
Continuation-Passing Style, Defunctionalization, Accumulations,
and Associativity

Jeremy Gibbonsa
a Department of Computer Science, University of Oxford, UK

Abstract
Context Reynolds showed us how to use continuation-passing style and defunctionalization to transform
a recursive interpreter for a language into an abstract machine for programs in that language. The same
techniques explain other programming tricks, including zippers and accumulating parameters.
Inquiry Buried within all those applications there is usually a hidden appeal to the algebraic property of
associativity.
Approach Our purpose in this paper is to entice associativity out of the shadows and into the limelight.
Knowledge We revisit some well-known applications (factorial, fast reverse, tree flattening, and a compiler
for a simple expression language) to spotlight their dependence on associativity.
Grounding We replay developments of these programs through a series of program transformations and data
refinements, justified by equational reasoning.
Importance Understanding the crucial role played by associativity clarifies when continuation-passing style
and defunctionalization can help and when they cannot, and may prompt other applications of these tech-
niques.

ACM CCS 2012
Software and its engineering→ Functional languages; Data types and structures; Patterns; Interpreters;
Formal software veri�cation;
Theory of computation→ Program reasoning;

Keywords program transformation, accumulating parameters, continuation-passing style,
defunctionalization, abstract machines

The Art, Science, and Engineering of Programming

Submitted May 26, 2021

Published November 15, 2021

doi 10.22152/programming-journal.org/2022/6/7
© Jeremy Gibbons
This work is licensed under a “CC BY 4.0” license.
In The Art, Science, and Engineering of Programming, vol. 6, no. 2, 2022, article 7; 28 pages.

https://doi.org/10.22152/programming-journal.org/2022/6/7
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

Continuation-Passing Style, Defunctionalization, Accumulations, and Associativity

1 Introduction

In a seminal paper [28], Reynolds showed how to use continuation-passing style (CPS)
followed by defunctionalization to take a direct-style recursive interpreter written in
some (presumably well understood) defining language implementing some (typically
less well understood) defined language, and transform it into an abstract machine for
executing programs in the defined language. CPS ensures that the order of execution
of the resulting machine is independent of that of the defining language, for example
whether the defining language is lazy or eager; and defunctionalization ensures that
the abstract machine is first-order even if the defining language was higher-order.
Danvy and colleagues have subsequently elaborated on Reynolds’ approach in a

long sequence of papers [13, 2, 1, 3, 4, 12], using it to reconstruct many published
abstract machines and to construct some new ones. One can also see CPS and de-
functionalization applied in contexts other than language interpreters and abstract
machines—for example, Huet’s Zipper [16] and McBride’s Clowns and Jokers [22].
Moreover, they shed light on some other standard techniques, such as accumulating
parameters [9], translation between right-to-left and left-to-right folds [8, §3.5], and
fast reverse [17].
This much is fairly well known. However, behind all these applications of the two

techniques is an appeal to associativity, which is not so well known. Perhaps it should
not come as a surprise that CPS transformation—which after all is a matter of sequen-
tializing code that would otherwise be tree-structured—is connected to associativity.
Nevertheless, we feel that the associativity aspect deserves to be highlighted. The
purpose of this paper is to explain and explore the connection between CPS, defunc-
tionalization, and associativity.
The paper uses the dependently typed language Idris as a programming notation,

for which a brief primer is given in Appendix A. The paper is mostly independent of
any specifics of the language; in particular, the only real reliance on Idris’s dependent
types is for implementing a generalized form of composition in section 5, and is not
essential to the central argument. The source of the paper is a literate script, and the
extracted code is provided as supplementary material [14].

2 Warm-up: Factorial

We start with a very simple example, in order to set out the main ideas in a familiar
context—a straightforward direct-style recursive implementation of factorial:

fact : Nat→ Nat
fact Z = 1
fact (S n) = S n× fact n

We deliberately work through the details here, so that we can present the later
examples more briskly.

7:2

Jeremy Gibbons

2.1 Continuation-passing style

The first step is to convert the direct-style definition to continuation-passing style.
This is achieved by introducing an additional argument k, an accumulating parameter,
thereby generalizing the function fact to another function fact′2 specified by

fact′2 : Nat→ (Nat→ r)→ r
fact′2 n k= k (fact n) -- specification of fact′2

This really is a generalization, because fact may be retrieved by setting k= id. Indeed,
we define

fact2 : Nat→ Nat
fact2 n= fact′2 n id

and so fact2 = fact. (As a convention throughout the paper, we use the same name but
different indices for different versions of morally the same function. Sometimes the
different versions really are extensionally equal; more generally, they may be related
by data refinement.)
From the original definition of fact, and the specification of fact′2 in terms of it, using

simple unfold–fold transformations [10], it is now straightforward to synthesize a
definition of fact′2 that no longer depends on fact. For the base case, we have

fact′2 Z k
= [[specification of fact′2]]

k (fact Z)
= [[definition of fact]]

k 1

and for the inductive step:

fact′2 (S n) k
= [[specification of fact′2]]

k (fact (S n))
= [[definition of fact]]

k (S n× fact n)
= [[composition]]
(k · (λm⇒ S n×m)) (fact n)
= [[specification of fact′2]]

fact′2 n (k · (λm⇒ S n×m))

We therefore define:

fact′2 : Nat→ (Nat→ r)→ r
fact′2 Z k = k 1
fact′2 (S n) k= fact′2 n (k · (λm⇒ S n×m))

This is the continuation-passing style implementation. Clearly the continuation argu-
ment k is being used as an accumulating parameter: it starts off as id, accumulates

7:3

Continuation-Passing Style, Defunctionalization, Accumulations, and Associativity

more information (here, by function composition) as the computation proceeds, and
yields the final result by some projection (here, by application to 1). An equivalent
way of writing the second clause of fact′2 is

fact′2 (S n) k= fact′2 n (λm⇒ k (S n×m))

in which the right-hand side might be read “compute the factorial of n; get a result, let’s
call it m; then return k (S n×m)”. This version is more idiomatically in continuation-
passing style, and we use this style without comment for later examples.

2.2 Defunctionalization

Now fact′2 is tail-recursive: when it recurses, the result of the recursive call is also the
final result. But it is still higher-order: it manipulates continuations. However, in the
context of its use as an auxilliary function to fact2, we don’t need the full generality
of fact′2: the continuations are always of type Nat→ Nat, so we could have given fact′2
the more specific type

fact′2 : Nat→ (Nat→ Nat)→ Nat

Moreover, the continuations aren’t even arbitrary functions of type Nat→ Nat: they’re
specifically compositions of the form (a×) ·(b×) · · · (c×). Having made this observation,
we can choose a different representation of functions in this special form, and trans-
form fact′2 by data refinement to use this different representation instead. If we pick a
first-order representation, we get a first-order implementation of fact′2. In particular,
we can represent a function of the form (a×) · (b×) · · · (c×)—that is, the composition
of a possibly empty sequence of multiplications by various factors a, b, . . . , c—by the
list [a, b, . . . , c] of those factors. The abstraction function factabs3 converts from the
new ‘concrete’ representation back to the old ‘abstract’ one:

factabs3 : List Nat→ (Nat→ Nat)
factabs3 [] = id
factabs3 (n :: k) = (n×) · factabs3 k

—that is, factabs3 k m= foldr (×)m k. Data refinement then starts from the specification

fact′3 n k= fact′2 n (factabs3 k) -- specification of fact′3

and leads to the new implementation

fact3 : Nat→ Nat
fact3 n= fact′3 n [] where

fact′3 : Nat→ List Nat→ Nat
fact′3 Z k = foldr (×) 1 k -- = product k
fact′3 (S n) k= fact′3 n (k++ [S n])

This is still tail-recursive, but is now also first-order.

7:4

Jeremy Gibbons

2.3 Associativity

Of course, fact3 is not the tail-recursive program for factorial that you would sit down
and write from first principles. That program arises from a further data refinement,
representing the composition (a×)·(b×) · · · (c×) by the product a×b×· · ·×c of factors—
a single integer, rather than a list of integers. Now the abstraction function back to
the original continuations used by fact′2 is

factabs4 : Nat→ (Nat→ Nat)
factabs4 k= (k×)

Applying the data refinement starts from the specification

fact′4 n k= fact′2 n (factabs4 k) -- specification of fact′4

and leads to the new implementation

fact4 : Nat→ Nat
fact4 n= fact′4 n 1 where

fact′4 : Nat→ Nat→ Nat
fact′4 Z k= k
fact′4 (S n) k= fact′4 n (k× S n)

This is still tail-recursive and first-order, but now also manipulates only scalar data. But
note that this final data refinement is valid only because of associativity of multiplication.
The crucial part of the development is the inductive step in the auxilliary function:

fact′4 (S n) k
= [[specification of fact′4]]

fact′2 (S n) (factabs4 k)
= [[definition of fact′2]]

fact′2 n (λm⇒ factabs4 k (S n×m))
= [[definition of factabs4]]

fact′2 n (λm⇒ k× (S n×m))
= [[associativity of multiplication]]

fact′2 n (λm⇒ (k× S n)×m)
= [[definition of factabs4]]

fact′2 n (λm⇒ factabs4 (k× S n)m)
= [[specification of fact′4]]

fact′4 n (k× S n)

Suppose we had started instead with a non-associative operator, as in the ‘subtractorial’
function:

subt : Integer→ Integer
subt 0= 1
subt n= n− subt (n− 1)

7:5

Continuation-Passing Style, Defunctionalization, Accumulations, and Associativity

We could have followed the same steps to get a tail-recursive subt2 and a first-order
subt3, but we would need to do something different in order to get a scalar subt4. It’s a
nice exercise to work out just what that difference would be—but because subtraction
is not associative, a different insight is needed than for factorial.

3 Reverse

Let’s look at another familiar linear example: list reversal. This goes through similar
steps, but the dependence on associativity arises in a different way. We start with the
naive, quadratic-time, direct-style reverse function:

reverse : List a→ List a
reverse [] = []
reverse (x :: xs) = reverse xs++ [x]

3.1 Continuation-passing style

CPS conversion (with the more specific type for the auxilliary function, but this time
making it a local definition) gives:

reverse2 : List a→ List a
reverse2 xs= reverse′2 xs id where

reverse′2 : List a→ (List a→ List a)→ List a
reverse′2 [] k = k []
reverse′2 (x :: xs) k= reverse′2 xs (λzs⇒ k (zs++ [x]))

3.2 Defunctionalization

The continuations are all functions of the form (++[a])·(++[b]) · · · (++[c]), compositions
of functions that each append a single element. Defunctionalization picks a first-order
encoding of such higher-order values; which encoding shall we pick? The most natural
thing to try is to represent the composition as the list [a, b, . . . , c] of appendees. But
then the abstraction function, which we need in the base case of the auxilliary function,
is list reversal again! That’s no help.

3.3 Associativity

The next most natural thing is to represent the composition (++[a]) ·(++[b]) · · · (++[c])
as the list [c, . . . , b, a] of appendees in reverse order—after all, the abstraction function
then no longer needs to reverse anything:

revabs3 : List a→ (List a→ List a)
revabs3 ys= λzs⇒ zs++ ys

7:6

Jeremy Gibbons

Is this more helpful? Let’s work through the development. We start with the specifica-
tion

reverse′3 xs k= reverse′2 xs (revabs3 k) -- specification of reverse′3

and calculate for the base case of the auxilliary function:

reverse′3 [] ys
= [[specification of reverse′3]]

reverse′2 [] (revabs3 ys)
= [[definition of reverse′2]]

revabs3 ys []
= [[definition of revabs3]]
[] ++ ys
= [[definition of ++]]

ys

and for the inductive step:

reverse′3 (x :: xs) ys
= [[specification of reverse′3]]

reverse′2 (x :: xs) (revabs3 ys)
= [[definition of reverse′2]]

reverse′2 xs (λzs⇒ revabs3 ys (zs++ [x]))
= [[definition of revabs3]]

reverse′2 xs (λzs⇒ (zs++ [x]) ++ ys)
= [[associativity of ++, and definition]]

reverse′2 xs (λzs⇒ zs++ (x :: ys))
= [[definition of revabs3]]

reverse′2 xs (revabs3 (x :: ys))
= [[specification of reverse′3]]

reverse′3 xs (x :: ys)

We end up with the well-known linear-time fast reverse function using an accumulator:

reverse3 : List a→ List a
reverse3 xs= reverse′3 xs [] where

reverse′3 : List a→ List a→ List a
reverse′3 [] k = k
reverse′3 (x :: xs) k= reverse′3 xs (x :: k)

But we only get there by exploiting associativity of ++; without that, there is no
productive defunctionalization of the CPS version of the program in the first place.

7:7

Continuation-Passing Style, Defunctionalization, Accumulations, and Associativity

4 Flattening trees

Let’s now turn our attention to non-linear data; in particular, binary trees:

data Tree a= Tip a | Bin (Tree a) (Tree a)

Here is the obvious, recursive, direct-style function for flattening a tree to a list:

flatten : Tree a→ List a
flatten (Tip x) = [x]
flatten (Bin t u) = flatten t++ flatten u

Note that, like reverse, this is again quadratic-time, because of the nested applications
of ++; and again, like reverse, there is a linear-time implementation obtained via an
accumulating parameter. We might suspect that CPS and defunctionalization will
again take us there. Let’s see.

4.1 Continuation-passing style

Following our nose with CPS conversion gives:

flatten2 : Tree a→ List a
flatten2 t= flatten′2 t id where

flatten′2 : Tree a→ (List a→ List a)→ List a
flatten′2 (Tip x) k = k [x]
flatten′2 (Bin t u) k= flatten′2 t (λxs⇒ flatten′2 u (λys⇒ k (xs++ ys)))

Note that because binary trees are a non-linear datatype, there a choice to be made
when using CPS to linearize the traversal: left-to-right, or right-to-left? This definition
is left-to-right, visiting left child t before right child u (we will revisit this choice later).

4.2 Defunctionalization

It is perhaps no longer immediately obvious how to defunctionalize these continua-
tions; what is the general form that they take? We need not wait for inspiration to
strike: we can proceed methodically, following the path laid by Reynolds and explored
by Danvy. There are three places where continuations are constructed, for the three
call sites to flatten′2:

id -- no free variables
λys⇒ k (xs++ ys) -- free variables xs, k
λxs⇒ flatten′2 u (λys⇒ k (xs++ ys)) -- free variables u, k

So we will need a datatype with three different constructors. (Compare this with fact3,
which constructed continuations at the two call sites to the auxilliary function fact′3,
so used a datatype with two constructors, namely lists; and similarly for reverse2.)
The last two of the three call sites to flatten′2 construct continuations with free

variables, representing the context of the recursive call; the corresponding constructors

7:8

Jeremy Gibbons

will be closures, taking arguments to capture values for those free variables. We
therefore introduce the following representation:

data FlatCont3 a= FlatRoot3

| FlatLeftTree3 (Tree a) (FlatCont3 a)
| FlatRightList3 (List a) (FlatCont3 a)

The idea is that FlatRoot3 is the continuation used at the root of the tree, FlatLeftTree3

for the recursive call on a left child (whose context includes the right sibling, another
tree), and FlatRightList3 for the recursive call on a right child (whose context includes
the flattening of the left sibling, a list). The abstraction function is typed

flatabs3 : FlatCont3 a→ (List a→ List a)

and the corresponding auxilliary function is specified by

flatten′3 t k= flatten′2 t (flatabs3 k) -- specification of flatten′3

Working through the data refinement yields the following implementation:

flatten3 : Tree a→ List a
flatten3 t= flatten′3 t FlatRoot3 where

mutual
flatten′3 : Tree a→ FlatCont3 a→ List a
flatten′3 (Tip x) k = flatabs3 k [x]
flatten′3 (Bin t u) k= flatten′3 t (FlatLeftTree3 u k)

flatabs3 : FlatCont3 a→ (List a→ List a)
flatabs3 FlatRoot3 = id
flatabs3 (FlatLeftTree3 u k) = λxs⇒ flatten′3 u (FlatRightList3 xs k)
flatabs3 (FlatRightList3 xs k) = λys⇒ flatabs3 k (xs++ ys)

Intuitively, the defunctionalized continuation is a stack of ‘context frames’, each of
which is either a tree (a right sibling, the additional context when descending into
a left child) or a list (the flattening of a left sibling, the additional context when
descending into a right child).

4.3 Defunctionalization again

By happy accident, we need not have defined a new algebraic datatype for the
defunctionalized continuations, since FlatCont3 a happens to be isomorphic to a
sequence of choices:

FlatCont4 : Type→ Type
FlatCont4 a= List (Either (Tree a) (List a))

(here, the sum type Either X Y has values of the form Left x for x : X and Right y for
y : Y). Using this representation instead gives the equivalent program:

7:9

Continuation-Passing Style, Defunctionalization, Accumulations, and Associativity

flatten4 : Tree a→ List a
flatten4 t= flatten′4 t [] where

mutual
flatten′4 : Tree a→ FlatCont4 a→ List a
flatten′4 (Tip x) k = flatabs4 k [x]
flatten′4 (Bin t u) k= flatten′4 t (Left u :: k)

flatabs4 : FlatCont4 a→ (List a→ List a)
flatabs4 [] = id
flatabs4 (Left u :: k) = λxs⇒ flatten′4 u (Right xs :: k)
flatabs4 (Right xs :: k) = λys⇒ flatabs4 k (xs++ ys)

With built-in lists, it is easier to see that the defunctionalized continuation behaves as
a stack. However, the naming convention is a bit awkward with the built-in sum type:
a right child u is in the Left side of the sum, because it is the context for descending
into its left sibling.
Nevertheless, this is not the linear-time flattening function we were hoping for: it’s

still quadratic, because every flattening xs of a left sibling is retraversed to append the
flattening ys of its right sibling (in the Right case of flatabs4). Where did we go wrong?

4.4 Continuation-passing style again

As noted above, there was actually an arbitrary decision made earlier, not present in
the direct-style program flatten and forced upon us by the CPS conversion to flatten2.
The direct-style program is agnostic about whether left children are visited before or
after right children; that is determined by the evaluation semantics of the defining
language, and the definition of ++. The CPS program makes explicit that the left child
is visited before the right. Making this order of evaluation explicit is precisely why
Reynolds used CPS for his definitional interpreters; and ‘left before right’ turns out to
be precisely the wrong thing to do for tree flattening. Here is the other CPS version,
visiting the right child before the left (but still delivering the tips in left to right order):

flatten5 : Tree a→ List a
flatten5 t= flatten′5 t id where

flatten′5 : Tree a→ (List a→ List a)→ List a
flatten′5 (Tip x) k = k [x]
flatten′5 (Bin t u) k= flatten′5 u (λys⇒ flatten′5 t (λxs⇒ k (xs++ ys)))

These continuations defunctionalize in the mirror image of what happened earlier:
the additional context for a right child u is its left sibling t, and the context for a left
child t is the flattening ys of its right sibling. So we introduce a new representation of
defunctionalized continuations:

FlatCont6 : Type→ Type
FlatCont6 a= List (Either (List a) (Tree a))

Using this representation instead gives the following defunctionalized right-to-left
traversal:

7:10

Jeremy Gibbons

t1

t3

t4

t2

Figure 1 A tree to be flattened, with subtree t2 highlighted

flatten6 : Tree a→ List a
flatten6 t= flatten′6 t [] where

mutual
flatten′6 : Tree a→ FlatCont6 a→ List a
flatten′6 (Tip x) k = flatabs6 k [x]
flatten′6 (Bin t u) k= flatten′6 u (Right t :: k)

flatabs6 : FlatCont6 a→ (List a→ List a)
flatabs6 [] = id
flatabs6 (Left ys :: k) = λxs⇒ flatabs6 k (xs++ ys)
flatabs6 (Right t :: k) = λys⇒ flatten′6 t (Left ys :: k)

Sadly, this is still quadratic-time: in the Left case of flatabs6, the constructed flatten-
ing xs is retraversed to append ys. More work is required to get linear time. And not
surprisingly, that additional work involves associativity.

4.5 Associativity

Consider applying flatten6 to the tree shown in figure 1, via

xs= flatten6 (Bin (Bin t1 (Bin t2 t3)) t4)

where t1, t2, t3, t4 are the four subtrees; and let xsi = flatten ti for i = 1, 2,3, 4. The
figure highlights the left–right–left path leading from the root to subtree t2. The
context when visiting subtree t2 is the continuation [Left xs3, Right t1, Left xs4]; that is,

xs= flatten′6 t2 [Left xs3, Right t1, Left xs4]

Having obtained xs2 = flatten t2, the continuation is applied, leading eventually to

xs= (flatten t1 ++ (xs2 ++ xs3)) ++ xs4

This reveals that the particular interleaving of Left and Right frames in the continuation
is irrelevant: Left frames xs3, xs4 get appended, Right frames t1 get prepended, and—by
associativity of ++!—these two operations commute. So we could just as well separate
the Left frames from the Right frames:

flatabs6 k= flatabs6 (map Left (lefts k) ++map Right (rights k))

7:11

Continuation-Passing Style, Defunctionalization, Accumulations, and Associativity

where lefts : List (Either a b) → List a and rights : List (Either a b) → List b extract
the Left- and Right-tagged elements respectively of a list of Eithers. This in turn sug-
gests another data refinement: we can discard the interleaving information, and
represent the defunctionalized continuation instead as an uninterleaved pair of lists,
(List (List a), List (Tree a)), consisting respectively of the data to be appended and that
to be prepended.
But we can (and should) go further: all the Left-tagged lists are eventually going to

be concatenated, so we might as well concatenate them into a single list as we go.
That is,

flatabs6 k= flatabs6 ([Left (concat (lefts k))] ++map Right (rights k))

This suggests yet another data refinement, to represent the defunctionalized continua-
tion as a pair consisting of a single list of elements (to be appended) and a list of trees
(whose flattenings will be prepended). We therefore introduce the new representation
of defunctionalized continuations

FlatCont7 : Type→ Type
FlatCont7 a= (List a, List (Tree a))

with abstraction function specified by

flatabs7 (ys, ts) xs= concat (map flatten (reverse ts)) ++ xs++ ys
-- specification of flatabs7

Applying this data refinement leads to the following program:

flatten7 : Tree a→ List a
flatten7 t= flatten′7 t ([], []) where

mutual
flatten′7 : Tree a→ FlatCont7 a→ List a
flatten′7 (Tip x) (ys, ts) = flatabs7 (ys, ts) [x]
flatten′7 (Bin t u) (ys, ts) = flatten′7 u (ys, t :: ts)

flatabs7 : FlatCont7 a→ (List a→ List a)
flatabs7 (ys, []) = λxs⇒ xs++ ys
flatabs7 (ys, t :: ts) = λxs⇒ flatten′7 t (xs++ ys, ts)

This still contains two occurrences of ++, in the two clauses for flatabs7. But note that
flatabs7 is only applied in a single place, and then only to a singleton list; so those
++s take constant time. This program therefore takes linear time overall; and the
transformations that brought us there depended crucially on associativity of ++.
This is still not quite the program you might have written from first principles, but

it is only one final data refinement away. Instead of the call flatten′7 t (ys, ts) with an
isolated ‘tree in focus’ t and a possibly empty stack ts of postponed trees, we push t
onto ts to make a non-empty stack t :: ts of trees:

flatten8 : Tree a→ List a
flatten8 t= flatten′8 ([], [t]) where

7:12

Jeremy Gibbons

mutual
flatten′8 : (List a, List (Tree a))→ List a
flatten′8 (ys, Tip x :: ts) = flatabs8 (ys, ts) [x]
flatten′8 (ys, Bin t u :: ts) = flatten′8 (ys, u :: t :: ts)

flatabs8 : (List a, List (Tree a))→ (List a→ List a)
flatabs8 (ys, []) = λxs⇒ xs++ ys
flatabs8 (ys, t :: ts) = λxs⇒ flatten′8 (xs++ ys, t :: ts)

There is only one call site for flatabs8; if we make a case analysis there on whether ts
is empty, we can inline flatabs8 and eliminate the additional definition. We also take
the opportunity to curry the auxilliary function, and to flip its arguments:

flatten9 : Tree a→ List a
flatten9 t= flatten′9 [t] [] where

flatten′9 : List (Tree a)→ List a→ List a
flatten′9 [Tip x] ys= x :: ys
flatten′9 (Tip x :: ts) ys= flatten′9 ts (x :: ys)
flatten′9 (Bin t u :: ts) ys= flatten′9 (u :: t :: ts) ys

This program operates on a non-empty stack of trees, maintaining an accumulating
parameter for the flattening so far, which is constructed from right to left. It is tail-
recursive, first-order, and linear-time. This is the program you would write from first
principles: a model application of an accumulating parameter to tree flattening.

5 Interpreters and compilers

Reynolds’ original motivation [28] for investigating CPS and defunctionalization was to
elucidate the derivation of abstract machines from language interpreters. Associativity
also shows up there—in a way not exploited by Reynolds himself, nor by the extensive
subsequent elaboration by Danvy and colleagues [13, 2, 1, 3, 4, 12], but it is central to
the approach taken by Wand [31, 32]. However, in contrast to our earlier examples
using factorial, reverse, and flattening, associativity does not arise from the problem
domain—that is, the operators of the language being implemented—but from (a
generalized form of) sequential composition of subprograms. Our point here is to
remind ourselves of Wand’s approach, which seems to have become lost over the
intervening four decades.
For these purposes, it suffices to take an extremely simple language—one of arith-

metic expressions constructed from numeric literals and addition. Hutton [18] shows
that this same language serves as a basis for discussing many aspects of language
semantics and implementation. But because we are interested specifically in asso-
ciativity, we diverge from Hutton’s language to one of literals and (non-associative)
subtraction; we do not want to confuse associativity of sequential composition in the
machine implementation with associativity of addition in the source language.

data Expr= Lit Integer | Diff Expr Expr

7:13

Continuation-Passing Style, Defunctionalization, Accumulations, and Associativity

Diff

Diff Lit

Lit Lit

3 4

5

Figure 2 The expression Diff (Diff (Lit 3) (Lit 4)) (Lit 5)

Here is the straightforward, direct-style, recursive evaluator for this language:

eval : Expr→ Integer
eval (Lit n) = n
eval (Diff e e′) = eval e− eval e′

so with

expr= Diff (Diff (Lit 3) (Lit 4)) (Lit 5)

as shown in figure 2 we have eval expr= (3− 4)− 5= −6.

5.1 CPS and defunctionalization

If we follow the same process as for tree flattening, we obtain a tail-recursive evaluator
via CPS:

eval2 : Expr→ Integer
eval2 e= eval′2 e id where

eval′2 : Expr→ (Integer→ Integer)→ Integer
eval′2 (Lit n) k = k n
eval′2 (Diff e e′) k= eval′2 e (λm⇒ eval′2 e′ (λn⇒ k (m− n)))

and a tail-recursive, first-order evaluator via defunctionalization:

data EvalFrame3 = EvalLeftExpr3 Expr | EvalRightValue3 Integer

EvalCont3 : Type
EvalCont3 = List EvalFrame3

eval3 : Expr→ Integer
eval3 e= eval′3 e [] where

mutual
eval′3 : Expr→ EvalCont3→ Integer
eval′3 (Lit n) k= evalabs3 k n
eval′3 (Diff e e′) k= eval′3 e (EvalLeftExpr3 e′ :: k)

evalabs3 : EvalCont3→ (Integer→ Integer)
evalabs3 [] n = n
evalabs3 (EvalLeftExpr3 e′ :: k) m= eval′3 e′ (EvalRightValue3 m :: k)
evalabs3 (EvalRightValue3 m :: k) n = evalabs3 k (m− n)

7:14

Jeremy Gibbons

The defunctionalized continuations EvalCont3 are stacks of frames, with either uneval-
uated expressions (the right siblings of left visitees) or integers (the evaluations of
left siblings of right visitees); we have defined a new datatype EvalFrame3 to allow
more specific names than with plain Either Expr Integer.
Now eval3 is readily seen as an abstract machine for evaluating expressions: evalu-

ating a Diff pushes the right child on the stack then moves down to the left; when
eventually a result is obtained, the next task is popped off the stack; if this result was
from a left child, its right sibling is popped off the stack to visit next and the result
pushed in its place; and if the result was from a right child, the corresponding left
result is popped from the stack, the difference computed, and the remainder of the
stack used; when the stack is empty, the result obtained is the final result.

5.2 Compilation

However, eval3 cannot be seen as a compiler for expressions: the abstract machine
manipulates unevaluated expressions ‘at run-time’ on the stack, whereas a compiler
should have eliminated these. Nevertheless, there is a well-known stack-based compi-
lation scheme for such expression languages. There are instructions to push a value
onto the stack, and to replace the top two elements of the stack with their difference:

data Instr= PushI Integer | SubI
Prog4 : Type
Prog4 = List Instr

Program execution is a left fold over the instruction sequence, inducing a stack
transformation (a function from stacks to stacks):

exec4 : Prog4→ List Integer→ List Integer
exec4 p s= foldl step s p where

step ns (PushI n) = n :: ns
step (n :: m :: ns) SubI = (m− n) :: ns -- note reversal of arguments

Compilation is a traversal of the expression tree:

compile4 : Expr→ Prog4

compile4 (Lit n) = [PushI n]
compile4 (Diff e e′) = compile4 e++ compile4 e′ ++ [SubI]

For example,

compile4 expr= [PushI 3, PushI 4, SubI, PushI 5, SubI]

In the special case of a program of the form compile4 e, execution consists of consuming
an initial stack (which is not inspected) and producing a final stack with the evaluation
of e pushed on top:

exec4 (compile4 e) s= eval e :: s

7:15

Continuation-Passing Style, Defunctionalization, Accumulations, and Associativity

fg

x1

...
xr

Figure 3 Generalized composition br g f

In particular, an expression may be evaluated by compiling and executing a program
on the initially empty stack, then extracting the sole element of the final stack:

eval4 : Expr→ Integer
eval4 e= case exec4 (compile4 e) [] of [n]⇒ n

This compilation scheme entails an abstract machine, and it evidently involves stacks;
so it seems like it ought to be obtainable using CPS and defunctionalization. Can we
get there following the same process as with the other examples? We can—but only if
we exploit associativity.

5.3 Generalized composition

Wand [32] observes that the essence of the key transformation is associativity of
a generalization of function composition. Consider the recursive case of the CPS
interpreter:

eval′2 (Diff e e′) k= eval′2 e (λm⇒ eval′2 e′ (λn⇒ k (m− n)))

The right-hand side can be seen as routing one argument k from the surrounding
context into the continuation for the left child e, and routing two arguments k, m into
the continuation for the right child e′. To arrange this routing, Wand [32] therefore
introduces the generalized composition operation br, such that

br g f x1 . . . xr = g (f x1 . . . xr)

as illustrated in figure 3 (although Wand writes Br where we write br). Equivalently,
by η-expansion,

λx1 . . . xr⇒ br g f x1 . . . xr = g (λx1 . . . xr⇒ f x1 . . . xr)

That is,

b0 g f = g f b0 = id
br+1 g f = (br g) · f br+1 = (br g) · (·)

so that b1 = (·), b2 = (·) · (·), b3 = (·) · (·) · (·)— respectively Smullyan’s ‘bluebird’,
‘blackbird’, and ‘bunting’ combinators [29] —and in general br = (·) · · · · · (·), the
composition of r instances of (·).

7:16

Jeremy Gibbons

f

gh

x1

...
xr

xr+1...
xr+s

=

f

gh

x1

...
xr

xr+1...
xr+s

(a) (b)

Figure 4 Associativity of generalized composition: (a) br (bs+1 h g) f , (b) br+s h (br g f)

Using generalized composition, we have:

eval′2 (Diff e e′)
= [[definition of eval′2]]
λk⇒ eval′2 e (λm⇒ eval′2 e′ (λn⇒ k (m− n)))
= [[since λk⇒ g (f k) is b1 g (λk⇒ f k)]]

b1 (eval′2 e) (λk m⇒ eval′2 e′ (λn⇒ k (m− n)))
= [[since λk m⇒ g (f k m) is b2 g (λk m⇒ f k m)]]

b1 (eval′2 e) (b2 (eval′2 e′) (λk m n⇒ k (m− n)))

Moreover, generalized composition is—of course!—(pseudo-)associative:

(br (bs+1 h g) f) x1 . . . xr+s

= (bs+1 h g) (f x1 . . . xr) xr+1 . . . xr+s

= h (g (f x1 . . . xr) xr+1 . . . xr+s)
= h ((br g f) x1 . . . xr+s)
= (br+s h (br g f)) x1 . . . xr+s

That is,

br (bs+1 h g) f = br+s h (br g f)

as illustrated in figure 4. We call this ‘pseudo-associativity’ rather than plain ‘asso-
ciativity’ because the indices change under rebracketing. It is this associativity that
is the crucial transformation allowing us to rotate tree-shaped code to obtain linear
code, thereby eliminating expressions from the run-time artifacts, as we shall see.

5.4 Implementing generalized composition

The first few arities of generalized composition can be defined as follows:

b0 : (b→ c)→ b→ c
b0 g f = g f

b1 : (b→ c)→ (a→ b)→ (a→ c)
b1 g f = λx⇒ g (f x)

7:17

Continuation-Passing Style, Defunctionalization, Accumulations, and Associativity

b2 : (b→ c)→ (a→ a′→ b)→ (a→ a′→ c)
b2 g f = λx y⇒ g (f x y)

However, the general case has a dependent type, depending on the arity of f . In order
to accommodate different types for the different argument positions, we index the
definition by a list of types. Thus, we introduce the type function Arrow as b for list of
types as and type b:

Arrow : List Type→ Type→ Type
Arrow [] b= b
Arrow (a :: as) b= a→ Arrow as b

For example

Arrow [Char, Bool] String= Char→ Bool→ String

at arity 2. Then we can define generalized composition, by induction over the arity:

b : {as : List Type} → (b→ c)→ Arrow as b→ Arrow as c
b {as= []} g f = g f
b {as= :: } g f = b g · f

Rewriting eval′2 to use generalized composition yields a different implementation of
the evaluator:

eval5 : Expr→ Integer
eval5 e= eval′5 e halt where

eval′5 : Expr→ (Integer→ Integer)→ Integer
eval′5 (Lit n) = ret n
eval′5 (Diff e e′) = b1 (eval′5 e) (b2 (eval′5 e′) sub)

where for later convenience we have introduced three abbreviations:

halt = id
ret n= λk⇒ k n
sub = λk⇒ λm⇒ λn⇒ k (m− n)

5.5 Tree-shaped code

Note that eval′5 is not tail-recursive any more, because of the imposition of the gener-
alized compositions. Nevertheless, it suggests a data representation:

data ExprRep6 : List Type→ Type where
Ret6 : Integer→ ExprRep6 []
Sub6 : ExprRep6 [Integer, Integer]
B1

6 : ExprRep6 []→ ExprRep6 [Integer]→ ExprRep6 []
B2

6 : ExprRep6 []→ ExprRep6 [Integer, Integer]→ ExprRep6 [Integer]

7:18

Jeremy Gibbons

B1

B1 B2

Ret B2 Ret Sub

3 Ret Sub 5

4

b1

b1 b2

ret b2 ret sub

3 ret sub 5

4

(a) (b)

Figure 5 (a) Tree-shaped code and (b) its interpretation

A data structure of type ExprRep6 r represents an evaluation function of type (Integer→
Integer) → Arrow r Integer. The first argument is the finalizing continuation. The
index r specifies how many additional integer values are required to complete the
evaluation to an integer; for example, Ret6 n :: ExprRep6 [] will yield a result with
no additional values needed, whereas Sub6 :: ExprRep6 [Integer, Integer] requires two
additional integer values.
We can translate expressions into this representation:

rep6 : Expr→ ExprRep6 []
rep6 (Lit n) = Ret6 n
rep6 (Diff e e′) = B1

6 (rep6 e) (B2
6 (rep6 e′) Sub6)

which gives a tree as shown in figure 5(a). We can then evaluate the representative:

abs6 : ExprRep6 r→ (Integer→ Integer)→ Arrow r Integer
abs6 (Ret6 n) = ret n
abs6 Sub6 = sub
abs6 (B1

6 x y) = b1 (abs6 x) (abs6 y)
abs6 (B2

6 x y) = b2 (abs6 x) (abs6 y)

yielding the interpretation shown in figure 5(b). The two steps constitute another
evaluator:

eval6 : Expr→ Integer
eval6 e= abs6 (rep6 e) halt

which evidently deforests to eval5. But this is still not promising as a compiler, because
the intermediate representation ExprRep6 is still tree-shaped, as figure 5 illustrates,
whereas we were hoping for a linear sequence of instructions.

5.6 Linear code

Fortunately, associativity of generalized composition justifies rotation of the tree-
shaped code in figure 5 into linear form, as shown in figure 6. Observe that

7:19

Continuation-Passing Style, Defunctionalization, Accumulations, and Associativity

BRet7

3 BRet7

4 BSub7

BRet7

5 BSub7

Halt7

b0

ret b1

3 ret b0

4 sub b1

ret b0

5 sub halt

(a) (b)

Figure 6 (a) Linear code and (b) its interpretation

eval5 e
= [[definition]]

eval′5 e halt
= [[b0 is simply application]]

b0 (eval′5 e) halt

Then we can unroll the definition of eval′5 on expr, as in figure 5(b), and exploit
pseudo-associativity of the generalized compositions:

eval5 expr
= [[above]]

b0 (eval′5 expr) halt
= [[definition of eval′5]]

b0 (b1 (b1 (ret 3) (b2 (ret 4) sub)) (b2 (ret 5) sub)) halt
= [[pseudo-associativity: b0 (b1 h g) f = b0 h (b0 g f)]]

b0 (b1 (ret 3) (b2 (ret 4) sub)) (b0 (b2 (ret 5) sub) halt)
= [[pseudo-associativity: b0 (b1 h g) f = b0 h (b0 g f)]]

b0 (ret 3) (b0 (b2 (ret 4) sub) (b0 (b2 (ret 5) sub) halt))
= [[pseudo-associativity: b0 (b2 h g) f = b1 h (b0 g f)]]

b0 (ret 3) (b1 (ret 4) (b0 sub (b0 (b2 (ret 5) sub) halt)))
= [[pseudo-associativity: b0 (b2 h g) f = b1 h (b0 g f)]]

b0 (ret 3) (b1 (ret 4) (b0 sub (b1 (ret 5) (b0 sub halt))))

The end result is shown in figure 6(b); note in particular that the generalized com-
positions now all nest to the right. In the same way as this specific example, pseudo-
associativity allows us to rotate any tree-shaped evaluation into a linear form, in
which no composition has another composition in its left argument. We can capture
and enforce this property in another data representation:

data ExprRep7 : List Type→ Type where
Halt7 : ExprRep7 [Integer]
BRet7 : Integer→ ExprRep7 (Integer :: r)→ ExprRep7 r
BSub7 : ExprRep7 (Integer :: r)→ ExprRep7 (Integer :: Integer :: r)

7:20

Jeremy Gibbons

Now a data structure of type ExprRep7 r represents an evaluation function of type
Arrow r Integer, and as before the index r denotes the number of additional integer
values required to complete the evaluation. But the datatype allows only a single
(‘right’) child per non-leaf node. Note that in the process of rotating, the arities can
get arbitrarily high—in particular, for right-nested expressions of the form 4− (3−
(2− (1− 1))) as in the ‘subtractorial’ function subt from section 2. The representation
must therefore allow arbitrary indices, in contrast to ExprRep6 which used indices only
up to arity 2.
Given a function to append two representations:

append7 : ExprRep7 r→ ExprRep7 (Integer :: s)→ ExprRep7 (r++ s)
append7 Halt7 y = y
append7 (BRet7 n k) y = BRet7 n (append7 k y)
append7 (BSub7 k) y = BSub7 (append7 k y)

we can transform from ExprRep6 to ExprRep7 by rotating the branching constructors
B1

6, B2
6:

rotate7 : ExprRep6 r→ ExprRep7 r
rotate7 (Ret6 n) = BRet7 n Halt7

rotate7 Sub6 = BSub7 Halt7

rotate7 (B1
6 x y) = append7 (rotate7 x) (rotate7 y)

rotate7 (B2
6 x y) = append7 (rotate7 x) (rotate7 y)

But instead of going via the tree-shaped representation, we can convert expressions
directly into the linear representation:

rep7 : Expr→ ExprRep7 []
rep7 (Lit n) = BRet7 n Halt7

rep7 (Diff e e′) = append7 (rep7 e) (append7 (rep7 e′) (BSub7 Halt7))

Either way, we can then interpret ExprRep7 representations:

abs7 : ExprRep7 r→ Arrow r Integer
abs7 Halt7 = halt
abs7 (BRet7 n k) = ret n (abs7 k)
abs7 (BSub7 k) = flip (sub (abs7 k)) -- note reversal of arguments again

Appending representations corresponds to composing their interpretations:

b (abs7 y) (abs7 x) = abs7 (append7 x y)

(note that backwards composition on the left-hand side becomes forwards sequencing
on the right-hand side). This gives yet another implementation of the evaluator:

eval7 : Expr→ Integer
eval7 e= abs7 (rep7 e)

7:21

Continuation-Passing Style, Defunctionalization, Accumulations, and Associativity

Since non-leaf nodes in the datatype ExprRep7 have by construction a single child,
this is a linear representation rather than a tree-shaped one, and there is an obvious
compilation into the linear type of programs from before:

compile7 : Expr→ Prog4

compile7 = compileRep7 · rep7 where
compileRep7 : ExprRep7 r→ Prog4

compileRep7 Halt7 = []
compileRep7 (BRet7 n k) = PushI n :: compileRep7 k
compileRep7 (BSub7 k) = SubI :: compileRep7 k

Thus, Halt7 corresponds to the empty program, and BRet7 and BSub7 each prefix one
instruction onto a program.
The type ExprRep7 r corresponds to programs which yield a single integer when

run on an initial stack of shape r; there are no representations corresponding to
incomplete programs such as [PushI 3, PushI 4] which result in more than one value
being pushed onto the stack.

6 Discussion

Reynolds [28] introduced the two-step process of conversion to continuation-passing
style followed by defunctionalization of the continuations so introduced, in order to
describe and classify interpreters used as a mechanism of language definition. Danvy
and colleagues [13, 2] have extensively explored Reynolds’s process, using it to explain
the correspondence between various published interpreters and abstract machines,
and to derive some new abstract machines from existing interpreters and vice versa.
Our contribution has been to highlight the appeals to associativity in applications of
this process, prominent in Wand’s early application [31, 32] of Reynolds’s approach
but mostly unspoken since.
Reynolds and Danvy et al. focus on the lambda calculus as the defined language,

using the process to explain the lambda calculus by implementing it in a simpler defin-
ing language. Subsequent work has focussed on the process, and has therefore chosen
simpler defined languages than the lambda calculus as illustrations. In particular, a lot
can be said in terms of a mere expression language consisting of numeric constants
and addition, without touching the full Turing completeness of the lambda calculus.
Hutton and colleagues have used this device in a series of papers [20, 5, 19, 6, 18]—so
much so that McBride [24, 23] called it ‘Hutton’s Razor’, although the device is actually
much older than Hutton’s uses [25, 32].
We’ve used Hutton’s Razor ourselves in section 5, although we switched from

addition to subtraction in order to be clear about where associativity is used. Following
Reynolds’s process leads to an abstract machine for evaluating arithmetic expressions,
but not a compiler, because it cannot make a clear phase distinction between processing
the input expression and performing arithmetic operations. Nevertheless, there is a
well-known compilation scheme from expressions to a stack machine [25]. Bahr and

7:22

Jeremy Gibbons

Hutton [5] do manage to derive this compiler; but they do so by introducing stacks
and stack transformers, motivated by operational reasoning:

The next step is to transform the evaluation function into a version that utilises a
stack, in order to make the manipulation of argument values explicit. [5, §2.2]

The next step is to transform [the evaluator] into CPS, in order to make the flow of
control explicit. [5, §2.3]

The operational justification (“in order to make . . . explicit”) seems a pity, because
CPS and defunctionalization already introduce stacks and make control flow explicit—
these artifacts appear just by turning the handle, with no operational insight required.
Our development in section 5 shows that the operational reasoning is not needed in
order to arrive at a compiler. Instead, we got there by exploiting associativity of a
generalized composition operator.
The observation that associativity of generalized composition leads directly to

linearly structured target code is due to Wand [32], and explored in detail for more
sophisticated languages by Henson [15, Chapter 8]. Wand also identifies the relevance
of associativity for other continuation-based transformations [31].
Wand and Henson used an untyped setting; it seems that precise typing of the

generalized composition requires (at least lightweight) dependent types, and can’t
otherwise be done statically in a type-safe manner, so there is no middle ground
between these two positions. In fact, those dependent types express stack safety,
making stack underflow a type error [26]. If one were to fully bite the dependently
typed bullet, one could go further: to express not only the number and types of stack
elements, but even their actual values [23, 27, 21], completing the proof of correctness
of the compiler.
We have also shown that the same process applies to simpler problems than com-

pilers, simpler even than compilers for basic expression languages. We showed in
section 2 that it leads from the direct recursive implementation of factorial to the
simple imperative loop for computing it—once associativity of multiplication has
been exploited. Similarly, with associativity, it leads from the naive quadratic-time
implementation of reverse to the linear-time accumulating-parameter version, essen-
tially an application of Hughes’s ‘novel representation’ [17] or difference lists in logic
programming [11]. And again in conjunction with associativity, it leads to a linear-time
tail-recursive tree traversal. Admittedly, there is a simpler linear-time tree traversal, if
one dispenses with tail recursion [7, Exercise 7I]:

flatten f = flatten′ t [] where
flatten′ (Tip x) xs= x :: xs
flatten′ (Bin t u) xs= flatten′ t (flatten′ u xs)

And if one follows the tree traversal development steps on the identity function on
trees

id : Tree a→ Tree a

then the defunctionalized continuations List (Either (Tree a) (Tree a)) correspond to
the zipper [16]. Do the same for the map function on trees

7:23

Continuation-Passing Style, Defunctionalization, Accumulations, and Associativity

treeMap : (a→ b)→ Tree a→ Tree b

and the defunctionalized continuations List (Either (Tree b) (Tree a)) are tree dissections
[22]—but neither of these exploits associativity.

The generalized composition we have used is in fact itself a special case of the yet
more general notion of operad, “an abstraction of a family of composable functions of
n variables for various n, useful for the ‘bookkeeping’ and applications of such families”
[30]. Our br g f plugs an arity-r function f into an arity-1 function g, as shown in
figure 3; more generally, there are q different ways of plugging such an f into an
arity-q function g, yielding an arity-(q+ r− 1) function overall, and these again enjoy
associativity in a natural way.

Acknowledgements I’m very grateful for constructive feedback from members of the
Algebra of Programming research group at Oxford, especially Guillaume Boisseau,
Josh Ko, Shin Cheng Mu, Richard Bird, Geraint Jones, Nick Wu, and Cezar Ionescu. I
also owe thanks to members of IFIP Working Group 2.1 and participants at BOBKonf
and Haskell Love for helpful questions and comments, to reviewers for constructive
suggestions, to Mitch Wand for comments on his paper, and to Keith Clark and Tom
Schrijvers for bibliographic assistance.

References

[1] Mads Sig Ager, Dariusz Biernacki, Olivier Danvy, and Jan Midtgaard. From
interpreter to compiler and virtual machine: A functional derivation. Technical
Report BRICS RS-03-14, DAIMI, Department of Computer Science, University of
Aarhus, 2003. URL: https://www.brics.dk/RS/03/14/.

[2] Mads Sig Ager, Dariusz Biernacki, Olivier Danvy, and Jan Midtgaard. A functional
correspondence between evaluators and abstract machines. In Principles and
Practice of Declarative Programming, pages 8–19. ACM, 2003. doi:10.1145/888251.
888254.

[3] Mads Sig Ager, Olivier Danvy, and Jan Midtgaard. A functional correspondence
between call-by-need evaluators and lazy abstract machines. Information Pro-
cessing Letters, 90(5):223–232, 2004. doi:10.1016/j.ipl.2004.02.012.

[4] Mads Sig Ager, Olivier Danvy, and Jan Midtgaard. A functional correspon-
dence between monadic evaluators and abstract machines for languages with
computational effects. Theoretical Computer Science, 342(1):149–172, 2005.
doi:10.1016/j.tcs.2005.06.008.

[5] Patrick Bahr and Graham Hutton. Calculating correct compilers. Journal of
Functional Programming, 25:e14, 2015. doi:10.1017/S0956796815000180.

[6] Patrick Bahr and Graham Hutton. Calculating correct compilers II: Return
of the register machines. Journal of Functional Programming, 30(e25), 2020.
doi:10.1017/S0956796820000209.

[7] Richard Bird. Thinking Functionally with Haskell. Cambridge University Press,
2015.

7:24

https://www.brics.dk/RS/03/14/
http://dx.doi.org/10.1145/888251.888254
http://dx.doi.org/10.1145/888251.888254
http://dx.doi.org/10.1016/j.ipl.2004.02.012
http://dx.doi.org/10.1016/j.tcs.2005.06.008
http://dx.doi.org/10.1017/S0956796815000180
http://dx.doi.org/10.1017/S0956796820000209

Jeremy Gibbons

[8] Richard Bird and Philip Wadler. An Introduction to Functional Programming.
Prentice-Hall, 1988.

[9] Richard S. Bird. The promotion and accumulation strategies in transforma-
tional programming. ACM Transactions on Programming Languages and Systems,
6(4):487–504, October 1984. doi:10.1145/1780.1781.

[10] Rod M. Burstall and John Darlington. A transformational system for developing
recursive programs. Journal of the ACM, 24(1):44–67, January 1977. doi:10.1145/
321992.321996.

[11] Keith L. Clark and Sten-Åke Tärnlund. A first-order theory of data and pro-
grams. In Bruce Gilchrist, editor, Proceedings of IFIP Congress, pages 939–944,
Amsterdam, 1977. North-Holland.

[12] Olivier Danvy. Defunctionalized interpreters for programming languages. In
International Conference on Functional Programming, pages 131–142. ACM, 2008.
doi:10.1145/1411204.1411206.

[13] Olivier Danvy and Lasse R. Nielsen. Defunctionalization at work. In Principles
and Practice of Declarative Programming, pages 162–174. ACM, 2001. doi:10.1145/
773184.773202.

[14] Jeremy Gibbons. Continuation-Passing Style, Defunctionalization, Accumu-
lations, and Associativity. Accompanying Idris code, Zenodo, 2021. doi:
10.5281/zenodo.5599955.

[15] Martin C. Henson. Elements of Functional Languages. Blackwell Scientific Pub-
lishing, 1987.

[16] Gérard Huet. The zipper. Journal of Functional Programming, 7(5):549–554,
September 1997. doi:10.1017/S0956796897002864.

[17] John Hughes. A novel representation of lists and its application to the function
‘reverse’. Information Processing Letters, 22:141–144, 1986. doi:10.1016/0020-
0190(86)90059-1.

[18] Graham Hutton. It’s as easy as 1, 2, 3. Unpublished draft, January 2021. URL:
https://www.cs.nott.ac.uk/~pszgmh/123.pdf [cited 2021-11-08].

[19] Graham Hutton and Patrick Bahr. Compiling a 50-year journey. Journal of
Functional Programming, 27(e20), 2017. doi:10.1017/S0956796817000120.

[20] Graham Hutton and Joel J. Wright. Compiling exceptions correctly. In Dexter
Kozen and Carron Shankland, editors, Mathematics of Program Construction,
volume 3125 of Lecture Notes in Computer Science, pages 211–227. Springer, 2004.
doi:10.1007/978-3-540-27764-4_12.

[21] Hsiang-Shang Ko. McBride’s Razor. 2020. URL: https://josh-hs-ko.github.io/
blog/0010/ [cited 2021-11-08].

[22] Conor McBride. Clowns to the left of me, jokers to the right: Dissecting data
structures. In Principles of Programming Languages, pages 287–295. ACM, 2008.
doi:10.1145/1328438.1328474.

[23] Conor McBride. Ornamental algebras, algebraic ornaments. Unpublished draft,
2011. URL: https://personal.cis.strath.ac.uk/conor.mcbride/pub/OAAO/LitOrn.pdf
[cited 2021-11-8].

7:25

http://dx.doi.org/10.1145/1780.1781
http://dx.doi.org/10.1145/321992.321996
http://dx.doi.org/10.1145/321992.321996
http://dx.doi.org/10.1145/1411204.1411206
http://dx.doi.org/10.1145/773184.773202
http://dx.doi.org/10.1145/773184.773202
http://dx.doi.org/10.5281/zenodo.5599955
http://dx.doi.org/10.5281/zenodo.5599955
http://dx.doi.org/10.1017/S0956796897002864
http://dx.doi.org/10.1016/0020-0190(86)90059-1
http://dx.doi.org/10.1016/0020-0190(86)90059-1
https://www.cs.nott.ac.uk/~pszgmh/123.pdf
http://dx.doi.org/10.1017/S0956796817000120
http://dx.doi.org/10.1007/978-3-540-27764-4_12
https://josh-hs-ko.github.io/blog/0010/
https://josh-hs-ko.github.io/blog/0010/
http://dx.doi.org/10.1145/1328438.1328474
https://personal.cis.strath.ac.uk/conor.mcbride/pub/OAAO/LitOrn.pdf

Continuation-Passing Style, Defunctionalization, Accumulations, and Associativity

[24] Conor McBride. She’s cutting and pasting it: Higgledy piggledy programming.
2012. URL: https://personal.cis.strath.ac.uk/conor.mcbride/pub/she/higpig.html
[cited 2021-11-08].

[25] John McCarthy and James Painter. Correctness of a compiler for arithmetic
expressions. In Jacob T. Schwartz, editor, Mathematical Aspects of Computer
Science, volume 19 of Proceedings of Symposia in Applied Mathematics, pages
33–41. American Mathematical Society, 1967. doi:10.1090/psapm/019.

[26] James McKinna and Joel Wright. A type-correct, stack-safe, provably correct,
expression compiler for Epigram. Unpublished draft, 2006. URL: http://citeseerx.
ist.psu.edu/viewdoc/summary?doi=10.1.1.105.4086.

[27] Alberto Pardo, Emmanuel Gunther, Miguel Pagano, and Marcos Viera. An
internalist apporach to correct-by-construction compilers. In David Sabel and
Peter Thiemann, editors, Principles and Practice of Declarative Programming.
ACM, 2018. doi:10.1145/3236950.3236965.

[28] John C. Reynolds. Definitional interpreters for higher-order programming lan-
guages. In John J. Donovan and Rosemary Shields, editors, Proceedings of the 25th
ACM National Conference, pages 717–740. ACM, 1972. Reprinted in Higher-Order
and Symbolic Computation 11(4):363-397, 1998. doi:10.1145/800194.805852.

[29] Raymond Smullyan. To Mock a Mockingbird, and Other Logic Puzzles. Oxford
University Press, 1985.

[30] Jim Stasheff. What is an operad? Notices of the American Mathematical Society,
51(6):630–631, 2004.

[31] Mitchell Wand. Continuation-based program transformation strategies. Journal
of the ACM, 27(1):164–180, January 1980. doi:10.1145/322169.322183.

[32] Mitchell Wand. Deriving target code as a representation of continuation seman-
tics. ACM Transactions on Programming Languages and Systems, 4(3):496–517,
1982. doi:10.1145/357172.357179.

A Appendix: A primer on Idris syntax

For the purposes of this paper, Idris is mostly used simply as a strongly typed pure
functional programming language, similar in spirit to Haskell and Standard ML.
Syntactically, like both those languages, Idris uses square brackets [1,2, 3] for

list values and [] for the empty list. It uses Haskell’s ++ rather than ML’s @ for list
append, Haskell’s · rather than ML’s ◦ for function composition, and Haskell’s -- for line
comments (which ML lacks). Lambda abstractions λx⇒ e use Haskell’s λ (a backslash
in ASCII) instead of ML’s fn, but ML’s ⇒ instead of Haskell’s →. Case expressions
case x of p ⇒ e | p′ ⇒ e′ also use ML’s ⇒ instead of Haskell’s →. Idris uses the ML
convention of : for type declarations and :: for list cons, the opposite way round from
the Haskell convention. Datatype declarations:

data Tree a= Tip a | Bin (Tree a) (Tree a)

7:26

https://personal.cis.strath.ac.uk/conor.mcbride/pub/she/higpig.html
http://dx.doi.org/10.1090/psapm/019
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.105.4086
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.105.4086
http://dx.doi.org/10.1145/3236950.3236965
http://dx.doi.org/10.1145/800194.805852
http://dx.doi.org/10.1145/322169.322183
http://dx.doi.org/10.1145/357172.357179

Jeremy Gibbons

use the same syntax as Haskell; but the list datatype is named (as in List Integer)
rather than using brackets.
Each definition must have a type declaration, rather than allowing the type to be

inferred as in ML and (most of the time) in Haskell. Functions must be defined before
use; mutually recursive functions must be given in a mutual block:

parity : Nat→ Bool
parity n= odd n where

mutual
odd : Nat→ Bool
odd Z = False
odd (S n) = even n

even : Nat→ Bool
even Z = True
even (S n) = odd n

Idris is dependently typed: types are first-class citizens, and the type of types is
Type. So what would be a type synonym in Haskell:

type FlatCont4 a= [Either [a] (Tree a)]

is just an ordinary definition (of a function from types to types) in Idris:

FlatCont4 : Type→ Type
FlatCont4 a= List (Either (List a) (Tree a))

We make only light use of the power of dependent types in this paper. In particular,
here is the Arrow type from section 5:

Arrow : List Type→ Type→ Type
Arrow [] b= b
Arrow (a :: as) b= a→ Arrow as b

This is just another ordinary definition; it’s a type-level function, but with dependent
typing, types are values too. The function Arrow takes two arguments (a list of types
and a single type), and returns a type as its result; the idea is that Arrow as b is
the type of functions with argument types as and result type b. In Haskell it would
require the lightweight dependently typed features of the GHC compiler—specifically,
type-level analogues of value-level lists, and we would also need the corresponding
type-level function to append type-level lists. In ML it could not be expressed at all.
Generalized composition:

b : {as : List Type} → (b→ c)→ Arrow as b→ Arrow as c
b {as= []} g f = g f
b {as= :: } g f = b g · f

is defined by induction over the argument types index as; the curly brackets denote
that as is an implicit argument—it could be inferred from the overall type (as b, c are),
but it made explicit to enable pattern matching on whether or not as is empty in the
two clauses of the definition. In Haskell, it would require a family of singleton types
in order to connect the value level with the type level; again, it is inexpressible in ML.

7:27

Continuation-Passing Style, Defunctionalization, Accumulations, and Associativity

About the author

Jeremy Gibbons is Professor of Computing at the University of
Oxford, where he leads the Algebra of Programming research group.
email: jeremy.gibbons@cs.ox.ac.uk
www: http://www.cs.ox.ac.uk/jeremy.gibbons/
orcid: 0000-0002-8426-9917

7:28

mailto:jeremy.gibbons@cs.ox.ac.uk
http://www.cs.ox.ac.uk/jeremy.gibbons/

	1 Introduction
	2 Warm-up: Factorial
	2.1 Continuation-passing style
	2.2 Defunctionalization
	2.3 Associativity

	3 Reverse
	3.1 Continuation-passing style
	3.2 Defunctionalization
	3.3 Associativity

	4 Flattening trees
	4.1 Continuation-passing style
	4.2 Defunctionalization
	4.3 Defunctionalization again
	4.4 Continuation-passing style again
	4.5 Associativity

	5 Interpreters and compilers
	5.1 CPS and defunctionalization
	5.2 Compilation
	5.3 Generalized composition
	5.4 Implementing generalized composition
	5.5 Tree-shaped code
	5.6 Linear code

	6 Discussion
	References
	A Appendix: A primer on Idris syntax
	About the author

