐽 (𝑦)

with the quasi-normalisation equations:

[0, 1]t𝑦∈𝑌 𝐽 (𝑦) ∩ QNormEqs
(
𝐽
)

Example 5.14. Consider Example 5.10, the polytope of conditional distributions is described by

the red segment of the left picture, while the shaded triangular area gives the quasi normalised

conditional distributions. The figure on the right represent the three relevant hypercubes: [0, 1]𝐽 (1)

which shaded in blue and associated to the free assignment of values between [0, 1] to a two event

set, the one dimensional [0, 1]𝐽 (0) for a single element set and highlighted in purple, and the full

product [0, 1]t𝑦∈{0,1}𝐽 (𝑦) .

D ({𝑎, 𝑏})

[0, 1]t𝑦∈𝑌 𝐽 (𝑦) ∩ NormEqs
(
𝐽
)

[0, 1]t𝑦∈𝑌 𝐽 (𝑦) ∩ QNormEqs
(
𝐽
)

[0, 1]𝐽 (0)

[0, 1]𝐽 (1)
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Proposition 5.14. Let𝑌 be a finite non-empty set and let 𝐽 =
(
𝐽 (𝑦)

)
𝑦∈𝑌 be a family of finite non-empty

sets. The affine subspace QNormEqs
(
𝐽
)

is independent of the specific choice of total order for 𝑌 ,

and hence so is the polytope of quasi-normalised conditional distributions.

Proof. By reflexive-transitive closure, the quasi-normalisation equations are equivalent to the
following set of equations, which is independent of the choice of total order on 𝑌

∀𝑦, 𝑦′ ∈ 𝑌 .
∑︁
𝑗∈𝐽 (𝑦)

𝑥
(𝑦)
𝑗

=
∑︁
𝑗∈𝐽 (𝑦′)

𝑥
(𝑦′)
𝑗

�

Polytopes of quasi-normalised conditional distributions possess important features. In particular,
any point in such polytope can be uniquely rescaled to represent a point in the associated conditional
distribution polytope.

Proposition 5.14. For each quasi-normalised conditional distribution 𝑢, there exists a unique

mass
(
𝑢
)
∈ [0, 1] and a distribution 𝑒 ∈ ∏

𝑦∈𝑌 D
(
𝐽 (𝑦)

)
such that:

𝑢 = mass
(
𝑢
)
𝑒

We refer to mass
(
𝑢
)

as the mass of the quasi-normalised distribution 𝑢. If mass
(
𝑢
)
> 0, the

distribution 𝑒 is furthermore unique.

Proof. Let 𝑦𝑜 ∈ 𝑌 be any element and define the mass 𝑚 :=
∑
𝑗∈𝐽 ( 𝑦0) 𝑐

(𝑦0)
𝑗

. The quasi-normalisation
equations imply that

∀𝑦 ∈ 𝑌 .
∑︁
𝑗∈𝐽 (𝑦𝑖 )

𝑐
(𝑦𝑖)
𝑗

=
∑︁
𝑗∈𝐽 (𝑦0 )

𝑐
(𝑦0)
𝑗

= 𝑚

If 𝑚 = 0 then positivity implies that 𝑢 = 𝑚𝑒 for all conditional distributions 𝑒 ∈ ∏
𝑦∈𝑌 D

(
𝐽 (𝑦)

)
. If

𝑚 > 0, then the following 𝑒 is a conditional probability distribution:

𝑒 :=
1
𝑚
𝑢

We have 𝑚𝑒 = 𝑢 by definition, and 𝑚𝑒′ = 𝑢𝑚𝑒 implies 𝑒 = 𝑒′ because 𝑚 ≠ 0. Setting mass
(
𝑢
)

:= 𝑚
completes the proof. �

The ‘causaltopes’ defined in this work are obtained by slicing polytopes of conditional probability
distributions with linear subspaces. Because slicing is the same as applying constraints, we refer
to these as ‘constrained’ conditional probability distributions. We proceed by proving some useful
results about constrained probability distributions.
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Definition 5.15. Let 𝑌 be a finite non-empty set and let 𝐽 =
(
𝐽 (𝑦)

)
𝑦∈𝑌 be a family of finite non-empty

sets. A polytope of constrained conditional probability distributions is one in the following form, for

some linear subspace𝑊 ⊆ Rt𝑦∈𝑌 𝐽 (𝑦) :

CCPD
(
𝑊, 𝐽

)
:= Slice𝑊

(∏
𝑦∈𝑌
D

(
𝐽 (𝑦)

))
⊆

∏
𝑦∈𝑌
D

(
𝐽 (𝑦)

)
(5.4)

The corresponding polytope of constrained quasi-normalised conditional probability distributions

takes the following form:

CCPDQNorm
(
𝑊, 𝐽

)
:= Slice𝑊

(
[0, 1]t𝑦∈𝑌 𝐽 (𝑦) ∩ QNormEqs

(
𝐽
) )

= Slice𝑊∩QNormEqs(𝐽)
(
[0, 1]t𝑦∈𝑌 𝐽 (𝑦)

) (5.5)

Polytopes of constrained (quasi-normalised) conditional probability distributions have the same
inclusion hierarchy as the ‘minimal’ linear subspaces that define them:

Proposition 5.15. Let 𝑌 be a finite non-empty set and let 𝐽 =
(
𝐽 (𝑦)

)
𝑦∈𝑌 be a family of finite non-

empty sets. Let CCPD
(
𝑉, 𝐽

)
and CCPD

(
𝑈, 𝐽

)
be polytopes of constrained conditional probability

distributions. Write 〈CCPD
(
𝑉, 𝐽

)
〉 ⊆ 𝑉 and 〈CCPD

(
𝑈, 𝐽

)
〉 ⊆ 𝑈 for the linear subspaces spanned

by linear combinations of vectors in CCPD
(
𝑉, 𝐽

)
and CCPD

(
𝑈, 𝐽

)
respectively. The following

statements hold:

1. if 𝑉 ⊂ 𝑈 then CCPD
(
𝑉, 𝐽

)
⊆ CCPD

(
𝑈, 𝐽

)
2. CCPD

(
〈CCPD

(
𝑉, 𝐽

)
〉, 𝐽

)
= CCPD

(
𝑉, 𝐽

)
3. if CCPDQNorm

(
𝑉, 𝐽

)
⊆ CCPDQNorm

(
𝑈, 𝐽

)
then CCPD

(
𝑉, 𝐽

)
⊆ CCPD

(
𝑈, 𝐽

)
4. if CCPD

(
𝑉, 𝐽

)
⊆ CCPD

(
𝑈, 𝐽

)
then 〈CCPD

(
𝑉, 𝐽

)
〉 ⊆ 〈CCPD

(
𝑉, 𝐽

)
〉

5. if CCPD
(
𝑉, 𝐽

)
⊆ CCPD

(
𝑈, 𝐽

)
then CCPDQNorm

(
𝑉, 𝐽

)
⊆ CCPDQNorm

(
𝑈, 𝐽

)
Proof. We prove point by point:

1. If 𝑉 ⊆ 𝑈 then:
𝑉 ∩

∏
𝑦∈𝑌
D

(
𝐽 (𝑦)

)
⊆ 𝑈 ∩

∏
𝑦∈𝑌
D

(
𝐽 (𝑦)

)
That is, CCPD

(
𝑉, 𝐽

)
⊆ CCPD

(
𝑈, 𝐽

)
.

2. The previous point, together with 〈CCPD
(
𝑉, 𝐽

)
〉 ⊆ 𝑉 , proves that:

CCPD
(
〈CCPD

(
𝑉, 𝐽

)
〉, 𝐽

)
⊆ CCPD

(
𝑉, 𝐽

)
The equality then follows from the observation that CCPD

(
𝑉, 𝐽

)
⊆ 〈CCPD

(
𝑉, 𝐽

)
〉.
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3. If CCPDQNorm
(
𝑉, 𝐽

)
⊆ CCPDQNorm

(
𝑈, 𝐽

)
, then

CCPDQNorm
(
𝑉, 𝐽

)
∩ NormEqs

(
𝐽
)
⊆ CCPDQNorm

(
𝑈, 𝐽

)
∩ NormEqs

(
𝐽
)

That is, again, CCPD
(
𝑉, 𝐽

)
⊆ CCPD

(
𝑈, 𝐽

)
.

4. If CCPD
(
𝑉, 𝐽

)
⊆ CCPD

(
𝑈, 𝐽

)
then:

〈CCPD
(
𝑉, 𝐽

)
〉 ⊆ 〈CCPD

(
𝑈, 𝐽

)
〉

5. Hence, if CCPD
(
𝑉, 𝐽

)
⊆ CCPD

(
𝑈, 𝐽

)
then:

CCPDQNorm
(
〈CCPD

(
𝑉, 𝐽

)
〉, 𝐽

)
⊆ CCPDQNorm

(
〈CCPD

(
𝑈, 𝐽

)
〉, 𝐽

)
That is, CCPDQNorm

(
𝑉, 𝐽

)
⊆ CCPDQNorm

(
𝑈, 𝐽

)
.

�

Polytopes of constrained conditional probability distributions are closed under meet (i.e. under
intersection).

Proposition 5.15. Let 𝑌 be a finite non-empty set and let 𝐽 =
(
𝐽 (𝑦)

)
𝑦∈𝑌 be a family of finite non-

empty sets. Let CCPD
(
𝑉, 𝐽

)
and CCPD

(
𝑈, 𝐽

)
be polytopes of constrained conditional probability

distributions. Then:

CCPD
(
𝑉, 𝐽

)
∩ CCPD

(
𝑈, 𝐽

)
= CCPD

(
𝑉 ∩𝑈, 𝐽

)
Proof.

CCPD
(
𝑉, 𝐽

)
∩ CCPD

(
𝑈, 𝐽

)
=

(
𝑉 ∩ ∏

𝑦∈𝑌
D

(
𝐽 (𝑦)

) )
∩

(
𝑈 ∩ ∏

𝑦∈𝑌
D

(
𝐽 (𝑦)

) )
=

(
𝑉 ∩𝑈 ∩ ∏

𝑦∈𝑌
D

(
𝐽 (𝑦)

) )
= CCPD

(
𝑉 ∩𝑈, 𝐽

)
�

As expected, constrained conditional probability distributions can be recovered from constrained
quasi-normalised conditional probability distributions by applying the normalisation equations.

Proposition 5.15. Let𝑌 be a finite non-empty set and let 𝐽 =
(
𝐽 (𝑦)

)
𝑦∈𝑌 be a family of finite non-empty

sets. For every linear subspace𝑊 ⊆ Rt𝑦∈𝑌 𝐽 (𝑦) , we always have:

CCPD
(
𝑊, 𝐽

)
= SliceNormEqs(𝐽)

(
CCPDQNorm

(
𝑊, 𝐽

) )
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For every 𝑦 ∈ 𝑌 , we define a normalisation equation for the distribution conditional to 𝑦:

NormEqs
(
𝐽
) (𝑦) :=

 𝑥 ∈ Rt𝑦∈𝑌 𝐽
(𝑦)

������ ∑︁
𝑗∈𝐽 (𝑦)

𝑥
(𝑦)
𝑗

= 1


Then for any individual choice of 𝑦 ∈ 𝑌 we also have:

CCPD
(
𝑊, 𝐽

)
= SliceNormEqs(𝐽) (𝑦)

(
CCPDQNorm

(
𝑊, 𝐽

) )
Proof. Both claims follow from the closure of slicing under iteration. For the first claim, we use the
following observation:

QNormEqs
(
𝐽
)
∩ NormEqs

(
𝐽
)
= NormEqs

(
𝐽
)

Now observe the
∑
𝑗∈𝐽 (𝑦) 𝑥

(𝑦)
𝑗

= 1 together with
∑
𝑗∈𝐽 (𝑦) 𝑥

(𝑦)
𝑗
− ∑

𝑗∈𝐽 (𝑦′) 𝑥
(𝑦′)
𝑗

= 0 implies∑
𝑗∈𝐽 (𝑦′) 𝑥

(𝑦′)
𝑗

= 1, for every 𝑦′ ∈ 𝑌 . Hence we get the following, which in turn proves the
second claim:

QNormEqs
(
𝐽
)
∩ NormEqs

(
𝐽
) (𝑦)

= NormEqs
(
𝐽
)

�

Given two nested polytopes CCPD
(
𝑉, 𝐽

)
⊂ CCPD

(
𝑈, 𝐽

)
of constrained conditional probability

distributions, a key task in our work will be to find the largest ‘fraction’ of a distribution 𝑢 ∈
CCPD

(
𝑈, 𝐽

)
which is ‘supported’ by CCPD

(
𝑉, 𝐽

)
, i.e. to find a decomposition 𝑢 = 𝑣 + 𝑤 where

𝑣 ∈ CCPDQNorm
(
𝑉, 𝐽

)
, 𝑤 ∈ CCPDQNorm

(
𝑈, 𝐽

)
and the mass of 𝑣 is as large as possible. The

following result—a consequence of our polytopes being defined by linear constraints—significantly
simplifies this task by removing the need to explicitly enforce 𝑤 ∈ CCPDQNorm

(
𝑈, 𝐽

)
in our linear

programs.

Proposition 5.15. Let𝑌 be a finite non-empty set and let 𝐽 =
(
𝐽 (𝑦)

)
𝑦∈𝑌 be a family of finite non-empty

sets. Let CCPD
(
𝑉, 𝐽

)
⊂ CCPD

(
𝑈, 𝐽

)
be two nested polytopes of constrained conditional probability

distributions and let 𝑢 ∈ CCPD
(
𝑈, 𝐽

)
. If 𝑣 ∈ CCPD

(
𝑉, 𝐽

)
is such that 𝑣 ≤ 𝑢, then necessarily:

𝑢 − 𝑣 ∈ CCPD
(
𝑈, 𝐽

)
Proof. Because 𝑢, 𝑣 ∈ ∏

𝑦∈𝑌 D
(
𝐽 (𝑦)

)
and 𝑣 ≤ 𝑢, we have that the difference 𝑢− 𝑣 ∈ ∏

𝑦∈𝑌 D
(
𝐽 (𝑦)

)
is itself a conditional probability distribution. Because 𝑢 ∈ CCPD

(
𝑈, 𝐽

)
and 𝑣 ∈ CCPD

(
𝑉, 𝐽

)
⊆

CCPD
(
𝑈, 𝐽

)
, then 𝑢, 𝑣 ∈ 𝑈 and hence the difference 𝑢 − 𝑣 satisfies the constraints imposed by 𝑈.

We conclude that:
𝑢 − 𝑣 ∈

∏
𝑦∈𝑌
D

(
𝐽 (𝑦)

)
∩𝑈 = CCPD

(
𝑈, 𝐽

)
�
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For a vector laying in a polytope of constrained conditional probability distributions, it therefore
makes sense to find components supported by smaller CCPDs. In particular, we can define the
notion of component, maximal component and the associated fractions, which are well defined by
Proposition 5.14.

Definition 5.16. Let 𝑌 be a finite non-empty set and let 𝐽 =
(
𝐽 (𝑦)

)
𝑦∈𝑌 be a family of finite non-

empty sets. Let 𝑢 ∈ CCPD
(
𝑈, 𝐽

)
be a constrained conditional probability distribution. For any

sub-polytope CCPD
(
𝑉, 𝐽

)
⊆ CCPD

(
𝑈, 𝐽

)
, we give the following definitions:

• A component of 𝑢 in CCPD
(
𝑉, 𝐽

)
is any 𝑣 ∈ CCPDQNorm

(
𝑉, 𝐽

)
such that 𝑣 ≤ 𝑢.

• A maximal component of 𝑢 in CCPD
(
𝑉, 𝐽

)
is one of maximal mass.

• The supported fraction of 𝑢 in CCPD
(
𝑉, 𝐽

)
is the mass of a maximal component of 𝑢 in

CCPD
(
𝑉, 𝐽

)
.

Colloquially, we say that 𝑢 is 𝑋% supported by CCPD
(
𝑉, 𝐽

)
to mean that the supported fraction of

𝑢 in CCPD
(
𝑉, 𝐽

)
is 𝑋

100 . The following is a schematic representation of the notion of components

and maximal components. Note that in particular we have not depicted the CCPD
(
𝑈, 𝐽

)
containing

the smaller CCPD
(
𝑉, 𝐽

)
. The green box represents the cone of vectors which are smaller than 𝑢.

The pink shaded area is the set of all components.

•
•

CCPDQNorm
(
𝑉, 𝐽

)

{𝑣 |𝑣 ≤ 𝑢}

maximal component of 𝑢

CCPD
(
𝑉, 𝐽

)
𝑢

components of 𝑢 in CCPD
(
𝑉, 𝐽

)
The description of polytopes of constrained conditional probability distributions in terms of

slicing of conditional probability distributions allows to describe the maximal component supported
by a sub-CCPD by means of linear programming:

Observation 5.16. Let 𝑌 be a finite non-empty set and let 𝐽 =
(
𝐽 (𝑦)

)
𝑦∈𝑌 be a family of finite

non-empty sets. Let 𝑢 ∈ CCPD
(
𝑈, 𝐽

)
be a constrained conditional probability distribution and let

CCPD
(
𝑉, 𝐽

)
⊆ CCPD

(
𝑈, 𝐽

)
be a sub-polytope. Let 𝑉 be defined explicitly by a system of linear

equations:

𝑉 =

{
𝑥 ∈ Rt𝑦∈𝑌 𝐽 (𝑦)

��� 𝐴𝑥 = 0
}
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The maximal components 𝑣 of 𝑢 in CCPD
(
𝑉, 𝐽

)
are the solutions to the following linear program

(LP):
maximise mass

(
𝑣
)

subject to: 𝑣 ∈ QNormEqs
(
𝐽
)

𝑣 ∈ 𝑉
𝑣 ≥ 0
𝑣 ≤ 𝑢

(5.6)

The following form makes the mass and quasi-normalisation equations explicit for any choice of total

order {𝑦1, ..., 𝑦𝑛} on 𝑌 :

maximise
∑

𝑗∈𝐽 (𝑦1 )
𝑣
(𝑦1)
𝑗

subject to: ∀𝑖 ∈ {1, ..., 𝑛 − 1}. ∑
𝑗∈𝐽 (𝑦𝑖 )

𝑣
(𝑦𝑖)
𝑗

=
∑

𝑗∈𝐽 (𝑦𝑖+1 )
𝑣
(𝑦𝑖+1)
𝑗

𝐴𝑣 = 0
𝑣 ≥ 0
𝑣 ≤ 𝑢

(5.7)

More generally, we will be interested in finding the largest fraction of a (constrained) conditional
probability distribution supported ‘jointly’ by multiple sub-polytopes. This is the same as being
supported by the convex hull of the sub-polytopes, but with the caveat that the convex hull of
constrained conditional probability distributions need not be a polytope of constrained conditional
probability distributions. In particular, we have no way to apply Definition 5.16 or Observation 5.16
to such a convex hull.

Definition 5.17. Let 𝑌 be a finite non-empty set and let 𝐽 =
(
𝐽 (𝑦)

)
𝑦∈𝑌 be a family of finite non-

empty sets. Let 𝑢 ∈ CCPD
(
𝑈, 𝐽

)
be a constrained conditional probability distribution. For any

family
(
CCPD

(
𝑉 (𝑧) , 𝐽

) )
𝑧∈𝑍 of sub-polytopes CCPD

(
𝑉 (𝑧) , 𝐽

)
⊆ CCPD

(
𝑈, 𝐽

)
, we give the following

definitions:

• A decomposition of 𝑢 in
(
CCPD

(
𝑉 (𝑧) , 𝐽

) )
𝑧∈𝑍 is any family

(
𝑣 (𝑧)

)
𝑧∈𝑍 of distributions 𝑣 (𝑧) ∈

CCPDQNorm
(
𝑉 (𝑧) , 𝐽

)
, the components, such that

∑
𝑧∈𝑍 𝑣

(𝑧) ≤ 𝑢.

• The mass of a decomposition
(
𝑣 (𝑧)

)
𝑧∈𝑍 is the sum of the masses of the individual components:

mass
((
𝑣 (𝑧)

)
𝑧∈𝑍

)
:=

∑︁
𝑧∈𝑍

mass
(
𝑣 (𝑧)

)
• A maximal decomposition of 𝑢 in

(
CCPD

(
𝑉 (𝑧) , 𝐽

) )
𝑧∈𝑍 is one of maximal mass.

• The supported fraction of 𝑢 in
(
CCPD

(
𝑉 (𝑧) , 𝐽

) )
𝑧∈𝑍 is the mass of a maximal decomposition

of 𝑢 in
(
CCPD

(
𝑉 (𝑧) , 𝐽

) )
𝑧∈𝑍 .

Colloquially, we say that 𝑢 is 𝑋% supported by
(
CCPD

(
𝑉 (𝑧) , 𝐽

) )
𝑧∈𝑍 to mean that the supported

fraction of 𝑢 in
(
CCPD

(
𝑉 (𝑧) , 𝐽

) )
𝑧∈𝑍 is 𝑋

100 .
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By iterating the result of Proposition 5.15 we can obtain the following corollary:

Corollary 5.18. Let 𝑌 be a finite non-empty set and let 𝐽 =
(
𝐽 (𝑦)

)
𝑦∈𝑌 be a family of finite non-

empty sets. Let CCPD
(
𝑈, 𝐽

)
be a polytope of constrained conditional probability distributions

and let
(
CCPD

(
𝑉 (𝑧) , 𝐽

) )
𝑧∈𝑍 be a family of sub-polytopes CCPD

(
𝑉 (𝑧) , 𝐽

)
⊆ CCPD

(
𝑈, 𝐽

)
. Let 𝑢 ∈

CCPD
(
𝑈, 𝐽

)
be a constrained conditional probability distribution. If

(
𝑣 (𝑧)

)
𝑧∈𝑍 is a decomposition

of 𝑢 in
(
CCPD

(
𝑉 (𝑧) , 𝐽

) )
𝑧∈𝑍 , then necessarily:

𝑢 −
∑︁
𝑧∈𝑍

𝑣 (𝑧) ∈ CCPD
(
𝑈, 𝐽

)
Proof. This follows by iterating Proposition 5.15 for each component in the decomposition. �

The above corollary allows to define general decompositions of 𝑢 with respect to sub-CCPDs in
the form of a linear program:

Observation 5.18. Let 𝑌 be a finite non-empty set and let 𝐽 =
(
𝐽 (𝑦)

)
𝑦∈𝑌 be a family of finite

non-empty sets. Let 𝑢 ∈ CCPD
(
𝑈, 𝐽

)
be a constrained conditional probability distribution and let(

CCPD
(
𝑉 (𝑧) , 𝐽

) )
𝑧∈𝑍 be a family of sub-polytopes CCPD

(
𝑉 (𝑧) , 𝐽

)
⊆ CCPD

(
𝑈, 𝐽

)
. Let each 𝑉 (𝑧)

be defined explicitly by a system of linear equations:

𝑉 (𝑧) =
{
𝑥 ∈ Rt𝑦∈𝑌 𝐽 (𝑦)

��� 𝐴(𝑧)𝑥 = 0
}

The maximal components
(
𝑣 (𝑧)

)
𝑧∈𝑍 of 𝑢 in

(
CCPD

(
𝑉 (𝑧) , 𝐽

) )
𝑧∈𝑍 are the solutions to the following

linear program (LP):
maximise mass

( (
𝑣 (𝑧)

)
𝑧∈𝑍

)
subject to: ∀𝑧 ∈ 𝑍. 𝑣 (𝑧) ∈ QNormEqs

(
𝐽
)

∀𝑧 ∈ 𝑍. 𝑣 (𝑧) ∈ 𝑉 (𝑧)
𝑣 (𝑧) ≥ 0∑
𝑧∈𝑍

𝑣 (𝑧) ≤ 𝑢

(5.8)

Making the mass and linear systems explicit, we get:

maximise
∑
𝑧∈𝑍

mass
(
𝑣 (𝑧)

)
subject to: ∀𝑧 ∈ 𝑍. 𝑣 (𝑧) ∈ QNormEqs

(
𝐽
)

∀𝑧 ∈ 𝑍. 𝐴(𝑧)𝑣 (𝑧) = 0
𝑣 (𝑧) ≥ 0∑
𝑧∈𝑍

𝑣 (𝑧) ≤ 𝑢

(5.9)

5.3 Causaltopes

This section shows how to think about sets of empirical models for a given cover as polytopes of
constrained conditional probability distributions. Recall from Chapter 4 that an empirical model 𝑒 on
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a cover C is a compatible family (𝑒𝜆)𝜆∈C for the presheaf of causal distributions CausDist
(
Θ, 𝑂

)
:

𝑒𝜆 ∈ CausDist
(
𝜆,𝑂

)
= D

(
ExtCausFun

(
𝜆, 𝑂

) )
The empirical model assigns a probability distribution on the extended causal functions to each
context. As such, empirical models on a given cover inherit the convex structure of the individual set
of distributions by taking context-wise convex combinations:

(𝑥 · 𝑒 + (1 − 𝑥) · 𝑒′)𝜆 := 𝑥 · 𝑒𝜆 + (1 − 𝑥) · 𝑒′𝜆

where 𝑒, 𝑒′ ∈ EmpMod
(
C, 𝑂

)
, 𝑥 ∈ [0, 1] and 𝜆 ∈ C ranges over the contexts specified by the cover

C.
The cover can always be extracted from the empirical model as C = dom (𝑒), so it is not strictly

necessary to explicitly state ‘on C’ when talking about an empirical model 𝑒. Similarly, the space
itself can be recovered from the cover as the union

⋃C of the open sets. As such, these objects
remember the structure of the space, which makes them different from conditional probability
distributions. We were formally imprecise when referring to these empirical models as points
in some polytope. For the case of empirical models on the ‘standard cover’ we show that there
exists a bijection between ExtCausFun

(
𝑘 ↓, 𝑂

)
and the space of conditional probability distributions

D
(∏

𝜔∈dom(𝑘↓) 𝑂𝜔
)
. Later we will generalise this observation to general covers.

Theorem 5.19. Let Θ be a space of input histories and let 𝑂 = (𝑂𝜔)𝜔∈𝐸Θ be a family of non-empty

sets of outputs. For any 𝑘 ∈ Ext (Θ), the following function is a bijection:

ExtCausFun
(
𝑘↓, 𝑂

)
−→ ∏

𝜔∈dom(𝑘)
𝑂𝜔

Ext ( 𝑓 ) ↦→ Ext ( 𝑓 ) (𝑘)
(5.10)

As a consequence, the following function is a convex-linear bijection:

CausDist
(
𝑘↓, 𝑂

)
−→ D

( ∏
𝜔∈dom(𝑘)

𝑂𝜔

)
𝑑 ↦→ d𝑑e :=

∑
Ext( 𝑓 )

𝑑 (Ext ( 𝑓 ))𝛿Ext( 𝑓 ) (𝑘)
(5.11)

We refer to d𝑑e as the top-element distribution for 𝑑 ∈ CausDist
(
𝑘↓, 𝑂

)
. We furthermore adopt the

following notation for its inverse:

CausDist
(
𝑘↓, 𝑂

)
←− D

( ∏
𝜔∈dom(𝑘)

𝑂𝜔

)
b𝑝c𝑘 ←� 𝑝

(5.12)

Proof. We appeal to the consistency condition to infer that for every ℎ ∈ 𝑘 ↓we have that Ext ( 𝑓 ) (ℎ) =
Ext ( 𝑓 ) (𝑘) |dom(ℎ) for all ℎ ∈ 𝑘 ↓, so the function Ext ( 𝑓 ) ↦→ Ext ( 𝑓 ) (𝑘) is injective. We can also
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observe surjectivity by observing that for a given 𝑜 ∈ ∏
𝜔∈dom(𝑘) 𝑂𝜔, setting 𝑓 (ℎ) := 𝑜 |dom(ℎ)

defines a causal function (Definition 4.20) since we have that 𝑓 (ℎ)𝜔 = 𝑜𝜔 = 𝑓 (ℎ′)𝜔 whenever
𝜔 ∈ dom (ℎ) ∩ dom (ℎ′). We have that Ext ( 𝑓 ) (𝑘) = 𝑜 and therefore Ext ( 𝑓 ) ↦→ Ext ( 𝑓 ) (𝑘) is
surjective.

Since Ext ( 𝑓 ) ↦→ Ext ( 𝑓 ) (𝑘) is a bijection, then application of the distribution monad induces a
convex-linear bijection:

D (Ext ( 𝑓 ) ↦→ Ext ( 𝑓 ) (𝑘)) = 𝑑 ↦→
∑︁

Ext( 𝑓 )
𝑑 (Ext ( 𝑓 ))𝛿Ext( 𝑓 ) (𝑘) = d𝑑e

�

If we want to extend Theorem 5.19 to arbitrary contexts, we need to deal with the fact that a
lowerset for a space of input histories might contain incompatible histories. Recall from the previous
chapter that ∼𝜔 is an equivalence relation, and let us denote the set of all such equivalence classes by
TipEq𝜔 (𝜆):

TipEq𝜆 (𝜔) :=
{
[ℎ]∼𝜔

�� ℎ ∈ TipHists𝜆 (𝜔)
}

We have already shown that 𝜆 is tight precisely when all equivalence classes contain a single
history. When 𝜆 = 𝑘 ↓, then there is a unique equivalence class associated to every 𝜔 ∈ dom (𝑘).
This is because any two histories are consistent. We generalise Theorem 5.19 by requiring the output
to be independently defined for every equivalence class:

Theorem 5.20. Let Θ be a space of input histories and let 𝑂 = (𝑂𝜔)𝜔∈𝐸Θ be a family of non-empty

sets of outputs. For any 𝜆 ∈ Λ (Θ), the following function is a bijection:

ExtCausFun
(
𝜆,𝑂

)
−→ ∏

𝜔∈dom(𝜆)
(𝑂𝜔)TipEq𝜆 (𝜔)

Ext ( 𝑓 ) ↦→ dExt ( 𝑓 )e
(5.13)

where took dom (𝜆) :=
⋃
ℎ∈𝜆 dom (ℎ) and we defined:

dExt ( 𝑓 )e := 𝜔 ↦→ (Ext ( 𝑓 ) (ℎ)𝜔) [ℎ]∼𝜔 ∈TipEq𝜆 (𝜔) (5.14)

As a consequence, the following function is a convex-linear bijection:

CausDist
(
𝜆, 𝑂

)
−→ D

( ∏
𝜔∈dom(𝜆)

(𝑂𝜔)TipEq𝜆 (𝜔)
)

𝑑 ↦→ d𝑑e :=
∑

Ext( 𝑓 )
𝑑 (Ext ( 𝑓 ))𝛿 dExt( 𝑓 ) e

(5.15)

We furthermore adopt the following notation for its inverse:

CausDist
(
𝜆, 𝑂

)
←− D

( ∏
𝜔∈dom(𝜆)

(𝑂𝜔)TipEq𝜆 (𝜔)
)

b𝑝c𝜆 ← � 𝑝

(5.16)
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Proof. By definition, Ext ( 𝑓 ) (ℎ′)𝜔 takes a constant value for all ℎ′ ∈ [ℎ]∼𝜔 , making dExt ( 𝑓 )e
well-defined. The correspondence is bijective (because extended causal functions are in bijection
with causal functions) and analogously to Theorem 5.19, the bijection lifts to a bijection between
the corresponding spaces of distributions: the latter bijection is defined by taking convex-linear
combinations, and hence it is a convex-linear function. �

For example, consider the space given by a single event Ω = indiscrete (𝐴), such that 𝐼𝐴 = {0, 1}.
The space of histories is then Θ = {{A :0} , {A :1}}. We select the classical cover C = {Θ}, in which
the two histories are incompatible. Then, Theorem 5.20 shows that the ExtCausFun

(
Θ, 𝑂

)
are in

bijective correspondence with {0, 1}2: a choice of joint outcome for the two incomparable histories,
as expected.

If we apply the bijections to every element of a cover we describe a conditional probability space
providing the ambient space for our correlations. This procedure applies the causality constraints
inside every context but does not impose them across the contextual data. This describes the space of
‘pseudo-empirical models’.

Definition 5.21. Let Θ be a space of input histories, let 𝑂 = (𝑂𝜔)𝜔∈𝐸Θ be a family of non-empty

sets of outputs and let C ∈ Covers (Θ) be any cover. The polytope of pseudo-empirical models on C
is defined to be the following polytope of conditional probability distributions:

PEmpMods
(
C, 𝑂

)
:=

∏
𝜆∈C
D ©­«

∏
𝜔∈dom(𝜆)

(𝑂𝜔)TipEq𝜆 (𝜔)ª®¬ (5.17)

We adopt the following shorthand for the embedding vector space, which is spanned by all linear

combinations of the pseudo-empirical models:〈
PEmpMods

(
C, 𝑂

)〉
:= R

⊔
𝜆∈C

∏
𝜔∈dom(𝜆)

(𝑂𝜔)TipEq𝜆 (𝜔)

(5.18)

The passage from pseudo-empirical models to empirical models is done by providing the
description of the relevant constraints, i.e the ‘causality equations’, which guarantee that the marginals
of the probability distributions associated with various lowersets in the cover agree on their common
sub-contexts. The intuition is simple: we need to impose as ‘slicing equalities’ the requirement that
marginalising two elements of a cover to a common sub-context always yields the same result.

To do so, we first need to define the marginalisation as a map between the probability distributions
associated with each context. Pseudo-empirical models are conditional probability distributions, and
hence we adopt the notation from the previous subsection to describe them:

𝑢 =

(
𝑢 (𝜆)

)
𝜆∈C

180



For a given 𝜆, the components 𝑢 (𝜆)𝑜 are indexed by functions/families 𝑜 ∈ ∏
𝜔∈dom(𝜆) (𝑂𝜔)TipEq𝜆 (𝜔) ,

the components of which are in turn indexed as follows:

𝑜 =

(
𝑜𝜔, [ℎ]∼𝜔

)
𝜔∈dom(𝜆) , [ℎ]∼𝜔 ∈TipEq𝜆 (𝜔)

Observation 5.21. Let Θ be a space of input histories and let 𝜆, 𝜇 ∈ Λ (Θ) be two lowersets. If

𝜇 ⊆ 𝜆, then the following is a well-defined injection:

TipEq𝜇⊆𝜆 (𝜔) : TipEq𝜇 (𝜔) → TipEq𝜆 (𝜔)
[ℎ]∼𝜔 ↦→ [ℎ]∼𝜔

Definition 5.22. Let Θ be a space of input histories, let 𝑂 = (𝑂𝜔)𝜔∈𝐸Θ be a family of non-empty

sets of outputs and let C ∈ Covers (Θ) be any cover. For every 𝜆 ∈ C and every 𝜇 ∈ Λ (Θ) such that

𝜇 ⊆ 𝜆, the output history restriction from 𝜆 to 𝜇 is defined as follows:

𝜌𝜆,𝜇 :
∏

𝜔∈dom(𝜆)
(𝑂𝜔)TipEq𝜆 (𝜔) −→ ∏

𝜔∈dom(𝜇)
(𝑂𝜔)TipEq𝜇 (𝜔)

𝑜 ↦→
( (
𝜔, [ℎ]∼𝜔

)
↦→ 𝑜𝜔, [ℎ]∼𝜔

) (5.19)

Formally, 𝑜𝜔, [ℎ]∼𝜔 stands for 𝑜𝜔,TipEq𝜇⊆𝜆 (𝜔) ( [ℎ]∼𝜔 ) . The restriction extends convex-linearly to a

output history distribution restriction between the corresponding spaces of probability distributions:

D
(
𝜌𝜆,𝜇

)
: D

( ∏
𝜔∈dom(𝜆)

(𝑂𝜔)TipEq𝜆 (𝜔)
)
−→ D

( ∏
𝜔∈dom(𝜇)

(𝑂𝜔)TipEq𝜇 (𝜔)
)

𝑑 ↦→
(
𝑜 ↦→ ∑

𝑜′ s.t. 𝜌𝜆,𝜇 (𝑜′)=𝑜
𝑑 (𝑜′)

) (5.20)

The causality equations are given by the affine subspaces in which the restriction to a common
lowerset 𝜇 ⊆ 𝜆, 𝜆′ agree. Providing all causality equations to describe the causaltopes is highly
redundant and we will show later on how in certain cases this description can be simplified.

Definition 5.23. Let Θ be a space of input histories, let 𝑂 = (𝑂𝜔)𝜔∈𝐸Θ be a family of non-empty

sets of outputs and let C ∈ Covers (Θ) be any cover. The causality equations are indexed by all

𝜇 ∈ Λ (Θ) and all 𝜆, 𝜆′ ∈ C such that 𝜇 ⊆ 𝜆 and 𝜇 ⊆ 𝜆′. For one such triple 𝜇, 𝜆, 𝜆′, we equate the

output history distribution restrictions from 𝜆 to 𝜇 and from 𝜆′ to 𝜇:

CausEqs
(
C, 𝑂

)
𝜇,𝜆,𝜆′ :=

{
𝑢 ∈

〈
PEmpMods

(
C, 𝑂

)〉 ���� 𝑢 (𝜆) ���
𝜇
= 𝑢 (𝜆

′)
���
𝜇

}
(5.21)

where we have adopted the following shorthand for the restriction:

𝑢 (𝜆)
���
𝜇

:= D
(
𝜌𝜆,𝜇

) (
𝑢 (𝜆)

)
(5.22)

We write CausEqs
(
C, 𝑂

)
for the linear subspace of

〈
PEmpMods

(
C, 𝑂

)〉
spanned jointly by all

causality equations:

CausEqs
(
C, 𝑂

)
:=

⋂
𝜇∈Λ(Θ)

⋂
𝜆∈C∩𝜇↑

⋂
𝜆′∈C∩𝜇↑

CausEqs
(
C, 𝑂

)
𝜇,𝜆,𝜆′ (5.23)

where 𝜇↑ is the upset of 𝜇 in the partial order Λ (Θ) formed by lowersets under inclusion.
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Proposition 5.23. Let Θ be a space of input histories, let 𝑂 = (𝑂𝜔)𝜔∈𝐸Θ be a family of non-empty

sets of outputs and let C ∈ Covers (Θ) be any cover. For every 𝜇 ∈ Λ (Θ), let 𝜆𝜇,1, ..., 𝜆𝜇,𝑛𝜇 be a

total order on the 𝜆 ∈ C such that 𝜇 ⊆ 𝜆. Then we have:

CausEqs
(
C, 𝑂

)
=

⋂
𝜇∈Λ(Θ) ,𝑛𝜇≥1

𝑛𝜇−1⋂
𝑖=1

CausEqs
(
C, 𝑂

)
𝜇,𝜆𝜇,𝑖 ,𝜆𝜇,𝑖+1

(5.24)

Proof. Fix 𝜇 ∈ Λ (Θ). If 𝑛𝜇 = 0, then there are no equations associated with 𝜇, so we can restrict
our attention to the 𝜇 s.t. 𝑛𝜇 ≥ 1. Consider the following subspace:⋂

𝜆∈C∩𝜇↑

⋂
𝜆′∈C∩𝜇↑

CausEqs
(
C, 𝑂

)
𝜇,𝜆,𝜆′

The linear constraints are exactly those enforcing 𝑢 (𝜆)
��
𝜇
= 𝑢 (𝜆

′) ��
𝜇

for all 𝜆, 𝜆′ ∈ C ∩ 𝜇 ↑. If we
impose a total order on C ∩ 𝜇 ↑, the exact same constraints can be enforced by a chain of 𝑛𝜇 − 1
equations, as follows:

𝑛𝜇−1⋂
𝑖=1

CausEqs
(
C, 𝑂

)
𝜇,𝜆𝜇,𝑖 ,𝜆𝜇,𝑖+1

This concludes our proof. �

Proposition 5.23. Let Θ be a space of input histories, let 𝑂 = (𝑂𝜔)𝜔∈𝐸Θ be a family of non-empty

sets of outputs and let StdCov (Θ) ∈ Covers (Θ) be the standard cover. For every ℎ ∈ Ext (Θ), let

𝑘ℎ,1, ..., 𝑘ℎ,𝑛ℎ be a total order on the 𝑘 ∈ Ext (Θ) such that 𝑘 ≤ ℎ, i.e. such that ℎ↓⊆ 𝑘 ↓. Then we

have:

CausEqs
(
C, 𝑂

)
=

⋂
ℎ∈Ext(Θ) ,𝑛ℎ≥1

𝑛ℎ−1⋂
𝑖=1

CausEqs
(
C, 𝑂

)
ℎ↓,𝑘ℎ,𝑖↓,𝑘ℎ,𝑖+1↓ (5.25)

Proof. We build upon the result of Proposition 5.23. Consider 𝜇 ∈ Λ (Θ) with 𝑛𝜇 ≥ 1 and note that
the associated 𝜆𝜇,𝑖 ∈ C take the form 𝑘𝜇,𝑖 ↓ for some 𝑘𝜇,𝑖 ∈ Ext (Θ). Consider any 𝑖 ∈ {1, ..., 𝑛𝜇 − 1},
so that 𝜇 ⊆ 𝑘𝜇,𝑖 ↓ ∩𝑘𝜇,𝑖+1↓: because the intersection of a downset is a downset, we have the following,
for some ℎ𝜇,𝑖 ∈ Ext (Θ):

𝜇 ⊆ ℎ𝜇,𝑖 ↓⊆ 𝑘𝜇,𝑖 ↓ ∩𝑘𝜇,𝑖+1↓

Since we included the relevant equations for all such ℎ𝜇,𝑖, we can infer the equations for 𝜇 by
composing restrictions:

𝑢 (𝜆)
���
𝜇
=

(
𝑢 (𝜆)

���
ℎ𝜇,𝑖↓

)����
𝜇

=

(
𝑢 (𝜆

′)
���
ℎ𝜇,𝑖↓

)����
𝜇

= 𝑢 (𝜆
′)
���
𝜇

This concludes our proof. �

The definition of the marginalisation allowed us to describe the affine spaces defining the causal
equations. With these ingredients, we can finally describe causaltopes, a portmanteau of causal
polytopes.
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Definition 5.24. Let Θ be a space of input histories, let 𝑂 = (𝑂𝜔)𝜔∈𝐸Θ be a family of non-empty

sets of outputs and let C ∈ Covers (Θ) be any cover. The associated causaltope is defined to be the

following space of constrained conditional probability distributions:

Caus
(
C, 𝑂

)
:= CCPD

(
CausEqs

(
C, 𝑂

)
,

( ∏
𝜔∈dom(𝜆)

(𝑂𝜔)TipEq𝜆 (𝜔)
)
𝜆∈C

)
= CausEqs

(
C, 𝑂

)
∩ ∏
𝜆∈C
D

( ∏
𝜔∈dom(𝜆)

(𝑂𝜔)TipEq𝜆 (𝜔)
) (5.26)

Observation 5.24. When C = StdCov (Θ) is the standard cover, we refer to the associated causaltope

as a standard causaltope, taking the following simplified form:

Caus𝑠𝑡𝑑
(
Θ, 𝑂

)
:= CCPD ©­«CausEqs𝑠𝑡𝑑

(
C, 𝑂

)
,
©­«

∏
𝜔∈dom(𝑘)

𝑂𝜔
ª®¬𝑘∈max Ext(Θ)

ª®¬
We write CausEqs𝑠𝑡𝑑

(
Θ, 𝑂

)
for the causal equations on the standard cover.

Theorem 5.25. Let Θ be a space of input histories, let 𝑂 = (𝑂𝜔)𝜔∈𝐸Θ be a family of non-empty sets

of outputs and let C ∈ Covers (Θ) be any cover. Then the following is a convex-linear bijection:

EmpMod
(
C, 𝑂

)
↔ Caus

(
C, 𝑂

)
𝑒 ↦→ (d𝑒𝜆e)𝜆∈C

(5.27)

Proof. By applying Theorem 5.20 to the individual components 𝑒𝜆 ↦→ d𝑒𝜆e we conclude that the
map is a convex-linear injection, where convex-linearity follows from the fact that all components of
the empirical model are weighted equally in convex combinations. To prove that the map is surjective,
we consider any arbitrary 𝑢 ∈ Caus

(
C, 𝑂

)
and define:

𝑒𝜆 :=
⌊
𝑢𝜆

⌋
𝜆

The causality equations guarantee that restrictions from cover lowersets to arbitrary lowersets coincide:

d𝑒𝜆e |𝜇 = d𝑒𝜆′e |𝜇

We now show that the restrictions of probability distributions above are exactly the same as the
restrictions of empirical model components. To do so, it suffices to expand the top-element distribution
and its restriction into their definitions:

d𝑒𝜆e |𝜇 = D
(
𝜌𝜆,𝜇

) ( ∑
Ext( 𝑓 )

𝑒𝜆 (Ext ( 𝑓 )) 𝛿 dExt( 𝑓 ) e

)
=

∑
Ext( 𝑓 )

𝑒𝜆 (Ext ( 𝑓 )) D
(
𝜌𝜆,𝜇

) (
𝛿 dExt( 𝑓 ) e

)
=

∑
Ext( 𝑓 )

𝑒𝜆 (Ext ( 𝑓 )) 𝛿𝜌𝜆,𝜇 ( dExt( 𝑓 ) e)

=
∑

Ext( 𝑓 )
𝑒𝜆 (Ext ( 𝑓 )) 𝛿 dExt( 𝑓 ) e |𝜇

= Ext ( 𝑓 ′) ↦→ ∑
𝑓 s.t. 𝑓 |𝜇= 𝑓 ′

𝑒𝜆 (Ext ( 𝑓 ))
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The last line is the definition of restriction for empirical model components from 𝜆 to 𝜇, completing
our proof. �

Theorem 5.25 provides an equivalent geometric characterisation for empirical models, as
constrained conditional probability distributions on joint outputs. From this moment onwards, we
will freely confuse the topological and geometric picture, referring to the points of causaltopes as
‘empirical models’.

5.4 Standard causaltopes

In Chapter 4, we explained that different choices of covers correspond to different assumptions of
classicality; an empirical model for the classical cover corresponds to a distribution over classical
(global) causal mechanisms. The standard cover is the more unconstrained assignment of distributions
compatible with a given space of input histories. The covers which are finer than the standard cover,
such as the solipsistic cover, describe empirical models where only partial information about the
correlations between timelike histories is recorded.

Therefore, the standard cover is what we usually consider when talking about an operational
protocol: a description of all the correlations between joint inputs and outputs. When discussing
the compatibility of an empirical model to space of input histories, we usually work with standard
empirical models. In this case, the geometric characterisation provided above coincides with the
literature on indefinite causality. Empirical models are distributions 𝑢 (𝑖)𝑜 ∈ [0, 1] on joint outputs
𝑜 ∈ ∏

𝜔∈𝐸Ω 𝑂𝜔 conditional to joint inputs 𝑖 ∈ ∏
𝜔∈𝐸Θ 𝐼Θ𝜔 .

Standard causaltopes, therefore, represent the arena where everything that can be known about
the behaviour of a protocol is recorded and where the assumption of non-disturbance between
measurements is only expressed by causal compatibility with no other assumption about the particular
structure of the contexts. Standard causaltopes are where we can give substance to the notion of
causal discovery in a canonical way. In this section, we define the vocabulary underlying this type of
analysis, i.e. we will explain what is meant by casual components, causal decomposition and casual

fractions. We first show that the hierarchy of spaces of input histories is reflected in the containment
structure of the causaltopes.

Proposition 5.25. Let Θ ≤ Θ′ be a spaces of input histories such that 𝐸Θ′ = 𝐸Θ and 𝐼Θ′ = 𝐼Θ

and max Ext (Θ) = max Ext (Θ′) (e.g. because they both satisfy the free choice condition). Let

𝑂 = (𝑂𝜔)𝜔∈𝐸Θ be a family of non-empty sets of outputs. The standard causaltope for Θ is always

contained in the standard causaltope for Θ′:

CausEqs𝑠𝑡𝑑
(
Θ, 𝑂

)
⊆ CausEqs𝑠𝑡𝑑

(
Θ′, 𝑂

)
Caus𝑠𝑡𝑑

(
Θ, 𝑂

)
⊆ Caus𝑠𝑡𝑑

(
Θ′, 𝑂

)
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Proof. Because Θ and Θ′ have the same events and inputs and because max Ext (Θ) = max Ext (Θ′),
the two spaces have the same pseudo-empirical models:

∏
𝑘∈max Ext(Θ)

D ©­«
∏

𝜔∈dom(𝑘)
𝑂𝜔

ª®¬
where we used the fact that TipEq𝑘↓ (𝜔) is always a singleton. Hence, comparing the associated
linear sub-spaces of causality equations makes sense. By Proposition 5.23, the causality equations
for the standard cover are generated by extended input histories: since Θ′ ≤ Θ is defined to mean
Ext (Θ′) ⊇ Ext (Θ), the causality equations for Θ′ are a superset of those for Θ. This concludes our
proof. �

The standard causaltope for the space of histories obtained by the indiscrete and the discrete
preorder represent the maximal and the minimal element of the hierarchy of nested polytopes:

Observation 5.25. For any non-empty set 𝐸 of events and any family of non-empty input sets

𝐼 = (𝐼𝑒)𝑒∈𝐸 , the standard causaltope for the indiscrete space Hist
(
indiscrete (𝐸) , 𝐼

)
is the polytope

of pseudo-empirical models:

Caus𝑠𝑡𝑑
(
Θ𝑖𝑛𝑑 , 𝑂

)
= PEmpMods

(
StdCov (Θ𝑖𝑛𝑑) , 𝑂

)
where we have defined the shorthand Θ𝑖𝑛𝑑 := Hist

(
indiscrete (𝐸) , 𝐼

)
.

Observation 5.25. Let Θ be a spaces of input histories and let 𝑂 = (𝑂𝜔)𝜔∈𝐸Θ be a family of

non-empty sets of outputs. The standard causaltope for the discrete space Hist
(
discrete

(
𝐸Θ

)
, 𝐼Θ

)
is

always contained in the causaltope for Θ:

Caus𝑠𝑡𝑑
(
Hist

(
discrete

(
𝐸Θ

)
, 𝐼Θ

)
, 𝑂

)
⊆ Caus𝑠𝑡𝑑

(
Θ, 𝑂

)
For any non-empty set 𝐸 of events and any family of non-empty input sets 𝐼 = (𝐼𝑒)𝑒∈𝐸 , we refer to

Caus𝑠𝑡𝑑
(
Hist

(
discrete (𝐸) , 𝐼

)
, 𝑂

)
as the no-signalling causaltope.

The following definitions provide ‘causally flavoured’ variants of Definition 5.16 and Definition
5.17. In particular, we adopt a special name for the fraction supported by the no-signalling causaltope.

Definition 5.26. Let Θ be a spaces of input histories and let𝑂 = (𝑂𝜔)𝜔∈𝐸Θ be a family of non-empty

sets of outputs. Let 𝑢 ∈ Caus𝑠𝑡𝑑
(
Θ, 𝑂

)
be a standard empirical model. For any Θ′ ≤ Θ such that

𝐸Θ′ = 𝐸Θ and 𝐼Θ′ = 𝐼Θ and max Ext (Θ) = max Ext (Θ′), we give the following definitions:

• A component of 𝑢 in Θ′ is a component of 𝑢 in the sub-polytope of constrained conditional

probability distributions Caus𝑠𝑡𝑑
(
Θ′, 𝑂

)
according to Definition 5.16.

• A maximal component of 𝑢 in Θ′ is one of maximal mass.
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• The causal fraction of 𝑢 in Θ′ is the mass of a maximal component of 𝑢 in Θ′.

Colloquially, we say that 𝑢 is 𝑋% supported by Θ′ to mean that the supported fraction of 𝑢 in Θ′ is 𝑋
100 .

The no-signalling fraction of 𝑢 is the causal fraction of 𝑢 in the discrete space Hist
(
discrete

(
𝐸Θ

)
, 𝐼Θ

)
.

Definition 5.27. Let Θ be a spaces of input histories and let𝑂 = (𝑂𝜔)𝜔∈𝐸Θ be a family of non-empty

sets of outputs. Let 𝑢 ∈ Caus𝑠𝑡𝑑
(
Θ, 𝑂

)
be a standard empirical model. For any family

(
Θ(𝑧)

)
𝑧∈𝑍 of

sub-spaces Θ(𝑧) ≤ Θ such that 𝐸Θ(𝑧) = 𝐸Θ and 𝐼Θ(𝑧) = 𝐼Θ and max Ext
(
Θ(𝑧)

)
= max Ext (Θ), we

give the following definitions:

• A (causal) decomposition of 𝑢 over the sub-spaces
(
Θ(𝑧)

)
𝑧∈𝑍 is a decomposition of 𝑢 in(

Caus𝑠𝑡𝑑
(
Θ(𝑧) , 𝑂

) )
𝑧∈𝑍 according to Definition 5.17.

• A maximal (causal) decomposition of 𝑢 over the sub-spaces
(
Θ(𝑧)

)
𝑧∈𝑍 is one of maximal mass.

• The causal fraction of 𝑢 over the sub-spaces
(
Θ(𝑧)

)
𝑧∈𝑍 is the mass of a maximal decomposition

of 𝑢 in
(
Θ(𝑧)

)
𝑧∈𝑍 .

Colloquially, we say that 𝑢 is 𝑋% supported by
(
Θ(𝑧)

)
𝑧∈𝑍 to mean that the causal fraction of 𝑢 over

the sub-spaces
(
Θ(𝑧)

)
𝑧∈𝑍 is 𝑋

100 .

Consider a standard empirical model 𝑢 for a causally incomplete space Θ. A key question in the
study of indefinite causality is whether the 𝑢 admits an explanation in terms of ‘dynamical’ definite
causal structure, i.e. whether it is 100% jointly supported by some causally complete sub-spaces of
Θ. This leads to the definition of the qualitative notion of ‘causal (in)separability’ and the associated
quantitative notion of ‘causally (in)separable fraction’.

Definition 5.28. Let Θ be a spaces of input histories and let𝑂 = (𝑂𝜔)𝜔∈𝐸Θ be a family of non-empty

sets of outputs. Let 𝑢 ∈ Caus𝑠𝑡𝑑
(
Θ, 𝑂

)
be a standard empirical model. We give the following

definitions:

• The causally separable fraction of 𝑢 is the causal fraction of 𝑢 over the causal completions

of Θ, i.e. over the maximal causally complete subspaces of Θ. If Θ is causally complete, the

causally separable fraction is always 1.

• The causally inseparable fraction of 𝑢 is 1 minus its causally separable fraction.

• The empirical model 𝑢 is causally separable if it has causally separable fraction 1, and it is

causally inseparable otherwise.

Colloquially, we say that 𝑢 has 𝑋% causally (in)separable fraction if its causally (in)separable

fraction is 𝑋
100 .
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We are now ready to define contextual causality for empirical models over the standard cover.
Probing causal inseparability for a causally incomplete space Θ already signals that the model cannot
be decomposed in sub-normalised empirical models on the causal completions of Θ. However, causal
inseparability alone does not guarantee the impossibility of providing an objective assignment of
causal orders between the events. Here we need to be particularly careful. Causal inseparability for a
space can also be a consequence of event delocalisation. To circumvent these problems, we restrict
our definition to the empirical models which are entirely supported by the causal completion for the
indiscrete space.

Recall that it follows from Theorem 3.25 that we only need to check the switch spaces to conclude
if a model is causally separable for the indiscrete space. Moreover, Theorem 4.42 explains that
switch spaces cannot exhibit any non-locality. An empirical model which is causally separable
for Caus𝑠𝑡𝑑

(
Θ𝑖𝑛𝑑 , 𝑂

)
can therefore be described entirely using separable causal functions, with no

inseparability involved.

Definition 5.29 (Contextual causality). Let 𝑒 ∈ Caus𝑠𝑡𝑑
(
Θ𝑖𝑛𝑑 , 𝑂

)
be a standard empirical model

which is causally separable for the indiscrete space Θ𝑖𝑛𝑑 = Hist
(
indiscrete (𝐸) , 𝐼

)
. We say that 𝑒

exhibits contextual causality if there exists a refinement Θ′ ≤ Θ𝑖𝑛𝑑 such that 𝑒 ∈ Caus𝑠𝑡𝑑
(
Θ′, 𝑂

)
but

𝑒 is causally inseparable with respect to Θ′.

5.5 Conclusions

In this final chapter, we developed a geometric description complementary to the topological one:
causal correlations become the points of causaltopes: convex polytopes obtained by slicing the set of
conditional probability distributions with certain causality equations. Our methods can be seen as
a generalisation of the geometric techniques used in the theory independent study of no-signalling
correlations, and they present a finer-grained picture of causal separability than the one painted by
the literature on causal inequalities [31, 101, 1].

Specifically, we can quantify the device-independent explainability of conditional probability
distributions relative to arbitrary putative causal structures, incorporating constraints such as space-
like separation of parties or dynamical no-signalling. The more general, relative nature of our
definition of causal separability allows us to define new witnesses for indefinite causal order by
exploiting the experimental legitimacy of imposing some causal constraints even in the presence of
indefinite causality.

The advantage of a geometrical perspective is not limited to causal inference: combined with
geometric tools from the Abramsky-Brandenburger framework, it allows us to quantitatively investigate
the correlation between indefinite causality and non-locality/contextuality. This theoretical framework
gives rise to novel methods to certify the non-classicality of causation, of particular interest in
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scenarios where quantum theory is endowed with the possibility of superposing the causal order of
quantum channels. Unlike previous literature on the topic, however, the phenomenology involved in
our certification of indefinite causality is entirely theory independent.

In the next chapter, after the theoretical tour de force, we will finally put our framework into use
and calculate a selection of causal decompositions aimed at showcasing the information about the
causal structure which can be deduced from the empirical models in a theory independent way.
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Chapter 6

Examples of causal decompositions

A table of probabilities which assigns distributions of joint outputs to joint inputs for an operational
scenario (𝐸, 𝐼, 𝑂) can be thought of as providing the theory-independent empirical content associated
with some protocol. Such behaviours are in bijective correspondence with the points of the causaltope
Caus𝑠𝑡𝑑

(
Hist

(
discrete (𝐸) , 𝐼

)
, 𝑂

)
(Observation 5.25).

In such cases, the order between the events could be indefinite, or the event themselves be
delocalised; Nevertheless, we can always use linear programming to calculate the fractions supported
by polytopes entailing finer causal assumptions. In particular, we can test if some empirical behaviour
is causally separable with respect to an ambient space Θ. If Θ is causally definite, this would be
asking whether specific causal constraints are satisfied; otherwise, we can encode in Θ a more coarse
grained causal assumption which is nevertheless causally incomplete to narrow down the putative
causal explanations. We can construct a notion of causal separability that is strictly finer than the one
used in previous literature on indefinite causal order [101, 31, 1], where Θ is fixed to the indiscrete
space.

In this chapter, we discuss the empirical models for a selection of examples of interest. All
empirical models are for the standard cover so that any non-classicality arises from non-locality rather
than other forms of contextuality.

All models have binary inputs and outputs 𝐼𝜔 = 𝑂𝜔 = {0, 1} at each event, unless otherwise
specified. For convenience, we will describe our scenarios in terms of agents performing operations
at the events, always following the same convention: Alice acts at event A, Bob acts at event B,
Charlie acts at event C, Diane acts at event D, Eve acts at event E and Felix acts at event F.

The examples in this chapter are all instances of the linear programs described in Chapter 5;
the optimisation has been performed using the standard methods offered by the SciPy[140] module
‘scipy.linalg.linprog’. We are currently in the process of developing fully-fledged software for the
causal analysis of empirical models. Specifically, we aim to automatise tasks such as generating
causal equations for a given space of input histories and calculating various quantities of interest,
including the causal fraction and other more fine-grained causal decompositions.
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6.1 A Classical Switch Empirical Model

In this example, Alice classically controls the order of Bob and Charlie, as follows:

• Alice flips one of two biased coins, depending on her input: when her input is 0, her output is
75% 0 and 25% 1; when her input is 1, her output is 25% 0 and 75% 1 instead.

• Bob and Charlie are in a quantum switch, controlled in the Z basis and with |0〉 as a fixed input:
on output 𝑎 ∈ {0, 1}, Alice feeds state |𝑎〉 into the control system of the switch, determining
the relative causal order of Bob and Charlie.

• Bob and Charlie both apply the same quantum instrument: they measure the incoming qubit
they receive in the Z basis, obtaining their output, and then encode their input into the Z basis
of the outgoing qubit.

• Both the control qubit and the outgoing qubit of the switch are discarded: even without Alice
controlling the switch in the Z basis, discarding the control qubit would be enough to make the
control classical.

The description above results in the following empirical model on 3 events:

ABC 000 001 010 011 100 101 110 111
000 3/4 0 0 0 1/4 0 0 0
001 3/4 0 0 0 0 0 1/4 0
010 0 3/4 0 0 1/4 0 0 0
011 0 3/4 0 0 0 0 1/4 0
100 1/4 0 0 0 3/4 0 0 0
101 1/4 0 0 0 0 0 3/4 0
110 0 1/4 0 0 3/4 0 0 0
111 0 1/4 0 0 0 0 3/4 0

To better understand the table above, we focus on the second row, corresponding to input 001:

1. Alice’s input is 0, so her output is 75% 0 and 25% 1. This means that the probabilities of
outputs 0__ in row 001 of the empirical model must sum to 75%, and the probabilities of
output 1__ must sum to 25%.

2. Conditional to Alice’s output being 0, the output is 000 with 100% probability:

(a) Bob goes first and receives the input state |0〉 for the switch: he measures the state in
the Z basis, obtaining output 0 with 100% probability. Because his input is 0, he then
prepares the state |0〉, which he forwards into the switch.

(b) Charlie goes second and receives the state |0〉 prepared by Bob: he measures the state in
the Z basis, obtaining output 0 with 100% probability. Because his input is 1, he then
prepares the state |1〉, which he forwards into the switch.

190



(c) Charlie’s state |1〉 comes out of the switch, and is discarded.

3. Conditional to Alice’s output being 1, the output is 110 with 100% probability:

(a) Charlie goes first and receives the input state |0〉 for the switch: he measures the state in
the Z basis, obtaining output 0 with 100% probability. Because his input is 1, he then
prepares the state |1〉, which he forwards into the switch.

(b) Bob goes second and receives the state |1〉 prepared by Charlie: he measures the state in
the Z basis, obtaining output 1 with 100% probability. Because his input is 0, he then
prepares the state |0〉, which he forwards into the switch.

(c) Bob’s state |0〉 comes out of the switch, and is discarded.

This empirical model is causally separable. A maximum fraction of 75% is supported by the switch
space where Alice choosing 0 makes Bob precede Charlie and a maximum fraction of 25% is
supported by the switch space where Alice choosing 0 makes Charlie precede Bob, with a fraction of
0% supported by both spaces (i.e. no overlap). Below we show the two spaces, the corresponding
causal fraction, and the (renormalised) component of the empirical model supported by each space:

Causal fraction: 75% Causal fraction: 25%
ABC 000 001 010 011 100 101 110 111
000 1 0 0 0 0 0 0 0
001 1 0 0 0 0 0 0 0
010 0 1 0 0 0 0 0 0
011 0 1 0 0 0 0 0 0
100 0 0 0 0 1 0 0 0
101 0 0 0 0 0 0 1 0
110 0 0 0 0 1 0 0 0
111 0 0 0 0 0 0 1 0

ABC 000 001 010 011 100 101 110 111
000 0 0 0 0 1 0 0 0
001 0 0 0 0 0 0 1 0
010 0 0 0 0 1 0 0 0
011 0 0 0 0 0 0 1 0
100 1 0 0 0 0 0 0 0
101 1 0 0 0 0 0 0 0
110 0 1 0 0 0 0 0 0
111 0 1 0 0 0 0 0 0

6.2 A Causal Fork Empirical Model

In this example, Charlie produces one of the four Bell basis states and forwards one qubit each to
Alice and Bob, who measure it in either the Z or X basis:

1. On input 𝑐 ∈ {0, 1} Charlie prepares the 2-qubit state |0𝑐〉. He then performs a XX parity
measurement, resulting in one of |Φ±〉 states (if his input was 0) or one of |Ψ±〉 states (if his
input was 1), all with 50% probability. He forwards this state to Alice and Bob, one qubit each.
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2. Alice and Bob perform a Z basis measurement on input 0 and an X basis measurement on input
1, and use the measurement outcome as their output.

The following figure summarises the experiment:

𝐴 𝐵𝑋/𝑍 𝑋/𝑍

Φ±/Ψ±

{Φ,Ψ}

𝐶

{0, 1}

{𝑋, 𝑍 } {𝑋, 𝑍 }

{0, 1}

{+, −}

The description above results in the following empirical model on 3 events:

ABC 000 001 010 011 100 101 110 111
000 1/4 1/4 0 0 0 0 1/4 1/4
001 0 0 1/4 1/4 1/4 1/4 0 0
010 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8
011 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8
100 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8
101 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8
110 1/4 0 0 1/4 0 1/4 1/4 0
111 1/4 0 0 1/4 0 1/4 1/4 0

To better understand the process, we restrict our attention to the rows where Charlie has input 0,
corresponding to Alice and Bob receiving the Bell basis states |Φ±〉:

ABC 000 001 010 011 100 101 110 111
000 1/4 1/4 0 0 0 0 1/4 1/4
010 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8
100 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8
110 1/4 0 0 1/4 0 1/4 1/4 0

When Charlie’s output is 0 (left below) Alice and Bob receive the Bell basis state |Φ+〉: they get
perfectly correlated outputs when they both measure in Z or both measure in X, and uncorrelated
uniformly distributed outputs otherwise. When Charlie’s output is 1 (right below) Alice and Bob
receive the Bell basis state |Φ−〉: they get perfectly correlated outputs when they both measure in Z,
perfectly anti-correlated outputs when they both measure in X, and uncorrelated uniformly distributed
outputs otherwise.

ABC 000 010 100 110
000 1/4 0 0 1/4
010 1/8 1/8 1/8 1/8
100 1/8 1/8 1/8 1/8
110 1/4 0 0 1/4

ABC 001 011 101 111
000 1/4 0 0 1/4
010 1/8 1/8 1/8 1/8
100 1/8 1/8 1/8 1/8
110 0 1/4 1/4 0
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Rather interestingly, the empirical model for this experiment is 100% supported by two incompatible
spaces of input histories, both in equivalence class 33 (see Figure 3.4 (p.110)): the space ΘA∨(C→B)

induced by causal order A ∨ (C→ B) (left below) an the space ΘB∨(C→A) induced by causal order
B ∨ (C→ A). In other words, the empirical data is compatible both with absence of signalling from
C to A (left below) and with absence of signalling from C to B (right below).

Causal fraction: 100% Causal fraction: 100%

What makes this empirical model even more interesting is that its no-signalling fraction is 0%: no
part of it can be explained without signalling from C to at least one of A or B.

Causal fraction: 0%

Since the discrete spaceΘA∨B∨C is the meet of the two order-induced spacesΘA∨(C→B) andΘB∨(C→A) ,
we now have an example of an empirical model which is fully supported by two spaces of input
histories but not supported at all by their meet. In particular, this shows that the intersection of two
causaltopes is not necessarily the causaltope for the meet of the underlying spaces.

The empirical model does happen to be 100% supported by two unrelated non-tight subspaces of
ΘA∨(C→B) and ΘB∨(C→A) respectively, both falling into equivalence class 2:

Causal fraction: 100% Causal fraction: 100%

Unlike ΘA∨(C→B) and ΘB∨(C→A) , these two spaces have exactly the same standard causaltope, of
dimension 27. Because it is only 1 dimension larger than the no-signalling causaltope, this is the
minimal supporting causaltope for our empirical model.
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The empirical model is local for both space ΘA∨(C→B) and space ΘB∨(C→A) : for example, below
is a decomposition as a uniform mixture of 8 causal functions for ΘB∨(C→A) . The black dots are
classical copies, the ⊕ dots are classical XORs and the ∧ dots classical ANDs.

1
8

∑︁
(𝑥,𝑦,𝑧) ∈{0,1}3

𝑧

𝑥 𝑦

∧

⊕
∧

⊕

⊕

𝐶

𝐴

𝐵

However, we know from Figure 3.4 (p.49) that spaces in equivalence class 2 have exactly the same
causal functions as the discrete space, in equivalence class 0. Since the empirical model has a
no-signalling fraction of 0%, it immediately follows that it has a local fraction of 0% in its minimal
supporting causaltope, i.e. that it is maximally non-local there. To recap, this example bears many
gifts:

• It shows that there are empirical models 100% supported by multiple spaces but 0% supported
by their meet; in particular, it shows that the intersection of causaltopes is not necessarily the
causaltope for the meet of the underlying spaces.

• Further to the previous point, it shows that there are causaltopes whose intersection is not the
causaltope for any space.

• It shows that there can be unrelated spaces with equal causaltopes, differing from the no-
signalling causaltope.

• It provides an empirical model whose minimally supporting space is non-tight, providing
additional evidence for the importance of non-tight spaces in the study of causality.

• It shows that the notions of non-locality and contextuality depend on a specific choice of causal
constraints, by providing an empirical model which is local in for a space and maximally
non-local for a sub-space.
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6.3 A Causal Cross Empirical Model

In this example, Charlie receives qubits from Alice and Bob and forwards them to Diane and Eve,
choosing whether to forward the qubits as 𝐴 → 𝐷, 𝐵 → 𝐸 or as 𝐴 → 𝐸, 𝐵 → 𝐷. Below is the
‘cross’ causal order that naturally supports this example:

More specifically, the parties act as follows:

1. Alice and Bob encode their input into the Z basis of one qubit each, which they then forward to
Charlie. Their output is trivial, constantly set to 0.

2. Charlie receives the two qubits from Alice and Bob, and decides how to forward them based
on his input:

• On input 0, Charlie forwards Alice’s qubit to Diane and Bob’s qubit to Eve.

• On input 1, Charlie forwards Alice’s qubit to Eve and Bob’s qubit to Diane.

3. Diane and Eve have trivial input, with only 0 as an option. They measure the qubit they receive
in the Z basis and use the outcome as their output.

We will consider two version of this protocol: one where Charlie measures the parity of the qubits he
receives, and one where he doesn’t perform any measurement and trivially outputs 0. The version
where Charlie measures the parity corresponds to the following empirical model 𝑒; note that the
outputs of Alice and Bob, as well as the inputs of Diane and Eve, are fixed to 0.

ABCDE 00000 00001 00010 00011 00100 00101 00110 00111
00000 1 0 0 0 0 0 0 0
00100 1 0 0 0 0 0 0 0
01000 0 0 0 0 0 1 0 0
01100 0 0 0 0 0 0 1 0
10000 0 0 0 0 0 0 1 0
10100 0 0 0 0 0 1 0 0
11000 0 0 0 1 0 0 0 0
11100 0 0 0 1 0 0 0 0

The figures below exemplify this full scenario:
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𝐸

𝐴 𝐵

𝐷

0
𝐶

𝑃
1

𝐸

𝐶

𝐴 𝐵

𝐷

𝑃

The version where Charlie doesn’t measures the parity corresponds to the following simplified
empirical model 𝑒′; note that the outputs of Alice, Bob and Charlie, as well as the inputs of Diane
and Eve, are fixed to 0.

ABCDE 00000 00001 00010 00011
00000 1 0 0 0
00100 1 0 0 0
01000 0 1 0 0
01100 0 0 1 0
10000 0 0 1 0
10100 0 1 0 0
11000 0 0 0 1
11100 0 0 0 1

The figures below exemplify this latter, simplified scenario:

0

𝐸

𝐶

𝐴 𝐵

𝐷

1

𝐸

𝐶

𝐴 𝐵

𝐷

By construction, both empirical models are 100% supported by the space of input histories induced
the cross causal order. In fact, they are both deterministic, and hence they correspond to causal
functions for the space.
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In the second version of the experiment, Charlie doesn’t learn anything about Alice and Bob’s inputs:
his trivial output can be explained without signalling from either one of Alice or Bob. Indeed, the
simplified empirical model 𝑒′ is 100% supported by the space of input histories induced by the
following ‘𝐾3,2’ causal order.

The space of input histories is explicitly depicted below.

In fact, the causaltopes for the spaces induced by the cross causal order and the 𝐾3,2 causal order
coincide when the output 𝑂C = {0} for Charlie is trivial.

We can also construct an entirely different space where Charlie’s output is independent of Alice
and Bob’s input, by exploiting the additional constraints on causal functions afforded by lack of
tightness. Indeed, the empirical model 𝑒′ is also 100% supported by the non-tight space below:
no-signalling from Alice to Charlie is enforced by the {B :𝑏, C :𝑐} histories on the right, while
no-signalling from Bob to Charlie is enforced by the {A :𝑎, C :𝑐} histories on the left.
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This space of input histories is a subspace of the space induced by the cross causal order, but is
unrelated to the one for the 𝐾3,2 causal order. However, the 16-dimensional causaltope for this
non-tight space sits inside the causaltope for the two order-induced spaces: even though the spaces
are unrelated, every standard empirical model for the non-tight space is also a standard empirical
model for the space induced by the 𝐾3,2 order.

6.4 The Leggett-Garg Empirical Model

To disprove macro-realistic explanations of quantum mechanical phenomena, the authors of [84]
propose the following experiment on a 2-level quantum system, i.e. a qubit, which evolves in time by
rotating about the Y axis at a constant angular rate. Writing Δ𝑡 > 0 for the minimum time over which
qubit evolution performs a 2𝜋

3 Y rotation, the experiment proceeds as follows:

1. The qubit is prepared in the |+〉 state at time 𝑡0 and left alone to evolve.

2. At time 𝑡1 := 𝑡0 + Δ𝑡, known to us as event A, the qubit is either left alone (input 0 at A, with
output fixed to 0) or a non-demolition measurement in the Z basis is performed on it (input 1 at
A, with meas. outcome as output). The qubit is again left alone to evolve.

3. At time 𝑡2 := 𝑡1 + Δ𝑡, known to us as event B, the qubit is either left alone (input 0 at B, with
output fixed to 0) or a non-demolition measurement in the Z basis is performed on it (input 1 at
B, with meas. outcome as output). The qubit is again left alone to evolve.

4. At time 𝑡3 := 𝑡2 + Δ𝑡, known to us as event C, the qubit is either discarded (input 0 at C, with
output fixed to 0) or a demolition measurement in the Z basis is performed on it (input 1 at C,
with meas. outcome as output).

The figure below exemplifies the scenario we have just described:

𝑅𝑦 ( 2𝜋3 )

𝑀

𝑅𝑦 ( 2𝜋3 )

+

𝑅𝑦 ( 2𝜋3 )

𝑀

𝑀

𝑀

0

𝑀

1

=

=

0
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The description above results in the following empirical model on 3 events:

ABC 000 001 010 011 100 101 110 111
000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
001 0.933 0.067 0.000 0.000 0.000 0.000 0.000 0.000
010 0.067 0.000 0.933 0.000 0.000 0.000 0.000 0.000
011 0.017 0.050 0.700 0.233 0.000 0.000 0.000 0.000
100 0.500 0.000 0.000 0.000 0.500 0.000 0.000 0.000
101 0.125 0.375 0.000 0.000 0.375 0.125 0.000 0.000
110 0.125 0.000 0.375 0.000 0.375 0.000 0.125 0.000
111 0.031 0.094 0.281 0.094 0.094 0.281 0.094 0.031

The Leggett-Garg inequalities provides bounds, valid in macro-realistic interpretations, for the sum
of the expected ±1-valued parity of outputs when the ±1-valued parity of inputs is +1:

−1 ≤ E(−1𝑜𝐴⊕𝑜𝐵⊕𝑜𝐶 |011) + E(−1𝑜𝐴⊕𝑜𝐵⊕𝑜𝐶 |101) + E(−1𝑜𝐴⊕𝑜𝐵⊕𝑜𝐶 |110) ≤ 3

The authors then observe that, in the experiment they propose, the sum of such expected parities
is − 3

2 , violating the lower bound and thus excluding a macro-realistic explanation. Indeed, we can
restrict ourselves to the relevant rows of the empirical model:

ABC 000 001 010 011 100 101 110
011 0.017 0.050 0.700 0.233 0.000 0.000 0.000
101 0.125 0.375 0.000 0.000 0.375 0.125 0.000
110 0.125 0.000 0.375 0.000 0.375 0.000 0.125

The sum of the expected parity of outputs is then computed as follows:

E(−1𝑜𝐴⊕𝑜𝐵⊕𝑜𝐶 |011) + E(−1𝑜𝐴⊕𝑜𝐵⊕𝑜𝐶 |101) + E(−1𝑜𝐴⊕𝑜𝐵⊕𝑜𝐶 |110)
= (0.017 − 0.050 − 0.700 + 0.233)
+(0.125 − 0.375 − 0.375 + 0.125)
+(0.125 − 0.375 − 0.375 + 0.125)

= − 1
2 −

1
2 −

1
2 = −3

2

By construction, this empirical model is 100% supported by the space of inputs histories for the total
order total (𝐴, 𝐵, 𝐶). As a consequence, it is necessarily non-contextual/local for this space: for an
explicit decomposition as a convex combination of 12 causal functions, see Subsection 4.5.4 of [65].

The constraints specified by Equation (1) of [84] are in fact causal constraint, stating that a
macro-realist model has to be supported by the following 3 indefinite causal orders.
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By construction, the Leggett-Garg empirical model is 100% supported by the leftmost causal order
(of which total (𝐴, 𝐵, 𝐶) is a sub-order). However, it is only 56.7% supported by the middle causal
order and 62.5% supported by the right causal order, showing that it violates the causal constraints
imposed by the macro-realist assumption. The meet of the spaces of input histories induced by the
three indefinite causal orders above is the non-causally-complete, non-tight space depicted below:

The meet of the causaltopes for the spaces induced by the three indefinite causal orders is the same
as the causaltope for the meet space: they both have dimension 26, and hence coincide with the
no-signalling causaltope. Imposing the three constraints together is thus the same as imposing
no-signalling, and the Leggett-Garg empirical model has a 30.25% no-signalling fraction. It also
has varying causal fractions over other total orders: 62.50% over total (𝐴,𝐶, 𝐵), 56.70% over
total (𝐵, 𝐴, 𝐶) and total (𝐵,𝐶, 𝐴), 45.87% over total (𝐶, 𝐵, 𝐴) and 37.95% over total (𝐶, 𝐴, 𝐵). The
(unique) minimal supporting space is depicted below, with a 35-dim causaltope.

This space captures the causal constraints—additional with respect to the total order total (𝐴, 𝐵, 𝐶)—
associated with the absence of measurement on input 0:

• The presence of history {C :0} states that there is no signalling from A nor B to C when no
measurement is performed at C.

• The presence of history {B :0} states that there is no signalling from A to B when no
measurement is performed at B.

The causal functions involved in the deterministic causal HVM for the empirical model over
total (𝐴, 𝐵, 𝐶) are also causal for the minimal supporting space, hence the empirical model is
non-contextual/local there as well.

The initial aim of Leggett and Garg was to prove a result on the lines of non-locality for multiple
space-like events and contextuality for single events. When considering sequential scenarios, however,
a moment of thought can convince us that non-locality cannot be at stake here; there always exists
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a mechanism which feeds forward the information about the measurements performed in the past,
simulating any correlation which is causally compatible with the causal order. With respect to the
standard cover, there always exists a distribution of fine-tuned hidden mechanisms which are causal
(no-signalling to the past) but classical. Sequential contextuality in the sheaf-theoretic sense cannot
be achieved for a totally ordered sequence of events.

Our analysis showed that the Leggett-Garg results say something different, something which
has little to say with a time-oriented generalisation of contextuality. The Leggett-Garg inequalities
single out measurements which are always mutually non-disturbing (so, in principle, compatible
with a no-signalling multipartite protocol); quantum correlations violate these inequalities for the
simple reason that measurement is a disturbing mechanism. Leggett-Garg unequivocally shows that
no non-disturbing (macroscopically realist) measurement models can account for the correlations
obtained in quantum experiments but has little to say about contextuality.

Using similar ideas to uphold notions of contextuality in time needs a redefinition of the notion
of contextuality. In this work, we have been conservative insofar as admitting as a global hidden
variable mechanisms anything compatible with some overarching causal structure; we, therefore,
started by seeing contextuality as the impossibility for any carefully crafted strategy to simulate the
correlations. There is no a priori limit on the ontic structure of the theory, if not the impossibility of
signalling to the past. Our approach is a generalisation of Bell’s idea of non-locality. However, it is
only a possible path, one which, to our belief, tries to preserve the adversarial ethos of the original
arguments. A possibility to save contextuality in time would be to justify a limitation of the allowed
hidden explanations of some empirical behaviour. Many approaches to contextuality believe this to
be a justified requirement by arguing that the operational structure of quantum theory needs to be
preserved at the ontic level. The aforementioned possibility has been argued by [89] to prove specific
quantum advantages for sequential protocols. It is an interesting question if approaches of this type
can be recast in the sheaf-theoretic form. Prima facie implementing these restrictions would entail a
constrained assignment of causal functions to context, making the mathematics at play significantly
harder. Any such restriction would also entail an additional degree of dependency on quantum theory
which would need a careful conceptual reassessment of the notion of contextuality, perhaps on the
line of the research developed by Spekkens [95, 127, 126]. A detailed analysis of the feasibility of
such a research project is left for future work.

6.5 An OCB Empirical Model

In this example, we look consider two agents, Alice and Bob, acting within the context of the process
matrix described by Oreshkov, Costa and Brukner in [101]:

𝑊 𝐴1𝐴2𝐵1𝐵2 =
1
4
[1𝐴1𝐴2𝐵1𝐵2 + 1

√
2
(𝜎𝐴2
𝑧 𝜎𝐵1

𝑧 + 𝜎𝐴1
𝑧 𝜎𝐵1

𝑥 𝜎𝐵2
𝑧 )]
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The two agents perform the following local instruments:

• Alice measures the incoming qubit in the Z basis, producing an output 𝑥 ∈ {0, 1}. She then
encodes her input 𝑎 ∈ {0, 1} into the Z basis of the outgoing qubit.

• Bob has input (𝑏, 𝑏′) ∈ {0, 1}2:

– If 𝑏′ = 0, Bob measures the incoming qubit in the X basis, obtaining a measurement
outcome 𝑧 ∈ {+,−}: if 𝑧 = +, Bob prepares the outgoing qubit in |𝑏〉; if 𝑧 = −, Bob
prepares the outgoing qubit in |1 − 𝑏〉 instead. Regardless of the value of 𝑧, the output
𝑦 ∈ {0, 1} of Bob is set constantly to 𝑦 = 0.

– If 𝑏′ = 1, Bob measures the incoming qubit in the Z basis and uses the measurement
outcome as his output 𝑦 ∈ {0, 1}. He prepares the outgoing qubit in |0〉, regardless of the
value of 𝑏.

The description above results in the following empirical model on 2 events:

ABB 00 01 10 11
000 1/4 +

√
2/8 1/4 +

√
2/8 1/4 −

√
2/8 1/4 −

√
2/8

001 1/4 −
√

2/8 1/4 −
√

2/8 1/4 +
√

2/8 1/4 +
√

2/8
010 1/4 +

√
2/16 1/4 −

√
2/16 1/4 +

√
2/16 1/4 −

√
2/16

011 1/4 +
√

2/16 1/4 −
√

2/16 1/4 +
√

2/16 1/4 −
√

2/16
100 1/4 +

√
2/8 1/4 +

√
2/8 1/4 −

√
2/8 1/4 −

√
2/8

101 1/4 −
√

2/8 1/4 −
√

2/8 1/4 +
√

2/8 1/4 +
√

2/8
110 1/4 −

√
2/16 1/4 +

√
2/16 1/4 −

√
2/16 1/4 +

√
2/16

111 1/4 −
√

2/16 1/4 +
√

2/16 1/4 −
√

2/16 1/4 +
√

2/16

This is our first example of causally inseparable empirical model: the maximum causal fraction
achieved over the causaltopes for the spaces induced by total (𝐴, 𝐵) and total (𝐵, 𝐴) (the maximal
causally complete spaces on 2 events {A,B}) is around 93.9%. The particular decomposition
achieving this fraction in the convex hull has components with the following causal fractions over the
two individual causaltopes:

Hist (total (𝐴, 𝐵) , {0, 1}) Hist (total (𝐵, 𝐴) , {0, 1})
Causal fraction: 29.3% Causal fraction: 64.6%

There is no ambiguity in the allocation above: the component for each causaltope has causal fraction
0% in the other causaltope. The two unnormalised components are shown below:
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ABB 00 01 10 11
000 0.086 0.061 0.073 0.073
001 0.073 0.073 0.061 0.086
010 0.146 0.000 0.146 0.000
011 0.146 0.000 0.146 0.000
100 0.146 0.000 0.073 0.073
101 0.073 0.073 0.000 0.146
110 0.000 0.146 0.000 0.146
111 0.000 0.146 0.000 0.146

ABB 00 01 10 11
000 0.280 0.366 0.000 0.000
001 0.000 0.000 0.366 0.280
010 0.131 0.162 0.192 0.162
011 0.131 0.162 0.192 0.162
100 0.280 0.366 0.000 0.000
101 0.000 0.000 0.366 0.280
110 0.162 0.131 0.162 0.192
111 0.162 0.192 0.162 0.131

The maximum causal fraction supported by total (𝐴, 𝐵) is 29.3% and the maximum causal fraction
supported by total (𝐵, 𝐴) is 64.6%. The maximum causal fraction supported by the no-signalling
polytope is also 29.3%: shown below, this component is necessarily different from the 29.3%
component shown on the left above, because it is supported by both total (𝐴, 𝐵) and total (𝐵, 𝐴).

ABB 00 01 10 11
000 0.000 0.146 0.073 0.073
001 0.073 0.073 0.146 0.000
010 0.146 0.000 0.000 0.146
011 0.146 0.000 0.146 0.000
100 0.000 0.146 0.073 0.073
101 0.073 0.073 0.146 0.000
110 0.146 0.000 0.000 0.146
111 0.146 0.000 0.146 0.000

6.6 The BFW Empirical Model

We now look at the empirical model introduced by Baumeler, Feix and Wolf in [19, 20], described by
the authors as the 50%-50% mixture of a circular ‘identity’ classical process and a circular ‘bitflip’
classical process, for three agents Alice, Bob and Charlie.

ABC 000 001 010 011 100 101 110 111
000 1/2 0 0 0 0 0 0 1/2
001 0 0 0 1/2 1/2 0 0 0
010 0 1/2 0 0 0 0 1/2 0
011 0 0 1/2 0 0 1/2 0 0
100 0 0 1/2 0 0 1/2 0 0
101 0 1/2 0 0 0 0 1/2 0
110 0 0 0 1/2 1/2 0 0 0
111 1/2 0 0 0 0 0 0 1/2

Specifically, the empirical model above is the 50%-50% mixture of the following causally inseparable
functions (cf. Subsubsection 4.5.5 of [65]) for the causally incomplete space induced by the causal
order indiscrete (𝐴, 𝐵, 𝐶):

ABC 000 001 010 011 100 101 110 111
000 1 0 0 0 0 0 0 0
001 0 0 0 0 1 0 0 0
010 0 1 0 0 0 0 0 0
011 0 0 0 0 0 1 0 0
100 0 0 1 0 0 0 0 0
101 0 0 0 0 0 0 1 0
110 0 0 0 1 0 0 0 0
111 0 0 0 0 0 0 0 1

ABC 000 001 010 011 100 101 110 111
000 0 0 0 0 0 0 0 1
001 0 0 0 1 0 0 0 0
010 0 0 0 0 0 0 1 0
011 0 0 1 0 0 0 0 0
100 0 0 0 0 0 1 0 0
101 0 1 0 0 0 0 0 0
110 0 0 0 0 1 0 0 0
111 1 0 0 0 0 0 0 0

This is an example of a maximally causally inseparable empirical model: it has 0% support over all
causally complete spaces on 3 events.
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Interestingly, however, the BFW empirical model is 100% supported by each of the following 3
indefinite causal orders: this shows that either one of the 3 parties can be taken to act first, as long
as the other two parties remain in indefinite causal order. In contrast, the two individual causally
inseparable functions have 0% support over each of the 3 indefinite causal orders.

The meet of the associated spaces of input histories is the discrete space on 3 events: the associated
no-signalling causaltope is 26-dimensional and supports 0% of the BFW empirical model. The
intersection of the associated causaltopes, on the other hand, has dimension 38, and it supports 100%
of the BFW empirical model.

We now look more in detail at the 3 indefinite causal order explanations: without loss of generality,
we take Alice to act first. The absence of any support by the 2 total orders where Alice acts first
means that no part of the indefinite causal order between Bob and Charlie is explainable by a fixed
causal structure. Furthermore, the absence of any support by the 2 non-trivial switch orders where
Alice acts first means that no part of the indefinite causal order between Bob and Charlie is controlled
by Alice’s input. Therefore, the only remaining explanation is that the indefinite causal order between
Bob and Charlie is somehow correlated to Alice’s outputs. To verify that this is indeed the case, we
consider the scenarios corresponding to a fixed input choice by Alice (input 0 left below, input 1 right
below), where the output of Alice has been discarded.

BC 00 01 10 11
00 1/2 0 0 1/2
01 1/2 0 0 1/2
10 0 1/2 1/2 0
11 0 1/2 1/2 0

BC 00 01 10 11
00 0 1/2 1/2 0
01 0 1/2 1/2 0
10 1/2 0 0 1/2
11 1/2 0 0 1/2

Unsurprisingly, the two restricted empirical models above are both causally separable. Perhaps
surprisingly, they are both 100% supported by the no-signalling causaltope for Bob and Charlie. To
understand whether Alice’s output determines a fixed causal order between Bob and Charlie, we look
at the empirical models obtained by conditioning on each of Alice’s outputs (output 0 left below,
output 1 right below), which have 50%-50% distribution independently of her input.
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ABC 000 001 010 011
000 1 0 0 0
001 0 0 0 1
010 0 1 0 0
011 0 0 1 0
100 0 0 1 0
101 0 1 0 0
110 0 0 0 1
111 1 0 0 0

ABC 100 101 110 111
000 0 0 0 1
001 1 0 0 0
010 0 0 1 0
011 0 1 0 0
100 0 1 0 0
101 0 0 1 0
110 1 0 0 0
111 0 0 0 1

The empirical models above are deterministic and correspond to causal functions on the space of
input histories determined by the order total (𝐴, {B,C}). However, the two functions are causally
inseparable, and hence so are the two empirical models. When Alice’s input and output are both 0,
i.e. in the first 4 rows of the empirical model left above, Bob and Charlie’s outputs are related to their
inputs in a way which requires bi-directional signalling:

𝑜𝐵 = 𝑖𝐶
𝑜𝐶 = ¬(𝑖𝐵 ∧ 𝑖𝐶)

This evidence supports the intuition that causal inseparability for the BFW model stems from a cyclic
order structure, as its very definition seems to suggest.
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6.7 A Quantum Switch with Entangled Control

In this example we consider a single quantum switch between Alice and Bob, where the switch
control is one qubit of a maximally entangled 2-qubit pair, with Charlie measuring the control qubit
of the switch at the end and Diane measuring the other qubit in the entangled pair. Specifically, for
angles 𝛾0, 𝛾1 ∈ [0, 𝜋) and 𝛼 ∈ [0,

√
3/6):

1. A 2-qubit Bell state |Φ+〉 is created: one qubit is sent to the control of a quantum switch, the
other is sent to Charlie.

2. Alice and Bob are in a quantum switch, with one of the two |Φ+〉 qubits as its control and the
maximally mixed state as the state for its input qubit:

• Alice performs an X measurement on the incoming qubit and uses the measurement
outcome as her output. Alice encodes her input into the X basis of the outgoing qubit,
and then applies a Y rotation by an angle 𝛼 to the qubit before forwarding it.

• Bob performs an X measurement on the incoming qubit and uses the measurement
outcome as his output. Bob encodes his input into the X basis of the outgoing qubit.

3. The output qubit of the switch is discarded. Charlie receives the control qubit, which he
measures in a basis chosen as follows: on input 0, he first applies a X rotation by −𝛾0 and then
measures in the Z basis; on input 1, he first applies a X rotation by −𝛾1 and then measures in
the Z basis.

4. Diane receives the second qubit of the entangled state |Φ+〉, which she measures in a basis
chosen in the same manner as Charlie: on input 0, she first applies a X rotation by −𝛾0 and then
measures in the Z basis; on input 1, she first applies a X rotation by −𝛾1 and then measures in
the Z basis.

The figure below exemplifies the scenario we have just described, in the case where 𝛼 = 0:

𝑅𝑥 (−𝛾𝑏)

𝑅𝑥 (−𝛾𝑏)

𝑏

𝑏

𝐶

𝐷
𝐴 𝐵
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The description above results in the following empirical model on 4 events, for parameters 𝛼 = 0,
𝛾0 = 47𝜋

256 and 𝛾1 = 162𝜋
256 .

ABCD 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
0000 0.176 0.074 0.074 0.176 0.002 0.019 0.019 0.211 0.211 0.019 0.019 0.002 0.000 0.000 0.000 0.000
0001 0.020 0.230 0.230 0.020 0.014 0.006 0.161 0.068 0.068 0.161 0.006 0.014 0.000 0.000 0.000 0.000
0010 0.020 0.230 0.230 0.020 0.014 0.161 0.006 0.068 0.068 0.006 0.161 0.014 0.000 0.000 0.000 0.000
0011 0.041 0.209 0.209 0.041 0.123 0.052 0.052 0.022 0.022 0.052 0.052 0.123 0.000 0.000 0.000 0.000
0100 0.211 0.019 0.019 0.002 0.000 0.000 0.000 0.000 0.213 0.037 0.037 0.213 0.002 0.019 0.019 0.211
0101 0.068 0.161 0.006 0.014 0.000 0.000 0.000 0.000 0.083 0.167 0.167 0.083 0.014 0.006 0.161 0.068
0110 0.068 0.006 0.161 0.014 0.000 0.000 0.000 0.000 0.083 0.167 0.167 0.083 0.014 0.161 0.006 0.068
0111 0.022 0.052 0.052 0.123 0.000 0.000 0.000 0.000 0.146 0.104 0.104 0.146 0.123 0.052 0.052 0.022
1000 0.002 0.019 0.019 0.211 0.213 0.037 0.037 0.213 0.000 0.000 0.000 0.000 0.211 0.019 0.019 0.002
1001 0.014 0.006 0.161 0.068 0.083 0.167 0.167 0.083 0.000 0.000 0.000 0.000 0.068 0.161 0.006 0.014
1010 0.014 0.161 0.006 0.068 0.083 0.167 0.167 0.083 0.000 0.000 0.000 0.000 0.068 0.006 0.161 0.014
1011 0.123 0.052 0.052 0.022 0.146 0.104 0.104 0.146 0.000 0.000 0.000 0.000 0.022 0.052 0.052 0.123
1100 0.000 0.000 0.000 0.000 0.211 0.019 0.019 0.002 0.002 0.019 0.019 0.211 0.176 0.074 0.074 0.176
1101 0.000 0.000 0.000 0.000 0.068 0.161 0.006 0.014 0.014 0.006 0.161 0.068 0.020 0.230 0.230 0.020
1110 0.000 0.000 0.000 0.000 0.068 0.006 0.161 0.014 0.014 0.161 0.006 0.068 0.020 0.230 0.230 0.020
1111 0.000 0.000 0.000 0.000 0.022 0.052 0.052 0.123 0.123 0.052 0.052 0.022 0.041 0.209 0.209 0.041

Since the table is large and the entries are irregular, below is a heat-map representation of the same
empirical model, making its block structure more readily apparent:

By construction, the empirical model is 100% supported by the causally incomplete space of input
histories shown right below, induced by the indefinite causal order shown left below.

The empirical model is causally inseparable for the space right above, with a causal fraction of
around 81.169% over its two causal completions. The two completions are induced by the causal
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orders total (𝐴, 𝐵, 𝐶) ∨ discrete (𝐷) and total (𝐵, 𝐴, 𝐶) ∨ discrete (𝐷), and their causaltopes are
128-dimensional.

Causal fraction: 39.164% Causal fraction: 42.005%

The causal fractions can be slightly shifted one way or the other: around 0.601% out of the 39.164%
on the left can also be explained by the space on the right, and around 1.420% out of the 42.005% on
the right can also be explained by the space on the left. Below we plot the overall causally separable
fraction as a function of the 𝛾0 and 𝛾1 measurement angles used by both Charlie and Diane, for a
selection of increasing values of the angle 𝛼 used by Alice:

The maximum achievable causal inseparability—that is, one minus the minimum achievable
causally separable fraction—decreases as 𝛼 increases: the manifold of empirical models spanned
by (𝛾0, 𝛾1) ∈ [0, 𝜋)2 steadily retreats into the convex hull of the two causaltopes, and the model
becomes causally separable for all values of the measurement angles around 𝛼 ≈ 0.9 or beyond.

The model becomes causally separable if the no-signalling constraint to Diane is dropped: the
model is 100% supported by the spaces of input histories induced by causal orders total (𝐴, 𝐵, 𝐶, 𝐷)
and total (𝐵, 𝐴, 𝐶, 𝐷), two of the four causal completions of total ({A,B} , 𝐶, 𝐷). From this
observation we can conclude that the empirical model exhibits contextual causality (Definition 5.29).
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6.8 Another Quantum Switch with Entangled Control

In this example we analyse a variation of the previous example where the control qubit for the quantum
switch is now part of a 3-partite state, this time a GHZ state in the X basis:

1
2

∑︁
𝑏0⊕𝑏1⊕𝑏2=0

|𝑏0𝑏1𝑏2〉

The setup is identical to that of the previous example, except that now there are two qubits entangled
with the control qubit, one measured by Diane—as in the previous example—and one measured by
Eve. Note that the choice of creating the GHZ state in the X basis is consistent with the entangled
state used in the previous example:

|Φ+〉 = 1
√

2

∑︁
𝑏0⊕𝑏1=0

|𝑏0𝑏1〉

The description above results in the following empirical model on 4 events, for parameters 𝛼 = 0,
𝛾0 = 3𝜋

5 and 𝛾1 = 7𝜋
25 . Since the table is very large and the entries are irregular, we resort to a

heat-map representation of the empirical model, making its block structure more readily apparent

By construction, the empirical model is 100% supported by the causally incomplete space of input
histories shown right below, induced by the indefinite causal order shown left below.
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The empirical model above is causally inseparable for the space right above, with a causally separable
fraction of around 70.582% over its two causal completions. The two completions are induced
by the causal orders total (𝐴, 𝐵, 𝐶) ∨ discrete (𝐷, 𝐸) and total (𝐵, 𝐴, 𝐶) ∨ discrete (𝐷, 𝐸), and their
causaltopes are 386-dimensional.

Causal fraction: 35.431% Causal fraction: 35.151%

On the right below, we plot the causally separable fraction as a function of the 𝛾0 and 𝛾1 for the
3-partite GHZ case at 𝛼 = 0. On the centre below, we reproduce the causally separable fraction of
the 2-partite Bell case at 𝛼 = 0, for comparison.

local fraction, Bell state single switch, Bell state single switch, GHZ state

Note how the GHZ variant has significantly lower minimum causally separable fraction, as well as
significantly smaller flat plateaus of causal separability. The two figures on the centre and right above
closely resemble Figures 1(a) and 1(b) of [5], showing the local fractions for measurements of the
Bell and GHZ state: the local fraction for the Bell state is reproduced on the left above, for ease of
comparison. This suggests a strong relationship between causal inseparability in our examples and
contextuality of the underlying entangled states, a phenomenon which will be explored more in detail
in Example 6.10 later on.

The model becomes causally separable if the no-signalling constraint to Diane and Eve is
dropped: the model is 100% supported by the spaces of input histories induced by causal
orders total (𝐴, 𝐵, 𝐶, 𝐷, 𝐸) and total (𝐵, 𝐴, 𝐶, 𝐷, 𝐸), two of the four causal completions of
total ({A,B} , 𝐶, 𝐷, 𝐸). From this observation we can conclude that the empirical model exhibits
contextual causality (Definition 5.29).
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6.9 Two Entangled Quantum Switches

In this example we consider two quantum switches—one between Alice and Bob, the other between
Charlie and Diane—with entangled controls, where Eve measures the control of the Alice/Bob switch
and Felix measures the control of the Charlie/Diane switch. Specifically, for angles 𝛾0, 𝛾1 ∈ [0, 𝜋):

1. A 2-qubit Bell state |Φ+〉 is created: one qubit is sent to the control of the Alice/Bob switch,
the other is sent to the control of the Charlie/Diane switch.

2. Alice and Bob are in the left quantum switch, with the first of the two |Φ+〉 qubits as its control
and the maximally mixed state as the state for its input qubit.

3. Charlie and Diane are in the right quantum switch, with second of the two |Φ+〉 qubits as its
control and the maximally mixed state as the state for its input qubit.

4. Alice, Bob, Charlie and Diane all do the same thing: they perform an X measurement on the
incoming qubit, using the measurement outcome as their individual output, and then encode
their individual input into the X basis of the outgoing qubit.

5. The output qubit of each switch is discarded. Eve and Felix receive the control qubit of the left
and right switch respectively, and do the same thing: on input 0, they apply a X rotation by
−𝛾0 and then measure in the Z basis; on input 1, they first apply a X rotation by −𝛾1 and then
measure in the Z basis.

The figure below exemplifies the scenario we have just described:

𝐸

𝐴 𝐵

𝑅𝑥 (−𝛾𝑏)

𝑏

𝐹

𝐷𝐶

𝑅𝑥 (−𝛾𝑏)

𝑏

We consider the empirical model on 6 events obtained for parameters 𝛾0 = 𝜋
5 and 𝛾1 = 3𝜋

5 . Since
the table is very large, we resort to a heat-map representation of the empirical model, making its
block structure more readily apparent; this is shown in Figure 6.1 on p.211. By construction, the
empirical model is 100% supported by the causally incomplete space of input histories shown right
below, induced by the indefinite causal order shown left below.
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Figure 6.1: Empirical model for two entangled switches, with parameters 𝛾0 = 𝜋
5 and 𝛾1 = 3𝜋

5 .

The empirical model is causally inseparable for the space right above, with a causally separable
fraction of around 86.936% over two of its four causal completions and 0% over the other two.
The two causal completions supporting a non-zero causal fraction of the empirical model are the
spaces of input histories induced by the two definite causal orders on 6 events shown below, and their
causaltopes are 1848-dimensional.

Causal fraction: 43.468% Causal fraction: 43.468%

The causal fractions shown above are unambiguous: the component for each one of the two spaces is
0% supported by the other. On the left below, we plot the causally separable fraction as a function of
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the 𝛾0 and 𝛾1 measurement angles used by both Eve and Felix. On the right below, we reproduce the
causally separable fraction of the Bell state single switch example at 𝛼 = 0, for comparison.

double switch, Bell state single switch, Bell state

Note how the double switch has slightly higher minimum causally separable fraction over the (𝛾0, 𝛾1)
parameter space—86.936% instead of 81.169%—when compared to the single switch at 𝛼 = 0.
However, also note how the double switch is causally inseparable at all angle values other than
multiples of 𝜋/2, while the single switch shows flat plateaus of causal separability.

The causal separability of the empirical model increases if the no-signalling constraint between
the two triples of agents is dropped: the remaining 13.063% is fully explained by the total orders
total (𝐶, 𝐷, 𝐹, 𝐴, 𝐵, 𝐸) and total (𝐷,𝐶, 𝐹, 𝐵, 𝐴, 𝐸). Note that an exhaustive search over all switch
spaces would have been infeasible in this case: for 6 events, they are defined by 16511297126400
distinct sub-spaces of dimension around 2000, within an ambient space of dimension

(
26)2

= 4096.
We therefore conclude that the empirical model is causally separable with respect to the indiscrete
preorder and exhibits contextual causality.

This example highlights the importance of defining causal separability relative to an ambient
causal order (or, more generally, an ambient space of input histories): when no-signalling constraints
between the two triples of agents are enforced—as could very much be in a real-world experimental
scenario—then the model is causally inseparable, witnessing indefinite causal order. If no constraints
are enforced, on the other hand, then the model becomes causally separable, and cannot be used as a
witness of indefinite causal order. Hence, a relative notion of causal separability affords concrete
additional opportunities in the exploration of indefinite causality.

6.10 Two Contextually Controlled Classical Switches.

In the previous three examples, we have provided evidence of a connection between causal insepara-
bility and contextuality: the figures below, depicting the causally separable fractions for the three
examples as a function of the two measurement angles, closely resemble Figures 1(a) and 1(b) from
[5], depicting the contextual fractions for analogous measurements of the Bell and GHZ state.
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single switch, Bell state single switch, GHZ state double switch, Bell state

In this example, we make the connection between contextuality and causal inseparability explicit,
by correlating the causal order of the parties in two bipartite quantum switches with the outcomes
of a Bell experiment. This is, to our knowledge, the first demonstration of the phenomenon of
contextual causality, where causal structure is correlated to contextual information, in such a way that
non-locality/contextuality implies causal inseparability. Indeed, the causally separable fraction for the
empirical model in this example is exactly the local fraction for the Bell experiment; in future work,
we will also explore ways to characterise the connection in more general settings—such as those from
the previous three examples—where the correlation between contextuality and causal structure might
be imperfect. The experiment proceeds as follows, with Alice and Bob’s output values fixed to 0:

1. Two qubits in a Bell state |Φ+〉 are shared by Alice and Bob at the start of the protocol.

2. On input 0, Alice applies a −𝛾0 X rotation to her qubit, then decoheres it in the Z basis; on
input 1, Alice applies a −𝛾1 X rotation to her qubit, then decoheres it in the Z basis. Alice
forwards the qubit to the control of the switch between Charlie and Diane.

3. On input 0, Bob applies a −𝛾0 X rotation to his qubit, then decoheres it in the Z basis; on input
1, Bob applies a −𝛾1 X rotation to his qubit, then decoheres it in the Z basis. Bob forwards the
qubit to the control of a switch between Eve and Felix.

4. Inside the switches, Charlie, Diane, Eve and Felix all do the same thing: they perform a Z
measurement on the incoming qubit, using the measurement outcome as their individual output,
and then encode their individual input into the Z basis of the outgoing qubit.

5. Both the outgoing qubit and the control qubit of the two switches are discarded.

The figure below exemplifies the scenario we have just described:
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𝐶 𝐷

𝐴 𝐵

𝐹𝐸

𝑅𝑥 (−𝛾𝑏)

𝑏

𝑅𝑥 (−𝛾𝑏)

𝑏

The description above gives rise to an empirical model on 6 events: for the moment, we focus on
the case 𝛾0 = 0, 𝛾1 = 2𝜋

3 . Since the table is very large, we resort to a heat-map representation of the
empirical model, making its block structure more readily apparent; this is shown in Figure 6.2 on
p.215. By construction, the empirical model is 100% supported by the causally incomplete space of
input histories shown right below, induced by the indefinite causal order shown left below.

The empirical model is causally inseparable for the space right above: it has a causally separable
fraction of 75%, coinciding with the local fraction for the Bell empirical model used to control the
switches. The space has 22 · 22 = 16 causal completions: these are all possible combinations of the
22 = 4 switch spaces on events {A,C,D} having A as first event and the 22 = 4 switch spaces on
events {B,E, F} having B as first event. Of the 16 causal completions, only the 6 spaces shown
below support a non-zero fraction of the empirical model: each supports exactly 12.5%, with no
fraction in common between spaces, for a total of 6 · 12.5% = 75%.

In the first space, Charlie succeeds Diane when Alice’s input is 0 and precedes her when Alice’s
input is 1, while Eve succeeds Felix when Bob’s input is 0 and precedes him when Bob’s input is 1.
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Figure 6.2: Empirical model for two contextually controlled switches.

In the second space, Charlie precedes Diane when Alice’s input is 0 and succeeds her when Alice’s
input is 1, while Eve precedes Felix when Bob’s input is 0 and succeeds him when Bob’s input is 1.

In the third space, Eve always precedes Felix, while Charlie precedes Diane when Alice’s input is 0
and succeeds her when Alice’s input is 1:
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In the fourth space, Eve always succeeds Felix, while Charlie succeeds Diane when Alice’s input is 0
and precedes her when Alice’s input is 1:

In the fifth space, Charlie always precedes Diane, while Eve precedes Felix when Bob’s input is 0
and succeeds him when Bob’s input is 1:

In the sixth and final space, Charlie always succeeds Diane, while Eve succeeds Felix when Bob’s
input is 0 and precedes him when Bob’s input is 1:

Because its construction relies on contextuality of the inputs to the switches, we expect the empirical
model to be causally separable once the no-signalling constraint between Alice and Bob is removed.

Below (left) we plot the causally separable fraction as a function of the angles 𝛾0, 𝛾1 ∈ [0, 𝜋] ,
which we compare to the local fraction for the Bell state (centre) and to the analogous landscape for
the single switch (right). The causally separable fraction for this example matches the local fraction
for the underlying Bell state exactly, providing unequivocal evidence for contextual causality in this
setting.

contextually controlled switches local fraction, Bell state single switch, Bell state
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