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The general context

We build on the stream of work of categorical semantics for quantum in-
formation processing, first initiated in the seminal paper of Abramsky and
Coecke [1]. In this tradition, Coecke and Duncan developed and made ex-
tensive use of a calculus of dichromatic diagrams to express quantum pro-
tocols and quantum states [2, 3]. This diagrammatic calculus turned out to
be universal for quantum computing. The graphical calculus has been used
to prove many statements useful to quantum computing, including some
about graph states [9], measurement-based quantum computation [10], and
a multitude of protocols [3]. Unfortunately, this calculus is known to be in-
complete (with respect to stabilizer quantum mechanics) in a sense that is
formalized in the main matter.

The research problem

The red-green calculus of [2, 3, 9, 10] talks of two complementary observ-
ables in qubits. It is by now well known that it is possible to fit 3 comple-
mentary observables in qubits, and no more [21]. We thus set out to find a
calculus which speaks of three complementary observables in a nice way—
with the hope of developing a more “complete” theory—and contrast it
with the existing red-green calculus
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Your contribution

The Bloch sphere is a well-understood [16] way to understand single-qubit
unitaries as rotations of a 2-sphere—the elements of the group SO(3). Al-
though the red-green calculus is universal, and thus able to express all these
unitaries, it does not express some of the crucial equations between them.

We developed the trichromatic calculus, which expresses the presence
of 3 complementary observables in qubits, and also how they relate to each
other through rotations of the Bloch sphere. We also showed that this was
equivalent to adding an Euler angle decomposition of the Hadamard gate
to the red-green calculus. This is in turn equivalent to Van den Nest’s the-
orem in the red-green setting [9, 20].

Arguments supporting its validity

The trichromatic calculus is equivalent to the dichromatic calculus with the
addition of the Euler angle decomposition of the hadamard gate. Thus,
it precludes all the improvements that are currently known to the dichro-
matic calculus, and does so in an elegant way. It is not yet known if these
calculi are complete or not. It does seem, however, like the trichromatic
calculus offers greater promise than the ad-hoc addition of the Euler angle
decomposition to the dichromatic calculus.

Summary and future work

We refer to the section at the end of the report for a detailed exposition of
future work.
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1 Preliminaries

We assume the reader is comfortable with the basic notions of category
theory and quantum information theory, as well as Dirac notation and stan-
dard bases in C2. Here we present some additional definitions and notation
which will be useful throughout.

Definition 1.1 (†-SMC). We refer the reader to [17] for the definition of
†-symmetric monoidal category.

Definition 1.2 (FdHilb). The †-SMC of complex Hilbert spaces and linear
maps between them.

Definition 1.3 (FdHilbwp). The †-SMC of complex Hilbert spaces and lin-
ear maps modulo the relation f ≡ g if ∃θ : f = eiθg. The reason for this
relation is that maps which are different but only up to a phase are indis-
tinguishable.

Definition 1.4 (FdHilbQ). The full subcategory of FdHilbwp generated by

the objects

Q⊗ · · · ⊗Q︸ ︷︷ ︸
n

∣∣∣∣∣∣ n ≥ 0
, where Q := C2. This is essentially the

category of qubits, and the main “linear” category we will be considering.
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We also use the following category which incarnates stabilizer quantum
mechanics—as defined in [16]—and define it in a similar fashion as in [6].

Definition 1.5 (Stab). The subcategory of FdHilbQ generated by the fol-
lowing linear maps:

• single-qubit Clifford unitaries : Q→ Q

•

δStab : Q→ Q⊗Q =

{
|0〉 7→ |00〉
|1〉 7→ |11〉

(1)

•

εStab : Q→ 1 =

{
|+〉 7→ 1

|−〉 7→ 0
(2)

Definition 1.6 (C4). The rotation group of the square. Of abstract group
type Z/4Z with elements denoted { 0, 1, 2, 3 } and its operation written ad-
ditively.

2 Red and Green diagrams

2.1 RG generators

In a similar manner to the work of [9, 10], we formalize the red-green
calculus—described in detail in [2, 3]—as a category. We define a category
RG where the objects are n-fold monoidal products of an object ∗, denoted
∗n. In RG, a morphism from ∗m to ∗n is a dichromatic diagram (Also called
Open graphs in [8]) from m wires to n wires, built from the generators
below:

θ H θ (3)

where θ was allowed to be any real number in [3], we restrict θ to take

values in C4, restricting it to 4 values. Except for H, each generator is of

one of two colours, hence the name dichromatic. Additionally, the identity

morphism on ∗ is represented as the straight wire . The generators θ and

θ are called phase gates.
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2.2 RG relations

RG diagrams are also subject to the equations depicted in Figure 11. The
motivations behind these rules are explained in detail in [2, 3].

“Only the topology matters” (T)

Ơ

ơ
Ơ+ơ

Ơ

ơ
Ơ+ơ (S1)

(S2)

(B1) (B2)

π
π π

. . . . . .

π
π π

. . . . . .

(K1)
π

πƠ
-Ơ π

πƠ
-Ơ

(K2)

ブ = α

H H H H

H H H H

(C)

= (D1) (D2)

Figure 1: RG rules

The spider rule gives the subcategory of RG generated by the phase
gates a group structure. In this case, the group is C4 ∗ C4, the free product
of 2 copies of C4—one for each colour.

As well, the spider rule, combined with the rule below it, also express

the fact that for each colour, the quadruples of generators
(

, , ,
)

and
(

, , ,
)

each form a Frobenius algebra, as defined and ex-
posed in [14, 19].

1Figure taken with permission from [3]
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2.3 RG interpretation

So far we have described a category of diagrams with no quantum content,
but in fact these diagrams are meant to represent quantum maps. Here,
we provide an interpretation for these diagrams by describing a monoidal
functor J·KRG : RG → Stab, taking ∗ to C2 and mapping the morphisms
like so (as expressed in Dirac notation):

s {

RG

= |+〉

u

v θ

}

~

RG

= |0〉 〈0|+ ei
π
4
θ |1〉 〈1|

s {

RG

= 〈+|

t |

RG

= |0〉 〈00|+ |1〉 〈11|

t |

RG

= |00〉 〈0|+ |11〉 〈1|

s {

RG

= |0〉

u

v θ

}

~

RG

= |+〉 〈+|+ ei
π
4
θ |−〉 〈−|

s {

RG

= 〈0|

t |

RG

= |+〉 〈++|+ |−〉 〈−−|

t |

RG

= |++〉 〈+|+ |−−〉 〈−|

u

vH

}

~

RG

= |+〉 〈0|+ |−〉 〈1|

The calculus of RG turns out to be universal, as exposed in [3].

Proposition 2.1. J·KRG is indeed a functor.

Proof. This involves checking for each rule f = g in RG that JfKRG = JgKRG
as linear maps modulo phase.

α

α

Figure 2: RG Bloch spheres
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Figure 2 depicts the interpretation of the rotation gates θ and θ . The

arrow-tail represents the locations of the deleting points and . Al-
though the rotations in the axis which is perpendicular to both of these can
be expressed in terms of red and green rotations, there is no primitive sup-
port for them. This is what we will attempt to remedy in the next section.

3 Red, Green and Blue diagrams

Here we introduce a theory of trichromatic diagrams as a category RGB.
Whereas the diagrams in RG spoke of two complementary observable struc-
tures, RGB speaks of three complementary observable structures, the max-
imum number that can hold in qubits.

One might ask—why look for another diagrammatic theory if RG is
already universal? The reason is expressed in the following proposition.

Proposition 3.1. J·KRG is not faithful

Proof. A counterexample is provided by the following diagrams which are
not equal in RG, but whose images are equal in Stab.

1 1 6=
2

2

but

u

wwwwwwww
v

1 1

}

��������
~

RG

=

u

wwwwww
v

2

2

}

������
~

RG

= |−〉 〈−| (4)

This is a special case of the supplementary rule which was used exten-
sively in [4, 11].

Effectively, this means that RG is not complete with respect to Stab.
That is, there exist diagrams in RG which are not equal, but their interpre-
tations are.

3.1 The category RGB of red-green-blue diagrams

We define a category RGB of trichromatic diagrams in a similar manner as
we did for the dichromatic category RG. RGB is a †-SMC with as objects,
tensor products of ∗. Morphisms in RGB are represented as diagrams and

again, the identity morphism on ∗ is represented graphically by:
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the monoidal product is represented by horizontal disjoint union of di-
agrams and composition is represented by plugging wires.

RGB is generated by (horizontal) disjoint union and (vertical) compo-
sition by the following generators:

θ (5)

θ (6)

θ (7)

where again θ can be any element of C4. Of special note is the fact that
there is no Hadamard gate in RGB. There is instead a pair of gates which
take the role of “colour changers” which can be defined in terms of the
above generators. They will be defined in the next section.

3.2 RGB Rules

These following equations hold in RGB.

All rules hold under cyclic permutation of colours. (8)

All equations hold under flip of arrows and negation of angles (†). (9)

· · ·

0

· · ·

=

· · ·

· · ·

(10)

· · · · · ·

α ... β

· · · · · ·

=

· · · · · ·

α+ β

· · · · · ·

= (11)

Again, the laws above allow us to state that each of the quadruples of

generators
(

, , ,

)
,
(

, , ,

)
and

(
, , ,

)
form Frobenius algebras.
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=
3 3

=
3

3 = (12)

These laws state that state that the quadruple
(

, 3 , ,

)
forms

a bialgebra, as defined in [13]. Using Rule 8 and Rule 9, we can also

show that the following quadruples form bialgebras:
(

, 3 , ,

)
,(

, 3 , ,

)
,
(

, , 1 ,

)
,
(

, , 1 ,

)
,
(

, , 1 ,

)
.

These laws are perhaps not as nice as the bialgabra laws from RG, but this
is the price to pay for a more expressive, more symmetric theory.

= 1 (13)

The above equation allows us to express a rotation in term of a multi-
plication or comultiplication.

� :=
1

1
=
1

1
=
1

1
	 :=

�

�

m︷ ︸︸ ︷

��

		

θ

︸ ︷︷ ︸
n

=

m︷ ︸︸ ︷
· · ·

θ

· · ·︸ ︷︷ ︸
n

=

m︷ ︸︸ ︷

		

��

θ

︸ ︷︷ ︸
n

(14)

The above rule demonstrates the use of the � and 	 gates as colour

rotation gates. They can be thought of as the analogues of the Hadamard
gate from RG. They also allow any node of any one colour to be expressed
in terms of the other two colours.

:= = = 2 (15)
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:= = = 2 (16)

:= = = 2 (17)

We define these convenient “ticks”, which are used to flip the direction
of arrows. Their notation is inspired by the tick in the GHZ/W calculus of
[7]. In the GHZ/W calculus, the tick is defined in as a GHZ “cup” followed
by a W “cap”, but whereas GHZ/W has only two “colours” and hence has
only one kind of tick; RGB has three and so has three kinds of ticks—one
for each pair of colours. There are no ticks in RG simply because the natural
definition of a tick reduces to the identity:

= = (18)

One can notice that the rules which held for the red and green nodes in
RG don’t translate directly to the red and green dots of RGB. This is made
clearer by the interpretation in Stab given below. A translation which does
preserve this interpretation is also given further down.

The rules of RGB talk a lot about the rotation group of the Bloch sphere,
specifically an octahedral subgroup of it. In fact, it is in a sense “complete”
for the octahedral group, as demonstrated by the following result

Proposition 3.2. The octahedral group O embeds faithfully into homRGB(∗, ∗).
It is isomorphic to the group generated by 1 , 1 and 1

Proof. The group O is of abstract group type S4 and can be given the fol-
lowing standard presentation:

O ∼= S4 ∼= 〈τ1, τ2, τ3|τ21 = τ22 = τ23 = e,
τ1τ3 = τ3τ1,

τ1τ2τ1 = τ2τ1τ2,

τ2τ3τ2 = τ3τ2τ3〉

If we look at the subcategory generated by 1 , 1 , 1 in homRGB(∗, ∗),
and we look at the equations involving these generators on both sides, we
obtain the following group:
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G = 〈σr, σg, σb|σ4r = σ4g = σ4b = σ2rσ2gσ2b = e,
σgσr = σbσg = σrσb〉

where σr, σg, σb represent 1 , 1 , 1 respectively and the group law is

given by vertical composition—where reading from up to down is the same
as reading from right to left. Note that it is clear from this presentation that
G is a quotient of the group C4 ∗ C4 ∗ C4. We denote the quotient map
q : C4 ∗ C4 ∗ C4 → G and will make use of it later.

We can then define the following group homomorphisms:

f : O→ G =


τ1 7→ σbσ

2
r

τ2 7→ σ2bσg

τ3 7→ σgσrσg

(19)

g : G→ O =


σr 7→ τ1τ2τ3

σg 7→ τ3τ1τ2

σb 7→ τ1τ2τ3τ1τ2

(20)

after checking that these are indeed group homomorphisms, we can
also determine that f and g are inverses, and thus G ∼= O.

This certainly doesn’t hold with RG and the group generated by 1 and

1 , where the following are not equal.

1

1

1

6=

1

1

1

(21)

3.3 Some Derivable equations

The equations below can be derived from the axioms of RGB given above.
These equations can often be useful when wanting to demonstrates some
more complex equalities in RGB

The following equation is perhaps a more convenient form of the bial-
gebra law.
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=
1

(22)

The following equation is a version of the Hopf law. It shows that in
fact, all the bialgebras in RG that we had defined previously are also Hopf
algebras where the antipode is the identity [13].

3
= (23)

The following equation shows that colour rotation in one direction is
the inverse of colour rotation in the other direction.

	

�
= =

�

	
(24)

The following equation demonstrates a convenient way to write a node
of a colour in terms of nodes of the two other colours.

m︷ ︸︸ ︷
3 3

n−m

1 1

· · ·

· · ·

︸ ︷︷ ︸
n

=

m︷ ︸︸ ︷
· · ·

· · ·︸ ︷︷ ︸
n

=

m︷ ︸︸ ︷
1 1

m− n

3 3

· · ·

· · ·

︸ ︷︷ ︸
n

(25)

The following equation shows how ticks can be used to invert arrows
in diagrams.

· · · · · ·

· · · · · ·

=

· · · · · ·

· · · · · ·

(26)

The following equation shows that two ticks of the same colour annihi-
late.
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= (27)

The following equation shows that three heterochromatic ticks annihi-
late.

= = (28)

The remaining equations are useful equations about ticks:

= =
2

=
2

(29)

· · ·

· · ·

=

· · ·

· · ·

· · ·

· · ·

=

· · ·

· · ·

(30)

= = = (31)

3.4 RGB interpretation

In a similar manner to what we did for RG, we provide an interpretation
J·KRGB : RGB→ Stab of the diagrams in RGB

s {

RGB

= |+〉

u

v θ

}

~

RGB

= |0〉 〈0|+ eiθ
π
4 |1〉 〈1|

s {

RGB

= 〈+|

t |

RGB

= |0〉 〈00|+ |1〉 〈11|

t |

RGB

= |00〉 〈0|+ |11〉 〈1|

s {

RGB

= |0〉

u

v θ

}

~

RGB

= |+〉 〈+|+ eiθ
π
4 |−〉 〈−|

s {

RGB

= 〈0|

11



t |

RGB

= |+〉 〈++|+ i |−〉 〈−−|

t |

RGB

= |++〉 〈+|− i |−−〉 〈−|

s {

RGB

= |i〉

u

v θ

}

~

RGB

= |i〉 〈i|+ eiθ
π
4 |−i〉 〈−i|

s {

RGB

= 〈i|

t |

RGB

= |i〉 〈ii|+ |−i〉 〈−i− i|

t |

RGB

= |ii〉 〈i|+ |−i− i〉 〈−i|

Informally, the difference between RG and RGB can be seen in Figure 3.
The rotational symmetry of the three colours can clearly be seen, and con-
trasted with Figure 2. For each observable, the straight segment represents

the axis of rotation concretized by the θ morphism—it is also the line of

values which are fixed by that morphism. The arrow shows the direction

of positive rotation, and the arrow-tail is where the deleting point lies.
One can notice that the red deleting point in Figure 3 is at a different

location than the red deleting point in Figure 2. It is for this reason that—
although the green generators of RG and RGB are interpreted as the same
values in Stab—the red generators are mapped to different values. Essen-
tially, this design choice was made so that Rule 8, and the rules involving
the colour changers can hold.

Figure 3: RGB Bloch sphere

4 RG to RGB translation

We define a translation from red-green diagrams to red-green-blue dia-
grams as a functor T : RG → RGB by first defining T by its value on the

12



generators of RG and then checking that equal diagrams of RG are equal
under translation.

T
( )

= T

 θ

 = θ T
( )

=

T

( )
= T

( )
=

T
( )

=
1 T

 θ

 = θ T
( )

=
3

T

( )
= 3 T

( )
= 1

Proposition 4.1. T is a functor.

Proof. It suffices to do a routine check that for all rules f = g in RG, we can
prove T f = T g in RGB.

4.1 Translation preserves interpretation

Finally, the crucial property of this translation is the following

Proposition 4.2. The following diagram commutes

RG T //

##GGGGGGGG RGB

zzvvvvvvvvv

Stab

(32)

Proof. This follows from a routine check that for each generator ϕ : ∗m →
∗n in RG, T JϕKRGB = JϕKRG

5 Euler Decomposition

Let E be the relation on morphisms of RG defined by the following:
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H
E≡

1

1

1

(33)

This in known as an Euler decomposition of the Hadamard gate. Dun-
can and Perdrix [9] have shown that this equality is not provable in RG.

From this relation, we can produce the quotient category RG+ := RG/E
with quotient functorQ : RG→ RG+. Duncan and Perdrix [9] showed that
Van den Nest’s theorem [20] is equivalent to the addition of E. This means
that Van den Nest’s theorem is not provable in RG but is provable in RG+.

Definition 5.1 (chromatic diagram category). We will use the term chro-
matic diagram category—usually denoted by D—to mean any category of
RG, RGB or RG+

Lemma 5.1. For every pair f
E≡ g, we have T f = T g and JfKRG = JgKRG.

Proof. This is proved by a routine check on all the rules of RG.

With the previous lemma, we can now prove the following proposition

Proposition 5.2. We can lift T and J·KRG uniquely to the functors T̂ : RG+ →
RGB and J·KRG+ such that the following diagram commutes:

RG
Q // //

T ##GGGGGGGGG

""

RG+

T̂zzvvvvvvvvv

{{

RGB

��
Stab

(34)

Proof. The lifting of T and J·KRG is immediate from the fact that RG+ is a
quotient category and Lemma 5.1 [15].

The lower right 2-cell is proved by using the fact that Q is an epi.

We can define a functor from S : RG+ → RGB to act the following way
on generators:
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S
( )

= S

 θ

 = θ S
( )

=

S

( )
= S

( )
=

S
( )

=
3 S

 θ

 = θ S
( )

=
1

S

( )
= 1 S

( )
= 3

S
( )

= S

 θ

 =

3

θ

1

S
( )

=

S

( )
=

3 3

1

S

( )
=

3

1 1

Theorem 5.3. S is the inverse functor of T̂ . In other words, RGB and RG+ are
isomorphic categories.

Proof. This requires showing that for each generator ϕ of RGB, one can
prove T̂ (Sϕ) = ϕ from the rules of RGB and that for each generator ψ of
RG+, one can prove S

(
T̂ ψ
)
= ψ from the rules of RG+.

In a sense, the extra equations that appear in RGB and are not in RG
are the equations about the rotations of the octahedral subgroup of the ro-
tation group of the Bloch sphere. This isomorphism of categories tells us
that these rotation equations are necessary and sufficient to prove Van den
Nest’s theorem.
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6 Extensions

In the description of the red-green calculus given in [2,3,9,10], phases were
permitted to be arbitrary real numbers representing arbitrary angles—not
just integer multiples of π

2 . We offer a method of extending the present
work to make that possible.

In an n-chromatic diagram, the group of phases for the combined n
colours can be seen as a quotient of C∗n4 , the free product of n copies of
C4. C∗n4 thus maps into D in a natural way. If g : C∗n4 → G is a group
homomorphism, then we can construct the following pushout:

C∗n4
g //

I

��
R

G

��
D // D(G)

(35)

Note that although the homomorphism g is not present in the notation
of D(G), the pushout does depend on it. We omit it so as to avoid clutter.

In the case where D = RGB, we can internalize some of the relations in
RGB by using the quotient map we had defined earlier: q : C4∗C4∗C4 → O.
The pushout square then becomes:

C4 ∗ C4 ∗ C4
q //

I
��

R

O

��
RGB

id
// RGB

(36)

One can also suppose that H is an abelian group and h : C4 → H is a
group homomorphism. Of particular interest to us will be the case where h
is monic, in which case, H will be seen as an extension of the phase group.
Then we can lift h to a group homomorphism h∗n by the unique arrow
which makes the following diagram commute:

C∗n4

h∗n

���
�
�
�
�
�
�
�
�
�
�

C4

i0

44iiiiiiiiiiiiiiiiiiiiiii

h

��

· · · C4

in
=={{{{{{{{

h

��
H

j0 **VVVVVVVVVVVVVVVVVVVVVVVV · · · H

jn ""EEEEEEEE

H∗n

(37)

h∗n is guaranteed to exist and be unique by the universal property of
the free product in Grp.
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If D is a chromatic diagram category with n colours, then there is a
functor I : C∗n4 → D—where C∗n4 is seen as a category with one object—
which is defined by the property that I ◦ ik maps C4 to phase group of the
kth colour. From this data, we can construct the following pushout.

C∗n4
h∗n //

I

��
R

H∗n

��
D // D(H∗n)

(38)

In the particular case that H = U(1)—the group of rotations of the
circle—with h : k 7→ π

2k, we use the shorthand D© := D(U(1)). The di-
agrams of RG© were the ones described in [3].

In RGB, we end up with the following cube:

C4 ∗ C4 ∗ C4
q //

h∗h∗h ))SSSSSSSSSSSSSS

��

O

$$IIIIIIIIIIII

��

U(1) ∗U(1) ∗U(1) //

��

S

��

RGB
id

//

))SSSSSSSSSSSSSSS RGB

$$JJJJJJJJJ

RGB© id
// RGB©

(39)

where all the faces are pushouts and S is a group extension of SO(3).
There is an obvious way to additionally define a functor J·KD©

: D© →
FdHilbQ such that the following diagram commutes.

D //

��

D©

��
Stab // FdHilbQ

(40)

7 Future Work

The current formalism as it stands looks like the following
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RG

��

��

//

��

RG©

��

��

��

RG+ � � //

T

""FFFFFFFFF

��

RG+
©

��

yyssssssssss

RGB

{{wwwwwwwww
� � // RGB©

%%LLLLLLLLLL

Stab � � // FdHilbQ � � // FdHilb

(41)

As mentioned earlier, it is known that RG is not complete for Stab—
that is to say, J·KRG is not a faithful functor. It is not known, however if
J·KRGB is faithful or not. In the future, we would hope to either prove that
it is (which would be a great result), or show that it’s not by providing a
counterexample.

Spekkens has developed a toy theory of qubits [18], which was later
formalized categorically in [5] as the category Spek. Spek exposes some
features of quantum mechanics, but not all. For example, it does not “have”
non-locality [6]. Interpreting the diagrams of RGB into Spek would hope-
fully reveal more of the differences between Spek and Stab.

In our formalization of chromatic diagram categories as †-SMCs, we
have spoken very little about the †. Of course, it does play a role, and some
work should be done to integrate it more tightly into this formalization.
Similarly, we have omitted to talk about any notion of trace. However, a
trace can be defined quite easily on these categories, making them traced
monoidal categories [12].
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