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Abstract— We give a status update of the Cougar Project, in
which we investigate a database approach to sensor networks:
Clients “program” the sensors through queries in a high-level
declarative language (such as a variant of SQL). In this paper,
we overview our activities on energy-efficient data dissemination
and query processing. Due to space constraints, we cannot present
a full menu of results; instead, we decided to only whet the
reader’s appetite with some interesting problems in energy-
efficient routing and in-network aggregation and some thoughts
on how to approach them.

I. INTRODUCTION

A powerful paradigm in sensor network design that has
emerged recently: Give users a declarative query interface
to the sensor data, thereby abstracting away the physical
properties of the network when tasking the sensors. Such a
sensor database system sends event data from source nodes
to selected storage nodes called view nodes where the data is
collected for further in-network processing. Many such sensor
networks have strong constraints on their energy usage to
maximize network lifetime. A significant amount of energy
can be preserved by carefully determining (1) the data that
should be stored in designated view nodes as well as (2)
coordinating the data dissemination to these nodes.

In this paper we overview two ongoing research directions.
Our first direction is view selection. In order to minimize the
number of messages for a given query workload, we introduce
a hybrid pull-push model, in which relevant data is collected at
sensor nodes and pushed to view nodes, from where the data
can be pulled when queries are issued. Our goal is to decide,
given a query workload, what data we should store and where
in the network this data should be stored in order to minimize
the expected overall query cost given the query workload.

Our second direction is wave scheduling. We propose to
schedule transmissions among nodes such that data flows
quickly from event sources to storage nodes while avoiding
collisions at the MAC layer. Since all nodes adhere to the
schedule, most nodes can be turned off and only wake up dur-
ing well-defined time intervals, resulting in significant energy
savings. We show how routing protocols can be modified to
interact symbiotically with the scheduling decisions, resulting
in significant energy savings at the cost of higher latency.

In the remainder of the paper, we first introduce our model
of a sensor network (Section Il), we then overview ongoing
work on view selection (Section I11), and we then overview
ongoing work on wave scheduling (Section V).

1. MODEL

In this section, we describe our model for sensor networks
and sensor data, and outline our architectural assumptions.

Sensor Networks. We consider a sensor network that
consists of a large number of sensor nodes connected through a
multi-hop wireless network [13], [8]. We assume that nodes are
stationary, all node radios have the same fixed communication
range, and that each node is aware of its own location. Sensor
networks have the following physical resource constraints:

Communication. The bandwidth of wireless links connect-
ing sensor nodes is usually limited, on the order of a few
hundred Kbps; the network provides limited quality of service,
with variable latency and large packet drop probability.

Power consumption. Sensor nodes have limited supply of
energy; thus, energy-efficiency is a major design consideration.

Computation. Sensor nodes have limited computing power
and memory sizes that restrict the types of data processing
algorithms that can be deployed and intermediate results that
can be stored on the sensor nodes.

Sensor Data. Each sensor can be viewed as a separate data
source that generates structured records with several fields
such as the id and location of the sensor that generated the
reading, a time stamp, the sensor type, and the value of the
reading. (We assume that some of the signals might have been
postprocessed by a signal processing layer.) Conceptually, we
view the data distributed throughout the sensor network as
forming a distributed database system consisting of multiple
tables with different types of sensor data.

Queries and View Nodes. The sensor network is pro-
grammed through declarative queries which abstract the func-
tionality of a large class of applications into a common
interface of expressive queries. Our work does not depend on
any specific query language; instead it applies to any query
processing strategy that performs in-network processing by
collecting data from multiple sensors onto a designated subset
of the nodes that we call the view nodes. The view nodes may
either store directly unprocessed sensor readings or materialize
the result of more complex processing over sensor readings.

Synchronization Between Sensors. We assume that the
clocks of neighboring nodes in the sensor network are reason-
ably synchronized, either through GPS or through distributed
time synchronization algorithms (e.g., [9], [2]).

INote that future generations of nodes might have variable-range radios;
an extension of this work to variable-range radios is future work.



I1l. VIEW SELECTION

As in a centralized database system, the contents of a view
are defined through a user-defined query. It is our goal to
automatically select the best views (and view nodes) in the
sensor network in order to optimize the overall cost of a
guery workload. Our use of views in sensor networks follows
a hybrid pull-push model in which the sensor data is processed
inside the network and pushed to view nodes where the data is
stored. Queries are routed to relevant view nodes from which
the requested data is pulled to assemble the query answer.

While automated view and index selection algorithms have
been proposed for relational databases [1], the view selection
problem for sensor networks is much more complex: in
addition to deciding what view to materialize, we also need to
decide where the view should be stored. As we will discuss
below, view content and location have complex interactions.

We consider a set of sensor nodes ny,...,n, spread in
a plane. We assume that time is divided into periods, that
queries can only be executed at the end of a period, that
queries refer to readings generated during that period, and that
a sensor node generates one reading within that period. Let
u;, 1 = 1,...,k%, be the probability that node n; generates a
reading within a period?. A query workload W is a set of tuples
W={<Qi,p1>,...,< Qu,pn >}, Where p; is the probability
that query Q; is asked during a period. Each query Q; returns
the aggregate value of an attribute A over a subset of the
sensor nodes S; for the preceding period. We assume that the
aggregate function used is the same for all queries.

We consider a tree having as leaves the data sources
ny,...,n, and as root the server where users present their
queries. It is possible to forward data up the tree proactively
and materialize partial aggregate results in selected intermedi-
ate tree nodes called view nodes; we refer to such messages as
view update messages. During each period, a set of queries is
posed. Query evaluation happens at the end of the period, and
proceeds in two phases. First, request messages characterizing
the set of queries posed in the period are forwarded down
the tree until they reach all the view nodes required to
answer the queries. Then, partial query results are sent up
from view nodes. The results are combined at intermediate
nodes, and eventually reach the root. The cost of computing
partial aggregates is negligible compared to the cost of sending
messages along the edges of the tree, so the total cost of the
tree is the sum of the costs of all edges. Our objective is to
minimize this expected cost.

For an edge along which view update messages are sent
proactively, the expected cost is determined by the probability
of new sensor readings being generated in the subtree beneath
it. For an edge between a view node and the root, the
expected cost is the cost of a request message plus the cost of
partial result messages needed to answer the currently posed
queries. We assume a request message must be sent to a
view even if no partial result is required for the current set
of queries. This is because radio receivers have substantial
power requirements — given a contention resolution MAC

2In this exposition, we assume that sensors are independent even though
this is clearly not the case.

layer with the possibility of hidden terminals, the energy cost
(at the listener) of determining that no message will arrive
can be substantially more than the energy cost (at sender and
listener) of transferring a short “nothing to send” message.
Studying special instances of the view selection problem
given a tree structure is the focus of current research. In
particular, we consider the following design space:
« All queries and data updates occur with probability 1.
« Sensor updates have probability 1, but queries occur with
arbitrary probabilities.
« Queries occur with probability 1, but sensor updates occur
with arbitrary probabilities.
« Both sensor updates and queries occur with arbitrary
probabilities.
Different query probabilities can result in different optimal
solutions to the view selection and placement problem.

(
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Fig. 1. A dissemination tree for view selection.

Example: Consider the dissemination tree shown in Fig-
ure 1. Sensors are at the leaf nodes a, b, and ¢; each sensor
generates a new data value in each period. There are two
queries, the sums (a + b) and (a + ¢). These queries are
issued independently, each with probability (1 — €). Two
limiting cases should be clear. If we set ¢ = 0 (so both
queries are issued with probability 1) the optimal solution is
to proactively forward everywhere: values of sensors a, b, and
¢ are sent from the leaves to the intermediate node 4, and
values of the queries (a + b) and (a + ¢) are sent to the
root r. No request messages are sent at all. If ¢ is near 1,
the optimal solution is to flood the tree with a 1-bit request
message, and in the (extremely unlikely) case that either of
the queries is issued to send query results to the root as in
the previous case. Now, let ¢;, g2 and r be the cost of a
1-bit query request message, a 2-bit request message, and a
result message, respectively. It is beneficial to send a request
message from the root (rather than unconditionally sending
query results to it) if g2 + 2(1 —€)r < 2r. Similarly, it is
beneficial to send a request message from node 7 to node b or
cifg +(1—¢€)r < r,and it is beneficial to send a request
message to node a if ¢; + (1 —€*)r < r. So a suitable
choice of e makes it beneficial to send request messages to b
and ¢, but to materialize a in a view at 4. Under the assumption
that ¢o is strictly less than 2¢; (i.e., the per-packet overhead is
not identically 0), e can be chosen so it is beneficial to send a
request message from the root, but not along any of the other
three edges; in this case, the optimal solution materializes both
queries at 7 and requests them from the root.



This example illustrates that query probabilities affect the
optimal choice of views. Similar examples can be given
to show the effect of data update probabilities. Finally, the
behavior is affected by the choice of aggregate function: AVG
and MIN behave quite differently because the MIN operator
has no inverse.

Due to space constraints, we only summarize our results
here:

« We can show that the general problem is NP-complete
through a reduction from the Set Basis Problem [4].

« We can give dynamic programming algorithms (with at
least exponential worst-case complexity) for the complete
design space above.

Because of the complexity of the dynamic programming
algorithms, we are currently looking into approximation algo-
rithms for this problem, and we are working on an implemen-
tation to obtain experimental results.

IV. WAVE SCHEDULING

We now present wave scheduling, a class of simple activa-
tion schedules and associated routing protocols that achieve
scalability and energy-efficiency with modest delay penalties.

We assume that the area is divided into a grid of square
cells. The size of each cell is set so that a node anywhere
in a cell can communicate directly with nodes in any of its
four horizontal and vertical neighbor cells. This constrains the
side of a cell to have length at most r/\/g, where r is the
transmission range of a node. In such a grid it can be shown
that a (rectilinear) path between any two nodes is at most a
factor of 1/10 more hops than the optimal (non-grid) path.

We assume initially that each grid cell is occupied by
exactly one node: Our technique is layered on top of a protocol
like GAF [16], which periodically elects a single representative
node for each nonempty cell. This achieves significant power
savings (only representative nodes expend energy on inter-cell
message routing), and provides some fault-tolerance as well.
Of course, a few cells may be empty, but we omit discussing
the treatment of such “holes” due to space constraints.

In summary, our goal is to compute a periodic activation
schedule and an associated routing scheme for nodes arranged
in a rectilinear grid, with a modest number of view nodes.

Tree Scheduling. Consider first a network with only a
single view server. The edges of an optimal activation schedule
form a spanning tree. A natural schedule for such a tree
simply activates edges in reverse order of their distance (in the
tree) from the view server, enabling a message to propagate
from any leaf of the tree to the view node in a single
scheduling period. Routing in a tree is trivial: each non-view
node forwards every message it receives to its parent. We note
that this use of a tree to route messages from sensor nodes to a
specific server is not new. For example, it is a key component
of the TAG method for handling aggregate queries [12].

The above discussion ignores the effect of interference
between edges, which could arise in the “bottom-up” schedule
owing to the simultaneous activation of edges that are within
collision range of one another. In fact, the immediate children
of a tree node, which are always activated together, are certain
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Fig. 2. Anillustration of the SimpleWave schedule in a 10 x 10 grid. The
fi rst two rows depict the edge activations in the fi rst phase (north). The last row
depicts the edge activations at the start of the next phase (east). The remaining

phases that complete the schedule can be similarly drawn. In each picture,

the darkly shaded node is a sender, while a lightly shaded node is a recelver.

The minimum distance of seven nodes between two senders simultaneously

transmitting is computed to ensure non-interfering transmissions.

to be within collision range. Thus, even when there is only a
single view, this approach demands an effective MAC protocol.

We next consider the more realistic case of a network with
multiple view servers. To generalize tree scheduling to handle
this case, we construct a forest containing one spanning tree
rooted at each of the view servers. An edge activation schedule
for the entire forest can then be derived from schedules for the
individual trees in several ways. At one extreme is a conser-
vative schedule, which is simply a concatenation of schedules
for the individual trees, activating edges of each spanning tree
in succession. At the other extreme, an aggressive schedule
activates all the trees in parallel. Neither scheme scales well.
With a conservative schedule, message latency grows linearly
with the number of views. With an aggressive schedule, energy
consumption grows linearly. In addition, an aggressive sched-
ule tends to generate many more collisions, further increasing
energy consumption (due to message retransmissions) and
reducing network capacity.

Wave Scheduling. With the above motivation, we can
now describe our wave scheduling technique, by which we
avoid the scaling problems inherent in tree scheduling. Recall
that tree scheduling handles multiple destination view nodes
by computing a separate activation schedule for each view
and then combining the schedules. Scaling problems arise
because there is no obvious way to combine schedules without
increasing either the period or the collision frequency.

To avoid these problems, we can compute a single “general-
purpose” schedule, in which every edge of the network is
activated exactly once per period, and which is guaranteed
to have no collisions. Since every edge is activated infinitely
often, it is always possible to route a message between any
connected pair of nodes using such a schedule.

Unfortunately, even though a path can be followed in
principle, its latency may be unacceptably high if the path and



activation schedule do not “fit” together well. For example,
suppose a path enters node n along edge e; and leaves it
along e2. Each message arriving along e; must be queued at
n until the next time ey is scheduled. If e, is activated just
before e; in the schedule, the message must wait nearly a full
period in n’s queue before it can be forwarded (during the next
iteration of the schedule). In the worst case, this phenomenon
occurs at every node along the path. The resulting message
latency (the product of the path length and scheduling period)
is unacceptable for most applications.

Thus, we seek an activation schedule and associated routing
algorithm that yield a “reasonably” low-latency path from
any source node to any view server. Wave Scheduling is our
proposed solution.

Periodic Activation Schedules. In a wave schedule, hor-
izontal and vertical communication edges are activated in a
periodic sequence of phases. Each phase has a direction —
north, east, south or west — along which a “wave” of messages
traverses the grid for some number of steps. For example, in a
north-going phase there is a pattern of non-interfering north-
going edges, containing at least one edge in each column
(assuming the sensor network contains a large number of
cells). The edges are activated simultaneously, then the entire
pattern shifts north by one cell, wrapping around between the
north and south edges of the grid as necessary to maintain the
integrity of the pattern. This process is repeated one or more
times for the duration of the phase. The east, south and west
waves are scheduled analogously.

The preceding framework admits a number of different ac-
tivation schedules. Due to space constraints, we only mention
one schema that we call SmpleWave, which is illustrated in
Figure 2. Due to space constraints, we omit the description
of the impact of wave scheduling on routing, but we would
describe this interaction in the presentation at the workshop.

V. EXPERIMENTAL ANALYSIS

We have extensive simulation studies of our wave schedules;
the experiments show that wave scheduling provides a graceful
tradeoff between latency and energy usage. Due to space
constraints, we omit relevant performance graphs, but we
will present them at the workshop. Our plans for future
work include an experimental evaluation of view selection
algorithms.

VI. RELATED WORK

Our work extends research on data storage in sensor net-
works [14], [5], [3], query processing for sensor network
[12], [10], [7], [11], and efficient data dissemination [8],
[6], [17]. Tree-based routing [12] provides an alternative to
our wave scheduling scheme, but it is subject to interference
between edges, and thus becomes unusable when the number
of view servers increases above a small fraction of the nodes.
An energy-efficient MAC protocol called S-MAC has been
proposed in [18]. GAF (Geographical Adaptive Fidelity) [16],
[15] is an algorithm that also conserves energy by identifying
nodes that are equivalent from a routing perspective and then
turning off unnecessary nodes. Our wave scheduling protocol
is orthogonal and synergistic to GAF.

VIlI. CONCLUSION AND FUTURE WORK

We introduced the problems of view selection and node
scheduling in a sensor network, and presented a high-level
description of our approach to solving them. In future work,
we plan to investigate the interaction between these two prob-
lems. We are interested in exploring efficient wave schedules
given specific message generation patterns and view locations.
Another interesting direction is to study fault-tolerance in the
context of materialized views and scheduled data propagation.
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