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Abstract

Monoidal dagger compact categories were proposed by Samson Abramsky and Bob Coecke

in [1] as a mathematical model for quantum theory. This is an alternative to, and a

generalisations of, the Hilbert space model. Together with their colleagues, they have

extended this to a versatile framework for quantum computing. Recently, Jamie Vicary

has proposed an alternative framework in terms of weak 2-categories in [20]. In this

dissertation, we will discuss these models. The focus is on the interaction of classical and

quantum information, as this is particularly important for most quantum protocols.

In chapter 1 we will give a general introduction to categorical quantum mechanics. We

discuss the basic concepts of quantum information and classical information; as well as

different interpretations of quantum theory.

In chapter 2, we give an overview of the development of categorical models for quantum

computing in terms of monoidal dagger compact categories. This includes the monoidal

categories CP (C), Split†(CP (C)), CP ∗(C) . Besides the technical details, we look at the

interpretation of these models and how they represent different features of quantum theory,

such as scalars, the Born rule, and classical information.

In chapter 3, we discuss weak 2-categories and their graphical language as models for

quantum theory. These are a generalisation of the category 2Hilb. We define a module

theoretic construction 2(−) that turns a general monoidal category into a 2-category. This

construction preserves most interesting properties of monoidal categories: dagger functors,

compactness and biproducts. In addition, we propose a definition of dagger Frobenius

algebras in 2-categories. This is a generalisation of dagger Frobenius algebras in monoidal

categories. Furthermore, we describe a class of 2-categories, of which all 1-cells have

canonical dagger Frobenius algebras. This is important for quantum computing because in

these categories all states can be deleted. Finally, we work out in detail what the structure

of the 2-categories 2(FHilb), and 2(Rel) is; and we construct an isomorphism between

a full subcategory of 2(FHilb) and the weak 2-category 2Hilb. The category 2(FHilb) is

important, because FHilb is the original model for quantum theory; and the category 2(Rel)

is interesting, because Rel is a model for classical possibilistic computation.

In chapter 4, we give an overview and comparison of the categorical models we have

discussed. We also point out some remaining open questions and interesting questions

for further research.

Our contribution is:

• A module-theoretic framework, that provides a mathematical foundation for 2-categorical

models of quantum theory. A detailed mathematical description of properties of this
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model, including dagger functors, biproducts, compactness, dagger Frobenius algebras,

and measurements.

• A detailed description of the category 2(FHilb), and an isomorphism between a full

subcategory of 2(FHilb) and 2Hilb.

• A detailed description of dagger Frobenius algebras and dagger modules on dagger

Frobenius algebras in the category Rel; a description of the category 2(Rel).
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Chapter 1

Introduction

In this dissertation, we will discuss several mathematical models for quantum theory. These

models are important for the development of quantum computer science because they

provide us with an abstract language to describe quantum processes, in which protocols are

easily manipulated and checked for correctness. This gives us a high level of understanding

of how quantum theory works and what we can do with it. Also, from the perspective of

foundations of physics, it is interesting to explore models that generalize quantum theory,

and relate it to other (physical) theories.

This work is part of the categorization program, which aims to find a categorical foundation

for physics and mathematics. At the moment, this is still formulated in set theoretical terms.

We assume familiarity with category theory, as well as with quantum mechanics. However,

we will give a brief introduction to quantum information.

All lemmas are proven by the author, unless explicitly stated otherwise.

1.1 Mathematical models for quantum theory

The model that was originally proposed for quantum theory was formulated by Von

Neumann, in terms of Hilbert spaces and completely positive operators on Hilbert spaces.

This model has been successful in predicting outcomes of experiments, and its functionality

is generally accepted amongst physicists. However, expressing and checking quantum

protocols in this model involves matrix calculations, which can become rather complicated.

By quantum protocols, we mean anything we can do using the rules of quantum theory,

that is in some way interesting or beneficial. For instance: quantum algorithms, quantum

teleportation or quantum key distribution.

Symmetric monoidal dagger compact closed categories were introduced by Abramsky and

Coecke in [1], as an alternative model for quantum theory. This model generalises
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various aspects of Hilbert spaces. These categories naturally have a sound and complete

diagrammatic language. This means that any well-typed equation in the model is provable

from the axioms, if and only if its graphical representation is valid in the diagrammatic

language. This makes it straightforward to reason about quantum protocols. As we

will see, this model captures scalars, vectors, entanglement, classical structures, pure

states, no-cloning, and the Born rule. It does not involve a generalization of the

Schrödinger-equation, which describes how physical states change continuously with time,

depending on their energy level. The model is based on the assumption that we can realise

any energy level at any moment on the quantum system we are working with, and therefore

it is possible to apply any (unitary) operation on this system. This is convenient in the sense

that it makes the model simple and elegant. In the process of actually building a quantum

computer, the Schrödinger-equation cannot be ignored. In practice, the establishment of

some energy levels for our system can be challenging. Naturally, not everything that can

be described by the model can be built (yet). However, for programming languages for

quantum computing, we are only interested in whether or not there exists a transition from

one state to the other, rather than whether this transition can be practically established.

Subsequently, variations on this model have been proposed. For example, the category

CPM(C), which describes mixed states, and the category CP ∗(C),categories, which is the

category of Frobenius algebras in a monoidal category. All of these variations on the work

of Abramsky and Coecke are monoidal categories, but they all have a different approach to

classical and quantum information.

Simultaneously, symmetric monoidal 2-categories were proposed by Vicary in [20], as a

model for general physical theories. The motivation was to give a generalisation of the

2-category 2Hilb, which makes it possible to reason about quantum protocols as a whole,

independent of branching due to measurement.

1.2 Classical and Quantum information

With classical information, we mean information that can be processed by classical

computers. This is usually modelled by collections of bits, and operations on bits. Bits

are two-valued systems. We call the different values of a system the states of the system.

Quantum information is given by Hilbert spaces. The elements of these Hilbert spaces, up to

a complex scalar multiple, represent the set of all possible states. Information about the state

of an object is obtained by measurement, which is given by self adjoint operators. These

self adjoint operators are sums of orthogonal projectors {Pi}, which sum to the identity.

One of the distinguishing properties of quantum theory is that a measurement alters the

state of the system that it measures. The possible outcomes of a measurement on a state
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φ, are given by the images Pi(φ) of φ, under the projectors. After the measurement, the

state is either destroyed, which we call a demolition measurements, or altered to the state

of the outcome of the measurement Pi(φ), which we call a non demolition measurement. So

we cannot obtain information about the original state by measurement, but we do know the

state that the system is in after the measurement.

If we apply the same measurement twice, the second time the system behaves classically in

the sense that we obtain information about the state, but it is not altered. This is due to self

adjointness of the measurement. Measurements are generally not reversible because we do

not know the original states. As well as measurements, there are also reversible operations.

Quantum systems have the property that parts of the system can interact with each other,

even when they are spatially separated. We call this entanglement of quantum systems. We

can no longer accurately describe the systems individually. Together they form a compound

system, which is the tensor product of the individual systems. If we apply a measurement

on part of a compound system, this instantaneously determines the state of the other part.

This property is the key to interesting quantum protocols such as quantum teleportation,

dense coding and quantum key distribution.

The counterpart of the bit is the qubit: the two dimensional complex Hilbert space C2,

up to complex scalar multiples. The possible states of a qubit are given by all non zero,

normalised elements of C2: normalised 2-dimensional complex vectors. Any orthonormal

basis of C2 is a pair of 2-dimensional vectors, so this corresponds to a bit. Therefore, we can

encode classical information as the basis of a quantum system. An orthonormal basis defines

a family of orthogonal projectors that project to the basis vectors, therefore it corresponds

to a measurement. The space of all possible outcomes of this measurement is exactly the

corresponding bit.

Similarly, if a quantum system is in one of its base states, it behaves classically with respect to

the measurement corresponding to this basis. In this case, the outcome of the measurement

equals the original state with probability 1 when measured. This requires a specification

of a state and of a measurement. Consequently, we cannot talk about classical states in

general within the context of quantum information.

However, in many processes in quantum computing, the interaction between classical and

quantum information plays an important role. The first example is a measurement, since it

takes quantum data as input and classical data as output. Another important example is

a controlled operation. This is a finite collection of operations f = {fi}i=1,...,n on quantum

systems. The input has a classical component that can take the values 1, ..., n and a quantum

component Q. The controlled operation f(i, Q) gives fi(Q) as output. These two examples of

interaction of classical and quantum information are, alongside entanglement and reversible

operations, the building blocks of quantum teleportation.
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There are different paradigms for quantum computing, such as the circuit model and

measurement-based quantum computing. In all of them, the interaction between classical

information and quantum information plays a fundamental role. Naturally, the semantics

for these types of quantum computing should involve a model that includes both quantum

information and classical information.

1.3 Physical processes and interpretations of Quantum

Theory

’Physical processes’ is the general term for all things that can happen to a physical object,

like a qubit. In classical physics, all physical processes are predictable, and in theory,

reversible. In quantum mechanics we know from experience that measuring a system

changes the system in an uncontrolled way. When we measure a system, the outcome

of the measurement and the resulting system is in one of the base states. We do not know

in advance which of the base states. Even if we do know in which state the quantum system

is we can only calculate the probability that it will be in one of the base states after the

measurement. As a result, we cannot obtain information about a system without changing

its state. This change is unpredictable, and irreversible. So in quantum mechanics, next

to ordinary physical processes, there is another fundamentally different type of physical

process.

One interpretation of this phenomenon is called the collapse of the wave function. Quantum

systems are described as wave functions which describe all possible states. When measured,

these possible states are reduced to the one that corresponds to the measurement outcome.

Within the Hilbert space model for quantum theory, these two types of physical processes

are exactly captured by density matrices and morphisms between density matrices, which

are called completely positive maps.

Within this framework, we can represent mixtures of classical and quantum systems, such

as indexed sets of quantum systems. These mixtures arise naturally in physics, for instance

when we have statistical information about a collection of quantum systems. Similarly,

this is the case when we have a lack of knowledge about a system, because we can deal

with this by assigning a probability distribution on all possible states. Both cases can be

described by an indexed collection of quantum states, such that each state has a certain

probability. The index set is a system of classical information, while the individual systems

are quantum systems. This framework also captures systems that are entangled to another

system we do not have knowledge about, or badly isolated systems that are altered because

of an interaction with their environment. In this case, the environment can be regarded as

a quantum system that is entangled to the system we are looking at.
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The difficulty with this interpretation is that we cannot exactly describe when a system

collapses and when we are dealing with an ordinary unitary operation. By conducting

experiments, we know that relatively bigger quantum systems are less stable then smaller

quantum systems; in other words, they are more likely to collapse into a classical system

by themselves. There is no answer to the question of what the cause of the collapse is.

Furthermore, it is difficult to unify this interpretation with special relativity theory for the

following reason: If we have two entangled systems and one is being measured, then the other

one should collapse simultaneously. However, in general relativity theory, ’simultaneously’

has no meaning, as there exists no notion of ’the same time’ for objects that are far apart.

So there is no answer to the question of when exactly this wave function collapses.

Alternatively, we can describe a measurement as a physical operation that causes an

entanglement between the system that is being measured and the bigger system around it,

including the person who is doing the experiment. This can be seen as a flow of information

between the system and its environment. In that case, the measurement outcome that is

observed by the experimenter corresponds to the state that the quantum system is in, but

the pair of the state of the quantum system and the state of the measurement outcome are in

a superposition of all possible states with corresponding outcomes. Let us say that we have

a quantum system X that is in superposition ax1 + bx2 of the base states x1 and x2. If this

is being measured by an experimenter, a new system is created: the experiment outcome Y

that has y1 and y2 as possible outcomes (these correspond to x1 and x2 respectively). The

measurement of X causes an entanglement between X and Y. The resulting joint system

after the measurement is then in the superposition ax1y1 +bx2y2 of x1y1 and x2y2, and there

is no collapse.

This interpretation does not correspond to our experience, as we experience only one state.

At the same time, it is not very clear whether we could know if we are in a superposition

of spaces. This raises the question if and how this interpretation can possibly be falsified.

It is difficult to argue that this interpretation is impossible, as we do not know of any

fundamental difference between very small systems, which can be in a superposition, and

larger systems which includes the experimenter. From this perspective, the distinguishing

factor between quantum systems and classical systems is rather isolation than size. The

only reason why the measurement of bigger objects does not cause a collapse can be that

the experimenter is already entangled to the object that is measured. We only experience

quantum behaviour in very small systems because these systems are easier to isolate. From

this perspective, quantum behaviour is something relative, instead of something absolute.

The paragraph above is a very brief description of what is known by the ’many worlds’

interpretation or ’decoherence’ interpretation of quantum mechanics. ’Decoherence’ is the

term for the information flow of quantum systems to their environment, and ’many worlds’

refers to the idea that everything in our world is in a superposition of many possible worlds.
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There is a mathematical model that corresponds to both interpretations, this is the category

2Hilb. This captures only pure quantum systems, but from an ’outside’ perspective that

takes the environment of the system into account.
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Chapter 2

Symmetric monoidal dagger compact
closed categories

2.1 Definitions

Category theory is an elegant tool to describe physical processes abstractly. The objects of

a category represent the physical systems, and the morphisms represent the evolution of the

state of a system. We recall the definition of a category:

Definition 2.1.1. A category C is a structure that consists of

• a collection of objects

• collections of morphisms C(A,B) for all objects A,B, which are called hom-sets

Such that

• For all morphisms f ∈ C(A,B), g ∈ C(B,C), we have the composition g◦f ∈ C(A,C)

• For every object A, there is an identity morphism idA

• For all morphisms f,g,h, such that the composition h ◦ g and g ◦ f is well defined,

(h ◦ g) ◦ f = h ◦ (g ◦ f)

2.1.1 Monoidal categories

In reality, we may have several physical systems that we want to describe in parallel. This

gives the motivation to work with monoidal categories.
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Definition 2.1.2. Monoidal category

A monoidal category is a category C equipped with the following data:

• a tensor product ⊗, which is a functor from C×C to C

• an object I, which we call the unit object

• a natural isomorphism whose components, which correspond to triples of objects of

C, are morphisms αA,B,C : (A⊗B)⊗C)→ A⊗ (B⊗C). These components are called

the associators.

• natural isomorphisms λ and ρ whose components, which correspond to objects of C,

are the morphisms I ⊗A λA−→ A and A⊗ I ρA−→ A, respectively. These components are

called left- and right unitors respectively.

We require that every well-formed equation built from ◦, ⊗, id, α, α−1, λ, λ−1, ρ and ρ−1 is

satisfied. In that case we say that C satisfies the coherence condition.

We can think of the tensor product of different systems as systems that are spatially

separated.

There are several examples of monoidal categories, the following three are described in [9]:

Example 2.1.3. FHilb, the category of finite dimensional Hilbert spaces and linear maps.

The tensor product is the ordinary tensor product of Hilbert spaces, the unit object is the

one dimensional Hilbert space C, the dagger is the adjoint of matrices. The associator and

left and right unitors are the unique linear maps (A⊗B)⊗ C α−→ A⊗ (B ⊗ C), I ⊗A λ−→ A

and A⊗ I ρ−→ A such that α((a, b), c)) = (a, (b, c)), λ(1, a) = a and ρ(a, 1) = a.

Example 2.1.4. Set, the category of sets and functions. The tensor is given by the

Cartesian product, the unit object is the one element set {∗}. The associator is the function

αA,B,C((a, b), c)) = (a, (b, c) on all elements a ∈ A, b ∈ B, c ∈ C. The left and right unitors

are the functions λ(∗, a) = a and ρ(a, ∗) = a for all a ∈ A.

Example 2.1.5. Rel, the category of sets and relations. This is a monoidal category in

exactly the same way as Set is.

Definition 2.1.6. The states of an object A are defined as the morphisms I → A. If A is a

tensor product A1 ⊗ A2, the entangled states are the morphisms I
f−→ A1 ⊗ A2 that are not

product states. This means that they cannot be written as I
λ−1

−−→ (I⊗I)
fA1
⊗fA2−−−−−→ (A1⊗A2).

The states of a Hilbert space H were defined as the elements of H, which are vectors. Every

vector v corresponds to the linear map from C to H that maps 1 to v. This corresponds to

the abstract definition of a state.
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Monoidal categories have an elegant graphical language, which is sound and complete by

[16]. In this language, the unit object I is written as an empty space, an object A is written

as the wire

A (2.1)

This is also the picture of the identity morphism idA on A. A morphism A
f−→ B is written

as a box and morphisms I
g−→ C, C

I−→ are written as triangles.

A

B

f

C

f f

C (2.2)

The composition of morphisms g ◦ f is written as

A

B
f

g

C

(2.3)

For the interpretation of the diagrams, time flows upwards, so the bottom of the diagram is

the input and the top of the diagram is the output. There is always an input and an output,

because when the picture at the bottom or top is empty, this is the unit object.

The tensor product of morphisms f ⊗ f ′ is written as

9



A

B B′

A′

f f ′

(2.4)

Space is presented horizontally: a juxtaposition of the objects normally means that the

objects are spatially separated.

Associativity of composition and the identity morphism are implicit in the diagrammatic

language because (f ◦ g) ◦ h and f ◦ (g ◦ h) are both expressed by

f

g

h

(2.5)

and f ◦ idA and idB ◦ f are both expressed by

A

B

f

(2.6)

The length of the wires is not important. λA, ρA and the associator αA,B,C are given by

A A A B C

λA = ρA = αA,B,C =

(2.7)
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The interchange law (g ◦ f)⊗ (g′ ◦ f ′) = (g ⊗ g′) ◦ (f ⊗ f ′) which follows from functoriality

of ⊗ is also immediately clear in our diagrammatic language as both sides of the equality

are represented as

g

f

g′

f ′

(2.8)

2.1.2 Symmetry

If we interpret the tensor product as spatial separation of systems, it is reasonable to argue

that A⊗B is more or less the same as B⊗A. This is made precise by the following definition.

Definition 2.1.7. A monoidal category C is symmetric if there exists a natural isomorphism

σ consisting of morphisms A⊗B
σA,B−−−→ B⊗A, such that σB,A◦σA,B = idA⊗B and ρA = λA◦σA,I

for all objects A,B of C, such that the diagram below commutes.

(A⊗B)⊗ C

(B ⊗ A)⊗ C B ⊗ (A⊗ C)

B ⊗ (C ⊗ A)

(B ⊗ C)⊗ AA⊗ (B ⊗ C)

σ ⊗ C

α

B ⊗ σ

α

σ

α

(2.9)

In our diagrammatic language, we draw the map σA,B as

A B (2.10)
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2.1.3 Dagger

Symmetric monoidal categories do not capture an analogue of the inner product of Hilbert

spaces. This is a defining property of Hilbert spaces, which is used to formulate the Born

rule. The Born rule enables us to determine the probability distribution on the possible

outcomes of a measurement. The inner product corresponds to the notion of adjoints,

which can be generalised by a dagger functor.

Definition 2.1.8. A dagger functor on a category C is a contravariant functor C
†

=⇒ C that

is the identity on objects satisfies †(†(f)) = f for all morphisms f. We write f † for †(f).

A unitary morphism is a morphism u such that u† = u−1. A symmetric monoidal dagger

category is a symmetric monoidal category with a dagger functor such that α, σ, ρ and λ are

unitary and (f ⊗ g)† = f † ⊗ g†.

We depict the image of the dagger functor in our graphical language as the original graph

flipped about a horizontal axis. To make this clearly visible, we will make our boxes

asymmetric in the horizontal axis. Graphically it looks like

f †
=⇒ f

A

B A

B (2.11)

2.1.4 Compactness

In quantum theory, there are different levels of entanglement with an upper bound, which

we call a maximally entangled state. This is formalized in terms of dual objects.

Definition 2.1.9. An object A in a monoidal category is left dual to an object A∗ (and

A∗ is right dual to A) if there exist two morphisms I
ηA−→ A∗ ⊗ A and A ⊗ A∗ εA−→ I such

that the following two diagrams commute. We call these diagrams the snake equations. The

snake equations are a generalisation of the line-yank equations, which are defined in terms

of linear maps on Hilbert spaces.

12



A

A⊗ A∗ ⊗ A A

idAidA ⊗ ηA

εA ⊗ idA (2.12)

A∗

A∗

A∗ ⊗ A⊗ A∗

idA∗ ⊗ εA

ηA ⊗ idA∗

idA∗

(2.13)

In a monoidal dagger category and in a symmetric monoidal category, left-dual objects are

are the same time right-dual objects, witnessed by η† and ε† and by σ◦η and ε◦σ respectively.

This was observed in [19] and [9].

Definition 2.1.10. A symmetric monoidal dagger category C is compact if for every object

A there is a dual object A∗. We call a category dagger compact, when it is symmetric

monoidal dagger category that is compact and ε† = σ ◦ η and ε ◦ σ = η†.

Example 2.1.11. FHilb is a dagger compact category. The symmetry isomorphism σA,B

is given by the unique linear map σ : A ⊗ B → B ⊗ A given by σ(a, b) = (b, a). The dual

of a Hilbert space H is the Hilbert space H∗, of continuous linear functions from H to C.

Let {xi} be an orthonormal basis of a Hilbert space H. The morphism ηH : C→ H∗ ⊗H is

the unique linear map such that ηH(1) = x∗i ⊗ xi, where {xi} is the collection of states that

corresponds to the orthonormal basis of H. εH : H⊗H∗ → C is defined as εH(xi, x
∗
j) = 〈xi|xj〉

on the basis {(xi, x∗j)} of H ⊗H∗. The dagger functor † maps linear maps to their adjoint.

Example 2.1.12. Rel is also a dagger compact category. The symmetry morphism

σ : A ⊗ B → B ⊗ A is given by the relation (a, b) ∼ (b, a). Every object is its own

dual and the morphisms η : {∗} → A × A and ε : A × A → {∗} are given by the relations

{∗ ∼ (a, a)|a ∈ A} and {(a, a) ∼ ∗|a ∈ A}. The dagger : B
R†−→ A of a relation A

R−→ B is

defined as {bR†a|a ∈ A, b ∈ B, aRb}.

Graphically we write dual objects with reversed arrows, and witnesses of duals as caps and

cups. The direction of the arrow is only relative.

A =

A

A∗ =

A

εA = ηA =

A A

A A

(2.14)
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The snake equations become:

= =

(2.15)

Compactness is a useful condition because in our diagrammatic language this allows us to

bend wires of any diagram without changing its meaning, as long as the starting and end

points of a wire stay in the same place.

In a compact category, duality of objects extends to a duality functor, that maps every

object and every morphism to their dual. This is proven in [9]. The dual of a morphism is

defined as follows:

Definition 2.1.13. In a compact monoidal category, the dual A∗
f∗−→ B∗ of the morphism

A
f−→ B is defined as

f

A

B

f :=

(2.16)

It follows from the definition that

=
f f

f=f

(2.17)

Note that in mathematical literature f ∗ is often used for the adjoint of a matrix, which in

this setting corresponds to f †.

Duality of objects is independent of the choice of the morphisms η and ε, which is shown

in [9]. The states η correspond to generalised Bell states in Hilbert space. These states are
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called maximally entangled. If we measure one part of a maximally entangled state, this

completely determines the other part. This follows directly from the equation above.

By lemma 3.16 of [9], the dagger functor commutes with the duals functor. The composition

f∗ := f †∗ = f ∗† is called the conjugation of f . In FHilb, this corresponds to the conjugation

of matrices.

The diagrammatic language of dagger compact categories that we described below is

complete and sound. This is proven in [16].

2.1.5 Superposition

A category C is enriched in commutative monoids, when each hom-set C(A,B) has a

commutative monoid structure that is compatible with composition. This means that there

is an action ′+′ on C(A,B) and a unit element u ∈ C(A,B) for all A,B, such that

f + g = g + f (2.18)

f + (g + h) = (f + g) + h (2.19)

f + u = f (2.20)

(g + g′) ◦ f = (g ◦ f) + (g′ ◦ f) (2.21)

g ◦ (f + f ′) = (g ◦ f) + (g ◦ f ′) (2.22)

This is also known as a superposition rule, as it is necessary to be able to express

superposition of states.

2.1.6 Dagger biproducts

Recall that in a category C that is enriched in commutative monoids, a biproduct of two

objects A1, A2 is an object A1 ⊕ A2, together with morphisms ij : Aj → A1 ⊕ A2 and

pj : A1 ⊕ A2 → Aj for j = 1, 2, such that

idAj = pj ◦ ij (2.23)

0A1,A2 = pA2 ◦ iA1 (2.24)

0A2,A1 = pA1 ◦ iA2 (2.25)

idA1⊕A2 = (iA1 ◦ pA1 + iA2 ◦ pA2) (2.26)
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Definition 2.1.14. In a dagger category C, a dagger biproduct of objects A1, A2 is a

biproduct such that i†j = pj for j = 1, 2.

FHilb and Rel have dagger biproducts. In FHilb, they are given by the direct sum of

Hilbert spaces and in Rel they are given by the disjoint union of sets.

By lemma 3.21 of [9], if a compact category has biproducts, then the tensor product

distributes over the biproduct.

2.2 Properties of dagger compact categories

As we have seen already, states can be defined abstractly, within the framework of symmetric

monoidal dagger compact categories. It turns out that many properties of Hilbert spaces

can be generalised in this model.

2.2.1 Scalars

Definition 2.2.1. In a monoidal category C, the scalars are the morphisms in C(I, I). By

lemma 2.2 of [9], scalars are commutative in any monoidal category. Let I
a−→ I be a scalar,

and A
f−→ B be a morphism, scalar multiplication a · f is given by the morphism that makes

the diagram below commute:

A B

I ⊗BI ⊗ A

a · f

a⊗ f

λBλ−1
A

(2.27)

By lemma 2.4 of [9], this satisfies the properties of scalar multiplication: i · f = f ,

a · (b · f) = (a ◦ b) · f , (a · f) ◦ (b · g) = (a ◦ b) · (f ◦ g) and (a · f)⊗ (b · g) = (a ◦ b) · (f ⊗ g).

2.2.2 Inner product

One of the defining properties of a Hilbert space is the inner product. We can generalize

this concept using the dagger.
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Definition 2.2.2. The abstract inner product on a monoidal dagger category is an operation

〈−,−〉 that assigns a scalar to a pair of states (φ, ψ) of an object A. This operation is

given by 〈φ, ψ〉 = φ† ◦ ψ. In FHilb, this corresponds to the inner product, since it equals

〈1, φ† ◦ ψ〉 = 〈φ, ψ〉.

2.2.3 Trace

Definition 2.2.3. For any morphism A
f−→ A in a dagger compact category, the abstract

trace is defined as εA ◦ (f ⊗ idA) ◦ σA∗,A ◦ ηA. Graphically this is given by

f

(2.28)

If we apply this to a morphism H
f−→ H of the category FHilb, we get the scalar∑

i,j fi,j〈xj|xi〉 =
∑

i fi,i, where {xi} is the basis of H and fi,j are the scalars such that

f(xi) =
∑

j fi,jxj. This is exactly the trace of the matrix f.

2.2.4 Classical structures

As we argued in the introduction, any semantics for quantum computation needs to involve

the notion of classical information. In the category FHilb, any orthogonal basis of a Hilbert

space corresponds to classical information. This classical information equals the set of

all possible outcomes of the measurement corresponding to this basis. Measurements are

self-adjoint operators. By the spectral theorem, these are sums of projectors.

Bases can be generalised in monoidal categories with dagger biproducts as follows:

Definition 2.2.4. Let C be a monoidal category with biproducts. An abstract basis of

an object A is a unitary morphism base : I1 ⊕ ... ⊕ In −→ A. The basis elements are the

morphisms I
ij−→ (I1 ⊕ ...⊕ In)

base−−→ A for j = 1, ..., n.

An abstract basis defines an isomorphism between an object A and a biproduct of unit

objects I ⊕ ... ⊕ I. Therefore, we can represent classical information as biproducts of the
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unit object. This generalises the fact that classical systems are completely determined by

their individual components.

Every dagger biproduct defines a measurement, given by
∑

n in ◦ pn. By the definition of

a biproduct, this is the sum of projections Pn := in ◦ pn and
∑

n Pn = id. Biproducts also

play a role in the characterisation of quantum states. By lemma 2.10 of [9], if a category

has biproducts, it has a unique superposition rule.

The drawback of using biproducts to characterise classical information is that there is

no diagrammatic language to express biproducts, so this complicates things for practical

purposes.

Another way to look at classical information within monoidal categories is by exploiting

the fact that classical information can be copied and deleted, while there is no uniform

way to copy and delete quantum systems. This is known as the no-cloning and no-deleting

theorems. A copy map on a Hilbert space H
copy−−→ H⊗H is a linear map which is defined on a

basis {xi}i as xi
copy−−→ xi⊗xi. The image of an element φ = c·xi under this map is c·(xi⊗xi).

This equals φ ⊗ φ when is c = 1, hence only the basis elements {xi} are copied. Coecke

and Pavlovic generalised this property of classical states in [4]. They characterised classical

states as those states that can be copied by a commutative dagger Frobenius algebra, which

is the structure that abstractly describes a copy map.

Definition 2.2.5. Let C be a monoidal dagger category. A dagger Frobenius algebra on

an object A is given by a pair of morphisms 5A : A ⊗ A → A and uA : I → A, such that

5A and uA satisfy the equations below.

=

A A A A A A,

=

A A , (2.29)

=

A A A AA A

=

(2.30)

We have used the following diagrammatic notation for uA and 5:
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A⊗ A 5−→ A =: I
uA−→ A =:

A A

A A

(2.31)

Note that by the first two equations, the maps 5 and uA form an internal monoid and their

daggers form an internal comonoid.

The two equations below define commutativity and specialness of dagger Frobenius algebras,

respectively.

=

A AA A

=

AA (2.32)

In [19] it is shown that special commutative dagger Frobenius algebras on objects in FHilb

do indeed correspond to orthogonal bases of Hilbert spaces.

Measurements relative to a classical structure can be defined abstractly as morphisms

A
M−→ A⊗ A such that

M

M

= M

, (2.33)

=M M

(2.34)

And a non demolition measurement also satisfies

19



=M

(2.35)

The left copy of the state A in the output of a measurement should be interpreted as

the resulting quantum system, while the right copy of A corresponds to the classical

measurement outcome.

Note that the dagger of the copy map ∆, satisfies all three equations, so it defines a non

demolition measurement.

Any biproduct with a basis induces a dagger Frobenius algebra, which is the map that copies

the basis elements. This is special and commutative by the definition of the biproduct.

Dagger Frobenius algebras are a more general notion of classicality, as they do not depend

on the existence of biproducts.

Any dagger Frobenius algebra is uniquely determined by its multiplication. This is easy

to see because when (5A, uA) and (5A, u
′
A) both define a dagger Frobenius algebra on an

object A, then we have

=

u′A

u′A
uA

=

u′A

uA

=

uA

, (2.36)

by the Frobenius laws. In this picture we represent 5A by the white dot.

Dagger Frobenius algebras induce a self duality on objects, given by the following maps

(2.37)

The snake duality follows from the Frobenius rules:
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= =

(2.38)

2.3 Completely positive operators

Dagger compact closed categories do not capture mixed states. Historically, Von Neumann

argued that quantum systems should be described as completely positive operators because

these capture both quantum features and classical probabilistic features. Generalising this

idea, Selinger proposed the category CPM(C) in [17] as the framework for semantics of

quantum computing.

Definition 2.3.1. A positive map A
f−→ A is a map of the form A

g−→ B
g†−→ A for some pair

(B,g).

Definition 2.3.2. A completely positive map is a map A∗ ⊗ A f−→ B∗ ⊗B such that

f

A B

A B (2.39)

is a positive map.

Definition 2.3.3. The objects of CPM(C) are the same as the objects of C, and the

morphisms in CPM(C)(A,B) are completely positive maps A∗ ⊗ A f−→ B∗ ⊗B.

By [17], the identity morphism is completely positive, and completely positive maps are

closed under composition, so CPM(C) is a category. Furthermore, if C is dagger compact,

then CPM(C) is dagger compact.

States of CPM(C)), which are maps I∗ ⊗ I φ−→ A∗ ⊗ A, correspond to positive maps from

A to A. This is shown in the picture below. Completely positive maps are exactly the

morphisms that preserve this correspondence, since they are closed under composition.
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φ

I A

I A (2.40)

CPM(FHilb) corresponds to the category of density matrices and completely positive

operators. There is a one to one correspondence between positive linear maps, and density

matrices. Completely positive operators are exactly those operators that preserve density

matrices.

Given a classical object A with a commutative special dagger Frobenius algebra, we can

define the completely positive map

= =

A A A A A A (2.41)

By specialness, this map is idempotent, and by the Frobenius laws it is self-adjoint, so

this map is a measurement. So far we have only discussed a special form of measurement,

namely non-degenerate measurements. In Hilbert space, a non-degenerate measurement on

a Hilbert space H of dimension k is a collection of k orthogonal projections Pi such that

the images of the projections are 1-dimensional and span H. Sums of orthogonal projections

of arbitrary dimension are called degenerate measurements. If we characterise classicality

using biproducts, the analogue of a degenerate measurement is a collection of projections

onto the summands of an arbitrary biproduct. In terms of Frobenius algebras, a general

measurement is defined as

A A

m m

mm

B B (2.42)

This measurement is non-degenerate if m is unitary. This was observed in [4].
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If C has biproducts, we can calculate the probability of getting a measurement outcome

Pi(φ) when applying a measurement
∑

i Pi.

Definition 2.3.4. The probability of getting the outcome corresponding to the projector

Pi when measuring a state φ is given by

Pi

φ
(2.43)

In [17] it is shown that a map f is completely positive if and only if there exists an object

C and a morphism A
f ′−→ C ⊗B such that

f

A

B

A

B BB

A A

f’ f’

C

=

(2.44)

As a consequence, states of CPM(C) are of the form

AA

φ∗ φ

C

(2.45)

It follows that the probability, given by the abstract Born rule, corresponds to taking the

following trace
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P ′

P ′

φ′

φ′

(2.46)

This corresponds by compactness to

P ′

P ′

φ

φ

, (2.47)

which is exactly the Born rule as it was defined on density matrices.

CPM(C) captures the different notions of mixed states as we discussed in the introduction.

We can perform operations on states of the system A, which is part of the bigger system

C⊗A. We can also represent statistical ensembles of quantum states {φi} with probabilities

pi, as:

i∗ i φiπ∗i

∑
i pi

AA∗B∗ B (2.48)

Where the states |i > form an orthonormal basis of A. In Hilbert space, this corresponds to

the density matrix

φ∗i∑
i pi

B

φi

(2.49)
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This can be understood as a mix of quantum amplitudes which are inherent to the states

φi and classical probabilities pi.

We can embed the category C in CPM(C) with the functor FC,CPM(C). This functor is the

identity on objects, and on morphisms it is defined as

BB

A A

f ∗ f

I

FC,CP (C)(f) = f ∗ ⊗ f =

(2.50)

This functor is almost faithful because for morphisms f, g : A → B, FC,CPM(C)(f) =

FC,CPM(C)(g), if and only if there exists a unit scalar φ, such that f = φ · g. This is shown

in [9]. We call a state pure if it is in the image of FC,CPM(C). In that case the mixing is

only by scalars, so it is trivial. We call all the other states mixed states.

Example 2.3.5. By [11], in the category Rel, positive maps are the relations that are

symmetric and satisfy x ∼ y ⇒ x ∼ x. Completely positive maps are relations that satisfy

(a, a′) ∼ (b, b′) if and only if (a′, a) ∼ (b′, b) and (a, a) ∼ (b, b).

Selinger shows in [17] that the category CPM(C) of any monoidal dagger compact category

C is again a monoidal dagger compact category.

2.4 Models for classical and quantum information

In dagger compact categories, we can characterise classical states using biproducts or

commutative special Frobenius algebras. In both cases, the system only behaves classically

with respect to a chosen basis or Frobenius algebra. Because classicality depends on a choice,

there is no expression for classical systems in general. However, implicitly we assume that

some systems are classical. For instance, in the abstract characterisation of a measurement,

one of the output wires represents the measurement outcome, which is a classical system.

To make this rigorous, we need another model that captures classical systems and quantum

systems as distinct concepts. Several constructions of categories, based on dagger compact

categories, have been proposed for this purpose.
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2.4.1 CP⊕(−)

The biproduct completion of CPM(C),was proposed by Selinger in [17] to formalise the

interaction of classical and quantum systems.

Definition 2.4.1. The biproduct completion C⊕ of a category C is the category where:

• The objects are finite tuples of objects of C.

• The morphisms are matrices of morphisms of C.

• Composition of morphisms is given by matrix multiplication and composition in C.

Every category C that is enriched over commutative monoids has a biproduct completion by

[13]. By [17], CPM(C) is enriched over commutative monoids, so CP⊕(C) is well defined

as a category. By proposition 5.1 of [17], it is even a compact dagger category.

Note that if C has biproducts, that these are not preserved by the construction CP⊕, as

morphisms between biproducts in this new category are given by matrices of completely

positive morphisms, while morphisms between biproducts in C are matrices of any

morphisms in C.

We can embed the category CPM(C) in CP⊕(C) with the functor that maps objects A to

the one-tuple 〈A〉 and morphisms f to the 1-by-1 matrix
(
f
)
. Note that this also defines a

functor from C to CP⊕(C), that maps the object A to the one-tuple 〉A〉 and the morphisms

f to the matrix (f ∗ ⊗ f).

In the category CP⊕, classical information is given by biproducts of the unit element

I ⊕ ... ⊕ I while purely quantum systems are those systems that are in the image of C.

Besides purely quantum systems and classical systems, there are also mixes of classical and

quantum systems given by arbitrary biproducts. In FHilb, this corresponds to our notion

of classical and quantum information: bits are of the form 〈C,C〉, which is the biproduct in

CP⊕(C), while qubits are of the form C2.

The category CP⊕(C) captures both interpretations of quantum mechanics that were

described in the introduction. If we restrict to the sub category CPM(−), this describes

systems involving a collapse, while if we restrict to biproducts of pure quantum systems,

this describes systems according to the many worlds interpretation.

2.4.2 Split†(CPM(C))

As we have seen, measurements have classical, mixed or quantum systems as an output,

depending on if they are degenerate or not. Another approach to characterise classical and
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quantum information is to identify measurements with their output. General measurements

are dagger idempotent morphisms p, that is: p = p ◦ p = p†. By proposition 5.8 of [18],

dagger idempotents are uniquely determined by their image.

Definition 2.4.2. We say that a dagger idempotent e : A→ A dagger splits, if there is an

object B and a map f : A→ B, such that e = f † ◦ f and idB = f ◦ f †.

Example 2.4.3. In FHilb, bits arise from dagger splittings of dagger idempotents on qubits.

Recall that a bit corresponds to C ⊕ C and a qubit corresponds to C2. We obtain a bit

from a qubit by the measurement M

(
a b
c d

)
= (a, d). We can encode a bit as the basis of a

qubit with the adjoint of the measurement M †(a, d) =

(
a 0
0 d

)
These maps form the dagger

splitting:

bit

qubit bit

qubit

qubit

bit

M †

M

id

M † ◦M

M

M †

(2.51)

Definition 2.4.4. The category Split†(CPM(C)) is the category obtained by freely dagger

splitting idempotents of CPM(C). The objects are pairs (X,p), where X is an object

of CPM(C) and p : X → X is a dagger idempotent of CPM(C). The morphisms

(X, p)
f−→ (Y, q) are morphisms X

f−→ Y in CPM(C) that satisfy f = q ◦ f ◦ p.

This construction is a restriction of the Karoubi envelope Split(CPM(C)), to the class of

dagger idempotents. By [18], if C is a monoidal dagger compact category with dagger

biproducts, this also holds for Split†(CPM(C)) There is a full embedding CPM(C) ↪→
Split†(C) that maps objects A to (A, idA) and which is the identity on morphisms. As

Split†(CPM(C)) has dagger biproducts, this embedding lifts to CP⊕(C) by universality of

the biproduct completion.

2.4.3 CP ∗(C)

As we have seen in 2.2.4, pure classical states can be characterised as copyable states.

However, this does not extend to classical mixed states. By the no-cloning theorem for

classical probability, states of probability distributions on classical systems are not copyable

either. However, we can characterise classical states in CPM as those states that can be

broadcasted. A broadcast morphism is a Morphism B : A→ A⊗A, such that for any state

φ of A, we have

27



A

A

B(φ)

A

A
A

B(φ)

A

A

A

=

φ

AA

=

(2.52)

In [6], it is proven that the multiplication of a special Frobenius algebra defines a

broadcasting map on the unit, but that this is only a completely positive morphism when

the Frobenius algebra is commutative. In Hilbert spaces, commutative dagger Frobenius

algebras correspond exactly to classical states. Special Frobenius algebras are therefore an

abstract way to distinguish classical from quantum states by broadcastability.

For this reason, it is useful to have a category of physical systems with special dagger

Frobenius algebras to describe the interaction of classical and quantum information.

However, special dagger Frobenius algebras are not closed under biproducts, by an argument

given in [7]: If A is an n-dimensional matrix algebra, and B is an m-dimensional matrix

algebra and A and B are both not normal, the biproduct A ⊕ B would have to be

normalised by two different numbers at the same time, in order to be isometric. It

turns out that in FHilb, special dagger Frobenius algebras correspond to normalisable

dagger Frobenius algebra, which is a slightly weaker abstract condition that we will explain

below. Normalisable dagger Frobenius algebras are in fact closed under biproducts up to

isomorphisms.

Definition 2.4.5. A map z : A→ A is central for the multiplication 5 on A when:

AA A

=

A

z

A

z

A

z

=

(2.53)

Definition 2.4.6. Normalisable dagger Frobenius algebra

A dagger Frobenius algebra in a dagger compact category C is normalisable when it comes

with a central, positive definite map z : A→ A such that
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z

z

A

=

A (2.54)

We call a dagger Frobenius algebra normal if z = idA

Definition 2.4.7. Positive-dimensional

A category C is positive-dimensional, if for every object X of C, there is a positive-definite

map z : I → I, such that

X

z

z

=

X
X

(2.55)

If C is a positive dimensional compact category, by proposition 2.11 of [7], every object

of the form H∗ ⊗ H carries a canonical normalisable dagger Frobenius algebra with the

following multiplication, unit and normalising morphism:

H∗ H HH∗

HH∗ z

(2.56)

Definition 2.4.8. Let C be a dagger compact category. A completely positive morphisms

in C between dagger Frobenius algebras (A,5A, uA) and (B,5B, uB) is a morphisms A
f−→ B

such that for some morphism g,

f = g g

(2.57)
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Here the black dot represents 5A and the white represents 5B.

Completely positive morphisms between normal dagger Frobenius algebras are called

normalised.

Definition 2.4.9. Let C be a dagger compact category. The category CP ∗(C) is the

category of normalisable dagger Frobenius algebras and completely positive maps.

CP ∗n(C) is the subcategory of CP ∗(C) that consists of normal dagger Frobenius algebras

and normalized completely positive maps.

By [10], every normalisable dagger Frobenius algebra is isomorphic to a normal dagger

Frobenius algebra in CP ∗(C). It follows that CP ∗(C) is dagger isomorphic to CP ∗n(C). If

(A,5A,⊥A) and (B,5B,⊥B) are Frobenius algebras, ((A⊗B), (5A ⊗5B), (⊥A ⊗⊥B)) is

again a Frobenius algebra. The tensor also preserves normalisability.

Lemma 2.4.10. Every normal dagger Frobenius algebra is special

Proof. By proposition 2.7 of [7], every normalisable dagger Frobenius algebra is symmetric.

By lemma 2.10 of [7], for every normalisable dagger Frobenius algebra we have the equality

=zz

(2.58)

So for normal dagger Frobenius algebras we have

= =

(2.59)

The first equality is because of the spider rule for symmetric Frobenius algebras [12] and

the second by 2.10 of [7] in the special case that z is the identity.
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Algebraically, this category is very elegant, as it unifies the concepts of classical and quantum

data by expressing them as independent systems, which are both special cases of the same

structure. It is also analogous to a common perspective in physics: to represent quantum

systems by operators on these systems. However, it does not have an obvious physical

interpretation, especially when we talk about the composition of operators.

2.4.4 Dagger Frobenius algebras in Rel

In this section, we will describe the structure of dagger Frobenius algebras in the category

Rel. The lemmas regarding groupoids in this section are generally known, however, we are

not aware of any written reference. For completeness, we have decided to work out their

proofs and include them as lemmas in this dissertation. Commutative dagger Frobenius

algebras in Rel have been described in [14]. The lemmas in this section regarding general

dagger Frobenius algebras in Rel are original work.

Special dagger Frobenius algebras (A,5,⊥) of Rel correspond to groupoids in the following

sense: A corresponds to the collection of arrows of a groupoid, the unit I
⊥−→ A corresponds to

the relation {(∗, u)|u ∈ U}, where U is the collection of unit arrows of A. The multiplication

5 is given by composition of the arrows. This is described in [9]. It is straightforward that

every dagger Frobenius algebra in Rel is normal.

The canonical dagger Frobenius algebra of elements A of CPM(Rel) are indiscrete small

groupoids. That is: indiscrete groupoids such that there is only one morphism between

every two objects. A is the set of objects of the groupoid. A ⊗ A = {(a, b)|a, b ∈ A} is

the set of morphisms a → b. The map A ⊗ A
5−→ B∗ ⊗ B is by definition the relation

((a, b, c, d) ∼ (a, d)|b = c), which is the composition (c, d) ◦ (a, b) if and only if b = c.

Every groupoid is equivalent to a disjoint union of groups; this is a result of the following

lemmas about indiscrete groupoids, which are groupoids such that none of the hom-sets is

empty.

Lemma 2.4.11. All hom-sets of an indiscrete groupoid G are isomorphic

Proof. We will prove that for any three objects A,B,C of G, G(A,C) ∼= G(B,C). Similarly,

G(B,C) ∼= G(B,D) and therefore G(A,C) ∼= G(B,D) for any 4 objects A,B,C,D of G.

G is indiscrete, so we can choose an arrow A
f−→ B. Since G is a groupoid, f has an inverse

B
f−1

−−→ A. We can define the isomorphism F : G(A,C) → G(B,C) as F (g) = gf−1, which

has the inverse F−1 : G(B,C)→ G(A,C) as F (h) = fh.

Groups are categories with one object, where every morphism has an inverse. The elements

of the group correspond to the morphisms of the category and multiplication is given by
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composition of morphisms. Since G is a groupoid, every morphism of G has an inverse, hence

the hom-category G(A,A) for any object A of G is a group. The isomorphism constructed

above between any two hom-sets of the form G(A,A) and G(B,B) is a group isomorphism,

since for f : A → B, and F : G(A,A) → G(B,B) defined as F (g) = f ◦ g ◦ f−1, if

g, h ∈ G(A,A), then F (g · h) = f ◦ g ◦ h ◦ f−1 = f ◦ g ◦ f−1 ◦ f ◦ h ◦ f−1 = F (g) · F (h).

This induces a group structure on any hom-set G(B,C) given by f · g = ξ−1(ξ(f) · ξ(g)),

where ξ : G(B,C) → G(A,A) is an isomorphism. This isomorphism preserves the group

structure by construction; therefore all hom-sets are isomorphic as groups.

Theorem 2.4.12. Every indiscrete groupoid G is equivalent to the group G(A,A) for any

object A of G.

Proof. As none of the hom-sets are empty, we can choose some morphism fB ∈ G(A,B)

for every object B of G. Let F : G → G(A,A) be the functor which is defined on

objects B ∈ Ob(G) as F (B) = A and on morphisms B
g−→ C as F (g) = f−1

C gfB. Let

H : G(A,A)→ G be the inclusion functor.

FH ∼= idG(A,A) by the natural transformation µ, where µA = fA : GH(A)→ id(A). This is

a natural isomorphism, as fA has an inverse.

HF ∼= idG by the natural transformation ν, where νB = fB. This is a natural isomorphism

as fB is an isomorphism for every object B of G.

Every groupoid is a disjoint union of indiscrete groupoids; therefore, it is equivalent to a

disjoint union of groups.

Corollary 2.4.13. The canonical Frobenius algebra on any object of CPM(Rel) is

equivalent to the unit Frobenius algebra (I, λI).

Proof. The canonical Frobenius algebra C on any object of CPM(Rel) is an indiscrete

groupoid. By the previous theorem, it is isomorphic to C(A,A) for any object A of C,

which is the group with one object and one morphism, which equals (I, λI as I is the one

element set {∗}

Lemma 2.4.14. For Abelian groupoids, this equivalence is an isomorphism.

Proof. All arrows in an Abelian groupoid are automorphisms on an object. Suppose there

exists an arrow A
f−→ B. By commutativity, idA ◦ f = f ◦ idA, but f ◦ idA is only defined

if A is the target of f, so B = A. It follows that the groupoid is the disjoint union of the

Abelian groups corresponding the objects of the category.
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As classical structures are commutative special dagger Frobenius algebras and thus Abelian

groupoids, it follows that classical structures are disjoint unions of Abelian groups. This

was observed by [14].

2.5 Functors between monoidal categories

Recall that if C is a positive dimensional category, every object A of CPM(C) has a

canonical Dagger Frobenius algebra (∆A, uA, zA). In [7] it is shown that the functor

Γ : CPM(C)→ CP ∗(C) given by Γ(A) = (A,∆A, uA, zA) and Γ(f) = f is full, faithful and

dagger symmetric monoidal.

In [10] the authors prove that the functor Γ lifts to a full and faithful functor Γ̄ : CP⊕(C)→
CP ∗(C) by proving that CP ∗(C) is a biproduct category. The biproduct of dagger Frobenius

algebras (A,∆A) and (B,∆B) is given by (A ⊕ B,∆A⊕B, where A ⊕ B is the biproduct

of A and B in C and ∆A⊕B =

(
∆A ◦ (pA ⊗ pA)
∆B ◦ (pB ⊗ pB)

)
: (A ⊕ B) ⊗ (A ⊕ B) → (A ⊕ B)

and >A⊕B =

(
>A
>B

)
. Now the lift follows from the universal property of the biproduct

completion.

In [10] the authors observe that this functor is an equivalence for FHilb. CP ∗(FHilb) is the

category of C∗ algebras by [19], CPM(FHilb) is the category of finite-dimensional matrix

algebras and every C∗ algebra in FHilb is a direct sum of matrix algebras. However, this is

not true in general. By the previous section, dagger Frobenius algebras in Rel are groupoids,

all dagger Frobenius algebras in Rel are normal and the canonical dagger Frobenius algebras

on elements of CPM(Rel) are indiscrete groupoids. Not all groupoids can be written as

biproducts of indiscrete groupoids.

On the other hand, we have an embedding Γ : CP ∗(C) → Split†(CPM(C)) that is given

by Γ(A,∆,⊥, z) = (A,PA,∆,⊥,z) on objects, where

PA,∆,⊥,z =

∆

z

z

5

(2.60)
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and

Γ((A,∆A,⊥A, zA)
f−→ (B,∆B,⊥B, zB)) =

zA

zB

5B

∆A

f

(2.61)

By [10] this embedding is full, faithful and strongly dagger symmetric monoidal. It is still

an open question whether or not this embedding is an equivalence for FHilb. However,

this is likely to be the case because otherwise there exist other structures than classical,

quantum, or mixtures of these.
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Chapter 3

2-categorical models

In this chapter, we will develop a module-theoretic construction of a weak 2-category, from

any monoidal dagger category C. We will call this 2-category 2(C). The category 2(C) can

serve as a model for quantum theory, alternative to the monoidal categories discussed in

chapter 2. The motivation for this abstract categorical model, is that physical systems can

be described as pure quantum systems that interact with their environment. In [20] Vicary

formalises these principles abstractly, which leads to a description of quantum systems in

terms of dagger bimodules of classical structures. The resulting mathematical model is

a 2-category, in which physical systems are described by modules on classical structures,

and physical operations as module homomorphisms. The category 2(C) gives us a detailed

mathematical framework for the ideas developed in [20]. It is slightly more general, as we

will define physical systems as modules on dagger Frobenius algebras, instead of classical

structures. If we restrict to classical structures, this construction gives us a formal definition

of the category described in [20]. If we do not restrict to classical structures, this gives

an extra layer to our model. In that case, we allow the environment to exhibit quantum

behaviour as well. This is not in correspondence with experiments, but it corresponds to the

idea that the environment is another physical system, which is not fundamentally different

from any quantum system. This generalisation turns out to be useful to expose the relation

between the 2-categorical framework and the monoidal category CP ∗(C). When we apply

the construction 2(−) to the category FHilb, we obtain a category in which 2Hilb can be

embedded up to equivalence.

All 2-categories in this chapter are weak 2-categories. Sometimes we will just call them

2-categories, for readability.
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3.1 2-categories

Definition 3.1.1. A weak 2-category is a structure that has 0-cells: A,B,C, ...,

1-cells:M,N, ..., and 2-cells: f, g, h, .... The 1-cells are morphisms between the 0-cells

and the 2-cells are morphisms between 1-cells from the same hom-set. We can compose

1-cells ’horizontally’ and 2-cells both ’horizontally’ and ’vertically’. This is illustrated in the

following picture:

~wf~wg
~wh~wkA B C

M

N

L

M′

N′

L′

(3.1)

We write A
N−→ B

N−→
′
C or N⊗BN ′ and f⊗B h for the horizontal composition of 1-cells and

2-cells, respectively. We write f ◦ g for the vertical composition of 2-cells. This structure

satisfies the following conditions:

1 1-cells are closed under horizontal composition and 2-cells are closed under both

horizontal and vertical composition.

2 There is an invertible 2-cell αM,M ′,M ′′ :(M ⊗B M′) ⊗C M′′ ⇒ M ⊗B (M′ ⊗C M′′) for

every triple of 1-cells A
M−→ B

M′−→ C
M′′−−→ D. This 2-cell is natural with respect to its

arguments.

3 For every 0-cell A there is a 1-cell A such that for every 1-cell A
M−→ B there are two

invertible 2-cells lM : A ⊗A M ⇒M and rM : M ⊗B B ⇒M. These morphisms are

natural with respects to their arguments.

4 Vertical composition is associative and for every 1-cell M there is a 2-cell idM that is

the identity for vertical composition.

5 Vertical and horizontal composition satisfy the exchange law.

Furthermore, the 2-cells of a weak 2-category satisfy the pentagon equality and the triangle

equality. The pentagon equality is given by the following diagram:
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((M⊗A N)⊗B K)⊗C L

(M⊗A N)⊗B (K⊗C L)

M⊗A (N⊗(K⊗CL))

M⊗A ((N⊗B K)⊗C L)(M⊗A (N⊗B K))⊗C L

αM⊗AN,K,L αM,N,K⊗CL

idM ⊗ αN,K,L

αM,N⊗BK,L

αM,N,K ⊗ idL
(3.2)

The triangle equality is the diagram:

M⊗B (B⊗B N)(M⊗B B)⊗B N

M⊗B N

αM,B,N

idM ⊗B lNrM ⊗ idN
(3.3)

We can regard a monoidal category as a 2-category with one 0-cell. Objects of the monoidal

category are the 1-cells, and the morphisms are the 2-cells. Horizontal composition is

given by the tensor product, and vertical composition corresponds to the composition of

morphisms in the monoidal category. Throughout this chapter we will discuss relations

between certain 2-categories, and certain monoidal categories. For this purpose, we will

regard all monoidal categories as 2-categories. By doing this, we make it possible to talk

about functors between 2-categories and monoidal categories. Functors from and to weak

2-categories need only to be defined up to isomorphisms of 0-cells and 1-cells, as 0-cells and

1-cells in weak 2-categories are only defined up to isomorphisms.

3.2 The construction 2(−)

In this section, we will give the definition of a 2-category that can serve as a model for

quantum theory. This is a construction that turns any monoidal dagger category C in the

2-category 2(C). In order to do this, we first need to define several concepts concerning

modules. Finally we will look at the structure of modules in the special case that C has

biproducts.
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3.2.1 Dagger Modules

In our formalism, we will describe physical systems as pure quantum systems, that interact

with their environment. If through this interaction information about the quantum system

is transferred to its environment, then the quantum system behaves classically with respect

to this environment. We model the environment as a separate physical system, which

is described by a dagger Frobenius algebra. The interaction of the pure system with its

environment obeys certain principles. As we would expect, if the quantum system interacts

with its environment twice, the second time will not change its state. This is because

after the first time, the system already behaves classically with respect to its environment.

Furthermore, if somehow the information about the system that is transferred to the

environment is erased, then the quantum system is again in its original superposition of

states. This corresponds to the outcome of experiments concerning quantum erasure, one

such experiment is described in [21].

Modules are a precise way of defining this interaction of a quantum system with its

environment.

Definition 3.2.1. Let C be a monoidal dagger category. A left module M of a Frobenius

algebra A on an object X is a morphism M : A⊗M →M in C that satisfies the following

equations:

M

A A M

M =

M

M

M

MAA

(3.4)

,

M

M

M=

M

M

(3.5)

.

A left module is called a left dagger module if
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MA

M

M=

M

M

M

A

(3.6)

.

A right module M is a morphism M : M ⊗ A→M that satisfies similar equations.

There is no fundamental difference between left and right modules; therefore we will often

just talk about modules.

Observe that by these conditions, a dagger module is exactly the dagger of a measurement.

This is what we would expect, as we interpret a measurement as an interaction with the

environment.

Equation 3.4 formalises the condition that a second interaction of the system with its

environment will not change the system. Equation 3.5 and 3.6 correspond to the condition

that if the transferred information is somehow deleted, this recovers the original state of the

quantum system.

In our model, we allow interaction of quantum systems with two different environments. We

assume that when the system interacts with these two separate environments, on after the

other, the order in which this happens does not matter.

In order to describe the interaction of a quantum system with more than one other system

mathematically, we extend the definition of a module to a bimodule.

Definition 3.2.2. Let C be a symmetric monoidal dagger category. A bimodule of

Frobenius algebras A, B is a morphism M : A⊗M ⊗B →M , where M = M′ ◦ idA⊗ σM,B

and M′ is a left module of A⊗B on M .

M is a dagger bimodule, if M′ is a left dagger module.

This definition implicitly captures the condition that the two interactions are commutative,

as they are described simultaneously.

Any (dagger) bimodule A ⊗M ⊗ B M−→ M is naturally isomorphic to the (dagger) module

(A ⊗ B) ⊗M M′−→ M , by the natural isomorphism idA ⊗ σB,M . Hence, whenever we talk

about dagger modules, this is just as general as when we would talk about dagger bimodules
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and the other way around. For simplicity, we will restrict to dagger modules whenever that

is possible.

In our formalism we require morphisms between pure quantum systems to commute with

the interaction of the system with its environment. This means that if we apply an operation

before an interaction of the system with the environment, we get the same outcome as when

we apply the operation after the system interacts with the environment. These operations

are said to be protected from decoherence. In quantum computing, we need this type

of operation to write a well-defined quantum protocol because we cannot control whether

the operation happens before or after an interaction with the environment. In other words,

operations that are protected from decoherence correspond to deterministic operations. The

following definition makes this precise.

Definition 3.2.3. Let C be a monoidal dagger category. A module homomorphism

f : M → M′ between the modules M : A ⊗ M → M and M′ : A′ ⊗ M ′ → M ′ is a

morphism f : M → M ′ in C on the underlying objects M,M ′ of M,M′, respectively, such

that the following equality holds:

f

M′

=

M

f

A M A M

M ′

M ′M ′

M ′
(3.7)

We will always write modules M in bold letters and their underlying object M in normal

letters. Furthermore, we will make use of the following notation:

M

M

M

A

B

AM := :=

M

MB

M

M

B

A

M

:=

M

:=M

a

Mb

M

M

A

aM M

B b
(3.8)

Moreover, we will write Ma := Ma(M)

The bimodules of a symmetric monoidal dagger category C will play an important role in

the 2-category 2(C). The notation M, AM, MB, aM and Mb will be used to refer to both
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the module in 2(C) and to its corresponding morphism in C. Similarly, we will use the same

notation for module homomorphisms M
f−→M′ and the corresponding morphism M

f−→ M ′

in C between the underlying objects M,M ′. Whenever this is not clear from the context,

we will specify which concept we are referring to.

3.2.2 Tensor product of modules

If one of two entangled quantum systems interacts with its environment, then this determines

the possible joint states of the compound system. One of the characteristics of entanglement,

is that a measurement on any of the two states determines the other state. Hence, it should

not make any difference which of the two entangled systems interacts with the environment.

In our formalism, we describe the joint system with respect to the environment, as the biggest

subspace in which the interaction of one state with the environment has the same result as

the interaction of the other state with the environment. We call this the tensor product

with respect to the environment. Mathematically this is described by the coequaliser of the

two interactions. To ensure the existence of this tensor product, we require the coequaliser

to be a dagger coequaliser. This is a coequaliser A
π−→ B in a dagger category, such that

π† ◦ π = idA.

Definition 3.2.4. Let C be a dagger category where all coequalisers exist, and where all

coequalisers are dagger coequalisers. Let M be a bimodule of A and B on M , let N be a

bimodule of B and C on N , and let π be the coequaliser given by the following picture

M ⊗N M ⊗B N

K

π

f
f̃

M ⊗B ⊗N
MB ⊗ idN

idM⊗ BN

(3.9)

The tensor product of M and N with respect to B is defined as the unique module M⊗BN,

of A and C on M ⊗B N , such that the corresponding morphism in C satisfies the following

equality:
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M⊗B N

π

A M N C

M ⊗B N

=

M N

π

NA M C
B B

M ⊗B N

(3.10)

We need to check that the tensor product M⊗B N exists, and that it is well-defined.

First of all, the module

A M ⊗B N C

M ⊗B N

π

M N

π†

M N

M N

(3.11)

satisfies equation 3.10 because

A

M ⊗B N

C

M ⊗B N

π

M N

π†

M N

M
N

π

M N

=

BB

C

M ⊗B N

M

B

NA

M

NM

B

π

N

(3.12)
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as π† ◦ π = idM⊗N . Observe that this is indeed a module; all module axioms hold because

AM⊗NC is a module, and because π† ◦ π = idM⊗N .

This proves that M⊗A N exists.

Theorem I of section 3.10 of [8] states that every equaliser is monic. Coequalisers are

the duals of equalisers, so every coequaliser is an epic morphism. This means that if there

are two morphisms M ⊗B N, and (M ⊗B N)′ in C that satisfy the equality above, then

M⊗B N = (M⊗B N)′. As a consequence, π is a module homomorphism.

We can extend this to tensor products of morphisms.

Definition 3.2.5. Let C be a symmetric monoidal dagger category, where all coequalisers

exist, and where all coequalisers are dagger coequalisers. Let M be a bimodule of A and

B on M , let N be a bimodule of B and C on N . Let f : M → M ′ and g : N → N ′

be morphisms in C that correspond to module homomorphisms M
f−→ M′, N

g−→ N′. Let

π : M ⊗N →M ⊗B N φ : M ′ ⊗N ′ →M ′ ⊗B N ′ be the coequalisers that define the tensor

products M⊗B N and M′ ⊗B N′ respectively. These morphisms form the diagram below:

M ⊗B ⊗N M ⊗N M ⊗B N

M ′ ⊗B N ′M ′ ⊗N ′M ′ ⊗B ⊗N ′

MB ⊗ idN

idM⊗ BN

M′
B ⊗ idN ′

id′M⊗ BN′

π

φ

f ⊗B gf ⊗ gf ⊗ idB ⊗ g (3.13)

The left square of the diagram commutes because f and g are module homomorphisms.

The morphism φ is the coequaliser of M′
B ⊗ idN ′ and id′M⊗ BN′, so φ ◦ (M′

B ⊗ idN ′) ◦ (f ⊗
idB ⊗ g) = φ ◦ (id′M⊗ BN′) ◦ (f ⊗ idB ⊗ g). By commutativity of the left sub-diagram,

φ ◦ (f ⊗ g) ◦ (MB ⊗ idN) = φ ◦ (f ⊗ g) ◦ (idM⊗ BN). Since π is a coequaliser, there exists a

unique morphism that makes the sub-diagram on the right commute. We define the tensor

product f ⊗B g to be this unique morphism. This is a module homomorphism because π, φ

and f ⊗ g are module homomorphisms.

Lemma 3.2.6. Let C be a dagger category where all coequalisers exist, and where all

coequalisers are dagger coequalisers. Let M be a bimodule of A and B on M , let N be

a bimodule of B and C on N . We have the equality idM ⊗B idN = idM⊗BN.

Proof. The equality holds because both morphisms make the diagram below commute:
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M ⊗ A⊗N M ⊗N M ⊗B N

M ′ ⊗B N ′M ⊗NM ⊗ A⊗N

MA ⊗ idN

idM⊗ AN

MA ⊗ idN

idM⊗ AN

π

π

idM ⊗ idNidM ⊗ idA ⊗ idN

.

(3.14)

Lemma 3.2.7. Let C be a symmetric monoidal dagger category, where all coequalisers

exist, and where all coequalisers are dagger coequalisers. Let A : I ⊗ A ⊗ A → A,

M : A⊗M ⊗B →M , and B : B ⊗B ⊗ I → B be dagger modules of the dagger Frobenius

algebras (A,∆′), (B,∆), and (I, λI), where AA = ∆′ and BB = ∆. Let πA be the coequaliser

of AA ⊗ idM and idA⊗ AM. Let πB be the coequaliser of MB ⊗ idB and idB⊗ BB. There

exist canonical unitary 2-cells M⊗B B
β−→ AM and A⊗AM

γ−→MB, such that β ◦πB = MB

and β† ◦MB = πB, and γ ◦ πA = AM and γ†◦ AM = πA.

Proof. We will show that MB is a coequaliser of MB⊗ idB, and idB⊗ BB. Furthermore, we

show that AM is the unique morphism such that equation 3.10 holds. We will prove that

the canonical unitary 2-cell β then follows from the uniqueness of coequalisers. The proof

of the existence of γ is very similar, so we will leave this out.

Observe that MB ◦ (MB ⊗ idM) = MB ◦ (idM ⊗∆) = MB ◦ (idB⊗ BB). The first equality

is by equation 3.4, and the second by definition of BB.

It is left to show that whenever we have a map f : M ⊗B → K, such that f ◦ (MB⊗ idB) =

f ◦ (idM⊗ BB), it factors through MB. We have the equalities

K

f

BM

M B

f

K

=

B

f

M

A

M

=

M

A

M

M

f=

BM

KK

(3.15)

The second equality follows from our assumption that f ◦ (idM⊗ BB) = f ◦ (MB ⊗ idB).

So f = f ◦ (idM ⊗ uB) ◦ (MB ⊗ idM), and hence f factors through MB.
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The module AM is the unique morphism such that equation 3.10 holds. This is shown in

the following diagram:

M

A M

B

B

M

M

A
=

M

M

A B

=

M A

M

M

M

M

B

B .

(3.16)

In other words, MB is a module homomorphism from AM⊗BI to AM.

By uniqueness of coequalisers, there exists a unique morphism M ⊗B N
β−→ M , such that

β ◦ πB = MB and β† ◦MB = πB.

We claim that β is a unitary 2-cell. In that case, we have the commuting diagram below.

AM⊗BI M⊗B B

AM

MB

β

πB

(3.17)

The morphism β is unitary, since β† ◦β ◦πB = idM⊗BB ◦πB. It follows that β† ◦β = idM⊗BB

because coequalisers are epic. Similarly, β ◦ β† = idM .

We use the fact that πB and β ◦ πB = MB are module homomorphisms to prove that β is a

module homomorphism: β◦(M⊗BB)◦(idA⊗πB⊗ idN) = β◦πB ◦(AM⊗BB) = AM◦β◦πB.

Now it follows that β ◦ (M⊗B B) =A M ◦β because πB is epic. Similarly we can prove that

β† is a module homomorphism. This proves that β defines a unitary 2-cell.

3.2.3 2(C)

Now we have developed all the tools we need to define the category 2(C). As we will

prove later in this section, this is a weak 2-category constructed from an arbitrary monoidal
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category C.

Definition 3.2.8. Let C be a symmetric monoidal dagger category, where all coequalisers

exist, and where all coequalisers are dagger coequalisers. The category 2(C) is the 2-category

that consists of the following data: the 0-cells are the dagger Frobenius algebras of C;

the 1-cells are dagger bimodules of dagger Frobenius algebras of C on objects of C; and

the 2-cells are bimodule homomorphisms between modules in the same hom-sets of 0-cells.

Horizontal composition for modules and module homomorphisms is given by the tensor

product as defined in definition 3.2.4, and definition 3.2.5. Vertical composition is given by

the normal composition of module homomorphisms.

For some theorems, it will be necessary to restrict to 0-cells, which are special dagger

Frobenius algebras, normalisable dagger Frobenius algebras or classical structures. In these

cases, we will write 2(C)s, 2(C)n, or 2(C)c, respectively.

Most of the time we will write A,B,C, ... for 0-cells. In that case we refer to the

objects A,B,C, .. ∈ C, together with a Frobenius algebra on each object. Only

when we need to specify the multiplication of the Frobenius algebra, we will write

(A,5A), (B,5B), (C,5C), ....

Weak n-categories have a natural diagrammatic language. Diagram 3.1, which describes the

coherence of vertical and horizontal composition, can be seen as a simplicial complex, where

the 2-cells are the areas between the coherent 1-cells. This holds for any coherent diagram

of cells in our 2-category. By the planar Poincaré duality, we can also represent these 0-,1-

and 2-cells by their dual block representation. This is a transformation in algebraic topology

on simplicial complexes, which turns all vertices into areas and all areas into vertices. We

obtain diagrams that are very similar to the ones that were described in chapter 2.

These diagrams are of the following form:

f

M

N

A B

N′

M′

f ′ C (3.18)
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The areas marked with the coloured letters A, B, and C are the 0-cells, so these represent

the environment. The lines marked with M, M′, N, and N′ are the 1-cells. The lines M

and M′ represent bimodules of A and B, and N and N′ represent bimodules of B and C.

The boxes f, f ′ are 2-cells, which represent the module homomorphism from M to N, and

from M′ to N′, respectively. We will only represent 2-cells with a box when we want to

specify which 2-cell it is. If this is clear from the context or unimportant, we just write a

dot, or we write only a transition between wires and areas. This normally does not cause

any ambiguity. In all diagrams, time flows upwards. A vertical composition of 2-cells can

be interpreted as subsequent operations, and a horizontal composition of 1-, and 2-cells

can be interpreted as a spatial separation between the cells. The diagram represents the

horizontal composition of morphisms f ⊗B f ′. This is the morphism between the horizontal

compositions of modules M⊗B M′ and N⊗B N′.

If we regard monoidal categories as 2-categories with one object, there is only one 0-cell,

so we can omit the labels of the 0-cells in the diagrams. The corresponding diagrammatic

language, is the language we discussed in chapter 2 for monoidal categories.

Lemma 3.2.9. Let C be a symmetric monoidal dagger category, in which all coequalisers

exist. We write I for the unit element I with a dagger Frobenius. 2(C)(I, I) is isomorphic

to C.

Proof. Let M be a module on the unit object. This is a scalar multiple of the identity on

M . In fact, by 3.5 it is a multiplication by a unitary scalar. It follows that any two modules

M, M′, of the unit object on an object M , are isomorphic. Furthermore, every morphism

M → N in C is a module homomorphism M → N in 2(C). Consequently, the forgetful

functor 2(C)(I, I) → C is surjective and injective on 1-cells, up to isomorphism, and also

full and faithful on hom-sets of 1-cells.

3.2.4 Modules in dagger biproduct categories

In this section, we assume that C is a symmetric monoidal dagger category with biproducts,

where all coequalisers exist, and where all coequalisers are dagger coequalisers. Recall that

the biproduct A = ⊕iAi, of Frobenius algebras Ai, with units uAi , is a Frobenius algebra,

with unit uA =
∑

i uAi . By 3.6, for any module M of A on M in C, M =
∑

i MuAi
and

M = ⊕iMai . When M is a bimodule of A = ⊕iAi and B = ⊕jBj, we can write M as

the matrix with coefficients Mi,j := aiMbj , and its underlying space M , as the matrix with

coefficients Mi,j := Mi,j(M).

For a module homomorphism M
f−→M′ in C, we have
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f

M′

=

M

f

MM

M ′

M ′ M ′

M ′
f ◦MuAi

=

uAi

=
uAi

M′
uAi
◦ f

,

(3.19)

where the second equality is by definition 3.7 about module homomorphisms.

This means we can write f as the sum of the morphisms
∑

i MuAi

fi−→ M′
uAi

, where

fi := f ◦ MuAi
. If M is a bimodule, we can write f as the matrix with coefficients

Mi,j
fi,j−−→M′

i,j.

Lemma 3.2.10. Let C be a compact category with biproducts. Let A,B,C be the biproducts

of dagger Frobenius algebras ⊕iAi, ⊕jBj, and ⊕kCk, with units
∑

i ai,
∑

j bj, and
∑

k ck,

respectively, such that all bj are copyable states with respect to the Frobenius algebra Bj.

The tensor product M⊗B N, of M ∈ 2(C)(A,B) and N ∈ 2(C)(B,C), is isomorphic to the

module obtained by generalized matrix multiplication
∑

bj∈B Mbj⊗ bjN.

Proof. Let MBN be the morphism

C
B

N

NM
A

M

MBN :=

,

(3.20)

and let AMBNC be the dagger module defined as

C

B

N

NM

A M .

(3.21)
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By the diagram below,
∑

bj∈B Mbj⊗ bjN equals the module AMBNC .

∑
j

M
C

=
∑

j Mbj⊗ bjN

bj

M

A
N NbjM
CA

=N

bj

∑
j M N

M

N

A

M

N
C

=

B
.

(3.22)

The first equality holds, by the definition of the unit of a biproduct of dagger Frobenius

algebras. The second equality holds because all bj are copyable states.

As a consequence, MBN equals
∑

ai,ck

∑
bj

Mi,j ⊗ Nj,k. Its image is therefore ⊕i,j,k
Mi,j ⊗Nj,k.

The module AMBNC on ⊕i,j,k Mi,j ⊗ Nj,k is the unique morphism that satisfies equation

3.10, which is in this case:

A

B

M

C

N

M

B
A

M

N
C

N

=

M

B
A

N
C

M

AM

N

CN

BB

.

(3.23)

The equality holds by definition 3.4, the Frobenius laws and because bj are copyable points.

Observe that AMBNC is in fact a module. It satisfies 3.4 because M and N are modules

and because bj are copyable points; it satisfies 3.5 because M and N are modules and MBN

equals
∑

ai,ck

∑
bj

Mi,j ⊗Nj,k; it satisfies 3.6 because M and N are dagger modules.

There exists a canonical module homomorphism M ⊗B N
γM,N−−−→ AMBNC , such that

γM,N ◦ π = MBN and γ†M,N ◦MBN = π.

We have the following commuting diagram:
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M⊗N M⊗B N

∑
i,j,k Mi,j ⊗Nj,k

π

MBN

γ

,

(3.24)

The morphisms γ and γ† are module homomorphisms because π and MBN are epic module

homomorphisms. Furthermore, we have that γ† ◦ γ ◦ π = π = idM⊗BN ◦ π. Because

coequalisers are epic, γ† ◦ γ = idM⊗BN. Similarly, γ ◦ γ† = id∑
i,j,kMi,j⊗Nj,k

. It follows that

M⊗B N ∼= AMBNC .

Corollary 3.2.11. Horizontal composition of modules is defined in any symmetric monoidal

dagger category with biproducts.

Proof. This is true because in lemma 3.2.10, we gave a construction of the horizontal

composition of any two modules, in a symmetric monoidal dagger category C with

biproducts.

Lemma 3.2.12. Let C be a symmetric monoidal dagger category with dagger biproducts,

2(C)(A,B) ∼= Cnk, where A = ⊕ni=1Ii, B = ⊕kj=1Ij.

Proof. 2(C)(A,B) ∼= ⊕i,j2(C)(Ii, Ij), as the hom-set of a biproduct is isomorphic to the

biproduct of the hom-sets. This is isomorphic to ⊕i,jC by lemma 3.2.9.

3.3 Interpretation of 2(C)

So far we have discussed the motivation for 2(C) and its mathematical details, but not yet

how we can use this category as a model for quantum computing. Now we will discuss how

classical and quantum information and their interaction can be modelled in 2(C).

Quantum systems are modules of the unit object, and classical systems are modules of the

corresponding classical structure on itself. We will see in section 3.6, that this corresponds

to the situation in FHilb.

A measurement on a module M is a 2-cell from a quantum module to a classical module.
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f

A

A∗ A

A

I I
(3.25)

The set of possible measurement outcomes is given by the classical structure represented

by the area marked with A. The set of possible resulting states is the module A. Every

state a of the measurement outcome A determines the corresponding resulting state, Aa⊗
aA. In 2(FHilb), every possible measurement outcome a corresponds to a projector which

determines the component of A, which is the resulting state. Later we will prove that the

outcome of every measurement corresponds to a special dagger Frobenius algebra.

The difference between this model and the models we described earlier is that measurements

are not morphisms that destroy the state, but morphisms that explicitly describe the

correspondence between the resulting state and the measurement outcome. As a result,

the model describes all possible measurement outcomes with all corresponding resulting

states at once. This is all in correspondence with the many worlds interpretation. We

will prove in section 3.5, that measurements in the hom-category 2(C)(I, I) are unitary.

This seems problematic because one of the characteristics of quantum mechanics is that

measurements are not reversible. However, we should keep in mind that this model regards

physical systems from an outside perspective and that it contains all information about all

possible measurement outcomes. When we do an actual experiment, our perspective is from

the inside, as we are only able to access the information corresponding to our measurement

outcomes.

For quantum computation, this is particularly useful because it allows us to talk about

quantum protocols containing measurements, despite the uncertainty of the measurement

outcomes. The corresponding diagrammatic language exhibits the topological properties of

quantum protocols, which are independent of implementations of the protocol. This gives

us a high-level understanding of the structure of these protocols. We will not discuss these

topological properties in this dissertation. Further information and discussion can be found

in [20].
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3.4 Properties of 2(-)

We will demonstrate that for any monoidal dagger category C, 2(C) is a dagger 2-category.

Moreover, if C has biproducts, all hom-categories of 2(C) have biproducts. Finally we will

show that the construction 2(−) preserves compactness. We suspect that the 2- category

2(C) is a symmetric monoidal 2-category, like FHilb. This is a 2-category with an additional

tensor product on 0-, 1- and 2-cells, and with symmetry, unit, and associator natural

isomorphisms, as well as the necessary coherence conditions. The definition of a symmetric

monoidal 2-category is given in [15]. It will take us too far to explore this in this dissertation.

3.4.1 2-category

We will prove that for any symmetric monoidal dagger category C, where all coequalisers

exist, and where all coequalisers are dagger coequalisers, 2(C) is a 2-category. First, we will

prove some lemmas concerning composition in 2(C).

Lemma 3.4.1. Let C be a symmetric monoidal dagger category, where all coequalisers

exist, and where all coequalisers are dagger coequalisers. Every 0-cell (A,5A) of 2(C) has

an identity 1-cell for horizontal composition. This is the 1-cell A ⊗ A ⊗ A A−→ A, of which

he left and right module action of A are given by 5A. This 1-cell satisfies the equations

A⊗A M ∼= A and N⊗A A ∼= A, for any two 1-cells M ∈ 2(C)(A,B) and N ∈ 2(C)(C,A),

and for any two 0-cells B and C.

Proof. We will prove that A⊗A M ∼= M, by showing that A ⊗ M AM−−→ M is the

coequaliser of AA ⊗ idM and idA⊗ AM, and that this defines a module homomorphism

AA ⊗MA
AM−−→ M. Then we will prove that the isomorphism exists, using the uniqueness

property of coequalisers. The other isomorphism is proven in a similar way, by the

coequaliser NA. This proof is very similar to that of lemma 3.2.7.

First, we need to show that AM ◦ (AA ⊗ idM) = AM ◦ (idA⊗ AM). This is shown in the

picture below.

AM ◦ ( AA ⊗ idM) =

M

M

A M

B

M

M
B

=
M

B

MA

=AM ◦ (idA⊗ AM)

A

=

M

MA

B

A

M

A

A

A

(3.26)
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The second equality holds because the multiplication of A is defined to be 5A. The third

equality holds by equation 3.4, and by the Frobenius laws.

It is left to show, that whenever we have a morphism f : A⊗M → K, for some object

K ∈ C, it factors through AM.

It follows from the picture, that any such f equals f ◦ (uA ⊗ idM)◦ AM:

K

=f

AM A

f

K

=

M

f

B

K

M

A

A M

f

A

M

=

K

A

M
M

B

M

(3.27)

The first equality is by equation the Frobenius laws, the second because we have assumed

that f ◦ (AA ⊗ idM) = f ◦ (idA⊗ AM).

So we have proven that A⊗M AM−−→M is the required coequaliser.

We need to verify that AM is a module homomorphism from AA⊗MB to M. In that case,

M satisfies equation 3.10. This is shown in the diagram below.

AM◦ AA⊗MC =

M

M

A M

A M
A

MA BA

A

B

M

A

M

M

MAA

M

= =

A

M

A M

M

B

B B
=

M

MA

B

A

M

M

B

M

= M◦ AM

B
(3.28)

The second equality holds because A equals 5A, the third and the fourth hold by equation

3.4 and the Frobenius laws.

So we have the commuting triangles
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A⊗M A⊗A M

M

AM
lM

π

NA

N

π
N⊗A A

rN

N⊗A

,

(3.29)

where lM and rN are the canonical morphisms, by uniqueness of coequalisers. These are

2 − cells because π, MA, and AN are epic module homomorphisms. Furthermore, lM and

rN are unitary because coequalisers are epic.

In the diagrammatic language, we often do not draw the identity module A on A because

this is implicit in the area that represents the 0-cell A. Instead we sometimes draw a dashed

line or nothing.

Lemma 3.4.2. Let C be a symmetric monoidal dagger category, where all coequalisers exist,

and where all coequalisers are dagger coequalisers. Horizontal composition of 1-cells in 2(C)

is associative.

Proof. There is a canonical isomorphism (M⊗B M′) ⊗CM′′ ᾱ−→M⊗B (M′ ⊗CM′′) because

both expressions are the image of coequalisers of the morphisms M ⊗B⊗M ′⊗C ⊗M ′′ fi−→
M ⊗M ′ ⊗M ′′ in C, for i = 1, .., 4. These morphisms are defined as

• f1 = MB ⊗M′
C ⊗ idM ′′

• f2 = MB ⊗ idM ′⊗ CM′′

• f3 = idM⊗ BM′⊗ CM′′

• f4 = idM⊗ BM′
C ⊗ idM ′′

We will prove this for (M⊗B M′) ⊗CM′′. The proof for M⊗B (M′⊗C M′′) is very similar.

The coequaliser is given by the morphism M ⊗M ′ ⊗M ′′ πC◦(πB⊗idM′′ )−−−−−−−−−→ (M ⊗B M ′) ⊗CM ′′

in C, where πB is the coequaliser of MB ⊗ idM ′ and idM⊗ BM′, and πC is the coequaliser

of (M⊗B M′)C ⊗ idM ′′ and idM⊗BM ′⊗ CM′′.

Because πB is a coequaliser, πC ◦ (πB ⊗ idM ′′) ◦ f2 = πC ◦ (πB ⊗ idM ′′) ◦ f3. Also,

πC ◦ (πB ⊗ idM ′′) ◦ f1 = πC ◦ (πB ⊗ idM ′′) ◦ f4. The first statement is straightforward,

The last statement is illustrated by the picture below.
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πC

πB

A

MB

B

M ′C M ′′

M′M

M ′ M ′′C

πC

M′

πB

BMM ′′M

C
M′

M ′

πC

B

πB

=

M′

C

πB

M ′′MB

πC

M ′C

M′

==

A
M

(3.30)

πC ◦ (πB ⊗ idM ′′) ◦ f1 equals the expression on the left and πC ◦ (πB ⊗ idM ′′) ◦ f4 equals

the expression on the right. The second equality is because πB is a coequaliser, the third

equality is by 3.4.

Furthermore, if we postcompose f1 and f2 with πb⊗ idM ′′ , we get ((M⊗B M′)C ⊗ idM ′′) ◦ h
and (idM⊗BM ′⊗ CM′′) ◦ h respectively, for the composite function

M B M ′′

M

CM ′

πB

M ⊗B M ′

h :=

.

(3.31)

This is shown in the diagrams below:

M′M

πB

A

MB

B

M ′C M ′′

=

A
BM M ′′

=

M ′

M

πB

C

B

M′

M

M B M ′′

M

M⊗B M′

CM ′

A

πB
f1 :

(3.32)
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M

πB

A

MB M ′ CM ′′

= =

M ′

πB

C

B

M′

MB

M

M⊗B M′

C

M ′

A
πB

M′′

M ′′C

M′′

A
B

M

M

M

M′′

CM ′′

f2 :

(3.33)

The last equality of both equations holds because πB is a module homomorphism. It follows

that πC ◦ (πB ⊗ idM ′′) ◦ f1 = πC ◦ (πB ⊗ idM ′′) ◦ f2. This is sufficient for the proof that

πC ◦ (πB ⊗ idM ′′) ◦ fi = πC ◦ (πB ⊗ idM ′′) ◦ fj, for all i, j ∈ {1, ..., 4}

If there is another map M ⊗M ′⊗M ′′ g−→ K in C, such that g ◦ f1 = g ◦ f2 = g ◦ f3 = g ◦ f4,

it factors through (M ⊗B M ′)⊗C M ′′, by the following diagram:

M ⊗M ′ ⊗M ′′ (M ⊗B M ′)⊗M ′′ (M ⊗B M ′)⊗C M ′′

K

g

ḡ g̃

πB ⊗ idM ′′ πC

(3.34)

The first diagram commutes as πB ⊗ idM ′′ is the coequaliser of f2 and f3 and the second

diagram commutes as πC is the coequaliser of πB ⊗ idM ′′ ◦ fi for {i = 1, 2}.

It is left to show that AM ⊗ idM ′ ⊗M′′
C

πC◦(πB⊗idM′′ )−−−−−−−−−→ A(M ⊗B M′ ⊗C M′′)C is a module,

and therefore equation 3.10 holds.

This follows from the following picture, which is just unfolding the definitions of M⊗B M′

and (M⊗B M′)⊗C M′′.
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M M′ M′′

πB

M ⊗B M ′
M ′′

M ⊗B M ′ ⊗C M ′′

πC

A M M ′ M ′′D

B B C C

=

M ′′

=

M ⊗B M ′ ⊗C M ′′

πC

D

M ⊗B M ′

A

C

MM ′

M′′

M ′′

C

πB

M⊗B M′

M

M ⊗B M ′ ⊗C M ′′

DA

M ⊗B M ′

M ′

πB

M ′′

πC

M⊗B M′ ⊗C M′′

Lemma 3.4.3. Module homomorphisms in a category C are closed under composition

Proof. Let M,N,K be module homomorphisms of A on M,N,K respectively, and let M
f−→

N and N
g−→ K be module homomorphisms. By definition, the equalities f◦M = N◦(idA⊗f)

and g ◦ N = K ◦ (idA ⊗ g) hold. It follows that (g ◦ f) ◦ M = g ◦ N ◦ (idA ⊗ f) =

K ◦ (idA ⊗ g) ◦ (idA ⊗ f) = K ◦ (idA ⊗ (g ◦ f)), hence (g ◦ f) is a module homomorphism.

We used associativity of morphisms in C.

Lemma 3.4.4. Let M,M′ and M′′ be right modules of B and let N,N′ and N′′ be left

modules of B. Let M
f−→ M ′ f ′−→ M ′′ and N

g−→ N ′
g′−→ N ′′ be module homomorphisms. the

following equality holds:

(f ′ ◦ f)⊗B (g′ ◦ g) = (f ′ ⊗B g′) ◦ (f ⊗B g) (3.35)

This is called the interchange law.

Proof. Analogous to our argument for definition 3.2.5, all squares of the two diagrams below

commute.

M ⊗B ⊗N M ⊗N M ⊗B N

M ′ ⊗B N ′M ′ ⊗N ′M ′ ⊗B ⊗N ′

MB ⊗ idN

idM⊗ BN

M′
B ⊗ idN ′

id′N⊗ BN′

π

π′

f ⊗B gf ⊗ gf ⊗ idB ⊗ g

f ′ ⊗ g′

M ′′ ⊗N ′′ π′′
M′′

B ⊗ idN ′′
f ′ ⊗B g′

id′′M⊗ BN′′
M ′′ ⊗B N ′′

f ′ ⊗ idB ⊗ g′

M ′′ ⊗B ⊗N ′′

(3.36)
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M ⊗B ⊗N M ⊗N M ⊗B N
MB ⊗ idN π

M ′′ ⊗N ′′ π′′
M′′

B ⊗ idN ′′

id′′M⊗ BN′′
M ′′ ⊗B N ′′M ′′ ⊗B ⊗N ′′

(f ′ ◦ f)⊗ (g′ ◦ g)(f ′ ◦ f)⊗ idB ⊗ (g′ ◦ g) (f ′ ◦ f)⊗B (g′ ◦ g)

idN⊗ BN

(3.37)

Because the interchange law holds for the tensor product in C, the two outer squares and

the arrow in the middle coincide. It follows that (f ′ ◦ f)⊗B (g′ ◦ g) and (f ′⊗B g′) ◦ (f ⊗B g)

must be equal by uniqueness of coequalisers.

Theorem 3.4.5. Let C be a monoidal dagger category where all coequalisers exist, and

where all coequalisers are dagger coequalisers. 2(C) is a weak 2-category.

Proof. We will prove that 2(C) satisfies each of the conditions of a weak 2-category, as

stated in definition 3.1.1:

1 Horizontal composition is as we described it before in 3.2.4 in terms of coequalisers.

We assume that all coequalisers in C exist and that these are dagger modules,

so modules and module homomorphisms are closed under horizontal composition.

Module homomorphisms are closed under vertical composition by 3.4.3.

2 By lemma 3.4.2 there exists a unitary 2-cell αM,M′,M′′ :(M ⊗B M′) ⊗C M′′ ⇒ M ⊗B
(M′ ⊗C M′′) for every triple of 1-cells A

M−→ B
M′−→ C

M′′−−→ D.

3 By lemma 3.4.1, for each 0-cell A there exists an identity module A, such that

for every 1-cell A
M−→ B there are two invertible 2-cells lM : A ⊗A M ⇒ M and

rM : M⊗B B⇒M.

4 The 2-cells are module homomorphisms in C, and their vertical composition is given by

composition in C, which is associative. By lemma 3.4.3, 2-cells are closed under vertical

composition. The identity morphisms on 1-cells in 2(C) are the identity morphisms

on the underlying objects in C.

5 The interchange law follows from lemma 3.4.4.

Naturality of l, r and ᾱ follows from carefully checking all commutative diagrams that are

needed to define l, r, and ᾱ. The triangle and pentagon equality follow from the triangle and
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pentagon equality for the monoidal category C and the definition of horizontal composition

by coequalisers. We will omit the proof of the pentagon equality, as it is just a matter of

checking definitions carefully. The proof of the triangle equality is given below:

M ⊗B (B ⊗B N)(M ⊗B B)⊗B N

M ⊗B N

ᾱM,B,N

idM ⊗B lN

(M ⊗B)⊗N M ⊗ (B ⊗N)

M ⊗NM ⊗N

αM,B,N

π′′B ◦ (π′′ ⊗ idN) π′B ◦ (idM ⊗ π′)
MB ⊗ idN

πB πB

idM⊗ BN

rM ⊗B idN

(3.38)

In this diagram, π′′, π′, π′′B, π
′
B, and πB are the coequalisers that are used to define the

horizontal composition of the appropriate modules.

The outer square commutes as πB is the coequaliser of MB⊗ idN and idM⊗ BN. The upper

square commutes by definition of α in 3.4.2. The left and right rectangles commute by

definition of l and r 3.29 and horizontal composition 3.2.5. It follows that the lower triangle

in the middle, which is the triangle equality, commutes as well.

3.4.2 Dagger

Lemma 3.4.6. Let C be a symmetric monoidal dagger category, where all coequalisers exist,

and where all coequalisers are dagger coequalisers. The category 2(C) is a dagger 2-category.

Proof. Given a dagger functor † : C → C, we can define the involutive endofunctor

‡ : 2(C) → 2(C), which is the identity on 0-cells and 1-cells, and on 2-cells it is defined as

‡(f) := †f . We will prove that this is well-defined.

If f : M → M′ is a module homomorphism between the modules A ⊗ M
M−→ M and

A ⊗M ′ M′−→ M ′ in C, then f corresponds to a morphism f : M → M ′ in C that satisfies

the equation 3.7. It follows that
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f

M ′

=

M

f

A

M

A

M

M

M ′M ′

M ′
M ′† ◦ f = = (idA ⊗ f) ◦M †

,

(3.39)

by the definition of dagger modules, 3.6.

If we apply † to both sides of the equation, we get (M ′† ◦ f)† = ((idA ⊗ f) ◦M †)†, which

equals f † ◦M ′ = M ◦ (idA ⊗ f †). It follows that ‡f = †f : M ′ → M satisfies equation 3.7,

so it is a module homomorphism from M′ to M.

This proves that 2-cells are closed under ‡. Furthermore, ‡ is the identity on 0- and 1-cells,

so it defines a dagger functor on 2(C).

As in monoidal categories, the dagger is represented in the diagrammatic language as

f ‡
=⇒ f

M

N M

N

A A BB (3.40)

3.4.3 Biproducts

Lemma 3.4.7. Let C be a monoidal dagger category with biproducts where all coequalisers

exist, where all coequalisers are dagger coequalisers, and where the tensor distributes over

the biproducts. The hom-categories 2(C)(A,B) have dagger biproducts for all 0-cells

A,B ∈ 2(C).

Proof. Any biproduct (M1 ⊕M2, p1, p2, i1, i2) defines a product by exercise 2.5.2 of [9]. As

a consequence, for every two modules Mi : A⊗Mi → Mi, i = 1, 2, regarded as morphisms
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in C, there exists a unique morphism M1⊕M2 : A⊗ (M1⊕M2)→ (M1⊕M2), which makes

the diagram below commute.

A⊗M2A⊗M1

M2M1

p1 p2

M1 M2

A⊗ (M1 ⊕M2)

M1 ⊕M2

M1 ⊕M2

idA ⊗ p2idA ⊗ p1

(3.41)

This unique morphism is given by the product M1 × M2 in C. By commutativity

of the diagram, we have pi ◦ M1 ⊕ M2 = Mi ◦ (idA ⊗ pi), so p1 and p2 are module

homomorphisms. It follows that this is also true for i1 and i2, since M1 ⊕M2 ◦ (idA ⊗ ii) =

ii ◦ pi ◦ (M1 ⊕M2) ◦ (idA ⊗ ii) = ii ◦Mi ◦ (idA ⊗ pi) ◦ (idA ⊗ ii) = ii ◦Mi.

We need to show that M1 ⊕M2 is a module.

We will show by the commuting diagrams below that M1 ⊕M2 satisfies equation 3.4. The

right hand side of this equation is the unique arrow that makes the first diagram below

commute, the left hand side is the unique arrow that makes the second diagram below

commute, and the outside squares of the two diagrams are equal by 3.4. It follows from the

uniqueness property of products that the two arrows must be equal.

A⊗ A⊗M1 A⊗ A⊗ (M1 ⊕M2) A⊗ A⊗M2

A⊗M2

M2M1 ⊕M2M1

A⊗M1 A⊗ (M1 ⊕M2)

idA ⊗ idA ⊗ p1

idA ⊗ p1

p1

idA ⊗ idA ⊗ p2

idA ⊗ p2

p2

idA ⊗M1

M1

idA ⊗ (M1 ⊕M2)

M1 ⊕M2

idA ⊗M2

M2

(3.42)
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A⊗ A⊗M1 A⊗ A⊗ (M1 ⊕M2) A⊗ A⊗M2

A⊗M2

M2M1 ⊕M2M1

A⊗M1 A⊗ (M1 ⊕M2)

idA ⊗ idA ⊗ p1

idA ⊗ p1

p1

idA ⊗ idA ⊗ p2

idA ⊗ p2

p2

5A ⊗ idM1

M1

5A ⊗ (idM1 ⊕ idM2)

M1 ⊕M2

5A ⊗ idM1

M2

(3.43)

The equations 3.5 and 3.6 are proven in the same way, with the appropriate diagrams.

It is straightforward that M1 ⊕M2 is in fact a biproduct. The following equations are

satisfied because (M1 ⊕M2, p1, p2, i1, i2) is a biproduct in C:

idM1 = p1 ◦ i1 (3.44)

idM2 = p2 ◦ i2 (3.45)

0M1,M2 = pM2 ◦ pM1 (3.46)

0M2,M1 = pM1 ◦ pM2 (3.47)

idM1⊕M2 = (iM1 ◦ pM1 + iM2 ◦ pM2) (3.48)

If (M1 ⊕M2, p1, p2, i1, i2) is a dagger biproduct, the equation below makes M1 ⊕M2 into a

dagger biproduct because it is a dagger biproduct in C.

i†i = pi (3.49)

The proof of the lemma follows from the fact that every bimodule M : A ⊗M ⊗ B → M

corresponds to a module M′ : (A⊗B)⊗M →M .

A sufficient condition for the existence of biproducts in 2(C) is that C is a symmetric

monoidal dagger compact category with biproducts, where all coequalisers exist, and where

all coequalisers are dagger coequalisers. In chapter 2 we have seen that in this case the

tensor distributes over the biproduct.

The proofs we have seen so far in this section only concern 1-cells and 2-cells. These proofs

still hold when we restrict the 0-cells to special dagger Frobenius algebras. This means that

2(C)s is a dagger 2-category, and if C has biproducts, all hom-sets of 2(C)s have biproducts.
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3.4.4 Compactness

By the axioms for 2-categories, if we regard the 0-cells as categories, then the 1-cells define

functors between 0-cells and the 2-cells define natural transformations. We use this to define

compactness in 2-categories.

A 1-cell A
M−→ B in a 2-category has a dual B

M∗−−→ A, if there exists and adjunction

AB

M∗

M .

(3.50)

.

This is when there are natural isomorphisms between the hom-sets A(M∗(b), a) and

B(b,M(a)) for all objects a of A and b of B. In that case, there exist natural transformations

η̄ : B⇒M∗ ⊗A M and ε̄ : M⊗B M∗ ⇒ A, such that

M⊗B B
idM⊗B η̄=====⇒M⊗B M∗ ⊗A M

ε̄⊗AidM=====⇒ A⊗A M ∼= idM, and

B⊗B M∗
η̄⊗B idM∗=====⇒M∗⊗AM⊗B M∗

idM∗⊗Aε̄=====⇒M∗⊗AA ∼= idM∗ Graphically, these equations

look like

A M

M B

A
A

BB

A

M∗B

A

BB

A

M∗

= =

M M∗

B BA A (3.51)

Definition 3.4.8. A 2-category is compact when every 1-cell M has a dual 1-cell M∗

In the diagrammatic language of a compact 2-category, we can bend all wires without

changing the meaning of the diagram as long as the start and end point stays fixed.

In a dagger compact 2-category, the dual M∗
f∗
=⇒ N∗ of the 2-cell M

f
=⇒ N is given by the

2-cell
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f

M

N

f :=

N

A

A

B

B

M

(3.52)

If a 2-category has only one 0-cell, this definition of compactness is exactly the definition of

compactness of monoidal categories.

The fact that monoidal categories are a special case of 2-categories, gives us a good reason

to believe that the diagrammatic language of 2-categories that we have discussed so far is

complete and sound. This is just an extension of the diagrammatic language of monoidal

categories and the proof of coherence of this diagrammatic language could most likely be

extended to a proof of coherence for the 2-categorical diagrammatic language. However, this

would involve a lot of work, and there are many variations of 2-categories. For this reason,

Selinger omits such proofs in [16].

Lemma 3.4.9. Let C be a symmetric monoidal dagger compact category, where all

coequalisers exist, and where all coequalisers are dagger coequalisers, then the category 2(C)s

is compact.

Proof. If C is compact, every module M : A⊗M ⊗ B → M has a dual morphism M∗. In

diagrammatic language this is defined as

MM∗ =

M∗

BM∗A

:= M

M

B M A

(3.53)

Definition 3.4.10. In the category 2(C), the dual of a 1-cell M ∈ 2(C)(A,B) is given by

the 1-cell M∗ ∈ 2(C)(B,A) defined as
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MM∗ :=

M∗B A

(3.54)

Observe that M∗ = M†∗, by 3.6, so this is the conjugation of M.

The 2-cells η̄M and ε̄M are defined as η̄M := BM∗⊗A MB ◦ π ◦ f and ε̄M := g̃◦ AM⊗B MA
∗ ,

where

M∗
B

MA

f := g :=

M∗M

A

AM⊗B MA
∗ := MM

M∗ M

A AM∗ M

;

(3.55)

π is the coequaliser of g ◦ (idA⊗MB⊗ idM∗⊗A) and g ◦ (idA⊗M⊗ BM∗⊗ idA); g̃ is the unique

morphism that makes the diagram below commute

A⊗M ⊗M∗ ⊗ A A⊗M ⊗B M∗ ⊗ A

A

π

g
g̃

.

(3.56)

The morphism g̃ exists by definition of the coequaliser because g ◦ (idA ⊗MB ⊗ idM∗⊗A)

equals

M
=

M
=

M∗

,

(3.57)
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which equals g ◦ (idA⊗M⊗ BM∗ ⊗ idA).

We will prove that the diagram below commutes, and therefore, that the equality lM◦(ε̄M⊗A
idM) ◦ ᾱ ◦ (idM ⊗B η̄M) ◦ r−1

M = idM holds. This equality corresponds to the outside of the

diagram. The other equality is proven in a similar way.

M⊗B M⊗ (B⊗M∗ ⊗M⊗B) M⊗ (M∗ ⊗M)

(M⊗M∗)⊗M(A⊗M⊗M∗ ⊗A)⊗MA⊗M

M αM,M∗,M

idM⊗ BM∗ ⊗MB

AM⊗M∗A ⊗A idM

(M⊗B M∗)⊗A M

(A⊗M⊗M∗ ⊗A)⊗A M

A⊗A M (A⊗M⊗B M∗ ⊗A)⊗A M

(M⊗M∗)⊗A M

M⊗B (M∗ ⊗A M)

M⊗B (M∗ ⊗M)M⊗B (B⊗M∗ ⊗M⊗B)

M⊗B BM

M

AM⊗M∗
A ⊗ idM

M⊗B (B⊗M∗ ⊗A M⊗B)

MB

r−1
M

AM

lM

1

1

idM⊗B BM∗ ⊗A MB

idM⊗B BM∗ ⊗MB

AM⊗B M∗A ⊗A idM

idM ⊗B f

idM ⊗B (π ◦ f)

idM ⊗B π

g ⊗A idM

g̃

φ⊗A idM

2

2

2

2

2

2

3

3

4

6
5

idM ⊗ f

g ⊗ idM

7

ᾱM,M∗,M

(3.58)

To keep the diagram as clear as possible, we omitted the labels of all coequalisers, unless we

needed them for an equation; so the empty arrows correspond to the appropriate coequaliser.

We will prove commutativity of all numbered diagrams:

1 By the identity condition, lemma 3.4.1

2 By definition of horizontal composition of morphisms, 3.2.5

3 This composition of coequalisers is analogous to what we did in lemma 3.4.2

4 By the associativity of horizontal composition, lemma 3.4.2

5 From the upper left corner to the lower left corner in clockwise direction, this is
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B

A

M

M

MM

M M
=

M

M

M

M

B

M

=

A

M

M

M

M

B

M

A

(3.59)

The equalities are given by the definition of modules, the Frobenius laws and

specialness of A and B. This equals the counter clockwise direction:

M

M

B

A

M

(3.60)

6 The composition of morphisms from the upper right corner to the lower left corner,

in clockwise direction, is given by the left hand side of the equation below; and the

composition of morphisms in the counter clockwise direction is given by the right

hand side. The equality follows from the axioms of modules, the Frobenius laws and

specialness of A.

M

A

M

M

B

=
M

BM

(3.61)

7 By definition of g̃

67



3.4.5 Frobenius algebras in 2(C)

We will define the notion of dagger Frobenius algebras in 2-categories. The main result of

this section is the existence of canonical dagger Frobenius algebras of certain 1-cells.

Definition 3.4.11. Let 2C be a dagger weak 2-category. A Frobenius algebra in 2C is

a 1-cell M ∈ 2C(A,A), for some 0-cell A, together with two module homomorphisms

uM : A→M and 5M : M→M⊗A M, that satisfy the equations below.

=

M

A

M M M M M

A
A A

A

A

A

A

=

M M

A
AA

A
(3.62)

= =

M M M M M M

A
A

A
A

A

A
AA

A
A

A
A

(3.63)

A Frobenius algebra in 2C is special if it satisfies

A A A=

A A

AA

.

(3.64)

We will prove in the next lemma that the outcome of any measurement has a canonical

dagger Frobenius algebra.

Lemma 3.4.12. Let 2C be a dagger compact weak 2-category. Every 1-cell of the form

M∗ ⊗A M has a canonical dagger Frobenius algebra, given by uM∗⊗AM := η̄M, 5M∗⊗AM :=

idM∗ ⊗A η̄
†
M∗
⊗A idM, and their daggers.

M∗ M MM∗

MM∗
B

A
B

B
B

A (3.65)
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Proof. The Frobenius laws hold because we can bend any wire in the way we want without

changing the meaning of the diagram, due to compactness of 2C.

This dagger Frobenius algebra is special, when 5M∗⊗AM ◦∆M∗⊗AM = idM∗⊗AM. This is the

case when η̄†M∗ ◦ η̄M∗ = idM∗⊗AM, so when η̄M∗ is an isometry.

We will give a sufficient condition, under which a canonical dagger Frobenius algebra is

special.

Lemma 3.4.13. Let 2C be a dagger compact weak 2-category. The canonical dagger

Frobenius algebra of a 1-cell M∗ ⊗A M ∈ 2C(B,B) is special, if B = I, MA = AA,

and A is special.

Proof. By the diagram below, η̄M∗ is unitary, which implies that the canonical Frobenius

algebra on M∗ ⊗A M is special.

A AI

A

=

I

I

A

AAη̄†M∗ ◦ η̄M∗ =

I

B A

I

A

A

=

π†

π

MM

M M
(3.66)

The first equality is a matter of unfolding the definition of η̄. The second equality holds

because in this case, the coequaliser π is the identity on A⊗A, and AM∗⊗MA = 5A⊗5A.

The third equality follows from the Frobenius laws and specialness of A.
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3.5 2-categorical models with canonical dagger Frobe-

nius algebras

The quantum protocols described in [20], i.e. quantum teleportation, require the existence

of a deletion map on physical systems. Therefore, it is useful to have a category that has

a deletion map for all 1-cells. In this section, we will define a category in which all 1-cells

have a canonical dagger Frobenius algebra, and consequently, a deletion map.

Definition 3.5.1. Let 2C be a dagger compact weak 2-category. A symmetric 1-cell of 2C

is a 1-cell of the form M∗ ⊗A M ∈ 2C(B,B) for some 1-cell M ∈ 2C(A,B).

Definition 3.5.2. Let 2C be a dagger compact weak 2-category. The category Sym(2C)

is the subcategory of 2C, which consists of the 0-cells of 2C, all horizontal compositions of

symmetric 1-cells of 2C, and all 2-cells of 2C, between 1-cells of Sym(2C).

Lemma 3.5.3. Let C be a symmetric monoidal dagger compact category, where all

coequalisers exist. The category Sym(2(C)s) is a full subcategory of 2(C)s; moreover, it

is a dagger compact weak 2-category.

Proof. First of all, Sym(2(C)) has the same 0-cells as 2(C). All 1-cells of Sym(2(C))

are 1-cells of 2(C). By definition, Sym(2(C)) is closed under horizontal composition.

Every identity 1-cell A is by definition isomorphic to A ⊗A A, which is symmetric.

This means that Sym(2(C)) contains an identity 1-cell for each 0-cell. By definition,

we have the following equality for all symmetric 1-cells M,N ∈ 2(C)(A,A) for some A:

Sym(2(C))(M,N) = 2(C)(M,N). It follows that Sym(2(C)) contains an identity 2-cell

for every 1-cell, and the 2-cells of Sym(2(C)) are closed under vertical and horizontal

composition. In addition, Sym(2(C)) inherits ᾱ, l, r, the interchange law, and the triangle

and pentagon equalities. Moreover, Sym(2(C)) is a weak 2-category.

The dagger functor is the identity on 0-cells and 1-cells. The dagger of a 2-cell between a

horizontal composition of symmetric 1-cells is again a 2-cell between a horizontal composition

of symmetric 1-cells. As a result, Sym(2(C)) is a dagger 2-category.

All symmetric 1-cells have canonical dagger Frobenius algebras by lemma 3.4.12; therefore,

they are self-dual. Every 1-cell of 2(C), which is a horizontal composition of symmetric

1-cells of 2(C), is dual to the horizontal composition of the same 1-cells, but in reversed

order. As a consequence, Sym(2(C)) is compact.

The next lemma proves that all non-demolition measurements in 2C(I, I) are unitary.

Lemma 3.5.4. Let 2C be dagger weak 2-category. Every 1-cell M ∈ 2C(I, I) is isomorphic

to the 1-cell M′
∗⊗(M,5M ) M′, where (M,5M) is a commutative dagger Frobenius algebra on

M in C, and M′ = 5M .
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Proof. We will prove that there exists a unitary 2-cell

I Iβ

M′
∗ M′

(M,5M)

M

,

(3.67)

Observe that 5M defines a coequaliser of M′
∗M ⊗ idM and idM⊗ MM′. This is because

M

=

MMM

M′
∗

M

=

M MM

=

M M

M′

M M .

(3.68)

Furthermore, any morphism M ⊗M f−→ K, such that f ◦ (M′
∗M ⊗ idM) = f ◦ (idM⊗ MM′),

factors through 5M . This is shown in the following diagram, where we write 5M for both

M′
∗M and MM∗.

K

f

MM

M M

f

K

= f=f=

MM

KK

MM
M

M
(3.69)

The first equality is by the Frobenius laws, the second by our assumption that f ◦ (M′
∗M ⊗

idM) = f ◦ (idM⊗ MM′).
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The coequaliser 5M is a module homomorphism, IM
′
∗ ⊗M′

I
5M−−→ M because M is the

unique module, such that equation 3.10 is satisfied. This is simply because M is a module

of the identity 0-cel, and these module are multiplications by a unitary scalar.

Let π be the coequaliser that defines the module M′
∗ ⊗(M,5M ) M′. It follows from the

definition of a coequaliser, that there is a canonical morphism (M ⊗(M,5M ) M)
β−→ M . By

uniqueness of coequalisers, we have the following equality: β† ◦β ◦π = idM⊗(M,5M )M ◦π. All

coequalisers are epic, so it follows that β† ◦ β = idM⊗(M,5M )M . Similarly, β ◦ β† = idM, so β

is unitary. By lemma 3.2.9, β corresponds to a unitary 1-cell (M′
∗ ⊗(M,5M ) M′)

β−→M

A consequence of this lemma, is that all scalars of 2C are isomorphic to symmetric 1-cells.

Corollary 3.5.5. Let 2C be dagger weak 2-category. The hom-categories of scalars

Sym(2(C))(I, I) and 2(C)(I, I) are isomorphic.

Proof. By lemma 3.5.4, every 1-cell of 2(C) is isomorphic to a symmetric 1-cell. It follows

that Sym(2(C)) is isomorphic to 2(C).

Corollary 3.5.6. Let 2C be a dagger compact weak 2-category. Every 1-cell in 2C(I, I), as

defined in 3.4.12, is isomorphic to a special dagger Frobenius algebra.

Proof. By lemma 3.5.4, every symmetric 1-cell M is isomorphic to M′
∗ ⊗(M,5M ) M′, where

M′ = 5M . This module is special by lemma 3.4.13.

3.6 2(FHilb)

In this section, we will explore the structure of the category 2(FHilb) and we will compare

it to 2Hilb, the standard 2-categorical model for quantum theory.

3.6.1 Modules on dagger Frobenius algebras in FHilb

In chapter 2, we discussed dagger Frobenius algebras in FHilb. First, we will recall the

important results. Next, we will explore the structure of modules on dagger Frobenius

algebras in FHilb. Finally, we will look at the 2-category 2(FHilb).

By [19], all dagger Frobenius algebras in FHilb correspond to finite dimensional C∗ algebras.

Normal and special dagger Frobenius algebras correspond to normal C∗-algebras. These

C∗-algebras correspond to biproducts of matrix algebras. The unit of an n-dimensional
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matrix algebra A is the state I → A that maps 1 to the n-dimensional unit matrix. For

1-dimensional matrix algebras, this unit is the only copyable state. All commutative matrix

algebras in FHilb are 1-dimensional matrices. Consequently, commutative C∗ algebras are

biproducts of 1-dimensional matrix algebras. The copyable states of a commutative C∗

algebra A are sums of the copyable states of its summands. It is shown in [9] that these

copyable states form an orthonormal basis of A. If this C∗-algebra is normal, this is an

orthonormal basis.

A module M on a special dagger Frobenius algebra A in FHilb corresponds to a

decomposition of the underlying Hilbert space M , into the orthogonal subspaces Mui(M).

The states ui are the units of the matrix algebras. This is true by lemma 3.2.10 because

FHilb is a category with biproducts, and the units of the biproducts are copyable states.

By this lemma, the automorphisms Mui are projections.

As we described in section 3.3, a quantum state is a module of the unit object. In FHilb,

this corresponds to a system that is not decomposed into orthogonal subspaces. A classical

state is a module of a classical structure on itself, where the module action equals the

multiplication map of the classical structure. In FHilb, this corresponds to a decomposition

of a Hilbert space in 1-dimensional subspaces. This is exactly what we expect.

3.6.2 Horizontal composition in Fhilb

We will show that modules on dagger Frobenius algebras in FHilb are R-modules.

C∗-algebras are rings, and Hilbert spaces are Abelian groups with respect to +. The

R-module action rx of an element r of the C∗ algebra on an element x of the Hilbert space,

is given by the module M(r, x). The equalities r(x + y) = rx + ry and (r + s)x = rx + rs

hold, as M is a morphism in FHilb, so it is a linear map. The equality(rs)x = r(sx) follows

from axiom 3.4. The equality 1x = x follows from 3.5.

Normally, the tensor product M ⊗B M ′ of a right R-module M , and a left R-module

M ′, over a ring B, is the defined as an Abelian group with a universal bilinear map

πB : M × N → M ⊗B N , with respect to the ring B. This means that for every bilinear

map M ×M ′ f−→ N with respect to B, there is a unique map f̄ : M ⊗B M ′ → N , such that

f̄ ◦ πB = f .

We will prove that the tensor product M ⊗B M′ of modules in FHilb, corresponds to

the normal definition of a tensor product of R-modules. For any map M ⊗ M ′ g−→ N ,

g ◦ (MB ⊗ idM ′) = g ◦ (idM⊗ BM′), if and only if g(x · b, x′) = g(x, b · x′), for all elements

x ∈ M , x′ ∈ M ′, and b ∈ B. Furthermore, all morphisms in FHilb are linear maps. It

follows that the collection of bilinear maps g : M ⊗M ′ → N with respect to B corresponds

exactly to the collection of maps g, such that g ◦ (Mb⊗ idM ′) = g ◦ (idM ⊗Mb) for all b ∈ B.
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In other words, the coequaliser M ⊗B M ′ defines a universal arrow, in the sense that for

every bilinear map f̃ : M ⊗M ′ → N with respect to the module action of B, there is a

unique map f̄ : M ⊗B M ′ → N such that f̄ ◦ π = f̃ .

The tensor product M⊗N , corresponds to the tensor product of Hilbert spaces over the unit

object, the ring C. This is defined by a universal bilinear map M×N π̄−→M⊗N , with respect

to C. We will prove that the composition of the two universal arrows, M ×N π◦π̄−−→M ⊗BN ,

is a universal arrow for bilinear maps with respect to B. If πB and π ◦ π̄ are both universal,

they must be isomorphic.

Universality of π ◦ π̄ follows from the diagram below.

M ×N M ⊗N M ⊗B N

K
f

f̃
f̄

π̄ π

(3.70)

Any bilinear map f : M × N → K with respect to B is bilinear with respect to C. By

universality of π̄, there is a unique map f̃ : M ⊗N → K, such that f̃ ◦ π̄ = f . The map π̄ is

not bilinear with respect to B, unless B = C, so f̃ must be bilinear with respect to B. By

universality of π, there is a unique map f̄ : M ⊗B N → K, such that f̄ ◦ π = f̃ . It follows

that f̄ is the unique map, such that f̄ ◦ π ◦ π̄ = f . In the case that B = C, there is nothing

to prove.

3.6.3 2FHilb

We will prove that the category 2(FHilbc) is equivalent to the category 2Hilb, first described

by Baez in [3]. This category has 2-Hilbert spaces as objects, linear functors as 1-cells, and

natural transformations as 2-cells. A 2-Hilbert space is an Abelian dagger category enriched

over FHilb. For every 2-Hilbert space H, there is an isomorphism H ∼= FHilbn for some n.

Linear functors are functors that are completely determined by their value on basis elements.

The structure of this proof was developed through discussions with Jamie Vicary.

By lemma 3.2.12, the hom-categories 2(FHilb)c(A,B) are isomorphic to FHilbn, where n

is the dimension of A ⊗ B. We can apply this lemma because FHilb has biproducts, and

the units of matrix algebras are copyable states. We will argue that this does not hold for

arbitrary 0− cells.

A module of an arbitrary biproduct A = ⊕Ai of matrix algebras defines a decomposition

on the underlying Hilbert space. However, if A is not classical, this decomposition does not
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determine the module. For every summand Ai, which is a matrix algebra, the corresponding

summand Mi of the module M is a collection of automorphisms, indexed by the elements of

Ai. As Mi is linear in the elements of Ai, we can restrict to a collection of automorphisms,

indexed by a basis of Ai. This can be any collection of morphisms that sums to the identity.

This is exactly the case when Mi is a module on any classical structure of Ai. In FHilb, every

n-dimensional biproduct of matrix algebras is isomorphic to a biproduct of n 1-dimensional

matrix algebras. So the objects of 2(FHilb)(A,B) correspond to n-tuples of Hilbert spaces,

where n is the dimension of A ⊗ B. However, the morphisms between the objects do not

correspond to n-tuples of morphisms, as these do not need to respect the decomposition of

A⊗B into 1-dimensional subspaces.

Lemma 3.6.1. Let A,B be 0-cells of 2(FHilb)c. The hom-category 2(FHilb)c(A,B) is a

2-Hilbert space.

Proof. We need to prove, that 2(FHilb)c(A,B) is an Abelian category, enriched over FHilb.

By lemma 3.2.12, 2(FHilb)c(A,B) ∼= FHilbn for some n. This means that 2(FHilb)c(A,B)

is the category of tuples of Hilbert spaces (H1, ..., Hn), indexed by the copyable points

of A ⊗ B; and tuples of morphisms (f1, ..., fn), where Hi
fi−→ H ′i. As a consequence, the

hom-sets of 2(FHilb)c(A,B) correspond to tuples of hom-sets of FHilb. We can define

addition and scalar multiplication of morphisms entry wise. It follows that 2(FHilb)c(A,B)

is an Abelian category, enriched over FHilb because FHilb is an Abelian category, enriched

over FHilb.

Lemma 3.6.2. Let M ∈ 2(FHilb)(A,B) be a 1-cell. The assignment − ⊗A M :

2(FHilb)(I, A) → 2(FHilb)(I, B) maps every 1-cell K ∈ 2(FHilb)(I, A), to the 1-cell

K ⊗A M ∈ 2(FHilb)(I, B); and every 2-cell K
g−→ K′ ∈ 2(FHilb)(I, A), to the morphism

g ⊗A idM ∈ 2(FHilb)(I, B). This is a linear functor in 2Hilb.

Proof. We need to prove that−⊗AM preserves horizontal composition of 2-cells and identity

2-cells. Let K
g−→ K′,K′

g′−→ K′′ ∈ 2(Fhilb)(I, A) be morphisms. We have the following

equality, by the exchange law: −⊗AM(g′◦g) = (g′◦g)⊗A (idM) = (g′⊗A idM)◦(g⊗A idM) =

− ⊗A M(g′) ◦ − ⊗A M(g). The identity 2-cells are preserved by − ⊗A M by lemma 3.2.6.

This proves that −⊗AM is a functor. It is left to prove that it is a linear functor. In Fhilb,

horizontal composition is given by generalised matrix multiplication. In this case K⊗A M

is the multiplication of the vector K, with the matrix M. This means that the image of

any vector K under H is completely determined by the image of the entries of the vector;

hence, H is a linear functor.

Lemma 3.6.3. Let M
f−→ N ∈ 2(Fhilb)(A,B) be a 2-cell. The collection of morphisms

{f̂K := idK ⊗A f}, indexed by the objects K ∈ 2(FHilb)(I, A), is a natural transformation

from −⊗A M to −⊗A N.
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Proof. We know that f and idK are morphisms in 2(Fhilb)(A,B), and 2(Fhilb)(I, A),

respectively, for all K ∈ 2(Fhilb)(I, A). By the definition of horizontal composition

3.2.5, f̂ is a collection of morphisms in 2(FHilb)(I, B), from (− ⊗A M)(2(FHilb)(I, A))

to (− ⊗A N)(2(FHilb)(I, A)). It is left to show, that f̂K is natural in K. In other words,

for every morphism K
g−→ K′, the diagram below commutes:

K⊗A M K⊗A N

K′ ⊗A NK′ ⊗A M

f̂K

(−⊗N)(g)

f̂K′

(−⊗M)(g) (3.71)

Unfolding definitions, (− ⊗M)(g) := g ⊗A idM , (− ⊗N)(g) := g ⊗A idN , f̂K := idK ⊗A f ,

and f̂K′ := idK′ ⊗A f . The diagram commutes because (g ⊗A idN) ◦ (idK ⊗A f) =

(idK′ ⊗A f) ◦ (g ⊗A idM).

Lemma 3.6.4. There exists an isomorphism H : 2(FHilbc) → 2Hilb. The functor

H maps every 0-cell A, to the hom-category 2(Hilb)c(I, A). It maps every 1-cell M ∈
2(FHilb)c(A,B) to the linear functor − ⊗A M from 2(Hilb)c(I, A) to 2(Hilb)c(I, B), and

every 2-cell M
f−→ N to the natural transformation f̃ with components f̃K = idK⊗Af between

the linear functors H(M) and H(N).

Proof. First, we will prove that H is a functor from 2(FHilb) to 2Hilb, by showing that

is preserves horizontal composition of 1- and 2-cells, vertical composition of 2-cells and

identities of both 1- and 2-cells. After this, we will prove that the functor H is well-defined

on 0-,1- and 2-cells. Then, we will prove that H is surjective up to isomorphism on 0-cells,

and full on hom-sets of 0- and 1-cells of 2(FHilb). Finally, we will prove that H is injective

up to isomorphism on 0-cells, and and faithful on hom-sets of 0- and 1-cells.

We will show that H preserves horizontal composition of 1-cells and 2-cells. Let M ∈
2(Fhilb)(A,B), and N ∈ 2(FHilb)(B,C) be 1-cells. By definition we have H(M ⊗B
N)(−) = − ⊗A (M ⊗B N). By the 2-cell α−1

−,M,N , this is isomorphic to (− ⊗A M) ⊗B N,

which equals (H(M)⊗B H(N))(−).

Let M
h−→ M′ ∈ 2(FHilb)(A,B), and N

k−→ N′ ∈ 2(FHilb)(B,C) be 2-cells. H(h ⊗B k) =
ˆ(h⊗B k), which is the collection of morphisms ˆ(h⊗B k)K = idK⊗A(h⊗Bk). This is again by

α−,M,N isomorphic to (idK⊗A h)⊗B k. This is h̄K⊗B k̄K⊗M, so H(h⊗B k) = H(h)⊗BH(k).
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Furthermore, H preserves vertical composition of 2-cells, as for the 2-cells M
h−→M′ h′−→M′′

of 2(FHilb), H(h′ ◦ h) = ˆ(h′ ◦ h). This is the natural transformation with components

idK ⊗A (h′ ◦ h). By the exchange law, this equals (idK ⊗A h′) ◦ (idK ⊗A h) for all 1-cells

K ∈ 2(FHilb)(I, A). It follows that H(h′ ◦ h) = H(h′) ◦H(h).

The functor H is well-defined on 0-cells by lemma 3.6.1; It is well-defined on 1-cells by

lemma 3.6.2; and it is well-defined on 2-cells by lemma 3.6.3.

Moreover, every 0-cell of 2Hilb is isomorphic to Fhilbn, for some n. By lemma 3.2.12, this

is isomorphic to H(A), where A is a classical structure on an n-dimensional Hilbert space.

This means that H is surjective, up to isomorphisms, on 0-cells.

We will prove now, that H is full on hom-sets of 0-cells, up to isomorphism. Let A,B be

0-cells of 2Hilb. We know that A ∼= FHilbn and B ∼= FHilbm, for some n,m. A linear

functor f from A to B is a collection of functors fi : FHilb
F−→ Hilbm for i = 1, ..., n, so it

is a matrix of functors fi,j : FHilb
F−→ Hilb. Every functor fi,j is completely determined by

its value on C. It follows that fi,j(K) = K ⊗ fi,i(C) for any Hilbert space K ∈ FHilb, so

fi,j = −⊗ fi,j(C). Note that the matrix of Hilbert spaces (fi,j(C))(i,j) defines a module on

A⊗B, by 3.2.12. It follows that f is the image of the matrix of Hilbert spaces (fi,j(C))(i,j),

under H. As a result, H is surjective up to isomorphisms on 1-cells.

Now we will prove that H is full on hom-sets of 1-cells. Let n be a natural transformation

in 2Hilb between linear functors H(M) and H(N), for M,N ∈ 2(FHilb)(A,B). In that

case, n is a collection of morphisms in 2(FHilb)(I, B), from (− ⊗A M)(2(FHilb)(I, A))

to (− ⊗A N)(2(FHilb)(I, A)), indexed by a basis of 2(FHilb)(I, A). So it is a collection

of linear maps nK : K ⊗A M → K ⊗A N for every K ∈ 2(FHilb)(I, A). Every nK is a

sum of linear maps nKi
, indexed by the basis of 2(FHilb)(I, A) as K is a biproduct of n

Hilbert spaces. Every linear map nKi
is a collection of linear maps nKi,j

indexed by a basis

of 2(FHilb)(I, B) as K⊗A M is a biproduct of m Hilbert spaces. So nK is a matrix nKi,j
of

Hilbert spaces indexed by the bases of 2(FHilb)(I, A) and 2(FHilb)(I, B).

As n is natural in K, for any morphism K
g−→ K′ in 2(FHilb)(I, A), we have the

equality g ⊗A idNj,k
◦ nKi,j

= nK′i,j ◦ (g ⊗A idMj,k
). This is true, in particular when

K′i,j = C. We know that nCi,j = (idC ⊗ nCi,j). We use this to see that the equality

nCi,j ◦ (g ⊗ idMj,k
) = (g ⊗ idNj,k) ◦ nKi,j

, is equivalent to g ⊗ nCi,j = (g ⊗ idNj,k) ◦ nKi,j
. It

follows that nKi,j
= idKi,j

⊗nCi,j because g⊗ idNj,k
is surjective. It follows that H(nC) = n,

where nC =
∑

i,j nCi,j , so H is full on hom-sets of 1-cells.

At last we will prove that H is faithful on hom-sets of 1-cells and 0-cells, and that H is

injective on 0-cells.

The functor H is faithful on hom-sets of 1-cells because H(f) = H(g), for two 2-cells

f, g ∈ 2(FHilb)(M,N), implies that idK ⊗A f = idK ⊗A g, for all K ∈ 2(FHilb)(I, A). In
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particular, this holds for the module A, defined in lemma 3.2.7. By this lemma we have the

following commuting three-dimensional diagram:

A⊗M A⊗AM

A⊗A NA⊗N

πA,M

πA,N

idA ⊗ g
idA ⊗A g

M

N

εM

g
εN

AM

AN

(3.72)

The square at the back commutes by definition 3.2.5, the upper and lower triangle

commute by lemma 3.2.7, the square in the front commutes because M
g−→ N is a module

homomorphism. It follows that the square on the right commutes as well. We have a similar

diagram for f . This implies that both f and g make the diagram below commute:

A⊗AM M

NA⊗A N

εM

εN

idA ⊗A f
=

idA ⊗ g
(3.73)

As this is a unique morphism, we know that f = g, so H is faithful on hom-sets of 1-cells.

Now we will prove that H is faithful on hom-sets of 0-cells. Let M,N ∈ 2(FHilb)(A,B) be

1-cells. Suppose that H(M) ∼= H(N). That means that there exists a natural isomorphism

n, between H(M) and H(N) in 2FHilb. By surjectivity on 2-cells of H, there exists an

isomorphism between the modules M and N in 2(FHilb). So H is injective on 1-cells.

Now we will prove that H is injective on 0-cells. Suppose that 2(FHilb)(A, I) ∼=
2(FHilb)(B, I), then there exists a linear functor 2(FHilb)(I, A)

M−→ 2(FHilb)(I, B), and

a linear functor 2(FHilb)(I, B)
M−1

−−−→ 2(FHilb)(I, A), such that M−1 ◦M = id2(FHilb)(I,A),

and M ◦M−1 = id2(FHilb)(I,B). Because H is surjective on 1-cells, there exist 1-cells M ∈
2(FHilb)(A,B) and M−1 ∈ 2(FHilb)(B,A), such that M = H(M), and M−1 = H(M−1).
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Now we will prove that M⊗B M−1 = B. We know that H(M⊗B M−1) = id2(FHilb)(I,B)

because H preserves horizontal composition of 1-cells. As a consequence, M ◦M−1 = B,

as H preserves identity 1-cells, and H is faithful on 1-cells. Similarly we can prove that

M−1 ⊗A M = A, so A ∼= B.

By lemma 3.4.6, 2(FHilb) is compact. The adjoint defines a dagger functor on every Hilbert

space. The dual of a module is given by the conjugation of the corresponding matrix of

Hilbert spaces. By 3.4.7, all hom-sets have biproducts, these are the entry wise direct sums

of Hilbert spaces.

3.7 2(Rel)

In chapter 2, we discussed Frobenius algebras in Rel, which are groupoids. All Frobenius

algebras are normal and commutative Frobenius algebras correspond to Abelian groups. In

this section, we will explore the structure of modules on Frobenius algebras in Rel and we

will discuss the category 2(Rel).

3.7.1 Bimodules of groupoids

Recall that in Rel, dagger biproducts are disjoint unions of sets. Frobenius algebras in

Rel are groupoids. These are categories of which every morphism has an inverse. Rel is

compact, hence the tensor distributes over the biproduct. As a result, we can regard any

groupoid as a biproduct of indiscrete groupoids. The unit uA of a groupoid A is given by

the disjoint union of units of each of the indiscrete groupoids. Recall that by section 2.4.4,

this is the relation {id∗ ∼ ida|a ∈ Ob(A)}, between the identity morphism of I and the

identity morphisms of a groupoid A. We will write a, b, c, ... for the objects of a groupoid

A; ida, idb, idc, ... for the corresponding identity morphisms on these objects; and γ, δ, ... for

the morphisms.

We will prove that a module M of a groupoid A on the set M defines a groupoid on M .

The collection of objects of this induced groupoid is {Mida|a ∈ Ob(A)}; the morphisms are

given by Mida

Mγ−−→Midb for a
γ−→ b ∈ A.

Mida is the identity morphism on Mida , since ida is an identity morphism and by 3.4. Mγ

defines a bijection between Mida and Midb with inverse Mγ−1 since Mγ ◦Mγ−1 = Mγ◦γ−1 =

Mida by 3.4. Mγ is empty on M \Mida because Mγ(Midc) = Mγ◦idc = ∅ because a ◦ idc

is not defined for any identity morphism idc 6= ida. Note that this means that Mγ is an

injective function for all γ ∈ A.
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If we write #S for the number of elements of the set S, #Mida = #Mida′
for all identity

morphisms ida, ida′ of an indiscrete groupoid. So if M is a module of an indiscrete groupoids

A on M , the number of elements of M is divisible by the number of objects of A.

Module homomorphisms M
f−→ M′ in Rel correspond to groupoid homomorphisms. To

prove this, we need to show that f respects the groupoid structure, if and only if it

is a module homomorphism. This is straightforward, since for every morphism γ ∈ A,

f ◦Mγ = f ◦M ◦ (γ ⊗ idM) = M′ ◦ (γ ⊗ f) = M′
γ ◦ (idA ⊗ f). The second equality

holds if and only if f is a module homomorphism. The other equalities always hold. So

f(Mγ) = M′
γ if and only if f is a module homomorphism.

This corresponds to our earlier result in section 3.2.4, that a module M of a dagger biproduct

of Frobenius algebras A = ⊕iAi with unit uA =
∑

i uAi , is the biproduct M = ⊕iMuAi
. The

underlying space M is the biproduct ⊕iMuAi
. Furthermore, a module homomorphism f is

the sum of module homomorphisms MuAi

fi−→M′
uAi

.

Note that MuAi
can be empty, as M is a relation.

We can classify all modules M of a groupoid A. For every indiscrete sub-groupoid Ai ⊂ A,

we have a surjective groupoid homomorphism φi : Ai →MuAi
, where φi(γ) = Mγ. This is a

groupoid homomorphism, since φi(γ ◦ δ) = Mγ◦δ = Mγ ◦Mδ = φi(γ)◦φi(δ). It is surjective,

since Mγ(M) is defined for all γ ∈ Ai. It follows that the induced groupoid on MuAi
is

isomorphic to the quotient groupoid Ai/∼ where γ ∼ δ if φ(γ) = φ(δ).

To summarise, we can describe each module M of A on M as follows: If A = ⊕i∈IAi, then

M defines the groupoid ⊕j∈JMj on M , for some J ⊂ I. Each Mj is isomorphic to some

quotient groupoid of Aj. This implies that the hom-sets 2(Rel)(A,B) are isomorphic to

the collection of all sets with the structure of sub groupoids of A ⊗ B. This collection is a

category, where the morphisms are the relations that respect the groupoid structure.

3.7.2 2(Rel)

By section 3.2.4, horizontal composition is given by abstract matrix multiplication. Let

M ∈ 2(Rel)(A,B) and N ∈ 2(Rel)(B,C) be 1-cells and let A = ⊕iAi, B = ⊕jBj, C = ⊕kCk
be 0-cells, which are direct sums of indiscrete groupoids. Let {ai}, {bj}, {ck} be the units of

Ai, Bj, and Ck respectively. The horizontal composition M⊗B N of the modules M,N can

be expressed in terms of their induces groupoids as (M⊗B N)i,k =
∑

j Mai,bj ⊗Nbj ,ck .

By the previous subsection, the hom-sets 2(Rel)(A,B) are isomorphic to the category of all

sets with the additional structure of a sub-groupoid of A ⊗ B and relations between these

sets that have the structure of groupoid homomorphisms.
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When A and B are classical structures, the only subgroupoid of A⊗B is A⊗B itself, which

is a disjoint union of 1-element groups. It follows that 2(Rel)c(A,B) ∼= Reln for all classical

structures A,B, and for n = #(A⊗B). Note that this corresponds to lemma 3.4.7.

There is a one-to-one correspondence between the 0-cells A ∈ 2(Rel)c and the hom-categories

2(Rel)c(I, A) ∼= Reln, where n is the number of objects of A. Every module M ∈
2(Rel)(A,B) corresponds to a functor − ⊗A M : 2(Rel)c(I, A) → 2(Rel)c(I, B) and every

module homomorphism M
f−→ N corresponds to a natural transformation between the

functors − ⊗A M and − ⊗A N. This correspondence provides us with a definition of the

category 2Rel, which is analogous to 2Hilb. This is the category that has tuples of sets

as 0-cells, matrices of sets as 1-cells, and matrices of relations as 2-cells. We will omit the

details because this is very similar to lemma 3.6.4.

Rel has a dagger functor, which is the identity, so the same is true for 2(Rel). Rel has

biproducts given by disjoint unions of sets, hence the hom-sets 2(Rel)(A,B) also have

biproducts, given by disjoint unions of bimodules of A and B. Rel is compact and all

Frobenius algebras in Rel are special; therefore, 2(Rel) is also compact.

81



Chapter 4

Conclusion

In this dissertation, we have discussed several categorical models of quantum theory. In this

section, we will give a brief summary and comparison of these different models. Furthermore,

we will discuss the results we derived about 2-categorical models for quantum theory, and

how this contributes to the current research in this field. Finally, we will point out the open

problems that are still present, and we will give some suggestions for further research.

4.1 A comparison of categorical models for quantum

theory

4.1.1 Monoidal categories

The initial categorical model for quantum theory was given by monoidal dagger compact

categories. This is an expressive model for pure state quantum theory, in which most features

of Hilbert spaces arise naturally. Variations on monoidal dagger compact categories have

been proposed, in order to express mixed states and classical states explicitly. The most

interesting ones are CPM(C), CP⊕(C), Split†(CPM(C), and CP ∗(C).

The category CPM(C) is the category of mixed states and completely positive morphisms of

a monoidal category C. This is a model for mixed state quantum theory. It is a generalisation

of density matrices and completely positive operators on Hilbert spaces.

The category CP⊕(C) is the biproduct completion of CPM(C). It exploits the fact that

in FHilb, classical information corresponds to biproducts of the unit object. As we have

seen, it allows us to describe classical and quantum information explicitly. Moreover, we can

reason about quantum processes as a whole, including the branching due to measurements.

The category Split†(CPM(C)), obtained by freely splitting idempotents of CPM(C), is
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based on the correspondence between classical or quantum information, and measurements.

This category also describes classical and quantum systems explicitly. It is more elegant

than CP⊕(C) because CP⊕(C) requires the additional structure of biproducts, while all

the structure required for Split†(CPM(C)) is present in C.

The category CP ∗(C) is the category of dagger Frobenius algebras of C. This is based

on the observation that in FHilb all quantum systems correspond to dagger Frobenius

algebras, and that the ones that correspond to classical systems are commutative. We

can clearly distinguish classical from quantum information, yet both are described by the

same structure. This category implicitly captures a generalisation of the no-broadcasting

theorem because the multiplication of commutative dagger Frobenius algebras is a morphism

of CPM(C), while the multiplication of a non-commutative dagger Frobenius algebras is

not.

It was shown that Split†(CPM(C)) and CP ∗(C) have a richer structure than CP⊕(C),

when C is the category Rel. On the other hand, when C = FHilb, all three models are

equivalent. In other words, all three models are all sufficient to describe quantum processes.

Nevertheless, the first two categories are more interesting. It is still an open question whether

or not CP ∗(C) is equivalent to Split†(CPM(C)). If this is not the case, that would imply

that there exist different types of systems, in addition to classical and quantum systems.

The interpretation of the categories CPM(C), CP⊕(C), Split†(CPM(C)), and CP ∗(C) are

a bit problematic. This is due to the fact that in all these categories, physical systems are

described as operators. Mathematically this works very well, yet it is not very intuitive.

However, this point of view is generally accepted amongst physicists.

Ordinary monoidal dagger compact categories have the advantage that the interpretation

is very clear. Objects correspond to physical objects, morphism correspond to operations,

tensor products represent spatial separation and composition of morphisms correspond to

the subsequent execution of operations. Furthermore, it is a simple category that requires

little structure, but it is very expressive. In a way, this captures all variations on monoidal

categories implicitly.

4.1.2 Weak 2-categories

An alternative categorical model for quantum theory is given by weak 2-categories. This

model is different from the monoidal categorical models with respect to its interpretation;

in its structure, however, it is a generalisation of these models.

Ordinary monoidal dagger compact categories correspond to interpretation of quantum

theory, which explains measurements as a collapse of wave functions. the 2-categorical
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models correspond to the many worlds and decoherence interpretation. The embedding

of monoidal categories in 2-categories demonstrates how these different interpretations are

related.

The interpretation of 2(C) is intuitive according to the many worlds interpretation. 1-cells

correspond to physical objects, which interact with one or more separate systems. We

can regard such a separate system as the environment of the object. By this interaction,

information about the state of the physical object is transferred to the environment. If

the object is in a superposition, this may result in a superposition of the joint system of

the object and its environment. Due to this transfer of information, the physical object

may behave classical relative to its environment. It is less clear how a physical system can

interact with two separate environments at the same time. Horizontal composition of 1-cells

corresponds to a spatial separation of two physical objects, which interact with the same

environment. Morphisms are interpreted as operations on physical objects, and vertical

composition of morphisms corresponds to a subsequent execution of operations.

We have shown that the hom-category of scalars of the 2-category 2(C) is isomorphic to

C for any monoidal category C. This means that everything that can be expressed in C,

can also be expressed in 2(C). The construction 2(−) provides a generalisation for any

symmetric monoidal dagger category, where all coequalisers exist, including the ones we

have discussed in chapter 2.

The motivation for this framework is similar to that of Split†(CPM(C)). Both models use

the correspondence between classical/quantum information and measurements. As we have

proven, measurement outcomes in 2(C) have a canonical dagger Frobenius algebra. We do

not know if this is the case in Split†(CPM(C). Also, there are similarities between 2(C)

and CP⊕(CP (C)). Both categories can be used to describe quantum protocols as a whole,

independent of branching due to measurements. However, the structure of 2(C) is much

richer. This is based on Frobenius algebras and modules; these correspond to biproducts in

Hilbert spaces, but in other categories, such as Rel, these correspond to richer structures.

We conclude that, depending on the practical application, some models might be better than

others. Overall, the original monoidal dagger compact category is the most simple model

with the most intuitive interpretation, while being just as expressive as the other categories.

The categories CP ∗(C) and 2(C) are the most suitable categories to describe the interaction

between classical and quantum information. The category 2(C) has the advantage, that it

can describe entire protocols, independent of branching due to measurement. Furthermore, it

has a richer diagrammatic language. As we have discussed, CP ∗(C) gives a clear distinction

between classical and quantum systems. However, one may argue that this category is

bigger than necessary, as it contains an object for every dagger Frobenius algebra. In 2(C),

dagger Frobenius algebras are operations on 1-cells, not 1-cells by themselves. However,

different dagger Frobenius algebras in 2(C)(I, I) correspond to different, but isomorphic
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1-cells. These are different horizontal compositions of 1-cells, and can be distinguished in

the diagrammatic language.

4.2 Our contribution

In this dissertation, we have proposed a module-theoretic construction 2(−), which turns

monoidal categories into 2-categories. We have shown that the hom-category of scalars

of our model is isomorphic to the original monoidal dagger category C. Furthermore,

this construction preserves dagger functors, compactness, and biproducts. In addition, we

described which operations in this category correspond to measurements, and we proved

that these operations are unitary. Also, we have proposed a general definition for dagger

Frobenius algebras in weak 2-categories. We have characterised a class of 1-cells that have

canonical dagger Frobenius algebras. Based on this class, we have constructed a new

2-category Sym(2C), in which all 1-cells can be deleted. This 2-category provides the

mathematical foundation for the semantical description of weak 2-categories given in [20].

This model provides us with a new perspective on quantum theory; and connects categorical

quantum theory in terms of monoidal categories to topological quantum field theory and

representation theory, which is also described in [20].

To illustrate our model, we have worked out two interesting and important examples. As we

have shown in section 3.6, when we apply this construction the category FHilb, we obtain

a category that is richer in structure than 2Hilb. The restriction to 2(FHilb)c is isomorphic

to 2Hilb. Finally, we have given a classification of dagger Frobenius algebras and modules of

dagger Frobenius algebras in Rel, the model for classical possibilistic computation. We have

used this to give a description of the category 2(Rel), and a definition of 2Rel, analogous

to 2Hilb.

4.3 Further research

There are several remaining open problems and interesting questions for further research.

We will discuss some of them, regarding the standard model for quantum theory, FHilb,

the relation between 2(C) and other categorical models, the mathematical properties of the

abstract category 2(C), and possible applications of this model.

While we have given a detailed description of 2(FHilb)c, It is not very clear how we should

interpret the hom-categories 2(FHilb)(A,B), if A,B are not classical structures. It would

be interesting to investigate the relation between 2(FHilb) and 2Hilb further; whether this

is an equivalence, or if we can find a high-level explanation why this cannot be the case.
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The relation between 2(C), and CP ∗(C) or Split†(CP (C)) could be explored further. We

have tried to formulate a generalisation of CP (−) and CP ∗(−) on 2-categories. So far, this

did not have any interesting result. The problem is that horizontal composition with respect

to any 0-cell other than I is not commutative. A counter example is horizontal composition in

FHilb. This corresponds to matrix multiplication, which is non-commutative. As a result,

there is no obvious way to define horizontal composition of dagger Frobenius algebras in

2(C). Similarly, the 2-categorical analogue of completely positive maps cannot be composed

horizontally, as this necessarily involves a symmetry morphism. This is illustrated in the

pictures below.

Analogous to completely positive morphisms in C, a 2-cell f is a completely positive, if and

only if there exists a 2-cell g ∈ 2(C)(A,B) and a 1-cell K ∈ 2(C)(A,A), such that

g

M

N

M

N

BB

A

g

K
=

M
A

B

NN

M

B f

A
A

.

(4.1)

Composition of completely positive 2-cells f and f ′ would be

BB:=

A

N

B f

M

B

N

M

C

N′

f ′

M′

B

N′

M′

⊗B

B

A

C

M′

N′

g′

N′

M′

g′

C C

M∗ ⊗A M

N∗ ⊗A N

f

BB

,

(4.2)

which is not defined.

So far, we have focused on the mathematical foundation of weak 2-categories. Now that we

have established basic results about our mathematical framework, it would be interesting to

see how we can formulate quantum protocols in terms of our 2-category 2(C). This has been

done in in the specific case of 2Hilb, and in the diagrammatic language of weak 2-categories

in [20]. It would be interesting to see how the topological results about quantum protocols

described in [20] translate to the module-theoretic context. The framework that we have
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developed makes it possible to explore these quantum protocols in other categories, such as

2(Rel).

Furthermore, we would like to know whether or not we can prove that the category 2(C)

is a symmetric monoidal weak 2-category. Lastly, we would like to determine which class

or weak 2-categories our formalism captures. In other words: Under which conditions is a

weak 2-category D isomorphic to the weak 2-category 2(D)(I, I))?
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