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Abstract

In this thesis we exhibit nondeterministic semantics for various classes
of circuits. Motivated initially by quantum circuits, we also give non-
deterministic semantics for circuits for classical mechanical systems and
Boolean algebra. More formally, we interpret these classes of circuits in
terms of categories of spans or relations: in less categorical terms these are
equivalent to matrices over the natural numbers or the Boolean semiring.
In the relational picture, we characterize circuits in terms of which inputs
and outputs are jointly possible; and in the spans picture, how often inputs
and outputs are jointly possible. Specifically, we first show that the class
of circuits generated by the Toffoli gate as well the states |0⟩, |1⟩,

√
2|+⟩

and their adjoints is characterized in terms of spans of finite sets. We also
give a complete axiomatization for these circuits. With this semantics in
mind, we discuss the connection to partial and reversible computation.
Shifting to the phase-space picture we also characterize circuits in terms
of how they relate abstract positions and momenta. We show how this
gives a unifying relational semantics for certain classes circuits for classical
mechanical systems, as well as for stabilizer quantum circuits.



Contents

1 Introduction 7

1.1 Overview of structure of thesis . . . . . . . . . . . . . . . . . . . . . . 9

2 Category theory 11

2.1 Monoidal categories and string diagrams . . . . . . . . . . . . . . . . 11

2.1.1 Dagger-monoidal categories . . . . . . . . . . . . . . . . . . . 22

2.1.2 Monoidal presentations . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Categories of spans and relations . . . . . . . . . . . . . . . . . . . . 29

2.3 (De)composing props . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.3.1 Internal categories and strict factorization systems . . . . . . . 49

2.3.2 Factorization systems over subcategories . . . . . . . . . . . . 55

3 Categorical quantum mechanics 64

3.1 Quantum states and unitary evolution . . . . . . . . . . . . . . . . . 64

3.2 Quantum measurement . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.3 The ZX-calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.4 The stabilizer formalism . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.5 The ZH-calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4 Boolean circuits as spans of finite sets 89

4.1 Cartesian completion as counit completion . . . . . . . . . . . . . . . 90

4.2 A graphical calculus for Boolean multirelations . . . . . . . . . . . . . 95

4.2.1 Adding a unit and counit to TOF . . . . . . . . . . . . . . . . 97

4.3 Decomposing Boolean circuits . . . . . . . . . . . . . . . . . . . . . . 118

4.3.1 The phase-free fragment . . . . . . . . . . . . . . . . . . . . . 118

4.3.2 Adding the not-gate . . . . . . . . . . . . . . . . . . . . . . . 122

5



4.3.3 Adding the and-gate . . . . . . . . . . . . . . . . . . . . . . . 126

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5 Stabilizer codes as affine cosiotropic relations 134

5.1 Linear symplectic geometry . . . . . . . . . . . . . . . . . . . . . . . 135

5.2 Generators for Lagrangian relations . . . . . . . . . . . . . . . . . . . 139

5.2.1 Passive linear electrical circuits as Lagrangian relations . . . . 143

5.3 Affine Lagrangian relations . . . . . . . . . . . . . . . . . . . . . . . . 145

5.3.1 Stabilizer circuits and Spekkens’ toy model . . . . . . . . . . . 146

5.4 Affine coisotropic relations and mixed stabilizer circuits . . . . . . . . 154

5.4.1 Electrical circuits with control and measurement . . . . . . . . 163

5.5 Error correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

6 Conclusion 175

6



Chapter 1

Introduction

The traditional paradigm for quantum computing decomposes a quantum computa-
tion into distinct stages. First, a quantum state is prepared in the lab; then, the
quantum state is evolved by applying unitary operations; next, the quantum state
is measured according to the Born rule. There are variations to this paradigm, for
example, in measurement-based quantum computing one first prepares a quantum
state, then evolves the state only by performing a series of conditioned partial mea-
surements. However, these traditional approaches are quite rigid: the different stages
of the process are modeled by different kinds of mathematical objects. Each of these
stages interact with each other according to various rules: which are stitched together
in order to interpret the full computation. As a consequence, the fundamental con-
nections between these different paradigms are hard to see because their low-level
descriptions introduce arbitrary book-keeping that must be painstakingly translated
back and forth.

In this thesis, using categorical methods we reject these artificial distinctions and
take a fundamentally different approach. The use of category theory in quantum
mechanics is quite varied, and has been developed by many different people; however,
we will largely follow the particular vein put forward by Abramsky and Coecke [AC04].
In this setting, quantum circuits are regarded as string diagrams for the �-compact
closed category of finite dimensional Hilbert spaces and linear maps. One advantage
of using this categorical structure to model circuits is that many of the ambient
topological features of quantum circuits can be abstracted away into the �-compact
closed structure: which is accompanied by an equally natural graphical calculus. This
level of generality helps one abstract away from many of the irrelevant details. This
can reveal the essential qualities of the problem at hand, freeing one from arbitrary
conventions and notations.

For example, Abramsky and Coecke suggested studying the �-compact closed cat-
egory of sets and relations as a toy model of quantum mechanics, as opposed to
finite dimensional Hilbert spaces. Relations are subsets and are composed uniformly
by tracing out the common elements in their intersection, rather than by function
composition. In this thesis, we show that fragments of quantum mechanics can ac-
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tually be faithfully reflected by sets and relations equipped with extra structure (and
also by their close relatives sets and spans). Without starting from such an abstract
perspective, these connections would be almost impossible to see. This relational
approach yields a nondeterministic semantics for quantum circuits: which is much
more flexible and symmetric than physicists’ usual approach. The circuit is defined
by the ensemble of all possible inputs that can be related to all possible outputs. To
drive the point home, quantum processes are defined in terms of how they are related
to other quantum processes: not just by how they act on inputs.

As we just mentioned, in this thesis we consider categories of relations and spans
for our semantics: categories of spans keep track of the number of times that things are
related, whereas categories of relations only keep track of the existence of a relation.
The first class of subspaces which we consider is given by spans of finite sets. These
are are regarded as configurations in the state space of certain classes of quantum
systems. We show how that these form the classical fragment of quantum circuits.
In this setting, one can regard maps between systems as solutions to sets of Boolean
equations: where composition is given by unification.

The second class of circuits is given by affine coisotropic subspaces of symplec-
tic vector spaces. Here, the systems correspond to the possible configurations of
abstract positions and momenta. The subspaces between systems are the possible
ways in which “particles” can flow between both systems. The relational composition
of two of these subspaces corresponds to glueing together all of the possible flows.
By changing the field with which we are forming our vector spaces, we get different
interpretations of these systems. Over finite fields of odd prime-characteristic, we
recapture odd-prime dimensional “quopit stabilizer circuits” and their tableaux; the
novelty being that the relational composition of tableaux corresponds to the compo-
sition of the corresponding circuits. However, by shifting to fields of characteristic 0,
we recapture classical mechanical systems. This level of generality allows us to make
precise observations about the similarities between quantum and classical mechanics,
and suggests new ways to model different kinds of of quantum systems.

Various themes reoccur throughout this thesis. First, because copying is not
allowed in quantum mechanics, we use a more relaxed, relational notion of copying.
This is formalized in terms of the “Cartesian bicategories of relations” of Carboni and
Walters [CW87]. One very important example of which is that of “linear relations,” ie.
relations which have the structure of linear subspaces. This is studied in great detail,
and given a complete axiomatization by Bonchi, Sobociński and Zanasi [BSZ17].
We will make heavy use of this, and take great inspiration from this work, as well
as Zanasi’s thesis on the same subject [Zan18]. We reveal that the mathematical
objects studied in the work of Bonchi et al. have a deep structural connection with
the quantum “ZX-calculus” introduced by Coecke and Duncan [CD11].

Another theme which comes up multiple times throughout this thesis is Selinger’s
CPM construction [Sel07]. Initially proposed as a categorical construction to add an
abstract notion of quantum discarding to �-compact categories, we argue that it is
much more fundamental and varied. For example, we show that in some cases, the
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symmetry between position and momentum can be encapsulated by inverting this
construction.

1.1 Overview of structure of thesis

In Chapter 2 we review relevant notions in category theory. Not all subsections are
needed to understand the whole thesis, some are only needed for specific parts. In
Section 2.1 we review the theory of monoidal categories and string diagrams which
allows us to regard circuits as abstract mathematical objects. In Subsection 2.1.1 we
review �-categories, which give a categorical semantics for reversibility. In Subsection
2.1.2 we review how monoidal categories can be presented in terms of generators
and relations and give examples. Reading all three of these sections is essential to
understand this thesis. In Section 2.2 we review categories of spans and relations,
which are the mathematical semantics for nondeterminism. This is somewhat more
technical than the preceeding sections, but is not as essential to understand the thesis.
The less interested readers can read the examples in this section, but skip the technical
details. In section 2.3 we review internal category theory which is the mathematics
needed to give more fine grained decompositional semantics of circuits. This section
is only needed to understand Section 4.3.

In Chapter 3 we review categorical quantum mechanics which relates monoidal
categories and �-categories to quantum computing. Importantly in Definition 3.2,
we review the CPM construction, which is a categorical tool which gives a formal
notion of doubling: this comes up multiple times throughout this thesis, as we study
highly symmetrical mathematical objects. We also give overview of the families of
languages for quantum circuits known as the ZX and ZH-calculi; as well as reviewing
the mathematical machinery needed to model mixed states and measurement within
this framework. We also review the stabilizer formalism.

In Chapter 4 we analyze the class of quantum circuits generated by the Toffoli
gate as well the states |0⟩, |1⟩,

√
2|+⟩ and their adjoints. In Proposition 4.13 we give a

complete presentation for this category and interpret it in terms of spans of finite sets.
In other words, this class of circuits is very close to a nondeterministic semantics, ex-
cept where outcomes can happen multiple times. In Theorem 4.28, we show how this
has a more elegant description in terms of interacting monoids which we call ZX&.
The generators and relations of ZX& are given in Definition 4.14. In Remark 4.29 we
note ZX& is the natural number labeled fragment of the qubit ZH-calculus. Conse-
quently, in Corollary 4.30 we show how imposing an additional equation on ZX&, we
depart from the interpretation into Hilbert spaces, and obtain a proper nondetermin-
istic semantics in terms of relations between finite sets. We show in Corollary 4.31,
that by adding two generators and equations to ZX&, we obtain the phase-free qubit
ZH-calculus. We also decompose ZX& into small fragments; recomposing these small
building blocks incrementally via distributive law and pushout. We exhibit substruc-
tural features of these various decompositions and discuss how, by allowing only some
of the generators, we obtain semantics which are partial, partially invertible and so
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on.

In Chapter 5 we analyze the structure of odd-prime dimensional/quopit stabilizer
circuits. We expose the relational interpretation of these circuits, by adding generators
at each point, obtaining different semantics for each classes of generators. We first
recall that the phase-free fragment of the qupit ZX-calculus modulo scalars, for prime
qudit dimension p, is isomorphic to the prop of linear relations over Fp: i.e. where
the maps are linear subspaces over Fp. In Theorem 5.9 we give generators for the
prop of Lagrangian relations over a field. In Corollary 5.12 show that doubling linear
relations over Fp using the CPM construction, we obtain the prop of Lagrangian
relations. In Corollary 5.24 we show that the prop of Lagrangian relations over odd
prime fields is equivalent to quopit Weyl-free stabilizer circuits modulo scalars. The
Weyl operators are introduced to this picture in Theorem 5.23 by adding affine shifts
to obtain the prop of affine Lagrangian relations. To add quantum discarding, in
Corollary 5.35 we show that one doesn’t need to take the CPM construction again,
but it suffices to add the discard relation: obtaining the prop of affine coisotropic
relations. By splitting idempotents, in Theorem 5.39 we recover measurement; which
has a succinct relational interpretation. Using this relational interpretation of mixed
stabilizer circuits, in Section 5.5 we show how stabilizer error correction protocols can
be implemented. Throughout this chapter, we compare the quantum semantics to the
electrical circuits; highlighting the similarities and differences between both cases.

In Chapter 6 we discuss future work and the limitations of this thesis.
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Chapter 2

Category theory

Although we formally state the various categorical constructions which are used
throughout this thesis, in almost all cases the accompanying string diagrams also
help give intuition to the reader. The exception to this rule is the somewhat more
technical material on internal category theory and distributive laws of monoidal the-
ories reviewed in Subsection 2.3 and used in Section 4.3. For this, we assume some
basic understanding of bicategories.

As a matter of convention, call pairs of maps f : X → Y and g : X → Y with
the same domain and codomain parallel. Similarly, call a pair of maps f : X → Y
and g : Y → Z where the codomain of the first map is the domain of the second map
composable. Given two composable maps f : X → Y and g : Y → Z, we will denote
their diagrammatic composition using a semicolon as follows f ; g : X → Z. This
notation for composition will be preferred throughout this thesis; except when talking
about quantum circuits. In this setting, to agree with the conventional notation we
will denote their contravariant composition by concatenation as follows gf : X →
Z.

2.1 Monoidal categories and string diagrams

In this section we review the theory of monoidal categories as well as their string
diagrams. The material for which a reference is not provided can be found in an
introductory reference to category theory (eg [Lan78]). The reader uninterested in
technical details is invited to skip the commutative diagrams and go straight to the
pictures.

Definition 2.1. A monoidal category is a category X equipped with a functor
X × X → X called the tensor product, equipped with a distinguished object I of
X called the tensor unit; along with the following natural isomorphisms (given by
components):

Left unitor: uLX : I ⊗X → X
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Right unitor: uRX : X ⊗ I → X

Associator: αX,Y,Z : (X ⊗ Y )⊗ Z → X ⊗ (Y ⊗ Z)

Satisfying the following coherence equations:

Mac Lane pentagon:

((W ⊗X)⊗ Y )⊗ Z
αW⊗X,Y,Z

//

αW,X,Y ⊗1Z
��

(W ⊗X)⊗ (Y ⊗ Z)
αW,X,Y ⊗Z
��

(W ⊗ (X ⊗ Y ))⊗ Z
αW,X⊗Y,Z ++

W ⊗ (X ⊗ (Y ⊗ Z))

W ⊗ ((X ⊗ Y )⊗ Z)
1W⊗αX,Y,Z

33

Unit triangle:

(X ⊗ I)⊗ Y
αX,I,Y

//

uRX⊗1Y
((

X ⊗ (I ⊗ Y )

1X⊗uLYvv

X ⊗ Y

We will call a map out of the tensor unit a state, a map into the tensor unit an
effect, and an endomorphism on the tensor unit a scalar.

Example 2.2. Both the category FSet of finite sets and functions and the category
Set of sets and functions are monoidal categories: both under the product (also called
the Cartesian product) and coproduct (also called the disjoint union).

Given a field k, the category Vectk of vector spaces over k and the category FVectk
of finite-dimensional vector spaces over k are monoidal categories: both under the
bilinear tensor product and the direct sum.

The category Hilb of Hilbert spaces and the category FHilb of finite dimensional
Hilbert spaces are both monoidal categories with respect to the bilinear tensor product
and direct sum.

Definition 2.3. Given two monoidal categories X and Y a (strong) monoidal func-
tor from X to Y is a functor F : X→ Y together with an isomorphism ε : IX → F (IX)
and natural isomorphism with components µX,Y : F (X)⊗YF (Y )→ F (X⊗X Y ) such
that the following coherence equations hold:

Interaction with associator:

(F (X)⊗Y F (Y ))⊗Y F (Z)
αY
F (X),F (Y ),F (Z)

//

µX,Y ⊗YF (Z)
��

F (X)⊗Y (F (Y )⊗Y F (Z))

F (X)⊗YµY,Z��

F (X ⊗X Y )⊗Y F (Z)
µ
X⊗XY,Z

��

F (X)⊗Y F (Y ⊗X Z)
µ
X,Y ⊗YZ
��

F ((X ⊗X Y )⊗X Z)
F (αY

X,Y,Z)
// F (X ⊗X (Y ⊗X Z))
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Interaction with unitors:

IY ⊗Y F (X)
ε⊗YF (X)

//

(uL)Y
F (X) ��

F (IX)⊗Y F (X)
µ
1X,X
��

F (X) F (IX ⊗X X)
F ((uL)XX)

oo

F (X)⊗Y IY
F (X)⊗Yε

//

(uR)Y
F (X) ��

F (X)⊗Y F (IX)
µ
X,1X
��

F (X) F (X ⊗X IX)
F ((uR)XX)

oo

A monoidal natural transformation between parallel monoidal functors F,G :
X → Y is a natural transformation φ : F → G such that the following coherence
equations hold:

F (X)⊗Y F (Y )
φX⊗YφY //

µFX,Y ��

G(X)⊗Y G(Y )

µGX,Y��

F (X ⊗X Y ) φ
X⊗XY

// G(X ⊗X Y )

IY
ηG

&&ηF ��

F (IX) φ
IX
// G(IX)

Monoidal categories, monoidal functors and monoidal natural transformations ar-
range themselves into the strict 2-category of monoidal categories.

If all of the components of the natural transformations are equalities, then the
monoidal category is strict. Therefore, we can forget the bracketing when we tensor
things, and regard the tensor product of multiple objects as a list. A strict monoidal
functor is a monoidal functor where isomorphisms ε and µ are the identity. Likewise,
strict monoidal categories, strict monoidal functors and monoidal natural transfor-
mations arrange themselves into the strict 2-category of strict monoidal categories.

Example 2.4. The category FinOrd of finite ordinals and functions is the category
where:

Objects: The objects are the natural numbers.

Maps: For each natural number n, the finite ordinal [n] is a distinguished n-
element set with a chosen total order.

A map from n→ m is a (not necessarily monotonic) function from [n]→ [m].

The composition and identity is given by the composition and identity of sets
and functions.

This is a strict monoidal category with respect to the disjoint union:

Tensor unit: The tensor unit is the natural number 0.

Monoidal product: On objects this acts as addition. On maps, f : n → m
and g : k → ℓ, the map f + g corresponds to the chosen disjoint union f ⊔ g
[n+ k]→ [m+ ℓ] respecting the chosen order.

Restricting FinOrd to functions which preserve the chosen order of the ordinals yields
the strict monoidal category FinOrdMonot of finite ordinals and monotone functions.

The following example comes up quite a lot, so we spell it out it detail:
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Example 2.5. Given a commutative semiring S, the category MatS, of matrices over
S has:

Objects: Natural numbers.

Maps: A map from n → m is an m × n matrix. In other words, a matrix is an
element A = (ai,j)0≤i<m,0≤j≤n ∈ Sm×n. Matrices are denoted as follows:

A =


a0,0 a0,1 · · · a0,n−1

a1,0 a1,1 · · · a1,n−1

...
...

. . .
...

am−1,0 am−1,1 · · · am−1,n−1


Identity: Given by the dirac delta In = (δi,j)0≤i,j<n

Composition: Given two matrices n
A−→ m

B−→ ℓ their composite BA has elements
given my matrix multiplication:

(AB)i,j =
m−1∑
k=0

ai,kbk,j

MatS is strict monoidal with respect to two monoidal structures. The first one is
given by:

Monoidal product: Given by the direct sum, so that given any two matrices
A,B:

A⊕B :=

[
A 0
0 B

]
Tensor unit: 0.

The second one is given by:

Monoidal product: Given by the Kronecker product so that given any two ma-
trices A,B:

A⊗B :=


a0,0B a0,1B · · · a0,n−1B
a1,0B a1,1B · · · a1,n−1B
...

...
. . .

...
am−1,0B am−1,1B · · · am−1,n−1B


Where the notation ai,jB is the pointwise multiplication of B by ai,j.

Tensor unit: 1.
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Strict monoidal categories are very nice to work with because they have a particu-
larly concise graphical calculus, called string diagrams. A map f : X1⊗· · ·⊗Xn →
Y1 ⊗ · · · ⊗ Ym is drawn as a box with n wires coming out of the bottom and m wires
coming out of the top, all being labeled by their respective objects, as follows:

f

X1X2 Xn
· · ·

Y1 Y2 Ym· · ·

The identity on an object X is drawn as a line:

X

X

1X =

X

X

We often omit the object labels when it is clear from context. The tensor product
of two maps

f : W1 ⊗ · · · ⊗Wn → X1 ⊗ · · · ⊗Xm, g : Y1 ⊗ · · · ⊗ Yk → Z1 ⊗ · · · ⊗ Zℓ
f ⊗ g : W1 ⊗ · · · ⊗Wn ⊗ Y1 ⊗ · · · ⊗ Yk → X1 ⊗ · · · ⊗Xm ⊗ Z1 ⊗ · · · ⊗ Zℓ

is drawn by pasting them side-by-side:

· · ·

· · ·

· · ·

· · ·

f ⊗ g

W1W2 WmY1 Y2 Yk

X1X2 XmZ1Z2 Zℓ

:= f

· · ·

· · ·
g

· · ·

· · ·X1X2 Xm

W1W2 WmY1 Y2 Yk

Z1Z2 Zℓ

And the composite of two composable maps

f : X1 ⊗ · · · ⊗Xn → Y1 ⊗ · · · ⊗ Ym, g : Y1 ⊗ · · · ⊗ Ym → Z1 ⊗ · · · ⊗ Zk
f ; g : X1 ⊗ · · · ⊗Xn → Z1 ⊗ · · · ⊗ Zk

is drawn by connecting each of the Yi wires together:

X1X2 Xn

Z1Z2 Zk

f ; g

· · ·

· · ·

=
f

· · ·

g

· · ·

· · ·

X1X2 Xn

Z1Z2 Zk

The axioms of a strict monoidal category are equivalent to planar isotopy of their
string diagrams. In other words, the string diagrams can be continuously deformed as

15



long as they don’t cross over each other. For example, the functoriality of the tensor
product allows one to exchange two disconnected maps:

f

g
= f

g

We can always chose to work with strict monoidal categories if we want to:

Theorem 2.6. Every monoidal category is monoidally equivalent to a strict monoidal
category.

The strictification of a monoidal category has a particularly succinct presentation
due to Wilson et al. [WGZ22], so that we can use string diagrams for strict monoidal
categories to reason about nonstrict monoidal categories:

Definition 2.7. Given a monoidal category (X,⊗, I, α, uL, uR), there is a monoidally
equivalent strict monoidal category X with:

Objects: Finite lists of objects in X, List(ObX).

Maps: The maps are generated by a map f : [X]→ [Y ] for every map f : X → Y
in X and the four following generators (referred to as tensor, cotensor, unit
introduction and unit removal):

X Y

X ⊗ Y X Y

X ⊗ Y
I

I I

I

Modulo the equations: For all f : X → Y and g : Y → Z in X:

X

Z

f

g

=

X

Z

f ; g

X

X

1X =

X

X

And for all f : W → X and g : Y → Z in X:

f g

X ⊗ Z

W ⊗ Y

= f ⊗ g

X ⊗ Z

W ⊗ Y

,

X Y

X Y

=

X Y

X Y

,
I

I

I

I

=

I

I

,
I

I
=

16



(X ⊗ Y )⊗ Z

X ⊗ (Y ⊗ Z)

αX,Y,Z =

(X ⊗ Y )⊗ Z

X ⊗ (Y ⊗ Z)

,

X

I ⊗X

uLX =

X

I ⊗X

I

,

X

X ⊗ I

uRX =

X

X ⊗ I

I

Composition: Vertical pasting:

f

Y

X

; g

Z

Y

:=
f

X

g

Z

Tensor product: Horizontal pasting:

f

Y

X

⊗ g

Z

W

:= f

Y

X

g

Z

W

Tensor unit: The empty list [] (drawn as blank space).

By flipping around the diagrams for the unitors and associators we get their
inverses:

X ⊗ (Y ⊗ Z)

(X ⊗ Y )⊗ Z

α−1
X,Y,Z

=

(X ⊗ Y )⊗ Z

X ⊗ (Y ⊗ Z)

,

I ⊗X

X

(uLX)−1 =

X

I ⊗X

I

,

X ⊗ I

X

(uRX)−1 =

X

X ⊗ I

I

Even in the case when we are already working in a strict monoidal category, it will
still often be useful to use string diagrams for its strictification; for example, we can
bundle up wires together so that we can make inductive arguments using pictures.
Indeed, these string diagrams have been rediscovered by Carette et al. in the set-
ting of quantum circuits, dubbed “the scalable ZX-calculus” for precisely this reason
[CHP19]. They have not made use of the units and counits in this setting; never-
theless it has found rich applications [BR22, CDP21]. We will discuss this further in
Chapter 3.

Aside 2.8. These string diagrams are closely related to proof nets for linearly-
distributive categories; so much so, that this monoidal counterpart was considered
folklore by some.
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Some monoidal categories are monoidally equivalent to skeletal, strict monoidal
categories, where the adjective skeletal means that every two isomorphic objects are
equal. These are very nice to work with because if we want, we can forgo having to
use the tensoring/untensoring and unit introduction and removal:

Example 2.9. FinOrd is a skeletal and strict monoidal under both tensor products.
It is monoidally equivalent to FSet under both thensor products.

Given a commutative semiringR, MatR is a skeletal category and is strict monoidal.
Moreover for a field k, by chosing a basis for each dimension, FVectk is monoidally
equivalent to Matk under the bilinear tensor product and the direct sum.

In particular, because FVectC and FHilb are monoidally equivalent under both the
bilinear tensor product and the direct sum then FHilb is monoidally equivalent to the
skeletal strict monoidal category MatC under both tensor products.

The strictification of a monoidal category need not be skeletal, for example there
is no skeletal strict monoidal category which is monoidally equivalent to Set. Indeed,
the strictification which we described when applied to FSet is not skeletal and thus
not FinOrd on the nose.

There is a more refined notion of monoidal category where one can pass wires
through each other:

Definition 2.10. A symmetric monoidal category is a monoidal category equipped
with an extra natural isomorphism called the symmetry

σX,Y : X ⊗ Y → Y ⊗X

satisfying the following coherence equations:

Interaction with unitors:

I ⊗X
σI,X

//

uLX %%

X ⊗ I

uRXyy
X

Interaction with associator:

(X ⊗ Y )⊗ Z
σX,Y ⊗1Z

//

αX,Y,Z
��

(Y ⊗X)⊗ Z
αY,X,Z
��

X ⊗ (Y ⊗ Z)
σX,Y ⊗Z

��

Y ⊗ (X ⊗ Z)
1Y ⊗σX,Z
��

(Y ⊗ Z)⊗X αY,Z,X

// Y ⊗ (Z ⊗X)

Symmetry map is self-inverse:

X ⊗ Y
σX,Y
// Y ⊗X

σY,X
��

X ⊗ Y

18



Example 2.11. Set, FSet, FinOrd, MatR, Vectk, Hilb, FHilb are all symmetric monoidal
categories with respect to the aforementioned monoidal structures; and the corre-
sponding equivalences between these categories are also symmetric monoidal.

Definition 2.12. A (strong) symmetric monoidal functor between symmetric
monoidal categories X and Y is a monoidal functor where the following coherence
equation holds:

F (X)⊗Y F (Y )
σY
F (X),F (Y )

//

µX,Y
��

F (Y )⊗Y F (X)
µY,X
��

F (X ⊗X Y )
F (σX

X,Y )
// F (Y ⊗X X)

A symmetric monoidal natural transformation is a monoidal natural trans-
formation between symmetric monoidal functors. A strict symmetric monoidal
category is a symmetric monoidal category, whose underlying monoidal category
is strict. That is to say, all the coherence isomorphisms except for the symme-
try maps are identities. A strict symmetric monoidal functor is a symmetric
monoidal functor which is simultaneously a strict monoidal functor. Just as in the
monoidal case, there are strict 2-categories of strict symmetric monoidal and sym-
metric monoidal categories.

Strict monoidal categories also have a notion of string diagrams, except the sym-
metry allows wires to pass over each other:

σX,Y =

X Y

Y X

The naturality means that maps can be pulled through the symmetry:

gf
=

g f

The interaction with the unitor and associator becomes completely absorbed into
the graphical calculus. The self inverse of the symmetry map means that the wires
untangle:

=

Theorem 2.13. Every symmetric monoidal category is symmetric monoidally equiv-
alent to a strict symmetric monoidal category.
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Non-strict symmetric monoidal categories have essentially the same notion of proof
nets as non-strict monoidal categories, except where the symmetry map is internalized
to untensoring, exchanging the wires and then tensoring:

Y ⊗X

X ⊗ Y

σX,Y =

Y ⊗X

X ⊗ Y

This notion of string diagrams for (non-strict) symmetric monoidal categories is
not contained in the paper of Wilson et al. [WGZ22]; however, it is folklore, in
analogy to the case for symmetric linearly distributive categories [CS97].

Example 2.14. The category Matk is strict symmetric monoidal and symmetric
monoidally equivalent to FVectk under both aforementioned tensor products. The
same with FinOrd and FSet.

Definition 2.15. A compact closed category is a symmetric monoidal category
such that for every object X, there is a chosen object X∗, called the dual of X. For
all objects X, there are maps called the unit and counit:

ηX : I → X∗ ⊗X and εX : X ⊗X∗ → I

satisfying the following coherence equations:

Zig-zag equations:

(X ⊗X∗)⊗X
αX,X∗,X

//

εX⊗1X
��

X ⊗ (X∗ ⊗X)

I ⊗X σI,X
// X ⊗ I

1X⊗ηX
OO

X∗ ⊗ (X ⊗X∗)
αX∗,X,X∗

//

1X∗⊗εX
��

(X∗ ⊗X)⊗X∗

X∗ ⊗ I σX∗,I
// I ⊗X∗

ηX⊗1XX
∗

OO

Compatibility with the tensor product:

(X ⊗ Y )∗ = X∗ ⊗ Y ∗

A strict compact closed category is a compact closed category where the underly-
ing symmetric monoidal category is strict. A self-dual compact closed category is one
where X∗ = X for all objects X. Strict symmetric monoidal functors and strong sym-
metric monoidal functors are the appropriate notion of map between strict/non-strict
compact closed categories, as they preserve the duals strictly/strongly.

The following result follows immediately from the coherence theorem for symmet-
ric monoidal categories because compact closed structure is preserved by symmetric
monoidal functors:
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Theorem 2.16. Every compact closed category is symmetric monoidally equivalent
to a strict compact closed category.

Compact closed categories axiomatize the kinds of processes where inputs can be
turned into outputs, and vice-versa. In other words, they axiomatize a particular
notion of feedback. This is illuminated by looking at the string diagrams. We will
draw the unit and counit for the compact closed structure as follows in the strict case:

ηX =
X∗ X

and εX =
X∗X

The zig-zag equations are drawn as follows;

= =

And the last two equations correspond to the requirement that:

= , =

This fixes the dualizing objects on tensor products (X ⊗ Y )∗ = X∗ ⊗ Y ∗.

One thing that is nice about compact closed categories is that we can treat all
maps as either states or effects:

Definition 2.17. In a compact closed category, every map f : X → Y canonically
induces a state ⌊f⌋ : I → X∗ ⊗ Y and an effect ⌈f⌉ : X ⊗ Y ∗ → I given by bending
the wires of f as follows:

⌊f⌋
:= f ,

⌈f⌉
:= f

This abstract wire-bending induces a functor:

Definition 2.18. If X is a compact closed category, there is a symmetric monoidal
functor, (−)∗ : Xop → X, called the transpose, which sends:

Objects X 7→ X∗

Maps: f 7→ f

Example 2.19. Out of all the examples we have discussed so far, only MatR, FVectk
and FHilb are compact closed when regarded as symmetric monoidal categories with
respect to the bilinear tensor product. They are not compact closed with respect to
the direct sum.
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For FHilb and FVectk, the compact closed structure is the same. The dual object
is given by the internal hom into C/k. Given an orthonormal basis {bi}i=0,...,n−1 of a
finite dimensional vector space X, with dual basis {b∗i }i=0,...,n−1 of X∗, the unit and
counit are given by the following linear maps:

ηX = 1 7→
n−1∑
i=0

b∗i ⊗ bi εX = bi ⊗ b∗j 7→

{
1 If i = j

0 Otherwise

The situation for MatR is essentially the same. Because MatR is is skeletal, every
object is equal to it’s dual, so that n∗ = n. The unit and counit are εn = (1, · · · , 1)
and ηn = εTn . In this case the transpose functor is exactly the transpose of matrices.

2.1.1 Dagger-monoidal categories

In this thesis, we will usually work with monoidal categories with extra structure
called the dagger which allows one in some sense to “run maps in reverse” (see [Sel07,
AC04]):

Definition 2.20. A �-category (read dagger-category) is a category X equipped with
a functor (−)† : Xop → X (read the dagger) that is:

Identity on objects: so that for all objects X of X, X† = X.

Involutive: so that for all maps f of X, (f †)† = f .

A map f in a dagger category is:

an isometry when f †; f = 1.

a coisometry when f ; f † = 1.

unitary when f † = f−1.

self-adjoint when f † = f .

a projector when f ; f = f and f † = f (also known as a †-idempotent).

Example 2.21. MatC is a �-category with respect to both the transpose and the
complex conjugate transpose.

Example 2.22. The category Hilb of complex Hilbert spaces and bounded linear
maps is a dagger category with respect to the Hermitian adjoint. The Hermitian
adjoint of a map A is the unique map A† satisfying the following equation:

⟨x;A|y⟩ = ⟨x|A†; y⟩

FHilb is also a †-category with respect to the Hermitian adjoint.

Lemma 2.23. There is an equivalence of categories FHilb ∼= MatC preserving and
reflecting the dagger structure. The Hermitian adjoint corresponds to the complex
conjugate transpose along the equivalence MatC ∼= FHilb.
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This example is actually a bit tricky; while the dagger in MatC is given by the
complex conjugate transpose, the complex conjugate transpose in FHilb is not the
Hermitian adjoint because A∗ is only isomorphic to A.

There is a natural way to combine monoidal and dagger structure:

Definition 2.24. A (strict) �-(symmetric) monoidal category is a (strict) (sym-
metric) monoidal category equipped with a strict (symmetric) monoidal �-functor
with respect to which all the components of the coherence isomorphisms of the (sym-
metric) monoidal category are unitary.

Example 2.25. The �-category and symmetric monoidal structures of FHilb, Hilb
and MatC are all compatible making them �-symmetric monoidal categories.

Moreover, FHilb and MatC are equivalent as †-symmetric monoidal categories.

We capture more of monoidal category theory within the framework of dagger
categories:

Definition 2.26. A (strict) �-compact closed category is a (strict) compact closed
category which is (strict) �-symmetric monoidal and for all objects X:

I
ε†X//

ηX %%

X ⊗X∗

σX,X∗
��

X∗ ⊗X

or equivalently X ⊗X∗

ηX
((

σX,X∗
// X∗ ⊗X

ε†X��

I

Example 2.27. The compact closed and �-symmetric monoidal structures of MatC
and FHilb are both compatible, making them �-compact closed.

2.1.2 Monoidal presentations

In this subsection, we review how monoidal categories can be presented in terms of
generators and equations. A more detailed reference can be found in the Ph.D. thesis
of Zanasi [Zan18].

Definition 2.28. A monoidal theory is a triple T = (Ob,Σ, E). Ob is the set
of colours. The set The set of signatures Σ contains generators of the form f :
[X1, · · · , Xn]→ [Y1, · · · , Ym], where the arity [X1, · · · , Xn] and coarity [Y1, · · · , Ym]
are in List(Ob) and the name is f indexed from some fixed set. For every object X,
there is a distinguished generator idX : X → X called the unit. The set of (Ob,Σ)-
terms is given by induction. For the base case, all generators are formal generators.
For the first inductive case, given composable terms f : X → Y and g : Y → Z, there
is a formal composite f ; g : X → Z. Second, given two parallel terms f : X → Y and
g : Z → W there is a formal tensor product f ⊗ g : [X,Z]→ [Y,W ].

The set of equations E consists of pairs of parallel formal terms f : X → Y and
g : X → Y .
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Every monoidal theory defines a strict monoidal category T . This is the free strict
monoidal category with objects in List(Ob) and maps formal composites of (Ob,Σ)-
terms modulo the equations in E. T has the structure of a category as the identity
on an object [X1, · · · , Xn] is given by the formal composite idX1 ⊗ · · · ⊗ idXn and the
composition is given by formal composition. For the strict monoidal structure, the
tensor unit is given by the empty list and the tensor product is given by the formal
tensor product. Call such a monoidal category a coloured pro, or merely a pro
when |Ob| = 1. We will say that T is a presentation of a monoidal category X when
T is monoidally equivalent to X.

The coloured pro in a presentation is regarded as the syntax, and the monoidal
category which it is equivalent to is regarded as the semantics. Throughout this
thesis, the semantics will usually be concrete mathematical objects which are easy to
define; whereas, finding the defining set of equations for the syntax is substantially
harder. Therefore, even if both monoidal categories are equivalent, they feel much
different.

Throughout this thesis, when we impose an equation between generators, if it
comes up later then we will put a label above the axiom. Whenever the same axiom
is imposed again we will refer to the first time it is referenced.

In practice, we won’t explicitly regard a monoidal theory as a triple; rather, we
will present coloured pros by drawing a list of generating equations between string
diagrams. For example, the way in which string diagrams for nonstrict monoidal
categories were constructed in Definition 2.7 is secretly a monoidal theory. For a
more elementary example:

Example 2.29. Consider the monoidal theory m generated by a monoid on one
object:

(0)
=

(1)
= ,

(2)
=

This is a presentation for the pro FinOrdMonot, of finite ordinals and monotone maps
[Laf95, Section 3.1].

Definition 2.30. A symmetric monoidal theory T consists of the same data as
a monoidal theory except the equations are now defined by parallel maps generated
by Σ ⊔ C, where C = {σX : [X,X] → [X,X] | ∀X ∈ Ob} is the set of distinguished
symmetry maps.

The corresponding strict symmetric monoidal category T is given by quotienting
the symmetric monoidal category freely generated by the objects Ob and maps Σ
by the equations in E. These symmetric monoidal categories are called coloured
props, or merely props when |Ob| = 1.
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Example 2.31. Consider the symmetric monoidal theory cm generated by a monoid
, which is also commutative:

(3)
=

This is a presentation for the prop of finite ordinals and functions FinOrd under the
disjoint union [Laf95, Section 3.3]. This is a formal way to talk about the graph of a
function between finite sets.

This elegant presentation of the symmetric monoidal category of finite sets moti-
vates finding presentations for other well-known mathematical structures.

The following result has probably been known for quite some time. The earliest
reference I could find is due to Lafont, where he considers only the Boolean semiring
[Laf95, Figure 3]; in a subsequent paper, he proves the analogous result for arbitrary
fields [Laf03, Figure 26]:

Example 2.32. Take a commutative semiring S. Consider the prop cbS generated
by a commutative monoid and comonoid interacting to form a bicommutative
bialgebra:

(4)
= ,

(5)
= ,

(5)op

= ,
(6)
=

with generators for all elements a, b ∈ S such that the structure of the commutative
semiring S is reflected in the convolution of the bialgebra

a b = a+ b ,
b

a
= ab , 1 = , 0 =

where the commutative monoid and cocommutative comonoid are both natural with
respect to the scalars:

a
=

a a
, a = ,

a a
=

a
, = a

This monoidal theory is equivalent to the prop of matrices over S, MatS, under the
direct sum. Recall that the direct sum of matrices R and S is given by the following
block diagonal matrix:

R⊕ S :=

[
R 0
0 S

]
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The generators of this presentation are interpreted in MatS as follows:

t |

=
(
1 1

)
,

t |

=

(
1
1

)
, a = a

The unit and counit are interpreted as the unique matrices from 0 → 1 and 1 → 0,
respectively. Because N is the initial commutative semiring, MatN can be presented
in terms of the prop for the free bicommutative bialgebra, where the generators and
equations for scalars are derivable.

In particular, when S is a ring, then the bialgebra is promoted to a Hopf algebra,

so that there exists an antipode such that:

= =

where the antipode of the Hopf algebra is given by the scalar −1:

−1 = −1 = −1 = −11 = 1− 1 = 0 =

If we define monoids and comonoids on composite systems as follows:

:= , := , := , :=

then arbitrary matrices M : n → m are natural with respect to these families of
maps:

M
=

M M
, M = ,

M M
=

M
, = M

Therefore, given two parallel matrices M and N , their sum is given by convolution
with the bialgebra:

M N = M +N
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One can perform matrix multiplication by pulling all of the white generators to
the bottom and grey generators to the top so that the elements of the commutative
semiring live in the middle. Consider the following example:

a b = a

b

a

b−1

= a

b

a

b−1

=

b

b−1

ba aa a

= ba aa a

This makes it clear how to interpret this as a matrix. Follow the wires from the
bottom and chase their paths to the top, copying them when they meet white nodes,
adding them when they meet grey ones, and multiplying them when they meet scalars:

Example 2.33.
u

wwwwwwwwwwww
v

ba aa a

x1 x2

x2x2x1x1 x2

x2 · bx2 · ax1 · ax2 · ax1 · a

x1 · a+ x2 · a

x1 · a+ x2 · a+ x2 · b
x1 · a+ x2 · a = x1 · a+ x2 · (a+ b)

}

������������
~

=

[
a a
a a+ b

]

Where [
a a
a a+ b

] [
x1
x2

]
=

[
x1 · a+ x2 · a

x1 · a+ x2 · (a+ b)

]
Matrices can be generalized to have no fixed origin:

Definition 2.34. Given a commutative semiring R, the prop AffMatR of affine ma-
trices over R has:

Objects: Natural numbers.

Maps: A map (M,a) : n → m is a pair of a matrix M : n → m and a vector
1→ m.

Identity: The identity on an object n is the pair

(In,0 : 1→ n)

where In is the identity matrix and 0 is the zero vector.
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Composition

n
(M,a)−−−→ m , m

(N,b)−−−→ k

n
(M,a);(N,b):=(NM,Na+b)−−−−−−−−−−−−−−−→ k

Monoidal structure: The tensor product is given pointwise:

(M,a)⊕ (N, b) := (M ⊕ n, a⊕ b)

The tensor unit is the identity on 0.

Note that MatR faithfully embeds into AffMatR:(
n

M−→ m
)
7→
(
n

(M,0)−−−→ m
)

In the other direction, there is also a fathful embedding AffMatR → MatR taking an
affine matrix to its augmented matrix:(

n
(M,a)−−−→ m

)
7→


n+ 1

M a
0 1


−−−−−−→

.
m+ 1


I can not find a reference for the following result, but it is is an immediate consequence
of Bonchi et al.’s analysis of affine relations [BPSZ19]:

Example 2.35. Given a commutative semiring R, the prop acbR is presented by
adding the following generators and relations to cbR:

1

(5)op

=
1 1

,
1

(6)
=

This is a presentation for the prop of affine matrices over S. This new generator is
interpreted as the affine shift.

Then an affine matrix (M,a), it is represented by the following string diagram:

M a

1

so that the composite of two affine matrices can be computed diagrammatically:

M a

1

N b

1 =

N N

b

1

1

M a

= N N

M a

1

b

= N N

M a

1

b

=
NM

1

Na+ b
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The other axiom is needed for the identity law:

1

=

The following structure will show up quite a lot throughout this thesis:

Example 2.36. A Frobenius algebra is a monoid and comonoid interacting to
satisfy the Frobenius laws:

(7)
=

(8)
=

This is moreover a special Frobenius algebra when:

(9)
=

A commutative (special) Frobenius algebra is a (special) Frobenius algebra between
a commutative monoid and a cocommutative comonoid.

Denote the pro generated by a Frobenius algebra by fa, and a special Frobenius
algebra by sfa. Denote the prop generated by a commutative Frobenius algebra by
cfa, and a special commutative Frobenius algebra by scfa.

Frobenius algebras make objects self dual:

(7)
=

(0), (1)op

=
(1), (0)op

=
(8)
=

So that symmetric monoidal categories equipped with a compatible supply of com-
mutative (�-)Frobenius alegbras compatible with the monoidal structure is self dual
(�-)compact closed.

2.2 Categories of spans and relations

Categories are defined in a manner which distinguishes the inputs and outputs of
maps. �-categories are one approach to moving beyond this bias; however, they are
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“evil” in the sense that the �-structure is not always preserved/reflected by categorical
equivalence.

Spans and relations provide a categorically well-behaved, flexible setting with
which to interpret processes without elevating inputs over outputs. Whereas func-
tions produce unique outputs from inputs, spans and relations nondeterministicaly
associate several inputs with several outputs. To introduce these mathematical con-
structions, all of the category theory in this subsection which is not explicitly cited
is standard and can be found, for example, in most introductions to category theory;
for example in Mac Lane’s canonical reference [Lan78]. We first need to recall some
basic facts about limits.

Definition 2.37. The product of two objects X and Y (if it exists) in some category,
is an object X × Y equipped with maps π0 : X × Y → X and π1 : X × Y → Y called

the projections, such that for any object A and diagram X
f←− A

g−→ Y there exists
a unique map ⟨f, g⟩ : A → X × Y called the pairing map making the following
diagram commute:

A
f

uu

g

((

⟨f,g⟩
��

X X × Yπ0
oo

π1
// Y

Given two maps f : W → X and G : Y → Z, their product is defined to be the
universal map f × g : W × Y → X × Z:

W
f
��

W × Y
f×g
��

π0oo
π1 // Y

g
��

X Y × Zπ0
oo

π1
// Z

The diagonal map at X is the pairing map on the identity ∆X := ⟨X,X⟩. A
terminal object in a category (if it exists) is an object 1 equipped with a unique
map !X : X → 1 for every object X called the discard map or the terminal map.
A category is Cartesian when it has all finite products and a terminal object.

Let us spell out the dual notion in order to establish the dual notations. The
coproduct in X is the product in Xop:

A

X

f
55

ι0
// X + Y

[f,g]

OO

Y

g
hh

ι1
oo

Where X + Y is the product object. An initial object in a category (if it exists) is
an object ∅ equipped with a unique map ?X : ∅ → X for each object X. A category
is coCartesian when it has all finite coproducts and an initial object.

Example 2.38. Set and FSet are Cartesian with respect to the Cartesian product:

X × Y := {(x, y) | ∀x ∈ X, y ∈ Y }
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They are coCartesian with respect to the disjoint union

X + Y := {(x, 1) | ∀x ∈ X} ∪ {(y, 2) | ∀y ∈ Y }

Similarly, FVectk and MatS are Cartesian and coCartesian both with respect to the
direct sum.

A Cartesian category is precisely a monoidal category which allows one to copy
and delete things in a manner which is deterministic and total:

Lemma 2.39. A category is Cartesian iff it has a symmetric monoidal structure
equipped with a cocommutative comonoid on every object (see Example 2.31) com-
patible with the monoidal structure, so that

= , =

where the comultiplication and counit are also natural, so that for any map f :

f
=

f f
, f =

The comonoid corresponds to the diagonal map and the counit corresponds to the
discard map.

Therefore, when we gave presentations for FinOrd and MatS, the natural white
commutative comonoid is precisely the one coming from the Cartesian structure.
The naturality of the diagonal map corresponds to determinism, and the naturality
of the discard corresponds to totality. We will come back to this shortly.

As we alluded to in the introduction of this subsection, the Cartesian notion
of copying biases inputs over outputs, and the coCartesian notion of comparison
biases outputs over inputs. We are interested in a more permissive (partial and
nondeterministic), symmetric notion of copying, which is compatible with �-structure.
The following construction allows us to develop such a structure, generalizing the
product modulo shared structure:

Definition 2.40. The pullback of a diagram X
f−→ A

g←− Y (if it exists) is an object
X f×g Y called the apex and maps π0 : X f×g Y → X and π1 : X f×g Y → Y called

the projections, such that for any diagram X
p0←− P

p1−→ Y making the following
diagram commute,

Bp0
ss

p1
++X

f ++

Y
gssA
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there exists a unique map u : P → X f×g Y making the following diagram commute:

P

p0

��

p1

��

u
��

X f×g Y
π0

uu

π1

))
X

f ))

Y

g
uuA

A chevron is drawn under the apex of the span to denote that the square is a pullback.
A category is finitely complete if it has a terminal object and all pullbacks exist.
Notice that product X × Y is the pullback of the diagram X → 1 ← Y . The dual

notion of a pullback is a pushout; the pushout of a diagram X
f−→ A

g←− Y is denoted
by X f+g Y . We draw a chevron on the apex of the cospan, to denote that a square
is a pushout as follows:

P

X f+g Y

OO

X

ι0 55

i0

77

Y

ι1ii

i1

gg

A
g

55

f

ii

Example 2.41. In Set the pullback of a cospan X
f−→ A

g←− Y is (up to unique
isomorphism) the set:

{(x, y) ∈ X × Y : f(x) = g(y)}

The pushout of a span X
f←− A

g−→ Y is the quotient of the set X + Y by:

f(a) ∼ g(a) for all a ∈ A

The concrete pullback/pushout of matrices is essentially the same with the direct
sum instead of the Cartesian product/disjoint union.

Spans form a bicategory under pullback:

Definition 2.42. Given a finitely complete category X, the bicategory of spans
Span(X) has:

0-cells: Objects of X.

1-cells: 1-cells (A, f, g) : X → Y are spans in X from A:

Af
vv

g
((

X Y
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Composition is induced by pullback:

Af
xx

g
&&

X Y

; Bh
xx

k
&&

Y Z

:= A g×k Bπ0

vv

π1

((
Af

xx

g

))

Bh
uu

k
&&

X Y Z

The identity on X is given by the span:

X
X X

2-cells: A 2-cell φ : (A, f, g)⇒ (B, h, k) between parallel spans is a map φ : A→
B in X such that the following diagram commutes:

Af
xx

g
&&

φ

��

X Y

Bh

ff

k

88

The composition and identity of 2-cells is given by the composition and identity
in X.

The composition of 1-cells is not strict, so that the associativity and unitality of
composition hold up to coherent isomorphism. The coherence isomorphisms are the
canonical 2-cells induced by the universal property of the pullback.

The ordinary category of spans of X, Span∼(X), has maps being equivalence classes
of isomorphic spans; so that,

(X
f←− A

g−→ Y ) ∼ (X
h←− B

k−→ Y )

if and only if there exists an isomorphism A
φ−→ B such that the following diagram

commutes:
A

f

||

g

""
φ∼=

��

X Y

B
h

bb

k

<<

X embeds in Span∼(X) in two different ways: covariantly as the graph and con-
travariantly as the cograph:(

X
f−→ Y

)
7→
(
X X

f
// Y

)
,
(
X

f−→ Y
)
7→
(
Y X

f
oo X

)
Regarded as a monoidal category under the Cartesian product, the two embeddings
turn the diagonal maps and discard maps into commutative �-Frobenius algebras,
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making Span∼(X) self-dual �-compact closed, where the �-functor is given by the
converse (f, A, g) 7→ (g, A, f).

For the interested reader, the monoidal structures (or lack thereof) of categories
of cospans and spans of sets is elaborated on in great detail in the work of Bruni and
Gadducci [BG03].

Categories of spans give mathematical semantics for nondeterministic processes
where inputs are associated to possible outputs with multiplicity. A 2-cell between two
processes thus describes a method to coherently transform one process into another.
For example:

Example 2.43. Span∼(FSet) is �-symmetric monoidally equivalent to MatN under
both tensor products.

This example is quite useful for developing intuition. Take a span of finite sets

X
f←− M

g−→ Y , where X and Y have a chosen order. This determines an |X| × |Y |
matrix, where the entry at (x, y) ∈ X ×Y is given by the cardinality of the preimage
⟨f, g⟩−1(X × Y ). That is to say, the number of times x and y are related.

We seek, moreover, to quotient by multiplicity, to obtain a semantics for honest
nondeterministic processes: where things can be related at most once. To do so, we
need more assumptions about the category which we are working internal to:

Definition 2.44. A map f : X → Y is a monomorphism (monic) when for all
maps g, h : Z → X, g; f = h; f implies g = h.

Dually, a map f : X → Y is an epimorphism (epic) when for all maps g, h :
Y → Z, f ; g = f ;h implies g = h.

To add extra information to diagrams, we denote monomorphisms as arrows with
tails ↣ and epimorphisms as arrows with two heads ↠.

Monomorphisms and epimorphisms are the categorically well-behaved analogues
of injections and surjections; where a map is similarly an isomorphism when it is an
epimorphism and a monomorphism. In all of the examples we care about in this thesis,
the monomorphisms are exactly the injections and the epimorphisms are exactly the
surjections. However, it is needed for a proper exposition of categories of relations.

There are special kinds of monomorphisms and epimorphisms which come up:

Definition 2.45. The equalizer of two parallel maps f, g : X → Y , if it exists, is an
object Ef,g equipped with a map m : Ef,g → X such that for all objects F and maps
h : F → Ef,g, there exists a unique map u : F → X making the following diagram
commute:

F
u

##
h
��

Ef,g // m
// X

g
//

f
// Y

The maps m arising from equalizers are monomorphisms. Monomorphisms arising
this way are called regular monomorphisms. The dual notion to an equalizer is a

34



coequalizer, and the epimorphisms arizing in this way are called regular epimor-
phisms.

We have already been using coequalizers throughout this thesis whenever we im-
pose equations by taking quotients. Indeed:

Example 2.46. Sets and matrices both have equalizers and coequalizers. In sets,
the equalizer of two functions g, f : X → Y is (up to unique isomorphism) the set

{x ∈ X : f(x) = g(x)} ⊆ X

The coequalizer is the quotient Y/ ∼ of the set Y by the equivalence relation

f(x) ∼ g(y)

The situation is essentially the same for matrices.

We use coequalizers to capture categories have good notions of images and kernels:

Definition 2.47. Take a finitely complete category. Construct the pullback of a map
f : X → Y along itself:

X f×f X
π1;f

//

π0;f
// Y

Call this diagram a kernel pair at f , and call the object the kernel of f , denoted
by ker(f) := X f×f X. If the kernel pair at f admits a coequalizer, call this object
the image of f , denoted by im(f).

A regular category is a finitely complete category such that:

� Every kernel pair admits a coequalizer.

� Pullbacks of arbitrary maps along regular epimorphisms are regular epimor-
phisms.

Example 2.48. Set, FSet, FVectk and Matk for k a field (or more generally a principal
ideal domain) are all regular categories.

In these examples, kernels and images are the usual notions of kernels and images.

Lemma 2.49. In a regular category, every map f : X → Y can be factorized into a
regular epimorphism ef followed by a monomorphism mf up to unique isomorphism:

X
ef
// //

f
**

X/kerf =: coim(f)
��
mf
��

Y

Definition 2.50. Given a regular category X, the strict 2-category of relations
internal to X, Rel(X) has:

0-cells: Objects of X.

35



1-cells: 1-cells (A, f, g) : X → Y are jointly monic spans in X from A:

Af
vv

g
((

X Y

This span being jointly monic means that for any object B and maps h, k :
B → A if h; f = k; f and h; g = k; g, then h = k.

To compose jointly monic spans (A, f, g) : X → Y and (B, h, k) : Y → Z, first
compute the pullback:

A g×k B
π0

yyyy

π1

&& &&
A

f

||

g

&&

B
h

xx

k

""

X Y Z

Composing with the pairing map we get a map ⟨π0; f, π1; k⟩ : Ag×kB → X×Z.
Because X is a regular category, there is a factorization of ⟨π0; f, π1; k⟩ into an
regular epimorphism followed by monomorphism:

A g ×k B
⟨π0;f,π1;k⟩

,,

e:=e⟨π0;f,π1;k⟩ ����

E := coim(⟨π0; f, π1; k⟩) // m:=m⟨π0;f,π1;k⟩
// X × Z

which induces a jointly monic span, which we take to be the composite:

Af
vv

g
((

X Y
; Bf

vv
g
((

Y Z
:= Em;π0

vv
m;π1
((

X Y

The identity for composition is the same as for spans.

2-cells: The 2-cells are the same as for spans.

Relations have the special property, unlike spans in general, that they are poset-
enriched; that is to say, either there exists a single 2-cell between 1-cells or there is
none. This makes things much simpler than the spans picture, because one never
has to deal with coherence equations. This also justifies the interpretation of nonde-
terministic processes in this setting: possibility amounts to the mere existence of a
2-cell. Any two ways to arrive at the same result must be the same.

This is why, unlike for spans, we don’t have to quotient to obtain an ordinary
category of relations; we just need to forget about the 2-cells.

Just as for spans, relations are �-compact closed with respect to the Cartesian
product where the �-functor is given by the converse. Consider the following concrete
example:

Example 2.51. Rel := Rel(Set) has:
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0-cells: Natural numbers.

1-cells: A relation from n→ m is a subset of X×Y . The composition of relations
R ⊆ X × Y and S ⊆ Y × Z is given by:

R;S := {(x, z) ∈ X × Z : ∃y ∈ Y, (x, y) ∈ R ∧ (y, z) ∈ S} ⊆ X × Z

2-cells: A 2-cell R⇒ S is a subset R ⊆ S.

If we restrict ourselves to finite sets we have the following well known equivalence.
The preservation and reflection of both monoidal structures is perhaps not so well-
known; however, it is described in the infinite case in the work of Bruni and Gadducci
[BG03, Section 3].

Lemma 2.52. Rel(FSet) is symmetric monoidally equivalent to Mat(B) under both
tensor products.

This quotient Span∼(FSet) ↠ Rel(FSet) corresponds to applying the commutative
semiring homorphism N→ B, where B is the Boolean semiring, making 2 = 1.

Therefore the quotient from cbN → cbB can be stated as the following equation
between string diagrams; meaning that we don’t care which path we take, merely of
the existence of a path:

(9)
=

The following category of relations is very important for this thesis:

Definition 2.53. Given a field k, the †-compact closed prop of linear relations over
k, LinRelk is defined to be Rel(Matk) with respect to the direct sum.

Explicitly, LinRelk has:

Objects: Natural numbers.

Maps: A linear relation n→ m is a linear subspace of kn ⊕ km.

Composition: Given R ⊆ kn ⊕ km and S ⊆ km ⊕ kℓ:

R;S := {(x, z) ∈ kn ⊕ kℓ : ∃y ∈ km, (x, y) ∈ R ∧ (y, z) ∈ S} ⊆ kn ⊕ kℓ

Tensor product: Given R ⊆ kn ⊕ km and S ⊆ kℓ ⊕ kq:

R⊕ S :=

{((
a1
a2

)
,

(
b1
b2

)
: ∀(a1, b1) ∈ R, (a2, b2) ∈ S

)}
⊆ kn+ℓ ⊕ km+q

This prop has a presentation in terms of interacting Hopf algebras:
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Definition 2.54. Given a field k, let ihk be the quotient of the props cbk + cbopk ,
modulo the equations, for all a ∈ k∗ (where the generators of cbopk are drawn as the
vertically flipped generators of cbk):

(7)
=

(8)
= ,

(9)
= ,

(7)
=

(8)
= ,

(9)
=

(6)
=

(6)
= ,

a

a
=

a

a
=

Lemma 2.55 ([Zan18, Section 3.4]). ihk is a presentation for LinRelk.

The colour-swapping dagger functor (−)T : ihopk → ihk corresponds to the trans-
pose of matrices; and the colour-preserving dagger functor (−)∗ : ihopk → ihk cor-
responds to the transpose coming from the compact closed structure of ihk. These
should not be confused with each other: the latter is the relational converse. Com-
bining these two daggers we have:

Lemma 2.56 ([Sob17]). The orthogonal complement corresponds to the identity on
objects involutive conjugation functor (−)⊥ : ihk → ihk;

· · ·

· · ·
7→

· · ·

· · ·
,

· · ·

· · ·
7→

· · ·

· · ·
, a 7→ a

From this, there is a graphical proof of the rank-nullity theorem:

Lemma 2.57 ([Sob17]). Given a matrix A : n→ m in cbk ↪→ ihk, then:

imA
:= A

Therefore

(imA)⊥
= (AT )∗ =

ker(AT )

The previous two results are almost certainly contained in [Zan18] because of the
importance of images and kernels in the proof that ihk ∼= LinRelk, but they are hidden
within calculations.

One might seek to find a similar presentation for relations internal to affine ma-
trices. However, the category AffMatk is not a regular category, it doesn’t even have
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all pullbacks. The empty set can not be regarded as a vector space because it has
no origin; however, because affine transformations are not required to preserve the
origin, it is perfectly fine to ask for an affine transformation from an empty space.

By shifting to the category AffMatk+1 where one freely adds the empty set as the

initial object, so that there is a unique map ∅ ?n−→ kn for all n, we obtain an algebraic
theory, and thus a regular category. Notice that AffMatk is the full subcategory of
AffMatk + 1 with nonempty objects. Therefore, we can take the category of internal
relations:

Definition 2.58. The prop of affine relations over k, AffRelk is the full subcategory
of Rel(AffMatk + 1) of nonempty affine subspaces.

Concretely, this is constructed in the same way as LinRelk, but maps n → m are
now (possibly empty) affine subspaces S ⊆ kn ⊕ km. That is to say, S is a subset of
kn ⊕ km such that for any a ∈ S, the set {v + a | ∀v ∈ S} is a linear subspace of
kn ⊕ km. The empty set vacuously satisfies this condition.

We forget the empty set as an object and retain it merely as a subobject so that
we can present it as a (single coloured) prop as follows:

Lemma 2.59 ([BPSZ19, Section A]). AffRelk is presented by the prop aihk given by
adding the following generators and equations to the presentation of ihk:

1

(5)op

=
1 1

,
1

(6)
=

1

(10)
=

1

The first two equations come from the presentation of affine matrices, and the last
equation enforces the initiality of the empty affine space as a subobject.

The original presentation of AffRelk given by Bonci et al. was proven to be equiv-
alent to the concrete category of affine relations [BPSZ19, Section A]; rather than the
nonempty full subcategory of internal relations of possibly empty, finite dimensional
affine spaces. However, as we have discussed, both perspectives are equivalent.

The essence of the Cartesian monoidal structure of categories of relations can be
generalised to the following algebraic notion due to Carboni and Walters [CW87]:

Definition 2.60. A Cartesian bicategory of relations is a symmetric monoidal
category X enriched in posets, equipped with a commutative Frobenius algebra on
every object (see Example 2.36), compatible with the monoidal structure:

= , = , = , =
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The (co)multiplications and (co)units are moreover required to be lax-natural so that
for any map f :

f
≤

f f
, f ≤ ,

f f
≤

f
, ≤ f

And the multiplications and units are required to be right adjoint to the comultipli-
cations and counits:

≤ ,
(9)
= , ≤ ,

(6)
=

Therefore, now we can copy and delete things with the commutative comonoid
structure in a partial, deterministic manner. Moreover the commutative monoid
structure also allows us to compare and ask for the existence of things in a nondeter-
ministic and partial manner.

Given a finitely complete category X, Span(X) is not a Cartesian bicategory of
relations because it is not poset enriched (there can be more than one 2-cell between
1-cells); however it is a Cartesian bicategory (see Carboni et al. [CKWW08]). All
of the equations now only hold up to coherent isomorphism, however the story is
essentially the same. This is much more difficult to work with because this notion
requires coherence conditions so we will omit this more general definition for the sake
of brevity.

Cartesian bicategories of relations subsume categories of internal relations:

Example 2.61. Given a regular category X, Rel(X) is a Cartesian bicategory of
relations under the Cartesian product and Map(Rel(X)) = X, where Map(X) is the
category of comonoid homorphisms in a Cartesian bicategory of relations X.

We see that either the white and grey Frobenius algebras of the presentation ihk
of LinRelk can be regarded as the Frobenius algebra structure coming from viewing it
as a bicategory of relations. Similarly, for the white Frobenius algebra of AffRel, but
not the grey one because addition and copying are no longer dual to each other.

There are classes of categories in between Cartesian categories and Cartesian
bicategories of relations which capture partially invertible and partial deterministic
notions of copying. We review these notions and give examples which will serve to
motivate their usage in quantum computing later in this thesis.

First, we review the categorical semantics of partiality:

Definition 2.62 ([CL02, Section 2.1.1]). A restriction category is a category along

with a restriction operator (A
f−→ B) 7→ (A

f−→ A) such that:
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[R.1] f ; f = f [R.2] f ; g = g; f [R.3] f ; g = f ; g [R.4] f ; g = f ; g; f

Maps of the form f are called restriction idempotents. Restriction categories are
poset enriched where f ≤ g ⇐⇒ f ; g = f . A map f in a restriction category is
total if f = 1. Denote the subcategory of total maps of X by Total(X). A map
f in a restriction category is called a partial isomorphism, in case there exists a
partial inverse g of f so that f ; g = f and g; f = g. Denote the category of partial
isomorphisms of X by Inv(X).

Example 2.63. The category Par of sets and partial functions is a restriction cat-
egory. Given a partial map f : X → Y , the restriction acts as the identity on the
domain of definition:

f (x) :=

{
x if f(x) is defined

undefined otherwise

To augment restriction categories with copying, one must relax the definition of a
Cartesian category:

Definition 2.64 ([CL07]). A restriction category has binary restriction products,
when for all objects X and Y , there exists an object X × Y and total maps X

π0←−
X × Y

π1−→ Y , so that for all objects Z and all maps X
f←− Z

g−→ Y , there exists a

unique Z
⟨f,g⟩−−→ X × Y making the diagram commute:

Z
⟨f,g⟩
��

f

~~

g

  ≥ ≤
X X × Y π1

//
π0

oo Y

so that ⟨f, g⟩; π0; f = ⟨f, g⟩; π0 and ⟨f, g⟩; π1; g = ⟨f, g⟩; π1 where additionally ⟨f, g⟩ =
f ; g.

A restriction category has a restriction terminal object 1 when for all ob-
jects X, there exists a unique total map !X : X → 1 such that f ; !Y = f ; !X . A
restriction category with a restriction terminal object and binary restriction products
is a Cartesian restriction category. An object X in a restriction category with
restriction products is discrete when the diagonal map ∆X := ⟨1X , 1X⟩ is a partial
isomorphism. A restriction category is discrete when all objects are discrete.

Example 2.65. Par is a canonical example of a discrete Cartesian restriction cat-
egory; the restriction product is given by the Cartesian product on underlying sets
and the terminal object is the singleton set.

Theorem 2.66 ([CL07, Theorem 5.2]). Cartesian restriction categories are in bi-
jection with symmetric monoidal categories equipped with a supply of cocommutative
comonoids compatible with the tensor product, so that the multiplication is natural:

f
=

f f
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The restriction is defined as follows:

f := f

This correspondence restricts to discrete Cartesian restriction categories when the
multiplications have retracts :

(9)
=

which implies that these retracts are commutative semigroups, interacting with the
multiplication to form non-unital Frobenius algebras.

We recall the following definition from Cockett and Lack, which was originally
stated in the more general setting of categories with stable systems of monics, rather
than finitely complete categories [CL02, Section 3]:

Definition 2.67. Given a finitely complete category X, there is a discrete Carte-
sian restriction category, the category of partial maps, Par(X) is generated by
spans (m,A, f), for m a monic and f and arbitrary map, i.e. spans of the form

X Aoo
moo

f
// Y .

Par(X) is a discrete Cartesian restriction category where the natural monoid struc-

ture is given by spans of the form X X //
∆X // X ×X .

Its partial inverse is given by the span X ×X Xoo
∆Xoo X .

And the counit is given by X X
!X // // 1 .

The basic idea is that the left leg picks out the domain of definition. Unrolling the

definition, we see that a map X Aoo
moo

f
// Y has a partial inverse precisely when

f is a monomorphism; moreover, the restriction idempotents are spans where both

legs are the same monomorphism: X Aoo
moo // m // Y . This agrees with our running

example of a restriction category:

Example 2.68. Par ∼= Par(Set)

Full subcategories of Par are also restriction categories. Therefore, in such a setting
the domain of definition need not be an actual object in the category of partial maps.
In such a case the restriction idempotent X

e−→ X is regarded as a subobject of X.
Despite not properly being an object, e is morally one. We discuss how subobjects
can be promoted to objects in Definition 3.5.

Cartesian restriction categories are the partial version of Cartesian categories:
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Lemma 2.69. If X is a Cartesian restriction category, then Total(X) is Cartesian.

Proof. By definition, the total maps in a Cartesian restriction category are those
which are natural with respect to the counits. Moreover, all maps are already natural
with respect to the diagonal maps.

Similarly, discrete Cartesian restriction categories are a deterministic, yet partial
version of relations:

Lemma 2.70. The category of comultiplication homorphisms of a Cartesian bicate-
gory of relations forms a discrete Cartesian restriction category.

Let us refine the notion of a restriction category:

Definition 2.71 ([CL02, Section 2.3.2]). An inverse category is a restriction cat-
egory in which all maps are partial isomorphisms.

Example 2.72. Inv(Par) ∼= Pinj

Inverse categories are particular kinds of �-categories:

Theorem 2.73 ([CL02, Theorem 2.20]). A restriction category X is an inverse cat-
egory if and only if there is a dagger functor (−)◦ : Xop → X such that for all

X
f←− Z

g−→ Y :

[INV.1] f ; f ◦; f = f [INV.2] f ; f ◦; g; g◦ = g; g◦; f ; f ◦

The dagger functor takes maps to their partial inverse. In particular, the unitary
maps in an inverse category are the total maps.

Sets and partial injections are intimately related to Hilbert spaces. The following
functor was first discovered by Barr [Bar92]; later studied in much more detail by
Heunen [Heu13]:

Definition 2.74. There is a �-symmetric monoidal embedding ℓ2 : Pinj→ Hilb:

Objects: Sets X are taken to the Hilbert space of square-summable functions on
X:

ℓ2(X) :=

{
φ : X → C

∣∣∑
x∈X

|φ(x)|2 <∞

}

Maps: Given a partial injection f = X oo
f0
oo A //

f1
//Z and some φ : X → C in ℓ2(X):

(ℓ2(f)(φ))(y) =
∑

x∈f−1
1 (y)

φ(f0(x))
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the partial inverse is mapped to the Hermitian adjoint.

In particular, ℓ2(X) has a distinguished orthonormal basis given by

{δx : X → C | ∀x ∈ X}

where δx is the Dirac delta at X:

δx(y) 7→

{
1 if x=y

0 otherwise

The category of partial injections is unusual in the sense that it embeds into Hilb.
This does not generalize to spans between sets, for example: the maps are no longer
sent to bounded linear maps. However, if the domain is changed to the category of
spans of finite sets this induces an embedding into FHilb. This is actually the version
we will use throughout this thesis, but we give the general definition to highlight the
importance of inverse categories in the categorical semantics of quantum mechanics.

We also have a deterministic partially invertible notion of copying:

Definition 2.75 ([Gil14, Definition 4.3.1]). A symmetric monoidal inverse category
X is a discrete inverse category when it is a dagger symmetric monoidal category,
equipped with a commutative multiplication and cocommutative comultiplication
which are daggers of each other and interact via the special Frobenius laws which are
natural so that:

f
=

f f
,

f
=

f f

Discrete inverse categories are inverse categories with respect to the dagger.

Lemma 2.76 ([Gil14, Lemma 4.3.5]). The restriction idempotents are strengths for
the multiplication and comultiplication so that:

f (11)
=

f

(12)
=

f

f

(11)op

=
f (12)op

=
f

Lemma 2.77. Given a finitely complete category X, the category ParIso(X) := Inv(Par(X))
of spans of monomorphisms in X is a discrete inverse category.

These weaken the notion of copying even further:

Lemma 2.78 ([Gil14, Proposition 4.3.7]). Given a discrete Cartesian restriction
category X, Inv(X) is a discrete inverse category.

At least as far as the literature is concerned, the canonical way to obtain a discrete
Cartesian restriction category from a discrete category is more difficult. We will first
introduce the more general CoPara construction, which freely adds an effect to every
object in a way that is compatible with the tensor product:
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Definition 2.79. Given a symmetric monoidal category X, the CoPara construction,
CoPara(X) is the symmetric monoidal category obtained by freely adding maps X → I
for every object X, compatible with the tensor unit:

Objects: Same as in X.

Maps:
X

f−→ S ⊗ Y ∈ X

X
(f,S)−−−→ Y ∈ CoPara(X)

Composition:
X

(f,S)−−−→ Y, Y
(g,T )−−−→ Z

X
(f,S);(g;T ):=(f ;(1S⊗g);α−1

S,T,Z ,S⊗T )−−−−−−−−−−−−−−−−−−−−−→ Z

Or in string diagrams: f ; g :=

f

g

Identity:
1X ∈ CoPara(X)

(uLX)−1 ∈ X

Or in string diagrams:

X

I

XI

Tensor product:

X
(f,S)−−−→ Y , Z

(g,T )−−−→ W

X ⊗ Z
(f,S)⊗(g;T ):=(f⊗g);α−1

S⊗Y,T,W ;αS,Y,T⊗1W ;(1S⊗σY,T )⊗1W ;α−1
S,T,Y ⊗1W ;αS⊗T,Y,W

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Y ⊗W

Or in string diagrams: f ⊗ g := f g

Tensor unit:
I ∈ CoPara(X)

1I⊗I ∈ X

Or in string diagrams:

I

I ⊗ I

I

The coherence data for the monoidal structure is inherited in a straightforward way
from X. Moreover, if X is symmetric monoidal, then it is easy to see how CoPara(X)
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is as well. In other words CoPara(X) could have alternatively been presented by freely
adding generators dX : X → I to the monoidal theory of the strictification of X, for
every object in X compatible with the monoidal structure. In CoPara(X) the map dX
corresponds to the inverse left unitor (uLX)−1:

dX :=

X

I

X I

Variations on this theme will occur throughout this thesis, so we have promoted it
to its own construction. For reference, the CoPara construction is dual to the Para
construction which is interpreted as freely adding parameters to a monoidal category
(see [FST19]). This allows us to define the following:

Definition 2.80 ([Gil14, Definition 5.1.1]). Given a discrete inverse category X, its

Cartesian completion X̃ is the quotient of CoPara(X) by either of the following
equivalent symmetric monoidal congruence relations:

(f, S) ∼ (g, T ) ⇐⇒

f

f ◦

g

= g or

g

g◦

f

= f

X̃ has the structure of a discrete Cartesian restriction category with:

Restriction product: ⟨f, g⟩ := f g

Restriction terminal map:

X

X

I

I

We give a simpler characterization of this construction terms of adding counits to
the inverse products in Proposition 4.5.

Theorem 2.81 ([Gil14, Theorem 5.2.6]). There is an equivalence of categories be-
tween the category of discrete inverse categories and the category of discrete Cartesian
categories.
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This equivalence is witnessed on the one hand by the Cartesian completion and
on the other by taking the wide subcategory of partial isomorphisms. As a corollary,
we see that

Example 2.82 ([Gil14, Example 5.3.3]). P̃inj is Par.

Proof. For a partial function f : X → Y , {(x, (x, y))|(x, y) ∈ f}/ ∼ is a partial
isomorphism.

The Cartesian completion is itself an embedding:

Lemma 2.83. The canonical functor ι : X→ X̃ is faithful.

Proof. Suppose that ι(f) ∼ ι(g), Then:

g =

f

f ◦

g

=

g

f ◦

f

f ◦f

=

g

f ◦

f

f ◦f =
g

ff ◦

f
=

g f

ff ◦

= g f = g f = f g =

g

g◦

f

= f

Obtaining Cartesian bicategories of relations from discrete inverse categories is
more difficult. We will discuss this later in Section 4.1. Let us summarize the various
notions of weakenings of Cartesian bicategories of relations in a table:

∆ ! ∆∗ !∗

Discrete inverse category nat nat
Discrete Cartesian restriction category nat lax lax
Cartesian category nat nat
Cartesian bicategory of relations lax lax lax lax
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2.3 (De)composing props

In this section we review some aspects of internal category theory so that we can com-
pose props via distributive law. It is not necessary to read this section to understand
most of this thesis, with the exception of Section 4.3.

One way to combine monoidal theories is via pushout. We generalize the analogous
result of Zanasi to the coloured setting [Zan18, Proposition 2.51]:

Lemma 2.84. Take three (symmetric) monoidal theories

T0 = (Ob0,Σ0, E0), T1 = (Ob1,Σ1, E1), T2 = (Ob2,Σ2, E2)

such that Ob0 ⊆ Ob1,Ob2, Σ0 ⊆ Σ1,Σ2 and E0 ⊆ E1, E2. Then the pushout of the
diagram T1 ← T0 → T2 in the category of strict (symmetric) monoidal categories is
presented by the (symmetric) monoidal theory:

(Ob1 +Ob0 Ob2,Σ1 +Σ0 Σ2, E1 +E0 E2)

In practice, we usually won’t be so explicit about the pushout of (symmetric)
monoidal theories. Rather, we will present a set of generators and multiple equations
between different subsets of generators. Indeed, we have done this many times up to
this point when glueing (symmetric) monoidal theories together.

In the case when we want to identify the pushout of props with the pushout of
their semantics we must be more careful. Take three coloured pro(p)s T0, T1 and T2 as
above which are respectively presentations for (symmetric) monoidal categories X0,X1

and X2. In order for the pushout of the diagram of pro(p)s T1+T0
T2 as described above

to be a presentation for the pushout of (symmetric) monoidal categories X1 +X0 X2,
we must show that the universal map u induced by the pushout of the diagram
X1 ← X0 → X2 is inverse to the universal map v induced by the pushout of the
diagram T1 +T0

T2. That is to say, we ask for the following diagram of (symmetric)
monoidal categories to commute:

T0 //

vv

��

T1

��

uu

T2 //

��

T1 +T0
T2

u
��

X0

uu

//

DD

X1
tt

DD

X2
//

DD

X1 +X0 X2

v
FF

This method of pushout cubes is used extensively in Zanasi’s thesis [Zan18]; and
we will make heavy use of it in Section 4.3.

However, there is a more refined notion of composition of pro(p)s; to expose which,
we first need to review a considerable amount of internal category theory.
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2.3.1 Internal categories and strict factorization systems

In this subsection we will make extensive use of bicategories. Just like monoidal cat-
egories, every bicategory is equivalent to a strict 2-category where the unitors and
associators are identities. We have already been working with a strict 2-category
throughout this thesis: the 2-category of categories, functors and natural transforma-
tions (as well as its various monoidal cousins). We have also already encountered a
(nonstrict) bicategory, that of spans internal to a category.

Strict 2-categories have a graphical calculus much like strict monoidal categories,
except for the fact that the empty space between wires is now coloured by the 0-cells.
For example a 0-cell X is drawn as a surface:

X

A 1-cell F : X → Y is drawn as a wire separating two surfaces:

F

F

X Y

The composition of two 1-cells X
F−→ Y

G−→ Z is drawn as follows:

F

F

X Y

G

G

Z

And a 2-cell φ : F ⇒ G is drawn as a node between wires:

G

F

X Yφ

We1 won’t go into full detail, but one can imagine how to compose things in both
directions as in the monoidal setting. We will omit the labels when they are clear
from context, as we have done for monoidal categories. For the rest of this section we
will work exploit the coherence theorem and work in the setting of strict 2-categories.
This notation shows how the following constructions are canonical:

Definition 2.85 ([Str72, Section 1]). Given a bicategory B, there is a bicategory of
monads in B, Mnd(B) with:

0-cells: Monads are tuples (X,T, µ, η) in B, where X is a 0-cell T : X → X is
a 1-cell, and µ : T 2 → T and η : 1X → T are 2-cells satisfying the associativity
and unit laws:
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T 3 T ;µ
//

µ;T
��

T 2

µ
��

T 2
µ
// T

T
η;T
//

T ;η
��

T 2

µ
��

T 2
µ
// T

Graphically if we draw T as , then

= , = =

1-cells: Monad maps (F, λ) : (X,T, µT , ηT )→ (Y, S, µS, ηS), where F : X → Y
is a 1-cell and λ : S;F → F ;T is a 2-cell preserving the unit and multiplication
as follows:

F
ηS ;F
//

F ;ηT ##

S;F

λ
��

F ;T

S2;F
S;λ
//

µS ;F
��

S;F ;T
λ;T
// F ;T 2

F ;µT
��

S;F
λ

// F ;T

Graphically if we draw S as and T as and λ as a crossing, then

= , =

2-cells: Intertwiners between monad maps (F, λ)→ (G;χ) are 2-cells φ : F →
G such that:

S;F
S;φ
//

λ
��

S;G
χ
��

F ;T
φ;T
// G;T

Graphically:

φ

λ
=

φ

χ

Definition 2.86. Given a category V with finite pullbacks V , a V-internal category
is a monad in Span(V).

Example 2.87. Monads internal to Span(Set) are in bijection with small categories.
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Let us upack this a bit. A small category has a set Ob of objects, and a set Ar
of maps. There is a map dom : Ar → Ob which picks out the domain of maps and
another map codom : Ar → Ob picking out the codomain. That is to say, a span of
sets:

S = Ardom
uu

codom
))

Ob Ob

Composition of maps is a function which takes maps f : X → Y and g : Y → Z
to a new map (f ; g) : X → Z. This is asking for a 2-cell µ : S2 → S in Span(Set); the
pullback picks out the composable maps and composes them. The associativity of
composition corresponds to the associativity of µ as a semigroup. On the other hand,
the unit of a small category is a function from Ob to S, picking out for every object
X, a map 1X with domain and codomain X, that is to say, a 2-cell µ : 1Ob → S. The
unitality of composition is the unitality of the monad.

One should be careful to notice that the 1-cells in Mnd(Span(Set)) do not cor-
respond to functors between small categories. This structure naturally arizes by
considering the analogous double category; however, this is out of scope for this the-
sis.

There is a canonical way to compose monads, and thus small categories:

Definition 2.88. Given two monads L = (X,L, µL, ηL) and R = (X,R, µR, ηR) in a
bicategory B, a distributive law of R over L is a 2-cell λ : R;L→ L;R in B satisfying
the following coherence equations:

R
R;ηL

%%
ηL;R

��

L;R
λ
// R;L

L2;R
L;λ
//

µL;R
��

L;R;L
λ;L
// R;L;L

R;µL
��

L;R
λ

// R;L

R
ηR;L

%%
L;ηR

��

L;R
λ
// R;L

L;R2 λ;R
//

L;µR
��

R;L;R
R;λ
// R;R;L

µR;L
��

L;R
λ

// R;L

Graphically where we draw λ as a crossing, R as and L as , we have

= , =
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= , =

Distributive laws of monads induce composite monads:

Lemma 2.89. Given a distributive law of monads λ : R;L → L;R, the 1-cell L;R
has a monad structure with:

unit: ηL;R := 1X
ηL;ηR−−−→ L;R

multiplication: µL;R := (L;R)2
1X ;λ;1X−−−−−→ L;L;R;R

µL;µR−−−→ L;R

Graphically:

ηL;R = , µL;R =

There is a concise way of viewing distributive laws:

Lemma 2.90 ([Str72, Section 6]). Distributive laws of monads in a bicategory B are
precisely monads in Mnd(B).

The following notion allows one to factorize the maps in categories:

Definition 2.91 ([Gra00, Section 6.2]). A strict factorization system on a cate-
gory X is a pair of subcategories (L,R) of X with the same objects as X, such that
every map in X can be uniquely factored into a map in L followed by a map in R.

That is to say every map f : X → Y factorizes as follows

X
f

//

ℓ∈L ((
Y

A r∈R
66

such that given another such factorization

X
f

//

ℓ′∈L
))

Y
A′ r′∈R

66

then the following diagram commutes:

X
ℓ // A

r // Y

X
ℓ′

// A′
r′

// Y
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Lemma 2.92 ([RW02, Theorem 3.8]). Strict factorization systems of small categories
(L,R) are precisely distributive laws of R over L regarded as monads in Span(Set).

Therefore, a distributive law of small categories can be regarded as a way to
uniquely factorize maps in X into two disjoint subcategories L;R; so that if a com-
posite is out of order, there is a rule L;R → R;L to push them past each other
uniquely.

By changing Set to the category of monoids, Lack observed that one can recover
the appropriate notion of a strict factorization system of pros [Lac04]. First recall
the category of monoids:

Definition 2.93. Let Mon denote the category with set-monoids as objects and
monoid homorphisms as morphisms. Recall:

A set monoid: is a monoid (X,m, e) in Set under the Cartesian product.

A monoid homorphism: (X,m, e) → (Y,m′, e′) is a function f : X → Y such
that f(m(x, y)) = m′(f(x), f(y)) and f(e) = e′.

Drawing (X,m, e) as and (Y,m′, e′) as that is:

f f
=

f
, = f

Mon has finite pullbacks, so one can define categories within it. We already have
introduced these categories in other terms:

Lemma 2.94 ([Lac04, Section 2.3]). Monads in Span(Mon) are in bijection with small
strict monoidal categories.

There is an obvious analogue of strict factorizations for small strict monoidal
categories, which we shall call monoidal strict factorization systems. In this setting L
and R are small strict monoidal subcategories of X. Therefore, reproducing Lemma
2.92 internal to Mon we have:

Lemma 2.95 ([Lac04, Theorem 3.8]). Monoidal strict factorization systems of small
categories (L,R) are precisely distributive laws of R over L, viewed as monads in
Span(Mon).

Distributive laws of monoidal theories yield a monoidal theory for the composite
internal monoidal category. The two theories are combined, plus rules to push the
generators past each other. This follows immediately from the analysis of distributive
laws of props of Lack [Lac04, Theorem 3.8], where a prop is a strict monoidal category
regarded as a monad on N in Span(Mon).
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Lemma 2.96. Take two monoidal theories

R = (Ob,ΣR, ER), L = (Ob,ΣL, EL)

with the same objects. Regard their corresponding pros R and L as monads in
Span(Mon) such that there is a distributive law λ : R;L ⇒ L;R, where L;R is a
strict monoidal category and both L and R are strict monoidal subcategories of L;R

Then the monoidal theory for the composite pro L;R is given by

(Ob,ΣR ∪ ΣL, ER ∪ EL ∪ Eλ)

where λ is the set of equations dictating the unique ways in which the generators in
R can be pushed past those in L.

Example 2.97 ([Lac04, Example 3.13]). Let injmonot be the pro generated by a
single generator 0→ 1 and no equations:

And let surjmonot denote the pro generated by a semigroup:

(2)
=

injmonot is a presentation for the monotone injections and surjmonot the monotone
surjections in FinOrdMonot. The distributive law

injmonot; surjmonot;
(0)
=

(1)
=

is a presentation for FinOrdMonot. This corresponds to the strict factorization system
coming from the epi-mono factorization of FinOrdMonot ∼= m (see Lemma 2.49).

The strict factorization system gives us a unique normal form. We can therefore
draw the unique connected components of the same arity as follows:

...

· · ·

=:
· · ·

The prop sfa also arizes in terms of a distributive law of pros:
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Example 2.98. Consider the distributive law of pros of a comonoid over a monoid
:

m;mop;
(7)
= ,

(8)
= ,

(9)
=

which we recall is the pro sfa for the free special Frobenius algebra. The unique
normal form induced by this distributive will be widely used throughout this thesis:

Lemma 2.99 (Non-commutative special spider normal form). The circuits in sfa
generated by the connected components of the Frobenius algebra have a unique normal
form. We use the “spider notation” on the left to refer to these simply connected
components:

· · ·

· · ·

:=

. . .

...

· · ·

· · ·

Because the connected circuits are reducible to each other, spiders connected by wires
fuse:

· · ·

· · ·

... =

· · ·

· · ·

We will also use the following related result:

Lemma 2.100 (Non-commutative spider normal form). In the case of the prop fa
when the Frobenius algebra is not special, then the spider theorem only holds for simply
connected circuits. For example, given a Frobenius algebra :

· · ·

· · ·

=

· · ·

· · ·

This does not arise from a distributive law of pros, but it holds nevertheless.

2.3.2 Factorization systems over subcategories

We want to be able to take distributive laws of two categories which both share some
structure. For example, what is the appropriate notion of distributive law of small
strict symmetric monoidal categories where the symmetry maps of both categories
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are identified with each other? For this, we can regard the shared structure in the
subcategory as actions on the larger categories; formally, this is a certain kind of
bimodule:

Definition 2.101. Given a bicategory B with coequalizers, the bicategory of bimod-
ules in B, Mod(B) has:

0-cells: Monads in B.

1-cells: A 1-cell between monads T = (X,T, µT , ηT ) → S = (Y, S, µS, ηS) is a
(T, S)-bimodule. That is a triple (F, τ, ρ) where F : X → Y is a 1-cell in B
and τ : S;F → F and ρ : F ;T → F are 2-cells (the left and right actions,
respectively) satisfying the following coherence equations:

(F, τ) is a left S-module:

F
ηS ;F

��

S;F τ
// F

, S;S;F
µS ;F

//

S;τ
��

S;F
τ
��

S;F τ
// F

Graphically:

= , =

(F, ρ) is a right S-module:

F
F ;ηT

��

F ;T ρ
// F

, F ;T ;T
F ;µT

//

ρ;T
��

F ;T
ρ
��

F ;T ρ
// F

Graphically:

= , =

Module compatibility:

S;F ;T
S;ρ
//

τ ;T
��

S;F
τ
��

F ;T ρ
// F
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Graphically:

=

Given a (S,T)-bimodule (F, τ, ρ) and a (T,U)-bimodule (G, τ ′, ρ′), the compos-
ite has 1-cell given by the coequalizer:

F ;T ;G
F ;ρ
//

τ ′;G
// F ;G // // F ⊗T G

with left and right actions induced by τ and ρ′.

The identity 1-cell on a monad is the monad regarded as a bimodule over itself.

2-cells: A 2-cell between (S,T)-bimodules (F, τ, ρ) → (G, τ ′, ρ′) is a 2-cell φ :
F → G in B satisfying the following coherence conditions:

S;F τ //

S;φ
��

F
φ
��

S;G
τ ′
// G

F ;T
ρ
//

φ;T
��

F
φ
��

G;T
ρ′
// G

Graphically:

τ ′

φ
=

τ

φ

,
ρ′

φ
=

ρ

φ

Composition and identities are given pointwise in B.

Now we can look at modules of internal categories:

Definition 2.102. Given a category V with finite pullbacks and coequalizers pre-
serving them, let V-Prof := Mod(Span(V))op denote the bicategory of V-internal
profunctors. The 1-cells of V-Prof are called (internal) profunctors. The tensor
product of bimodules of internal categories is the (internal) coend.

We related distributive laws in internal categories to factorization systems. To do
so we introduce the following notation:

Definition 2.103. Let Iso(X) denote the groupoid of all isomorphisms of X.

There is a notion of factorization system where the factorization need only hold
up to unique isomorphism:
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Definition 2.104. An orthogonal factorization system on a category X is a pair
of subcategories (L,R) of X with the same objects as X, where L and R contain
all isomorphisms in X, and moreover, where every map in X factors as a map in L,
followed by one in R, up to unique isomorphism.

That is to say every map f : X → Y factorizes as follows

X
f

//

ℓ∈L ((
Y

A r∈R
66

such that given another such factorization

X
f

//

ℓ′∈L
))

Y
A′ r′∈R

66

then there is a unique isomorphism φ : A → A′ making the following diagram com-
mutes:

X
ℓ // A

φ
��

r // Y

X
ℓ′

// A′
r′

// Y

This is the same as a distributive law of monads in Set-Profop over Iso(X):

Lemma 2.105 ([RW02, Theorem 5.9]). An orthogonal factorization system (L,R)
on a small category X is precisely a distributive law of monads between L and R,
regarded as Iso(X)-bimodules.

We have already discussed two examples of orthogonal factorization systems in
order to define categories of internal relations:

Example 2.106. Given a finitely complete category X, the category Span∼(X) has
an orthogonal factorization system where:

L := { Y X
f
oo X | ∀f ∈ X(X, Y )} , R := { X X

f
// Y | ∀f ∈ X(X, Y )}

Example 2.107. Regular categories have orthogonal factorization systems given by
L the regular epimorphisms, and R the monomorphisms.

By asking that X is a small strict monoidal category and L and R are strict
monoidal subcategories of X, the notion of an orthogonal factorization system is
adapted immediately to monoidal categories. And there is an analogous correspon-
dence between L and R, regarded as Iso(X)-bimodules in Span(Mon). However, this
is not satisfactory for our purposes.

In the most basic setting, the shared structure of small strict symmetric monoidal
categories on the same set of objects is the permutations on the objects. Indeed, this is
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the basis of Lack’s work on composing props [Lac04]. Factorizations up permutations
are clearly not strict; and they are only an orthogonal factorization system when all
isomorphisms are permutations. For our purposes, we will also need to consider cases
when J is not even a groupoid! We will recall a considerably more general notion to
this end:

Definition 2.108 ([Che20, Definition 4.10]). Let X be a category equipped with a
subcategory J with the same objects. A factorization system of X over J consists
of a pair of subcategories (L,R) of X with the same objects as X such that J is a
subcategory of both L and R. And moreover, every map in X factorizes into maps in
L followed by maps in R uniquely up to zig-zags in J.

That is to say, given any map f : X → Y in X, there is a factorization

X
f

//

ℓ∈L ((
Y

A r∈R
66

such that given another such factorization

X
f

//

ℓ′∈L
))

Y
A′ r′∈R

66

then there exists factorizations:

X
f

//

ℓj∈L
((

Y

Aj rj∈R
66

and maps in J:

A
φ0
// A0 A1

φ1
oo

φ2
// A2 A3

φ3
oo

φ4
// · · · An−1

φn−1
oo

φn
// A′
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uniquely making following diagram commute:

X
ℓ // A

φ0
��

r // Y

X
ℓ0 // A0

r0 // Y

X
ℓ1 // A1

φ1

OO

φ2

��

r1 // Y

X
ℓ2 // A2

r2 // Y

X
ℓ3 // A3

φ3

OO

φ4��

r3 // Y

...
...

...

X
ℓn−1

// An−1

φn−1

OO

φn
��

rn−1
// Y

X ℓ′ // A′ r′ // Y

This specializes to strict factorization systems when J contains exactly the iden-
tities on all objects; and to orthogonal factorization systems when it contains all
isomorphisms. Suppose that J is not a groupoid and we tried to replace the definition
of an orthogonal factorization system (L,R) with one where the unique mediating
map is merely a single map in J. Now suppose we want to reduce a map in the
composite

L⊗J ⊗R⊗J · · · ⊗J L⊗J R

to one in
L⊗J R

Notice how J acts on L and R both on the left and and on the right. The one action
is covariant and the other is contravariant. So there is a priori no unique way to slide
all the maps in the various copies of J around and group them all together. This
unique-zig-zag condition is asking precisely for this condition to hold. This is to be
contrasted with the case when J is all isomorphisms; because a map φ : X → Y in
J induces another map φ−1 : Y → X this zig-zag condition reduces to the unique
factorization up to isomorphism of orthogonal factorization system. Indeed, when J
only contains isomorphisms, this zig-zag condition reduces to a slight modification of
the notion of an orthogonal factorization system.

This notion of factorization system over a subcategory is introduced by Cheng
[Che20]; she establishes a correspondence between these factorization systems and
distributive laws of monads in Set-Profop. The result is mentioned with distributive
laws of Lawvere theories in mind, but it is a general fact:
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Lemma 2.109. A factorization system (L,R) of a small category X over a subcate-
gory J is precisely a distributive law of monads R over L, both regarded as J-bimodules
in Span(Set).

By asking that X is a small strict monoidal category and L, R and J are appro-
priately strict monoidal subcategories, the notion of a factorization system of X over
J is adapted immediately to monoidal categories. And there is an analogous corre-
spondence to distributive laws of R over L, regarded as J-bimodules in Span(Mon).

Lemma 2.110. Take three symmetric monoidal theories

R = (Ob,ΣR, ER), L = (Ob,ΣL, EL), J = (Ob,ΣJ , EJ)

with the same objects, where J embeds as a strict symmetric monoidal category within
both L and R. Regard both L and R as J -bimodules, where the left and right actions
are given by lifting the maps in J along this embedding.

Suppose there is a distributive law of monads in the bicategory Mon-Profop:

λ : R ⊗J L ⇒ L ⊗J R

where L and R are canonically strict monoidal subcategories of L ⊗J R.
Then the induced prop L ⊗J R is presented by a monoidal theory

(Ob,ΣR ∪ ΣL, ER ∪ EL ∪ Eλ)

where Eλ is the set of equations dictating the unique ways in which the generators of
ΣR can be pushed past those of ΣL up to zig-zags in J .

This seems like a very complicated construction, but let us see some examples to
understand the utility. As a general rule, because factorization systems are decom-
positional (so that we start with a category and decompose it into smaller parts),
we will start first with a symmetric monoidal theory which we already know, and
then decompose it into smaller constituent symmetric monoidal theories. For the
most basic examples consider the free strict symmetric monoidal category on a set of
objects:

Definition 2.111. Let pX denote the free strict symmetric monoidal category with
objects in X, where p is the free symmetric monoidal category with one object.

That is to say pX is the category of permutations on X elements regarded as a
strict monoidal category.

It is easy to see how every coloured prop with generating object set Ob is canon-
ically a pOb-bimodule in Span(Mon) picking out the symmetry maps.

Consider the following distributive law of props, coming from the epi-mono fac-
torization system of finite sets:
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Example 2.112 ([Lac04, Example 5.1]). Let inj be the prop generated by a single
generator 0→ 1 and no equations:

And let surj denote the prop generated by a commutative semigroup:

(2)
= ,

(3)
=

inj is a presentation for the injections and surj the surjections in FinOrd ∼= FSet under
the coproduct. Moreover, distributive law:

cm = inj⊗p surj;
(0)
=

(1)
=

induces the prop for the commutative comonoid cm ∼= FinOrd ∼= FSet.

This distributive law corresponds to the epi-mono orthogonal factorization system
of FinOrd. However, as opposed to the analagous story for FinOrdMonot, because the
permutations are nontrivial isomorphisms, we had to take a distributive law of monads
of bimodules over the permutations.

Bicommutative bialgebras also arise similarly:

Example 2.113. The prop cb for a bicommutative bialgebra, is presented by a
distributive law between a monoid and comonoid :

cmop ⊗p cm;
(4)
= ,

(5)
= ,

(5)op

= ,
(6)
=

This is also is a symmetric monoidal orthogonal factorization system since it arizes
from a category of spans:

Lemma 2.114 ([Lac04, Example 5.3]). cb is a presentation for (Span∼(FSet),+).

Dually:

Example 2.115. The distributive law between a monoid and comonoid :

cm⊗p cm
op;

(7)
=

(8)
= ,

(9)
=

This is the prop scfa for the free special commutative Frobenius algebra, which we
discussed earlier.
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This distributive law also arizes from a category of spans.

Lemma 2.116 ([Lac04, Example 5.4]). sfa is a presentation for (Span∼(FSetop),+).

Remark 2.117. The spider normal form also holds for special commutative Frobe-
nius algebras, where now components can be connected together using the symmetry
maps.

In analogy to the noncommutative case, the spider normal form for non-special
commutative Frobenius algebras also holds; although it does not arize from a distribu-
tive law of props. The original spider normal form was first proven for non-special
symmetric Frobenius algebras, first published in the Ph.D. thesis of Abrams [Abr97];
wherein it was proved by topological methods rather than using the machinery of
distributive laws.

Note that all of these examples of distributive laws of props are actually monoidal
orthogonal factorization systems. Indeed, they are both special cases of the two
examples of orthogonal factorization systems which we provided earlier: orthogonal
factorization systems arizing from spans, and orthogonal factorization systems arizing
from epi-mono factorization. We will see nontrivial examples of such distributive laws
in Subsections 4.3.2 and 4.3.3.

Aside 2.118. There is another way to decompose props which we have not reviewed,
because we will not make use of it. Since distributive laws are themselves monads,
one can take distributive laws of distributive laws themselves.

In the case of distributive laws of categories, Cheng remarked that this is precisely
a monad in Mnd(Mnd(Span(Set))) [Che11]. This corresponds to a “ternary strict
factorization system” and can be iterated finitely many times to obtain n-ary strict
factorization systems. The coherence conditions can be boiled down into asking that
the appropriate distributive laws must interact to satisfy the Yang-Baxter equations.

There is nothing special about strict factorization systems of small categories.
The way to decompose props in this setting would be in terms of monads in
Mnd(Mnd(Mod(Span(Mon)))). Indeed, this was used in Zansi’s thesis multiple times
[Zan18, Proposition 3.3., Example 2.34].
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Chapter 3

Categorical quantum mechanics

String diagrams have been used in quantum theory for quite some time; in particular,
as early as the work of Penrose [Pen71]. In such settings, string diagrams have been
used as (often heuristic) tools for calculation. The more recent programme of “cat-
egorical quantum mechanics,” following the seminal paper of Abramsky and Coecke
[AC04] has endeavoured to reformulate finite dimensional quantum mechanics using
category theory. In this setting, string diagrams are formal mathematical objects:
allowing certain essential features to be abstracted away from the usual setting of
finite dimensional Hilbert spaces.

In this section, we review this formalism as well as recent developments which are
relevant to this thesis. A more in depth mathematical introduction can be found in
the book of Heunen and Vicary [HV19], with a more broadly accessible and applied
introduction being found in the book of Coecke and Kissinger [CK17]. For a more
traditional approach to quantum computing see the book of Nielsen and Chuang
[NC10].

To motivate this graphical treatment of finite dimensional quantum theory, we
first establish some basic algebraic notations.

3.1 Quantum states and unitary evolution

Fix a finite dimensional Hilbert space H with dimension d ≥ 2, which we will regard
as our local state-space. An element of H is called a qubit when d = 2, a qutrit
when d = 3, a qupit when d is prime, a quopit when d an odd prime and a qudit
when there is no restriction on d.

The elements of an orthonormal basis of H indexed by a set J are drawn in “ket
notation” by |bj⟩, for all j ∈ J . The tensor product of these vectors is denoted as a
list delimited by commas so that for example:

|bx⟩ ⊗ |by⟩ =: |bx, by⟩

Most of the time, we will not choose an arbitrary d-dimensional Hilbert space for
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the local state-space. Instead, we will work in the Hilbert space of square summable
functions on Z/dZ, ℓ2(Z/dZ) (see Definition 2.74). Here, the elements of Z/dZ induce
a basis for ℓ2(Z/dZ) called the standard basis or Z-basis. We will denote the ele-
ments of the basis as {|0⟩, . . . , |d−1⟩}. The structure of a ring is therefore transported
onto the standard basis elements (or a field when d is prime). These are regarded
as the d-level quantum analogue of classical dits. Similarly, the n-qudit state space
is regarded as the Hilbert space ℓ2((Z/dZ)n), so that the n-standard basis elements
have the structure of an n-dimensional Z/dZ-bimodule (or vector space, when d is
prime).

Denote arbitrary vectors φ in H using this ket notation by |φ⟩; where the adjoint
of |φ⟩ is denoted as a “bra” by |φ⟩† =: ⟨φ|.

Given two vectors |φ⟩ and |ψ⟩ on the same space, the inner product “bra-ket”
is denoted by ⟨φ|ψ⟩ and the outer product by |φ⟩⟨ψ|. This notation allows us to
succinctly represent matrices. For example, a complex matrix from dn to dm regarded
as an operator A : ℓ2((Z/dZ)n)→ ℓ2((Z/dZ)m) with entries aj,k is denoted as follows:

A =
n−1∑
k=0

m−1∑
j=0

aj,k|j⟩⟨k|

Given another matrix B : ℓ2((Z/dZ)m)→ ℓ2((Z/dZ)ℓ) with entries bk′,j′ :

B =
m−1∑
j′=0

ℓ−1∑
k′=0

bk′,j′|k′⟩⟨j′|

Their composite is computed by matrix multiplication:

BA =
m−1∑
j′=0

ℓ−1∑
k′=0

bk′,j′ |k′⟩⟨j′|
n−1∑
k=0

m−1∑
j=0

aj,k|j⟩⟨k| =
n−1∑
k=0

m−1∑
j,j′=0

ℓ−1∑
k′=0

bk′,j′aj,k|k′⟩⟨j′|j⟩⟨k|

=
n−1∑
k=0

ℓ−1∑
k′=0

(
m−1∑
j=0

bk′,jaj,k

)
|k′⟩⟨k|

There is a graphical way to represent orthonormal bases:

Lemma 3.1 ([CPV13]). Orthgonal bases {|bj⟩}j∈J in FHilb are in bijection with
commutative �-Frobenius algebras. The †-Frobenius algebras are of the form:

:=
∑
j∈J

1

⟨bj|bj⟩

(
|bj⟩

)
, :=

∑
j∈J

1

⟨bj|bj⟩

 ⟨bj| ⟨bj|

|bj⟩



:=
∑
j∈J

1

⟨bj|bj⟩

(
⟨bj|

)
, :=

∑
j∈J

1

⟨bj|bj⟩

 |bj⟩ |bj⟩

⟨bj|


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These are precisely the Frobenius algebras that (co)copy the basis elements. It is easy
to see how the laws of a commutative �-Frobenius algebra hold; however, the proof of
the converse direction is quite a bit trickier.

Notice how special commutative �-Frobenius algebras are in bijection with or-
thonormal bases, as:

=
∑
j,k∈J

1

⟨bj|bj⟩⟨bk|bk⟩


⟨bk|

|bj⟩

⟨bk|

|bj⟩

⟨bj|

|bk⟩


=
∑
j,k∈J

⟨bj|bk⟩2

⟨bj|bj⟩⟨bk|bk⟩

 ⟨bj|

|bk⟩



is equal to the identity if and only if the basis is orthonormal:

∑
j∈J

 ⟨bj|

|bj⟩

 =

We will colour special commutative �-Frobenius algebras and non-special com-
mutative �-Frobenius algebras . Recall the two variations of the normal form for
special and non-special commutative �-Frobenius algebras:

· · ·

· · ·

... =

· · ·

· · ·

,

· · ·

· · ·

=

· · ·

· · ·

A pure quantum state is a vector |φ⟩ with norm 1, so that |⟨φ|φ⟩|2 = ⟨φ|φ⟩ = 1.
Pure quantum states are interpreted as the possible physical states of a quantum
system which has been unexposed to the classical world. The quantum evolution of
pure quantum states is modeled by their postcomposition with unitary maps. Unitary
maps are precisely the linear automorphisms which preserve the norm, and thus,
preserve pure quantum states.

To actually do computations with quantum states, one has to measure things using
a classical interface. Selinger gives a construction to produce categories of quantum
channels from general �-compact closed categories [Sel07]. When applied to FHilb,
this construction adds discarding behavior to quantum systems. This will provide
the necessary machinery to model measurement.

We present this construction in terms of a quotient of the CoPara construction for
the sake of uniformity of this thesis. This construction is extremely important for this
thesis, so it is essential to understand.
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Definition 3.2 (CPM construction). Given a compact closed †-symmetric monoidal
category X, then CPM(X, (−)†) (which we will denote by CPM(X) when the dagger
is clear from the context) is the quotient of CoPara(X) by the symmetric monoidal

congruence relation, so that
(
X

(f,S)−−−→ Y
)
∼
(
X

(g,T )−−−→ Y
)

if and only if

f

f †

=
g

g†

Draw elements of this equivalence class using the following notation:

f
=

g

The dagger is defined as follows:

f
7→

f † so that :=

This makes CPM(X) into a �-symmetric monoidal category. The map dX = ((uLX)−1, X)
is called the discarding map on X:

The canonical functor X → CoPara(X) → CPM(X) taking f 7→ (f, I) is called
doubling. The maps in the image of this functor are pure, and those which aren’t are
mixed. A map f : X → Y in CPM(X) is called trace-preserving when f ; dY = dX :

f =

All maps can be obtained by composing pure maps with discard maps. Given a
mixed map f in CPM(X) such a factorization into a pure map followed by a discard
map is a purification of f .

The compact closed structure of CPM(X) is inherited from the doubling of the
compact closed structure of X. If the �-symmetric monoidal structure of X is compat-
ible with its compact closed structure, so that X is �-compact closed, then CPM(X)
is �-compact closed as well.
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Oftentimes, we will bend the “doubled picture” so that the inputs are on the
bottom and the outputs are on the top:

f
=

(f ∗)† f

We could have chosen a different, equivalent congruence relation to quotient by to
avoid the symmetry map on the cap, but this would be incompatible with notation
for stabilizer tableaux which we use much later in this thesis.

In the doubled picture, the composition of equivalence classes is in CPM(X) is
composition in X:

(f ∗)† f

(g∗)† g

=

(f ∗)† f

(g∗)† g =
((f ; (1⊗ g))∗)† f ; (1⊗ g)

This different perspective will prove useful for the purposes of calculation. Notice
how we could have instead defined a †-monoidal structure in terms of the conjugation
functor (−) := ((−)∗)†, so that the equivalence classes look like:

f f

Therefore, we shall invoke the CPM construction for both dagger structures and
conjugation functors depending on which setting is most natural.

As mentioned before, the following example motivated this categorical construc-
tion:

Example 3.3. CPM(FHilb, (−)†) is the dagger compact closed category of density
matrices between finite dimensional Hilbert spaces. Density matrices are also called,
“completely positive maps,” hence the name CPM. This is dagger compact closed
equivalent to the strict symmetric monoidal skeleton of density matrices CPM(MatC, (−)).
In the nonstrict setting it is more convenient to work with the dagger, the Hermetian
adjoint; however, in the skeletal case, we will use the complex conjugation functor.

Density matrices model mixed quantum circuits. The discarding map is inter-
preted as quantum discarding which exposes the quantum system to the classical
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world. The adjoint of the discard map is interpreted as the maximally-mixed state
which injects classical noise into a system.

A (mixed) quantum state is a trace-preserving state in CPM(FHilb). Given a
pure quantum state in FHilb, its doubled version is a quantum state in CPM(FHilb).
Mixed quantum states are the states which can be obtained by discarding parts
of pure quantum states, so that they can be regarded as the physical states of a
quantum/classical system.

The trace-preserving maps in CPM(FHilb) model the mixed quantum-classical evo-
lution of quantum states; as they are precisely the maps in CPM(FHilb) which preserve
quantum states.

3.2 Quantum measurement

Given an orthonormal basis B = {|bj⟩}j∈J of H and a quantum state state |φ⟩ on H
then: ∑

j∈J

|⟨bj|ψ⟩|2 = 1

This gives a probability distribution over J . The scalar 0 ≤ |⟨bj|ψ⟩|2 ≤ 1 is inter-
preted as the probability of measuring the basis element |bj⟩ on the state |ψ⟩ with
respect to the basis B. This basis dependent, probabilistic interpretation of quantum
measurement is called the Born rule, although it is usually stated slightly differently.

The CPM construction and special commutative †-Frobenius algebras allow us
to perform quantum measurement using only string diagrams. Some mathematical
machinery is needed first:

Definition 3.4. Given a special �-commutative Frobenius algebra B on a �-compact
closed category X, define the projector onto the B basis to be the following map in
CPM(X):

pB :=

In the doubled picture, we untangle the quantum spaghetti:

u

w
v

}

�
~ = = = = =

Recall that a map e is a projector when it is idempotent (so that e2 = e) and self-
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adjoint (so that e† = e). pB is idempotent because:

= = = = =

And self-adjoint because:

= =

Therefore it is actually a projector.

Given a quantum state |ψ⟩ and an orthonormal basis B; |ψ⟩ is said to collapse
onto the basis B when it is postcomposed with pB as follows pB|ψ⟩. This transforms
a quantum state into a stochastic mixture of all of the basis elements of B. To
promote these classical stochastic mixtures to their own systems, we need a way to
turn subobjects into objects:

Definition 3.5. Given a category X and a class of idempotents I, the Karoubi
envelope SplitI(X) of X at I, is the category with:

Objects: Pairs (X, e) where X is an object of X and e : X → X is in I.

Maps: A map (e, f,m) : (X, e) → (Y,m) is a map f : X → Y in X such that
e; f ;m = f .

Composition: (e, f,m); (m, g, ℓ) = (e, f ; g, ℓ).

Identities: 1(X,e) = (1X , e, 1X).

In particular, when I contains all idempotents in X, call Split(X) := SplitI(X) the
Karoubi envelope of X. X fully and faithfully embeds into its Karoubi envelope via
the functor: (

X
f−→ Y

)
7→
(

(X, 1X)
(1X ,f,1Y )−−−−−→ (Y, 1Y )

)
X is Cauchy-complete when this embedding is an equivalence. Moreover, when X is
monoidal, symmetric monoidal or compact closed, so is Split(X) with the embedding
preserving this structure.

SplitI∪{1X |X∈X}(X) is said to be the category obtained by splitting the idempo-
tents in I. When one splits an idempotent e : X → X, then (X, e) is the retract of
(X, 1X):

(X, e) //
(e,e,1X)

//

(1X ,e,1X)

(X, 1X)

(1X ,e,e)����

(X, e)

(X, 1X)
(1X ,e,e)

// //

(e,e,e) ''

(X, e)
��

(e,e,1X)
��

(X, 1X)
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This specializes to †-compact closed categories, so that projectors get promoted
to objects:

Definition 3.6 ([Sel08]). Given a †-category X and class of projectors I in X, then
SplitI(X) is a † category. The map (e, 1X , 1X) : (X, e)→ (X, 1X) is an isometry with
adjoint (1X , 1X , e) : (X, 1X) → (X, e) . In particular, when X is †-compact closed
then so is Split†(X), with the embedding preserving this structure.

Selinger shows that splitting projectors in CPM(FHilb) yields a category where the
the split projectors can be interpreted as classical types [Sel08]:

Remark 3.7. Given a basisB = {|bj⟩}j∈J forH, the isometry (pB, 1H, 1H) : (H, pB)→
(H, 1H) is regarded as the state preparation map and its adjoint (1H, 1H, pB) :
(H, 1H)→ (H, pB) a destructive measurement with respect to the basis B.

Let us unpack this a bit. Take an orthonormal basis B for H and B′ for H′

corresponding to a special commutative �-Frobenius algebras and , respectively.
Then maps (H, pB) → (H′, pB′) correspond to maps pB; f ; pB′ for some f : H → H′

in CPM(FHilb):

f
=

f
(3.1)

Therefore by inspecting the dimensions, every map (H, pB) → (H′, pB′) is of the
following form, for some g : H → H′ in FHilb:

g

Because the equivalence classes of maps in CPM(FHilb) are defined in terms of the
complex conjugation of maps in FHilb; the representative g in FHilb is unique up to
a scalar factor e2π·i·θ for some θ ∈ [0, 1). That is to say, these maps are unique up
to global phase. Take H = H′. Up to global phase, the subobject (H, eB) can be
identified with the the Hilbert space H; where state preparation with respect to
and nondestructive measurement with respect to correspond to the following maps:

J(1H, 1H, pB′)K = , J(pB, 1H, 1H)K =
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The state preparation map and measurement maps for double the basis elements
|bj⟩ and ⟨bj| of B and B∗:

|bj⟩

=
|bj⟩

⟨bj|
,

⟨bj|

= ⟨bj|

|bj⟩

Given a quantum state |φ⟩ on H, measuring in the B-basis has the following effect:

φ⟩

=
∑
j∈J


ψ

|bj⟩

⟨bj|

|bj⟩

 =
∑
j∈J

|⟨bj|φ⟩|2 ·
(
|bj⟩

)
=
∑
j∈J

|⟨bj|φ⟩|2|bj⟩

Therefore, measuring |bj⟩ yields the scalar |⟨bj|φ⟩|2, which is the correct probability
according to the Born rule.

There is a graphical calculus for this two-coloured prop of classical and quantum
types. The classical wires are drawn thin and the quantum wires are drawn thick.
The pure spider we have have been working with so far is drawn with a thick border:

· · ·

· · ·

The state preparation and measurement are drawn as thin spiders interfacing between
the quantum and classical systems:

u

v

}

~ = , =

u

v

}

~

The conjugation of pure spiders by state preparation and measurement maps creates
thick-thin spiders following Coecke and Kissinger [CK17] (which they call bastard
spiders). Thick-thin spiders are drawn with a thin border to distinguish them from
pure spiders, however, their legs can be either thick or thin. For example:

:=

The thin border on indicates that the state has been measured in the basis and
is a stochastic mixture of the basis element of B. When a pure spider is connected
to a thick-thin spider they both fuse into a thick-thin spider:

· · ·

· · ·

=

· · ·

· · ·
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The discard map is classical spider with one thick wire:

s {
= = = = = = =

s {

Notice that this way of describing the discard map is independent of the choice of
orthonormal basis.

In general, we will draw thick borders around arbitrary pure maps U between
quantum systems; and thin borders around mixed maps V between quantum systems:

U , V

All isometries and unitaries in CPM(FHilb) are pure so we always drawn them with a
thick border. This notation allows us to succinctly state a special notion of purifica-
tion in CPM(FHilb):

Proposition 3.8 (Stinespring dilation). Given a trace preserving map V in CPM(FHilb),
there exists a unitary U such that:

V = U

for all special commutative �-Frobenius algebras .

The proof is relatively involved so we will omit it. See Stinesprings paper for the
original statement[Sti55], and Coecke and Kissinger’s book for the graphical version
which we use [CK17, Corollary 6.63]. Essentially, the significance of this result is that
quantum processes can always be produced by first preparing a state, then applying
quantum evolution and then discarding part of the state. There is another closely
related result which we will make use of:

Proposition 3.9 (Essential uniqueness of purification). Given two purifications V :
H1 ⊗H0 and V ′ : H1 ⊗H0 of a mixed state W : H0 in CPM(FHilb):

V

=
W

=
V ′

so that without loss generality dimH1 ≤ dimH2, then there exists an isometry U :
H1 → H2 such that:

V

U =
V ′

Moreover, U is unique up to a unique unitary.
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3.3 The ZX-calculus

There is a very important relationship which bases can have to each other:

Definition 3.10. Take commutative �-Frobenius algebras and . They are strongly
complementary when they interact to form Hopf algebras (see Example 2.32) whose
antipode is equivalently any of the following maps:

:= = = =

Strongly complementary bases have important information-theoretical properties:

Lemma 3.11. Given two strongly complementary bases given by special commuta-
tive �-Frobenius alegbras and preparing a state with respect to the basis and
measuring with respect to the basis preserves no information, as:

u

wwww
v

}

����
~

= = = =

Even though we only used the Hopf law here, the bialgebra structure is indispens-
able for other reasons.

Given two strongly complementary observables, we can construct the quantum
teleportation protocol (originally discovered for qubits by Bennett et al. [BBC+93]).
The abstract description of quantum teleportation in terms �-compact closed cate-
gories was first introduced by Abramsky and Coecke [AC04]; however, we present a qu-
dit generalization of the one using thick-thin spiders found in Coecke and Kissinger’s
book [CK17, Page 706]:

Protocol 3.12.

1. Alice and Bob first prepare a qudit Bell state together and establish a classical
channel with which Alice is able to send two dits to Bob.

2. They are separated in space.

3. Alice applies a unitary operation in between her two qudits.

4. Alice measures both of the qudits in the complementary bases and then sends
two classical dits to Bob.

5. Bob uses the two classical dits to perform phase-correction to his half of the
Bell state in the complementary bases.
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Graphically:

Alice Bob

Phase correction

Measurement

= = =

= ≈ = = ≈

So that if Alice prepares a quantum state |φ⟩, then Bob receives it:

Alice Bob

Phase correction

Measurement

|φ⟩

≈

|φ⟩

Alice Bob

Notice how all parts of this protocol are physically realizable operations. The
Bell-state is a quantum state and unitary operations are quantum operations. As
we discussed, measurement is realizable, and produces a classical outcome according
to a probability distribution via the Born rule (in fact, in this case each possible
outcome is equally likely). Finally, for Bob’s phase correction operation, he receives
the two measurement outcomes of Alice, and conditioned on these outcomes he applies
quantum operations to the quantum channel.

This is in contrast to the naive way in which one might hope to teleport a qudit
from Alice to Bob using the compact closed structure induced by :

Alice Bob

|φ⟩

≈

Alice Bob

|φ⟩

The cap not a quantum operation, nor is it a measurement, or a classical operation,
therefore it does not specify a physically realizable quantum protocol.
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The reason we ask not only for the Hopf law but also for the bialgebra law is
because the following two very important bases have this property:

Example 3.13. Given fixed dimension d, recall that the standard basis, or Z-basis,
is denoted as follows:

{|0⟩, . . . , |d− 1⟩}
The Fourier basis, or X-basis, is denoted as follows:

{
√
dF|0⟩, . . . ,

√
dF|d− 1⟩}

where the qudit quantum Fourier transform is the unitary map:

F :=
1√
d

d−1∑
j,k=0

e2π·i·j·k/d|k⟩⟨j|

The Z and X bases are strongly complementary.

For qubits, the state |+⟩ := F|0⟩ is called the plus state; and |−⟩ := F|1⟩ is
called the minus state. Notice how we multiply the X-basis elements by a factor
of
√
d so that these two Frobenius algebras interact to form a Hopf algebra on the

nose (as opposed to up to scaling factors). This means that the Fourier basis we
have chosen is only orthogonal, and thus the corresponding Frobenius algebra is not
special. However, this isn’t a problem, because it is special up to the invertible scalar
1/
√
d.

This pair of complementary bases will occur throughout this thesis. As a matter
of notation, as mentioned earlier we draw the “Z-spiders” for the standard basis in
white, and “X-spiders” for the Fourier basis in grey as follows:

u

v
· · ·

· · ·
n

m
}

~ =
d−1∑
j=0

|j, . . . , j⟩⟨j, . . . , j|

u

v
· · ·

· · ·
n

m
}

~ =
√
d
d−1∑
j=0

F|j, . . . , j⟩⟨j, . . . , j|F †

The Z-spiders compare standard basis elements and the X-spiders compare their
sums (which is why we ask for the Bialgebra law on top of the Hopf law):

√
d

d−1∑
j=0

F|j, . . . , j⟩⟨j, . . . , j|F † =
∑

∀x∈(Z/dZ)n,y∈(Z/dZ)m:
∑
xj=

∑
yk

|y1, . . . , yn⟩⟨x1, . . . , xn|

When d = 2, the antipode is the identity, therefore it doesn’t matter if the wires are
inputs or outputs of spiders. For example, we can draw the controlled-not gate by
connecting together Z and X spiders, only having to worry about the connectivity:

:= =
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In other terms, following Carette, the Z and X-spiders are flexsymmetric [Car21,
Section 5].

We almost have all of the essential ingredients of categorical quantum mechanics;
however, thick-thin spiders alone are not very expressive. The following bridges this
gap:

Definition 3.14. Given a †-Frobenius algebra on an object X, a phase for the
Frobenius algebra is a unitary endomorphism θ : X → X which commutes with the
multiplication and comultiplication, so that:

θ

(11)
=

θ (12)
=

θ
,

θ (11)op

=
θ

(12)op

=
θ

Phases for Frobenius algebras are closed under composition; and they form a group
called the phase group for the Frobenius algebra. The phase group associated with
a commutative Frobenius algebra is therefore Abelian.

The motivating example is again FHilb, which makes sense of the name:

Example 3.15. Given an orthonormal basis {|bj⟩}j∈J ofH , the phases are generated
by the following unitaries, for all {θj} ∈ [0, 1)J :∑

j∈J

e2π·i·θj/d|bj⟩⟨bj|

Recall that maps in CPM(FHilb) are unique up to global phase, therefore when
the basis has a chosen order {|b0⟩, · · · , |bd−1⟩}, as a matter of convention fix θ0 = 0.
This means that the phases of that basis in CPM(FHilb) are uniquely parameterized
by the group [0, 1)d−1. In the literature it is commonplace to index the phases over
[0, 2π)d−1 rather than over [0, 1)d−1. We chose the latter because it is much more
amenable to generalization away from quantum mechanics.

The normal form for spiders extends to spiders with phases:

Lemma 3.16 (Phased spider normal form). The connected components of a commu-
tative �-Frobenius algebra and its phase group can be factorized into the following
form on the right. Call the notation on the left a phased-spider:

. . .

...

· · ·

· · ·

θ =:

· · ·

· · ·

θ
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The normal forms for commutative �-Frobenius algebras plus phases, as well as
special special commutative �-Frobenius algebras plus phases induce phased-spider
fusion rules:

· · ·

θ

· · ·

φ
=

· · ·

θ + φ ,

· · ·

θ

· · ·

φ

... =

· · ·

· · ·

θ + φ

This notation is compatible with the non-phased spider notation, where a spider drawn
with no phase corresponds to a phased spider whose phase is the identity:

· · ·

· · ·

=

· · ·

· · ·
0 ,

· · ·

· · ·

=

· · ·

· · ·

0

Definition 3.17. Given some fixed dimension d, a fragment of the qudit ZX-calculus
is a prop generated by two strongly complementary spiders, each of which is param-
eterized by phase groups.

We also require that this comes equipped with a faithful †-symmetric monoidal
functor into FHilb, sending the objects n 7→ ℓ2((Z/dZ)n) and sending the two phased
spiders to the Z and X-phased spiders in a way that preserves the phase-group
structure.

That is to say, we have spiders decorated by phase groups G and H and group
homomorphisms g : G→ [0, 1)d and h : H → [0, 1)d, respectively such that:

u

v
· · ·
φ

· · ·
n

m
}

~ =
d−1∑
j=0

e2·π·i·gj(φ)/d|j, . . . , j⟩⟨j, . . . , j|

u

v
· · ·
θ
· · ·
n

m
}

~ =
√
d
d−1∑
j=0

e2·π·i·hj(θ)/dF|j, . . . , j⟩⟨j, . . . , j|F †

Take a fragment J−K : ZX → Hilb of the ZX-calculus and a �-compact closed
subcategory of X ↪→ FHilb, such that this interpretation essentially-surjectively factors
through X (so that X contains all the objects of JZXK up to isomorphism). The
fragment is universal for X when the map ZX→ X is full and complete when it is
faithful.

The scalable ZX-calculus (coined by Carette et al. [CHP19]) refers to string
diagrams for the strictification of the ZX-calculus (ie, proof nets for the ZX-calculus).
Frobenius algebras on wires of composite dimension are denoted as follows:

· · ·

θL, θR

· · ·

:=

· · ·

θL θR

· · ·

,

· · ·

θL, θR

· · ·

:=

· · ·

θL θR

· · ·
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As we use string diagrams for nonstrict monoidal categories extensively throughout
this thesis, we won’t declare when we are using scalable ZX-notation; it will just be
the default setting in which we work.

3.4 The stabilizer formalism

Consider the simplest fragment of the ZX-calculus:

Definition 3.18. The phase-free qudit ZX-calculus is the fragment of the ZX-
calculus generated by the Z and X spiders with no phases.

This has a relational semantics; to expose which we need the following definition:

Definition 3.19. A unitary map f : H → H is a stabilizer of a state |φ⟩ on H in
case |φ⟩ is a +1-eigenvector of g so that g|φ⟩ = |φ⟩.

The qudit X -gate (qubit not-gate) shifts the X-basis vectors by a mod d:

X :=
d−1∑
b=0

|b+ 1⟩⟨b| , where X a =
d−1∑
b=0

|b+ a⟩⟨b|

Similarly, the qudit Z-gate shifts the Z-basis vectors by a mod d:

Z := FXF † =
d−1∑
b=0

e2·π·b/d|b⟩⟨b| , where Zz = FX zF † =
d−1∑
b=0

e2·π·z·b/d|b⟩⟨b|

An X-stabilizer of an n-qudit state φ is a stabilizer of the form:

X a0 ⊗X a1 ⊗ · · · ⊗ X an−2 ⊗X an−1

Similarly, a Z-stabilizer of an n-qudit state φ is a stabilizer of the form:

Za0 ⊗Za1 ⊗ · · · ⊗ Zan−2 ⊗Zan−1

The X stabilizers characterize the phase-free ZX-calculus: 1

Lemma 3.20. Given an odd prime p, LinRelFp is isomorphic to the qupit phase-free
ZX-calculus modulo invertible scalars.

Proof. Given a phase-free ZX-diagram it is easy to see how the X-stabilizers form a
linear subspace over Fp as follows:

JDKX :=



a1...
an

 ,
 b1...
bm


 ∈ Fnp ⊕ Fmp : D

X b1 X bm

X anX a1

· · ·

· · ·

= D

· · ·

· · ·


1This has been known for quite some time to both the categorical concurrency and quantum

communities in the qubit case, see for example in the thesis of Zanasi [Zan18, Page 8].
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Conversely, given an Fp-linear subspace, take the projector onto the joint +1-eigenspace
spanned by the corresponding X-stabilizers:

S 7→ 1

|S|
∑

(x1,··· ,xn)∈S

|x1, · · ·xn⟩⟨x1, · · · , xn|

Regarding this as a state on ℓ2(Fnp ) in CPM(FHilb), partition the codomain of the
state into an input and output. Bending the input wires down yields an inverse to
the previous mapping.

Example 3.21. Consider the following phase-free ZX-diagram:

Its X-stabilizers are parameterized by all the a1, a2, a3, b1, b2, b3 ∈ Fp such that:

X a1 X a2 X a3

X b1 X b2 X b3

=

By labeling the wires with linear equations over Fp, we can calculate these stabilizers:

a1 a2 a3

b1 b2 b3

a1 = a2 = b1
a1 + a3 = b2 + b3

Which gives us a linear subspace of F3
p ⊕ F3

p:
t |

X

=


a1a2

a3

 ,
b1b2
b3

 : a1, a2, a3, b1, b2, b3 ∈ Fp, a1 = a2 = b1 ∧ a1 + a3 = b2 + b3


Definition 3.22. The X -gate fragment of the ZX-calculus is given by adjoining the
X -gate as a generator to the phase free ZX-calculus.

The qudit X -gate is a phase for the X-spider as:

X =

j−1∑
j=0

|j + 1⟩⟨j| =
d−1∑
j=0

e2π·i·j/dF|j⟩⟨j|F †

Therefore, natural number powers of the X -gate are also phases for the X-spider as:

X n =
d−1∑
j=0

|j + n⟩⟨j| =
d−1∑
j=0

e2π·i·n·j/dF|j⟩⟨j|F †
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So one can ask if the fragment of the odd prime qudit ZX-calculus with these X -gate
phases has a similar relational semantics to the phase-free ZX-calculus. The answer is
yes, and this result is not contained in the literature to the knowledge of the author:

Lemma 3.23. AffRelFp is isomorphic to the qupit fragment of the ZX-calculus with
X -gates as phases modulo invertible scalars.

This is given by the interpretation:

u

v
· · ·

· · ·
n

m
}

~ =

p−1∑
j=0

|j, . . . , j⟩⟨j, . . . , j|

u

v
· · ·
a
· · ·
n

m
}

~ =
∑

∑
xi=

∑
yj+a mod p

|y1, . . . , yn⟩⟨x1, . . . , xn|

The proof is almost identical to that for linear relations and phase-free ZX-
diagrams.

Example 3.24. Consider the following diagram in the X -gate fragment of the qupit
ZX-calculus:

X c

To compute the X stabilizers is to find the a1, a2, a3, b1, b2, b3 ∈ Fp such that

X a1 X a2 X a3

X b1 X b2 X b3

X c

=

X c

In AffRelFp , this equation looks like:

c

a1 a2 a3

b1 b2 b3

= c

These a1, a2, a3, b1, b2, b3 are parameterized by the elements of the affine subspace:

c

a1 a2 a3

b1 b2 b3

a1 = a2 = b1 a1 + a3 + c = b2 + b3
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So that:

t
c

|

=


a1a2

a3

 ,
b1b2
b3

 : a1 = a2 = a3 ∧ a1 + a3 + c = b2 + b3


Because we can represent affine subspaces over Fp in the qupit ZX-calculus we can

use the string diagrammatic notation for graphical linear and graphical affine algebra
within the qupit ZX-calculus. In the literature, this representation of matrices over
F2 has already been exploited [BR22, CDP21].

There is nothing particularly special about the X -gate. By interpreting circuits
in the Z-gate fragment of the qupit ZX-calculus modulo scalars in terms of their Z-
stabilizers, we would have similarly recovered the categories of linear/affine relations
over Fp.

The Z and X operators are very important in quantum computing:

Definition 3.25. Fix some local dimension d. A single qudit Weyl operator is an
d-dimensional unitary of the form, X xZz, for x, z ∈ Z/dZ.

An n-qudit Weyl operator is the n-fold tensor product of single qudit Weyl oper-
ators. The n-quopit Weyl operators form the Heisenberg-Weyl group Pnd under
matrix multiplication and the Hermitian adjoint. The n-qubit Heisenberg-Weyl group
is generated by n-qubit Weyl operators in addition to the scalar i.

Note that the qubit Heisenberg-Weyl group is often called the Pauli group and its
elements are called Pauli operators.

Weyl operators have the following property (see [NC10, Section 10.3.1]):

Lemma 3.26. n-qupit Weyl operators are an orthonormal basis for the finite dimen-
sional Hilbert space of operators

FHilb(ℓ2(Fnp ), ℓ2(Fnp )) ∼= ℓ2(Fnp )∗ ⊗ ℓ2(Fnp )

with respect to the scaled trace inner product:

⟨−,=⟩ :=
1

pn
Tr((−)†,=)

An obvious choice of operator basis would have been:

{|a0, · · · , an−1⟩⟨b0, · · · , bn−1| | a0, · · · , an−1, b0, · · · , bn−1 ∈ Fp}

However, these basis elements are not unitary, and therefore can not be used to correct
for errors. On the other hand if at some point a known unitary error occurs, because
Weyl operators form a unitary basis, the error can be undone by applying controlled
Weyl operators. In fact, the quantum teleportation protocol relies on this fact. Let
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us reexamine the phase-correction step in this protocol in more detail. Notice how
the Z-and X-bases are respectively:

{X n|0⟩}n∈Fp , {F|n⟩ = FX n|0⟩ = ZnF|0⟩}n∈Fp

Therefore to correct for the error Z−zX−x which was communicated to him by
Alice in terms as the pair of classical dits (x, z), Bob applies the following classically
controlled operation:

|x⟩ F|z⟩

=

F|z⟩|x⟩

=

ZzX x

=

Zz

X x

= Zz

X x

where the second last equation follows from the fact that X x is a phase for and Zz
is a phase for .

The stabilizer formalism is a tractable tool used for correcting errors. Indeed,
everything we have discussed so far, including quantum telportation is encompassed
by this formalism. It was first introduced by Gottesman [Got97] and later generalized
to qudits in various ways. We follow the qudit generalization of Gottesman [Got99]:

Definition 3.27. An n-qupit Clifford operator U is a unitary on ℓ2(Fnp ) that
preserves the Heisenberg-Weyl group, so that UPnpU † = Pnp . The n-qupit Clifford
operators form the n-qupit Clifford group under matrix multiplication and the
Hermitian adjoint. The qupit Clifford groupoid (or full qupit Clifford group) is the
prop where the maps n→ n are qupit Clifford operators.

An n-qupit (pure) stabilizer state is a state U |0⟩⊗n for an n-qudit Clifford U .

Given any n-qupit pure stabilizer state |ψ⟩, the stabilizer group of |ψ⟩ is the
subgroup of S|ψ⟩ ⊂ Pnp whose elements stabilize |ψ⟩.

The reason why stabilizer states are so nice is because their representation in
terms of stabilizer groups is very convenient, owing to the highly symmetric structure
of the Heisenberg-Weyl group.

Lemma 3.28. Up to global phase, stabilizer states are in bijective correspondence
their stabilizer groups, and stabilizer groups are in bijection with maximal Abelian
subgroups of Pnp .

Definition 3.29. The prop of qupit stabilizer circuits is generated by qupit Clifford
operators as well as the state |0⟩ and effect ⟨0|.
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There is a crucial difference between the qubit and quopit Heinsenberg-Weyl
group:

Lemma 3.30. All single quopit Weyl operators all can be factored into e2π·i·a/pZzX x

for a, z, x ∈ Fp. Whereas all single qubit Weyl operators can be factored into iaZzX x

for z, x ∈ F2 and a ∈ Z/4Z.

This difference between qubits and quopits is also reflected in the structure of the
Clifford groupoid:

Lemma 3.31 ([Got99, Page 5]). Up to nonzero scalars, the qupit Clifford groupoid is
generated by the Fourier transform F , the X -gate, the phase-shift gate S, controlled-X
gate CX , and scaling gatesMa for every a ∈ F∗

p where:

CX :=

p−1∑
j,k=0

|j, j + k⟩⟨j, k| Ma :=

p−1∑
j=0

|j · a⟩⟨j|

Such that for qubits, S :=
1∑
j=0

ij|j⟩⟨j|, and for quopits, S :=

p−1∑
j=0

eπ·i·j(j−1)/(2p)|j⟩⟨j|

As we will discuss in much further detail in Chapter 5, the ZX-calculus is naturally
suited for stabilizer circuits:

Definition 3.32. The qubit stabilizer fragment of the ZX-calculus is generated
by two spiders with phases in the group Z/4Z where:

Z/4Z→ [0, 1)2; n 7→ (0, n/4)

The generators of qubit stabilizer circuits are interpreted as follows:

JFK =
1

1

1 , JSK = 1 , JX K = 2 , JCX K = , J|0⟩K = , J⟨0|K =

The quopit stabilizer fragment of the ZX-calculus is generated by two spiders
with phases in the group (Z/pZ)2 where:

(Z/pZ)2 → [0, 1)p; (n,m) 7→
p−1∏
j=0

(nj +mj2)/(2p) mod 1

The generators of quopit stabilizer circuits are interpreted as follows:

JFK =
0, 1

0, 1

0, 1 , JSK = 0, 1 , JX K = 1, 0 , JCX K = , J|0⟩K = , J⟨0|K =
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The scaling gates (often called multiplication gates or multipliers) are derived
in stabilizer circuits. They correspond to the multiplication by a scalar under the
embedding:

(MatFp ,+)→ (LinRelFp ,+)→ (FHilb/ ∼,⊗)

That is using the notation for graphical linear/affine algebra within the qupit ZX-
calculus:

JMaK = a

Even though the quopit and qubit stabilizer fragments of the ZX-calculus diverge,
they coincide when the phases are restricted. We have already observed this during
our analysis of the phase free, X -gate and Z-gate fragments of the ZX-calculus.

Definition 3.33. Given any prime p, the biaffine fragment of the qupit stabilizer
ZX-calculus is generated by Z and X spiders with phases in the group Z/pZ where:

Z/pZ→ [0, 1)p; n 7→
p−1∏
j=0

(nj)/(2p)

Therefore, anytime we make a statement about quopit stabilizer circuits that
doesn’t refer to the Fourier transform or phase-shift gates, it also applies to biaffine
qupit stabilizer circuits.

Concretely, the biaffine fragment of the qubit stabilizer ZX-calculus corresponds to
the sub-fragment of the real fragment of qubit stabilizer ZX-calculus, where moreover,
each stabilizer of a given state is proportional either to a string of exclusively X-
stabilizers or exclusively Z-stabilizers.

The qubit and qutrit stabilizer ZX-calculi both have complete presentations [Bac14,
Bac15] and [Wan18]. However, during the process of writing this thesis, Booth and
Carette gave a complete axiomatization for the quopit stabilizer ZX-calculus [BC22],
followed shortly by an even simpler presentation by Poór et al. [PBC+23]. Note
that the interpretations of the generators in these papers differ from ours slightly for
technical reasons: they designed their presentations to be flexsymmetric.

Despite being used being used extensively for error correction, as we will discuss
in Section 5.5, unlike general quantum circuits, stabilizer circuits are not any more
powerful than classical probabilistic computing:

Theorem 3.34 (Gottesman-Knill). Stabilizer circuits can be classically probabilisti-
cally simulated in polynomial time.

The original proof for qudits is given by Gottesman, where he partially attributes
it to Knill [Got98]; however, it follows immediately for qudits. Later on, we will
effectively reprove the quopit Gottesman-Knill theorem when we give a relational
characterization of quopit stabilizer circuits. In fact stabilizer circuits are the largest
classically simulatable fragment containing the Clifford group:
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Proposition 3.35 ([CAB12, Appendix D]). Adding any non-Clifford unitary to sta-
bilizer circuits is an approximately universal set of generators for qupit circuits.

By approximately universal, this means that such a set of generators is dense
in the appropriate sense. The qubit case seems to be folklore; Campbell et al.’s
reference which we have cited only proves it for quopits. Surely this also holds for all
dimensions, but the group theory becomes harder. It is dense in an efficient way, by
the Solvay-Kiataev theorem. This is a technical result, first proved initially for qubits;
the history again is kind of nuanced, it was first unofficially announced by Solvay,
and published by Kitaev [Kit97]. This result was later generalized to all qudits by
Dawson et Nielsen [DN06, Section 5].

Therefore, by adding any other phases to qupit stabilizer circuits is maximally ex-
pressive. Jeandel et al. constructed the first approximately universal axiomatization
of the qubit ZX-calculus in this way [JPV18].

Later, two complete axiomatizations for the qubit ZX-calculus followed, where all
phases are included. These two axiomatizations were proven independently. Ng and
Wang gave one axiomatization and Jeandel et al. gave the other; almost at the same
time [NW17, JPV20]. These presentations of the qubit ZX-calculus are universal on
the nose, so that they both are presentations for the full subcategory of MatC whose
objects are powers of 2.

3.5 The ZH-calculus

Up until this point, we have discussed quantum circuits as being generated by spiders.
Although spiders are good for copying and adding standard basis elements; it is hard
to construct nonlinear behaviour using these generators.

To accommodate for this, H-boxes were devised in the qubit case by Backens
and Kissinger [BK19]:

Definition 3.36. Given any c ∈ C, the c-labelled qubit H-box with n inputs and m
outputs is the operator ℓ2(Fn2 )→ ℓ2(Fm2 ):

u

v c

· · ·

· · ·

}

~ =
1∑

a0,...,an−1,b0,...,bm−1=0

ca0·...·an−1·b0·...·bm−1|b0, . . . , bm−1⟩⟨a0, . . . , an−1|

Ie, the matrix where all entries are 1, except for the bottom-right entry which is c.

The H-box with label −1 and one input and one output is equal to
√

2F . Because
of this relationship with the Fourier transform, a “phase-free” H-box with no label
corresponds to one with label -1:

· · ·

· · ·

:= −1

· · ·

· · ·
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This is the reason for the name “H-box,” as the qubit Fourier transform is often
called the “Hadamard gate.” One should not confuse an H-box with one input and
one output (drawn in grey) with the antipode for the Hopf algebra (drawn in black)
for the Z and X-spiders. Although H-boxes do not correspond to Frobenius algebras,
they do satisfy a sort of fusion rule:

c

· · ·

· · ·

=

· · ·

· · ·

c2

The following diagram multiplies standard basis elements:

u

ww
v

· · ·

1/2

}

��
~ =

1∑
a0,...,an−1=0

|a0 · . . . · an−1⟩⟨a0, · · · , an−1|

That is to say, H-boxes, allow us to construct and-gates, which we denote as follows:

&

· · ·

:=

· · ·

1/2

In analogy to the ZX-calculus, a fragment of the ZH-calculus is presented by
unphased Z and X spiders, in addition to H-boxes labelled by a semiring S and an
interpretation into FHilb. The interpretation must send the Z and X spiders to the
Z and X spiders in Hilb in the same way as for the phase-free ZX-calculus. We also
ask that there is a semiring homomorphism f : S → C such that

u

v c

· · ·

· · ·

}

~ =
1∑

a0,...,an−1,b0,...,bm−1=0

(f(c))a0·...·an−1·b0·...·bm−1 |b0, . . . , bm−1⟩⟨a0, . . . , an−1|

The notions of completeness and universality are essentially the same as for the
ZX-calculus. The full qubit ZH-calculus was proved to be complete and universal for
all qubit complex matrices in the original paper of Backens and Kissinger [BK19].

Recall that an H-box with no label is the same as an H-box which is labelled by −1.
Therefore an axiomatization for the phase-free ZH-calculus must be compatible with
the semiring homomorphism Z→ C. Completeness for the phase-free ZH-calculus up
to a scalar factor was proven by van de Wetering and Wolffs; giving a presentation
for qubit matrices over Z[1/

√
2] [WW19]. In their paper, they also prove that the

phase-free ZH-calculus is approximately universal for quantum circuits.
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In the following chapter we prove completeness for the circuits generated by un-
phased Z and X-spiders as well as and gates and not-gates. We prove that this is
essentially the natural-number labelled H-box fragment of the ZH-calculus, the only
difference being that we carefully avoid having matrices with entries which are not
natural numbers.

Recently, in a universal set of generators has been proposed for the qudit ZH-
calculus in the Ms.C. thesis of Roy [Roy22], but no completeness theorem exists so
far.
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Chapter 4

Boolean circuits as spans of finite
sets

In this chapter we provide a complete set of identities for quantum circuits generated
by Z and X-spiders, the not gate and the and gate. We call this prop ZX&. We show
that ZX& is a universal and complete presentation of 2n × 2m dimensional matrices
over N; equivalently the subcategory of spans of finite sets where the objects are
powers of two-element sets. We also show that this is the natural number labeled
fragment of the ZH-calculus.

Conceptually, this is the category where the objects are natural numbers and a
map from n to m is identified with the multiset of solutions to a set of Boolean
equations in n + m variables. In other words, in this chapter we give a presentation
for the monoidal category whose maps are counting satisfiability problems.

For reference, a complexity theoretic analysis of counting satisfiability problems
using the full fragment of the qubit ZH-calclus is performed in the following series of
papers [BKM21, LMW23, LMW22]. However, markedly in our analysis, we restrict
the ZH-calculus to the category where the maps are exactly such problems. We
also provide a presentation for the prop of Boolean satisfiability problems, where we
quotient by the multiplicty of solutions. 1

1Our presentation ZX& solves the open question mentioned at the end of Laakkonen et al. which
posits the existence of a prop whose maps correspond to instances of counting satisfiability problems
[LMW22, Section 2.2]. However, our publication predates this question being posed [Com21]. The
aforementioned article of Laakkonen et al. also mistakenly hints that the completeness result of Gu
et al. solves the problem in the multiplicity-quotiented setting [GPZ23]. Moreover, Gu et al. encode
Boolean satisfiability problems as monotone Boolean relations. This is too erestrictive to express
fragments of the ZH-calculus, as the way that Gu et al. encode satisfiability problems is completely
different.
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Outline

To prove completeness of ZX&, we use the completeness result of Cockett et al. for
the prop TOF generated by the Toffoli gate, the not gate and |0⟩ and ⟨0| [CC19]. TOF
is complete for the full subcategory of partial isomorphisms between finite sets where
the objects are powers of two. In some sense TOF is complete for the subobjects of
ZX&, so that all Boolean formulae can be encoded in domain of definition of maps
in TOF. Nevertheless, work is needed transport the completeness of TOF to the
completeness of ZX&.

To this end, in Section 4.1 we first reformulate the Cartesian completion of a dis-
crete inverse category. We show that this can be presented by freely adjoining counits
to the inverse products of the base inverse category. In the Cartesian completion of
TOF, this is interpreted as adjoining the generator

√
2⟨+| = (1, 1)T .

In Section 4.2, we take the pushout of the unit and counit completion of TOF,
interpreted as adding the generators

√
2|+⟩ and

√
2⟨+| to TOF. This yields the

completeness result as well as a presentation which can be regarded as a fragment of
the ZH-calculus.

4.1 Cartesian completion as counit completion

In this section we prove that the Cartesian completion of a discrete inverse category
can be presented in terms of freely adding a counit to the inverse products of the base
monoidal category.

Lemma 4.1. Given two parallel maps X
f,g−→ S ⊗ Y in a discrete inverse category:

f = g ⇐⇒
f

=
g

Proof. The forward direction is trivial. For the converse, assume the right hand side
holds. Then:

f =
f

= ff =
f

f

=
f

g

= gg = g
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Lemma 4.2. Given two maps X
f−→ S ⊗ Y and X

g−→ T ⊗ Y , in a discrete inverse
category:

g

g◦

f

= f ⇐⇒
f

f ◦

=

g

g◦

⇐⇒
f

f ◦

=

g

g◦

Proof. First note:

f

f ◦

=

f

f ◦

=

f

f ◦

=

ff

f ◦f ◦

= f

f ◦

f ◦

f

=

f

f ◦

so that we only have to prove the first logical equivalence. Suppose that the left hand
side holds, then:

f

f ◦

=

g

g◦

f

g◦

g

f ◦

=

f

f ◦

g◦

g

g

g◦

=
g

g

g◦

g◦

=

g◦

g

g

g◦
=

g◦

g

g

g◦
=

g◦

g

g

g◦

=

g◦

g

g◦

g
=

g

g◦
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Conversely, suppose that the right hand side holds. Then:

g

g◦

f

=

g

g◦

f

=

f

f ◦

f

=

f

f

f ◦

=

f

f

f ◦

=

f

f

f ◦ =

f

f

f ◦
=

f

Thus, by Lemma 4.1:

g

g◦

f

= f

Definition 4.3. Given a discrete inverse category X define the counital completion of
X, c(X), to be the quotient of CoPara(X) freely making the discard maps ((uLX)−1, X)
into the counit of the cosemigroup of the inverse product on X.

Unrolling the definition, this construction just freely adds counits to the diagonal
maps coming from the inverse products of X. Therefore, we have immediately that:

Lemma 4.4. c(X) is a discrete Cartesian restriction category.

Proposition 4.5. Given a discrete inverse category X, its counital completion c(X)

and Cartesian completion X̃ are isomorphic as discrete Cartesian restriction cate-
gories.

Proof. The restriction structure of X̃ and c(X) both agree, as:

f = f ; f ◦; f =
f

f ; f ◦

=
f ◦; f

f

f ◦

=

f ◦

f ; f ◦; f

=
f ◦

f ; f ◦; f
= f ; f ◦

Since both X̃ and c(X) are quotients of CoPara(X), there are identity on objects

mappings F : c(X) → X̃ and G : X̃ → c(X) which are inverse to each other. It
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remains to show that these are both well-defined functors. The functoriality of F is
immediate because X̃ is a Cartesian restriction category and thus the diagonal maps
all have counits.

To prove that G is a functor, take some (f, S) ∼ (g, T ) in X̃. By Lemma 4.2, this
is asking precisely that the following condition holds in X:

f ◦

f

=

g◦

g

Moreover, since X̃ is a discrete Cartesian restriction category, the diagonal has counit;
so that the following maps are equivalent:

f ◦

f

I

∼

f ◦

f

=

g◦

g

∼
g◦

g

I

Since the functor X→ X̃ is faithful by Lemma 2.83, we have that in X:

f ◦

f

=

g◦

g

Therefore we can take the partial inverse in X:

f

f ◦

=


f ◦

f



◦

=


g◦

g



◦

=

g

g◦
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Therefore in c(X):

f

f ◦

=

f

f ◦

=

f

f ◦

=

f

f ◦ =

f

f ◦ =

f

=
f

Combining the previous two equations:

f
=

f

f ◦

=

g

g◦

=
g

There is another equivalent way of viewing this construction, which follows im-
mediately:

Corollary 4.6. c(X) is isomorphic to Split{(∆X ,X) | X∈X0}(CoPara(X)).

Recalling the discussion of the Born rule in Remark 3.7, the Cartesian completion
is very similar to the unnormalized stochastic channels in CPM(FHilb).

Upon further inspection, this resemblance is even more striking. Consider the
alternative characterization of the Cartesian completion on the right hand side of
Lemma 4.2. Rotating this diagram 90 degrees:

f f
◦ g g
◦=

we see that this is essentially Equation 3.1. If the discrete inverse category embeds
within a compact closed category then in this embedding we have that:

f

f ◦

=

f

f ◦
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However, for arbitrary �-symmetric monoidal categories X (which do not embed in
�-commpact closed categories), the quotient of CoPara(X) by the equivalence relation
used to define CPM(X, (−)†) in Definition 3.2 is not a congruence with respect to
composition (see [CH16, Remark 8]). The the knowledge of the author, it is not
known if this is a congruence relation when X is an arbitrary discrete inverse category.

However, in the case that it is a congruence (for example, Pinj, because of the
�-symmetric monoidal embedding into a �-compact closed category Pinj ↪→ Rel) then
the Cartesian completion is precisely Split{(∆X ,X) | X∈X0}(CPM(X, (−)◦)).

This relationship between reversible computing and quantum computing still has
much to be explored. For example, Heunen et al. relate the Cartesian completion of
Par to Stinespring dilation [HK21]. Heunen et al. give a construction which when
applied to the subcategory of unitary maps in FHilb yields completely positive maps
in CPM(FHilb); and when applied to Pinj yields Par.

4.2 A graphical calculus for Boolean multirelations

In this section, we give a complete presentation, ZX&, for the full monoidal subcate-
gory of spans of finite sets where the objects are powers of the two element set. This is
performed by freely adding a counit and unit to the semi-Frobenius algebra structure
of the prop TOF, and then performing a two way translation between this prop and
ZX& which we prove is an isomorphism. First recall the prop TOF:

Definition 4.7 ([CC19, Section 4]). TOF is the prop, generated by the Toffoli gate
tof, and the 1-ancillary bits |1⟩ and ⟨1| which are interpreted as follows:

s {
=

1∑
x0,x1,x2=0

|x0, x1, x0 · x1 + x2⟩⟨x0, x1, x2| ,
r z

= |1⟩ ,
r z

= ⟨1|

where the cnot, not gates and 0-ancillary bits are derived:

:= , := , := , :=

and the flippped tof and cnot gates are also derived:

:= , :=

modulo the identities given in Figure 4.1.
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[TOF.1]

=

=

[TOF.2]

=

=

[TOF.3] =

[TOF.4] =

[TOF.5] =

[TOF.6] =

[TOF.7] =

[TOF.8] =

[TOF.9] =

[TOF.10] =

[TOF.11] =

[TOF.12] =

[TOF.13] =

[TOF.14] =

[TOF.15] =

[TOF.16] =

Figure 4.1: The identities of TOF

Lemma 4.8 ([CC19, Proposition 6.2]). TOF is a discrete inverse category, where the
partial inverse sends:

tof 7→ tof , |0⟩ 7→ ⟨0| , ⟨0| 7→ |0⟩
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The diagonal map on one wire is defined as follows:

:=

Definition 4.9. Let FPinj2, FPar2 and FSpan2 denote, respectively, the full subcat-
egories of ParIso(Par(FinOrd)) , Par(FinOrd), Span∼(FinOrd) where the objects are
powers of two.

Theorem 4.10 ([CC19, Theorem 10.6]). TOF is isomorphic to FPinj2 as a discrete
inverse category.

The interpretation of the generators we gave into MatC can therefore be restated
in terms of the ℓ2 functor:

Corollary 4.11. TOF embeds in FHilb via the ℓ2 functor so that:

TOF ∼= FPinj2 ↪→ Pinj // ℓ
2
// FHilb

4.2.1 Adding a unit and counit to TOF

Definition 4.12. Define TOF
∧

to be the pushout of the following diagram of props:

c(TOF)op ← TOF→ c(TOF)

By adding a unit and counit, we obtain a full subcategory of spans of sets and
finite ordinals:

Proposition 4.13. TOF
∧

∼= FSpan2

Proof. Recall that TOF is presented by the subcategory FPinj2 of (Span∼(FinOrd),×)

with morphisms of the form 2n ooeoo k // e
′
//2m for arbitrary natural numbers n,m, k and

monics e and e′.

Similarly, T̃OF is presented by the subcategory FPar2 of (Span∼(FinOrd),×) with

morphisms of the form 2ℓ
f←− 2n ooeoo k // e

′
//2m for arbitrary natural numbers ℓ, n,m, k,

monics e and e′ and function f . Consider the pushout X of the following diagram of
props:

FParop2 oooo FPinj2 // //FPar2

Consider the functor F : X → FSpan2 induced by the universal property of the
pushout. We show that this functor is an isomorphism. This functor is clearly the

identity on objects. For fullness consider some span 2n
f←− k

g−→ 2m. We can construct
a function f ′ : 2⌈log2 k⌉ → 2n and monic ef : k // //2⌈log2 k⌉ so that f = e; f ′. Similarly,
we can construct some g′ : 2⌈log2 k⌉ → 2n and monic eg : k // //2⌈log2 k⌉ so that g = eg; g

′.
Therefore:
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F

 2⌈log2 k⌉
f ′

yy

2n 2⌈log2 k⌉

; kyyef
yy

%% em%%

2⌈log2 k⌉ 2⌈log2 k⌉

; 2⌈log2 k⌉
g′

%%

2⌈log2 k⌉ 2m


= kf

��

g

��

kvvef
vv

k (( eg
((

2⌈log2 k⌉

f ′yy

kzzef
zz

$$ eg
$$

2⌈log2 k⌉

g′
%%

2n 2⌈log2 k⌉ 2⌈log2 k⌉ 2m

So F is full. For faithfulness suppose we have two isomorphic spans in F (X),
which we can factorize as before:

kuue1
uu

∼= α

��

)) e2
))

2n2f1
uu

2n3 f2
**

2n1 2n4

2n
′
2f ′1

ii

2n
′
3 f ′2

55

khhe′1

hh
66
e′2

66

In X, we have:

2n2f1
vv

2n1 2n2

; kwwe1
ww

'' e2
''

2n2 2n3

; 2n3 f2
((

2n3 2n4

= kvve1
vv

αe′1f
′
1



 2n2f1
vv

kwwe1
ww

'' e2
''

2n1 2n2 2n3

; 2n3 f2
((

2n3 2n4

= kxxαe′1
xx

$$
e2

$$
2n

′
2f ′1

vv
2n1 2n3

; 2n3 f2
((

2n3 2n4

= 2n
′
2f ′1

ww
2n1 2n

′
2

; kxxαe′1
xx

&& e2
&&

2n
′
2 2n3

; 2n3 f2
((

2n3 2n4

= 2n
′
2f ′1

ww
2n1 2n

′
2

; kxxαe′1
xx

&& αe′2
&&

∼= α
��

2n
′
2 2n

′
3

k
ff

e′1

ff
88
e′2

88

; 2n
′
3 f2
''

2n
′
3 2n4

= 2n
′
2f ′1

ww
2n1 2n

′
2

; kxxe′1
xx

&& e′2
&&

2n
′
2 2n

′
3

; 2n
′
3 f2
''

2n
′
3 2n4

Therefore FSpan2
∼= X. To show that TOF

∧
∼= FSpan2, consider the following

diagram where each horizontal face is a pushout:

98



(FPinj2,×)

ww

--
(FPar2,×)

∼=
��

xx

(FPar2,×)op
22

∼=
��

(FPinj2,×)

xx

--

∼=

��

(FSpan2,×)

��

˜(FPinj2,×)

xx

∼=
��

˜(FPinj2,×)
op

33

∼=
��

TOF

xx

--

��

T̃OF

∼=

��
xxT̃OF

op
33

∼=
��

TOF

xx

--

��

c(TOF)

xx

c(TOF)op 33 TOF
∧

All of the rear and left faces commute. Moreover, the non-universal vertical maps
are isomorphisms, therefore the maps induced by universal property of the pushout
are isomorphisms.

The pushout cube used in the preceeding proof is very similar in spirit to the
pushout cubes previously used to construct categories of relations, for example in the
Ph.D. thesis of Zanasi [Zan18] and the paper of Zanasi and Fong [FZ17]. However,
our semantics is different, we construct a full subcategory of spans, not relations. It
is not clear if there is a deeper connection which can be made.

We give a more elegant presentation of this category in terms of interacting
monoids and comonoids:

Definition 4.14. The �-compact closed prop ZX& is presented by phase-free Z-
spiders, Z/2Z-phased X-spiders and the and-gate. These generators are interpreted
in MatC as follows:

u

v
· · ·

· · ·
n

m
}

~ =
1∑
j=0

|j, . . . , j⟩⟨j, . . . , j|

u

v
· · ·
a
· · ·
n

m
}

~ =
√

2
1∑
j=0

e2·π·i·j·a/2F|j, . . . , j⟩⟨j, . . . , j|F †

=
∑

∑
xi=

∑
yj+a mod 2

|y1, . . . , yn⟩⟨x1, . . . , xn|

u

v
&
· · ·
n

}

~ = |a0 · . . . · an−1⟩⟨a0, · · · , an−1|
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subject to the identities in Figure 4.2:

[ZX&.1]
a

b

· · ·

· · ·

=

· · ·

· · ·

a + b

[ZX&.2] a
· · ·

= a
· · ·

[ZX&.3]

· · ·

· · ·

· · · =
· · ·

· · ·

[ZX&.4]
· · ·

=
· · ·

[ZX&.5] =

[ZX&.6] =

[ZX&.7] =

[ZX&.8] =

[ZX&.9]

· · · · · · · · ·
&

&
=

&

· · · · · ·· · ·

[ZX&.10] &

1

=

[ZX&.11] & = &

[ZX&.12]
&

=
&&

[ZX&.13] & =

[ZX&.14]
1

= 1 1

[ZX&.15] =
&

[ZX&.16] &

1

=
1 1

[ZX&.17]
&

= & &

Figure 4.2: The identities of ZX&, for a, b ∈ Z/2Z

Before we prove there is a functor from ZX& to TOF
∧

we recall some basic properties
of TOF. In TOF, one can construct controlled-not gates with arbitrarily many control
wires using ladders of Toffoli gates:

Definition 4.15. A generalized controlled-not gate on n wires is denoted by
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Lx,XM, where X indexes a subset of the n wires, and x is an index for precisely one
wire such that x /∈ X. Draw a generalized controlled-not gates Lx,XM on n wires
where x is the last wire and |X| = n− 1 as follows:

n− 1

These gates are defined by induction on the number of wires. For the base case of
n = 1 it is the not gate. For n ≥ 3, then generalized controlled-not gate on n + 1
wires is defined as follows:

n− 1

As a consequence, the generalized controlled-gate is cnot for n = 2 and tof for
n = 3.

We can partially commute generalized controlled-not gates:

Lemma 4.16 ([IKY02, Section 3 (3)]). Let Lx,XM and Ly, Y M be generalized controlled-
not gates in TOF where x /∈ Y . By completeness of TOF, we can commute them past
each other with a trailing generalized controlled-not gate as a side effect:

Lx,XM; Ly, {x} ⊔ Y M = Ly,X ∪ Y M; Ly, Y ⊔ {x}M; Lx,XM

The following equations hold in TOF:

Lemma 4.17 ([CCS18, Lemma 4.1]).

=

Lemma 4.18 ([CCS18, Lemma 4.1]).

=

The diagonal map is natural on target qubits:

Lemma 4.19 ([Com19, Lemma B.0.2 (iii)]).

=
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We also establish some basic properties of TOF
∧

. First, the cnot gate is its own
mate on the second wire:

Lemma 4.20.

=

Proof.

=
Lem. 4.17

=
Lem. 4.19

=
Lem. 4.8

=

unit
=

Lem. 4.19
=

4.17
=

unit
=

Therefore,

Lemma 4.21.

Lem. 4.20
= =

Thus

Lemma 4.22.

=

Proof.

unit
= =

Lem. 4.21
= =

Lem. 4.17
=

Lem. 4.19
=

unit
=

Lem. 4.17
=
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Proposition 4.23. Consider the interpretation J KZX& : ZX&→ TOF
∧

taking:

7→ 7→ 7→ 7→ 7→ 7→ 7→

7→ 1 7→ & 7→ & 7→

This interpretation is a strict symmetric �-monoidal functor.

Proof. We prove that all of the axioms of ZX& hold in TOF
∧

:

[ZX&.1]: Unitality: By Lemma 4.22:

t |

ZX&

=
Lem. 4.8

=
unit
=

Prop. 4.5
= =

s {

ZX&

Associativity:

u

w
v

}

�
~

ZX&

=
Lem. 4.16

=
Prop. 4.5

= =

u

w
v

}

�
~

ZX&

Frobenius:

u

w
v

}

�
~

ZX&

=
Lem. 4.16

=
Lem. 4.22

=

Lem. 4.18
= =

u

ww
v

}

��
~

ZX&

Phase amalgamation:
u

wwww
v 1

1

}

����
~

ZX&

= = =

s {

ZX&
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[ZX&.2]:

u

ww
v

}

��
~

ZX&

=
[TOF.14]

=
4.17
=

Lem. 4.22
= =

u

v

}

~

ZX&

[ZX&.3]: This is immediate.

[ZX&.4]: This is immediate.

[ZX&.5]:

u

v

}

~

ZX&

=
Lem. 4.16

=
[TOF.2]

=
unit
=

=
Lemma 4.17

=
Lem. 4.19

=
Lem. 4.22

=

[TOF.14]
= = =

u

v

}

~

ZX&

[ZX&.6]: t |

ZX&

=
[TOF.2]

= =
r z

ZX&

[ZX&.7]: This is immediate.

[ZX&.8]:

u

v

}

~

ZX&

=
Lem. 4.22

=
[TOF.14]

= = =

u

v

}

~

ZX&
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[ZX&.9]:
u

www
v &

&

}

���
~

ZX&

=
Lem. 4.16

=
Prop. 4.5

=

[TOF.2]
=

[TOF.2]
=

Lem. 4.16
=

Prop. 4.5
= =

u

www
v &

&

}

���
~

ZX&

[ZX&.10]:

t
&

1

|

ZX&

= =
[TOF.1]

=
Prop. 4.5

=
Lem. 4.22

= =

s {

ZX&

[ZX&.11]:

t
&

|

ZX&

=
[TOF.15]

= = =

s
&

{

ZX&

[ZX&.12]:

u

w
v

&&

}

�
~

ZX&

=
[TOF.4]

=
unit
= =

[TOF.2]
=

Lem. 4.16
= =

u

v
&

}

~

ZX&
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[ZX&.13]:

t

&

|

ZX&

=
[TOF.2]

=
Prop. 4.5

= =
r z

ZX&

[ZX&.14]: u

v
1

}

~

ZX&

=
[TOF.1]

= =
r

1 1

z

ZX&

[ZX&.15]:

u

w
v

&

}

�
~

ZX&

=
Lem. 4.16

=
Prop. 4.5

=
[TOF.2]

=

Prop. 4.5
=

Lem. 4.22
= =

s {

ZX&

[ZX&.16]: This is precisely [TOF.7].
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[ZX&.17]:

u

v &

}

~

ZX&

= =
Lem. 4.16

=
Prop. 4.5

=

Prop. 4.5
=

[TOF.2]
=

Lem. 4.16
=

[TOF.9]
=

Prop. 4.5
=

Prop. 4.5
=

[TOF.2]
=

[TOF.2]
=

[ZX&.11]
=

Lem. 4.16
= =

u

ww
v & &

}

��
~

ZX&

To prove functoriality in the other direction, we expose some basic properties of
ZX&.

Lemma 4.24.

=

Proof.

[ZX&.1]
=

[ZX&.3]
=

[ZX&.6]
=

[ZX&.3]
=

[ZX&.7]
=
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Lemma 4.25. The phase fusion of the grey spider in ZX&,

1 1

=

in the presence of the other axioms is equivalent to asserting:

1
=

Proof. For the one direction, suppose that phase fusion holds:

1

[ZX&.3]
=

1

[ZX&.1]
=

1

[ZX&.8]
=

1 1

=
[ZX&.7], Lem. 4.24

=

Conversely:

1 1

[ZX&.14]
=

1

[ZX&.8]
=

1

=

Lemma 4.26.

& =

Proof.

& [ZX&.1]
=

&

1 1

[ZX&.17]
=

11

& &
[ZX&.10]

=
[ZX&.8]

=

Proposition 4.27. Consider the interpretation J K
TOF
∧ : TOF
∧

→ ZX& taking:

7→ & 7→
1

7→
1

7→ 7→

This interpretation is a strict symmetric �-monoidal functor.
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Proof. First, observe:

s {

TOF
∧= 1

1

& [ZX&.14]
=

1

1

1

&
[ZX&.1]

=
1

&

Lem. 4.24, [ZX&.7]
=

1

& [ZX&.10]
=

[ZX&.4]
=

Thus:

s {

TOF
∧= 1

1 1

1
&

=
1

1 [ZX&.14]
= 1

1

1

[ZX&.1]
= 1

Lem. 4.24, [ZX&.7]
= 1

Thus:
u

wwww
v

1

&

}

����
~

TOF
∧

= 1

1 1

1
&

1

= 1

1

[ZX&.1]
=

We prove that all of the axioms of TOF
∧

hold in ZX& :

[TOF.1]:

s {

TOF
∧= &

1

[ZX&.14]
= &

1

1

[ZX&.10]
=

1

[ZX&.3]
= 1 =

s {

TOF
∧
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[TOF.2]:

u

w
v

}

�
~

TOF
∧

= &
[ZX&.6]

= &
Lem. 4.26

=
[ZX&.1]

=

[ZX&.3]
= =

t |

TOF
∧

[TOF.3]-[TOF.6]: follow from the spider law.

[TOF.7]:

u

ww
v

}

��
~

TOF
∧

=

1

1 [ZX&.1]
=

1

1 [ZX&.16]
=

1

&

[ZX&.1]
= &

1 =

s {

TOF
∧

[TOF.8]: This follows immediately from Lemma 4.24 and [ZX&.7].

[TOF.9]:

t |

TOF
∧

=

&

&

[ZX&.3]
=

&

&

=
& &

[ZX&.12]
= &

[ZX&.8]
= & [ZX&.1]

= &

[ZX&.13]
=

[ZX&.3]
= =

t |

TOF
∧

110



[TOF.10]: It is easier to prove that [TOF.10] is redundant. Given [TOF.9],
[TOF.6] and [TOF.12], [TOF.10] is equivalent to the following:

[TOF.10]
=

[TOF.9]
=

However

[TOF.12]
=

[TOF.6]
=

[TOF.9]
=

[TOF.11]:

u

w
v

}

�
~

TOF
∧

=
& [ZX&.3]

=
&

=
&

[ZX&.5]
=

& [ZX&.17]
=

& &

[ZX&.1],[ZX&.3]
=

&&
=

t |

TOF
∧

[TOF.12]:

u

w
v

}

�
~

TOF
∧

=

&

&
&

[ZX&.3]
=

&

&

&

=

&

&

&
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[ZX&.12]
=

&

&

[ZX&.5]
=

&

&

[ZX&.1],[ZX&.2]
=

&

&

[ZX&.8]
=

&

&

[ZX&.17]
=

&

&

&

=
&&

&

[ZX&.11]
=

&&

&

[ZX&.9]
=

&&

&
[ZX&.3]

=

&&

&

[ZX&.15]
=

&&
[ZX&.3]

=

&

& [ZX&.11]
=

&

&
=

t |

TOF
∧
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[TOF.13]:

u

w
v

}

�
~

TOF
∧

=
&

&

[ZX&.3]
=

&

&

[ZX&.3]
=

&

&

=

&&

[ZX&.12]
=

&

[ZX&.5]
= &

[ZX&.1],[ZX&.3]
=

&

[ZX&.8]
=

&

[ZX&.1]
=

&
=

t |

TOF
∧

[TOF.14]:

u

w
v

}

�
~

TOF
∧

= =
[ZX&.5]

= =
[ZX&.1],[ZX&.3],[ZX&.15]

= =

s {

TOF
∧

[TOF.15]:

u

w
v

}

�
~

TOF
∧

= &
[ZX&.11]

= & = & =

u

w
v

}

�
~

TOF
∧
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[TOF.16]:

u

w
v

}

�
~

TOF
∧

=

&

& &
[ZX&.1]

=

&

& &
[ZX&.3]

=

&

& &

=

&

& &

[ZX&.12]
= &

&
[ZX&.3]

= && =
&

&

[ZX&.11]
= &

&

[ZX&.9]
=

&

& [ZX&.11]
=

&

& [ZX&.9]
=

&

&

[ZX&.11]
=

&

&

=
&

&
=

&

& &

=

u

wwwww
v

}

�����
~

TOF
∧

Unitality and counitality follow from the fact that the white spiders are Frobenius
algebras.

Theorem 4.28. The interpretation functors J−KZX& and J−K
TOF
∧ are inverses, so

that TOF
∧

and ZX& are isomorphic as �-compact closed props.

Proof. First we show that JJ1KZX&K
TOF
∧= 1:

For the white spider: The case for the unit and counit is trivial. For the
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(co)multiplication we have:

u

w
v

u

w
v

}

�
~

ZX&

}

�
~

TOF
∧

=

t |

TOF
∧=

&

1

1
= =

For the grey spider: The cases for the unit, counit and 1 phase are trivial. For
the (co)multiplication we have:

tt |

ZX&

|

TOF
∧=

t |

TOF
∧=

1

1

&
= =

For the and gate:

u

w
v

u

w
v &

}

�
~

ZX&

}

�
~

TOF
∧

=

t |

TOF
∧

= & = &

Next, we show that JJ−K
TOF
∧KZX& = 1: The ancillae are trivial. For the Toffoli gate:

tt |

TOF
∧

|

ZX&

=

u

wwww
v

&

}

����
~

ZX&

=
unit
=

Lem. 4.16
=

[TOF.2]
=

unit
=

Lem. 4.16
=

[TOF.2]
=

unit
=
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ZX& is the natural-number labelled fragment of the qubit ZH-calculus:

Remark 4.29. The triangle gate and H-boxes have the following interpretation in
ZX&, for n ∈ N:

:= &

1

n :=

&

n
· · ·

· · ·

n := n

&

&

· · ·

· · ·

where the triangle gate is interpreted as:

t |

=

[
1 1
0 1

]
, So that

u

w
v n

}

�
~ =

[
1 n
0 1

]

A presentation of “qubit relations 2 ” follows immediately from our characteriza-
tion of ZX& in terms of the natural number-labeled fragment of the qubit ZH-calculus:

Corollary 4.30. Consider the following 2-cells in ZX&:

⇒ or equivalently

· · ·

· · ·
1 ⇒

· · ·

· · ·
2

Quotienting by either of these two cells yields the prop ZX&/ ∼ which is complete
for the full subcategory relations between finite sets where the objects are powers of
two, or equivalently the full subcategory of MatB where the objects are powers of two.
This is the posetal collapse of ZX&.

If we could express the H-box labeled by −1 as well as the scalar 1/
√

2, this would
give us the phase-free ZH-calculus (which we recall from Definition 3.36). These
obviously don’t live in ZX&; however, if we add the unnormalized minus state to our
semantics s

1

{
=
√

2F|1⟩ = |−⟩ = (1,−1)T

so that the Z-spiders are also phased by a, b ∈ Z/2Z:

0

· · ·

· · ·
:=

· · ·

· · ·
, 1

· · ·

· · ·
:=

· · ·

· · · 1

,
a

b

· · ·

· · ·

· · · = a + b

· · ·

· · ·

2I thank Robin Piedeleu for asking me if this can be done.
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Then we can construct the inverse of the triangle gate by conjugation with Z gates:

−1 :=

1

1

where

t
−1

|

=

[
1 −1
0 1

]

So that now for n ∈ N:

−n :=

&

n

−1

−1 , −n

· · ·

· · ·

:= −n
&

&

· · ·

· · ·

,

· · ·

· · ·

:= −1

· · ·

· · ·

Therefore, by translating the presentation of the phase-free ZH-calculus of van de
Wetering and Wolffs [WW19], we have immediately:

Corollary 4.31. The prop presented by the generators and relations of ZX& in ad-
dition to the two extra generators interpreted in MatZ[1/

√
2] as:

s

1

{
= (1,−1)T , J K = 1/

√
2

modulo the equations:

= ,
· · ·

· · ·
=

· · ·

· · ·

is isomorphic to the phase-free ZH-calculus, where the integer-labeled H-boxes are
derived generators.

This translation is trivial compared to the translation between ZX& and TOF
∧

be-
cause all of the axioms of the phase-free ZH-calculus are inspired by Boolean formulae;
except for two. The first axiom we impose expresses the fact that 1/

√
2 is invert-

ible. The second relates addition and copying via Fourier transform. The phase-free
ZH-calculus is already known to be approximately universal for qubits, so it is quite
remarkable that our classical presentation of ZX& needs so little to be so quantum.

Because of the way we proved completeness for natural number qubit matrices,
perhaps there is a more direct way to get around adding the scalar 1/

√
2 to get a

presentation for qubit matrices over Z.
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4.3 Decomposing Boolean circuits

In this section, we modularly build up to the prop ZX& by taking distributive laws
and pushouts of smaller symmetric monoidal theories. Along the way, we obtain
various fragments of quantum circuits with partial, reversible and partially reversible
semantics.

We use the machinery of distributive laws of monads in Prof(Mon)op discussed in
Section 2.3. In the literature, props are usually decomposed according to orthogo-
nal factorization systems, or more generally factorization systems over subgroupoids.
However, we have to work in the more general setting of a factorization system over
subcategories of subobjects. As discussed in Definition 2.108 and Lemma 2.108, the
mathematical machinery already exists to do this. The original motivation of Cheng
was to capture distributive laws of Lawvere theories and had nothing to do with
subobjects [Che20].

We hope that the techniques used in this section can lead to presentations of
other full subcategories of MatN and MatB which could eventually help prove the
completeness of qudit fragments of the ZH-calculus.

Many of the fragments which we consider have already been given presentations by
Lafont using more traditional methods [Laf03]. In these cases, we will try to present
them in terms of distributive laws and give the appropriate citation to him.

Because we want to compose everything using distributive laws and pushouts, note
that the counital completion of a discrete inverse prop X is the following pushout of
props:

X← surjop → cmop

That is to say, it picks out the diagonal map of X and adds a counit. As a matter of
notation, as we have been doing throughout this thesis, we will colour this comonoid
and its components .

We recall some notation from all the way back in Section 2.2. Inv(X) denotes
the subcategory of partial isomorphisms of a restriction category. Iso(X) denotes
the category of isomorphisms in a category X. Par(X) denotes the discrete Cartesian
restriction category of partial maps X. ParIso(X) denotes the discrete inverse category
of spans of monorphisms in X. Moreover, denote the category of monomorphisms in
X by Mono(X).

4.3.1 The phase-free fragment

hinery already exists to do th In this subsection we build up to giving a presentation
for (Span∼(MatF2),⊕) in a modular way. This category is shown to be the same as
the phase-free of the ZX-calculus on the nose (not just up to invertible scalars). Note
that a presentation for the full category of linear spans has already been discussed in
great detail for arbitrary PIDs in Zanasi’s Ph.D. thesis [Zan18]. First, we construct
the linear isomorphisms:
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Definition 4.32. Consider the prop iscbF2 generated by the controlled not gate mod-
ulo the following relations:

(13)
=

(14)
=

(15)
=

(16)
=

(17)
=

Lemma 4.33 ([Laf03, Theorem 6]). iscbF2 is a presentation for the prop (Iso(MatF2),⊕)
with respect to the interpretation:

t |

=

In fact, this result can be generalized to an arbitrary field [Laf03, Figure 37].
Adding the |0⟩ state yields linear injections:

Definition 4.34. Consider the prop incbF2 generated by the coproduct of props

iscbF2 + inj modulo the equation:
(18)
=

Lemma 4.35 ([Laf03, Theorem 7]). incbF2 is a presentation for the prop (Mono(MatF2),⊕)

The white comultiplication can be derived in this fragment:

t |

= =

By adding the effect ⟨0| we get linear partially reversible semantics:

Lemma 4.36. There is a distributive law of props:

piscbF2 := incbopF2
⊗iscbF2

incbF2 ;
(6)
=

Proof. We can always slide things past each other, except for the critical pair when
controlled not gates are sandwiched by a grey unit and counit on their target wires.

Take n to be the number of controlled not gates targeting the same wire, sand-
wiched by a grey unit and counit.

For the base case of n = 0, this follows from the Axiom (6) which we imposed.

Suppose that the claim holds for some n ∈ N. If n+1-cnot gates have their targets
sandwiched between a grey unit and counit without loss of generality, we can assume
they are controlled from different wires. This is because cnot gates are self-inverse,
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so that they can be slid together and cancel out. So given n+ 1 cnot gates controlled
on different wires and targeting the final wire:

· · ·

. .
. ...

n
=

· · ·

. .
. ...

n
=

· · ·

. .
. ...

n

=

· · ·

. .
. ...

n

=

· · ·

. .
. ...

n

Lemma 4.37. piscbF2 is a presentation for the prop (ParIso(MatF2),⊕).

Proof. ParIso(MatF2) is the category of spans of monorphisms in MatF2 . This equation
is precisely the one needed to compute the pullback.

We can get partial linear maps by adding the effect
√

2|+⟩:

Definition 4.38. Let prcbF2 denote the pushout of the diagram of props:

piscbF2 ← surjop → cmop

Adding a counit to the white comultiplication.

Lemma 4.39. prcbF2 is a presentation for the prop (Par(MatF2),⊕).

Proof. We show that the following diagram commutes and that the vertical maps are
isomorphisms:

surjop //

tt

cmop

uu

piscbF2
//

∼=
��

prcbF2

��

surjop

tt

// cmop

xx

uu(ParIso(MatF2),⊕)

//

//

��

(Par(MatF2),⊕)

Because MatF2 is Cartesian, piscbF2
∼= ParIso(MatF2) is a discrete inverse category.

We know that the counital completion of a discrete inverse category is the same as
its Cartesian completion from Proposition 4.5; moreover, the Cartesian completion
of ParIso(MatF2) is Par(MatF2). So this diagram commutes as a consequence.

By adding the state
√

2|+⟩ we obtain the prop of linear spans:

Definition 4.40. Let spcbF2 denote the pushout of the diagram of props:

prcbopF2
← piscbF2 → prcbF2
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Lemma 4.41. spcbF2 is a presentation for the prop (Span∼(MatF2),⊕).

Proof. We show that the following diagram commutes and that the vertical maps are
isomorphisms:

piscbF2
//

ss

∼=��

prcbF2

∼=
��

ss
prcbopF2

//

∼=
��

spcbF2

��

(ParIso(MatF2),⊕)
ss

// (Par(MatF2),⊕)

uu

ss(Par(MatF2),⊕)op

//

//

F ��

(Span∼(MatF2),⊕)

The cube easily commutes. What remains to be shown is that the universal map
F is an isomorphism of props. It is clearly the identity on objects, so we just need to
show it is full and faithful.

It is full because given any span n
f←− k

g−→ m, we have:

F
(

(n
f←− k = k); (k = k

g−→ m)
)

= n
f←− k

g−→ m

For faithfulness, given for any two isomorphic maps in Span(MatF2):

kf ′

yy ∼= h
��

g′

&&
n m

kf

ee

g

88

Then in the domain of F :

kf
||

n k
; k g

##
k m

= kf
||

n k
; k
k k

kh

bb

h

<<
∼= h

OO ; k g
##

k m

= kf
||

n k
; kh
||

k k
; k h

""
k k

; k g
##

k m
= kh

||

f ′

��
k
f
||

kh
||

n k k

; k h
""

g′

��
k h
""

k
g
##

k k m

Given a PID k, the prop (Span∼(Matk),⊕) is already known to have a much nicer
presentation given in terms of “interacting Hopf algebras” [Zan18, Definition 3.13].
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4.3.2 Adding the not-gate

In this subsection we perform the same analysis for the affine fragment as we did in
the previous subsection for the linear fragment. First, for the not gate:

Definition 4.42. Let N2 denote the prop generated by the not gate modulo the
following equation:

(19)
=

The not gate and cnot gate interact via a distributive law:

Definition 4.43. There is a distributive law of props:

isacbF2 := iscbF2 ⊗p N2;
(20)
=

(21)
=

Lemma 4.44 ([Laf03, Theorem 11]). isacbF2 is a presentation for the prop (Iso(AffMatF2),⊕)
with respect to the interpretation:

t |

=

s {
= 1

We get affine injections by adding the |0⟩ state:

Definition 4.45. Let inacbF2 denote the pushout of the diagram of props:

incbF2 ← iscbF2 → isacbF2

Lemma 4.46. inacbF2 is a presentation for the prop (Mono(AffMatF2),⊕).

Proof. We show that the following diagram commutes and that the vertical maps are
isomorphisms:

iscbF2
//

ss

∼=��

isacbF2

∼=
��

rr
incbF2

//

∼=
��

inacbF2

��

(Iso(MatF2),⊕)
ss

// (Iso(AffMatF2),⊕)

uu

rr(Mono(MatF2),⊕)

//

//

F ��

(Mono(AffMatF2),⊕)

The rear and left faces of the cube commute and their vertical maps are all isomor-
phisms. Therefore, the whole cube commutes via universal property of the pushout,
with the upper universal map of the cube also being an isomorphism.
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We seek to show that the lower universal map F is also an isomorphism. It is
clearly the identity on objects, so we just have to show fullness and faithfulness.

For fullness, consider any map n //
(A,x)
//m in (Mono(AffMatF2),⊕). Note that this can

be factored into:

n //
(A,0)
//m

(1,x)

∼=
//m

which lies in the image of F as m
(1,x)

∼=
//m is an isomorphism.

For faithfulness, we show that there is a unique normal form for maps in

(Iso(AffMatF2),⊕) +(Iso(MatF2 ))
(Mono(MatF2),⊕)

There are two cases:(
n //

A //m;m
(B,x)

∼=
//m

)
=

(
n //

A //m;m
(B,0)

∼=
//m;m

(1,x)

∼=
//m

)
=

(
n //
A;B
//m

(1,x)

∼=
//m

)
and (

n //
(A,x)
//m;m B

∼=
//m

)
=

(
n //

(A,0)
//m;m

(1,x)

∼=
//m;m B

∼=
//m

)
=

(
n //

A //m;m
(B,B(x))

∼=
// m

)
=

(
n //
A;B
//m;m

(1,B(x))

∼=
// m

)

To define partial isomorphisms, we add a generator to the constituent props cor-
responding to the zero subobject/zero scalar:

Definition 4.47. Let isacb+1
F2

denote the prop obtained by adjoining the following
generator to isacbF2 1 modulo the equations:

1 1
(22)
= 1 , 1

(23)
= 1 , 1

(24)
= 1 , 1

(25)
= 1

Lemma 4.48. isacb+1
F2

is a presentation for the subcategory of

(Span∼(AffMatF2 + 1),⊕)

generated by spans

Fn2 = Fn2
f−→∼= Fn2 and Fn2 oo?oo ∅ // ? //Fn2

for all n ∈ N and isomorphisms f .

Proof. Identify the generator 1 with the span F0
2
oo?oo ∅ // ? //F0

2. If there is a factor of 1 ,
repeatedly apply these identities from left to right until the diagram corresponding
to the identity tensored by 1 is obtained, which is a normal form.
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By adding the state |0⟩ to our previous presentation, we get a presentation for
injections which can also be zero:

Definition 4.49. Let inacb+1
F2

denote the pushout of the diagram of props:

inacbF2 ← isacbF2 → isacb+1
F2

Lemma 4.50. inacb+1
F2

is a presentation for the subcategory of (Span∼(AffMatF2 +

1),⊕) generated by spans Fn2 = Fn2 //
e //Fm2 and Fn2 oo?oo ∅ // ? //Fn2 , for all n,m ∈ N and

monics e.

The proof of this lemma is essentially the same for isacb+1
F2

, although diagrams
with a factor of 1 are reduced to the following normal form:

1
n m· · ·· · ·

To get partial injections, we add the effect ⟨0|:

Lemma 4.51. There is a distributive law of props:

pisacbF2 := (inacb+1
F2

)op ⊗isacb+1
F2

inacb+1
F2

Given by the equations of piscbF2 as well as:

1
=

1

(26)
= 1

Proof. The only nontrivial critical pair arises when controlled-not gates are sand-
wiched between grey, or grey 1 units/counits on their target wires. The case where
there are no controlled not gates in between is resolved by Axiom (26). When there
are more controlled-not gates, they can be pushed past each other as follows:

. .
. ...

1

· · ·
= . .

. ...

· · ·

=
. .
. ...

· · ·

=
. .
. ...

· · ·
= · · ·

. .
.

. . .
...

...

=
1
1· · ·

. .
.

. . .
...

...

Lemma 4.52. pisacbF2 is a presentation for the full subcategory (ParIso(AffMatF2 +
1)∗,⊕) of (ParIso(AffMatF2 + 1),⊕) where the objects are nonempty affine vector
spaces.
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Proof. The obvious functor pisacbF2 → (ParIso(AffMatF2 + 1)∗,⊕) is clearly full, as
well as an isomorphism on ojects. It remains to show it is faihful. It is faithful on
maps which are taken to spans with nonempty apex by the same argument as Lemma
4.37. For empty case, there is exactly one diagram of each type with a factor of 0;
and similarly, there is exactly one span with an empty apex.

This is equivalent to the prop CNOT presented in the paper of Cockett et al.
[CCS18]. Therefore the presentation we have given for (ParIso(AffMatF2 + 1)∗,⊕) can
be simplified so that the identities given in Definition 4.47 can be replaced by the
following equation:

1
(27)
= 1

1

1

In graphical affine algebra style, we could have equivalently asserted the equation (5).

To get to partial maps we add the effect
√

2⟨+|:

Definition 4.53. Let pracbF2 denote the pushout of the diagram of props:

pisacbF2 ← surjop → cmop

Lemma 4.54. pracbF2 is a presentation for the prop (Par(AffMatF2 + 1)∗,⊕).

The proof is essentially the same as for Lemma 4.39. By adding the state
√

2|+⟩
we get a presentation for affine spans:

Definition 4.55. Let spacbF2 denote the pushout of the diagram of props:

pracbopF2
← pisacbF2 → pracbF2

Lemma 4.56. spacbF2 is a presentation for the prop (Span∼(AffMatF2 + 1)∗,⊕).

Proof. We show that the following diagram commutes and that the vertical maps are
isomorphisms:

pisacbF2
//

qq

∼=��

pracbF2

∼=
��

qqpracbopF2
//

∼=
��

spacbF2

��

(ParIso(AffMatF2 + 1)∗,⊕)
qq

// (Par(AffMatF2 + 1)∗,⊕)

ss

qq((Par(AffMatF2 + 1)∗)op,⊕)

//

//

F ��

(Span∼(AffMatF2 + 1)∗,⊕)

The rear and left faces of the cube commute and the vertical maps are all iso-
morphisms. Therefore, the whole cube commutes by the universal property of the
pushout, with the upper universal map being an isomorphism. We seek to show that
the lower universal map F is also an isomorphism. It is clearly the identity on objects,
so we just have to show fullness and faithfulness. For fullness, let us first consider the

nonempty case; that is a map Fn2
(A,x)←−−− Fk2

(B,y)−−−→ Fm in (Span∼(AffMat(F2) + 1)∗,⊕).
This is in the image of the following diagram under F :

(Fn2
(A,x)←−−− Fk2 = Fk2); (Fk2 = Fk2

(B,y)−−−→ Fm)
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Otherwise, consider a map of the form Fn2
?←− ∅ ?−→ Fm. This is in the image of the

following diagram:

(Fn2
?←− ∅ ?−→ F0

2); (F0
2

?←− ∅ ?−→ Fm)

For faithfulness, again, we separate the proof into two cases. The functor is faithful
on diagrams in (Span∼(AffMatF2 +1)∗,⊕) with nonempty apex by the same argument
as in Lemma 4.41. The case for spans with empty apex follows immediately as the
only endomorphism on the empty set is the identity; thus, isomorphic spans must be
equal on the nose.

This gives a recipe for constructing the props of affine spans over arbitrary fields.
To the knowledge of the authore there is no presentation for affine isomorphisms or
affine monororphisms for arbitrary fields; however, one doesn’t need to have presen-
tations for all the intermediary categories in order to build a presentation for affine
spans. In Zanasi’s Ph.D. thesis, the category of linear spans over a principle ideal
domain is constructed similarly without ever giving a presentation for the linear iso-
morphisms [Zan18, Section 3.3], so the situation should be completely analogous. We
won’t give the presentation here, because it doesn’t bring much insight to this subject.

4.3.3 Adding the and-gate

In this subsection we do the same thing as in the previous two subsections but in the
nonlinear setting.

Definition 4.57. Consider the prop of bicommutative bialgebras cbB, where the
comonoid is drawn as and the monoid is drawn as follows:(

& ,
1

)

There is a distributive law of Lawvere theories:

f2 := cbB ⊗cmop cbF2 ;
& (28)

= & & , & (29)
=

where cmop picks out the comonoid of cbB and cbF2 .

The following result was not originally stated using distributive laws, and is due
to Burroni [Bur]:

Lemma 4.58. f2 is a presentation for full subcategory of finite ordinals and functions
whose objects are powers of 2, (FinOrd2,×), regarded as a prop with respect to the
product.
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Note that this is equivalent to the prop of polynomial functions. I.e. where the
maps n→ m are elements of

(F2[x1, · · · , xn]/⟨x21 − x, · · · , x2n − x⟩)m

where composition is given pointwise by polynomial evaluation.

To find larger fragments, it will be useful to first identify the isomorphisms and
the monics of f2.

Definition 4.59. Given a map f : n → 1 in f2, the oracle Of for f is defined as
follows:

f

· · ·

· · ·n

n

These are called oracles, because these correspond to the reversible implementations
of Boolean functions which are queried by quantum circuits.

Lemma 4.60. The oracles in f2 are generated by the generalized controlled-not gates:

s {
= 1 ,

s {
= ,

s
· · ·n

{
= &

n

n

· · ·

· · ·

Proof. Any Boolean function of n arguments can be represented by a polynomial in
F2[x1, . . . , xn]/⟨x21 − x1, . . . x

2
n − xn⟩. Every polynomial in this quotient ring has a

unique normal form given by sums of products. Each product corresponds to a gen-
eralized controlled-not gate, and the sum corresponds to composing these generalized
controlled-not gates in sequence.

These generate all reversible Boolean circuits according to this classical result:

Lemma 4.61 ([Tof80, Theorem 5.1]). The oracles in f2 in addition to permutations
generate all of Iso(f2).

Recall the notation of a generalized controlled not gate controlled by wires indexed
by X, operating on x /∈ X by LX, xM.

Iwama et al. originally gave a complete set of identities for circuits generated
by generalized controlled not gates with one extra ancillary bit [IKY02]. It is worth
mentioning that Shende et al. later used the commutator to generalize some of these
identities [SPMH03, Corollary 26]. We conjecture that a very similar set of identities
is complete for Boolean isomorphisms:
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Conjecture 4.62. We conjecture that (Iso(FinOrd2),×) is presented by the prop
generated by all generalized controlled-not gates modulo the following identities:

� LX, xM; LX, xM = 1.

� If x /∈ Y and y /∈ X then LX, xM; LY, yM = LY, yM; LX, xM.

� If x /∈ Y , then LX, xM; L{x} ⊔ Y, yM = LX ∪ Y, yM; L{x} ⊔ Y, yM; LX, xM.

� If x /∈ Y , then L{x} ⊔ Y, yM; LX, xM = LX, xM; L{x} ⊔ Y, yM; LX ∪ Y, yM.

� If x ∈ Y and y ∈ X, then LX, xM; LY, yM; LX, xM = LY, yM; LX, xM; LY, yM.

Despite this only being a conjecture, eventually once we add enough generators
and identities, we get a finite, complete presentation: ZX&. Therefore take Iso(f2) to
be the prop generated by the generalized controlled-not gates of which no complete
set of equations is known.

Modulo a complete axiomatization of Iso(f2), by adding the state |0⟩, we get a
complete axiomatization of the monomorphisms in FinOrd2.

Definition 4.63. Let inf2 be the prop given by adjoining the grey unit to Iso(f2)
modulo:

· · ·n
(30)
= · · ·n

Lemma 4.64. inf2 is a presentation for the prop (Mono(FinOrd2),×).

The pullback of a diagram 2n ↣ 2k ↢ 2m is not always a power of 2. Therefore,
one should not expect to construct categories of partial isomorphisms via a distribu-
tive law inf2⊗Iso(f2) inf

op
2 . Instead one must add all of the nontrivial subobjects to the

constituent props forming the distributive law.

Definition 4.65. Consider the pro subF2 whose maps n → n are generated by the
elements of the ring of n-variable polynomial functions over F2:

F2[x1, . . . , xn]/⟨x21 − x1, . . . , x2n − xn⟩

So that ∀n,m ∈ N and

p, r ∈ F2[x1, . . . , xn]/⟨x21 − x1, . . . , x2n − xn⟩

q ∈ F2[xn+1, . . . , xn+m]/⟨x2n+1 − xn+1, . . . , x
2
n+m − xn+m⟩

we quotient by the following equations:

0

n

n

(31)
=

n

n
r

p

n

n

(32)
= p · r

n

n

p q

n m

n m

(33)
= p · q

n m

n m
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Here the maps are polynomial functions; but composition is given by multiplica-
tion, not evaluation.

Lemma 4.66. subF2 is a presentation for the pro of subobects in Span2; i.e. the

symmetric spans of monomorphisms 2n ooeoo k // e //2n.

Proof. Since F2[x1, . . . , xn]/⟨x21 − x1, . . . , x2n − xn⟩ is the ring of polynomial functions
in n-variables on F2 its elements are in bijection with functions evp : Zn2 → Z2 given
by polynomial evaluation. Let k = |ev−1

p (1)|, then choose a map fp : k ↣ 2n in
f2 picking out all the solutions to the polynomial equation p(x1, · · · , xn) = 0. The

functor from subF2 to this subcategory of spans takes polynomials p 7→ (2n oo
fp
oo k //

fp
//2n).

Any two spans induced by the same polynomial are isomorphic, so this is well defined.
It is clearly an isomorphism on objects, and it can easily be shown to be a monoidal
functor.

The fullness is easy and the faithfulness comes from the fact that we can reduce
every map to a polynomial and then reduce the polynomial to algebraic normal form.

The axioms (32), (33) are reflected in [ZX&.14]; all of these axioms allow one to
compose literals. This allows subobjects to be reduced to algebraic normal form.

Now we compose these subobjects with the isomorphisms:

Definition 4.67. There is a distributive law of pros:

sisf2 := subF2 ; Iso(f2)

So that ∀n,m, k ∈ N and

q ∈ F2[x1, . . . , xn+m+1+k]/⟨x21 − x1, . . . , x2n+m+1+k − xn+m+1+k⟩,

q(x1, . . . , xn+m+1+k)

n k
m

n k
m
· · · (34)

= q(x1, . . . , xn+m, (xn+1 . . . xn+m−1) + xn+m+1, xn+m+2, . . . , xn+m+1+k)

n k
m

n k

· · ·
m

Lemma 4.68. sisf2 is a presentation for the subcategory of (Span∼(FinOrd),×) gen-

erated by spans of the form 2n ooeoo k // e //2m
f−→∼= 2m, for all n,m, k ∈ N and all isomor-

phisms f and monics e.

Proof. The obvious functor is clearly monoidal. Moreover, it is full by construction.
For the faithfulness, it suffices to observe that this is a strict factorization system.

Definition 4.69. There is a distributive law of props:

sinf2 := sisf2 ⊗Iso(f2) inf2; ∀n,m ∈ N, p ∈ F2[x1, . . . , xn+1+m] :
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p(x1, . . . , xn+1+m)

n m

n m

(35)
= p(x1, . . . , xn, 0, xn+2, . . . , xn+1+m)

n m

n m

Lemma 4.70. sinf2 is a presentation for the subcategory of (Span∼(FinOrd),×) gen-

erated by spans of the form 2n ooeoo k //
e //2n // e

′
//2m for all n,m, k ∈ N and all monics

e, e′.

The proof is completely analogous to that of Lemma 4.68.

Any n variable polynomial function p can be interpreted as a span of monics via
the oracle Op, where the the target wire is restricted to have the value 0. Each such
polynomial function corresponds to a subobject, which complicates the matter further
than in the affine case. Now we combine the subobjects with the isomorphisms:

Definition 4.71. There is a distributive law of props given by the following family
of equations:

pisf2 := sinfop2 ⊗sisf2 sinf2; Op
(36)
= p

Note that this is actually a distributive law because the case where the target wire
of an oracle is sandwiched between a grey unit and counit is the only critical pair
needed to push sinfop2 past sinf2 up to sisf2.

Lemma 4.72. prif2 is a presentation for the full subcategory (FPinj2,×)
of (ParIso(FinOrd),×) with objects powers of two.

Proof. We have shown how to push all of the generators of sinf2 past those of sinfop2
up to sisf2.

The uniqueness up to zig-zags becomes trivial in this case. The invertible maps
in sinfop2 act the same both on the left and on the right in analogy to the orthogonal
factorization systems. Similarly, the non-invertible subobjects corresponding to spans

2n ooeoo k // e //2n act the same both on the left and the right.

This is equivalent to the prop TOF of Cockett et al. whose identities we have
included in Figure 4.1 [CC19]. By adding the effect

√
2⟨+| we get partial functions:

Definition 4.73. Consider the prop pf2 given by the pushout of the following diagram
of props, given by adding a counit to the diagonal map:

pisf2 ← surjop → cmop

Lemma 4.74. prf2 is a presentation for (FPar2,×).

This is immediate because the pushout is precisely the Cartesian completion.

By adding the state
√

2|+⟩ we get spans:
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Definition 4.75. Let spf2 denote the pushout of the diagram of props:

pfop2 ← pif2 → pf2

Lemma 4.76. spf2 is a presentation for (FSpan2,×).

Since we know that pis2
∼= TOF, adding a unit and counit to TOF yields ZX&,

which we know is complete for (FSpan2,×).

We summarize the important fragments, as well as their semantics in Figure 4.3:
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Linear Boolean circuits Syntax Semantics
Cartesian category cbF2 (MatF2 ,⊕)
Isomorphisms iscbF2 (Iso(MatF2),⊕)
Monomorphisms incbF2 (Mono(MatF2),⊕)
Partial isomorphisms piscbF2 (ParIso(MatF2),⊕)
Partial maps prcbF2 (Par(MatF2),⊕)
Spans spcbF2 (Span∼(MatF2),⊕)
Relations ihF2 (Rel(Mat(F2)),⊕) ∼= LinRelF2↪→

Affine Boolean circuits Syntax Semantics Full subcategory of
Cartesian category acbF2 (AffMatF2 ,⊕) (AffMatF2 + 1,⊕)
Isomorphisms isacbF2 (Iso(AffMatF2),⊕) (Iso(AffMatF2 + 1),⊕)
Monomorphisms inacbF2 (Mono(AffMatF2),⊕) (Mono(AffMatF2 + 1),⊕)
Partial isomorphisms pisacbF2

∼=CNOT (ParIso(AffMatF2 + 1)∗,⊕) (ParIso(AffMatF2 + 1),⊕)
Partial maps pracbF2 (Par(AffMatF2 + 1)∗,⊕) (Par(AffMatF2 + 1),⊕)
Spans spacbF2 (Span∼(AffMatF2 + 1)∗,⊕) (Span∼(AffMatF2 + 1),⊕)
Relations aihF2 (Rel(AffMatF2 + 1)∗,⊕) ∼= AffRelF2 (Rel(AffMatF2 + 1),⊕)↪→

Multiplicative Boolean circuits Syntax Semantics Full subcategory of
Cartesian category f2 (FinOrd2,×) (FinOrd,×) ∼= (FSet,×)
Isomorphisms oracles in f2 (Iso(FinOrd2),×) (Iso(FinOrd),×) ∼= (Iso(FSet),×)
Monomorphisms inf2 (Mono(FinOrd2),×) (Mono(FinOrd),×) ∼= (Mono(FSet),×)
Partial isomorphisms pis2

∼=TOF (FPinj2,×) (ParIso(FinOrd),×) ∼= (FSet,×)
Partial maps pisf2 (FPar2,×) (Par(FinOrd),×) ∼= (Par(FSet,×)
Spans spf2∼=ZX& (FSpan2,×) (Span∼(FinOrd),×) ∼= (Span∼(FSet),×) ∼= (Mat(N),⊗)
Relations ZX&/ ∼ (FRel2,×) (Rel(FinOrd),×) ∼= (Rel(FSet),×) ∼= (Mat(B),⊗)

Figure 4.3: Periodic table of Boolean circuits. This table is a commutative diagram. Each subtable embeds into the one beneath
it. Within each subtable, every row after “Cartesian category” embeds into the one beneath it, with the exception of “Spans”
which quotients to “Relations.”
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4.4 Discussion

A natural next question would be to prove completeness for the natural number
fragments of the qudit ZH-calculus/full subcategories dn of MatN. There is a universal
presentation of the qudit ZH-calculus given in Roy’s M.Sc. thesis [Roy22]; however,
completeness has not been proven. Perhaps this would be a first step towards proving
completeness of the qudit ZH-calculus. The difficulty with generalizing our work is
that finding normal forms for systems of Boolean equations is particularly easy. For
example, the rule [ZX&.13] allows us to make the following deduction about Boolean
formulae:

P (X) · P (Y ) = 1

P (x) = 1, Q(y) = 1

So that an n variable system of Boolean equations is equivalent to a single n-variable
Boolean equation; which can be represented as a linear subspace over Fn2 . Therefore
[ZX&.13] allows us to reduce Boolean formulae to algebraic normal via Gaussian
elimination.

In the qudit setting, the n-variable d-valued formulae have the structure of ele-
ments of the ring of polynomial functions Z/dZ[x1, · · · , xn]/⟨xd1 − x1, · · · , xdn − xn⟩;
finding normal forms for the induced algebraic varieties is much trickier. However sys-
tems of polynomial equations over fields admit normal forms called Gröbner bases.
Therefore, when the dimension d is prime one could potentially use Gröbner bases to
find normal forms for these systems of polynomial equations over finite fields; rewrit-
ing circuits to Gröbner bases graphically modulo the ideals ⟨xd1 − x1, · · · , xdn − xn⟩.
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Chapter 5

Stabilizer codes as affine
cosiotropic relations

In this chapter we give a relational account of mixed stabilizer circuits using linear and
affine symplectic geometry. As opposed to the previous chapter where we extended
affine relations with the nonlinear and gate, in this chapter we add the linear phase
shift gates instead. More conceptually unlike the previous chapter where we took the
nonlinear state space approach such that that the objects were finite sets, here we take
the linear/affine phase space approach where the the objects are symplectic vector
spaces. Symplectic vector spaces capture the possible configurations of position and
momentum: ie. the phase space. Symplectic vector spaces carry a symplectic form
which measures the degree of commutation of points in the phase space. The mor-
phisms between symplectic vector spaces which we study in this chapter are (affine)
(co)isotropic relations: capturing the nondeterministic evolution of the mechanical
system in a way that preserves the commutation between position and momentum.

Outline

In Section 5.1, we give an overview of linear symplectic geometry and linear La-
grangian relations using the language of graphical linear algebra. In Section 5.2, we
give generators for Lagrangian relations; showing that for prime fields, Lagrangian
relations can be generated by dubling linear relations. In Section 5.3 we show that
only one more generator is needed to obtain the prop of affine Lagrangian relations.
In the case of odd prime fields, we show in Theorem 5.23 that affine Lagrangian re-
lations equivalent to quopit stabilizer circuits, modulo invertible scalars. This gives
a graphical calculus which extends the previous work on Spekkens’ qubit toy model
by Backens et al. [BD16], and the qutrit stabilizer ZX-calculus by Wang [Wan18].

We also discuss the relation to electrical circuits. In Section 5.4 we show that
quantum discard in quopit stabilizer circuits is equivalent to the discard relation.
By splitting decoherence maps for the Z/X bases, we obtain a semantics for state
preparation and measurement of stabilizer codes. We relate this to the affine rela-
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tional semantics of electrical circuits with controlled voltage and current sources; and
dually, ammeters and voltmeters. In Section 5.5, we discuss the connection to error
correction.

5.1 Linear symplectic geometry

In this section, we give an brief overview of finite-dimensional linear symplectic ge-
ometry, as well as categories of linear coisotropic/isotropic and Lagrangian relations.

See the papers of Weinstein for generalizations of to the infinite-dimensional linear
[Wei17] and the nonlinear settings [Wei82], respectively.

Definition 5.1. Given a field k and a finite-dimensional k-vector space V , a sym-
plectic form on V is a bilinear map ω : V × V → k which is:

Alternating: ∀v ∈ V , ω(v, v) = 0.

Non-degenerate: Given some v ∈ V , if ω(v, w) = 0 for all w ∈ V , then v = 0.

A symplectic vector space is a vector space equipped with a symplectic form.
A (linear) symplectomorphism is a linear isomorphism between symplectic vector
spaces that preserves the symplectic form.

Lemma 5.2 (Linear Darboux’s theorem). Every vector space k2n with a chosen basis
is equipped with a symplectic form given by the following block matrix:

Ωn :=

[
0n In
−In 0n

]
so that ωn(v, w) := vTΩnw. Moreover, every finite dimensional symplectic vector
space over k is symplectomorphic to one of the form k2n with such a symplectic form.

Therefore, we can always chose a basis and work with the symplectic form ωn by
default, without having to specify which symplectic structure.

In linear mechanical systems, symplectic vector spaces are interpreted as the phase
space: i.e. the space of configurations of position and momentum. The symplecto-
morphisms are regarded as the reversible Hamiltonian evolution of the phase-space.

Definition 5.3. Let W ⊆ V be a linear subspace of a symplectic space V . The
symplectic complement of the subspace W is the subspace of V on which the
symplectic form vanishes on W :

W ω := {v ∈ V : ∀w ∈ W,ω(v, w) = 0}

A linear subspace W of a symplectic vector space V is isotropic when W ω ⊇ W ,
coisotropic when W ω ⊆ W and Lagrangian when W ω = W .
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Notice that the symplectic complement reverses the order of inclusion, so that
coisotropic subspaces are turned into isotropic subspaces and vice versa. In particular,
we can see how this acts on the dimension of these subspaces, so that Lagrangian
subspaces of k2n have dimension n.

Take an isotropic subspace W ⊆ k2n of dimension n−m with a chosen basis. As
a matter of notation denote the basis as the rows of the matrix [Z|X] where Z and
X are n−m× n matrices. So that the image of this matrix is W .

The following categories of linear isotropic/coisotropic/Lagrangian relations gen-
eralizes symplectomorphisms in a way that allows nondeterministic Hamiltonian evo-
lution:

Definition 5.4. Given a field k, the prop of (linear) Lagrangian relations, LagRelk
has morphisms n → m being Lagrangian subspaces of the symplectic vector space
k2n ⊕ k2m with respect the symplectic form given by the block diagonal matrix:

diag(−Ωn,Ωm)

Composition is given by relational composition. The tensor product is given by the
direct sum, where the inputs and outputs are are grouped into separate gradings,
within which the Z and X gradings are also grouped together. The props of (linear)
isotropic/coisotropic relations, IsotRelk and CoIsotRelk are defined in the obvious
analogous ways.

Note that we needed to insert a minus sign on −Ωn so that these subspaces can
be composed relationally. In other words states and effects must be isotropic with
respect to the conjugate symplectic forms.

We see that these notions of subspaces generalize symplectomorphisms as follows:

Lemma 5.5. Given a symplectomorphism f on (k2n, ωn) its graph

Γf := {(v, f(v)) | v ∈ k2n}

is a Lagrangian relation n→ n.

Lagrangian relations between symplectic vector spaces originally appeared in the
literature in the paper of Guillemin et al. [GS79]; although in this paper, the authors
discuss a private communication with Weinstein who developped a similar structure
around the same time. Weinstein developed more general setting of Lagrangian sub-
manifolds between symplectic manifolds, they are known also as canonical relations,
or the symplectic “category” [Wei82]. The word category is in quotes because in this
more general setting composition is not always defined.

There is an embedding of (co)istropic and Lagrangian relations into LinRelk:

Lemma 5.6. The forgetful functors fom Lagrangian/isotropic/cosisotropic relations
to linear relations are faithful, strong symmetric monoidal.
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Due to the above lemma, we will regard LagRelk, IsotRelk, CoIsotRelk as (strong)
symmetric monoidal subcategories of LinRelk. As such, we can ask what the generators
of LagRelk, IsotRelk and CoIsotRelk look like in terms of string diagrams of linear
relations. We first describe what it means to be a Lagrangian relation in pictures. In
Section 5.4, we will return to the question of (co)isotropic relations.

Concretely, the symplectic complement of a linear subspace W ⊆ V is:

W ω : = {(v1, v2) ∈ V : ∀(w1, w2) ∈ W,ω((v1, v2), (w1, w2)) = 0}
= {(v1, v2) ∈ V : ∀(w1, w2) ∈ W, ⟨(v2,−v1), (w1, w2)⟩ = 0}
= {(v2,−v1) ∈ V : ∀(w1, w2) ∈ W, ⟨(v1, v2), (w1, w2)⟩ = 0}

Therefore, the condition asking that W = W ω is graphically:

W
=

W⊥

=

(
W

)ω
(5.1)

where recall that the antipode is given by:

= −1 = = = =

The category of Lagrangian relations is compact closed. Given a relation V be-
tween symplectic vector spaces, we can curry it into a state ⌊V ⌋; and similarily, we
can uncurry a states back into processes:

V
⌊ ⌋7−→ V

W
7→

W

It is easy to see that these two constructions are inverse to each other. This al-
lows us to derive a graphical criterion for arbitrary Lagrangian relations, generalizing
Equation 5.1:

V =
V ⊥

=

 V


ω
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which holds if and only if

V = V =

V ⊥

= V ⊥ = V ⊥

For this reason, we depict Lagrangian relations as processes where the input wires are
on the bottom and output wires on on the top. There is a functor in the other direc-
tion, where recall from Lemma 2.56 that the orthogonal complement swaps colours
and inverts scalars:

Lemma 5.7. There is a faithful, strong symmetric monoidal functor L : LinRelk →
LagRelk, given by doubling with respect to the orthogonal complement:

V 7→ V ⊥ V

To check this is a functor, all we have to show is that it produces Lagrangian
relations. This follows immediately from the naturality of the scalar −1. Indeed,
because Lagrangian subspaces are isotropic and coisotropic, this extends to functors
LinRelk → IsotRelk and LinRelk → CoIsotRelk. This functor is a (strong) symmetric
monoidal and faithful but not full, as for example, the following Lagrangian relation
is not in the image of L:



ω

= = = = =

Unlike LinRelk, these are no longer bicategories of relations:

Remark 5.8. LagRelk is not a bicategory of relations. No matter which Frobenius
algebra we chose, it is not laxly natural with respect to both the phase shifts and the
Fourier transform of the phase shifts:

= ̸⊆ = =

138



5.2 Generators for Lagrangian relations

In this section, we give a universal set of generators for LagRelk; however, we do not
directly give a complete set of identities. Instead we defer to the completeness of the
monoidal presentation of LinRelk.

Consider the following symplectomorphisms: the symplectic Fourier transform F ,
the a-shift gate Sa and the controlled-a gate Ca:

t |

=

[
0 1
−1 0

]
=: F

u

ww
v a

}

��
~ =

[
1 a
0 1

]
=: Sa

u

wwww
v
L

 a


}

����
~

=

u

wwww
v

aa

}

����
~

=


1 −a 0 0
0 1 0 0
0 0 1 0
0 0 a 1

 =: Ca

Use the notation G(j) to denote a gate G being applied to wire j; and the notation
C

(i,j)
a to denote the controlled-a gate controlling on wire i targeting wire j.

Note the right action of these gates in terms of matrix multiplication of Lagrangian
subspaces for any nonzero a ∈ k (as observed by Aaronson and Gottesman [AG04,
page 4]):

� F (i) sets columns xi to −zi and zi to xi.

� S
(i)
a sets zi to zi + a · xi.

� C
(i,j)
a sets xj to xj − a · xi and zi to zi + a · zj.

Using these symplectomorphisms regarded as Lagrangian relations:

Theorem 5.9. For any field k the maps in L(LinRelk) as well as F and Sa for all
a ∈ k generate LagRelk.

Proof. The following proof is very similar to that of Aaronson and Gottesman [AG04,
Lemma 6]. Consider a basis [Z|X] of an arbitrary Lagrangian subspace over the field
k. We show how one can reduce [Z|X] to the block matrix [I|0] by right multiplication
with the aforementioned symplectomorphisms. To do so, we first reduce it to a matrix
[I|X ′]. This involves repeatedly applying Gaussian elimination and then applying the
Fourier transform to wires when the pivot is in the X block. We are guaranteed to
obtain a matrix [I|X ′] because the dimension of Lagrangian subspace of k2n is n.
Moreover, because [I|X ′] spans a Lagrangian subspace, we have:

0 =
[
I|X ′]ω [I|X ′]T
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which holds if and only if

0 =
[
I|X ′] [X ′| − I

]T
= X ′T −X ′

That is to say X ′ is symmetric, meaning that X ′ describes the adjacency matrix of
a graph coloured by the elements of k. In the language of stabilizer circuits, this is
called a graph state. In the case of prime fields, this observation was made by Gross
[Gro06, Equation 18]. Graph states were originally discussed in the paper of Hein et
al. [HDE+06].

We prove that graph states can be reduced to the subspace [I|0] by right multi-
plication of symplectomorphisms. The proof is by induction on the dimension of the
subspace. This base case is trivial.

Suppose we have a (n+1)-dimensional Lagrangian subspaces described by a graph
state, then:

1 0 0 · · · 0 x1,1 x1,2 x1,3 · · · x1,n
0 1 0 · · · 0 x1,2 x2,2 x2,3 · · · x2,n

0 0 1
. . .

... x1,3 x2,3 x3,3 · · · x3,n
...

...
. . .

. . . 0
...

...
...

. . .
...

0 0 · · · 0 1 x1,n x2,n x3,n · · · xn,n



(F (1))−1

7−−−−−→


x1,1 0 0 · · · 0 −1 x1,2 x1,3 · · · x1,n
x1,2 1 0 · · · 0 0 x2,2 x2,3 · · · x2,n

x1,3 0 1
. . .

... 0 x2,3 x3,3 · · · x3,n
...

...
. . .

. . . 0
...

...
...

. . .
...

x1,n 0 · · · 0 1 0 x2,n x3,n · · · xn,n



C
(2,1)
x1,27−−−→


x1,1 − 0 0 0 · · · 0 −1 x1,2 − x1,2 x1,3 · · · x1,n
x1,2 − x1,2 1 0 · · · 0 0 x2,2 − 0 x2,3 · · · x2,n

x1,3 − 0 0 1
. . .

... 0 x2,3 − 0 x3,3 · · · x3,n
...

...
. . .

. . . 0
...

...
...

. . .
...

x1,n − 0 0 · · · 0 1 0 x2,n − 0 x3,n · · · xn,n



=


x1,1 0 0 · · · 0 −1 0 x1,3 · · · x1,n
0 1 0 · · · 0 0 x2,2 x2,3 · · · x2,n

x1,3 0 1
. . .

... 0 x2,3 x3,3 · · · x3,n
...

...
. . .

. . . 0
...

...
...

. . .
...

x1,n 0 · · · 0 1 0 x2,n x3,n · · · xn,n



∏n
i>1 C

(i,1)
x1,i7−−−−−−→


x1,1 0 0 · · · 0 −1 0 0 · · · 0
0 1 0 · · · 0 0 x2,2 x2,3 · · · x2,n

0 0 1
. . .

... 0 x2,3 x3,3 · · · x3,n
...

...
. . .

. . . 0
...

...
...

. . .
...

0 0 · · · 0 1 0 x2,n x3,n · · · xn,n


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F (1)

7−−→


1 0 0 · · · 0 x1,1 0 0 · · · 0
0 1 0 · · · 0 0 x2,2 x2,3 · · · x2,n

0 0 1
. . .

... 0 x2,3 x3,3 · · · x3,n
...

...
. . .

. . . 0
...

...
...

. . .
...

0 0 · · · 0 1 0 x2,n x3,n · · · xn,n



S
(1)
−x1,17−−−−→


1 0 0 · · · 0 0 0 0 · · · 0
0 1 0 · · · 0 0 x2,2 x2,3 · · · x2,n

0 0 1
. . .

... 0 x2,3 x3,3 · · · x3,n
...

...
. . .

. . . 0
...

...
...

. . .
...

0 0 · · · 0 1 0 x2,n x3,n · · · xn,n



···7−→


1 0 0 · · · 0 0 0 0 · · · 0
0 1 0 · · · 0 0 0 0 · · · 0

0 0 1
. . .

... 0 0 0 · · · 0
...

...
. . .

. . . 0
...

...
...

. . .
...

0 0 · · · 0 1 0 0 0 · · · 0


Therefore all Lagrangian relations can be reduced to the subspace [I|0] by right
multiplication by symplectomorphisms. In the n-dimensional case, this subspace is
given by the circuit L( ⊗n).

By decomposing the Fourier transform we obtain a more symmetric, equivalent
set of generators:

Corollary 5.10. LagRelk is presented by L(LinRelk) as well as the following genera-
tors, for all a ∈ k∗:

da := a : 1→ 0

Proof. We show that F and Sa can be constructed using these generators. The Sa gate
and it’s colour-reversed version Va can be obtained by composing a pure morphism
with d−a and da, respectively:

−a = −a = −a = a = Sa

a = a =: Va
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We obtain F as S1V1S1, which can be proven as a variation of the familiar “3
cnot” rule for quantum circuits (see e.g. [CD11, Section 3.2.1]):

S1V1S1 = = = =

= = = = F

A variant of this decomposition is contained in the work of Baez et al. [BE15,
page 6], although in the context of plain old linear relations instead of Lagrangian
relations. Therefore the antipode is missing in their case, because they have no
motivation to relate this decompostion to the symplectic Fourier transform. A similar
observation was made by Ranchin [Ran14, Equation 34] in the “external setting” of
qudit controlled-X gates.

From Corollary 5.10, we know that we can build any Lagrangian relation using
“pure Lagrangian relations” in the image of the doubling functor as well as and
“discard maps” da for all a ∈ k∗. Since the former is closed under composition and
monoidal product:

Corollary 5.11 (Phase purification). Any linear Lagrangian relation can be written
in the following form, for V a linear relation:

a1

V ⊥ V

ak
......

Recall from Definition 3.2: given a compact closed prop with an identity on objects
monoidal conjugation functor, we can apply the CPM construction to obtain a com-
pact closed prop (here we have a compact closed �-category rather than a �-compact
closed category).
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The phase-purification is so-called because of the similarity to the purification of
maps in the CPM-construction. Indeed one might hope that LagRelk is isomorphic to
CPM(LinRelk, (−)⊥), however, in the example of phase-purification, we are tracing out
both sides with respect to multiple compact closed structures: one for each aj ∈ k.
Prime fields are special:

Corollary 5.12. For p prime, CPM(LinRelFp , (−)⊥) ∼= LagRelFp.

Proof.

n = . .
.
n =

... n

=

... n

Therefore, every map in LagRelFp can be produced by tracing out a map in L(LinRelFp).

Note that LagRelk is not †-compact closed with respect to (−)† := ((−)⊥)∗. How-
ever, in Definition 5.27 we construct another �-functor with respect to which it is.

5.2.1 Passive linear electrical circuits as Lagrangian relations

Symplectic geometry was motivated by the goal to formalize Hamiltonian mechanics
in a synthetic setting. Therefore, it is not a coincidence that in Baez et al. use linear
Lagrangian relations to give a semantics for “passive linear circuits” [BF18]. These
are an idealized class of electrical circuits with linear behaviour.

To each idealized wire with no resistance, Baez et al. associate the symplectic
vector space R2. Given an element (z, x) ∈ (R+)2, they interpret the z as the current
flowing through the wire and x as the potential. The voltage around a node in a
circuit is is the outgoing potential minus the incoming potential.

Baez et al. proceed to recall the following physical laws due to Ohm [Ohm27]
followed by Kirchhoff [Kir45]:

Ohm’s law: The voltage around the node in a circuit is equal to the current
multiplied by the resistance.

Kirchhoff’s current law: The sum of currents flowing into a node is equal to
the sum of currents flowing out of the node.

This allows an (ideal) junction with no resistance with n incoming wires and m
outgoing wires to be modelled by a Lagrangian relation. By Kirchhoff’s current law,
the sum of the currents of the n incoming wires is equal to the sum of the currents
of the m outgoing wires. Moreover, by Ohm’s law, because resistance is zero, the n
incoming and m outgoing potentials are all made to be equal. That is to say that the

143



junction is interpreted as the following Lagrangian relation:

u

ww
v

· · ·

· · ·

m

n

}

��
~ =

· · ·

· · ·

m

n

· · ·

· · ·

m

n

This also allows us to capture (linear) resistors as Lagrangian relations. Given a linear
resistor with resistance r ∈ R+, by Kirchhoff’s current law the incoming current is
equal to the outgoing current; and by By Ohm’s law, the outgoing potential is equal
to the current multiplied by r plus the incoming potential:

u

v r

}

~ = r

Baez et al. augment this semantics with time-dependent components [BF18], the
exposition of which necessitates the following construction:

Definition 5.13. Given an integral domain R, the field of fractions of R has:

� Elements given by pairs (a, b) ∈ R×R∗ modulo the equivalence relation (a, b) ∼
(c, d) whenever ad = bc. Denote the equivalence class of (a, b) by a/b.

� Addition is defined by a/b + c/d = (ad + cb)/(bd). The unit for addition is
0/1. The additive inverse of a/b is (−a)/b.

� Multiplication by (a/b)(c/d) = (ac)/(b/d). The unit for multiplication is 1/1.
Given a nonzero element c/d, the inverse is d/c.

Because there is an obvious embedding of rings a 7→ (a/1), denote the equivalence
class a/1 = a.

The field of real rational functions R(s) is the field of fractions of the poly-
nomial ring R[s].

In a later paper of Baez et al., they interpret “linear constant-coefficient ordinary
differential equations” relating n inputs to m outputs as R(s)-linear relations from
n to m [BE15]. The multiplication of the polynomial indeterminate s is regarded as
differentiation, and multiplication by s−1 as integration. Regarding these differential
equations as being dependent on time, in [BF18], Baez et al. interpret inductors and
capacitors as Lagrangian relations over R(s). In some sense, the multiplication by
the scalar s is interpreted as a discrete step forward in time, and by s−1 a discrete
step backwards in time.

A (linear) inductor with inductance ℓ ∈ R+ is a component with one input and one
output such that the voltage is equal to the rate of change of the current multiplied by
ℓ. Applying Kirchhoff’s current law Ohm’s law we have that an inductor is interpreted
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as follows:
u

v ℓ

}

~ = ℓs

Dually, a (linear) capacitor with capacitance c ∈ R+ is a component with one in-
put and one output where the current is equal to the rate of change of the voltage
multiplied by c. The interpretation is given by:

u

v c

}

~ = cs

Recently, the fragment of electrical circuits generated by these idealized junctions and
resistors has been given a complete equational theory by Cockett et al. [CKS23]. A
presentation of a more general class of circuits remains open, as we will discuss at the
end of this chapter.

5.3 Affine Lagrangian relations

Affine Lagrangian relations are perhaps of more practical interest than linear La-
grangian relations. As we will discuss in this section, these give a semantics for
quopit stabilizer circuits as well as well as passive electrical circuits plus current and
voltage sources.

Definition 5.14. An affine Lagrangian subspace of a symplectic vector space k2n

is an affine subspace of L+ a ⊆ k2n which is either empty or where L is a Lagrangian
subspace. An affine relation n → m is an affine Lagrangian subspace of k2n ⊕ k2m
with respect to the symplectic form given by the matrix diag(Ωn,Ωm). Let AffLagRelk
denote the prop whose maps n → m are affine Lagrangian relations. The monoidal
structure and composition is the same as for linear Lagrangian relations.

Because the tensor product is defined in the same way as in LagRelk, as in Lemma
5.6, the forgetful functor AffLagRelk → AffRelk is faithful and strong monoidal.

Definition 5.15. Let alrk denote the monoidal subcategory of aihk with objects 2n,
generated by the morphisms in the image of LagRelk ↣ LinRelk ∼= ihk ↪→ aihk as well
as the following generator:

1

Lemma 5.16. alrk is a presentation of AffLagRelk.
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Proof. All the affine shifts can be produced from tensoring and composing these two
maps on the right:

1

=
1
∈ alrk =⇒

1

a a = a ,

1

aa = a ∈ alrk

5.3.1 Stabilizer circuits and Spekkens’ toy model

The connection between the stabilizer formalism and symplectic geometry has been
known for quite a while, at least as early as the papers of Calderbank, Rains, Shor
and Sloane in the qubit case [CRSS98, CRSS97]. This was further developed in great
detail in the quopit case by Gross [Gro06]. However, its role in the stabilizer formal-
ism is often underplayed, for example, it is not explicitly mentioned in Gottesman’s
highly influential Ph.D. thesis [Got97]. Perhaps a reason for this is that despite
their dominance in the quantum computing literature, qubit stabilizer circuits do not
conform so nicely to the symplectic geometric framework as do quopits.

In this subsection, we with build on the work of Gross and show that, when p is
an odd prime, the prop of affine Lagrangian relations over Fp is isomorphic to quopit
stabilizer circuits modulo invertible scalars.

To show this, we first recall two results of Gross, relating the stabilizer formalism
to symplectic geometry. We reproduce the proofs here because of their importance.
First we need the following convention to represent elements of the Heisenberg-Weyl
group:

Definition 5.17. Given a ∈ Fp and (z, x) ∈ F2n
p , define the following operators:

χ(a) = e2π·i·a/p, W(z, x) = χ(−zxT/2)
n−1⊗
j=0

Zzj(j)X
xj
(j)

This makes the following easier to prove:

Lemma 5.18 (Weil representation [Gro06, Theorem 3]). For odd prime p, the group
of affine symplectomorphisms over F2n

p is isomorphic to the n quopit Clifford group
modulo scalars.

Proof. We know that the Clifford group is defined as the normalizer of the Heisenberg-
Weyl group so that a Clifford operator is defined by its action on Weyl operators.
Given an n quopit Clifford operator C and (z, x) ∈ F2n

p , there exists an isomorphism
CL : F2n

p → F2n
p and a vector Ca ∈ F2n

p such that:

CW(z, x)C† = χ(Ca(z, x))W(CL(z, x))
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We seek to show that CL is the the symplectomorphism and Ca is the affine shift. CL
is clearly linear. To see that it is a symplectomorphism, first observe:

ZX = χ(1)XZ

Therefore,

(Zz0X x0)(Zz1X x1) = χ(−x0z1)Zz0Zz1X x0X x1

= χ(−x0z1)Zz1Zz0X x1X x0

= χ(z0x1 − x0z1)(Zz1X x1)(Zz0X x0)

= χ(ω((z0, x0), (z1, x1)))(Zz1X x1)(Zz0X x0)

So Weyl operators commute with each other up to the symplectic form:

W(z, x)W(z′, x′) = χ(ω(z, x), (z′, x′))W(z′, x′)W(z, x)

Moreover, we can combine Weyl operators together as follows:

W(z, x)W(z′, x′) = χ(ω((z, x), (z′, x′))/2)W(z + z′, x+ x′)

Therefore:

CW(z, x)W(z′, x′)C†

= C(W(z, x)C†CW(z′, x′))C†

= χ(Ca(z, x) + Ca(z
′, x′))W(CL(z, x))W(CL(z′, x′))

= χ(Ca(z, x) + Ca(z
′, x′) + ω(CL(z, x)), CL(z′, x′))/2)W(CL(z, x) + CL(z′, x′))

Similarly:

CW(z, x)W(z′, x′)C†

= χ(ω((z, x), (z′, x′))/2)CW(z + z′, x+ x′)C†

= χ(ω((z, x), (z′, x′))/2 + Ca(z + z′, x+ x′))W(CL(z + z′, x+ x′))

= χ(ω((z, x), (z′, x′))/2 + Ca(z, x) + Ca(z
′, x′))W(CL(z, x) + CL(z′, x′))

So ω(CL(z, x), CL(z′, x′)) = ω((z, x), (z′, x′)); meaning that CL is a symplectomor-
phism. Moreover for a Clifford operator D:

DCW(z, x)C†D† = Dχ(Ca(z, x))W(CL(z, x))D†

= χ(Ca(z, x) +Da(CL(z, x)))W(DL(CL(z, x)))

so CL and Ca determine an affine transformation.
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The reason this fails for qubits is because one can not represent all elements of the
Heisenberg-Weyl group as χ(Ca(z, x))W(z, x). For example, XZ = iZX ; however
i = e2π·i/4, so there is no value of a ∈ F2 for which χ(a) = e2π·i·a/2 = eπ·ia = i.

Recall that, up to scalars, the n-qupit Clifford group is generated by the X -gate,
the CX gate, the Fourier transform F and the phase gate S and scaling gatesMa for all
a ∈ F∗

p. In the odd prime case, these correspond to the affine symplectormorphisms:

1 ↔ X , ↔ F , ↔ S, ↔ CX , aa ↔Ma

The following result gets us even closer to where we need to be:

Lemma 5.19 ([Gro06, Lemma 8]). For every odd prime p and n ∈ N, there is
a bijection G between (nonempty) affine Lagrangian subspaces of F2n

p and n-quopit
stabilizer states modulo nonzero scalars.

Proof. Given any affine Lagrangian subspace L + a ⊆ F2n
p ; then up to global phase

there is a stabilizer state C|0⟩⊗n determined by the rank 1 projector:

C|0⟩⊗n⟨0|⊗nC† :=
1

pn

∑
v∈L

χ(ω(a, v))W(v)

as for any v′ ∈ L:

χ(ω(a, v′))W(v′)
1

pn

∑
v∈L

χ(ω(a, v))W(v)χ(−ω(a, v′))W(v′)†

=
1

pn

∑
v∈L

χ(ω(a, v) + ω(v, v′))W(v)W(v′)W(v′)†

=
1

pn

∑
v∈L

χ(ω(a, v))W(v)W(v′)W(v′)†

=
1

pn

∑
v∈L

χ(ω(a, v))W(v)

Moreover, every stabilizer state is of this form. Recall that stabilizer groups
are Abelian. If two stabilizers χ(a)W(u) and χ(b)W(v) stabilize the same state, they
must commute so ω(u, v) = 0. A stabilizer state is stabilized by exactly pn stabilizers,
making the space of stabilizers into an affine Lagrangian subspace of Fp.

In other words, an augmented basis for the affine Lagrangian subspace over Fp cor-
responds to the stabilizer tableau for a pure quopit stabilizer state (i.e. a stabilizer
tableau on n quopits with dimension n).

Explicitly, the state |0⟩ is identified with the following Affine Lagrangian subspace:

↔ |0⟩
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Definition 5.20. Let Stabp denote the prop of quopit stabilizer circuits modulo
nonzero scalars, regarded as a �-compact closed category.

We extend this isomorphism of states to an isomorphism of props using a sym-
plectic notion of Heisenberg-Weyl groups and stabilizers:

Definition 5.21. Given a field k the n-fold symplectic Weyl operators are the sym-
plectomorphisms of the following form, for a⃗, b⃗ ∈ k2n:

W (⃗a, b⃗) := a⃗ b⃗

The n-fold symplectic Weyl operators form the n-fold symplectic Heisenberg-
Weyl group, P n

k under composition. And altogether, they form a prop under ten-
sor product and composition. Unlike the qudit Heisenberg-Weyl group, there is no
phase-factor; as affine Lagragain relations only have scalars 0 and 1. Therefore the
symplectic Heisenberg-Weyl group is merely a representation of the group additive
group k2n ↣ AffLagRelk.

Given some affine Lagrangian subspace f of F2n
k , the symplectic stabilizer

group of f is the subgroup S ⊆ P n
k so for all a ∈ S, f ; a = f .

Lemma 5.22. Two states in AffLagRelk are equal if and only if they have the same
symplectic stabilizer group.

Proof. Take a state f : 0→ n in AffLagRelk. Then W (z, x) is a stabilizer of f if and
only if (z, x) ∈ f ; therefore two subspaces are equal if and only if they have the same
elements if and only if they have the same stabilizers.

Theorem 5.23. When p is an odd prime, there is a symmetric monoidal equivalence
H : LagRelFp → Stabp defined:

on objects by: n 7→ ℓ2(Fnp )

on maps by: f 7→


0 if f = ∅

G (⌊f⌋)
otherwise

where G is the bijection between affine Lagrangian subspaces and stabilizer states
modulo scalars, and 0 is the unique stabilizer circuit of appropriate dimension which
is multiplied by the scalar 0.

Proof. We already know that there is a bijection between the states of both of these
props. Because these props are both compact closed, it only remains to show that
this isomorphism is monoidal and functorial. It clearly is monoidal and preserves the
identity; the nontrivial part is to show that it preserves composition.
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Consider some composable pair in AffLagRelFp :

Fnp
f−→ Fmp

g−→ Fℓp

If the composite is empty, then the result follows immediately. Suppose otherwise.

First, observe that in Stabp:

W(a, b) = ZaX b = ZaX−b = W(a,−b)

Moreover, in AffLagRelFp :

W (a, b)
= a b = b a = b a = a b

= a

−b

= a −b =
W (a,−b)

Therefore, the symplectic Weyl operators commute with the symplectic Z spider in
AffLagRelFp in the same way that the Weyl operators commute with the Z spiders in
Stabp. Therefore, the following two states in Stabp have the same stabilizers

G (⌊f ; g⌋)
=

⌊g⌋ ⌊f⌋
G

,

⌊g⌋ ⌊f⌋
G

=

G (⌊g⌋) G (⌊f⌋)

And thus they are equal. Therefore:

G (⌊f ; g⌋) =
G (⌊g⌋) G (⌊f⌋)

The novelty in interpreting stabilizer states in this categorical framework is that
it reveals that the relational composition of tableaux is the composition of stabilizer
circuits. If we drop the affine shifts, we get a smaller fragment of stabilizer circuits:

Corollary 5.24. For odd prime p, LagRelFp is a presentation for Weyl-free quopit
stabilizer circuits.
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AffLagRelF2 has already been studied in other terms. Spekkens first introduced his
toy model as a noncontextual, nonphysical hidden variable analogue to qubit stabilizer
quantum mechanics, satisfying the so-called “knowledge-balance principle” [Spe07].
An epistemic and an ontic state are associated to every state in the the toy model.
The epistemic state is interpreted as the knowledge which the observer has about the
state, and the ontic state is interpreted as the physical/real properties of the state.
When the observer gains knowledge about the state of the system, then the physical
state looses degrees of freedom. This Galois connection between the epistemic and
ontic state is given by the action of the symplectic complement. Therefore:

Corollary 5.25. AffLagRelF2 is a presentation for the ZX-calculus for Spekkens’ toy
model of Backens et al. [BD16].

Later, this was formalized in terms of symplectic geometry by Spekkens [Spe16].
The general idea is that one interprets the Lagrangian subspace as the epistemic
state of the position and momentum variables (ie, what the observer knows about
the state); moreover, the symplectic complement of the Lagrangian subspace is inter-
preted as the ontic state (the physical or real, properties of the state). The Galois
connection induced by the symplectic complement is interpreted as the knowledge
balance principle. If the observer never measures anything so that the ontic state is
equal to the epistemic state then:

We would have liked to use some modified form of the Weil representation for
qubits, like that found in Heinrich’s Ph.D. theis [Hei21, Section 3.3] or of the paper
of de Beaudrap [Bea13]; however, because i has order 4 in the group C∗, this would
seemingly require some analogue of affine relations over the ring Z/4Z. Here the
relational approach falls short to the functional approach, because Z/4Z is not a
principal ideal domain; and thus MatZ/4Z is not a regular category. Some other
technique is needed to this end.

There is another way to present AffLagRelk which makes it clear that AffLagRelFp

can be regarded as a fragment of the ZX-calculus:

Theorem 5.26 (The symplectic ZX-calculus).

AffLagRelk is generated by two spiders both decorated by the additive group of k2

as well as scaling gates when k is not a prime field:

u

ww
v a, b

· · ·

· · ·

}

��
~ =

· · ·

· · ·

a

· · ·

· · ·

b ,

u

ww
v a, b

· · ·

· · ·

}

��
~ =

· · ·

· · ·

a

· · ·

· · ·

b ,

t

a

|

= a a
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The spider fusion is pointwise:

· · ·
n,m

· · ·

k, ℓ

... =

· · ·

· · ·

n + k,m + ℓ ,

· · ·
n,m

· · ·

k, ℓ

... =

· · ·

· · ·

n + k,m + ℓ

Call the first component of the phase group the affine phase and the second com-
ponent the linear phase. The white spider corresponds to the Z-basis and the grey
spider corresponds to the X-basis. In Hilbert spaces, the spiders ℓ→ k are interpreted
as follows:

t
n,m

· · ·

· · ·

|

=

p−1∑
a=0

eπ·i/p(n·a+m·a2)|a, . . . , a⟩⟨a, . . . , a|

t

n,m

· · ·

· · ·

|

=

p−1∑
a=0

eπ·i/p(n·a+m·a2)F⊗k|a, . . . , a⟩⟨a, . . . , a|(F †)⊗ℓ

The scaling gate, which is a derived generator in this setting is interpreted as:

t

b

|

=

p−1∑
a=0

|a · b⟩⟨a|

Recall that from Corollary 5.10 that the Fourier transform derived from the de-
composition we discussed in the previous section:

s
F

{
= = = =

u

wwwww
v

0, 1

0, 1

0,−1

}

�����
~

In the ZX-calculus literature, this decomposition of the Fourier transform is Euler
decomposition, coined by Duncan and Perdrix [DP09]. To my knowledge, this way
in which Hopf algebras are used to derive the Euler decomposition was not previ-
ously known. Although in the quantum literature, as previously discussed, this same
rule describes the “external” interaction of CX gates (as opposed to the “internal”
interaction of phases).

This view of quopit stabilizer circuits in terms of the ZX-calculus means that the
phase groups for the Z and X-spiders are the torus (Z/pZ)2 as noted by Ranchin
[Ran16, Page 166]. This is in contrast to the qubit case where the phase groups are
Z/4Z; which Coecke et al. point out as a crucial difference between Spekkens’ toy
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model and qubit stabilizer theory [CES11]. However over F2 when the phases are
restricted to the subgroup:

Z/2Z ⊆ Z/4Z; a 7→ 2a

and for odd prime p, over Fp when the phases are restricted to the subgroup

Z/pZ ⊆ (Z/pZ)2; a 7→ (a, 0)

these both uniformly pick out the qupit biaffine fragment of the ZX-calculus from
Definition 3.33.

Up until now, we have also neglected to relate the symplectic picture to the �-
structure of FHilb. This will be instrumental in the following section:

Definition 5.27. There is a monoidal conjugation functor (−) : AffLagRelk →
AffLagRelk given by:

n,m

· · ·

· · ·

7→

· · ·

· · ·

−n,−m , n,m

· · ·

· · ·

7→

· · ·

· · ·

n,−m , a 7→ a

In the case of k = Fp for p an odd prime, this is transported to the complex
conjugation along AffLagRelFp

∼= Stabp:

Lemma 5.28. For odd prime p, AffLagRelFp and Stabp are isomorphic as �-compact
closed categories.

Proof. We know that all stabilizer states are of the form C|0⟩⊗n for C Clifford opera-
tor. We already gave the generators for the qupit Clifford group and know that they
are unitaries with respect to the Hermitian adjoint.

The affine symplectomorphisms corresponding to the generators of the Clifford
group can be easily verified to be unitaries with respect to the dagger (−)† := ((−))∗.
Moreover, |0⟩ is an isometry in Stabp with the Hermitian adjoint just as is an

isometry with respect to (−)† := ((−))∗.

Remark 5.29. We restate the interpretation of passive electrical circuits in terms of
phased spiders for affine Lagrangian relations. An idealized junction, a resistor with
resistance r, a capacitor with capacitance c and an inductor with inductance ℓ are
interpreted as:

u

w
v

· · ·

· · ·

}

�
~ =

· · ·

· · ·

,

u

v r

}

~ = 0, r ,

u

v c

}

~ = 0, cs ,

u

v ℓ

}

~ = 0,−1/(ℓs)
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In the work of Baez et al., the relational semantics of electrical circuits is broadened
even further to capture current and voltage sources as affine Lagrangian relations over
R(s) [BCR18]. A voltage source is a component with a fixed voltage v, imposes the
affine Lagrangian relation:{ ([

z0
x0

]
,

[
z1
x1

])
∈ R(s)2(2) | x1 − x0 = v, z1 = z0

}
so that it is interpreted as the phased-spider:

u

w
v v −

+

}

�
~ = v, 0

Similarly a current source has a fixed current I, imposing the affine Lagrangian
relation: { ([

z0
x0

]
,

[
z1
x1

])
∈ R(s)2(2) | z0 = I = z1

}
so that it is interpreted as the following diagram:

u

w
v I

}

�
~ =

−I, 0

I, 0

5.4 Affine coisotropic relations and mixed stabi-

lizer circuits

In this section we show that by only requiring that the morphisms are affine coisotropic
subspaces (subspaces V so that V ω ⊆ V ) instead of affine Lagrangian subspaces
(where V ω = V ), we can capture the maximally mixed state/discarding; with which
we can recover state preparation and measurement compositionally.

Remark 5.30. The cozero linear relation 2n→ 0 is an isotropic subspace since:( )ω
= = ⊃

And dually the discard linear relation 0→ 2n is coisotropic since:( )ω
= = ⊃
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Recall from Lemma 2.57 that given a matrix A : n→ m in cbk:

imA
= A ,

kerA
= A∗

Therefore, if we ask that A is a Lagrangian relation rather than matrix, we find that
kernels of Lagrangian relations are isotropic subspaces and the images are coisotropic
subspaces.

All (co)isotropic subspaces are generated in this way:

Theorem 5.31 (Symplectic Stinespring dilation). Every coisotropic subspace of k2n

of dimension n+m is the image of a Lagrangian isometry m→ n.

Proof. Suppose that we have a coisotropic subspace V ω of k2n with dimension n+m.
Then V is an isotropic subspace of k2n with dimension n − m. Applying Fourier
transforms, we obtain a subspace symplectomorphic to V generated by a matrix
whose pivots are all in the Z block. Therefore, we can row reduce this matrix to
obtain one of the following form:[

In−m ZB XA XB

]
By applying Ca gates from the first n − m wires to the last m wires, we obtain an
isotropic subspace V ′ generated by a matrix of the following form:[

In−m 0 X ′
A X ′

B

]
Therefore we have V ′ = UV for a symplectomorphism U . Since all of the rows of

the basis for V ′ are orthogonal with respect to the symplectic form, we have:

0 =
[
In−m 0 X ′

A X ′
B

]
ω
[
In−m 0 X ′

A X ′
B

]T
=
[
In−m 0 X ′

A X ′
B

] [
−X ′

A −X ′
B In−m 0

]T
= In−m(−X ′

A)T + 0(−X ′
B)T +X ′

AIn−m +X ′
B0

= (−X ′
A)T +X ′

A

So that X ′
A = (X ′

A)T is a symmetric matrix. Therefore, the following matrix
generates a graph state, and thus a Lagrangian subspace of k2(n+m): In−m 0 0 X ′

A X ′
B 0

0 Im 0 (X ′
B)T 0 Im

0 0 Im 0 Im 0


Let W ⊆ k2(n+m) be the Lagrangian subspace generated by this matrix. Then

W

=
V ′
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And thus

W

U †

=
V

Therefore, V ω is the image of the Lagrangian relation:

W ′ :=

W

U †

which is an isometry.

Corollary 5.32. Every affine coisotropic subspace of k2n of dimension n+m is the
image of a an affine Lagrangian isometry m→ n.

Remark 5.33. More concretely the prop is CoIsotRelk is generated by adding to
the image of the embedding LagRelk ↪→ LinRelk; and dually, IsotRelk is generated by
adding to LagRelk ↪→ LinRelk. So that the symplectic complement extends to an

isomorphism of props (−)ω : CoIsotRelk ∼= IsotRelk.

The props AffCoIsotRelk and AffIsotRelk are generated by respectively adding

and to the images of the embeddings AffCoIsotRelk,AffIsotRelk ↪→ AffRelk. How-
ever, in this case, they are not isomorphic as:

1 = but 1 ̸=

Theorem 5.34. CPM(AffLagRelk, (−)) ∼= AffCoIsotRelk

Proof. Consider the identity on objects map CPM(AffLagRelk, (−))→ AffCoIsotRelk,
sending:

ff

7→
f

This is clearly bijective on objects. This is full by Corollary 5.32. So we just have to
show that it is faithful and well defined. Take some f

∧
∈ CPM(AffLagRelk, (−))(0, n)

with purification f . Then for z⃗0, x⃗0, z⃗1, x⃗1 ∈ kn:
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(z⃗0, x⃗0, z⃗1, x⃗1) ∈ f
∧
⇐⇒

ff

z⃗0 x⃗0 z⃗1 x⃗1

=

ff

⇐⇒

ff

−z⃗1 x⃗1 −z⃗0 x⃗0

=

ff

⇐⇒

ff

z⃗0 − z⃗1

x⃗0 + x⃗1

z⃗1 − z⃗0

x⃗0 + x⃗1
=

ff

⇐⇒ (z0 − z⃗1, x⃗0 + x⃗1, z1 − z⃗0, x⃗0 + x⃗1) ∈ f
∧

Therefore, maps in CPM(AffLagRelk, (−))(0, n) are determined by their diagonal ele-
ments (−z, x, z, x). Take:

g =

f

Therefore the following logical equivalence:

ff

−z⃗

x⃗
z⃗

x⃗
=

ff

⇐⇒

f

z⃗ x⃗

=

f

is equivalent to the following logical equivalence:

gg

−z x z x

= gg ⇐⇒ g =
g

z x
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We prove the latter logical equivalence. If g is the identity, then for all (z, x) ∈ k2n:

−z x z x = and = z x =

Given any map g : m→ n in AffLagRelk, regarded as a state, we know that (z, x)
is a stabilizer for g precisely when (−z, x) is a stabilizer for g. However, we know
that the cup discards these diagonal stabilizers on the bottom of g and the codiscard
map discards all Weyl operators.

Corollary 5.35. For odd prime p:

AffCoIsotRelFp
∼= CPM(AffLagRelFp) ∼= CPM(Stabp)

That is, adding the discard relation to AffLagRelFp gives a semantics for quopit
mixed stabilizer circuits and mixed circuits in Spekkens’ qubit toy model. Graph-
ically:

s {
=

s {
=

{((
z
x

)
, ∗
)

: ∀z, x ∈ Fp
}

=

s {

By mixed stabilizer circuits, we mean stabilizer circuits which can be obtained by
discarding part of a pure stabilizer circuit, not an arbitrary convex combination of
stabilizer circuits. Note that the terms “stabilizer mixed state/circuit” and “mixed
stabilizer state/circuit” can interchangeably refer to either notion.

Mixed stabilizer states are also known as stabilizer codes for reasons that will
become clear in Section 5.5. Mixed qubit biaffine stabilizer states are often called
CSS codes, but there seems to be some ambiguity in the literature regarding wether
to allow affine Z/X phases.

This is conceptually very close to the result of Huot and Staton where they show
that the affine completion of isometries between finite dimensional Hilbert spaces,
which freely adds a discard map, yields completely positive trace-preserving maps
[HS19]. And even more similar, to the more refined result of Carette et al., where
they show that various fragments of the ZX-calculus can be augmented with quantum
discarding by freely adding a generator which discards isometries [CJPV21].

Although in our case the quantum discarding is interpreted as the literal discard
relation of the corresponding stabilizers, therefore our semantics never departs from
affine relations.

It was already known that stabilizer codes are in bijection with affine isotropic
subspaces; for example, this was observed by Gross [Gro06, Section A]. Indeed affine
coisotropic subspaces are in bijection with affine isotropic subspace by taking the
symplectic complement of the linear component of the affine subspace; however, as
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noted in Remark 5.33, AffIsotRelFp ̸∼= AffCoIsotRelFp , so their compositions as affine
relations are different. The interpretation of the doubled cozero as the quantum
discard map is not sound with respect to relational composition. This is closely
related to the discrete Wigner function of Gross which we will comment further on
in Remark 5.40.

This formalizes the relationship between mixed stabilizer circuits and stabilizer
tableaux with not-necessarily-full rank in a compositional way. It is standard, and
indeed very useful to interpret a stabilizer state in terms of its stabilizer tableau: which
is an augmented basis L+a of an affine isotropic subspace. In order to compose these
tableaux, one must take the symplectic complement of the linear component of both
spaces, and then compute their relational composition as affine coisotropic relations.
Then the stabilizer tableau for this composite is obtained by taking the symplectic
complement on the linear component once again.

Absolutely remarkably, and seemingly out of nowhere, the Weyl-free mixed quopit
stabilizer circuits modulo invertible scalars can be expressed in terms of an iterated
CPM construction1 with respect to the orthogonal complement at the inner level, and
the complex conjugation at the outer level:

Corollary 5.36. Given a prime p:

IsotRelFp
∼= CoIsotRelFp

∼= CPM(CPM(LinRelFp , (−)⊥), (−))

The middle isomorphism holds by fixing the affine shift to be 0. The astounding
symmetry involved here raises the question if iterating the CPM construction more
times; or with respect to different group representations. Perhaps the work of Gogioso
can shed some light on this question [Gog19].

In order to add measurement and state preparation in the symplectic setting we
inspect the structure of the Z and X projectors:

Definition 5.37. The Z and X projectors are defined as follows in AffCoIsotRelk:

pZ := = pX := =

The Z projector discards and then codiscards the Z-gradient: cutting the Z gra-
dient in two so that no information is preserved, while acting trivially on the X
gradient. Dually for the X projector. Concretely, these are interpreted as the follow-
ing relations:

u

v

}

~ =

{([
z
x

]
,

[
z′

x

])
∈ k2+2 | ∀z, z′, x ∈ k

}
1Recalling Definition 3.2.
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u

v

}

~ =

{([
z
x

]
,

[
z
x′

])
∈ k2+2 | ∀z, x, z′ ∈ k

}

Recallling Definition 3.6 we split one of these projectors:

Definition 5.38. Denote the two-coloured prop generated by splitting pZ in AffCoIsotRelk
by

AffCoIsotRelMk := Split{p⊗n
Z ,1n|n∈N}(AffCoIsotRelk)

Let Q = (11, 11) denote the original object and C = (11, pZ) the object obtained
by splitting pZ . In the quantum setting, the object Q can be interpreted as a quantum
channel and the object C as a classical channel.

We could have instead split pX , or split both pX and pZ ; however, all three of these
coloured props are equivalent. This equivalence is witnessed via the Fourier transform.
Indeed this suffices to split all nonzero projectors up to isomorphism because all
projectors of the same dimension are affine symplectomorphic. It is important to
remark that the choice of projectors which are split effects the code-distance, because
code-distance is basis dependent, and not invariant under equivalence.

This category has a succinct presentation; adding the affine relations to AffCoIsotRelk
obtained by cutting/splitting the Z projector in two:

Theorem 5.39. The full subcategory of AffCoIsotRelMk generated by tensor powers
of C is isomorphic to AffRelk. Therefore AffCoIsotRelMk is isomorphic to adding the
following linear relations to the image of AffCoIsotRelMk → AffCoIsotRelk in the way
which makes this into a two-coloured prop:

and

We draw the wire associated to C as a coil to indicate the type (although this
is just syntactic sugar). In the quantum setting, the classical state “lives” on a
single wire and the stabilizer state “lives” on the doubled wires. Because of this, the
aforementioned circuits are interpreted in terms of state preparation and measurement
in the Z-basis:

u

w
v

}

�
~ = ,

u

w
v

}

�
~ =

For example, given any classical dit x ∈ Fp, to prepare the state |x⟩ is to take the
composite:
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u

w
v

x, 0

}

�
~ =

x

= x =

t

x, 0

|

The state preparation and discarding in the X-basis are obtained by composition
of these morphisms with the Fourier transform; yielding morphisms which discard
the X wire instead of the Z wire:

u

wwww
v

F

}

����
~

=

u

w
v

}

�
~ = ,

u

wwww
v F †

}

����
~

=

u

w
v

}

�
~ =

Remark 5.40. Compare this relational semantics of measurement to the discrete
Wigner function of Gross [Gro06]; which is the discrete version of the Wigner’s quasi-
probabilty distribution [Wig32]. Gross shows that on quopit stabilizer states, this
is a probability distribution given by the indicator function of an affine Lagrangian
subspace [Gro06, Lemma 9] (actually it works just as well for stabilizer codes/affine
coistropic subspaces):

PG(L+a) : F2n
p → [0, 1); (z, x) 7→ 1/|L| · δL+a(z, x) =

{
1/|L| if (z, x) ∈ L+ a

0 otherwise

This probability distribution is uniform so that every outcome is equally likely. For
example, the measurement of a stabilizer state G(L + a) in the Z basis produces
outcome |x⟩ with probability: ∑

z∈Fp

PG(L+a)(z, x)

Moreover, this marginalization over z acts backwards on the state; so that in accor-
dance with Spekkens toy model, the observer gains at most one pit of information by
sampling x, but injects at most one pit of uncertainty back into the ontic state.

In the conventional, functional approaches to measurement of stabilizer states/states
in Spekkens’ toy model, for example Catani and Browne construct “measurement up-
date rules” to compute this back action on the state [CB17]. This is essentially
the same procedure performed to compute the effect of measuring a qubit stabilizer
states, as described in the paper of Aaronson and Gottesman [AG04]. However, in the
relational paradigm, the measurement outcome, the measurement update, the state
preparation and the unitary evolution of the quantum state are all computed in the
same way: by taking the relational composition.

Remark 5.41. Recall that in Lemma 3.11, we used the Hopf rule to show that
preparing Z-basis and then measuring in the X-basis preserves no information. In
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the symplectic picture, this result becomes purely topological:

u

wwww
v

}

����
~

= = =

u

wwww
v

}

����
~

For this reason, we can prove the correctness of the qupit quantum teleportation
algorithm discussed previously in Protocol 3.12 using only spider fusion:

Example 5.42. Given any prime p, the following equations of string diagrams in
AffCoIsotRelMFp

proves the correctness of the quantum teleportation protocol where
Alice on the left teleports a quopit to Bob, on the right. They share a Bell state (on
the bottom of the diagram) and two classical dits (drawn as coiled wires).

u

wwwwwwwwwwwww
v

Alice Bob

Phase correction

Measurement

}

�������������
~

= =

= = =

u

wwww
v

}

����
~

Because AffCoIsotRelMFp
is a subcategory of relations, composable maps are ordered

by subspace inclusion (ie, it is poset-enriched). Moreover, since all possible outcomes
are equally likely we can identify when the measurement statistics of one process arise
from the marginalization of the measurement statistics of another process:

Definition 5.43. Take two quopit stabilizer circuits with state preparations and
measurement f, g interpreted as parallel maps in AffCoIsotRelMFp

. Then f is a coarse-
graining of g when f ⊂ g is a (strict) affine subspace.

Example 5.44. For an extreme example, the circuit obtained by preparing in the
Z-basis and measuring in the X-basis is a coarse-graining of the identity circuit on a

162



classical wire: u

wwww
v

}

����
~

= ⊂ = =

u

wwww
v

}

����
~

This follows from unit of the adjunction for the counit in the Cartesian bicategory of
relations AffRelFp (see Definition 2.60). Conceptually, this is because, given any input
state, the circuit on the right hand side can produce any output state; however, the
identity circuit forces the inputs to be the same as the outputs.

Example 5.45. Similarly, the decoherence map is a coarse-graining of the identity
on a quantum wire : u

wwww
v

}

����
~

= ⊂ =

u

wwww
v

}

����
~

5.4.1 Electrical circuits with control and measurement

This coloured view of things recaptures Boisseau and Sobocińki’s relational semantics
for controlled voltage and current sources as well as ammeters and voltmenters [BS22],
but now in a symplectic setting. However the situation is more nuanced than for
quantum circuits. AffCoIsotRelMR(x) gives a semantics for all of the electrical circuit
components we have discussed so far in addition to the controlled voltage and current
sources:

u

w
v −

+

}

�
~ := = ,

u

w
v

}

�
~ := =

Or in thick-thin spider notation, the controlled voltage and current sources have the
following form:

u

w
v −

+

}

�
~ =

u

www
v

}

���
~
,

u

w
v

}

�
~ =

u

www
v

}

���
~

On the other hand the dual two-coloured prop AffIsotRelMR(x) gives a semantics for all
of the uncontrolled components we have discussed so far as well as voltmeters and

163



ammeters:

u

w
v V

}

�
~ = = ,

u

w
v A

}

�
~ = =

These are the orthogonal complement of the interpretation of stabilizer thick-thin
spiders in terms of linear relations:

u

w
v V

}

�
~ =

u

www
v

}

���
~

⊥

,

u

w
v A

}

�
~ =

u

www
v

}

���
~

⊥

The controlled voltage source is the electrical circuit analogue of a X-phase correction
in quantum circuits. Similarly, the controlled current source is the transpose of a
measurement in the X-basis. However the voltmeters and ammeters have no quantum
analogue.

Just as Spekkens’ toy model can be interpreted as an epistemically restricted toy
theory of quantum circuits; by dualizing things, we could also ask what properties
of quantum mechanics hold in AffIsotRelMFp

. This is an “ontologically restricted” toy
theory of quantum mechanics; or equivalently an epistemically “co-restricted” toy
theory. In other words, where there is a minimum amount of knowledge the observer
has about the ontic state so that discarding a state imposes extra equations on the
epistemic state. We showed how affine isotropic relations are not compatible with
discarding; however this view of measurement is not compatible with quantum theory
for the following reason. If we added the quantum analogue of ammeters to our
relational semantics of pure stabilizer circuits, we could compose the ammeter with
another ammeter conjugated by the symplectic Fourier transform as follows:

This would allow us to simultaneously measure the Z and X observables which is not
possible in quantum mechanics due to the uncertainty principle.

5.5 Error correction

In this section, we show how to implement quantum error correction protocols for
stabilizer codes using the string diagrams we developed in the previous section. See
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the work of Gottesman [Got97] or Nielsen and Chuang [NC10] for reference on sta-
bilizers codes and error correction. Nothing in this section is particularly novel from
a technical point of view; however, it is conceptually different from the way that
stabilizer codes are usually explained.

The graphical algebra approach to error correction which we employ in this section
strictly generalizes that of Kissinger [Kis22], where CSS codes are interpreted in linear
relations over F2.

Fix an odd prime local dimension p. Consider an affine coisotropic subspace
S = L+a ⊆ F2n

p where L has dimension n+k (or for qubits take an affine coisotropic
subspace S = L + a ⊆ F2n

p without linear phase). Then the associated projector on
n-quopits is called a [n, k]-stabilizer code, as it encodes k logical quopits into n physi-
cal quopits. The relationship between logical and physical quopits can be understood
in terms of pictures. We will draw the doubled string diagrams for calculation ac-
companied by the quopit stabilizer thick-thin spider diagrams to give a less cluttered
presentation.

Recalling Corollary 5.32, fix a unitary dilation U of S:

S

n n

=
U

n− k

n n

kk n− k

=

u

www
v

H(U)

}

���
~

The induced isometry, called the encoder, embeds k logical quopits into n physical
quopits:

U

n− k

n n

k
n− k

k

=

u

wwwww
v

H(U)

}

�����
~

Splitting this projector fixes a basis {b1, . . . , bn−k} for Lω which fixes the possible
measurement outcomes:

U

n− k

n n

kk n− k

=

u

wwwww
v

H(U)

}

�����
~

Suppose that Alice encodes a state on k logical qupits into n physical qupits using
this isometry and then sends it to Bob on a noisy quantum channel. Recall from
Lemma 3.26 that Weyl operators form a unitary operator basis. So that given any
error on a quantum channel we can decompose it as a linear combination of Weyl
operators W(e).
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To detect the error, Bob applies the non-destructive measurement with respect to
H(U)(1k ⊗Z⊗(n−k))H(U)†, which we draw in our calculus as follows:

U †

U

or in the thick-thin spider picture:

H(U)†

H(U)

Because stabilizers preserve Weyl-operators under conjugation, in the symplectic
picture, we have W ((a, b), (c, d)) = U ;W (e);U †. Therefore:

U

W (e)

U †

U

Nondestructive

Encoding

Alice Bob

Error

measurement

=

U ;W (e);U †

U

=

U

a b c d

=

U

a b c d d

=

U

a b c d

d =

U
d

U ;W (e);U † =

W (e)

d
U

In the thick-thin spider picture, that is:

H(U)

H(U)†

H(U)

W(e)
=

H(U)

d, 0
W(e)
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The tuple d ∈ Fn−kp is called the syndrome. The syndrome measures the displace-
ment of the basis elements bi by errors. An error W (e) is undetectable if and only
if the syndrome is the zero vector; this is because e commutes with everything in
L + a meaning that e ∈ Lω + a. In particular, the trivial error is undetectable; so
undetectable errors are indistinguishable from having no errors at all.

To correct for errors, given any nonzero syndrome measurement d ∈ Fn−kp , Bob
picks an error W(e) which he wishes to correct. The choice of errors which Bob
chooses to correct for determines a function f : Fn−kp → F2n

p sending d 7→ e. Given
syndrome d, Bob applies the operation W(−f(d)) to his n quopits. Finally, Bob
applies U † to the quantum channel and then discards the last n− k quopits.

If f is an affine transformation, then there is a classically controlled operation
cf : C⊗(n−k) ⊗Q⊗n → Q⊗n which imeplements this controlled operation, so that:

U

W (e)

U †

U

Syndrome

Encoding

Alice Bob

Error

measurement

cfError correction

U †Decoding

=

U

d

W (e)

cf

d

U †

=

U

W (e)

W (−f(d))
d

U †

=

U

W (e− f(d))

dU †
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Or in the thick-thin spider picture:

H(U)

H(U)†

H(U)

W(e)

cf

H(U)†

=

H(U)

d, 0

W(e− f(d))

H(U)†

So that if e = f(d) then this reduces to the identity channel:

U

W (e)

U †

U

Syndrome

Encoding

Alice Bob

Error

measurement

cfError correction

U †Decoding

=

U

W (e− f(d)) d

U †

=
U

dU †

=
d

=
d
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Or in the thick-thin spider picture:

H(U)

H(U)†

H(U)

W(e)

cf

H(U)†

=

H(U)

d

W(e− f(d))

H(U)†

=

H(U)

d

H(U)†

=

d

=

d

We use the threefold qubit repetition code (see [NC10, Section 10.1.1]) as an example
(which is permissible within our calculus because it is a CSS code, that is, it has
trivial linear phase):

Example 5.46. Consider the Linear subspace:

S = {((z1, z2, z3), (x1, x2, x3)) : x1 = x2 = x3} ⊆ F2(3)
2

which can be written in the form of a circuit:

S

= = =

u

ww
v

}

��
~

S is coisotropic because:

S

= ⊇ = =
Sω

Chopping off the maximally mixed state gives us an encoding map:
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Also, we will choose to measure in the Z-basis, so we split the projector:

Suppose there is an error W ((a, b, c), (d, e, f)), then we have the following error de-
tection circuit:

a b c d e f

Alice

Bob

=
e fd e + d f + da b c

Suppose we want to correct for single X errors, then we find that:

� An X error (d, e, f) = (1, 0, 0) yields syndrome (e+ d, f + d) = (1, 1)

� An X error (d, e, f) = (0, 1, 0) yields syndrome (e+ d, f + d) = (1, 0)

� An X error (d, e, f) = (0, 0, 1) yields syndrome (e+ d, f + d) = (0, 1)

� An X error (d, e, f) = (0, 0, 0) yields syndrome (e+ d, f + d) = (0, 0)

Therefore, we want to apply the correction (s, t) 7→ (st, s(t + 1), (s + 1)t). This is a
nonlinear function, so we have to leave category AffCoIsotRelMFp

. The error correction
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protocol then has the following form:

a b c d e f

Alice
Bob

&
&

&

1 1

= g gg

e + d f + d

a b c

where

g := d+(e+d)(f+d) = e+(e+d)(f+d+1) = f+(e+d+1)(f+d) = de+ef+fd mod 2

If no more than one of d, e, f is 1 then g = 0. If furthermore a = b = c = 0, then:

g gg

e + d f + d

a b c =

e + d f + d

=

e + d f + d

Therefore this error correction protocol corrects for at most one X-error.

5.6 Discussion

It is important to note that the controlled operation we applied for the error correc-
tion step in the previous section requires nonlinear classical processing power, and
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therefore the diagram we drew doesn’t “live” within the calculus AffCoIsotRelMFp
we

have constructed in this chapter.

Indeed, in this example, we have secretly been working in the pushout of the
ffollowing diagram of coloured props:

ZX&/ ∼← AffRelF2 → AffCoIsotRelMF2

where ZX&/ ∼ is the prop of qubit relations which we presented by taking a quotient
of the prop ZX&. Moreover AffRelF2 → ZX&/ ∼ sends linear subspaces to subsets;
and AffRelF2 → AffCoIsotRelMF2

sends

(n
f−→ m) 7→ (C⊗n (p⊗n

Z ,f,p⊗m
Z )

−−−−−−−→ C⊗n)

So we can regard the classical wires as being arbitrary subsets rather than affine
subspaces. We can afford to do this because we gave ZX&/ ∼ in the previous chapter;
however, this is not very satisfying. We only have a presentation for the qubit version.
This gives more motivation to actually work out a presentation for the quopit version
of ZX&/ ∼ .

This raises the following question: what is the algebraic characterization of mixed
stabilizer circuits/mixed CSS codes with nonlinear phase-correction. More concretely,
what subcategory of affine relations is obtained by adding the decohered and gate:

u

wwwww
v

.

}

�����
~

= .

Although we have given generators for AffCoIsotRelk, we have not given a complete
set of relations. Note however, that there is an embedding AffCoIsotRelk ↪→ AffRelk,
and we already know that AffRelk does admit a complete presentation. In the specific
case for prime fields, our work combined with Booth et al.’s completeness result for the
quopit stabilizer ZX-calculus [BC22] yields a complete presentation for AffCoIsotRelFp .
The follow-up paper of Poór et al. which establishes a unique “AP-normal form” for
quopit circuits greatly simplifies this presentation [PBC+23] 2. A completness result
for arbitrary fields closely following their techniques is forthcoming [BCC24b].

Finding a presentation this fragment of the continuous variable ZX-calculus is
closely related to the question of finding a graphical calculus for passive linear elec-
trical circuits with current and voltage sources. Cockett et al. give a complete
set of equations for the electrical circuits generated by ideal junctions and resistors
[CKS23]. The normal form which they use involves a modified pivoting rule which

2A semantic version of this normal form also appeared in the paper of Cockett et al. [CKS23];
which is closely related to the “standard form” for qubit stabiliser codes of Cleve and Gottesman
[CG97].
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avoids rewriting the resistances to be negative. So finding a presentation for affine
Lagrangian relations would be very close to adding current and voltage sources to the
presentation of Cockett et al. [CKS23]. However, not every affine Lagrangian relation
over R can be interpreted as an electrical circuit, so one would have to take extra
care to answer this question. Perhaps the preceding paper of Cockett et al. [CKP22],
motivated by connecting the relational semantics of electrical circuits and stabilizer
circuits, could help answer this question. They give a normal form for circuits in
LagRelk, although not an explicit rewriting procedure.

The connection of the ZX-calculus to classical mechanical circuits is fascinating
and leaves many questions open; however, once that the association is made with
categories of affine Lagrangian/coisotropic relations, then this connection should not
be surprising. Lagrangian relations were invented for classical quantization: the
program of giving classical explanations for fragments of quantum mechanics [GS79].
Indeed, in a forthcoming paper we show how affine lagrangian relations over R can be
extended... or affine Lagrangian relations over C can be restricted to give a semantics
for Gaussian circuits with infinitely squeezed states [BCC24a]. Gaussian circuits are
a tractable fragment of infinite dimensional quantum mechanics, analagous to how
stabilizer circuits are a tractable fragment of finite dimensional quantum circuits (see
Theorem 3.34). This approach suggests using categories of relations to give a compact
closed semantics for infinite dimensional fragments of the ZX-calculus, as well as a
concise way to deal with the problems involving dirac deltas. This is in contrast to the
nonstandard analysis approach of Gogioso et al. which is significantly more powerful,
yet complicated [GG17].

This connection also motivates finding generators and relations for classical me-
chanical systems. For the specific case of electrical circuits, there has already been
some work in this direction [BS22, CKP22, CKS23]; however, the connection between
the quantum ZX-calculus and these calculi for classical mechanical systems has not
yet been exploited.

For example, using the technique developed by Baez et al. in [BE15] and applied
to electrical circuits in the followup paper [BCR18], AffCoIsotRelFp(s) apparently gives
a notion of mixed stabilizer circuits with discrete-time evolution. What is the physical
interpretation of this? Similarly, could the impedence boxes of Boisseau et al. [BS22]
be used for quantum circuits?

Going in the other direction, there are already tools for rewriting ZX-diagrams
[KZ15, KW20a, Vara, Varb]. ZX-diagram simplification has been used to optimize
quantum circuits [DKPW20, KW20b]; however quantum computers are not currently
useful. This motivates modifying the software and techniques for quantum circuit sim-
plification to be used in the domain of classical mechanical systems. Such systems
exist everywhere where there is a notion of Hamiltonian flow: for example, networks
of roads through which traffic flows, computer networks through which information
flows, factories through which goods flow, and so on. The potential industrial appli-
cations in control theory motivate further inquiry into this subject.

From a geometric viewpoint, this also motivates finding presentations for La-
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grangian relations with respect to hyperbolic or parabolic form. In other words,
mechanical systems where the phase space has uniformly positive or negative curva-
ture: this would be presented by adding different generators to affine relations. The
author suspects that, over odd prime fields, this may have applications in the theory
of topological stabilizer codes.
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Chapter 6

Conclusion

In this thesis, we have given nondeterministic semantics for two classes of circuits.

First, we gave a presentation ZX& for the class of qubit circuits generated by
the Toffoli gate, the not gate as well as the states |0⟩,

√
2|+⟩ and effects ⟨0|, ⟨+|

√
2.

We showed that this is isomorphic to the full subcategory of spans of finite sets (or
equivalently matrices over the natural numbers) where the objects are powers of the
2 element set. We also imposed a quotient to give a presentation for the full subcat-
egory of relations of finite sets (or equivalently matrices over the Boolean semiring)
where the objects are powers of the 2 element set. In order to prove this, we gave
a simpler characterization of the Cartesian completion of a discrete inverse category:
which is one half of the equivalence between partially reversible and partial comput-
ing with copying. We restated this construction in terms of freely adding counits
to the diagonal maps; and showed how this can be related to the construction of
unnormalized stochastic systems from quantum systems. We analyzed the interac-
tion of all of these generators and showed how larger and larger fragments of ZX&
can be constructed incrementally using pushouts and distributive laws; revealing the
different nondeterministic/partial structures which occur along the way.

Secondly, we investigated the structure of stabilizer circuits; and showed how quo-
pit stabilizer circuits are isomorphic to the prop of affine coisotropic relations over
Fp. To perform this, we studied the props of (affine) (co)isotropic and Lagrangian
relations using graphical linear/affine algebra and the tools of categorical quantum
mechanics. We gave generators for the each of these props and showed how over
prime fields, Lagrangian relations can be presented as the CPM construction applied
to linear relations with respect to the orthogonal complement. We showed that dou-
bling the prop of (affine) Lagrangian relations again with respect to the symplectic
generalization of complex conjugation, given any base field, yields the prop of (affine)
coisotropic relations. We showed how by splitting the idempotents for the Z or X
projectors one obtains a two-coloured prop where the state preparation and mea-
surement maps have elegant relational interpretations. We showed how this gives a
graphical semantics for mixed stabilizer circuits/stabilizer codes which are broadly
used for quantum error correction. Also we related this semantics of mixed stabilizer
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circuits to relational semantics for electrical circuits.

In both of these two examples, these props are not only monoidal categories, but
there are 2-cells between the maps themselves specifying when circuits with con-
strained behaviour can be coherently transformed into less constrained circuits. In
the case of ZX&, this comes from the fact that it is a Cartesian bicategory. On the
other hand, for qupit mixed stabilizer circuits, we showed how this embeds into the
Cartesian bicategory of relations AffRelFp .

In this thesis, we have regarded circuits as subspaces respecting certain structures.
By changing the structure which is respected, and thus the notion of subspace, one
therefore yields different classes of circuits. This line of thinking leaves several threads
open.

First, is to generalize ZX& to qudits; providing semantics for other full subcat-
egories of spans and relations of finite sets/matrices over the natural numbers and
Booleans. In some sense, we have given the first model of “graphical algebraic geom-
etry,” to be compared with graphical linear algebra [BSZ17], graphical affine algebra
[BPSZ19], graphical polyhedral algebra [BGS21], graphical piecewise-linear algebra
[BP22]. Note that in some sense, our graphical analysis (affine) (co)isotropic rela-
tions is also the first step towards graphical symplectic algebra. Of course by splitting
idempotents in ZX& we would obtain presentations for the full categories matrices
over the naturals and Booleans. The challenge is to find satisfying well-structured
presentations of these categories, not an encoding of base n arithmetic in base 2. Do-
ing so would potentially be the first step in proving completeness for qudit fragments
of the ZH-calculus. We hinted at a potential way to solve this by computing Gröbner
bases string-diagrammatically.

We also did not give a completely satisfying investigation into the connection
between the two-sided (co)unital completion of the inverse products of a discrete
inverse category and Cartesian bicategories (of the span-variety, not of relations). In
general, it is natural to ask: when one takes the subcategory of partial isomorphisms
of a Cartesian bicategory, when will the original Cartesian bicategory be recovered
by adding units and counits to the inverse products. Is it enough to impose that
the unit and counits be adjoint to each other, or will information about the original
Cartesian bicategory be lost?

In terms of stabilizer circuits there are also many unanswered questions. First, is
giving a presentation for affine coisotropic relations. This will not be too hard to do,
given the recent developments on presenting quopit stabilizer circuits, as discussed
in Section 5.6. This is a very important thing to work out, because of the close
connection to Gaussian quantum mechanics. Even outside of the realm of quantum
mechanics, giving a relational semantics thereof will possibly shed more light on the
classical connection between Gaussian probability and nondeterminism as in the work
of [SS22].

It would also be really interesting to augment our two-coloured semantics for
stabilizer circuits and affine classical processing with stronger classical processing.
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If the relational semantics for p-mode nonlinear classical nondeterministic circuits
were combined with quopit stabilizer circuits, what sorts of quantum states could be
constructed. Is this the convex hull of stabilizer states?

Also in our categorical analysis of stabilizer codes, we have not given a graphi-
cal/categorical account of code distance, which of great practical importance in quan-
tum error correction.

For the interested reader, the author has also coauthored work which was not
included in this thesis, all in some broad sense studying the connection between
linear logic and quantum computing [CDH20, CCS21, CH23].
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Pablo Arrighi & Prakash Panangaden, editors: Proceedings 17th Inter-
national Conference on Quantum Physics and Logic, Paris, France, June
2 - 6, 2020, Electronic Proceedings in Theoretical Computer Science 340,
Open Publishing Association, pp. 60–90, doi:10.4204/EPTCS.340.4.

[CPV13] Bob Coecke, Dusko Pavlovic & Jamie Vicary (2013): A new descrip-
tion of orthogonal bases. Mathematical structures in computer science
23(3), pp. 555–567, doi:doi.org/10.1017/S0960129512000047. Available
at https://arxiv.org/pdf/0810.0812.pdf.

[CRSS97] A. R. Calderbank, E. M. Rains, P. W. Shor & N. J. A. Sloane (1997):
Quantum Error Correction and Orthogonal Geometry. Phys. Rev. Lett.
78, pp. 405–408, doi:10.1103/PhysRevLett.78.405. Available at https:

//arxiv.org/pdf/quant-ph/9605005.pdf.

[CRSS98] A.R. Calderbank, E.M. Rains, P.M. Shor & N.J.A. Sloane (1998): Quan-
tum error correction via codes over GF(4). IEEE Transactions on Infor-
mation Theory 44(4), pp. 1369–1387, doi:10.1109/18.681315. Available
at https://arxiv.org/pdf/quant-ph/9608006.pdf.

[CS97] J.R.B. Cockett & R.A.G. Seely (1997): Weakly distributive cate-
gories. Journal of Pure and Applied Algebra 114(2), pp. 133–173,
doi:10.1016/0022-4049(95)00160-3. Available at https://www.math.

mcgill.ca/rags/linear/wdc-fix.pdf.

[CW87] A. Carboni & R.F.C. Walters (1987): Cartesian bicategories I. Jour-
nal of Pure and Applied Algebra 49(1-2), pp. 11–32, doi:10.1016/0022-
4049(87)90121-6.

[DKPW20] Ross Duncan, Aleks Kissinger, Simon Perdrix & John van de Wetering
(2020): Graph-theoretic Simplification of Quantum Circuits with the ZX-
calculus. Quantum 4, p. 279, doi:10.22331/q-2020-06-04-279. Available
at https://arxiv.org/pdf/1902.03178.pdf.

[DN06] C.M. Dawson & M.A. Nielsen (2006): The Solovay-Kitaev algo-
rithm. Quantum Information and Computation 6(1), pp. 81–
95, doi:10.26421/qic6.1-6. Available at https://arxiv.org/pdf/

quant-ph/0505030.pdf.

[DP09] Ross Duncan & Simon Perdrix (2009): Graph states and the necessity
of Euler decomposition. In: Conference on Computability in Europe,

183

http://pages.cpsc.ucalgary.ca/~robin/Theses/ucalgary_2019_comfort_cole.pdf
http://pages.cpsc.ucalgary.ca/~robin/Theses/ucalgary_2019_comfort_cole.pdf
https://doi.org/10.4204/EPTCS.340.4
https://doi.org/doi.org/10.1017/S0960129512000047
https://arxiv.org/pdf/0810.0812.pdf
https://doi.org/10.1103/PhysRevLett.78.405
https://arxiv.org/pdf/quant-ph/9605005.pdf
https://arxiv.org/pdf/quant-ph/9605005.pdf
https://doi.org/10.1109/18.681315
https://arxiv.org/pdf/quant-ph/9608006.pdf
https://doi.org/10.1016/0022-4049(95)00160-3
https://www.math.mcgill.ca/rags/linear/wdc-fix.pdf
https://www.math.mcgill.ca/rags/linear/wdc-fix.pdf
https://doi.org/10.1016/0022-4049(87)90121-6
https://doi.org/10.1016/0022-4049(87)90121-6
https://doi.org/10.22331/q-2020-06-04-279
https://arxiv.org/pdf/1902.03178.pdf
https://doi.org/10.26421/qic6.1-6
https://arxiv.org/pdf/quant-ph/0505030.pdf
https://arxiv.org/pdf/quant-ph/0505030.pdf


Springer, pp. 167–177, doi:10.1007/978-3-642-03073-4 18. Available at
https://arxiv.org/pdf/0902.0500.pdf.

[FST19] Brendan Fong, David Spivak & Rémy Tuyéras (2019): Backprop as
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