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Abstract— When an emergency occurs within a building it is
critical to explore the area as fast as possible in order to find
victims and identify hazards. We propose Brick&Mortar, an
algorithm for the autonomous exploration of unknown terrains
by a team of mobile agents. Because of the unreliability and
short range of wireless communications in indoor environment
we suggest that agents communicate indirectly with each other
by tagging the environment. Agents have no prior knowledge
of the map, but they are able to coordinate in order to
explore a variety of terrains with different topological features.
In our experimental evaluation, we show that Brick&Mortar
significantly outperforms the competing algorithms, namely
Ants and Multiple Depth First Search, in terms of exploration
time. The observed performance benefits suggest that our
algorithm is suitable for safety-critical applications that require
rapid area coverage for real-time event detection and response.

I. INTRODUCTION

Chemical, biological, radiological, nuclear and explosive
(CBRNE) events refer to the uncontrolled release of chemi-
cals, biological agents or radioactive contamination intothe
environment or explosions that cause widespread damage.
CBRNE events can be caused by accidents or by terrorist
acts. Although an event of this type could take place almost
everywhere, the most challenging environment (and the one
with the highest probability to occur) is on indoor environ-
ments, in a building or another highly frequented public
place, such as a train station or the underground, as sadly
demonstrated by the recent terrorist attacks in New York,
Madrid and London.

After a CBRNE event, the area is off-limits and hazardous
for everyone not wearing respiratory equipment, garments,
barrier materials to protect themselves from exposure to
biological, chemical, and radioactive hazards. This kind of
suit could be very heavy and bulky, it could limit the
respondents’ movements, and reduce their sensing capacity
(touch, vision and hearing).

Information gathering inside the area is essential to avoid
risking the lives of the first responders: for example, if we
knew the locations of the victims before entering a building,
the responders could immediately get there avoiding haz-
ardous areas such as rooms on fire or collapsed corridors or
stairs. A group of mobile agents should therefore be deployed
in the area to acquire all the information that could assist the
tasks of the first responders.

Exploring all the area in the minimum amount of time and
reporting back to the human personnel outside the building
is an essential part of rescue operations. Such operations,
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however, may be obstructed by a number of limitations,
e.g. the possible lack of a terrain map (the environment
could anyway be heavily changed after a disaster), the failure
of previously established networks, and the short-range and
often unreliable wireless indoor communication. In addition,
it might be difficult to use GPS positioning inside a building,
so an agent cannot rely on knowledge of its exact location
in the terrain, even if it were able to keep memory of its
previous steps. In this paper, we take into account these
limitations, and assume that agents can only rely on local
information that is sensed in their vicinity (which other
agents have left as trace), before making the next exploration
step.

In this paper, we first analyze the functionality of two
existing approaches to terrain exploration, namely Ants [1],
[2] and Multiple Depth First Search (MDFS), and highlight
their limitations. On the one hand, agents running the Ants
algorithm cannot determine when the exploration task is
completed. Moreover, whilst the first few agents are rapidly
discovering new terrain, most of the remaining agents dwell
on already explored network areas, leading to inefficient use
of agent resources. On the other hand, agents running MDFS
know when the exploration task terminates, but we show that
they equally lack in coordination skills and often make poor
use of resources.

Our novel algorithm, Brick&Mortar, overcomes the limi-
tations of existing approaches, and offers significant perfor-
mance gains in terms of exploration time for a variety of
terrain topologies. Our experimental results allow us to un-
derstand the impact of several parameters on the performance
of the three algorithms, including the number of agents,
the terrain size, the numbers of rooms and the number of
obstacles (e.g. desks or hazards in the middle of rooms).

The rest of the paper is organized as follows. Section II
presents the assumptions of our model, and Section III pro-
vides a brief description of existing exploration algorithms
and discusses their limitations. Section IV presents the new
Brick&Mortar algorithm and discusses how it addresses
the problem of agents traversing the same areas in loops.
Section V presents a thorough experimental analysis of the
three algorithms. An overview of related work is provided
in Section VI, followed by conclusions and directions for
future work in Section VII.

II. MODEL

In this section, we describe the model used by the
proposed algorithm, Brick&Mortar, and the two competing
approaches, Ants and Multiple Depth First Search, which
we present in detail in Section III. We consider the task



of exploring a hazardous terrain using a group of mobile
nodes, hereafter referred to asagents. The overall area is
divided into square cells, some of them representing walls.
In our model, walls are used to identify both obstacles (e.g.
victims), that agents cannot cross during their exploration
phase, and real brick walls that constitute the building itself.

A cell can be in one of the following states:
• Wall: The cell cannot be traversed by an agent because

it is a wall or it is blocked by an obstacle, so that the
free space in it is not big enough to let an agent go past
it.

• Unexplored: No agent has been in the cell yet.
• Explored: The cell has been traversed at least once, but

the agents might need to go through it again in order
to reachunexploredcells.

• Visited: The agents have already explored the cell, and
they do not need to go through it again to reach other
cells. Conceptually it is equivalent to awall cell, in that
no agent is allowed to traverse it.

Agents are initially deployed in one of the boundary cells
and, in each step, they are able to move from the current cell
to one of the four adjacent cells in the North, East, South or
West directions. In indoor environments where GPS cannot
be used, agents do not rely on knowledge of their exact
location; however, once they find themselves within a cell
(covered by a stationary device), they can turn towards one
of the four directions until they reach the next cell. Moreover,
in emergency situations, long range wireless communication
may be intermittent and unreliable, so we assume that agents
are able to communicate only by reading and updating the
state of the local cell.

Another characteristic of the model is that if agents are
moved from their current location, they are able to resume
their operations in the new area where they land. There is no
centralized control of the agents’ movements, so an explo-
ration algorithm must be fully distributed. This means that
agents make independent decisions about how to navigate
through the terrain based on the local state. In fact we assume
that the terrain is instrumented with uniformly distributed
miniature devices (e.g. motes or RFIDs) capable of storing
small amounts of information about the state of the local
area. Certain areas that are occupied by walls or hazards will
be void of such devices. In case some areas are not covered
by any devices, agents can deposit such devices when they
explore the area for the first time. In our initial work, we
make the abstraction that the terrain is divided into square
cells, and there exists at least one device per cell.

III. EXISTING ALGORITHMS

Before the presentation of our novel contribution -
Brick&Mortar - we would like to give a brief description
of two existing algorithms - Ants and Multiple Depth First
Search - against which we test its performance in Section V.
We also discuss some of their limitations that motivated us to
design our new Brick&Mortar algorithm. To our knowledge,
these are the only competing algorithms that do not rely on
agents knowing their locations and the area map, and being

able to establish reliable communication with each other. A
detailed review of related techniques with slightly different
assumptions is provided in Section VI.

A. Ants

We first discuss the behaviour, strengths and limitations of
the Ants algorithm proposed in [1], [2]. This is a distributed
algorithm that simulates a colony of ants leaving pheromone
traces as they move in their environment [2]. Initially all cells
are marked with value 0 to denote that they areunexplored.
At each step, an agent reads the values of the four cells
around it and chooses to step onto the least traversed cell
(the one with the minimum value). Before moving there, it
updates the value of the current cell, for example by incre-
menting its value by one. The authors discuss a few other
rules that could be used instead to mark a cell and navigate
to the next one, but they all exhibit similar performance in
terms of exploration time. Hence, we select the above variant
of the Ants algorithm (move to the least visited cell) as a
basis for comparison. The authors provide a proof that the
agents will eventually cover the entire terrain (provided that
it is not disconnected by wall cells).

The first advantage of the algorithm is its simplicity:
agents do not require memory or radio communication,
but only one-cell lookahead. Since they are easy to build,
many of them can be used to shorten the coverage process.
Secondly, there is no map stored inside the agents: if one of
them is relocated (accidentally or on purpose) it will not even
realize it and it will continue to do its work as if nothing
happened. This means that the whole system is flexible and
fault tolerant, and the area can be covered even if some
markings or agents are lost. At the storage device of each
cell, we only need to store an integer counting the number
of times that agents have visited the cell. When the number
of times exheeds a threshold, the counter is reset to 0.

The main limitation of the Ants algorithm is that the
visited state is not used to mark the cells, so there is no
way to tell when the environment is fully explored, and the
agents continue the exploration phase until they run out of
energy. Thus, this approach is not suitable in an emergency
scenario, in which the primary consideration is to cover the
overall area as soon as possible, and be notified immediately
after the task is completed. Another limitation concerns the
inadequate use of agent capabilities: in a scenario with many
rooms most of the agents are busy sweeping the first few
rooms repeatedly while only a few of them set out to explore
new areas.

A further drawback of the algorithm is the limited collab-
oration among agents. As is shown in Figure 1, in a scenario
with many rooms most of the agents would sweep the first
one or two rooms repeatedly while only a few of them would
venture to explore new areas, thus limiting the efficiency of
the algorithm when using multiple agents.

B. Multiple Depth First Search

In order to address the limitations of the Ants algorithm,
we consider a Depth First Search (DFS) approach to travers-



Fig. 1. The Ants algorithm is not efficient in a scenario with many rooms,
because most of the agents explore the first rooms repeatedly, while only
few of them set out to discover new areas.

ing the unknown terrain. Unlike Ants, this algorithm allows
agents to mark cells asvisited, so that agents do not need
to traverse them in the future. As a result, an agent knows
that its task is completed if its four adjacent cells are either
visitedor wall cells. The values used to annotate cells by the
Ants algorithm are not used in this case.

We first consider the case with a single agent. The agent
explores the area by moving to the nextunexploredcell,
marking it asexploredand storing in it the direction of the
previous cell (e.g. North, East, South, West). In doing so it
builds an exploration tree , in which each cell has a parent
cell (the cell where the agent came from, before moving
to the current cell for the first time). When there are no
unexploredcells adjacent to the current cell the agent has
reached the end of a branch and is ready to start traversing
it backwards. It marks the current cell asvisited and moves
to the parent cell. This is repeated until the agent finds an
adjacentunexploredcell and moves to it to start marking
a new branch asexplored. In short, all cells are traversed
exactly twice, once marked asexploredas the agent traverses
the branch downwards, and once marked asvisited as the
agent traverses the branch upwards. When the agent is back
at the root cell and all adjacent cells are eithervisited or
walls, the algorithm terminates.

U n e x p l o r e d E x p l o r e d V i s i t e d W a l l
Fig. 2. Different branches in a Depth First Search exploration.

A snapshot of the exploration process with one agent can
be seen in Figure 2: the agent starts at the cell in the top left
corner of the area, and decides to move on the path denoted
by the arrows, annotating cells in the way asexplored. When

it reaches the cell at the bottom right corner, it is surrounded
by either wall or explored cells, and realizes that it is at
the end of a branch. It starts moving backwards marking the
cells of the branch asvisited until it identifies the start of
a new branch. The first cell of the new branch is the one
between the twowall cells, which is initially unexplored).
It starts processing the second branch by marking that cell
asexploredand repeating this step as it traverses the branch
downwards, until it reaches the current position denoted by
the black sphere. At this point it identifies the end of another
branch, and it will start traversing the branch upwards and
marking its cells asvisited. The agent will continue the
exploration task in a similar manner until it is surrounded
only by visited or wall cells.

The challenge in using more than one agent is to ensure
that they can efficiently collaborate to explore the area. In
the extended Multiple Depth First Search (Algorithm 1),
each agent builds its own exploration tree, and tries not
to interfere with the trees of the other agents by marking
exploredcells with its own (agent) ID. When an agent finds
itself at a cell surrounded by at least oneunexploredcell
or exploredcell with the agent’s ID, it can proceed as in
the simple DFS algorithm. Otherwise, if one of the adjacent
cells is annotated asexploredby another collaborating agent,
the current agent navigates through theexplored cells of
the collaborating agent’s tree, trying to find anunexplored
neighboring cell. If it finds one, it uses it as the root of
a brand new tree that it starts covering with its own ID.
Otherwise, if it becomes surrounded byvisitedor wall cells
it terminates. MDFS requiresO(N) storage space at each
cell, whereN is the number of agents.

Using this algorithm the agents are typically able to
explore the area in less time than using the Ants algorithm,
and more importantly, each agent knows exactly when to
stop its exploration task. Hence, the algorithm terminates
when all agents stop moving, since when that happens all
cells are marked asvisited or walls.

Although the Multiple Depth First Search addresses some
of the weaknesses of the Ants algorithm, it is still not
very efficient in terms of exploration time. By definition it
traverses each cell at least twice (or exactly twice if we use
only one agent), thus resulting in a long exploration time
even in open areas without walls where a single traversal
would suffice.

Fig. 3. Agents 1 and 2 are surrounded byvisited cells and are therefore
trapped, i.e. unable to assist agents 3 and 4 in the exploration task.

Another limitation of MDFS is that some of the agents



may become surrounded byvisited cells before the whole
area has been covered, resulting in a waste of the available
resources. Notice in Figure 3 that at some point only a
subset of the agents is able to continue the exploration
process, whilst others (agents 1 and 2) remain idle. The
reason is that each agent builds its exploration tree without
considering how it interferes with the others, often resulting
in isolating certain agents withinvisited areas (effectively
acting as walls). Thus MDFS can no longer exploit the
agents’ capabilities once they are blocked. This limitation
led us to seek for a new algorithm that leaves “corridors”
of exploredcells through which all agents would be able to
reach any remaining unexplored areas in the network.

Algorithm 1 Multiple Depth First Search
1: if the current cell isunexploredthen
2: mark it as explored
3: annotate the cell with your ID
4: annotate the cell with the direction of the previous cell

(parent cell)
5: end if
6: if there areunexploredcells aroundthen
7: go to one of them randomly
8: else
9: if the current cell is marked with your IDthen

10: mark it asvisited
11: go to the parent cell
12: else
13: go to one of theexploredcells randomly
14: end if
15:

16: end if

IV. T HE BRICK&M ORTAR ALGORITHM

Our novel algorithm, named Brick&Mortar, is designed to
address the weaknesses of the existing algorithms. Unlike the
Ants algorithm, agents using Brick&Mortar know when the
exploration task is completed and they do not spend much
time revisiting the same cells. Unlike MDFS, they typically
traverse each cell less than twice and they never get trapped
within boundaries ofvisited cells.

The main idea behind Brick&Mortar is that of thickening
the existing walls by progressively marking the cells that
surround them asvisited. Note thatvisitedcells are equivalent
to wall cells in that they can no longer be accessed. In the
description of Brick&Mortar, we refer towall and visited
cells as inaccessible cells, and tounexploredor explored
cells as accessible cells. Brick&Mortar aims to progressively
thicken the blocks of inaccessible cells, whilst always keep-
ing accessible cells connected. The latter can be achieved
by maintaining corridors ofexploredcells that connect all
unexploredparts of the network. The main rule that an agent
must obey locally is never to mark the current cell asvisited
if, by doing so, it blocks the path between two accessible
cells.

Like Ants and MDFS, Brick&Mortar does not require
agents to know their location in the building. A relocated
agent can simply navigate randomly until it finds an ac-
cessible cell and then continues the exploration from there.
Brick&Mortar makes the blocks of inaccessible cells thicker
until the entire terrain is converted to a large block of
inaccessible cells. In a rectangular terrain withoutwall cells,
agents starting from border cells always succeed in visiting
the entire area. In more complex topologies with many rooms
and obstacles, agents may be faced with a loop closure prob-
lem described below. We are now in a position to introduce
the details of the proposed Brick&Mortar algorithm with and
without loop closure.

A. Brick&Mortar without loop closure

The states of a cell are exactly the same as the ones used
in the Multiple Depth First Search Algorithm and described
in Section II. Brick&Mortar consists of two discrete steps
detailed in the pseudocode below (Algorithm 2). In the
marking step, the agent marks the current cell choosing
between theexploredand visited states. In thenavigation
step, the agent decides which cell to go to next giving priority
to theunexploredcells around it.

In the marking step the agent updates the state of the
current cell, choosing between theexploredandvisitedstates.
The cell is marked asvisitedonly if it is not blocking the way
between two accessible (exploredor unexplored) cells (sayA
andB) located in the North, East, South or West directions.
In other words, the current cell is marked asvisited, if there
is an alternate path of accessible cells connectingA and
B. Such alternate paths are easy to compute locally, because
they are strictly confined to the 8-cell perimeter of the current
cell. If such a path does not exist, the current cell is marked
asexplored, meaning that this or another agent can still move
to it in the future.

In the navigation step the agent tries to move to an
unexploredcell which is likely to be marked asvisited in
the next marking step, so that there will be no need for this
or other agents to come back to it in the future. The best
candidate is theunexploredcell with the greatest number
of inaccessible (visited or wall) cells in its four directions.
If there is no such candidate, the agent goes to one of the
exploredcells. If all four cells are inaccessible, it means that
the terrain exploration has been completed.

Details of the two steps are provided in the pseudocode
below:

B. Brick&Mortar with loop closure

The simple version of Brick&Mortar, described in the
previous subsection, terminates successfully if agents donot
encounter loops during the exploration process. Informally,
a loop occurs when an agent traverses the same sequence of
exploredcells multiple times without being able to mark any
of the cells asvisited. Loops are encountered when there are
clusters ofwall cells in the middle of an area. For example,
in Figure 4a, an agent on cellC1 of the figure will start
building a corridor ofexploredcells traversing cellC2 and



Algorithm 2 Brick&Mortar Without Loop Closure
1: Marking Step
2: if the current cell is not blocking the path between any

two exploredor unexploredcells aroundthen
3: mark the cell asvisited
4: else
5: mark the cell asexplored
6: end if
7: Navigation Step
8: if at least one of the four cells around isunexplored

then
9: for each of theunexploredcells see how manywall

or visited cells are around it, then go to the cell with
most of them, which is most likely to be marked as
visited in the marking step

10: else if at least one of the four cells around isexplored
then

11: go to one of them. Avoid selecting the cell where you
came from unless it is the only candidate. Instead se-
lect the firstexploredcell in an ordered list of adjacent
cells, e.g. [North,East,South,West]{The order of cells
in the list depends on the agentID, so that different
agents disperse in different directions}.

12: else
13: terminate {All adjacent cells are inaccessible, i.e.

visited or wall cells}
14: end if

then finding itself back at cellC1 again. According to the
rule in the marking step of Algorithm 2 every cell blocks
the path between the previous and the following one, and is
thus repeatedly marked asexplored. The loop problem is well
known in the literature, but usually the proposed algorithms
either ignore it [3] or need an external human operator to
solve it [4]. In emergency scenarios, the team of agents
might be inside a building or underground far away from
the rescue team, and it should still be able to accomplish its
exploration mission. For this reason we extend the original
version of Brick&Mortar algorithm to enable loop closure
without human intervention.

To make the algorithm capable of closing loops, we make
an additional assumption: an agent is able to mark a cell
with its ID (a simple number identifying the agent) and the
directions (North, East, South or West) in which the agent
is moving in and out of the cell. This assumption is not
too strong because each agent can be equipped with a small
and inexpensive electronic compass that detects and controls
the direction of its movement. An agent detects the presence
of a loop when it traverses the sameexplored cell twice
in the same direction. If only one agent is performing the
exploration task, it can easily break the loop by marking
one of the cells asvisited and then resuming its original
wall-extension strategy (i.e. the marking and navigation steps
described in Section IV-A).

However, if the terrain is explored by multiple agents,
independent attempts to close the same or overlapping loops

C 1 C 2
) )E x p l o r e d V i s i t e d W a l l

C 1 C 2
Fig. 4. The loop problem.

may result in agents being trapped within inaccessible areas
and being unable to help with the remaining exploration task.
For example, two agentsA1 andA2 can traverse the loop of
Figure 4a once starting from cellsC1 andC2 respectively and
moving in opposite directions. As they traverse the loop, they
mark each cell asexplored. Once agentsA1 and A2 reach
cells C1 and C2 respectively they detect the presence of a
loop. To resolve the loop, they markC1 and C2 as visited,
and continue to move towards each other marking all cells
in their way asvisited (Figure 4b). Once they meet, they get
trapped because they are surrounded by inaccessible (visited
or wall) cells without having succeeded in marking the entire
loop asvisited.

• Loop detection: Initially, an agent follows the marking
and navigation steps described in Section IV-A leaving
a trace in each cell that it traverses (how it moved out of
it), until it detects a loop. This happens when it moves
into the sameexploredcell a second time (but not in
the opposite direction than the one used previously to
move out of that cell). Upon detecting a loop, the agent
moves to the loop control phase. This phase requires
O(N) storage capacity at each cell, whereN is the
number of agents.

• Loop control: To take control of the loop, an agent
A starts traversing the loop a second time in the same
direction, trying to take control of each cell by annotat-
ing it with its own agentIDA (this requireslogN bits,
whereN is the number of agents). It is possible only if
the cell is explored and it is not already annotated with
another agent’s ID (sayIDB). Agent A knows that it
has succeeded in taking control of all cells in the loop
when it steps again on a cell that is already annotated
with the same ID. In this case, it immediately switches
to the loop closing phase.

• Loop closing: The agent is now in a position to break
the loop by marking the current cell asvisited, and
continuing to do so until it reaches the first intersection
(the cell with at least oneexploredneighbor cell that
does not belong in the loop). The agent then switches
to the loop cleaning phase.



• Loop cleaning: The agent removes any traces of the
loop control phase, by moving backwards in the loop,
removing its ID from the cells that it previously an-
notated, and resetting the direction in which the agent
moved out of the cells to null.

It remains to describe in detail what happens in the loop
control phase when an agentA is not able to take control of
a cell, either because the cell is alreadyvisited, or because
it is being controlled by another agentB. To deal with
this scenario, we allow agents to interrupt the loop control
phase, either permanently or temporarily. In the former case,
an agent literally quits the loop resolution mechanism and
moves to the loop cleaning phase. In the latter case, the
agent can wait at a cell, as astandbyagent, until the state
of the cell is changed.

In what follows, we provide specific rules that define how
an agent decides whether to continue, quit or stall controlling
cells with its ID during the loop control phase. Let agent
A try to move to the next cell in order to control it (i.e. to
annotate it withIDA). The decision it makes depends on the
state in which it finds the cell:






















control cell, if cell explored without control

start loop cleaning, if cell visited

start loop cleaning, if B controls & (IDB > IDA)
start loop cleaning, if C standby & (IDC > IDA)
become standby, otherwise

We finally need to define how, a standby agent (which
waits at a cell as a result of following the last branch above),
reacts to changes in the cells state. The rules that determine
its behavior are:














start loop cleaning, if replaced by another agent

start loop cleaning, if cell becomes visited

continue loop control, if cell is cleaned

remain standby, otherwise

An agent that manages to complete its loop control phase
has succeeded in controllingall common cells with other
interfering loops. It performs loop closing, and then cleans
all common cells, before another interfering agent gets the
opportunity to take control of them. Hence, although in
general loops are handled concurrently, agents are able to
detect when their loops interfere, and in this case, they
resolve them in a sequential manner. The loop control phase
has a similar role as locks in database systems, i.e. it
allows concurrent operations whilst leaving the system in
a consistentstate. In our case, consistency means that all
explored and unexploredcells remain connected, and no
agent is trapped withinvisited cells.

Using the rules above we can prove that when agents try
to resolve overlapping loops, they never cause a deadlock,
they never get trapped withinvisited areas, and they always
terminate (the proof is omitted for space reasons). However,
to ensure this we require memory capacity at each cell that
grows linearly in the number of agents (similar to MDFS
storage requirements). In the future, we plan to investigate
ways of adjusting our algorithm to require a fixed amount
of storage space (like Ants).

V. SIMULATION RESULTS

We developed a simulation tool to test the performance
of Brick&Mortar and the competing algorithms (Ants and
MDFS), which allows us to automatically generate terrain
maps with different topological features (by changing input
terrain size, number of rooms, number of obstacles, etc.).
The tool can be instructed to run any of the algorithms with
different numbers of agents on a variety of maps.

In the results presented below, we study the impact of i)
the number of agents, ii) the terrain size, iii) the number
of rooms, and iv) the number of obstacles (that generate
loops) on the performance of the three algorithms. Each
point in the graphs is the average of running an algorithm
20 times, each time with a different map that satisfies the
input topological features. In each experiment we vary the
values of one parameter, and assign default values to the
remaining ones. The default values are: a map of 2500 (50
by 50) cells with 30 obstacles and 36 (6x6) rooms, which is
explored by 20 agents. The agents are deployed from the top
left cell of the area. We consider two performance metrics:
i) the exploration time(black lines), i.e. the number of steps
it takes for the agents to traverse all cells of the map at least
once, which can be measured for all three algorithms; and
ii) the visiting time(grey lines), i.e. number of steps that it
takes for all agents to determine that they have completed
the exploration task. The latter can only be measured for
Brick&Mortar and MDFS, since agents runnings the Ants
algorithm cannot determine when they terminate.
Effect of agents:Figure 5 shows that Ants always underuti-
lizes agent resources compared to Brick&Mortar, but as the
number of agents increases it becomes faster than MDFS.
The MDFS algorithm is the least sensitive to varying the
number of agents, which is owed to the fact that agents
become trapped early on within visited cells and are unable
to help cover new areas. Brick&Mortar uses efficiently up
to 15 agents, beyond which point it does not improve much,
owing to the fact that agents interfere with each other trying
to resolve the same loops. Observe that the gap between the
exploration and visiting time of Brick&Mortar increases with
the number of agents. When more agents are available, they
manage to speed up traversing the cells at least once, but they
cannot do much to speed up loop closure and terminate early.
In the future, we plan to study how we could achieve better
load balancing by dispersing agents to enter the network from
different cells.
Effect of area size:Figure 6 shows that Brick&Mortar scales
gracefully as the area size increases. For areas of up to 4,900
cells, MDFS is 8 times slower and Ants 6 times slower than
Brick&Mortar in terms of exploration time; similarly, MDFS
is 4 times slower in terms of visiting time.
Effect of rooms: Figure 7 shows that as we increase
the number of rooms the exploration time of the Ants
and Brick&Mortar algorithms are not significantly affected,
whereas the exploration time of MDFS becomes 2 times
slower from 4 to 64 rooms. For an area of 40 rooms the
exploration time of Brick&Mortar is half its visiting time,
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which means that the task is completed way before the agents
know it. In all cases, Brick&Mortar outperforms the two
competing approaches by factors of 3 or 4, both in terms of
exploration and visiting time.
Effect of obstacles (wall cells that cause loops):Figure 8
demonstrates the impact of obstacles (and therefore loops)
on the performance of the three algorithms. We observe
that Ants and MDFS are not particularly affected by the
presence of loops, whereas the visiting time of Brick&Mortar
increases linearly in the number of obstacles. Hence in
certain environments with a very large number of obstacles,it
might be worth using one of the competing approaches, or a
hybrid algorithm in which an agent starts with Brick&Mortar
and switches to Ants or MDFS upon detecting a loop. We
leave the study of hybrid algorithms to future work.

VI. RELATED WORK

Choset [5] provides a survey of coverage algorithms and
distinguishes them intooff-line and on-line. In the former
the agents are previously provided with a map of the area
to explore, while in the latter, also calledsensor-based,
no assumption is made concerning the availability of an
environmental map for the agents. Zheng et al. [6] prove
that the original problem is NP-complete, and propose a
polynomial algorithm that yields a solution at most eight
times slower than the optimal solution. Agmon et al. [7]
propose a faster tree construction algorithm, while Hazon et
al. [8], [9] focus on the robustness of the solution, so that
even if only one robot remains in operation, it will be able to
carry and complete the exploration task. Our Brick&Mortar
algortihm differs from these approaches in that it considers
the on-line problem, i.e. it does not rely on the knowledge
of the terrain’s map. On-line algorithms should rely only on
their sensors in order to navigate an unknown environment
and be capable of taking on-line decisions about what to
do next. Most of these approaches divide the environment
into cells, also called regions, that are explored one by one
iteratively until the global area is covered. For example, the
ants-inspired algorithm [1], [2] divides the area into square
grid cells on which the exploring agents leave traces of
their passage, similarly to real ants leaving pheromone. This
algorithm is already described in detail in Section III. A
similar approach to the Ants algorithm uses a sensor network
infrastructure to provide agents with information about the
visited areas and direct them to the least recently visited
direction [10]. Kong et al. [11] propose an algorithm that
explores an area in forward and reverse phases. The idea is to
gradually build a graph of the environment which is shared
by all the robots of the team. Due to this fact, the robots
always know where there are uncovered cells and therefore
they can distribute themselves over the area in order to cover
the remaining unexplored regions. Although this algorithm
yields very efficient coverage time, it makes assumptions
that are not always realistic in harsh environments, namely
that agents have perfect wireless communication and they
always know their position in the map. Yamauchi presents a
frontier-based exploration algorithm [12], where the agents



explore the environment, represented by a regular grid of
cells, keeping in their memory a map of the area and always
directing themselves “to the boundary between open space
and uncharted territory”. A depth first search algorithm is
used to move from the current position to the next frontier.
The algorithm also makes the same strong assumptions
as in [11], namely perfect localization and reliable com-
munication among agents. Burgard et al. do not assume
that the environment is divided into grid cells [13]. Agents
compute a utility function to go to the next “frontier” in
order to maximize the explored territory. The agents have
a list of target points to reach in the next step, each of
them associated to a value which takes in account the cost
to reach the point and the probability of exploring new
areas once an agent has positioned itself on that point. The
probability takes in account how many agents are going
to explore the area in which the target point is, therefore
avoiding the situation where all the agents explore the same
area. Rekleitis et al. [14] try to improve the exploration
by mapping the environment while the area is covered by
two robots. To localize the robots they use odometry (a
position estimate based on the previous movements), but
while a robot is exploring the area the other stands still and
observes the former to measure its movements and improve
the localization. Batalin et al. [15] focus on agent dispersion
and propose two algorithms to make the agents move away
from each other when they are in sensing range. Finally,
Howard et al.[4] present a general approach to exploring
a building, finding objectives and reporting them back to
the human personnel outside. However, it requires human
support to solve problems like loop closures or map merging
between the agents so it does not satisfy the requirements for
autonomous area coverage.

VII. CONCLUSION AND FUTURE WORK

In this paper, we proposed a new algorithm called
Brick&Mortar, for the multi-agent exploration of unknown
terrains. Agents running our algorithm can easily determine
when the exploration task is completed. Our algorithm avoids
exploring the same areas multiple times, it makes good
utilization of all agents and it is capable of resolving loops.
The experiments show that our algorithm is significantly
faster than the two competing algorithms, Ants and Multiple
Depth First Search, in a variety of scenarios.

In the future we would like to adjust the exploration
algorithm, in order to maintain communication channels be-
tween the exploring team of agents and the human personnel
outside the building. Once an agent detects a hazard or a
survivor, it must immediately report this event to the rescue
team, before continuing its exploration. Another challenge
is to cope with unexpected events like collapsing walls that
block some of the cells, or relocation of agents to different
parts of the terrain (e.g. by the rescue team). We would
also like to relax the requirement of having at least one
miniature device per cell, and consider algorithms that en-
able fast exploration of sparsely-instrumented environments.
Finally, mobile nodes could leverage their limited storage

capabilities to maintain partial views of the terrain’s mapin
their memory. Once they are within communication range,
they could collaborate by carefully merging their inaccurate
and possibly inconsistent maps.
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