
Experimental Comparison of Ansätze for
Quantum Natural Language Processing

Nikhil Khatri

Lady Margaret Hall

University of Oxford

A thesis submitted for the degree of

Master of Science in Advanced Computer Science

Trinity 2022

Acknowledgements

Dimitri Kartsaklis, Aleks Kissinger, Mark Koch, My family, My friends back home

1

Abstract

The DisCoCat model of natural language is a framework which serves as the foundation for

several contemporary experiments in Quantum Natural Language Processing (QNLP). In this

model, sentences are represented as string diagrams which compose the meaning of the entire

sentence from the meaning of each word. An essential step in performing QNLP tasks is

converting DisCoCat string diagrams into quantum circuits, through a mapping known as an

ansatz. While several ansätze have been studied in the broader quantum machine learning

literature, no comparative study of ansätze exists for the specific case of QNLP models. In

this work, we implement multiple ansätze and compare their performance on a variety of

QNLP tasks. In doing so, the first experimental results for a QNLP model applied to the

paraphrase identification task are presented. We propose a novel approach to overcome the

out-of-vocabulary problem faced by contemporary QNLP models, and demonstrate that our

proposed method outperforms naive approaches by a significant margin. Further, experi-

mental results relating to the barren plateau phenomenon in quantum machine learning are

provided. We present evidence suggesting that circuits derived from DisCoCat string dia-

grams for binary classification tasks are no more susceptible to the barren plateau problem

than regular quantum machine learning circuits.

Contents

1 Introduction 4

2 Background 6

2.1 Quantum Computing . 6

2.1.1 Foundations . 7

2.1.2 Parameterised Quantum Gates . 9

2.1.3 ZX Calculus . 9

2.1.4 Measurements and Probabilities . 11

2.1.5 Implementing Quantum Circuits . 12

2.2 Quantum Machine Learning . 13

2.3 Natural Language Processing . 14

3 QNLP with String Diagrams 16

3.1 DisCoCat . 16

3.2 The QNLP Pipeline . 17

3.2.1 Parsing and Diagram Generation . 18

3.2.2 Diagram Rewriting . 18

3.2.3 Parameterisation . 20

3.2.4 Training . 21

3.2.5 Putting it all Together . 23

3.3 lambeq . 24

1

4 Ansätze for QNLP 26

4.1 Considered Ansätze . 27

4.2 Tasks . 30

4.2.1 Meaning Classification Task . 30

4.2.2 Relative Pronoun Task . 31

4.3 Experimental Setup . 32

4.4 Results . 34

4.4.1 Comparison with Prior Work . 38

5 Paraphrase Identification Using QNLP 39

5.1 Dataset . 40

5.2 State Comparison Circuit . 41

5.3 Experimental Setup . 43

5.4 Results . 44

5.5 Summary of Ansatz Comparison . 48

6 Handling Unknown Words in QNLP 50

6.1 Background . 50

6.1.1 Word Embeddings . 51

6.1.2 FastText Embeddings . 52

6.2 OOV Mitigation Strategies . 52

6.3 Experimental Setup . 55

6.4 Results . 56

6.4.1 Comparison with Naive Models . 60

7 Investigating Barren Plateaus 63

7.1 Barren Plateaus . 63

7.2 Gradient of the Binary Cross Entropy Loss Function 65

7.3 Barren Plateaus in Multi-Circuit Models . 68

7.4 Experimental Evaluation of the Barren Plateau for the BCE Loss Function . . 70

2

7.4.1 Experimental Setup . 71

7.4.2 Results . 72

7.5 Expressibility of DisCoCat Circuits . 75

7.5.1 Experimental Setup . 76

7.5.2 Results . 77

8 Conclusion 82

8.1 Summary of Results . 82

8.2 Future Work . 83

Bibliography 85

Appendix A Rewrite Rules for Paraphrase Identification Task 92

3

Chapter 1

Introduction

The DisCoCat model of natural language, described by Coecke et al. [1], presents a unification

of two previously orthogonal approaches to modelling natural language semantics. The first

is the distributional approach, in which word meanings are represented in finite dimensional

vector spaces, where the proximity of vectors indicates semantic similarity. The second is

the compositional approach, where meanings of expressions arise from composition of the

meanings of individual components. The DisCoCat model combines these two approaches

and presents a Distributional Compositional model of language, which has its foundation in

constructions from Category theory.

It has been argued that NLP tasks using the DisCoCat framework are strongly compat-

ible with quantum computing [2, 3]. That is, NLP problems represented in the DisCoCat

model are a natural fit for quantum computation, owing to the common categorical structure

underlying DisCoCat and the Hilbert space formalism of quantum computing. This has mo-

tivated research into the field of Quantum Natural Language Processing (QNLP). Recently,

experiments by Meichanetzidis et al. [4] and Lorenz et al. [5] have demonstrated that NLP

tasks can be solved on contemporary quantum devices. It is the experimental realisation of

QNLP that we consider in our work. We extend the state of the art in 3 ways:

1. We implement and apply new ansätze from quantum machine learning literature to the

QNLP tasks considered by Lorenz et al. [5] and demonstrate that the new ansätze

4

outperform the standard IQP ansatz used in QNLP thus far.

2. We consider the paraphrase identification task: that of determining whether two sen-

tences have the same meaning, and present the first experimental results for a QNLP

model applied to this problem.

3. We propose a novel approach to handling out-of-vocabulary words when evaluating

QNLP models, and demonstrate that models augmented with our method yield signifi-

cant performance improvement.

In addition to these contributions to QNLP, we present a study of the barren plateau phe-

nomenon. We provide evidence that the barren plateau phenomenon does not always manifest

when using a non-linear loss function. We detail an argument that quantum circuits for binary

classification problems generated using the DisCoCat framework are no more susceptible to

the barren plateau phenomenon than general QML circuits. The rest of this report is arranged

as follows:

• Chapter 2 presents the background needed for this report.

• In Chapter 3 we describe the DisCoCat framework for QNLP on which our work is

based.

• Chapter 4 describes the ansätze we consider, and presents results comparing the per-

formance of these for the meaning classification and relative-pronoun classification tasks.

• In Chapter 5 we describe the paraphrase identification task, and present the first

QNLP results for the same.

• In Chapter 6 we consider the out-of-vocabulary problem in QNLP. We propose a novel

solution to mitigate its effects and present the results of our method.

• In Chapter 7 we turn our attention to the barren plateau phenomenon in quantum

machine learning. We demonstrate experimental results which suggest that some non-

linear loss functions are less susceptible to the barren plateau problem. We further

experimentally compare the expressibilities of DisCoCat circuits with regular layered

circuits.

5

Chapter 2

Background

2.1 Quantum Computing

Quantum computing is the use of quantum-mechanical phenomena to perform computational

tasks. While the past few years have seen quantum computing receive broad public atten-

tion, quantum computers were first proposed by Feynman and others in the 1980s [6, 7, 8].

The present generation of quantum computers are called NISQ (Noisy Intermediate Scale

Quantum) devices [9]. These are devices of up to a few hundred qubits (quantum bits),

characterised by appreciable noise when performing computation. NISQ devices are suscep-

tible to decoherence: the loss of information in a qubit due to unwanted interaction with the

environment. This decoherence limits the maximum depth of circuits which can be imple-

mented on these devices. Despite these shortcomings of contemporary quantum computers,

Google has presented some evidence of quantum supremacy using a 53-qubit quantum com-

puter [10]. Further, it has been demonstrated that quantum machine learning (QML) tasks,

in specific variational quantum algorithms are well-suited to the NISQ era of quantum com-

puting [11, 12, 13]. In this section, we provide the quantum computing background necessary

for our work.

6

2.1.1 Foundations

The fundamental unit of all quantum computation is a qubit, or quantum bit. The state of

a qubit is represented using a unit vector in a 2-dimensional complex vector space (C2) [14].

There are two special qubit states, called the Z basis (or computational basis) states:

|0⟩ =

[
1

0

]
|1⟩ =

[
0

1

]
(2.1)

Any pure state of a qubit can be written as a normalised linear combination of these 2 states:

|ψ⟩ = α|0⟩+ β|1⟩ (α, β ∈ C, |α|2 + |β|2 = 1) (2.2)

A popular method of visually representing a single qubit’s state is the Bloch sphere, shown in

Figure 2.1. Pure states of a single qubit correspond to the surface of the Bloch sphere. The

two Z basis states form the north and south poles of the Bloch sphere. A system of n qubits

is represented by taking the tensor product of the vectors of the individual qubits. Thus if

|ψ⟩ is a system of n qubits, |ψ⟩ ∈ (C2)⊗n = C2n .

Z

Y

X

Figure 2.1: The Bloch Sphere

Quantum computation is commonly represented in circuit form. In a quantum circuit,

wires represent qubits, which are acted upon using quantum gates. These are unitary matrices,

acting on the complex vector space of qubits. Some common single-qubits gates are shown

7

below.

X =

[
0 1

1 0

]
Z =

[
1 0

0 −1

]
H =

1√
2

[
1 1

1 −1

]
(2.3)

The X gate (formally the Pauli-X gate) is analogous to a classical NOT gate, and performs

a simple operation: exchanging the two computational basis states.

|0⟩ 7→ |1⟩

|1⟩ 7→ |0⟩

On the Bloch sphere, the Pauli-X (X) and Pauli-Z (Z) gates represent rotations of π radians

about the X and Z axes respectively. The Hadamard gate (H) sends a Z basis state into the

equal superposition of the two Z basis states:

|0⟩ 7→ 1√
2
(|0⟩+ |1⟩) = |+⟩

|1⟩ 7→ 1√
2
(|0⟩ − |1⟩) = |−⟩

These are the X basis states: |+⟩ and |−⟩. The Hadamard gate thus implements a change

of basis from the Z to the X basis, and vice-versa. A fundamental 2-qubit gate is the CNOT

gate, which applies the NOT gate to the second qubit (target), if the first qubit (control) is

in state |1⟩.

⊕
=


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 (2.4)

The adjoint (conjugate transpose) of a state is called an effect. The adjoint of a state |ψ⟩ is the

effect ⟨ψ|. A special state and effect pair which are particularly important in the DisCoCat

formalism of QNLP are the Bell state, and Bell effect.

⊕

H0

0 ⊕

H 0

0

(2.5)

This state is represented by |Φ+⟩, and is a maximally entangled state on 2 qubits, |Φ+⟩ =

8

|00⟩+|11⟩√
2

, with the special property that measuring both qubits will always yield the same

result. The Bell effect is the adjoint of the Bell state and is an essential construct in DisCoCat

string diagrams (Section 3.1). Note that the Bell effect contains the adjoint of the |0⟩ basis

state, which represents a post-selection. If a qubit is post-selected with state |0⟩, then we only

record the output of an experiment when measuring this qubit yields outcome |0⟩. The Bell

effect has 2 post-selected qubits, the performance implications of which are discussed further

in Section 2.1.5.

2.1.2 Parameterised Quantum Gates

There exist parameterised gates, for which the unitary matrix representing their action is

dependent on some parameter θ. Rotation about the X and Z axis of the Bloch sphere, for

example, need not be limited to π radians, and can instead be by some arbitrary angle θ.

RX(θ) =

 cos(θ2) −i · sin(θ2)

−i · sin(θ2) cos(θ2)

 RZ(θ) =

exp(−i θ2) 0

0 exp(i θ2)

 (2.6)

There also exist controlled versions of these gates, called CRZ and CRX gates respectively.

RX(θ) RZ(θ)
(2.7)

These find extensive use in the quantum circuits we describe in Chapter 4. Quantum circuits

which have gates with free parameters are termed Variation Quantum Circuits (VQCs). These

form the bedrock of quantum machine learning and provide the basis for most contemporary

practical applications of NISQ quantum computing [11, 12, 13].

2.1.3 ZX Calculus

The ZX calculus, introduced by Coecke and Duncan [15] is a graphical calculus for reasoning

about quantum phenomena. Quantum computations are represented as string diagrams,

9

composed primarily of generators called spiders:

α...
...m n := |0⟩⊗n⟨0|⊗m + eiα|1⟩⊗n⟨1|⊗m (2.8)

α...
...m n := |+⟩⊗n⟨+|⊗m + eiα|−⟩⊗n⟨−|⊗m (2.9)

Each wire represents a single qubit (C2), as in quantum circuits, and the generators represent

matrices. String diagrams (in the ZX calculus and more generally) can thus be viewed as

enriched tensor networks [16, 17]. The ZX calculus has been proven to be complete for

quantum mechanics by Ng and Wang [18]. Any quantum circuit can be represented as a

ZX diagram. Each of the quantum circuits presented in (2.3) can be represented in the ZX

calculus (up to a constant scalar factor) as follows:

= πX = πZ (2.10)

=H

⊕
= (2.11)

All ZX diagrams and DisCoCat (Section 3.1) diagrams in this work are oriented in a top-down

manner. That is, states appear at the top of a diagram, and information flows downward.

Thus in ZX diagrams, the Z-basis states are represented as:

0
= 1√

2

1 π
= 1√

2
(2.12)

Often when working with ZX diagrams, non-zero scalar factors are ignored [16]. This is

especially the case when it is known that the diagram represents a unitary matrix or a nor-

malised state. The Bell state and Bell effect have particularly elegant representations in the

ZX calculus, being represented by a cap and cup respectively.

(2.13)

The cup (Bell effect) finds significant use as both a grammatical construct, and a tensor

contraction in the DisCoCat language model (Section 3.1). To reason about quantum com-

putation, the ZX calculus defines several rewrite rules. Below, we describe the rules we use

10

in our work. For the complete set of rules, we refer the reader to [16].

α

β

...
......

......
α + β

...
...=

sf
α

...
... =

h
α

...
... =

id
(2.14)

Another important property of ZX diagrams (and DisCoCat diagrams) we make use of, is

the “only connectivity matters” (ocm) property [19]. This states that we can move generators

about the plane arbitrarily, provided that the ordering of inputs and outputs is maintained.

In particular, this allows us to perform rearrangements such as:

ψ

ψ=
ocm (2.15)

This simple form of diagram rewriting is a powerful tool for optimising DisCoCat diagrams,

which we discuss further in Section 3.2.2.

2.1.4 Measurements and Probabilities

For measuring quantum states, we consider the case of projective measurement [14]. Projective

measurements are defined by an observable M : a Hermitian operator. Each such observable

M has a spectral decomposition:

M =
∑
m

m · Pm (2.16)

where Pm is the “projector onto the eigenspace” of M , with eigenvalue m [14]. Pm can be

used to determine the probability that a measurement yields outcome m. When measuring a

quantum state |ψ⟩, the probability that outcome m is observed is given by:

p(m) = ⟨ψ|Pm|ψ⟩ (2.17)

For example, when measuring in the computational basis, the possible outcomes are {0, 1},

for which the projectors are, respectively P0 = |0⟩⟨0| and P1 = |1⟩⟨1|. Thus the probability

of obtaining output 0 when measuring a state |ψ⟩ is:

p(0) = ⟨ψ|0⟩⟨0|ψ⟩ = |⟨ψ|0⟩|2 (2.18)

11

A related concept is the expectation value of a quantum measurement. The expectation value

is the average result of a measurement using a Hermitian operator, defined as:

E(M) = ⟨M⟩ = ⟨ψ|M |ψ⟩ (2.19)

Outcome probabilities defined by projective measurements as presented above are equivalent

to the measurement probabilities defined by the Born rule. We adapt the presentation of the

Born rule from Coecke and Kissinger [19]. Given state |ψ⟩, the probability of observing it in

the state |ϕ⟩, after measuring it in the appropriate orthonormal basis, is given by:

P (|ψ⟩ = |ϕ⟩) = |⟨ψ|ϕ⟩|2 (2.20)

In diagrammatic notation, two normalised states can be compared in a very elegant manner.

To compare two quantum states |ψ⟩ and |ϕ⟩, we can evaluate the following diagram, consisting

of a state |ϕ⟩ plugged into the effect ⟨ψ| (obtained by taking the adjoint of |ψ⟩):

ϕ

ψ

(2.21)

Taking the square of the absolute value of this diagram, we get precisely the Born rule proba-

bility |⟨ψ|ϕ⟩|2. This serves as a formal measure of similarity between two normalised quantum

states. To compare two quantum states in diagrammatic representation, we simply need to

plug the two wires together, calculate the complex number that this diagram represents, and

take the square of its absolute value. This representation is particularly useful when simulating

quantum computation through tensor contraction, as discussed in the following section.

2.1.5 Implementing Quantum Circuits

Once a quantum circuit or ZX diagram representing a desired computation is generated, it

is necessary to obtain the output of the computation. This can either be done by physically

implementing the gates of the circuit on a quantum device, or through classical simulation.

When physically implementing circuits on a NISQ device, multiple shots (executions) of the

12

circuit are run, and the output is measured after each execution. This yields a probability

distribution over outputs, which can be normalised to arrive at an approximation of the state

produced by the circuit.

One construction that requires special consideration when implementing a circuit on a

quantum device is post-selection. Typically post-selection is implemented by performing

measurements on all qubits, and discarding all results where measuring a qubit did not yield

the post-selected value. This process incurs a cost exponential in the number of post-selected

qubits [4]. This problem is of significant consequence in the QNLP case, where the majority

of qubits in a circuit are post-selected (Sections 3.2.2, 3.2.3).

In absence of a quantum device, it is possible to simulate quantum circuits on classical

devices. One method in which this can be achieved is through contracting the tensor network

that the quantum circuit represents. Unlike shot-based execution on quantum devices, this

method yields an exact result. For an n qubit circuit, contracting the tensor network will

yield precisely the state vector |ψ⟩ ∈ C2n prepared by the circuit. For tensor networks where

there is no input or output wire, the contraction will yield a single complex number as output.

One use-case for such a diagram is the comparison of two quantum states using the Born rule

as described in Section 2.1.4. While contracting tensors is exact, it also comes at a high

computational cost, since the dimension of each tensor is exponential in the number of qubits

associated with it. In all experiments described in this work, we employ classical simulation

through tensor contraction.

2.2 Quantum Machine Learning

Machine learning (ML) is the design of computer programs which learn to improve their per-

formance at solving some task, through “experience” [20]. Thus a machine learning model is a

program which looks at input data and learns to solve some computational task. A supervised

learning task is one in which the model is provided with a training dataset (Xtrain, Ytrain)

consisting of example input-output pairs (xi, yi). The model f learns a mapping from the

13

input to the expected output

f : Xtrain → Ytrain

and the expectation is that the model will generalise, and be able to predict output values

for inputs it did not see during training:

f(Xtest) = Ŷtest

Quantum Machine Learning (QML) is the application of quantum computers to ma-

chine learning tasks, where the data is often classical (non-quantum) [21]. This is typically

achieved through the use of Variational Quantum Circuits (VQCs, Section 2.1.2), trained

using quantum-classical hybrid optimisation schemes [21, 11]. In such a QML model, a VQC

U(θ) is used to prepare a parameterised quantum state |ψ(θ)⟩ on a quantum device, or classical

simulator. This quantum state is then measured, yielding an expectation value, as described

in Section 2.1.4. A loss function L uses this expectation value to calculate how good an

approximation of the expected output is generated by the QML model. A classical optimiser

performs this process multiple times, with varying candidate parameter assignments θ, in or-

der to obtain an optimal parameter assignment which minimises the value of the loss function

L(θ). We describe each step involved in training such a QML model for NLP tasks in detail

in Section 3.2.

2.3 Natural Language Processing

Broadly, Natural Language Processing (NLP) is the use of computational techniques to under-

stand and manipulate natural language [22]. The vast majority of contemporary approaches

to NLP can be considered Machine Learning with text data. That is, they apply standard

ML models like neural networks to textual datasets, without any explicit consideration of the

grammatical structure of data [2]. The DisCoCat model of QNLP which we use in this work,

in contrast, is motivated by linguistic structure. It is an approach to NLP that utilises the

grammatical structure of sentences to shape computation. This model, and the grammatical

14

structures which form its foundation are discussed in Section 3.1.

In our work, we apply QNLP approaches to NLP tasks which can be represented as

binary classification. In Chapter 4 we consider the task of meaning classification (Task 4.2.1):

determining which of two themes a given sentence belongs to. We then consider the more

grammatically-involved task of determining whether a given noun phrase contains an object-

relative or subject-relative clause (Task 4.2.2). Finally, we turn our attention to the paraphrase

identification task, where the model attempts to predict whether two sentences have the same

meaning (Task 5.0.1).

15

Chapter 3

QNLP with String Diagrams

3.1 DisCoCat

The model of QNLP that we use throughout this work is based on the DisCoCat model of

natural language. The DisCoCat model was proposed by Coecke et al. as a Distributional,

Compositional, Categorical model of natural language [1]. DisCoCat utilises the grammatical

structure of a sentence to generate a semantic representation for it, through the composition

of semantic representations of its words. The distributional aspect of the model is that the

semantic representations of words are vectors in some finite-dimensional vector space.

The grammatical structure underlying DisCoCat is a pregroup grammar, due to Lam-

bek [23]. A pregroup grammar is a partially-ordered monoid, where each element is a type p,

with a left adjoint pl and a right adjoint pr, such that the following conditions hold:

p · pr ≤ 1 ≤ pr · p pl · p ≤ 1 ≤ p · pl (3.1)

To treat this partially-ordered monoid as a grammar, the two axioms p · pr ≤ 1 and pl · p ≤ 1

serve as reductions in the grammar, and are represented as:

p · pr → 1 pl · p→ 1 (3.2)

Example types for a pregroup grammar are s, representing well-formed sentences, and n

representing nouns or noun phrases. Using this, we can present the grammatical derivation

for an example sentence: “Alice loves Bob”. Here Alice and Bob are nouns, having type

16

n, and loves is a transitive verb, with type nr · s · nl. The grammatical derivation for this

sentence, using the reductions in (3.2) is:

n · (nr · s · nl) · n ≤ 1 · s · nl · n ≤ 1 · s · 1 ≤ s (3.3)

Such a reduction can be represented graphically as:

Alice loves Bob
n nnr · s · nl

Here each cup represents the application of a reduction. This pregroup structure can be

mapped to the category of finite dimension vector spaces FDVect, through a functor : a

category-theoretic structure-preserving map [24]. This mapping converts types into vector

spaces (n 7→ N, nr · s · nl 7→ N ⊗ S ⊗ N), and converts reductions into tensor contractions.

Applying this functor to the reduction for our example sentence, we get the DisCoCat diagram:

N

Alice

N S N

loves

N

Bob

Here each word is represented by a vector in a vector-space determined by its type. The

meaning of the sentence is calculated through tensor contraction of the diagram, the structure

of which is obtained from the sentence’s grammatical reduction. In this manner DisCoCat

provides a method to represent the meaning of a sentence through the composition of the

distributional meanings of individual words.

3.2 The QNLP Pipeline

In this section we describe the sequence of steps involved in any QNLP task using the Dis-

CoCat framework. We describe the process from receiving a training dataset to generating a

trained QNLP model which can be evaluated on a test dataset. The pipeline we describe is

adapted from the pipeline proposed by Kartsaklis et al. [17] for the lambeq library. lambeq

is a toolkit for QNLP, implemented in Python, which provides functionality for each step of

17

string
diagramsentence

Parsing
optimised
diagram

Diagram
Rewriting quantum

circuit

Paramet-
erisation trained

QNLP model

Training

Figure 3.1: The QNLP pipeline. Adapted from Kartsaklis et al. [17]

this pipeline. We leverage lambeq extensively in this work, and describe it in further detail

in Section 3.3. A high-level view of the pipeline can be seen in Figure 3.1.

3.2.1 Parsing and Diagram Generation

The DisCoCat model of natural language which is the foundation of our approach to QNLP,

is based on representing sentences as string diagrams. The first step thus, is to generate

DisCoCat diagrams for input sentences. While DisCoCat is originally defined in terms of a

pregroup grammar, there is no statistical pregroup parser capable of providing derivations for

arbitrary sentences [25, 17]. To circumvent this problem, Yeung and Kartsaklis [25] describe a

version of DisCoCat which can generate a string diagram representing the syntactic structure

of a sentence using a Combinatory Categorical Grammar (CCG) [26]. Several statistical CCG

parsers are available [27, 28], which can be used to generate DisCoCat diagrams for arbitrary

text. Figure 3.2 shows the DisCoCat diagram generated for the sentence “Alice loves Bob”

by the Bobcat parser [27, 25] provided in lambeq.

n

n.r s n.l

n

Alice

loves

Bob

Figure 3.2: DisCoCat string diagram for the sentence “Alice loves Bob”

3.2.2 Diagram Rewriting

In their default state, DisCoCat string diagrams consist of a layer of word-states tensored

together, followed by a layer consisting of cups, and identity wires. While this is a natural

18

structure given the relation with pregroup grammars described above, it is not the only

possible arrangement of the states. In fact, it is often possible to restructure diagrams in a

manner which makes downstream tasks more efficient. Consider the diagram in Figure 3.2,

generated for the sentence “Alice loves Bob”.

Recalling that our goal is to eventually turn this diagram into a circuit which can be

run on a quantum computer, we must take into account the efficiency of implementation of

this quantum circuit. A constraint commonly imposed on quantum circuits is the number of

qubits they are allowed to have. In classical simulation of quantum circuits, the complexity

of simulation is exponential in the number of qubits, in the general case. When physically

implementing a quantum circuit, it is essential that the circuit fits on the physical device.

The number of qubits available on contemporary quantum computers is very limited. The

largest superconducting quantum computer from IBM at the time of writing has at most 127

qubits [29]. Devices available for public use typically have far fewer qubits available, often

less than 10. It is thus beneficial to minimise the number of qubits of our quantum circuits.

One method of reducing the width of a DisCoCat quantum circuit, before even converting the

string diagram into a circuit is to remove cups from the diagram, by converting a state into

an effect, as shown in Figure 3.3.

n.r s n.l
loves

Bob

Alice

Figure 3.3: DisCoCat string diagram for the sentence “Alice loves Bob”, after removing cups.

Here the Alice and Bob states were turned into effects using the ocm property described

in (2.15), reducing the width of the circuit. Another advantage of this is that the final

circuit contains fewer post-selections, which improves efficiency when running experiments.

Other diagrammatic rewrites exist which serve to improve computational efficiency (such as

removing cups), or which exploit linguistic properties to improve performance on the learning

task. A complete list of rewrite rules used in this work can be found in Appendix A.

19

0 0 0

H H H

RZ(θl0)

RZ(θl1)

RX(θa0)

RZ(θa1)

RX(θa2)

0 0

RX(θb0)

RZ(θb1)

RX(θb2)

Figure 3.4: Quantum circuit generated by applying the IQP ansatz to the optimised string
diagram in Figure 3.3

.

3.2.3 Parameterisation

Once a DisCoCat string diagram is generated for a sentence, for it to be run on a quantum

computer requires it to be converted into a parameterised quantum circuit. For this, we

employ the use of an ansatz. Ansätze are maps which define concrete structures for each box

and wire in the string diagrams. For each box in the string diagram, the ansatz choice defines

a parameterised quantum circuit (possibly a state or effect), which represents it. When using

an ansatz to convert a string diagram into a quantum circuit, the number of qubits associated

with each type is provided as hyperparameters. For example, qn and qs represent the number

of qubits assigned to the noun and sentence types, respectively. These affect the number of

qubits in the whole circuit, and also affect the number of parameters associated with each

word. An ansatz which has found significant use in prior literature is the IQP (Instantaneous

Quantum Polynomial) ansatz [30]. Figure 3.4 shows the circuit generated from the diagram

in Figure 3.3, by associating a single qubit with each type (qs = qn = 1). Here {θa0, θa1, θa2},

{θl0, θl1} and {θb0, θb1, θb2} are the parameters associated with the words Alice, loves and Bob

respectively.

20

The structure of the IQP ansatz is described in detail in Chapter 4. In QML tasks, it

is common to generate a layered circuit, consisting of multiple layers of an ansatz, with no

additional structure. Coecke et al. describe this as an empirically-motivated choice [3]. In the

DisCoCat model of QNLP however, high-level circuit structure is conceptually motivated (by

the pregroup grammar of a sentence), and only the final details are filled in by the ansatz.

The choice of ansatz remains extremely important, however, as it controls the size of the final

circuit, the number of parameters, and most importantly: it can significantly impact learning

performance. This portion of the pipeline is what we are primarily concerned with through

the rest of this work. We describe the ansätze which we use in our experiments, and their

properties in Chapter 4.

3.2.4 Training

Once parameterisation is complete, it is time to begin the actual machine-learning portion

of the pipeline. That is, to train the QNLP model to solve the given NLP task. In this

work we exclusively consider supervised machine learning. This is a type of machine learning

task in which the dataset consists of pairs (xi, yi) where xi is the i’th input, and yi is the

corresponding label. This label can be a numerical (real) value, in which case the task is one

of regression; or it can be one of a finite set of classes C, in which case the task is one of

classification. Throughout this work we exclusively consider classification tasks. Training in

the QNLP case does not differ in significant respect from general QML training.

As in classical machine learning, training a QML model boils down to finding a suitable

parameter assignment θ, such that the output of some loss function L(θ) is minimised. Here

θ is a vector of the model’s parameters.

θ = ⟨θ1, θ2, ... θi, ... ⟩

A loss function compares the model’s predicted output ŷθ with the expected output y, and

returns a real value which serves as a measure of incorrectness. In classical ML, the preva-

lent method of finding such an optimal parameter assignment is gradient descent. Here an

initial parameter assignment is chosen, and the gradient of the loss function with respect to

21

each parameter is calculated. The parameter assignment is then modified in the direction of

steepest descent of this gradient. The t’th step of gradient descent can be described as:

θt+1 = θt + γ
∂L
∂θ

∣∣∣∣
θ=θt

(3.4)

where the gradient is evaluated at θt: the parameter assignment in the t’th iteration. Here

γ is the learning rate, a hyperparameter that controls the step-size by which θ is changed in

each iteration. This process is then repeated either for a predetermined number of iterations,

or until some stop-condition (a threshold on test loss or accuracy for example) is met. For

QML, gradient descent would require calculating the analytical gradient of the quantum

circuit. Techniques exist to calculate the gradient with respect to a parameter through circuit

evaluation [31]. Each step of gradient descent would involve executing the gradient circuits for

each parameter, which invokes a very high cost of computation [17, 5]. Techniques also exist

to diagrammatically calculate the exact gradient [32], but these too have a high computation

cost, requiring us to evaluate a diagram for each parameter in the circuit.

A more commonly employed approach to finding an optimal parameter assignment is to

use a gradient-based classical optimiser which calculates an approximation of the gradient,

without evaluating the analytical gradient circuit. A trivial example of such an approach is

the method of finite-differences. Here for each parameter θi, the loss function is evaluated by

changing the value of this parameter to θi + ϵ and θi − ϵ for some very small value ϵ. For

both these parameter assignments, the optimiser runs the circuit, measures its output, and

evaluates the loss function on this output. The difference between these 2 values of the loss

function, divided by 2 · ϵ yields an approximation of the gradient with respect to θi:

∂L
∂θi
≈ L(⟨θ

t
1, θ

t
2, ... θ

t
i + ϵ, ... ⟩)− L(⟨θt1, θt2, ... θti − ϵ, ... ⟩)

2 · ϵ
(3.5)

This is done for each parameter, in order to estimate the gradient used in 3.4.

The method of finite differences is very computationally inefficient as it requires evaluating

the circuit and loss function 2|θ| times for each iteration. A more efficient gradient-based

optimisation approach is the SPSA (Simultaneous Perturbation Stochastic Approximation)

algorithm [33]. The SPSA algorithm approximates the gradient by evaluating the circuit and

22

loss function at just two points in each iteration, irrespective of the number of parameters.

The two points are θt+∆θ, θt−∆θ, which are diametrically opposite along a random direction

∆θ in the parameter space. We use the SPSA implementation provided in lambeq [17] in all

experiments described in this work.

3.2.5 Putting it all Together

Above we have described each of the high-level steps involved in solving a QNLP task. We now

formalise how these are composed in order to train a model for a specific task, and generate

predictions for unseen data, in algorithmic form. Algorithm 1 describes the process of training

a QNLP model. For succinctness, we use syntax akin to Python’s list comprehension in lines 2,

3 and 4. In these lines the input sentences are converted to diagrams, which are optimised and

converted into quantum circuits using the methods described previously. Then for each word

in the training vocabulary Vtrain a random parameter vector is initialised. The parameter

vectors for each word are concatenated into a single vector θ0, which serves as the parameter

initialisation for training. Once all epochs of the optimiser have run, the final parameter

assignment for each word is obtained, and stored in a dictionary called param-map. This

param-map is the only output needed from the training procedure, and is used during model

evaluation.

Algorithm 1 QNLP Model Training

1: procedure QNLP-TRAIN(xtrain, ytrain)
2: diagrams ← [TEXT-TO-DIAGRAM(xi) for each xi in xtrain]
3: optimised-diagrams ← [REWRITE(di) for each di in diagrams]
4: circuits ← [ANSATZ(di) for each di in optimised-diagrams]
5: for each wi ∈ Vtrain do

6:
−→
θ0i ← GENERATE-RANDOM-VECTOR()

7: end for
8: θ0 ← ⟨

−→
θ 0

1,
−→
θ02 , ...,

−→
θ 0

|Vtrain|⟩
9: for t← 1 to epochs do

10: θt ← SPSA-ITERATION(circuits, ytrain, L, θt−1)
11: end for
12: param-map ← {wi :

−→
θ epochs

i for each wi ∈ Vtrain}
13: return param-map
14: end procedure

23

Algorithm 2 describes the process to evaluate a trained QNLP model on a test dataset. The

input sentences are converted into quantum circuits in the same manner as during training.

For each word in the test dataset, the parameter assignment is obtained from the parameter-

map generated during training. For simplicity it is assumed that all words in the test set were

observed in the training set (Vtest ⊆ Vtrain). In Chapter 6 we present a novel approach for

performing inference on a dataset with words outside of the training vocabulary. Once the

trained parameter assignment is obtained for each word in the vocabulary, it is possible to

assign these parameters in the VQCs in circuits, contract the concrete circuits, and obtain the

model’s prediction. In Algorithm 2 this is abstracted into the GENERATE-PREDICTIONS

function. Given the model’s prediction ŷ and the expected output values ytest, the model’s

accuracy and loss on the test dataset can be calculated and returned.

Algorithm 2 QNLP Model Evaluation

1: procedure QNLP-EVAL(param-map, xtest, ytest)
2: diagrams ← [TEXT-TO-DIAGRAM(xi) for each xi in xtest]
3: optimised-diagrams ← [REWRITE(di) for each di in diagrams]
4: circuits ← [ANSATZ(di) for each di in optimised-diagrams]
5: for each wi ∈ Vtest do
6:

−→
θi ← param-map[wi]

7: end for
8: θtest ← ⟨

−→
θ1 ,
−→
θ2 , ...,

−→
θ |Vtest|⟩

9: ŷ ← GENERATE-PREDICTIONS(circuits, θtest)
10: accuracy ← MEASURE-ACCURACY(ŷ, ytest)
11: loss ← MEASURE-LOSS(ŷ, ytest,L)
12: return accuracy, loss
13: end procedure

3.3 lambeq

In all experiments discussed in this work, we make extensive use of lambeq: a high-level

open-source Python library for QNLP [17]. lambeq provides high-level routines for each

stage of the pipeline described in the following section. It provides parsers for a variety of

compositional schemes such as DisCoCat, and other less grammatically rich schemes which

ignore aspects of semantic structure such as word-order, or word-type. These parsers allow

24

the user to generate string diagrams matching a chosen compositional structure for input

sentences. In our experiments, we use the BobCatParser [25, 27] and the DepCCGParser [28]

classes. DisCoPy [34] is used as a backend to generate and process string diagrams. lambeq has

several pre-provided rewrite rules which allow users to optimise string diagrams. Appendix A

describes the rewrite rules we use in our experiments.

lambeq provides functionality relating to both classical and quantum models of learning

on string diagrams. In the classical case, the string diagram is converted into a tensor net-

work, without any quantum gates. The tensors of this network are then learnt classically,

using PyTorch [35] or Jax [36]. We do not describe this in further detail, as our work is

concerned exclusively with quantum models. In quantum models, the tensor network is not

directly generated, and the string diagram is converted into a quantum circuit as described in

Section 3.2.3. For quantum models, lambeq provides the IQP (Instantaneous Quantum Poly-

nomial) ansatz [30], and provides support to add custom ansätze. In our work, we contribute

two new quantum ansätze to lambeq, and the underlying DisCoPy library. This is detailed

further in Chapter 4.

For quantum model training, lambeq provides an implementation of the SPSA opti-

miser [33], which we use in all our experiments. Execution of quantum circuits in lambeq

is supported both through classical simulation and on quantum devices. Classical simulation

is achieved through tensor-contraction using Jax [36]. Circuit execution on quantum devices

is achieved through the tket compiler [37], which can execute quantum circuits on devices

from multiple providers such as Google, IBMQ, etc. We utilise classical simulation using Jax

in all experiments.

25

Chapter 4

Ansätze for QNLP

In domains such as quantum chemistry and quantum simulation, parameterised circuit designs

are often inspired by the problem structure. However, it is also extremely common to use

“hardware efficient ansätze”, which are parameterised random quantum circuits [38]. In

the context of QNLP, ansätze serve as maps which convert string diagrams into Variational

Quantum Circuits (VQCs). Input sentences are converted into string diagrams using the

parsing methodology described in Section 3.2.1. Each box in this string diagram then, can be

converted into a quantum circuit using a hardware efficient ansatz. An example of this can

be seen in the diagram below.

n.r s n.l
loves

Bob

Alice

7→

0 0 0

H H H

RZ(θl0)

RZ(θl1)

RX(θa0)

RZ(θa1)

RX(θa2)

0 0

RX(θb0)

RZ(θb1)

RX(θb2)

(4.1)

26

Here the (optimised) string diagram for the sentence “Alice loves Bob” was converted into a

VQC using the IQP ansatz, which we describe in the following section. The grey boundaries

indicate the portion of the VQC corresponding to each string diagram box. One can view

the string diagram as specifying the high-level structure and connectivity of the circuit, while

the ansatz fills in the details. Thus, using different ansätze changes the final VQC for which

parameters are learned. For hardware efficient ansätze, there is usually no apriori method to

indicate the relative performance of two ansätze for a specific task. Thus, in this section, we

select 3 ansätze from the literature, and experimentally investigate their performance on two

binary-classification NLP tasks.

4.1 Considered Ansätze

In this study, we consider 3 ansätze. The first ansatz that we consider is the IQP (Instan-

taneous Quantum Polynomial) ansatz [30]. In the lambeq implementation, one layer of the

IQP ansatz for n qubits consists of a Hadamard gate on each qubit, followed by n − 1 CRZ

gates, arranged in a ladder. A single layer of the IQP ansatz for 3 qubits can be seen in

Figure 4.1. Each of the CRZ gates is parameterised by some angle θj , which is modified as

part of the training process. This is omitted from the diagram for brevity. The Hadamard

gate is unparameterised.

RZ

RZ

H

H

H

Figure 4.1: IQP ansatz for 3 qubits

The IQP ansatz has been overwhelmingly favoured by previous experiments in QNLP. It is

the ansatz used in experiments by Meichanetzidis et al. [4] and Lorenz et al. [5]. An important

factor motivating the use of this ansatz is that it is composed of gates which can be natively

implemented on IBMQ devices [5]. Further, the successful application of IQP circuits to

quantum ML tasks was previously demonstrated by Havĺıček et al. [30]. The “instantaneous”

27

nature of the IQP circuit comes from the fact that all gates after the Hadamard layer are

diagonal unitaries, which can commute past each other and be applied in any order. Observe

that if a box in a DisCoCat diagram has a single qubit as its output type, the default IQP

specification will degenerate to a single Hadamard gate (since there is no pair of qubits to

apply a CRZ between). Thus, for single qubit boxes we employ the Euler decomposition:

RX RZ RX

where each gate is parameterised. This construction is used for the Alice and Bob boxes in the

circuit generated in (4.1). This same template is used in the single-qubit case for all ansätze

we consider.

In addition, we consider 2 new ansätze which have not previously been applied to QNLP

tasks. We consider an adapted form of circuits 14 and 15 from the work of Sim et al. [39]. We

refer to these as Sim14 and Sim15 henceforth. Sim14 is chosen as it has very high expressibility

compared to the other circuits considered by Sim et al. [39]. Quantum circuits used in QML

must have sufficient expressibility to encode a solution to the considered ML task [12]. The

notion of expressibility is discussed in greater detail in Section 7.5. Sim15 was chosen as

despite having a very similar structure to Sim14, it is significantly less expressible. Sim15

has the same layout as Sim14, but with different gates and only half as many parameters per

layer. Our experiments explore whether this difference in expressibility impacts performance

on QNLP tasks.

RX

RX

RX

RY

RY

RY

RX

RX

RXRY

RY

RY

Figure 4.2: Sim14 ansatz for 3 qubits

For an n qubit circuit, each layer of Sim14, consists of two “sublayers”. Each sublayer

consists of n RY gates, followed by n CRX gates, arranged in a ring topology1. In the second

sublayer, the ring of CRX gates iterates in reverse. A single layer, 3-qubit Sim14 ansatz can

1The ring topology is defined as: for each i ∈ [1...n] . CRX(i, (i− 1) mod n)

28

be seen in Figure 4.2. All RY and CRX gates are parameterised. In the original Circuit 14

from Sim et al., the two sublayers are constructed in the form of circuit-blocks, as described

by Schuld et al. [40]. We replace this construction with the simpler ring topology. In addition

to providing a simpler structure, the ring topology ensures that circuit depth and the number

of parameters increase linearly in the number of qubits in the circuit. This is not the case for

the circuit-block design [39, 40].

Sim15 has the same layout as Sim14, but replaces all CRX gates with CNOT gates. A 3

qubit single layer Sim15 ansatz can be seen in Figure 4.3. Since CNOT gates are unparame-

terised, each layer of Sim15 has only half the number of parameters as a layer of Sim14.

RY

RY

RY

RY

RY

RY

⊕

⊕

⊕ ⊕

⊕

⊕

Figure 4.3: Sim15 ansatz for 3 qubits

All 3 considered ansätze are unitaries on n qubits. To convert a box in a string diagram

into a VQC, some hyperparameters need to be provided for the ansatz. The first is the

number of qubits representing each type associated with the box. A box could have multiple

inputs and outputs of different types. The width of each type determines the number of

qubits for the ansatz circuit which will replace this box. Further, the number of layers l of

the ansatz must be specified. This affects the number of parameters, and properties such as

the expressibility and entangling ability of the ansatz [39]. As shall be apparent in the results

presented in Section 4.4, varying the number of layers can substantially affect the QNLP

model’s performance.

Table 4.1 compares some important statistics for a single layer of n-qubit circuits for

each of the 3 considered ansätzes. Observe that the Sim ansätze are at least twice the size

of the IQP ansatz along each statistic, owing to their double-layer design. Thus, for a fair

comparison, we compare l layers of the Sim ansätze with an IQP ansatz of 2l layers. The

statistics for this are shown in the table as 2×IQP. Henceforth we use the term IQP to refer

29

to this double-layer ansatz.

IQP 2×IQP Sim14 Sim15

gates 2n− 1 4n− 2 4n 4n
2-qubit gates n− 1 2n− 2 2n 2n
parameters n− 1 2n− 2 4n 2n
depth n 2n 2n+ 2 2n+ 2

Table 4.1: Per-layer statistics for n-qubit ansätzes.

4.2 Tasks

For a first comparison of the chosen ansätze, we consider the two tasks described in the work of

Lorenz et al. [5]. These are the Meaning Classification (MC) task, and the Relative Pronoun

(RP) task. We describe these tasks in detail below.

4.2.1 Meaning Classification Task

The meaning classification task involves assigning to each given sentence a domain belonging

to a finite set C. The task can be formally defined as:

Task 4.2.1 (Meaning Classification). Given a sentence S, return 1 if it relates to the domain

‘food’, and 0 if it relates to the domain ‘IT’.

The dataset for the MC task consists of 100 sentences, each belonging to one of the classes

C = {food, IT}. Example sentences from the dataset can be seen below.

“skillful person prepares meal”, food

“skillful woman runs program”, IT

At present, it is not feasible to perform QNLP tasks with substantially larger datasets than

this. Exclusive access to the majority of contemporary quantum devices is rarely available.

Lorenz et al. report that running QNLP experiments on a shared quantum device can take

in the order of 3 days [5]. When training using classical simulation, the tensor contraction

operation is computationally expensive due to the dimension of the tensors being exponential

in the number of qubits [4].

30

noun phrase → noun

noun phrase → adjective noun

verb phrase → verb noun phrase

sentence → noun phrase verb phrase

Table 4.2: Context Free Grammar for the MC task. Reproduced from [5].

Of the 100 sentences, 70 are used in training, and 30 are used as a test set. The 70

training sentences have a 39 / 31 distribution between the two classes. Each of the sentences

is generated using a context-free grammar, presented in Table 4.2. The dataset is curated

such that all words in the test set occur in the training set. The task for the QNLP model

is one of supervised binary classification, where it learns a mapping from the sentence to the

binary class labels. This task does not require significant grammatical understanding, since

the primary difference between the two classes is in the vocabulary (meal vs. program for

example). Thus it is reasonable to expect that even a simple “bag-of-words” style model

which ignores grammar entirely would perform well on this dataset.

4.2.2 Relative Pronoun Task

The Relative Pronoun (RelPron), or RP task is also a binary classification task, but one

which involves more grammatical structure than the MC task. Each entry of the dataset

consists of a noun-phrase, and a label indicating whether the noun phrase contains a subject-

relative clause, or an object-relative clause. Thus, the classes are C = {subject-relative, object-

relative}. Example noun-phrases for both these classes are given below:

“scientist that visit island”, subject-relative

“document that company publish”, object-relative

Here, the first noun-phrase is subject-relative, since the head-noun, “scientist”, is the subject

of the phrase. In the second noun-phrase, the head-noun “document” is the object of the

phrase. This dataset is a modified version of the RelPron dataset, by Rimell et al. [41]. The

original RelPron task described by the authors involved matching phrases to the terms they

define. This was modified by Lorenz et al. [5] to the version we consider here.

31

Hyperparameter Description MC values RP values

qs
Number of qubits associated
with sentence type

1 0

qn
Number of qubits associated
with noun type

[1, 2, 3] 1

l Number of ansatz layers [1, 2, 3, 4] [1, 2, 3, 4]

Table 4.3: Ansatz hyperparameters for the MC and RP binary classification tasks.

Task 4.2.2 (Relative Pronoun). Given a noun phrase S, return 1 if it contains a subject-

relative clause, and 0 if it contains an object-relative clause.

The subset of the original RelPron dataset we use consists of 74 training phrases, and 31

test phrases. The training set has a 46 / 28 split between the two classes. The test dataset

vocabulary consists of 74 words, of which 30 words (40.5%) do not occur in the training

set. This limits the performance of the model, since there is no way for the model to learn

parameterisations for words which do not occur in the training set. This problem is considered

in greater detail in Chapter 6.

4.3 Experimental Setup

As described in the previous sections, both tasks that we consider involve binary classification,

where each input consists of a single phrase or sentence. As a first step for both tasks, we parse

the sentences using the BobCatParser class included in lambeq [17, 25, 27]. This generates

a string diagram for each of the sentences in the train and test datasets. Then all cups from

the resulting string diagrams are removed using the remove cups method provided in lambeq

(described in Section 3.2.2). The resulting string diagrams are then ready for parameterisation

through an ansatz. There are three hyperparameters for the ansatz which must be specified.

A description of these, and the values used in this experiment are provided in Table 4.3.

Since both tasks are based on binary classification, it is natural for the output type of each

sentence’s circuit to be a single qubit. Then, each class corresponds to a 0 or 1 measurement

outcome in the computational basis. In the MC task, each sentence’s output is of type s, thus

we set the number of qubits associated with the sentence type (qs) to 1, (qs := 1) in all cases.

32

Analogously for the RP task, each phrase is a noun-phrase with output type n, thus qn := 1.

Using a selected combination of ansatz hyperparameters, we convert the string diagrams

into VQCs. These circuits are then used in an optimisation routine, which finds the opti-

mum parameter assignment which minimises the loss function. We utilise the Binary Cross

Entropy (BCE) loss, a loss function commonly used in classical machine learning for binary

classification tasks. The BCE loss function is defined as:

LBCE =
−1
N

N∑
i=1

yi · log(Pi(1)) + (1− yi) · log(1− Pi(1))

where the i’th sample has label yi ∈ {0, 1}, and Pi(1) ∈ [0, 1] indicates the model’s pre-

dicted probability that sample i belongs to class 1. To train the classifier, the Simultaneous

Perturbation Stochastic Approximation (SPSA) [33] optimiser was used. We use the SPSA

optimiser hyperparameters described in the lambeq documentation2. The initial learning rate

a is set to 0.05, the initial parameter-shift scaling c is set to 0.06, and the stability constant

A is set to 1. 1000 epochs of SPSA were run, and the loss and accuracy on the testing set

were evaluated on every 10th epoch. Each configuration of the ansatz was trained 5 times

with different random seeds, and the results presented in the following section are the average

across all runs for each circuit. Multiple runs are used since the gradient calculated by the

SPSA procedure is approximately calculated, and quantum machine learning performance is

known to be very sensitive to the initial parameter assignment [12, 42, 38]. Both these factors

are impacted by the random seed. The landscape of the loss function for quantum machine

learning, and the associated barren plateau problem are discussed in detail in Chapter 7. All

experiments were run on a computer with two Intel Xeon Gold 6326 CPUs with 64 threads in

total, running at a clock speed of 2.90 GHz, equipped with 256 GiB of RAM. In the following

section, we present the results for the MC and RP tasks, when using the three considered

ansätze.

2https://cqcl.github.io/lambeq/tutorials/trainer_quantum.html

33

https://cqcl.github.io/lambeq/tutorials/trainer_quantum.html

4.4 Results

Table 4.4 shows the train and test accuracies achieved for the MC task, after 1000 epochs

of training. We observe that when the noun type was represented using 1 or 2 qubits, the

Sim ansätze achieved higher training accuracy in nearly all cases. Further, these ansätze also

generalised well, outperforming the IQP ansatz across all layers for these noun widths. When

representing the noun type with 3 qubits, we observe that the IQP ansatz achieves higher

training accuracy than the Sim ansätze in all but one case. However, we observe that despite

the higher training accuracy, the IQP ansatz models fail to generalise to the test set well. In

nearly all cases, the Sim14 ansatz has the best performance on the test set. Note that in no

case does the IQP ansätze achieve the 100% test accuracy achieved by the Sim ansätze in just

1 layer, with qn = 1. Between the Sim14 and Sim15 ansätze, there is little difference for the

noun widths of 1 and 2. Both ansätze achieve simultaneous train and test accuracies of 100%

in multiple cases. In the qn = 3 case however, Sim14 outperforms Sim15 on the test set for

every single layer.

Train Test
qn Layers IQP SIM14 SIM15 IQP SIM14 SIM15

1

1 0.904 1.000 1.000 0.821 1.000 1.000
2 0.973 1.000 0.997 0.943 1.000 0.986
3 1.000 0.994 1.000 0.993 1.000 1.000
4 0.997 1.000 1.000 0.971 1.000 1.000

2

1 0.934 1.000 0.982 0.857 0.986 0.871
2 0.988 0.997 0.997 0.907 0.971 0.986
3 0.997 1.000 1.000 0.943 1.000 1.000
4 1.000 0.991 0.997 0.900 1.000 0.993

3

1 0.976 0.976 1.000 0.886 0.971 0.950
2 1.000 0.997 0.979 0.886 0.971 0.900
3 1.000 0.991 0.916 0.943 0.964 0.857
4 0.997 0.934 0.797 0.929 0.907 0.764

Table 4.4: Accuracy results for MC task. The highest train and test accuracy in each row is
highlighted.

Figure 4.4 plots the loss and accuracy values while training the 4 layer model, with qn = 1

for both the train and test sets. It is immediately apparent that all ansätze achieve very high

accuracy on both train and test sets within a few 100 epochs. The loss values for both train

34

0 100 200 300 400 500 600 700 800 9001000
epochs

0.2

0.4

0.6

0.8

L
os
s

Train

0 100 200 300 400 500 600 700 800 9001000
epochs

L
os
s

Test

0.5

0.6

0.7

0.8

0.9

1.0

A
cc
u
ra
cy

0.5

0.6

0.7

0.8

0.9

1.0

A
cc
u
ra
cy

IQP

SIM14

SIM15

Accuracy

Loss

Figure 4.4: Training graphs for the MC task, for the 4-layer model with qn = 1, for all
considered ansätze, averaged across all 5 random initialisation.

and test sets continue to decrease throughout the experiment (1000 epochs), which establishes

that the models are not overfitting to the train dataset. While there is a negligible difference

between the accuracy on the training set for the three ansätze, the IQP ansatz achieves the

lowest train loss. However, it is apparent that the IQP ansatz did not generalise well, since

for the test dataset, its loss curve is higher than the curves for the Sim ansätze. The IQP

ansatz’s test accuracy also increase slower than the other two ansätze, and does not reach as

high a maximum value. Both Sim ansätze have similar trends of loss and accuracy on both

the train and test sets, with the Sim14 ansatz achieving 100% accuracy in fewer epochs than

Sim15. Considering the timing information in Figure 4.5, we observe that both Sim ansätze

take significantly longer to train than the IQP ansatz. In the worst case, it takes 2.9 times

as long to train a 4-layer Sim14 circuit with qn = 3, as it takes to train an IQP circuit of the

same specification.

In summary, both Sim ansätze noticeably outperform the IQP ansatz for the MC task, at

the cost of severely increased training time. The Sim ansätze both achieve 100% train and

test accuracy. Of the 2 Sim ansätze, Sim15 takes only about half the time to train as Sim14

35

1 2 3 4 1 2 3 4 1 2 3 4

0

1,000

2,000

3,000

4,000

5,000

qn = 1 qn = 2 qn = 3

Layers

S
ec
on

d
s

MC

1 2 3 4

0

1,000

2,000

3,000

4,000

5,000

Layers

S
ec
on

d
s

RP

IQP
Sim14
Sim15

Figure 4.5: Training time for MC and RP tasks. Sim14 takes significantly more time to train
than the other 2 ansätzes for both tasks, for all hyperparameter configurations.

Train Test
Layers IQP SIM14 SIM15 IQP SIM14 SIM15

1 0.930 0.986 0.989 0.845 0.910 0.929
2 0.983 0.986 0.992 0.890 0.897 0.910
3 0.980 0.986 0.994 0.903 0.910 0.910
4 0.989 0.994 0.980 0.923 0.942 0.890

Table 4.5: Accuracy results for RP task. The highest train and test accuracy in each row is
highlighted.

and has only half as many parameters.

The train and test accuracy for the RP task after 1000 epochs can be seen in Table 4.5.

Here, in all but the final case, the Sim15 ansatz achieves the highest accuracy on the training

set. In each of these cases it generalises well and also achieves the highest test accuracy. For

the 4-layer model, the Sim14 ansatz performs the best on both the training and the test sets.

Note also, that this model achieves a 94.2% accuracy on the testing set, which is the highest

of any of the models tested.

Figure 4.6 shows the loss and accuracy curves for the 4-layer models. As with the MC

graph, all models achieve high accuracy within a few 100 iterations. The train and test loss

continues to decrease throughout the experiment, indicating no overfitting. Once more, there

is negligible difference in the test accuracy curves for all three ansätze. The IQP ansatz has

the lowest (best) train loss curve, while the Sim14 ansatz has the highest (worst). Despite

36

0 100 200 300 400 500 600 700 800 9001000
epochs

0.2

0.4

0.6

0.8

L
os
s

Train

0 100 200 300 400 500 600 700 800 9001000
epochs

L
os
s

Test

0.5

0.6

0.7

0.8

0.9

1.0

A
cc
u
ra
cy

0.5

0.6

0.7

0.8

0.9

1.0

A
cc
u
ra
cy

IQP

SIM14

SIM15

Accuracy

Loss

Figure 4.6: Training graphs for the RP task, for the 4-layer model for all considered ansätze,
averaged across all 5 random initialisations.

this, Sim14 generalises to the test dataset the best, achieving the lowest test loss, and the

highest test accuracy. As with the MC task, the Sim ansätze take longer to train than the

IQP ansatz, with Sim14 taking up to 2.5 times the duration of IQP, and Sim15 taking up to

1.4 times the duration.

Thus in summary, we observe that Sim14 and Sim15 outperform the IQP ansatz for the

MC and RP tasks. This performance improvement comes at the cost of an increase in training

time. Of the 2 Sim ansätze, Sim15 takes far less time to train than Sim14, while achieving

competitive test accuracies for the MC and RP tasks. Across both tasks, we observed that

the Sim15 ansatz was able to match or beat the performance of the Sim14 ansatz on the

test set in a majority of cases. This is despite the Sim15 circuit being significantly less

expressible [39]. This suggests that for the MC and RP tasks, the difference in expressibility

did not significantly impact classification performance.

37

4.4.1 Comparison with Prior Work

Both MC and RP tasks, as appear here were first considered by Lorenz et al. [5], using

the IQP ansatz. In their work, the highest test accuracies achieved were 79.8% for the MC

task using a single-layer IQP ansatz, and 72.5% for the RP task, using a 2-layer IQP ansatz.

Our models outperform both these by a significant margin. There are some key differences

in the experimental setup between our work and the experiments of Lorenz et al. The first

difference is that while we use automatic parsing through BobCatParser class provided in

lambeq, Lorenz et al. use knowledge of the datasets to semi-automatically generate string

diagrams. For the MC task they use the production rules defined in Table 4.2. For the

RP task they use pre-defined diagrams for the subject-relative and object-relative clauses

respectively. This difference in diagram generation implies that the diagrams we generated

are not necessarily identical to the diagrams generated in Sim et al. Further, the specification

of the IQP ansatz for both tasks is subtly different. For the MC task, Lorenz et al. use a single-

layer IQP model. Recall from Section 4.1 that we use a double-layer IQP block as the ansatz.

Thus our 1-layer IQP model is only comparable with a 2-layer IQP ansatz. For all tasks, in

the single qubit case we use the Euler decomposition (RXRZRX), described in Section 4.1.

For the RP task, Lorenz et al. use a single RX gate in the single-qubit case. Further to

these differences, the hyperparameter settings we use for the SPSA optimiser are different.

We attribute the difference in results between our work and Lorenz et al. to the differences in

diagram generation, circuit structure, and subtle differences in optimisation hyperparameters.

We note that the accuracies our models achieve for the MC task are very similar to those

reported by Kartsaklis et al., using the IQP ansatz, and leveraging the “classical simulation

of quantum pipeline” in lambeq [24].

38

Chapter 5

Paraphrase Identification Using

QNLP

In the previous chapter, the tasks which we considered were relatively trivial, given the com-

plexity of tasks that modern classical NLP can solve. In this chapter, we apply QNLP methods

to a more challenging NLP task; namely the paraphrase identification task. This can be set

as a binary classification problem as follows:

Task 5.0.1 (Praphrase identification). Given 2 sentences S1 and S2, return 1 if they have

the same meaning, and 0 if they do not.

While MC and RP tasks could be solved efficiently using either the vocabulary or the

grammatical parse of the sentence, the paraphrase identification task cannot be reliably solved

using either of these methods. Paraphrase identification requires a model that considers both

the vocabulary and grammar of its input. In this chapter we describe a circuit to compare

two sentence states (Section 5.2), and apply this construction to the paraphrase identification

task. In Section 5.4, we present the first results for a QNLP model applied to the paraphrase

identification task on real-world datasets.

39

5.1 Dataset

We evaluate QNLP performance for the paraphrase identification task on two different datasets.

The first, which we will refer to as PPDB, is a subset of the Paraphrase DataBase [43]. We

utilise the English phrasal version of the PPDB1, from which the first 100 unique phrase pairs

were extracted. These provide the positive samples for the paraphrase identification task. The

original dataset does not contain any predefined negative samples. To generate a negative

sample, we randomly selected 2 positive samples, and take one phrase from each to make a

new pair, which is a negative sample with high probability. We generated as many negative

pairs as positive pairs, to ensure a balanced dataset. Example pairs are shown below.

(“applying the principle of”, “the implementation of the principle of”, +)

(“achievement of the goals of the”, “adopted in accordance with this”, −)

The processed PPDB dataset has 93 training samples, 46 test samples, and an overall vocab-

ulary of 295 words. As is apparent from the example shown above, negative samples are likely

to have low overlap of vocabulary between the two sentences in the pair. Thus it is possible

that a simple bag-of-words style model which ignores grammar may also achieve reasonable

performance on this dataset.

To present a more semantically-rich challenge to the QNLP model, we consider the MRPC

dataset, a subset of the Microsoft Research Paraphrase Corpus, by Dolan et al. [44]. Pairs in

this dataset were obtained from multiple news sources, which were then annotated by human

reviewers. We select all pairs from the original dataset where both sentences have at most 10

words. This is done to ensure that training the QNLP model can be achieved in a tractable

amount of time, given the hardware at our disposal. Unlike PPDB, the original MRPC dataset

also includes negative samples. The following are example pairs from the MRPC dataset.

(“Only Intel Corp. has a lower dividend yield”,

“Only Intel’s 0.3 percent yield is lower”, +)

(“ISC and NASCAR officials declined to comment”,

“NASCAR officials could not be reached for comment Tuesday”, −)
1Available online at http://paraphrase.org/#/download

40

http://paraphrase.org/#/download

Compared with examples from the PPDB dataset, it is clear that negative samples are less

obviously distinct. Specifically, a significant part of the vocabularies of the 2 sentences is

shared. Thus, it is reasonable to expect that performance for the MRPC dataset will likely

be lower than for the PPDB dataset. The processed MRPC dataset has 56 training samples,

32 test samples, and an overall vocabulary of 938 words. This is a large vocabulary given

very few training samples, which is likely to adversely impact the performance of the model.

Problems related to vocabulary are discussed further in Section 5.4, and in greater detail in

Chapter 6.

5.2 State Comparison Circuit

In the tasks consider in Chapter 4, the circuit design choices were limited to the ansatz

hyperparameters. We simply ensured that the output dimension of the sentence state was 1

qubit, allowing us to easily extract a predicted probability distribution over the 2 classes. The

paraphrase identification task, however, does not involve a class assigned to a single sentence

state, and requires the comparison of 2 states.

A natural method for comparing two quantum states is to use the Born rule: |⟨ψ|ϕ⟩|2

(Section 2.1.4). A value of 1 indicates that the 2 states are equal, and a 0 indicates the states

are orthogonal (or maximally different). This is the method for comparison suggested by

Coecke et al. [1, 3]. To measure the Born rule probability, we can simply prepare states |S1⟩

and |S2⟩ for the 2 sentences to be compared, and evaluate the diagram ⟨S1|S2⟩ through tensor

contraction. The square norm of the resulting complex number is then calculated to ensure

we get a real value between 0 and 1.

A caveat to this is that quantum states generated from DisCoCat diagrams are in general

sub-normalised states [5]. That is, they are not of unit magnitude. This is because in addition

to unitary gates, they consist of post-selection and caps, which are non-unitary operations.

A crucial corollary of this fact is that a state, when compared with itself will not yield 1

(|⟨ψ|ψ⟩|2 ̸= 1). Thus, before measuring the Born rule probability, it is essential to normalise

the states for the two sentences independently. However, it is often more convenient to

41

prepare a single tensor network, contract it entirely, and only normalise the result as a final

post-processing step. If we prepare the diagram ⟨S1|S2⟩ for some input parameterised states

S1 and S2 generated using DisCoCat, the normalisation constant is not known apriori, as it

depends on the parameter assignment (which changes in each step of the optimisation process.)

To overcome this challenge, we propose a circuit Ceq, shown in Figure 5.1, to compare two

potentially sub-normalised states S1 and S2.

⊕

H X

0

(a) Circuit representation

π

(b) ZX diagram representation

Figure 5.1: Circuit Ceq for comparison of two possibly sub-normalised single-qubit states, in
circuit and ZX diagram representations.

Using simple rules of the ZX calculus, it can be shown that Ceq is equivalent to an XNOR

gate, as generated by composing NOT ◦ XOR, using the logical circuit definitions provided

on page 212 of Coecke and Kissinger [19].

π π π π

=
h

=
sf

=
id

XOR

NOT
(5.1)

When applying Ceq to a pair of states, we conjugate one of the states, for reasons which are

apparent in the diagrammatic representation in equations (5.2) and (5.3). Thus, the state

resulting from applying Ceq to a pair of states (|ψ⟩, |ϕ⟩) is Ceq(|ψ⟩ ⊗ |ϕ⟩). When measuring

(in the computational basis) the output of Ceq applied to two states yields output |1⟩, the

diagram reduces to the Born rule probability ⟨S1|S2⟩, as demonstrated in equation (5.2).

42

S1 S2

π

π

S1 S2

=
sf

S1 S2

=
id

S1

S2

=
ocm

(5.2)

This implies that for normalised states, our circuit yields output 1 with the same probability as

that yielded by the Born rule. Our proposed approach is therefore equivalent to the Born rule

method, for normalised states. In the case where this measurement yields a |0⟩ outcome, the

diagram corresponds to a Born rule probability with a Pauli-X gate in the middle: ⟨S1|X|S2⟩.

S1 S2

π

S1 S2

π=
sf

S1

S2

=
ocm

π
(5.3)

Recalling that the Pauli-X gate is the quantum analogue of logical negation, we can

represent this measure as ⟨¬S1|S2⟩. This can be interpreted as the Born rule of the negation

of a sentence S1, compared with S2. This is a reasonable conceptual negation of the Born rule

probability, which can be used as the other element of the vector which we normalise to arrive

at a probability distribution. Thus, the output of the comparison circuit is [⟨¬S1|S2⟩, ⟨S1|S2⟩],

which is the vector that we normalise to arrive at the prediction of the QNLP model. In this

manner, we have presented a construction which allows us to generate a 2-dimensional unit

vector representing the degree of similarity of 2 possibly sub-normalised states.

5.3 Experimental Setup

Once the datasets are filtered in the manner described in Section 5.1, Each sentence is parsed

using the DepCCGParser class [28] provided in lambeq. This parser was chosen since the

default BobCatParser class used for the MC and RP tasks failed to parse some input sentences

from the MRPC dataset. The resulting string diagrams are then optimised using rewrite rules

provided in lambeq. These are described in Appendix A.

43

Then, any pair in which both sentences do not yield the same final type is discarded. At

this stage, the string diagrams are converted into quantum circuits using one of the ansätze.

Once more, we use each of the 3 ansätze IQP, Sim14 and Sim15, described in Chapter 4. In

all cases we assign a single qubit as the width of each type (qn := 1, qs := 1). The output type

of each sentence circuit is thus a single qubit. This is both to ensure that the circuit for each

sentence is compatible with the comparison circuit Ceq, and to bound the size of the generated

circuits. At this stage, for each pair of sentence states (|S1⟩, |S2⟩), we generate the complete

diagram using the comparison circuit as Ceq(|S1⟩ ⊗ |S2⟩). For each ansatz, we experiment

with layers in {1, 2, 3}. Training with each hyperparameter combination is repeated 3 times

with different random seed values. As before, the SPSA optimiser is run for 1000 epochs,

with the optimiser hyperparameter configuration described in Section 4.3 (a: 0.05, c: 0.06,

A: 1). In the following section we present the results of this experiment.

5.4 Results

Table 5.1 shows the train and test accuracies for the paraphrase identification task on the

PPDB dataset. For 1 and 2 layers, we observe that Sim14 achieves the highest accuracy on

both the training and test sets. For the 3-layer case IQP achieves the highest accuracy for

the training set. However, this fails to generalise well to the test set, where Sim14 once more

outperforms both other ansätze. Sim14 thus generalises the best for all circuit configurations.

The highest accuracy on the test set is 70.3%, achieved by the Sim14 ansatz with 2 layers.

Train Test

Layers IQP SIM14 SIM15 IQP SIM14 SIM15

1 0.928 0.935 0.914 0.638 0.688 0.623
2 0.910 0.943 0.889 0.652 0.703 0.609
3 0.953 0.932 0.892 0.630 0.645 0.638

Table 5.1: Accuracy for paraphrase identification task on PPDB dataset. Highest train and
test accuracy in each row are highlighted in bold.

The IQP ansatz outperforms Sim15 on the test set for the 1-layer and 2-layer cases, but

achieves slightly lower accuracy for the 3-layer case. Across all layers and ansätze, the test

44

0 100 200 300 400 500 600 700 800 900 1000
epochs

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

L
os
s

Train

0 100 200 300 400 500 600 700 800 900 1000
epochs

L
os
s

Test

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

A
cc
u
ra
cy

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

A
cc
u
ra
cy

IQP

SIM14

SIM15

Accuracy

Loss

Figure 5.2: Training graphs for the PPDB task, for the 2-layer model for all considered
ansätze, averaged across all 3 random initialisations.

accuracy is appreciably less than the train accuracy. Figure 5.2 shows the loss and accuracy

curves for the 2-layer model, for all three ansätze. It is immediately apparent that the models

do not converge to a solution as quickly as the models did for the MC and RP tasks (Figures

4.4, 4.6). The test accuracy increases in an erratic manner, compared to the near-monotonic

increase demonstrated by models for the MC and RP tasks. The test loss is significantly higher

than the training loss for all three ansätze, even at the end of training. The Sim15 ansatz

appears to overfit the training dataset after a few 100 epochs, after which its test accuracy

begins to decrease. This is not the case with the other two ansätze. This overfitting is despite

Sim15 achieving the lowest train accuracy of the three. Since Sim15 has fewer parameters

than Sim14 (Table 4.1), excess parameterisation can be ruled out as a cause. A more likely

source of the poor generalisation is suboptimal training-time parameter initialisation, which

is known to strongly affect QML model performance. Figure 5.3 plots the training time for

each of the ansatz, as a function of the number of layers. As we observed for the MC and RP

tasks, Sim14 takes significantly longer to train than the IQP ansatz. The Sim15 ansatz takes

only marginally longer to train.

45

1 2 3
0

2,000

4,000

6,000

8,000

Layers

S
ec
on

d
s

PPDB

1 2 3

2,000

4,000

6,000

8,000

Layers

S
ec
on

d
s

MRPC

IQP
Sim14
Sim15

Figure 5.3: Training time for PPDB and MRPC paraphrase identification tasks. Sim14 takes
significantly more time to train than the other 2 ansätze, for all hyperparameter configurations
in both tasks.

Compared to the MC and RP tasks of the previous section, much lower test accuracy is

achieved by even the best model for the PPDB paraphrase identification task. This reduced

performance is particularly apparent in the training curves in Figure 5.2. We attribute this

regression to two factors. The first is the very high percentage (50%) of words in the test set

which were not present in the training set. This means that a large number of parameters

at inference time were randomly initialised. This problem is considered in detail in Chapter

6. The second factor is the inherently difficult nature of the task. While reasonable perfor-

mance can be achieved for the MC and RP tasks using rule-based classifiers, the paraphrase

identification task requires a more complete semantic analysis of the input sentences.

Table 5.2 shows the accuracy for the MRPC dataset. It is immediately apparent that

while the train accuracies are very high, all models generalise to the test set very poorly. For

the training set, the IQP ansatz achieved the highest accuracy for the 2-layer and 3-layer

cases, while the Sim14 ansatz has the highest accuracy for the single-layer case. Each of the

ansätze achieves a train accuracy of more than 95% for at least one layer configuration. In

contrast, the highest test accuracy is only 55.2% achieved by the 3-layer Sim15 model. On a

test dataset with a 53-47% class split, this accuracy is only marginally better than random

chance. Figure 5.4 plots the training curves for the MRPC dataset, for the 3-layer model for

each ansatz. As in the case of the PPDB dataset, the test accuracy increases erratically, at

46

Train Test

Layers IQP SIM14 SIM15 IQP SIM14 SIM15

1 0.964 0.982 0.976 0.490 0.521 0.490
2 0.988 0.911 0.899 0.479 0.458 0.479
3 0.982 0.756 0.798 0.521 0.542 0.552

Table 5.2: Accuracy for paraphrase identification task on MRPC dataset. Highest train and
test accuracy in each row are highlighted in bold.

0 100 200 300 400 500 600 700 800 9001000
epochs

0.3

0.4

0.5

0.6

0.7

0.8

L
os
s

Train

0 100 200 300 400 500 600 700 800 9001000
epochs

L
os
s

Test

0.5

0.6

0.7

0.8

0.9

1.0

A
cc
u
ra
cy

0.5

0.6

0.7

0.8

0.9

1.0

A
cc
u
ra
cy

IQP

SIM14

SIM15

Accuracy

Loss

Figure 5.4: Training graphs for the paraphrase identification task on the MRPC dataset, for
the 3-layer model for all considered ansätze, averaged across all 3 random initialisations.

a very low rate compared to the training accuracy. The IQP ansatz’s train accuracy curve is

much higher than the curve for the other two ansätze, but this fails to generalise to the test

set where its accuracy increases the slowest.

Figure 5.3 shows the time taken to train models for the MRPC task. As for all examples

thus far, Sim14 takes significantly longer to train than the other two ansätze. The Sim15

ansatz takes marginally longer than IQP to train. Of all QNLP models discussed in this

work, the 3-layer Sim14 model for the MRPC task takes the longest to train: nearly 2 hours

and 15 minutes.

The best test accuracy achieved for the MRPC dataset is appreciably worse than the test

accuracy achieved for the same task on the PPDB dataset. There are 2 likely causes for the

47

deterioration in performance. First, the PPDB dataset’s negative samples are phrase pairs

which are more obviously mismatched. That is, the two sentences in a pair differ in meaning

significantly, often having nearly disjoint vocabularies. The negative samples in the MRPC

dataset, meanwhile, are carefully curated pairs which can have similar, but not equivalent

meanings. Negative pairs from the MRPC dataset often share significant proportions of their

vocabulary, defeating trivial bag-of-words style solutions. The second potential cause is the

increased percentage of out-of-vocabulary (OOV) words: words in the test set which were not

seen during training. While the PPDB dataset had an OOV percentage of 50%, the value

for the MRPC dataset is 81.5%. This is a very high proportion, indicating that only a small

minority of words in the test dataset have trained parameter assignments available. This

problem, and a novel solution are discussed in detail in Chapter 6.

5.5 Summary of Ansatz Comparison

In Table 5.3, we order each ansatz by the maximum accuracy achieved on the test set for

each task and dataset, from Chapters 4 and 5. We consider the highest accuracy achieved for

any hyperparameter configuration (qn, qs, layers) of the model. This allows us to compare all

three ansätze in a summary manner, by considering the best test accuracy each ansatz can

achieve, with the optimum hyperparameter configuration. For 3 of the 4 tasks and datasets,

Task / Dataset Test Accuracy Ordering

MC IQP < Sim14 = Sim15
RP IQP < Sim15 < Sim14
PPDB Sim15 < IQP < Sim14
MRPC IQP < Sim14 < Sim15

Table 5.3: Ordering of ansätze by the highest test accuracy achieved for each task and
dataset, with any hyperparameter configuration.

the IQP ansatz achieved the lowest test accuracy, and did not achieve the highest accuracy

on any dataset. Consequently in each of the tasks considered in our work, test accuracy can

be increased by using one of the Sim ansätze instead of the IQP ansatz. Between the two Sim

ansätze, the choice is less obvious. The Sim14 ansatz achieves the highest test accuracy on 3

48

of the 4 datasets, while Sim15 achieves the highest accuracy on 2 datasets. The Sim15 ansatz

achieves the lowest performance for the paraphrase identification task on the PPDB dataset,

while the Sim14 ansatz never performs the worst of the three considered ansätze. For optimal

test accuracy, the Sim14 ansatz appears to be the most appropriate choice for a majority of

cases. Recall however that it takes significantly longer to train the Sim14 ansatz than Sim15,

for each of the considered tasks. Thus, Sim15 may provide a balance between performance

and training time.

49

Chapter 6

Handling Unknown Words in QNLP

A problem faced by QNLP models which requires special attention is the handling of unknown,

or Out-Of-Vocabulary (OOV) words. As discussed in previous sections, training a QNLP

model involves learning an optimal assignment for multiple parameters associated with each

word in the dataset, such that the loss value is minimized on the training set. Then, when a

test sample’s output must be predicted, we generate a VQC for the input sentence, and for each

word in the new sentence, assign to its associated parameters values learned during training.

An important consideration that this description omits is the handling of words in the test set

which did not appear in the training set. For these words, no parameter assignment is readily

available. This problem is called the out-of-vocabulary, or OOV problem. In this chapter we

consider possible mitigation strategies for the OOV problem, and present experimental results

comparing these.

6.1 Background

The OOV problem is not endemic to the quantum methodology of NLP, and several solutions

to the problem can be found in the domain of classical NLP. Often, the OOV problem is

mitigated by either removing all words below a certain frequency, or replacing them with

a dedicated ‘UNK ’ token to indicate an unknown word. Another approach in NLP which

mitigates the OOV problem is the use of pretrained word embeddings. These are typically

50

task-agnostic vector word representations, which are generated for a corpus with a large

vocabulary in an unsupervised manner. These embeddings can then be used as input to

downstream task-specific NLP models [45, 46].

6.1.1 Word Embeddings

A word embedding is a mapping which associates with each word w in a vocabulary V , a

vector in Rd. Modern word embeddings are dense word representations (d < |V |), learned

from a corpus, the vocabulary of which is expected to cover the train and test vocabularies

with high likelihood.

One common method to generate word embeddings is the Continuous Bag Of Words

(CBOW) model [47]. This model attempts to predict a masked word, given the words sur-

rounding it in an input sentence (its context). In attempting to solve this task, the model

generates an embedding for each context word. It is this embedding which is used as a vector

representation. Another method to generate word embeddings is the skip-gram model [47].

This training approach is roughly the inverse of the approach used in CBOW. Here, rather

than attempting to predict a word from its context, the model aims to predict the context of

a word. That is, given an input word, it attempts to predict the surrounding words in the

corpus. Often, the skip-gram is weighted, assigning higher importance to context words nearer

the current word. Word2Vec [47], and FastText [48] are two popular word embeddings from

the literature that use the CBOW and skip-gram models. Alternative methods for generat-

ing word embeddings, such as global co-occurrence statistics (GloVe [49]), and context-aware

methods using transformers (BERT [50]) are also widely used.

A common theme across multiple word embeddings is that they succinctly capture re-

lationships between words in vector operations [51, 52]. Typically, synonymous words and

words with similar themes have low distance in the embedding space. Word embeddings can

also capture relations between words more complex than synonymy. Mikolov et al. show that

relations such as (France - Paris ≈ Italy - Rome), (Einstein - scientist ≈ Picasso - painter)

hold for Word2Vec skip-gram embeddings, indicating that the embedding can capture com-

51

plex relations such as professions, and capitals of countries [47]. This semantic richness of

neural word embeddings makes them suitable as task-agnostic embeddings which can be used

as input to a task-specific model [46].

6.1.2 FastText Embeddings

FastText, by Bojanowski et al. is a method to generate vector representations for words from

their subwords [48]. FastText treats each word as a set of its character n-grams, which are

substrings of n characters of the word. For example, {<h, he, el, ...} are 2-grams of the word

“hello”. It then learns a vector representation for each of the character n-grams through a

skip-gram model. The vector representation of the word then, is obtained by taking the sum

of its n-gram vectors. Because of the n-gram method of generating word-vectors, FastText

is also able to generate vector representations for words that were not in its training corpus.

This is achieved by decomposing the novel word into its n-grams, which were present in the

training corpus with high likelihood. This is the main feature which motivated us to use the

FastText embedding method in our approach. Through the use of FastText, we ensure that

the classical embedding method does not suffer from the OOV problem, and thus embeddings

are available for all words. Further, FastText embeddings pretrained on large corpora are

available online [53].

6.2 OOV Mitigation Strategies

We propose a method that extends the word embeddings found in classical NLP to the QNLP

case. The pretrained FastText embedding provides a largely task-agnostic dense embedding

of a large vocabulary VFT ⊇ Vtrain∪Vtest. The final parameter assignment, θtrain generated by

an optimised QNLP model provides a task-specific embedding for a limited vocabulary Vtrain.

Our proposed method suggests training a Multi-Layer Perceptron (MLP) [54], to learn a map

from the FastText embeddings of the training vocabulary FT(Vtrain), to the QNLP model’s

trained parameter assignment θtrain. The expectation then is that this MLP will generalise to

unseen vocabulary, such that it can generate a predicted parameter assignment for the test set

52

θ̂test. Broadly, the method generates task-specific embeddings for new words from their known

task-agnostic embeddings. Symbolically, the MLP learns mapping FT(Vtrain)
MLP−−−→ θtrain, and

generalises to FT(Vtest)
MLP−−−→ θ̂test. Our method is more formally described in algorithmic

representation below.

Algorithm 3 QNLP Model Training (OOV Embedding-Enhanced)

1: procedure QNLP-TRAIN-OOV(xtrain, ytrain)
2: diagrams ← [TEXT-TO-DIAGRAM(xi) for each xi in xtrain]
3: optimised-diagrams ← [REWRITE(di) for each di in diagrams]
4: circuits ← [ANSATZ(di) for each di in optimised-diagrams]
5: for each wi ∈ Vtrain do

6:
−→
θ0i ← FT(wi)

7: end for
8: θ0 ← ⟨

−→
θ 0

1,
−→
θ02 , ...,

−→
θ 0

|Vtrain|⟩
9: for t← 1 to epochs do

10: θt ← SPSA-ITERATION(circuits, ytrain, L, θt−1)
11: end for
12: param-map ← {wi :

−→
θ epochs

i for each wi ∈ Vtrain}
13: MLPembed ← TRAIN-EMBEDDING-MLP(θ0, θepochs)
14: return MLPembed, param-map
15: end procedure

Algorithm 3 describes our proposed method for training a QNLP model capable of over-

coming the OOV problem. This algorithm is a modified version of the “naive” QNLP model

training method presented in Algorithm 1. The first steps, up to preparing the parameterised

circuits remain unchanged. The first difference from the naive algorithm is in parameter ini-

tialisation. For each wi ∈ Vtrain, we generate an initial parameter assignment by querying

its FastText embedding1
−→
θ0i ←− FT (wi). Using this initialisation, we train the QNLP model

using an optimizer to minimize the value of an objective function, as before. This yields a

trained parameter assignment
−→
θ epochs

i for each word wi.

Then, we train a multilayer perceptronMLPembed to learn the mapping from the FastText

embedding to the learned parameter assignment: ∀wi ∈ Vtrain . FT (wi)
MLPembed−−−−−−−→

−→
θ epochs

i .

A trained model thus consists of the trained parameter assignment for Vtrain, stored in param-

map, and the trained multilayer perceptron MLPembed.

1This embedding may need to be truncated to |
−→
θi |. This is omitted from the algorithm for simplicity.

53

Algorithm 4 QNLP Model Evaluation (OOV Embedding-Enhanced)

1: procedure QNLP-EVAL-OOV(MLPembed, param-map, xtest, ytest)
2: for each wi ∈ Vtest \ Vtrain do
3: θ̂i ←MLPembed(FT(wi))
4: param-map[wi]← θ̂i
5: end for
6: return QNLP-EVAL(param-map, xtest, ytest)
7: end procedure

Algorithm 4 describes the process for evaluating the OOV-aware QNLP model on a test

set. For each word which was in Vtrain, we use the parameter assignment learned by the

QNLP model directly, from param-map. For each OOV word wi ∈ VOOV = Vtest \ Vtrain, we

generate a predicted parameter assignment by querying its FastText embedding, and providing

it as input to the MLP. This is done in line 3 of Algorithm 4. In this manner, a parameter

assignment can be generated for each word in the test set, whether or not the word appeared

in the training set. param-map is updated with the parameters generated by the MLP, and

this can be used to invoke the naive model evaluation method QNLP-EVAL described in

Algorithm 2. We compare 2 variations of this approach and 2 more naive methods which we

treat as baselines.

• Embed-NN: This is the method described above, using the MLP to generate parameter

assignments from FastText embeddings.

• Embed-raw: This is a simplified version of Embed-NN, where we replace the MLP with

an identity function. That is, we directly use the truncated FastText embedding as the

parameter assignment for the OOV words, without any intermediate processing.

• Random: This strategy involves generating a uniformly random parameter assignment

for OOV words. This is the default behaviour in lambeq. We treat this strategy as a

baseline, as it is a reasonable choice in absence of further information.

• Zero: This strategy trivially assigns 0 to all parameters for OOV words. In the previous

3 strategies, each OOV word is assigned a unique embedding (always for Embed-raw,

and with high probability for Embed-NN and Random.) In contrast, the Zero strategy

54

assigns all OOV words equal embeddings. Some words can still be distinguished by

their pregroup type, which in turn affects their dimension. Two OOV words with equal

dimensions are indistinguishable under the Zero OOV strategy. This provides some

intuition that this strategy may not be as performant as the previous three.

Note that in each of these cases, the training-time initialisation is still the FastText embedding.

Below, we discuss some implementation details of our approach, and the experimental setup

used to evaluate the proposed strategies.

6.3 Experimental Setup

Of the 4 tasks considered previously, we know that the MC task does not suffer from the OOV

problem. This is because Vtest ⊆ Vtrain, by design. Thus, we consider the RP task and the

paraphrase identification task on the PPDB and MRPC datasets. For each of these tasks, we

make no changes to the dataset and circuit design from the naive models of Chapters 4 and

5. We exclusively change parameter assignment at two stages for each:

1. Training time: Previously, parameters were randomly assigned at training time. In

this experiment, we initialise parameters using the FastText embedding as described in

Algorithm 3. This implies that the Random initialisation strategy will likely not yield

the same results as those shown in previous sections. This is because QML performance

is known to be dependent on parameter initialisation [13, 42, 38].

2. Inference time: At inference time, for words in Vtrain, we use the QNLP model’s

learned parameter assignment. For OOV words, we employ one of the 4 strategies

described above.

We apply all 4 strategies for each of the 3 ansätze from Chapter 4, for circuits of up

to 3 layers. An important practical consideration when implementing our OOV model is

the dimension of the FastText embedding employed. For our experiments, we begin with

the 300-dimension embedding for English available online2. This model is pretrained on data

2https://fasttext.cc/docs/en/crawl-vectors.html

55

https://fasttext.cc/docs/en/crawl-vectors.html

from CommonCrawl and Wikipedia. The number of parameters for each word depends on the

ansatz chosen, and the number of layers thereof. For each ansatz, we determine the maximum

number of parameters dmax needed for any one word, for a specific number of layers. We then

reduce the original 300 dimension embedding to the dmax value for the 3-layer circuit, using

Principal Component Analysis (PCA) [55]. While this means that the reduced FastText

embedding matches the dimension required for the word with most parameters in the 3-layer

case, multiple words with fewer parameters likely exist in the dataset. In these cases, we

simply truncate the reduced embedding to the required dimension. Further, since dmax for

the 3-layer circuit is greater than the dmax values for the 1 and 2-layer circuits, the embedding

will need to be truncated for these circuits. This is a tradeoff we make for simplicity, which

is discussed further in the conclusion of the chapter.

For the MLP used in the Embed-NN model, we implement a dense neural network in

Keras [56]. For each ansatz configuration, this model has input dimension equal to the

dimension of the FastText embedding used in the experiment (3-layer dmax), and has output

dimension equal to dmax for the specific ansatz configuration. There is one hidden layer, the

dimension of which is the average of the input and output dimensions of the MLP. The tanh

activation function is used for both layers. tanh is a suitable choice for the output layer since

it has a range of (−1, 1), implying that the generated parameters will yield rotations in the

complete range (−π, π). The mean absolute error is used as the loss function, and the model

is trained using the Adam optimiser, with a learning rate of 0.001, for 120 epochs.

6.4 Results

Table 6.1 shows the test accuracies for each of the OOV strategies discussed in the previous

section. In 5 out of 9 model configurations, the highest test accuracy is achieved by the

Embed-NN model. Interestingly, the Embed-raw model also performs very well, achieving the

highest test accuracy in 5 cases. This is an interesting result since the FastText embeddings

are derived from a classical CBOW model, and there is no apriori reason to expect them to

perform well as VQC parameter assignments without further processing.

56

RP: Accuracy

Ansatz Layers Train Embed-NN Embed-raw Random Zero

IQP
1 0.860 0.720 0.720 0.693 0.720
2 0.874 0.731 0.753 0.717 0.731
3 0.928 0.785 0.774 0.729 0.785

SIM14
1 0.968 0.763 0.806 0.754 0.731
2 0.950 0.796 0.785 0.763 0.742
3 0.995 0.796 0.806 0.769 0.785

SIM15
1 0.991 0.785 0.828 0.755 0.785
2 0.995 0.839 0.785 0.794 0.839
3 1.000 0.828 0.806 0.797 0.763

Table 6.1: Accuracies for multiple OOV strategies, for the RP task. The highest test accuracy
in each row is highlighted in bold.

RP: BCE Loss

Ansatz Layers Train Embed-NN Embed-raw Random Zero

IQP
1 0.287 0.440 0.442 0.479 0.456
2 0.275 0.425 0.420 0.464 0.443
3 0.197 0.394 0.388 0.453 0.418

SIM14
1 0.145 0.400 0.367 0.468 0.416
2 0.164 0.396 0.452 0.466 0.465
3 0.092 0.397 0.382 0.435 0.420

SIM15
1 0.078 0.508 0.492 0.452 0.388
2 0.075 0.424 0.413 0.417 0.496
3 0.056 0.312 0.439 0.425 0.411

Table 6.2: Binary Cross Entropy loss values for multiple OOV strategies, for the RP task.
The lowest test loss in each row is highlighted in bold.

For 3 model configurations, Zero initialisation equals the test accuracy of the highest

performing strategy. For each of the 9 model configurations, the highest accuracy is achieved

by either the Embed-raw or the Embed-NN initialisation strategies. Table 6.2 shows the values

of the BCE loss for each of the initialisation strategies on the test set. For 8 out of 9 model

configurations, the Embed-raw and Embed-NN strategies achieve the lowest loss values. This

is largely consistent with the results for accuracy.

Of the initialisation strategies considered for the RP task, the highest test accuracy is

83.9%, achieved by the Sim15 ansatz with 2 layers, using the Embed-NN and Zero strategies.

In the results of Chapter 4, the highest accuracy achieved for the RP task, using a naive QNLP

57

PPDB: Accuracy

Ansatz Layers Train Embed-NN Embed-raw Random Zero

IQP
1 0.817 0.725 0.725 0.658 0.703
2 0.882 0.717 0.717 0.646 0.681
3 0.921 0.674 0.688 0.656 0.681

SIM14
1 0.932 0.688 0.710 0.687 0.717
2 0.961 0.739 0.761 0.693 0.783
3 0.953 0.732 0.725 0.703 0.725

SIM15
1 0.932 0.804 0.739 0.658 0.783
2 0.939 0.732 0.645 0.666 0.754
3 0.946 0.710 0.703 0.665 0.710

Table 6.3: Accuracies for multiple OOV strategies, for the paraphrase identification task on
the PPDB dataset. The highest test accuracy in each row is highlighted in bold.

model with random training-time parameter initialisation was 94.2%, which is significantly

higher than any of the OOV strategies discussed here. It is known that QML model perfor-

mance is very sensitive to parameter initialisation (at training time) [38, 42, 13]. Thus, using

FastText embedding as a training-time initialisation is likely suboptimal for this dataset and

task, yielding a trained parameter assignment that generalises poorly to the test set. Further,

the 94.2% test accuracy achieved by the naive model is already very high, leaving minimal

room for improvement.

Table 6.3 lists the test accuracies for various parameter initialisation strategies for the

paraphrase identification task on the PPDB dataset. For 5 out of the 9 model configurations,

the Embed-NN strategy achieves the highest accuracy on the test set. For the IQP models,

Embed-NN and Embed-raw achieve very similar accuracies for all 3 model sizes. Surprisingly,

the Zero initialisation strategy performs particularly well on this dataset, achieving the highest

test accuracy in 4 model configurations. Zero also outperforms Random in each case. In total,

for 6 out of 9 configurations, the highest accuracy is achieved by one of the Embed strategies,

while the Zero strategy achieves the highest accuracy for the remaining 3.

Table 6.4 lists the BCE loss for all the parameter initialisation strategies. In contrast to the

accuracies in Table 6.3, here we observe that the Embed-NN and Embed-raw strategies achieve

the lowest values of the loss function in all cases. Despite having a test loss of more than

3 times that of the Embed strategies, the Zero strategy achieves very high test accuracy for

58

PPDB: BCE Loss

Ansatz Layers Train Embed-NN Embed-raw Random Zero

IQP
1 0.365 0.610 0.598 0.612 1.877
2 0.281 0.527 0.527 0.625 1.929
3 0.274 0.614 0.606 0.638 1.897

SIM14
1 0.239 0.598 0.595 0.596 1.841
2 0.187 0.553 0.564 0.593 1.786
3 0.203 0.570 0.574 0.580 1.829

SIM15
1 0.225 0.508 0.551 0.628 1.783
2 0.196 0.581 0.661 0.639 1.872
3 0.197 0.609 0.624 0.671 1.903

Table 6.4: Binary Cross Entropy loss values for multiple OOV strategies, for the paraphrase
identification task on the PPDB dataset. The lowest test loss in each row is highlighted in
bold.

multiple model configurations. This was not the case for the RP task, where the embedding-

based strategies outperformed other strategies on both loss and accuracy. While loss functions

are chosen such that accuracy and loss demonstrate an inverse relation on average, they do

not share a strict monotonic relation.

This can be demonstrated with a trivial example. Consider the ground truth values of

a classification task: [(0, 1), (0, 1)]. Then, consider two models which each produce the pre-

dicted class distribution [(0.51, 0.49), (0.51, 0.49)] and [(0.49, 0.51), (0.99, 0.01)] respectively.

The BCE loss for the models will then be 0.71 and 2.64 respectively, while their accuracies

are 0% and 50%. The second model achieved higher accuracy, but by being very confident

in an incorrect prediction, had a very high loss value. It is thus entirely feasible for a model

with higher loss on the test set to outperform one with lower loss.

The highest test accuracy for the PPDB paraphrase identification task is 80.4% achieved

by the Embed-NN strategy for the single layer Sim15 ansatz. The highest accuracy achieved

by the naive model in Chapter 5 was 70.3%. Thus, our embedding strategy has yielded a 10+

percentage point improvement over the best model that did not specifically handle the OOV

problem.

Table 6.5 shows the test accuracy for multiple OOV strategies applied to the paraphrase

identification task on the MRPC dataset. For the IQP ansatz, in 2 out of 3 cases the Embed-

59

MRPC: Accuracy

Ansatz Layers Train Embed-NN Embed-raw Random Zero

IQP
1 0.976 0.604 0.563 0.501 0.573
2 0.988 0.677 0.604 0.509 0.656
3 0.911 0.510 0.458 0.513 0.573

SIM14
1 0.940 0.594 0.615 0.538 0.615
2 0.988 0.625 0.635 0.523 0.667
3 0.976 0.625 0.573 0.541 0.594

SIM15
1 0.798 0.625 0.656 0.560 0.625
2 0.863 0.542 0.500 0.544 0.531
3 0.952 0.552 0.563 0.526 0.521

Table 6.5: Accuracies for multiple OOV strategies, for the paraphrase identification task on
the MRPC dataset. The highest test accuracy in each row is highlighted in bold.

NN strategy achieved the highest test accuracy, while the Zero strategy achieved the best

performance for the 3-layer model. For Sim14, the Zero strategy achieved the best test

performance for 1 and 2 layers, while the Embed-NN strategy outperformed it for 3 layers.

The Embed-raw strategy performed the best for Sim15 models of 1 and 3 layers. The Random

strategy only marginally outperforms Embed-NN for the 2-layer case. In total, the Embed-

raw and Embed-NN strategies, between them achieve the highest test accuracy for 6 out of 9

models. The highest test accuracy overall is 67.7%, achieved by the Embed-NN strategy, for

a 2-layer IQP model. This represents a 12.5 percentage point improvement over the 55.2%

achieved by the best naive model (Section 5.4). This performance is appreciably better than

random chance and brings QNLP performance for the MRPC task in line with the naive

QNLP model’s performance on the PPDB task.

6.4.1 Comparison with Naive Models

Table 6.7 presents a comparison of the models presented in this chapter with models from

the previous 2 chapters, which did not consider the OOV problem explicitly (naive models).

For each dataset, the test accuracy for the OOV models is the maximum across all OOV

strategies and ansatz configurations. For the RP task, the model described in Chapter 4

outperforms even the best OOV-aware model by more than 10pp. Observe that the naive

model performed particularly well on this task, despite the 40.5% OOV fraction. Clearly,

60

MRPC: BCE Loss

Ansatz Layers Train Embed-NN Embed-raw Random Zero

IQP
1 0.176 0.648 0.801 0.779 3.633
2 0.235 0.730 0.804 0.764 3.510
3 0.363 0.814 0.876 0.768 3.628

SIM14
1 0.271 0.784 0.698 0.738 3.577
2 0.190 0.712 0.703 0.754 3.460
3 0.248 0.685 0.705 0.734 3.529

SIM15
1 0.370 0.823 0.733 0.715 3.503
2 0.306 0.953 0.975 0.731 3.661
3 0.240 0.909 0.893 0.746 3.649

Table 6.6: Binary Cross Entropy loss values for multiple OOV strategies, for the paraphrase
identification task on the MRPC dataset. The lowest test loss in each row is highlighted in
bold.

Task OOV%
Max Naive
Accuracy

Max OOV
Accuracy

Improvement
(pp)

Max OOV
Strategy

RP 40.50% 94.20% 83.90% −10.30% Embed-NN, Zero
PPDB 50% 70.30% 80.40% +10.10% Embed-NN
MRPC 81.50% 55.20% 67.70% +12.50% Embed-NN

Table 6.7: Improvement in accuracy obtained through use of OOV strategies described in this
section. Improvement is in percentage points (pp).

the OOV problem did not appreciably impact the performance of this model. Any potential

gains in performance from OOV strategies were neutralised by reduction in performance

likely caused by the unsuitability of the FastText embedding as a training-time parameter

initialisation for this task.

For the paraphrase identification task, on the other hand, we observe significant improve-

ment for both datasets. The naive model’s 70.3% accuracy on the PPDB dataset is improved

to 80.4%, which is a very high accuracy given the inherently difficult nature of the task. For

the MRPC dataset, the severity of the OOV problem (81.5%) contributed significantly to the

poor performance of the naive model, which was not appreciably better than random chance.

With the Embed-NN strategy, accuracy on this task was improved to 67.7% which is quite

substantial, given the small minority of words in the test set that the QNLP model had seen

during training.

For all three tasks, the Embed-NN strategy achieved the highest accuracy among the

61

considered OOV strategies. Our results demonstrate that the Embed-NN strategy can make

QNLP models practical even for datasets with extremely high OOV percentages. We believe

that the results here do not represent the optimal performance of the Embed-NN method. Im-

proved training-time initialisation strategies would serve to further extract performance from

models which already achieve high accuracy, such as in the case of the RP task. It is likely

that further performance can be extracted through the use of a lower-dimension initial Fast-

Text embedding. Rather than reducing a 300-dimension embedding through PCA, a directly

learned lower-dimension FastText embedding will likely preserve information that is lost in

the PCA reduction process. Further, a variety of alternative embeddings are available (See

Section 6.1.1), whose utility in the Embed-NN model must be experimentally investigated.

62

Chapter 7

Investigating Barren Plateaus

Thus far we have discussed a variety of tasks in the NLP domain, and have presented QNLP

models to solve these. One topic which we have not delved into previously is the gradient-

based optimisation which plays a central role in QNLP and QML in general. In this chapter,

we discuss the barren plateau problem: a well-known characteristic of the loss landscape in

QML which impedes learning. In Section 7.1 we describe the barren plateau phenomenon

and cover the background necessary for the rest of the chapter. In Section 7.2 we calculate

an expression for the derivative of the binary cross entropy loss function, for both normalised

and sub-normalised quantum states. In Section 7.3 we prove that a loss function defined as

the mean of multiple loss functions with barren plateaus will also have a barren plateau. The

expression derived in Section 7.2 is used in Section 7.4 to evaluate whether the binary cross

entropy loss function has a barren plateau, for regular layered quantum circuits. Finally,

in Section 7.5, we consider whether circuits generated from DisCoCat diagrams are more

susceptible to the barren plateau problem than regular layered ansatz circuits, and provide

empirical evidence that this is not the case.

7.1 Barren Plateaus

As in the case of classical machine learning, QML training relies on the minimisation of a loss

function Lθ(ŷ). This function compares the QML model’s predicted label ŷ (parameterised

63

by θ: the model’s parameters) with the true label y, and returns a value which serves as a

measure of incorrectness. QML (and thus QNLP) models learn by minimising the value of

this loss function Lθ(ŷ) by varying θ through a gradient-based optimisation procedure. As

described in Section 3.2.4, this is achieved through a classical optimiser such as SPSA [33].

In each iteration, the optimiser attempts to find a new assignment θ′ := θ + ∆θ, such that

Lθ′ < Lθ. In each step, the parameter assignment is changed by a small amount ∆θ. Such

methods iteratively explore the loss landscape, following the gradient towards regions of lower

loss.

The barren plateau phenomenon, first described by McClean et al. [38] is a characteristic

of the landscape of a loss function, which can pose serious challenges to the performance

of a QML model. A barren plateau occurs when the loss landscape is overwhelmingly flat.

Informally, this means that the gradient evaluated at the majority of parameter assignments

is near-zero. Thus when parameter initialisation is done by sampling a random distribution,

the gradient will be 0 with extremely high probability. This poses a significant obstacle to

learning, since if the gradient is 0, gradient-based optimisation procedures will degenerate to

a random walk (or not update the parameters at all), and it is very unlikely that the optimiser

will be able to find an optimal parameter assignment.

McClean et al. define a barren plateau as occurring when the gradient of the loss function

along any direction is non-zero with exponentially decreasing probability in the number of

qubits [38]. For this to be the case, they provide two conditions:

• Condition 1: The mean of the gradient of the loss function should be zero.

Mean
[
∂jL

]
= 0

• Condition 2: The variance of the gradient of the loss function should decrease expo-

nentially in the number of qubits.

Var
[
∂jL

]
∈ O

(
1

EXP(n)

)
In their work, they consider a loss function defined as the expectation value of some

64

Hermitian operator H, with respect to a parameterised quantum circuit U(θ):

E(θ) = ⟨0|U(θ)†HU(θ)|0⟩ (7.1)

They prove that this simple, but ubiquitous loss function has a barren plateau when U(θ)

approximates a 2-design. A 2-design is a parameterised quantum circuit which approximates a

Haar-random unitary up to the second moment. Haar random unitaries are unitary matrices

sampled from the Haar measure on the group of n-qubit unitaries [57]. Less formally, the

Haar measure allows us to sample n-qubit unitary operations uniformly at random.

McClean et al. prove the existence of barren plateaus for 2-designs with circuit depth

O(POLY(n)) [38]. Cerezo et al. extend this result and prove that barren plateaus depend on

locality of the Hermitian operator [58]. They prove that when the loss function uses a global

observable for a specific class of circuits (alternating layer ansätze) that approximate 2-designs,

the barren plateau exists regardless of the circuit depth. They show that the barren plateau

can be avoided through the use of shallow circuits, and cost functions with local observables.

7.2 Gradient of the Binary Cross Entropy Loss Function

As a prerequisite to evaluating the barren plateau phenomenon for the Binary Cross Entropy

(BCE) loss function, it is necessary for us to define its gradient. This derivation finds use in

the experiments we describe in Section 7.4. The BCE loss function is defined as:

LBCE =
−1
N

N∑
i=1

yi · log(P (yi)) + (1− yi) · log(1− P (yi)) (7.2)

where yi is the label of the i’th data sample, and P (yi) is the model’s predicted probability

that yi = 1. We define a sample-specific loss:

Li = yi · log(P (yi)) + (1− yi) · log(1− P (yi)) (7.3)

such that the BCE loss function is represented as the (negated) average of the individual loss

on N samples:

LBCE =
−1
N

N∑
i=1

Li (7.4)

65

For our analysis, the negation of the average is not important, since it does not impact the

variance. Thus, the results we prove concerning the variance of the mean (Theorem 7.3.1 and

Corollary 7.3.2) apply equally to the BCE loss function. The gradient of the loss function,

w.r.t an arbitrary parameter θj can be written as:

∂jLBCE ≡
∂LBCE

∂θj
=
−1
N

N∑
i=1

∂Li
∂θj

(7.5)

Following McClean et al. we use ∂j as shorthand for ∂
∂θj

. It is convenient for us to consider

the probability of measuring outcome 0 from the prepared state, measured in the Z-basis. For

this purpose, we employ the following substitution:

ŷi := P (yi) = 1− Pθ,i(0) (7.6)

Where Pθ,i(k) gives the probability of measuring an outcome k, from a circuit prepared for

input sample i, parameterised by θ. ŷi is introduced for notational convenience, and is the

same as P (yi). Li can then be rewritten as:

Li = yi · log(1− Pθ,i(0)) + (1− yi) · log(Pθ,i(0)) (7.7)

Calculating the partial derivative of Li:

∂jLi =
−yi

1− Pθ,i(0)
· ∂jPθ,i(0) +

1− yi
Pθ,i(0)

· ∂jPθ,i(0) (7.8)

=

(
1− yi
Pθ,i(0)

− yi
1− Pθ,i(0)

)
· ∂jPθ,i(0) (7.9)

Substituting in ŷi, we get

∂jLi =
(
1− yi
1− ŷi

− yi
ŷi

)
· ∂jPθ,i(0) (7.10)

To calculate ∂jPθ,i(0), we must consider 2 cases:

Case 1 (Normalised State): In the case where each input is associated with a normalised

state |ψi(θ)⟩, the probabilities can be calculated as follows:

Pθ,i(0) = ⟨ψi(θ)|H|ψi(θ)⟩ (7.11)

= ⟨ψi(θ)|0⟩⟨0|ψi(θ)⟩ (7.12)

= |⟨ψi(θ)|0⟩|2 (7.13)

∴ ∂jPθ,i(0) = ∂j |⟨ψi(θ)|0⟩|2 (7.14)

66

Here H = |0⟩⟨0| is a projective measurement associated with the |0⟩ state. H is also a

Hermitian operator (since it is self-adjoint), and the probability Pθ,i(0) is the associated

expectation value of the observable. Section 2.1.4 provides the necessary background on

measurement and expectation values. Using this form, it is possible to obtain the gradient of

Pθ,i(0) using diagrammatic differentiation [59] of the expression in (7.14), as implemented in

DisCoPy [34].

Case 2 (Sub-normalised State): In the case of DisCoCat diagrams, states are in-general

sub-normalised [5]. Lorenz et al. define the probability as:

Pθ,i(0) :=
l0θ,i

l0θ,i + l1θ,i
(7.15)

lkθ,i := ||⟨k|ψi(θ)⟩|2 − ϵ| (7.16)

Here ϵ is a small positive constant (10−9 in [5]), used to ensure that (l0θ,i, l
1
θ,i) is a well-defined

probability distribution. Considering the derivative of lkθ,i, with respect to parameter θj :

∂jl
k
θ,i = ∂j ||⟨k|ψi(θ)⟩|2 − ϵ| (7.17)

= sgn(|⟨k|ψi(θ)⟩|2 − ϵ) · ∂j |⟨k|ψi(θ)⟩|2 (7.18)

Here, the first component only takes values in {−1, 1}, and the second component can be

evaluated diagrammatically using DisCoPy’s diagrammatic differentiation. This can be used

to calculate the gradient of the probability:

∂jPθ,i(0) = ∂j
l0θ,i

l0θ,i + l1θ,i
(7.19)

=
(l0θ,i + l1θ,i) · ∂jl0θ,i − l0θ,i · ∂j(l0θ,i + l1θ,i)

(l0θ,i + l1θ,i)
2

(Quotient rule) (7.20)

=
l1θ,i · ∂jl0θ,i − l0θ,i · ∂jl1θ,i

(l0θ,i + l1θ,i)
2

(7.21)

Each of ∂jl
0
θ,i and ∂jl

1
θ,i can be calculated using diagrammatic differentiation in the form

described in (7.18), and the value of each lkθ,i can be obtained by calculating the expectation

value |⟨k|ψi(θ)⟩|2, and processing its output as described in (7.16). Thus we have provided

expressions for calculating the gradient of the binary cross entropy loss function for both

normalised and sub-normalised states. We use the derived formula for Case 1 (7.14) in

67

Section 7.4 to evaluate whether this loss function has a barren plateau.

7.3 Barren Plateaus in Multi-Circuit Models

Before we proceed to experimental results relating to the barren plateau, we provide one final

theoretical result relating to ensembles of loss functions. One unique aspect of QNLP models

is that they do not consist of a single circuit. Typically, a circuit is generated for each sample

in a dataset, and parameters are shared across these. This is because words typically occur in

multiple samples. The loss function then, is some linear combination of the loss functions on

individual circuits. It is reasonable then, to ask whether this sharing of parameters between

circuits can alleviate the barren plateau problem. Specifically, we evaluate whether multiple

circuits which each individually demonstrate a barren plateau, demonstrate a more favourable

training landscape in ensemble. It turns out, however, that this is not the case.

Theorem 7.3.1. Given a loss function L defined as the mean of N individual loss functions

{L1,L2, ...LN}:

L =
1

N

N∑
i=1

Li

then the variance of the gradient (w.r.t some parameter θk) of the combined loss function is

no greater than the largest individual variance of a loss function.

σ2 ≤ MAX{σ21, σ22, ...σ2N}

Proof. We utilise the following fact about the variance of the linear combination of random

variables:

σ2 =
1

N2

N∑
i=1

σ2i +
2

N2

N∑
i=1

∑
j<i

Cov(∂kLi, ∂kLj) (7.22)

Without loss of generality, we assume the following ordering of variances:

σ1 ≥ σ2 ≥ .. ≥ σN (7.23)

=⇒ σ21 ≥ σ22 ≥ .. ≥ σ2N (7.24)

68

It then follows that:

σ2 ≤ 1

N2
N.σ21 +

2

N2

N∑
i=1

∑
j<i

Cov(∂kLi, ∂kLj) (7.25)

σ2 ≤ σ21
N

+
2

N2

N∑
i=1

∑
j<i

Cov(∂kLi, ∂kLj) (7.26)

The covariance of two random variables X1 and X2 is known to observe the following inequal-

ity:

|Cov(X1, X2)| ≤ σX1 · σX2 (7.27)

Using this equation, for any 2 samples i and j where i ̸= j, we have:

|Cov(∂kLi, ∂kLj)| ≤ σi · σj (7.28)

=⇒ Cov(∂kLi, ∂kLj) ≤ σi · σj (7.29)

From the ordering imposed on the variances, we know that:

∀ i, j ∈ {1, 2, ...N} . (σ1 ≥ σi) ∧ (σ1 ≥ σj)

It then follows that ∀ i, j ∈ {1, 2, ...N} where i ̸= j

Cov(∂kLi, ∂kLj) ≤ σ21

Using this result, we can simplify equation 7.26 to:

σ2 ≤ σ21
N

+
2

N2
· N(N − 1)

2
.σ21 (7.30)

=⇒ σ2 ≤ σ21 (7.31)

Recalling that σ21 is used only due to the ordering we assigned, we can drop this ordering

to arrive at the desired statement :

σ2 ≤MAX{σ21, σ22, ...σ2N} (7.32)

This theorem implies that if ∀i. Var[∂kLi] decreases exponentially in the number of qubits,

then Var[∂kL] will also decrease exponentially in the number of qubits. Further, if the expec-

69

tation value of each individual ∂kLi is 0, then by the linearity of expectation:

∀i. Mean[∂kLi] = 0 =⇒ Mean[∂kL] = 0 (7.33)

These 2 observations directly yield a result about barren plateaus:

Corollary 7.3.2. If a set of loss functions {L1,L2, ...LN} each have a barren plateau, then

the loss function defined as the mean of the individual losses:

L =
1

N

N∑
i=1

Li

will also have a barren plateau.

This result extends to the BCE loss function, as defined in (7.4), since the negative sign

affects neither the mean (since Mean[−∂kLi] = Mean[∂kLi] = 0) nor the variance. In the case

of QNLP, this implies that if the loss landscapes for individual circuits each have a barren

plateau, then the loss function across the whole dataset will also have a barren plateau.

7.4 Experimental Evaluation of the Barren Plateau for the

BCE Loss Function

In the previous section, we established that having multiple circuits sharing parameters does

not shield us from the barren plateau problem. This implies that if individual DisCoCat

circuits are susceptible to the barren plateau problem, the average of the loss on individual

circuits is not immune from having a barren plateau. We now turn our attention to the loss

function we have been using in all experiments in Chapters 4, 5 and 6. The proofs of the

existence of barren plateaus for 2-designs due to McClean et al. and Cerezo et al. discuss

exclusively the use of an expectation value as the loss function [38, 58]. They do not, however,

discuss the variance of a non-linear function L, which uses the expectation value as input.

An example of such a function is the Binary Cross Entropy (BCE) loss function which we

have used in all experiments in previous chapters. Here, we aim to experimentally evaluate

whether the variance of the gradient of the BCE loss function also decreases exponentially in

the number of qubits, as in the case of the raw expectation value.

70

Recall our definition of the BCE loss function for a single sample (7.3):

LBCE = y · log(1− Pθ(0)) + (1− y) · log(Pθ(0)) (7.34)

Note that the i subscript has been omitted for brevity. For the case of a normalised state

|ψ(θ)⟩, we defined the models predicted probability in 7.11 as

Pθ(0) = ⟨ψ(θ)|H|ψ(θ)⟩ (7.35)

where H = |0⟩⟨0| is a Hermitian operator, indicating the probability of measuring the |0⟩

state. Pθ(0) is then the expectation value of the Hermitian operator |0⟩⟨0|. In previous work,

this expectation value is treated as the loss function directly [38, 58]. That is:

LE = ⟨ψ(θ)|H|ψ(θ)⟩ (7.36)

It has been proved that the variance of the gradient of the expectation value decreases expo-

nentially in the number of qubits:

V ar[∂kLE] ∈ O
(

1

EXP (n)

)
and that the mean of the gradient is 0, for 2 designs [11]. However, it is not known whether

LBCE suffers from the same problem. In this section, we evaluate whether the variance of

the gradient of LBCE decreases exponentially in the number of qubits for layered circuits of

our chosen ansätze, and demonstrate empirical evidence that in some cases, the BCE loss

function does not suffer from the barren plateau phenomenon.

7.4.1 Experimental Setup

For LBCE , the loss value is dependent on the true label y of the sample, not just the parameter

assignment. Thus for each circuit, we calculate both the gradient when y = 0 and when y = 1.

We label these loss functions L0BCE and L1BCE respectively. Thus, the 3 loss functions of which

we analyse the gradient are:

LE = ⟨ψ(θ)|H|ψ(θ)⟩ (7.37)

L0BCE = log(⟨ψ(θ)|H|ψ(θ)⟩) (7.38)

L1BCE = log(1− ⟨ψ(θ)|H|ψ(θ)⟩) (7.39)

71

To evaluate the variance of the gradient of the considered loss functions, we generate

circuits using the 3 ansätze we introduced in Chapter 4: IQP, Sim14 and Sim15. We generate

circuits of 2 to 10 qubits, with 1 to 3 layers. For each circuit, we generate the diagram

representing the expectation value and use DisCoPy to generate the diagram representing its

gradient with respect to the first circuit parameter. This can be used to calculate the gradient

of each considered loss function using the process described in Section 7.2. We evaluate the

gradients at 50 random parameter initialisations. The variance and mean across these samples

are then calculated and reported. While 50 samples may seem small, we note that for each

ansatz we consider, we observe results matching prior theoretical results from the literature.

Namely that the variance of the gradient of LE decreases exponentially in the number of

qubits.

7.4.2 Results

Figure 7.1 plots the variance of the gradient for the considered loss functions, for IQP, Sim14

and Sim15 circuits of each considered circuit size. For the case where the loss function is the

expectation value LE , we observe that the variance of the gradient decreases exponentially

in the number of qubits. This matches previous results from the literature [38, 58, 42]. For

the BCE loss function, we observe different trends for the two values of y. In the case where

y = 1, Var[∂L1BCE] decreases exponentially in the number of qubits, at approximately the

same rate as Var[∂LE] for all 3 ansätze. For the BCE loss function when y = 0 however,

we observe a very different trend. Var[∂L0BCE] does not decrease as the number of qubits is

increased. For all 3 ansätze, Var[∂L0BCE] is consistently higher than the variances of the other

two loss functions.

Figure 7.2 plots the mean of the gradients for each of the loss functions for all 3 ansätze.

For ∂LE and ∂L1BCE , we observe that the mean of the gradients is approximately equal to 0 for

all ansätze and for all qubits. Thus, since Var[∂LE] and Var[∂L1BCE] decrease exponentially

in the number qubits, and Mean[∂LE] and Mean[∂L1BCE] are approximately equal to 0 for all

considered circuits, we conclude that the gradients concentrate exponentially around 0. Thus,

72

2 4 6 8 10
Qubits

10−4

10−2

100

102

104

106

V
ar

[δ
L
]

IQP

2 4 6 8 10
Qubits

SIM14

2 4 6 8 10
Qubits

SIM15

d = 1

d = 2

d = 3

LE
L0BCE
L1BCE

Figure 7.1: Variance of the gradient of considered loss functions for each ansatz. For each
ansätze the variance of ∂LE and ∂L1BCE decrease exponentially in the number of qubits, while
the variance of ∂L0BCE remains largely unchanged.

we have provided experimental evidence that all 3 circuits: IQP, Sim14 and Sim15 suffer from

the barren plateau problem, for the LE and L1BCE loss functions.

An interesting result from the experiment described in this section is that the Binary Cross

Entropy loss function appears to not have the barren plateau problem when the ground-truth

label is 0 (y = 0). This is evinced by the fact that the variance of ∂L0BCE does not decrease

exponentially in the number of qubits, and the mean of this gradient does not approach zero.

This implies that the gradient does not exponentially concentrate around zero, indicating

the absence of a barren plateau. In practice when applying machine learning to a binary

classification problem, it is common to ensure a balanced dataset. That is, to ensure a

roughly equal number of samples with y = 0 and y = 1. Thus for a well-balanced dataset, the

total loss function L, will be the arithmetic mean of an approximately equal number of L0BCE

and L1BCE per-sample losses. This implies that for a binary classification task, approximately

half of the samples will not be individually affected by the barren plateau problem. While our

experimental results suggest this, a theoretical proof of this fact is not yet available. Below

we pose a concrete question, the answer to which will shed further light on the impact of

non-linear cost functions on the barren plateau phenomenon.

73

2 4 6 8 10
Qubits

−40

−30

−20

−10

0

10

M
ea
n
[δ
L
]

IQP

2 4 6 8 10
Qubits

−2

0

2

4

6

8
SIM14

2 4 6 8 10
Qubits

−50

0

50

100

SIM15

d = 1

d = 2

d = 3

LE
L0BCE
L1BCE

Figure 7.2: Mean of the gradient for all considered loss functions for each ansatz. For all
ansätze the mean of ∂LE and ∂L1BCE is near-0. For ∂L0BCE , the mean is erratic and does not
approach a single value.

Given an expectation value defined as

LE = ⟨ψ(θ)|H|ψ(θ)⟩

for some Hermitian observable H and parameterised quantum state |ψ(θ)⟩, if it is

known that Var [∂kLE] decreases exponentially in the number of qubits n, of state

|ψ(θ)⟩, then for a function defined as

L0BCE = log(1− LE)

what is the trend in Var [∂kL0BCE] as the number of qubits n is varied?

While this result is interesting, it does not imply that the BCE loss function entirely circum-

vents the barren plateau problem. This class-specific nature of the barren plateau exhibited

by the BCE loss functions suggests that the model may only be able to learn on samples with

y = 0, since the samples with y = 1 have a near-zero sample-specific gradient. Further study

is necessary to determine whether this is the case in practice.

In this section, we presented an experiment yielding interesting results about the effect of

using the BCE loss function on the barren plateau problem. These are initial results which we

believe motivate further investigation into the relation between non-linear cost functions and

74

QML loss landscapes. In addition to the open problem posed above, we list some directions

for extending our work below.

Due to limitations on the computational resources and time at our disposal, it was not

feasible to evaluate circuits deeper than 3 layers. Deeper circuits may be closer approxima-

tions to a 2-design, yielding different results. In our experiments, we use a small number of

samples to estimate the mean and gradient. Using more samples will yield higher fidelity

for these values. This likely did not significantly impact our results, since we observe the

exponential decrease in gradient variance for 2 loss functions exactly as described in prior

literature. Techniques exist to calculate the exact variance of the gradient directly using the

ZX calculus [32]. The use of such techniques will eliminate the need for approximating the

variance using multiple samples, yielding precise results.

7.5 Expressibility of DisCoCat Circuits

One of the reasons we cited in Chapter 4 for selecting the Sim14 ansatz was its high express-

ibility. Highly expressive ansätze are favoured as they are more likely to span the solution

space [39]. A recent result from Holmes et al. however, shows that there is a direct correlation

between the expressibility of a circuit and the severity of the barren plateau phenomenon [12].

The expressibility of a parameterised circuit is described by Sim et al. as being a measure

of how closely the parameterised circuit distribution approximates the Haar measure [39].

Haar random unitaries, previously described in Section 7.1 are unitaries sampled from the

Haar measure on n-qubit unitaries. This definition of expressibility provides some intuition

for the result of Holmes et al. The original work on barren plateaus proved their existence

for 2-designs [38, 58]. That is, circuits which approximate the Haar distribution up to the

second moment. A circuit with higher expressibility thus is a closer approximation of the Haar

distribution and is therefore an approximate 2-design. Consequently, as the expressibility of

a circuit increases, it is a closer approximation of a 2-design, making it more susceptible to

the barren plateau phenomenon.

Thus far in this chapter, we have focused our attention on regular layered ansatz circuits.

75

In this section, we turn our attention to DisCoCat circuits, formed from the pregroup grammar

of sentences. Typically in DisCoCat diagrams, the output dimension of a sentence state (no

qubits) is smaller than the dimension used to prepare the state (np qubits). This is because

there are multiple qubits associated with internal types of the sentence, which are not part

of the output. Due to this relation (np > no), a DisCoCat state of no qubits will often have

far more parameters than a layered state of no qubits, even when using the same ansatz.

A reasonable worry then, is that DisCoCat states are significantly more expressible than

regular layered ansatz states, which would make them more susceptible to the barren plateau

phenomenon. It is computationally difficult to analytically calculate the gradient for DisCoCat

circuits in the manner we did for the layered circuits in Section 7.4, owing to their larger

size even for a small number of output qubits no. Thus we use the notion of expressibility

described above as a proxy for the barren plateau phenomenon. In this section, we evaluate

the expressibility of DisCoCat states, compared with regular layered ansatz states, and argue

that DisCoCat states are likely no more susceptible to the barren plateau phenomenon than

layered circuits.

7.5.1 Experimental Setup

The space of DisCoCat states is very large, and it would be infeasible to evaluate the express-

ibility of any significant subset explicitly. We limit our experiments to DisCoCat states which

have the following structure:

n

Word1

n.r s n.l

Word2

n

Word3

Such a diagram is generated when parsing phrases of the form “subject - transitive-verb -

object”1. Here, the output dimension will be no = qs qubits, since the output type is s, while

the dimension of the state used to generate this final state is np = qs+4·qn, due to the presence

of the two cups of type n. To evaluate the expressibility of a quantum state generated using

1“Alice loves Bob”, “He pets dogs” are phrases of this type.

76

such a DisCoCat diagram, we generate circuits using the IQP, Sim14 and Sim15 ansätze,

of 1 to 5 layers each, for output dimensions qs of 1 and 2 qubits. Small values of qs are

chosen since the tasks to which QNLP methods have been applied thus far are classification

tasks on datasets with a small number of classes. We vary qn in the range {0, 1, 2}. When

qn = 0, the circuit degenerates to a regular layered ansatz on the base state (Word2), and

loses its DisCoCat structure. Thus we treat qn = 0 as the baseline, against which to compare

the DisCoCat diagrams. To evaluate the expressibility of a circuit, we employ the method

described by Sim et al. [39]. For each configuration of each ansatz, we generate 500 pairs

of states (|ψθ⟩, |ψϕ⟩) with random parameter assignments θ, ϕ. Then, we measure the fidelity

F = |⟨ψθ|ψϕ⟩|2 of each pair. We use these fidelities to generate a probability distribution PCirc,

by dividing the range of fidelities [0, 1] into 75 buckets and normalising. A similar distribution

for the ideal Haar distribution can be calculated analytically [39, 60]. For a histogram bucket

defined by the limits (l, u), the Fidelity distribution for the Haar distribution is defined as:

PHaar(l, u) =

∫ u

l
PHaar(F) dF = (1− l)qs − (1− u)qs (7.40)

where PHaar(F) is the probability that two states sampled from the Haar distribution have

fidelity F . As before, qs is the number of qubits in the state. The expressibility is defined as

the Kullback-Leibler (KL) divergence between PCirc and PHaar:

Expr = DKL(PCirc||PHaar) (7.41)

Here we have borrowed the definition of Expr from Sim et al. Note that circuits with low

Expr (low KL-divergence), are highly expressible circuits, and vice versa. In the following

section, we present the results of this expressibility study of DisCoCat circuits.

7.5.2 Results

1-qubit States

The KL-divergences for 1-qubit states (qs = 1) generated by up to 5 layers of each ansatz

are shown in Figure 7.3. The case where qn = 0, represents a non-DisCoCat circuit. For

all ansätze, the single-qubit circuit is a special case, generated by the Euler decomposition

77

20 40 60
parameters

10−1

6× 10−2

2× 10−1

3× 10−1

D
K
L

IQP

0 50 100 150
parameters

Sim14

0 25 50 75
parameters

Sim15

qn = 0

qn = 1

qn = 2

Figure 7.3: KL-divergence for 1-qubit states (qs = 1), for varying qn for all ansatz. Lower
DKL implies higher expressibility. Note that y-axis is log-scaled.

as described in Chapter 4, regardless of the number of layers. Thus for qn = 0, qs = 1,

there is a single KL-divergence plotted for each ansatz. These represent identical circuits, but

vary marginally due to different random seeds, and the finite number of samples we use to

calculate the probability distribution. Recall from the previous section that expressibility and

KL-divergence have an inverse relation: a circuit with low KL-divergence is highly expressive.

For the IQP ansatz, we observe that for the majority of circuit depths, the qn = 1 DisCoCat

circuit is slightly less expressive than the non-DisCoCat circuit, despite higher parameteri-

sation. The qn = 2 DisCoCat circuit has higher expressibility, but only by a small margin.

For the Sim14 ansatz, the qn = 1 DisCoCat circuit has very similar expressibility to the non-

DisCoCat circuit for the first 4 layers, but has higher expressibility for the 5-layer circuit. The

qn = 2 DisCoCat circuit shows a marginal decrease in expressibility through the layers, and

has very-similar or lower expressibility than the non-DisCoCat circuit for all layers. This is a

useful result since it demonstrates clearly that increased circuit depth and parameterisation

do not directly imply higher expressibility.

We observe the most drastic change for the Sim15 ansatz. The qn = 1 DisCoCat circuit

has slightly higher expressibility than the non-DisCoCat circuit for shallow circuits, but has

roughly the same expressibility for circuits of depth 3 and greater. The qn = 2 DisCoCat

78

0 20 40 60
parameters

10−1

100

D
K
L

IQP

0 100 200
parameters

Sim14

0 50 100
parameters

Sim15

qn = 0

qn = 1

qn = 2

Figure 7.4: KL-divergence for 2-qubit states (qs = 2), for varying qn for all ansatz. Lower
DKL implies higher expressibility. Note that y-axis is log-scaled.

circuit however, has significantly lower expressivity than both other cases, for all circuit

depths.

For 1-qubit states, we observe that for no ansatz did the DisCoCat circuits demonstrate

distinctly higher expressibility than the non-DisCoCat model. This is an encouraging result,

since it suggests that for binary-classification tasks where the output is a single qubit, DisCo-

Cat circuits are not in-general more susceptible to the barren plateau problem than regular

parameterised circuits, despite having up to 2 orders of magnitude more parameters.

2-qubit States

The KL-divergences for 2-qubit states (qs = 2) generated by each considered circuit configu-

ration are shown in Figure 7.4. For the IQP ansatz with qn = 0 (non-DisCoCat circuit), we

observe that expressibility increases drastically with increase in layers. For the IQP DisCoCat

circuits (qn = 1, qn = 2), we observe that expressibility is higher than in the non-DisCoCat

case for almost all circuit depths. For the Sim14 ansatz, we observe a much tighter grouping

of expressibilities than for the IQP ansatz. For this ansatz, we observe that increasing qn did

not have a significant impact on expressibility. The circuits have very similar expressibilities

for all values of qn. For the Sim15 ansatz, we observe the most stark difference in express-

79

ibility. For the qn = 1 circuits, the expressibility increases dramatically. This trend does not

continue for the qn = 2 case however, where the expressibilities are of the same order as the

non-DisCoCat circuits. This trend can likely be explained by compositional characteristics of

expressibility, which we consider in the following subsection.

Unlike in the single-qubit case, our results vary by ansatz for the 2-qubit case. The IQP

DisCoCat circuits demonstrate higher expressibility than the non-DisCoCat circuit. Even

the most expressive IQP DisCoCat circuit however, is not appreciably more expressible than

the Sim14 non-DisCoCat circuits. For the Sim14 ansatz, DisCoCat circuits are no more

expressive than the standard circuits. The Sim15 ansatz has more interesting compositional

properties, which can in some cases yield a more expressive circuit than the non-DisCoCat

circuit. However, even this circuit is not more expressive than the non-DisCoCat Sim14 circuit

with 5 layers.

Compositional Characteristics of Expressibility

For the qs = 2 Sim15 circuits, we observed that the qn = 1 case had far higher expressibility

than the qn = 2 case. One possible reason for this is that when qn = 1, the noun state

is generated using the single-qubit Euler decomposition. We know that this single-qubit

circuit (Sim15 qs = 1, qn = 0 in Figure 7.3) is more expressive than the layered Sim15 2-

qubit ansatz (Sim15 qs = 2, qn = 0 in Figure 7.4). Thus in the (qn = 1) case, Word1

and Word3 states are the highly expressive Euler decompositions, while for (qn = 2) these

words are the less-expressive Sim15 ansätze for 2 qubits. This implies that the circuit for

qn = 1, plugging in two highly expressive states (Word1, Word3), into the base state yielded

a resultant highly-expressive state. Whereas for the qn = 2 state, the states for Word1 and

Word3 are less expressive, yielding a final state which is similarly less expressive. This is a

particularly interesting result, since it clearly demonstrates that a base state can have vastly

different expressibilities, depending on the expressibilities of other states which are plugged

into a selection of its qubits. Further, this result motivates the need for a compositional

study of expressibility. Specifically, what compositions of quantum states reduce or increase

80

the expressibility of the resultant state. This would allow evaluating a DisCoCat diagram to

determine the likely expressibility of the final state, and would motivate ansatz choice so as

to generate circuits of desired expressivity.

81

Chapter 8

Conclusion

8.1 Summary of Results

In this work, we have presented experimental results comparing ansätze for various QNLP

tasks. We presented the first results for QNLP applied to the task of paraphrase identification.

We have presented a novel approach, Embed-NN, to overcome the out-of-vocabulary problem

faced by QNLP models. Through our approach, it is possible to apply QNLP models to

datasets where a large percentage of the test set’s vocabulary was not observed during training.

Further, we have provided some experimental and theoretical results relating to the barren

plateau phenomenon in QML.

In Chapter 4 we compared the Sim ansätze with the IQP ansatz and demonstrated that

they achieve superior performance on the MC and RP tasks. In Chapter 5 we presented the

first QNLP results for the paraphrase identification task. This task is more difficult than the

previous tasks to which the DisCoCat form of QNLP has been applied, requiring significant

semantic understanding. We demonstrated that the Sim14 ansatz is a suitable choice for

the majority of QNLP tasks, across datasets. We argued that a significant factor limiting

QNLP performance at the paraphrase identification task was the out-of-vocabulary (OOV)

problem. In Chapter 6 we considered this problem in detail and presented a novel approach

to overcoming it, using classical word embeddings. We demonstrated that our method yields

significant performance improvement for the paraphrase identification task.

82

In Chapter 7 we considered the barren plateau phenomenon, a problem affecting the loss

landscape in QML. We experimentally observed that the binary cross entropy loss function

does not appear to demonstrate a barren plateau when y = 0. Further, we demonstrated

empirically that circuits derived from DisCoCat diagrams for binary classification tasks are

not in-general more expressive than regular layered circuits, suggesting that they are not more

susceptible to the barren plateau phenomenon, despite much higher parameterisation.

8.2 Future Work

One limitation of our results is that all experiments were executed exclusively through exact

simulation using tensor contraction. Running our experiments on a NISQ device, or on a

noisy quantum simulator will likely impact each of the ansätze we consider in different ways.

The performance of each ansatz will be affected by the topology of the specific device, and

the noise associated with individual qubits and gates. Further investigation is necessary to

determine which ansätze perform well on specific quantum devices.

In all our experiments, we use a single ansatz for each box in a diagram. While this is

a natural choice, it is not formally required. An alternative approach worth investigating

is to assign a specific ansatz to each word type. This could potentially be used to ensure

that nouns and words important to the specific task have highly expressive representations,

while words deemed less relevant to the task have limited parameterisation, thereby bounding

model complexity. In the OOV experiments in Chapter 6, we observed that the FastText

embedding may not be an optimal training-time parameter initialisation in all cases. Further

investigation is necessary to evaluate alternate training-time initialisations, in conjunction

with the Embed-NN method we proposed. The choice of FastText embeddings in the Embed-

NN method is not canonical, and research into the relative performance of Word2Vec, BERT

or other classical embeddings would be of value.

In Chapter 7, we presented experimental evidence that the BCE loss function does not

experience the barren plateau phenomenon for y = 0. This is a surprising result, which

requires further mathematical analysis. We formally pose this question in Section 7.4.2.

83

We used expressibility as a proxy for the barren plateau phenomenon and experimentally

showed that circuits derived from DisCoCat diagrams are in-general not more expressive than

regular layered circuits. This proxy was employed due to the computational complexity of

statistically measuring the variance of the gradient. Our results can be refined through the

use of diagrammatic techniques to analytically calculate the variance of the gradient [32],

which would allow us to directly reason about the barren plateau phenomenon.

84

Bibliography

[1] Bob Coecke, Mehrnoosh Sadrzadeh, and Stephen Clark. Mathematical foundations for a

compositional distributional model of meaning. arXiv preprint arXiv:1003.4394, 2010.

[2] William Zeng and Bob Coecke. Quantum algorithms for compositional natural language

processing. arXiv preprint arXiv:1608.01406, 2016.

[3] Bob Coecke, Giovanni de Felice, Konstantinos Meichanetzidis, and Alexis Toumi.

Foundations for near-term quantum natural language processing. arXiv preprint

arXiv:2012.03755, 2020.

[4] Konstantinos Meichanetzidis, Alexis Toumi, Giovanni de Felice, and Bob Co-

ecke. Grammar-aware question-answering on quantum computers. arXiv preprint

arXiv:2012.03756, 2020.

[5] Robin Lorenz, Anna Pearson, Konstantinos Meichanetzidis, Dimitri Kartsaklis, and Bob

Coecke. QNLP in practice: Running compositional models of meaning on a quantum

computer. arXiv preprint arXiv:2102.12846, 2021.

[6] Richard P Feynman. Simulating physics with computers. In Feynman and computation,

pages 133–153. CRC Press, 2018.

[7] Paul Benioff. The computer as a physical system: A microscopic quantum mechanical

hamiltonian model of computers as represented by turing machines. Journal of statistical

physics, 22(5):563–591, 1980.

[8] Y I Manin. Vychislimoe i nevychislimoe. Sov. radio,, 1980.

85

[9] John Preskill. Quantum computing in the NISQ era and beyond. Quantum, 2:79, 2018.

[10] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C Bardin, Rami Barends,

Rupak Biswas, Sergio Boixo, Fernando GSL Brandao, David A Buell, et al. Quantum

supremacy using a programmable superconducting processor. Nature, 574(7779):505–510,

2019.

[11] Jarrod R McClean, Jonathan Romero, Ryan Babbush, and Alán Aspuru-Guzik. The

theory of variational hybrid quantum-classical algorithms. New Journal of Physics,

18(2):023023, 2016.

[12] Zoë Holmes, Kunal Sharma, Marco Cerezo, and Patrick J Coles. Connecting ansatz

expressibility to gradient magnitudes and barren plateaus. PRX Quantum, 3(1):010313,

2022.

[13] Nishant Jain, Brian Coyle, Elham Kashefi, and Niraj Kumar. Graph neural network

initialisation of quantum approximate optimisation. arXiv preprint arXiv:2111.03016,

2021.

[14] Michael A Nielsen and Isaac Chuang. Quantum computation and quantum information,

2002.

[15] Bob Coecke and Ross Duncan. Interacting quantum observables. In International Col-

loquium on Automata, Languages, and Programming, pages 298–310. Springer, 2008.

[16] John van de Wetering. ZX-calculus for the working quantum computer scientist. arXiv

preprint arXiv:2012.13966, 2020.

[17] Dimitri Kartsaklis, Ian Fan, Richie Yeung, Anna Pearson, Robin Lorenz, Alexis Toumi,

Giovanni de Felice, Konstantinos Meichanetzidis, Stephen Clark, and Bob Coecke.

lambeq: An Efficient High-Level Python Library for Quantum NLP. arXiv preprint

arXiv:2110.04236, 2021.

[18] Kang Feng Ng and Quanlong Wang. A universal completion of the ZX-calculus. arXiv

preprint arXiv:1706.09877, 2017.

86

[19] Bob Coecke and Aleks Kissinger. Picturing quantum processes. In International Con-

ference on Theory and Application of Diagrams, pages 28–31. Springer, 2018.

[20] Tom M Mitchell and Tom M Mitchell. Machine learning, volume 1. McGraw-hill New

York, 1997.

[21] Maria Schuld and Francesco Petruccione. Supervised learning with quantum computers,

volume 17. Springer, 2018.

[22] KR Chowdhary. Natural language processing. Fundamentals of artificial intelligence,

pages 603–649, 2020.

[23] Joachim Lambek. From Word to Sentence: a computational algebraic approach to gram-

mar. Polimetrica sas, 2008.

[24] Dimitri Kartsaklis, Mehrnoosh Sadrzadeh, Stephen Pulman, and Bob Coecke. Reason-

ing about meaning in natural language with compact closed categories and Frobenius

algebras. Logic and algebraic structures in quantum computing, page 199, 2013.

[25] Richie Yeung and Dimitri Kartsaklis. A CCG-based version of the DisCoCat framework.

arXiv preprint arXiv:2105.07720, 2021.

[26] Mark Steedman. The syntactic process. MIT press, 2001.

[27] Stephen Clark. Something old, something new: Grammar-based CCG parsing with

transformer models. arXiv preprint arXiv:2109.10044, 2021.

[28] Masashi Yoshikawa, Hiroshi Noji, and Yuji Matsumoto. A* CCG parsing with a supertag

and dependency factored model. In ACL (1), 2017.

[29] Hugh Collins and Kortney Easterly. Ibm unveils breakthrough

127-qubit quantum processor, 2021. https://newsroom.ibm.com/

2021-11-16-IBM-Unveils-Breakthrough-127-Qubit-Quantum-Processor, Accessed

on 30/12/2021.

87

https://newsroom.ibm.com/2021-11-16-IBM-Unveils-Breakthrough-127-Qubit-Quantum-Processor
https://newsroom.ibm.com/2021-11-16-IBM-Unveils-Breakthrough-127-Qubit-Quantum-Processor

[30] Vojtěch Havĺıček, Antonio D Córcoles, Kristan Temme, Aram W Harrow, Abhinav Kan-

dala, Jerry M Chow, and Jay M Gambetta. Supervised learning with quantum-enhanced

feature spaces. Nature, 567(7747):209–212, 2019.

[31] Maria Schuld, Ville Bergholm, Christian Gogolin, Josh Izaac, and Nathan Killoran. Eval-

uating analytic gradients on quantum hardware. Physical Review A, 99(3):032331, 2019.

[32] Quanlong Wang and Richie Yeung. Differentiating and integrating ZX diagrams. arXiv

preprint arXiv:2201.13250, 2022.

[33] James C Spall. Implementation of the simultaneous perturbation algorithm for stochastic

optimization. IEEE Transactions on aerospace and electronic systems, 34(3):817–823,

1998.

[34] Giovanni de Felice, Alexis Toumi, and Bob Coecke. Discopy: monoidal categories in

python. arXiv preprint arXiv:2005.02975, 2020.

[35] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory

Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,

Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank

Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An

imperative style, high-performance deep learning library. In H. Wallach, H. Larochelle,

A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural

Information Processing Systems 32, pages 8024–8035. Curran Associates, Inc., 2019.

[36] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary,

Dougal Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-

Milne, and Qiao Zhang. JAX: composable transformations of Python+NumPy programs,

2018.

[37] Seyon Sivarajah, Silas Dilkes, Alexander Cowtan, Will Simmons, Alec Edgington, and

Ross Duncan. t|ket>: a retargetable compiler for NISQ devices. Quantum Science and

Technology, 6(1):014003, 2020.

88

[38] Jarrod R McClean, Sergio Boixo, Vadim N Smelyanskiy, Ryan Babbush, and Hartmut

Neven. Barren plateaus in quantum neural network training landscapes. Nature commu-

nications, 9(1):1–6, 2018.

[39] Sukin Sim, Peter D Johnson, and Alán Aspuru-Guzik. Expressibility and entangling

capability of parameterized quantum circuits for hybrid quantum-classical algorithms.

Advanced Quantum Technologies, 2(12):1900070, 2019.

[40] Maria Schuld, Alex Bocharov, Krysta M Svore, and Nathan Wiebe. Circuit-centric

quantum classifiers. Physical Review A, 101(3):032308, 2020.

[41] Laura Rimell, Jean Maillard, Tamara Polajnar, and Stephen Clark. Relpron: A relative

clause evaluation data set for compositional distributional semantics. Computational

Linguistics, 42(4):661–701, 2016.

[42] Edward Grant, Leonard Wossnig, Mateusz Ostaszewski, and Marcello Benedetti. An

initialization strategy for addressing barren plateaus in parametrized quantum circuits.

Quantum, 3:214, 2019.

[43] Ellie Pavlick, Pushpendre Rastogi, Juri Ganitkevitch, Benjamin Van Durme, and Chris

Callison-Burch. PPDB 2.0: Better paraphrase ranking, fine-grained entailment relations,

word embeddings, and style classification. In Proceedings of the 53rd Annual Meeting of

the Association for Computational Linguistics and the 7th International Joint Confer-

ence on Natural Language Processing (Volume 2: Short Papers), pages 425–430, Beijing,

China, July 2015. Association for Computational Linguistics.

[44] Bill Dolan and Chris Brockett. Automatically constructing a corpus of sentential para-

phrases. In Third International Workshop on Paraphrasing (IWP2005), 2005.

[45] Mihir Kale, Aditya Siddhant, Sreyashi Nag, Radhika Parik, Matthias Grabmair, and

Anthony Tomasic. Supervised contextual embeddings for transfer learning in natural

language processing tasks. arXiv preprint arXiv:1906.12039, 2019.

89

[46] Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark,

Kenton Lee, and Luke Zettlemoyer. Deep contextualized word representations, 2018.

[47] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word

representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[48] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enriching word

vectors with subword information. Transactions of the Association for Computational

Linguistics, 5:135–146, 2017.

[49] Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors

for word representation. In Proceedings of the 2014 conference on empirical methods in

natural language processing (EMNLP), pages 1532–1543, 2014.

[50] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-

training of deep bidirectional transformers for language understanding. arXiv preprint

arXiv:1810.04805, 2018.

[51] Felipe Almeida and Geraldo Xexéo. Word embeddings: A survey. arXiv preprint

arXiv:1901.09069, 2019.

[52] Tomáš Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities in continuous

space word representations. In Proceedings of the 2013 conference of the north american

chapter of the association for computational linguistics: Human language technologies,

pages 746–751, 2013.

[53] Tomas Mikolov, Edouard Grave, Piotr Bojanowski, Christian Puhrsch, and Armand

Joulin. Advances in pre-training distributed word representations. arXiv preprint

arXiv:1712.09405, 2017.

[54] Simon Haykin. Neural networks: a comprehensive foundation. Prentice Hall PTR, 1994.

[55] Karl Pearson. Liii. on lines and planes of closest fit to systems of points in space. The

London, Edinburgh, and Dublin philosophical magazine and journal of science, 2(11):559–

572, 1901.

90

[56] François Chollet et al. Keras. https://keras.io, 2015.

[57] Christoph Dankert, Richard Cleve, Joseph Emerson, and Etera Livine. Exact and ap-

proximate unitary 2-designs and their application to fidelity estimation. Physical Review

A, 80(1):012304, 2009.

[58] Marco Cerezo, Akira Sone, Tyler Volkoff, Lukasz Cincio, and Patrick J Coles. Cost

function dependent barren plateaus in shallow parametrized quantum circuits. Nature

communications, 12(1):1–12, 2021.

[59] Alexis Toumi, Richie Yeung, and Giovanni de Felice. Diagrammatic differentiation for

quantum machine learning. arXiv preprint arXiv:2103.07960, 2021.

[60] Saesun Kim. Enhance qiskit papers database & replication study. https://github.

com/bagmk/Quantum_Machine_Learning_Express, 2022.

91

https://keras.io
https://github.com/bagmk/Quantum_Machine_Learning_Express
https://github.com/bagmk/Quantum_Machine_Learning_Express

Appendix A

Rewrite Rules for Paraphrase

Identification Task

The following lambeq diagram rewrite rules were used in processing the input for the para-

phrase identification tasks on PPDB and MRPC datasets.

1. prepositional phrase: Simplifies prepositions by passing through the noun wire using

a cap.

2. determiner: Removes determiners (such as “the”) by replacing them with caps.

3. coordination: Simplifies “and” by replacing it with a layer of interleaving spiders.

4. connector: Removes sentence connectors (such as “that”) by replacing them with caps.

Descriptions are reproduced from the lambeq [17] documentation online1.

1https://cqcl.github.io/lambeq/tutorials/rewrite.html

92

https://cqcl.github.io/lambeq/tutorials/rewrite.html

	Introduction
	Background
	Quantum Computing
	Foundations
	Parameterised Quantum Gates
	ZX Calculus
	Measurements and Probabilities
	Implementing Quantum Circuits

	Quantum Machine Learning
	Natural Language Processing

	QNLP with String Diagrams
	DisCoCat
	The QNLP Pipeline
	Parsing and Diagram Generation
	Diagram Rewriting
	Parameterisation
	Training
	Putting it all Together

	lambeq

	Ansätze for QNLP
	Considered Ansätze
	Tasks
	Meaning Classification Task
	Relative Pronoun Task

	Experimental Setup
	Results
	Comparison with Prior Work

	Paraphrase Identification Using QNLP
	Dataset
	State Comparison Circuit
	Experimental Setup
	Results
	Summary of Ansatz Comparison

	Handling Unknown Words in QNLP
	Background
	Word Embeddings
	FastText Embeddings

	OOV Mitigation Strategies
	Experimental Setup
	Results
	Comparison with Naive Models

	Investigating Barren Plateaus
	Barren Plateaus
	Gradient of the Binary Cross Entropy Loss Function
	Barren Plateaus in Multi-Circuit Models
	Experimental Evaluation of the Barren Plateau for the BCE Loss Function
	Experimental Setup
	Results

	Expressibility of DisCoCat Circuits
	Experimental Setup
	Results

	Conclusion
	Summary of Results
	Future Work

	Bibliography
	Appendix Rewrite Rules for Paraphrase Identification Task

