2009 Tenth International Conference on Mobile Data Management: Systems, Services and Middleware

TwinRoute: Energy-Efficient Data Collection in
Fixed Sensor Networks with Mobile Sinks

Ricklef Wohlers #!, Niki Trigoni #2, Rui Zhang *3, Stephen Ellwood ™

Computer Laboratory, University of Oxford
Wolfson Building, Parks Road, Oxford, OX1 30D, UK
ricklef.wohlers@comlab.ox.ac.uk
2niki.trigoni@comlab.ox.ac.uk

*IBM Almaden Research Center

Srui zhang@us.ibm. com

T Department of Zoology, University of Oxford
Tubney House, Abingdon Road, Abingdon, OX13 5QL, UK
4stephen.ellwood@zoo.ox.ac .uk

Abstract—Collecting data from source sensor nodes to desig-
nated sinks is a common and challenging task in a wide spectrum
of sensor network applications, ranging from animal monitoring
to security surveillance. A number of approaches exploiting sink
mobility have been proposed in recent years: some are proactive,
in that sensor nodes push their readings to storage nodes from
where they are collected by roaming mobile sinks, whereas
others are reactive, in that mobile sinks pull readings from
nearby sensor nodes as they traverse the sensor network. In this
paper, we point out that deciding which data collection approach
is more energy-efficient depends on application characteristics,
including the mobility patterns of sinks and the desired freshness
of collected data. We illustrate cases where combining proactive
and reactive modes of data collection is particularly beneficial.
This motivates the design of TwinRoute, a novel hybrid algorithm
that can flexibly mix the two collection modes at appropriate
levels depending on the application scenario. Our extensive
experimental evaluation, using synthetic and real-world network
topologies and sink traces, shows that TwinRoute outperforms the
pure approaches, achieving desirable tradeoffs between energy
expenditure and timely delivery of sensor data.

I. INTRODUCTION

Sensor network applications are numerous and diverse,
ranging from wild animal monitoring to security surveillance.
They typically include a large number of battery-powered sen-
sor nodes that monitor ambient environmental conditions, and
communicate their readings, hop by hop, to one or more sinks.
A major performance constraint in sensor networks is energy,
a significant portion of which is spent on communications.
When sinks are static, the sensor nodes closest to each sink
carry a disproportionate communication load as they are tasked
to relay messages from other parts of the network. Conversely,
using mobile sinks to collect data reduces the overall data
forwarding cost, balances the communication load, and thus
prolongs the network lifetime.

In this paper, we consider applications where mobile sinks
with abundant energy, storage and processing resources, al-
ready exist in the deployment environment. Mobile sinks
may be human, vehicular or other mobile objects capable of
carrying a PDA-type device. They can wirelessly communicate

978-0-7695-3650-7/09 $25.00 © 2009 Crown Copyright
DOI 10.1109/MDM.2009.30

192

with static sensor nodes within range to collect data from the
network. Their movement is not controlled, and they do not
need know their location in the network. Sink mobility patterns
vary widely across different applications. Some scenarios
involve only mobile sinks, whereas others feature a mixture of
mobile and fixed sinks; mobile sinks may follow completely
random trajectories, or repeatedly take predictable paths.

Similarly, applications vary in their requirements for data
freshness - i.e. the time between data generation at a sensor
node and delivery to a user. Emergency or intrusion detection
applications require sensor events to be delivered within a
few seconds from their detection, whereas traffic monitoring
applications can tolerate delivery delays of 10-20 minutes.
Variations in desirable data freshness are often observed within
the scope of the same application. For example, in a wildlife
monitoring application, an animal movement event may need
to be reported immediately in order to activate a nearby camera
and capture its behaviour; delays of several minutes can be
tolerated to activate environmental sensors to capture micro-
climatic conditions in the animal’s vicinity; delays of hours
are tolerated for monitoring long-term animal behaviour.

Previous work on data collection from fixed sensors to
mobile sinks has focused on two extreme approaches: 1) A
pure proactive approach, in which sensor nodes proactively
forward their data to fixed storage nodes, from where data are
collected opportunistically by visiting mobile sinks. 2) A pure
reactive approach, in which sensor nodes in the vicinity of
mobile sinks react to sink-initiated probes for data collection.
The proactive approach requires careful selection of fixed
storage nodes, but, once storage nodes are selected, relatively
stable routes are used from sensor nodes to storage nodes
(subject to node and link failures). The reactive approach,
however, requires frequent route updates from fixed sensor
nodes to mobile sinks.

The aim of this paper is to address the following questions:
Given a specific application scenario, which is the most
energy-efficient data collection scheme? Is this dependent
on the mobility patterns of mobile sinks, or the application

IEEE
computer
® psouety

requirements for data freshness? Are there scenarios where
combining the two pure approaches into a hybrid scheme could
yield a more energy-efficient way of data collection? If so, how
could we mix the two approaches in a flexible way so that we
can strike a good balance between the proactive and reactive
elements? Our specific research contributions are as follows:

« We study different flavors of pure proactive and reactive
schemes for data collection, which are inspired by previ-
ous work [1], [2], and discuss their shortcomings.

« We evaluate proactive and reactive schemes in a variety
of scenarios, varying the sink mobility patterns and
the user requirements for data freshness. We show that
the proactive approach is more energy-efficient than the
reactive approach in some cases and worse in others.

« We propose TwinRoute, a novel algorithm that combines
the benefits of the two pure schemes. TwinRoute can be
easily tuned to blend proactive and reactive elements at
appropriate levels depending on the application.

« We provide an extensive experimental evaluation of Twin-
Route, using synthetic and real network topologies and
sink traces, and compare them with the competing pure
schemes. We show that TwinRoute is always at least as
good as the best of the pure approaches, and we identify
classes of applications where TwinRoute significantly
outperforms both of them.

This paper is organised as follows: Section II presents the
assumptions of our model and the objective of our work;
Section III provides detailed descriptions of the pure schemes,
and the novel TwinRoute algorithm; Section IV evaluates the
performance of the three approaches in a variety of scenarios
using synthetic and real sink mobility traces; Section V
provides an overview of related work; Section VI presents
our conclusions and ideas for future work.

II. PROBLEM DEFINITION

Consider a wireless network consisting of n static sensor
nodes deployed in an area of interest, and m mobile sinks
roaming through the area. Static sensor nodes are typically
battery-powered and therefore energy-constrained. They sense
the environment and generate data that needs to be forwarded
to one of the mobile sinks. We assume that mobile sinks are
not energy-constrained, and once data arrives at a mobile sink,
it becomes available to the application users. In this paper, we
do not assume control over the mobile sink’s movement. As a
result, our work is applicable to a potentially much wider set
of applications than those targeted by previous work [2], [3],
(4], [5].

In principle, data freshness requirements can vary not only
across applications, but also across different packets of the
same application. A data packet is considered to be fresh when
it arrives at a mobile sink within a user-specified freshness
threshold, which depends on the urgency of the encoded data.
Each application defines a lower bound on the delivery ratio
of fresh packets. For example, a habitat monitoring application
may require that animal observations have freshness thresholds
of 1 minute, whereas temperature change observations have

——» Sink path

P-scheme
routes

Fig. 1. P-scheme in action in an example sensor network where nodes X
and Z have been selected as storage nodes

freshness thresholds of 10 minutes. It also requires that 99%
of all packets must be delivered within their specified freshness
thresholds.

Given specific application requirements for data freshness,
our objective is to devise energy-efficient algorithms for data
collection from fixed sensor nodes to mobile sinks. Since com-
munication typically dominates the total energy expenditure,
our goal is to design distributed algorithms that minimise the
total number of packet transmissions within the fixed sensor
network.

III. THE TWINROUTE ALGORITHM

In this section, we propose TwinRoute, a hybrid approach
to forwarding data from static sensor nodes (from hereon
in referred to as sensors) to mobile sinks that combine two
approaches: 1) a proactive scheme in which sensors proactively
push data to carefully selected storage nodes, and from where
data is collected by roaming sinks, and ii) a reactive scheme
in which mobile sinks continually advertise their presence to
nearby sensors, and the latter react by forwarding their data
back to the sinks. A detailed description of the two pure
schemes and the proposed TwinRoute algorithm is provided
below.

A. Proactive scheme (P-scheme)

The P-scheme is a generalisation of existing algorithms that
build and maintain data dissemination trees rooted in pre-
defined storage nodes [1], [2], [6]. These existing algorithms
typically assume fixed or highly repeatable sink trajectories
along which storage nodes are selected. In contrast, we con-
sider the more general case in which mobile sinks traverse
the network in a more random fashion on an individual basis,
yet collectively exhibit a regular visiting pattern. By keeping
a record of sink visits, it is possible to identify sensors that
are likely to deliver data to a sink within a given freshness
threshold and use them as storage nodes. The P-scheme selects
storage nodes based on the history of sink visits, and builds
dissemination trees rooted at them, thus enabling the remaining
sensors to proactively forward their data to the closest storage
node (see figure 1). More specifically, the P-scheme is a
localised algorithm that involves four tasks, as shown in the
pseudocode depicted in Table 1.

The first task (P1) involves keeping track of sink visits:
when a sink is detected within range, the node updates a

193

INPUT VARIABLES:

SDT - storage delay threshold;

1D - node identity;

LOCAL VARIABLES:

distP - number of hops to storage node;

parentP - parent node ID in routing tree;

visits - list of timestamps of sink visits;
storageDelay - delay for data stored at storage node;

MAIN ALGORITHM:

distP = oo; parentP = ID;visits = (;

WHILE true

[P1] IF mobile sink comes in range
visits = visits | J{currentTime};

[P2] compute storageDelay using visits;
IF storageDelay < SDT
distP = 0; b.dist = 0; b.source = ID;
broadcast b;

[P3] IF a P beacon b is received
IF b.dist < distP
distP = b.dist; parentP = b.source;
b.dist = b.dist + 1; b.source = ID;
broadcast b;

[P4] IF any data AND sink in range
send all data to sink;
ELSE IF any data AND parentP # ID
send all data to parentP;

TABLE 1
PSEUDOCODE OF P-SCHEME.

local list of recent sink visit times. The second task (P2)
involves a storage node selection scheme. Let storage delay
threshold (SDT) denote an upper bound on the time that
packets should wait at storage nodes before being delivered to
mobile sinks. If, based on recent information about sink visits,
a node expects to deliver the majority (say 85%) of buffered
packets within storageDelay, and storageDelay < SDT,
the node becomes a storage node and broadcasts a beacon to
initiate tree construction.

The third task (P3) describes how a sensor processes a tree
construction beacon upon hearing it, so that it associates itself
to a route leading to its closest (in terms of hops) storage node.
The final task (P4) presents a zero-wait, push data reporting
mechanism that sends data along the established routes to the
closest storage node, or directly to the sink if the latter is in
range.

The storage delay threshold is a tunable parameter of P-
scheme, and its value must be defined taking into account the
application requirements for data freshness. The higher the
SDT the more nodes elect themselves as storage nodes and
the smaller the communication trees formed around them. This
means that high SDT values result in small communication
cost at the expense of low data freshness. Conversely, low
SDT values result in high data freshness, at the expense of
high communication cost. Thus, by carefully varying SDT,
the P-scheme gracefully trades communication cost for data
freshness.

INPUT VARIABLES:

TD - reactive routing tree depth (number of hops);
1D - node identity;

LOCAL VARIABLES:

distR - number of hops to sink;

parentR - parent node ID in routing tree;
justCovered - flag indicating recent tree coverage;

MAIN ALGORITHM:
distR = oo; parentR = rootR = 1D;
justCovered = false;
WHILE true
[R1] IF mobile sink comes in range
IF T'D > 0 AND justCovered == false
distR = 0; b.dist = 1; b.source = ID;
broadcast b;
justCovered = true;
start treeDestructTimer;
start justCoveredT'imer;

[R2] IF a R beacon b received
// update R-scheme
IF b.dist < T'D AND justCovered == false
distR = b.dist; parentR = b.source;
justCovered = true;
start justCoveredT'imer;
start treeDestructTimer;
// broadcast tree if next hop smaller than TD
IF bdist+1<TD
b.dist = b.dist + 1; b.source = I D
broadcast b

[R3] IF treeDestructTimer expires
distR = oo0; parentR = ID;

[R4] IF justCoveredT'imer expires
justCovered = false;

[RS] IF any data AND sink in range
send all data to sink;
ELSE IF any data AND parentR # 1D
send all data to parentR;

TABLE II
PSEUDOCODE OF R-SCHEME.

B. Reactive scheme (R-scheme)

An implicit assumption behind the proactive scheme pre-
sented in the previous subsection is that there is some pre-
dictable long-term trend in the collective behaviour of sink
trajectories. In particular, the P-scheme exploits the fact that
the frequency of mobile sink visits at a sensor can be forecast
from recent history. As a result, a constantly changing network,
e.g. one with alternating periods of high and low sink traffic,
can significantly undermine the effectiveness of this scheme.
Worse, some sensor networks may experience periods of
random sink trajectories (e.g. visitors to a national park)
followed by periods of highly repeatable sink trajectories (e.g.
scientists studying animal species in a national park). In this
case, it may be difficult to discover a consistent visit history
to make accurate predictions. Wary of the above situations we
present R-scheme, a reactive algorithm that does not presume
long-term statistics and reacts to the movement of individual
sinks in real-time, it being inspired by [7]. As described
in Table II, the R-scheme is a localised algorithm consisting

194

f. — Sink Path
_—-/—b —# Current R-scheme link
o Previous R-scheme link
O o ¥
q c
L) ;i
o] .

Fig. 2. R-scheme in action with 7D = 2 in an example sensor network.

of five tasks. In the first task (R1), each sensor detects a
mobile sink as it comes in range and subsequently initiates
a routing-tree construction process. In the second task (R2),
nodes handle routing-tree construction beacons received from
their neighbours. This process is restricted so that 1) no tree
construction beacon exceeds a tree depth of 7'D hops and 2) if
a sensor has recently participated in another routing-tree rooted
at a previous position of the sink, it does not participate in a
new tree construction until the justCoveredTimer expires.
The purpose of the first restriction is to constrain the depth of
reactive trees and thus the energy consumed in constructing
them and in delivering data along their paths. The second
restriction follows the intuition that it is not worth extending
the reactive tree to an area where there is little data left to
report. The third task (R3) automatically destroys the current
tree after a short interval that the mobile sink typically takes
to move out of range of the tree’s root'. The fourth task (R4)
allows nodes to participate again in tree construction after a
sufficient time interval has elapsed. Finally, in the fifth task
(RS), nodes forward buffered data to their parent in the reactive
tree, or to the sink in case the latter is within range.

Figure 2 depicts how reactive routing works in an example
sensor network, where a mobile sink traverses node A, B, C
and D. In particular, the figure depicts the moment when a new
tree rooted at D is being constructed, and serves to demonstrate
the customisations described in the previous paragraph. Nodes
B, C and E do not participate in the new tree rooted at
D, as they were very recently part of the tree rooted at A
(justCoveredTimer). For the same reason, B and C did not
become root nodes when visited by the sink. In addition, tree
construction beacons are propagated up to nodes F and G,
and they are not forwarded to H, as the maximum tree depth
(T'D = 2) has been reached.

The tree depth (17'D) is a tunable parameter of R-scheme,
and its value must be decided based on application require-
ments for data freshness. The higher the T'D the higher the
data freshness at the expense of higher communication cost.
Conversely, the lower the T'D the lower the communication
cost at the expense of lower data freshness. Thus, by carefully
varying T'D, the R-scheme gracefully trades communication
cost for data freshness.

IFor simplicity, we assume that this interval is the same for all nodes in
the tree, and it suffices to empty their buffers and forward any data to the
sink before it moves out of range. This is realistic in applications where the
sink does not move very fast, and routing trees are relatively shallow.

195

C. Hybrid approach (TwinRoute)

In the previous subsections we presented a proactive and a
reactive algorithm for data collection. In particular, we showed
that the P-scheme is designed to exploit long-term historical
information about sink visits and elect relatively stable storage
nodes to which sensors proactively push their data. In contrast,
the R-scheme is designed to react to real-time sink movements
and allows a sink to pull data from nearby sensors in its
passage from their neighbourhood. We are now in a position
to present TwinRoute, a hybrid algorithm that combines the
proactive and reactive data collection techniques with the aim
of taking advantage of each of their respective strengths.

TwinRoute is essentially a parallel merge of P-scheme and
R-scheme. In other words, each sensor maintains both the sink
visit history required by proactive routing, as well as tracks
each sink as it comes in and out of range as specified by
reactive routing. In addition, each sensor also listens to and
broadcasts beacons for both schemes. As a result, a network
can exploit both relatively stable and large routing trees created
by P-scheme, and relatively transient and small routing trees
created by the R-scheme. Each sensor is thus always part of
a proactive tree, whilst it is occasionally presented with the
choice to dynamically participate in a reactive tree whenever
a mobile sink appears in its vicinity.

Typically, great advantages can be gained over a pure
proactive scheme when a mobile sink unexpectedly appears
near sensors that are many hops away from the closest
storage node. In TwinRoute, sensors have the opportunity to
temporarily switch to the reactive routing tree and offload their
data on much shorter paths. On the other hand, TwinRoute
will demonstrate its superiority over a pure reactive scheme
as long as there are areas in the network where mobile sink
visits are consistently concentrated. Since we can be confident
that mobile sinks will always revisit these areas in the future,
there is little need to demolish routes once they are established
(as in a pure reactive scheme).

TwinRoute reuses most parts of the R-and P-schemes to
handle mobile sink visits and tree construction beacons. A
critical change is made in the way R beacons are disseminated
to build reactive trees. An additional condition b.dist <
distP — SP is enforced in the tree construction step of R-
scheme (step R2), where SP is a scheme preference parameter
that regulates when one of the pure schemes overwrites the
other. When SP > 0, a sensor becomes part of reactive tree
only if its distance to the sink on that tree is shorter (by SP
hops) than its distance to a P-scheme storage node (distP).
That is, the scheme preference value S P denotes the distance
gain necessary to switch from P-scheme to R-scheme.

Figure 3 showcases the critical process of a switch to R-
scheme when SP = 2. As a mobile sink travels by, node A
becomes the root of a reactive tree and broadcasts R beacons.
Nodes B, C and D are currently part of two separate P trees.
The beacons fire the scheme switching condition on nodes C
and D but not on node B.

The second subtle point in combining P-scheme and R-

@ Storage Node) O'\
b
o
O Sensor Node S P,/
/
* /
— P-scheme route 7 /
/ /
"y &
R-scheme route #)'a .~ "\ N
! e Yy o]
2 g
I
1=3-28 / N
1< 4—?&\ G252

Fig. 3. TwinRoute in action with SP = 2 in an example sensor network.

scheme concerns the data-forwarding step. Once a sensor has
switched to become part of a reactive tree, it always favours
R-scheme when reporting data. All buffered data are sent
along branches of the reactive tree, if one exists, to take full
advantage of the existing routes to the sink. In the absence
of a reactive tree, a sensor returns to using the routes of its
proactive tree. However, unlike the pure P-scheme, data is not
forwarded in a zero-wait mode, but in a delay-tolerant manner.
Not forwarding data items as soon as they are generated at the
source node ensures that there will be some data to capitalise
on a switch to R-scheme should it happen. In order to do this,
when storage nodes initiate tree construction around them (in
the P-scheme), they include their storage delays in the tree
construction beacons. The time that a message can be buffered
locally at the source node must not exceed its data freshness
threshold, minus the storage delay at the P-scheme storage
node.

Since TwinRoute combines the proactive and reactive
schemes, it inherits two important parameters from these
schemes: 1) the storage delay threshold (SDT) used to de-
termine if a sensor node elects itself to be a storage node,
which is inherited from P-scheme, and 2) the tree depth
(TD) of reactive trees formed dynamically around roaming
sinks, which is inherited from R-scheme. By carefully tuning
these two parameters, together with the scheme preference
parameter (SP), we can come up with different flavors of
TwinRoute, to suit the requirements of a particular application.
In extreme cases, TwinRoute can completely suppress one of
the two pure schemes, thus retiring to the other pure scheme. In
the general case, TwinRoute can be tuned to strike the optimal
balance of proactive and reactive routing, i.e. the one that
minimises communication given application requirements for
data freshness. This is demonstrated in the extensive evaluation
of TwinRoute and pure schemes in Section IV.

IV. EXPERIMENTAL EVALUATION

In this section, we provide an extensive evaluation of
TwinRoute and competing pure schemes. Our key performance
metric is communication cost, which we measure as the total
number of packets sent by fixed sensor nodes in the process
of data collection. In addition, we measure the delivery ratio
of fresh packets; this is defined as the number of packets

delivered to sinks within user-defined freshness thresholds
divided by the total number of packets generated in the
network. The algorithms were simulated in TOSSIM [8], and
a series of experiments were run to measure their performance
in a variety of conditions.

More specifically, in Section IV-A, we assess the per-
formance of various flavours of P-scheme, R-scheme and
TwinRoute, as we vary their parameters. The main goal is
to understand the impact of their parameter values on their
communication cost and delivery ratio of fresh packets. In
Section IV-B, we investigate the impact of varying the mobility
patterns of sinks on the performance of the three algorithms. In
Section IV-C we assume that applications define freshness re-
quirements that consist of 1) freshness thresholds for different
packets and 2) a desirable delivery ratio of fresh packets. Our
goal is to explore the impact of application requirements for
freshness on the performance of TwinRoute and pure schemes.
Finally, Section IV-D compares the algorithms using real-life
sink traces (from animal movements) and a realistic sensor
deployment designed by zoologists in our WildSensing project.

A. Impact of parameter values on algorithm performance

In this subsection, we study how by varying the parameters
of the three algorithms, we can strike different tradeoffs be-
tween communication cost and delivery ratio of fresh packets.
To this end, we fix the network topology, sink mobility and
packet freshness threshold. More specifically, we simulate a
network of 100 nodes deployed in a grid-like manner, spaced
apart by 8 meters, and communicating with a 10 meter range
(to simulate dense canopy environments, which are common
in our WildSensing project). We simulate three mobile sinks
moving according to the random way-point model at a fixed
speed of 2m/s. We also set the packet freshness threshold to 50,
100 and 250 seconds, and run simulations for 1000 seconds.

Figures 4a-4d show that the performance of P-scheme and
R-scheme is significantly impacted by their parameter values.
Let us observe the impact of varying the storage delay thresh-
old (SDT) parameter on the performance of P-scheme. When
SDT is 0 secs, none of the sensor nodes assumes the storage
role, because none of them can guarantee zero delays until
the next sink visit. Not knowing of any storage nodes, sensors
resort to buffering packets locally, until sinks come within
range. As SDT increases beyond 100 secs, an increasing
number of nodes become storage nodes, proactive trees around
storage nodes become shorter, and the communication cost
of P-scheme decreases. The communication savings, however,
are counter-balanced by a noticeable fall in the delivery ratio
of fresh packets. Figure 4c and 4d show a similar tradeoff
between communication cost and delivery ratio in the case
of R-scheme. As the tree depth of reactive trees increases,
the delivery ratio of fresh packets increases at the expense of
higher communication cost.

Figure 4a and 4c show that the communication cost of P-
scheme and R-scheme depends purely on the values of their
parameters (SDT and T'D respectively). The delivery ratio,
however, also depends on the requirement for packet freshness

196

a))

e)

Delivery Ratio
Delivery Ratio

0.2
P scheme freshness 50secs - -+
P scheme freshness 100secs — -~
)) P scheme freshness 250secs
0

R scheme freshness 50secs -
R scheme freshness 100secs —» —
. R sche‘me Vresh‘ness 25‘Osecs

Delivery Ratio

+- TwinRoute TD=1, freshness 100secs -~ -+
TwinRoute TD=3, freshness 100secs — * -

* . Twlnﬁ‘cu(eTDFS, lresnness 1QOSECS i

. 0 . .
50 100 150 200 250 300 350 400
Storage Delay Threshold (SDT)

b) d)

25

3 3
Tree Depth (TD)

L 0 L
45 5

.5 4 100 150 200 250 300 350

Storage Delay Threshold (SDT)

400

40000 70000

P-scheme —+—

35000 60000

30000 50000
25000
40000
20000
30000
15000

2000t
10000 0000

10000

Communication Cost (No. of packets)
Communication Cost (No. of packets)

5000

0 L L L L L L L

90000

R-scheme —+— TwinRoute TD=1 —+—
TwinRoute TD=3
80000 TwinRoute TD=5 ---*

70000 e

60000
50000
40000
30000

20000

Communication Cost (No. of packets)

10000 —— |

50 100 150 200 250 300 350
Storage Delay Threshold (SDT)

P-scheme

400

25 3

Tree Depth (TD)
R-scheme

0 L L L L L L L
100 150 200 250 300 350

Storage Delay Threshold (SDT)
TwinRoute

.
35 4 45 5 400

Fig. 4. Performance of P- and R-scheme as we vary their parameters

(Figure 4b and 4d). As expected, in both P- and R- schemes,
the delivery ratio of fresh packets decreases as the freshness
bound tightens from 250 to 50 secs.

Figure 4e and 4f show the impact of storage delay threshold
(SDT) and reactive tree depth (T'D) on the performance
of TwinRoute, when the packet freshness threshold is set to
100 secs. Note that changing the values of one of the two
parameters (say, SDT') does not have such a dramatic effect
on the performance of TwinRoute, as it had on the performance
of the corresponding pure scheme, due to the presence of the
other pure scheme. TwinRoute, however, makes a qualitatively
similar tradeoff between communication cost and delivery
ratio, as observed in the pure schemes. In particular, as tree
depth decreases and storage delay threshold increases, the
communication cost of TwinRoute is reduced at the expense
of delivering fewer packets within their freshness thresholds.

B. Impact of sink mobility

In the previous subsection, we showed that we can derive
different versions of P-scheme, R-scheme and TwinRoute by
varying their parameters. Different versions vary in how they
trade communication cost for data freshness. Given specific
application requirements for data freshness (e.g., packets must
be delivered to sinks within 100 secs, and at least 95% of
the total packets must be collected within this threshold), we
can easily identify the most communication-efficient versions
of P-scheme, R-scheme and TwinRoute that satisfy these
requirements. We then compare the best versions of the three
schemes in the context of different sink mobility models.

1) Random mobility scenario: three sinks moving accord-
ing to the random waypoint model (RWP) at a fixed
speed of 2m/s. The scenario is representative of cases
where the mobile sinks do not embark on a purposeful

2)

3)

197

journey and their movement is entirely unpredictable.
Figure 5a shows the best performing P-, R- and hybrid
schemes for different desired delivery ratios. Observe
that R-scheme performs increasingly better than P-
scheme, especially as applications require higher deliv-
ery ratios of fresh data (a packet is fresh if it is delivered
within 100 secs). Note that P-scheme cannot achieve
delivery ratios greater than 85% because none of the
storage nodes are visited often enough by mobile sinks.
TwinRoute puts more weight on the reactive element,
and has comparable performance to R-scheme.
Regular path scenario: one sink follows a fixed path
whilst two sinks move using the random waypoint
model. In this case, P-scheme takes advantage of the in-
creased predictability and outperforms R-scheme. How-
ever, P-scheme can achieve up to 90% delivery ratio,
due to the limited frequency in which sinks visit storage
nodes, whereas R-scheme can achieve higher delivery
ratio, simply by using a higher tree depth. Again, in this
case, TwinRoute performs similarly to the best of the
two pure schemes.

Static gateway scenario: one static gateway and two
sinks following a random waypoint mobility pattern.
This reflects scenarios where sensor nodes have the
option of forwarding their data to a static gateway or
to roaming mobile sinks. In this case, the three schemes
perform comparably when the desired delivery ratio is
lower than 75%. R-scheme outperforms P-scheme for
delivery ratios between 75% and 95% because the proac-
tive tree to a single fixed gateway is very deep, compared
to short reactive trees formed around mobile sinks.
Unlike the previous two scenarios, P-scheme achieves
very high delivery ratios, close to 100%, due to the

a) b)

80000

70000

c)

P scheme —+—
R scheme *
TwinRoute -~

P scheme —+—
R scheme

70000 |- 60000 - TwinRoute -

E *
60000 50000 |-
50000
40000 [
40000
30000
30000
20000
20000

10000 [

Communication Cost (No. of packets)
Communication Cost (No. of packets)

10000

0 L L L L L L L 0 L L

¥ 80000

P scheme —+—
R scheme
70000 - TwinRoute -~

60000 [

50000

40000

30000

20000

Communication Cost (No. of packets)

10000 |-

60 65 70 75 80 8 90 95 100 60 65 70
Delivery Ratio

3 RWP sinks
Fig. 5.

fixed gateway. Such high delivery ratios are unachievable
by R-scheme which collects data up to 5 hops away
from sinks. When high delivery ratios close to 100%
are required, TwinRoute, significantly outperforms both
pure schemes.

Overall, we conclude that the algorithm performance is
highly dependent both on sink mobility and on desired delivery
ratio of fresh packets. R-scheme is preferred to P-scheme when
sink movement is very unpredictable and applications require
high delivery ratios. P-scheme outperforms R-scheme when
sinks visit storage nodes frequently enough (or all the time
as in the static gateway scenario). TwinRoute builds upon the
strengths of the pure schemes: it typically performs at least
as well as the best of them, and in certain special cases, it
outperforms both.

C. Impact of data freshness distribution

In Section IV-B, we assumed that all packets of an appli-
cation have the same freshness threshold (e.g. 100 secs). In
this section, we extend our study to applications that feature a
mix of time-critical and delay-tolerant packets. For example,
in a farm monitoring application, 20% of packets concern
animals trying to cross the farm boundaries, and must be
reported to staff within seconds. The remaining 80% of packets
concern animal contact events and need to be reported within
minutes. Similarly, a traffic monitoring application may require
imminent collection of accident-related data, and slightly more
delay-tolerant collection of car traffic bottleneck events.

The table below includes the freshness requirements
of four different application scenarios that we use to
evaluate TwinRoute and the pure schemes: columns
indicate the packet freshness thresholds, whereas rows
denote the required delivery rate of fresh packets.

Data Freshness
80% 250seconds,
20% 50 seconds

100 seconds
Delivery Ratio

75% wildlife boundary | farm monitoring
monitoring
95% accident monitoring | traffic monitoring

Let us now measure the performance of the best versions of
P-scheme, R-scheme and TwinRoute in these four applications.

75 80 85 920 95

1 regular path sink, 2 RWP sinks

100 55 60 65 70 75 80 8 90 95
Delivery Ratio

1 static gateway, 2 RWP sinks

Delivery Ratio

Best communication cost for Proactive, Reactive and TwinRoute algorithm for various desired delivery ratios

Figure 6 considers the application scenarios that tolerate a
freshness of 100 seconds for their packets, and require 75%
(left graph) and 95 % (right graph) delivery ratio. TwinRoute
is shown to perform better than the pure schemes, and its
benefits are more pronounced in the case that the application
has a fixed gateway and requires a high delivery ratio (95%).

Figure 7 shows the performance of the three schemes in
applications that have two types of packets with two different
freshness thresholds. Again, the benefits of TwinRoute are
more evident in the application that requires a high delivery
ratio of fresh packets (right graph). Comparing the right graphs
of Figures 6 and 7, one can see that TwinRoute is partic-
ularly efficient in delivering packets with different freshness
thresholds. The reason is that it combines a proactive approach
to deliver delay-tolerant packets with a reactive approach to
deliver time-critical packets. Note also that in many cases, P-
scheme and R-scheme cannot even achieve the desired delivery
ratio (as denoted by the absence of corresponding bars from
the graphs).

D. Real deployment scenario

In this section, we evaluate the hybrid and pure data
collection schemes using real traces followed by zoologists
in Wytham Fields, Oxford, UK, and a realistic sensor layout
designed by zoologists to monitor badgers in the same area
(sensors are positioned close to the setts and latrines of a
badger community). The traces were recorded by zoologists
roaming the area over a period of 7 days during which data
was typically collected in the morning and the evening. The
zoologists did not visit exactly the same sites each time
they traversed the area. The traces loosely follow given paths
and thereby share some common focal points, to constitute
sink mobility in-between random walk and the static gateway
scenario (see Figure 8).

The sensor deployment consists of 34 nodes spread over an
area of 1000x1000 meters with a communication range of 200
meters. The packet freshness threshold is set to 48 hours; this
was a reasonable value given that very few nodes are visited
by mobile sinks more often than 36 hours. Each sensor node
generates a packet of sensor data (e.g. temperature readings,
badger sightings) every five minutes.

The results depicted in Figure 9 show that TwinRoute has a
similar performance to the pure schemes when 80% of packets

198

a)

40000

P scheme
R scheme
TwinRol

35000

30000

25000

20000

15000

10000

Communication Cost (No. of packets)

5000

RwWP Regular Path
Mobility Model

Static Gateway

b)

80000

P scheme mm——m
R scheme
TwinRoute s

70000

60000

50000

40000

30000

20000

Communication Cost (No. of packets)

10000

RwWP Regular Path
Mobility Model

Static Gateway

Fig. 6. Best communication cost for P- and R-scheme and TwinRoute for various mobility models, all packets have the same freshess of 100 seconds. One
application requires 75% delivery ratio (left graph), and the other requires 95% delivery ratio (right graph)

a)

20000

P scheme mm—
R scheme mwssm
TwinRoute s

18000
16000
14000
12000
10000
8000
6000
4000

Communication Cost (No. of packets)

2000

RwWP Regular Path
Mobility Model

Static Gateway

Fig. 7.

b)

70000

P scheme
R scheme mwssm
I TwinRoute s

60000

50000

40000

30000

20000

Communication Cost (No. of packets)

10000

RwWP Regular Path
Mobility Model

Static Gateway

Best communication cost for P- and R-scheme and TwinRoute for various mobility models, 20% of packets have freshness 50 secs and 80% of

packets have freshness 250 secs. One application requires 75% delivery ratio (left graph), and the other requires 95% delivery ratio (right graph)

1400

Sensor Nodes ¢

1200

1000 =

. i
-
* ~.
Vs LR I . I
600 [st e - i
= - 7
A - -
A '\o - - .
400 Hr=ae oy . T
Z)’/] . .
’ *
200
0 200 400 600 800 1000 1200

Fig. 8. Real-life sensor network topology and sink traces

must be delivered within their threshold of 48 hours. However,
if the habitat monitoring application required all packets
to be delivered within their threshold, TwinRoute would
significantly outperform its pure counterparts. To conclude,
TwinRoute is particularly useful when very high delivery ratios
are required. Recall that this result agrees with our previous
results of testing the three schemes using synthetic sink traces
in Sections IV-B and IV-C.

V. RELATED WORK

There has been a plethora of work on energy-efficient
dissemination of sensor data from static sensor nodes to one
or more mobile sink nodes. Depending on the assumption
about delay tolerance, we distinguish between real-time (unin-
terrupted or very low delay) data collection, and delay-tolerant

199

900000

P scheme mm—
L Rscheme mwwsm
800000 TwinRoute s

700000
600000
500000
400000
300000

200000

Communication cost (No. of packets)

100000

0

80 99 100
Delivery Ratio

Fig. 9. Real-world simulation results for varying reliabilities

data collection.

Real-time (Low-delay) Data Collection requires data sources
to be continuously connected to the sinks via multi-hop routes.
Luo et al. proposed Two-Tier Data Dissemination (TTDD) [9],
a grid-like approach in which dissemination nodes, which are
closest to the grid points, perform high-tier query and data
routing, whereas low-tier routing is used for communication
between dissemination nodes and mobile sinks. HCDD [10] is
another hierarchical cluster-based approach to forwarding data
from sources to mobile sinks, which, unlike TTDD, does not
require sensor nodes to be location aware. Both TTDD and
HCDD are pure reactive algorithms, since they require sinks
to register with data sources.

The SEAD protocol (Scalable Energy-Efficient Asyn-

chronous Dissemination) [11] builds and maintains a data
collection tree rooted at the data source, to which mobile sinks
establish a connection by selecting a nearby access node that
manages the connection on their behalf. The SEAD-protocol
is shown to be more energy-efficient than directed diffusion
[12], TTDD [9] or ADMR [13]. Unlike our work, which aims
to propagate data from multiple sources to one of the mobile
sinks, SEAD is designed to forward data from one data source
to multiple mobile sinks. It is a reactive protocol in that sinks
send join queries to the source to connect and receive data
along the dissemination tree.

Unlike the SEAD-protocol, that makes no assumption about
the mobile sink trajectory, the learning-based approach pro-
posed by Baruah et al. [14] assumes the mobile sink to have a
predictable path?. Nodes use a combination of statistical and
reinforcement learning to come up with good delivery paths
to the mobile sink. This approach is similar to the P-scheme
described in this paper, in that it exploits inherent patterns of
sink mobility that are sustained for a significant period of time.
However, unlike R-scheme and TwinRoute, it cannot easily
handle unexpected sink movements.

Akkaya et al. [17] propose a reactive approach to data
forwarding to mobile sinks. They explore the tradeoff between
the need for frequent re-routing to handle sink mobility
and the communication overhead due to re-routing. Unlike
P-scheme and TwinRoute, their approach does not exploit
inherent patterns of sink mobility. The AROT approach [18]
reduces the amount re-routing of a tree-based approach by
only updating routes that have been made redundant by recent
sink movement.

Gandham et al. [3] assume control over the locations of

mobile sinks, and use an integer linear program to periodically
determine the new sink locations. Luo et al. [4] suggest that the
best mobility strategy is to follow the periphery of a circular
deployment area. Wang et al. [5] aim at optimising network
lifetime by jointly determining the movement of the sink and
the sojourn time at different points in the network. Luo et
al. [2] assume that the mobile sink visits a fixed sequence of
anchor nodes, they adjust the pause times at each anchor, and
propose MobiRoute, a multi-hop routing protocol that deals
with sink mobility. Unlike these papers, our work does not
assume fixed or controlled sink movement.
Delay-tolerant Data Collection is typically used in applica-
tions like habitat monitoring, where the delivery of data to the
sinks is not time critical. A permanent connection between
data source and sink is, therefore, not necessary. We divide
this work into two sub-classes depending on whether single-
hop or multi-hop communication is used for data delivery:

Single-hop communication. Jain et al. [19] physically move
MULEs (Mobile Ubiquitous LAN Extensions) to transport
data from sensor nodes to sink nodes. The MULE approach
utilises single hop communication, thereby generally avoiding
the need of routing at the expense of latency. Randomly

2Predicting the mobile sink trajectory can be actively conducted in an
energy efficient way as described in [15], [16]

moving MULEs can potentially take an infinite amount of time
to reach a sink, thereby not being able to guarantee an explicit
delay threshold of individual data items.

Instead of relying on random movement, [20], [21] rely
on controlling the mobile sink to guarantee a data delivery
threshold. Somasundara et al. [21] provide practical scheduling
algorithms that enable mobile sinks to visit busy sensor nodes
more frequently, so that there are no data lost due to buffer
overflow. The PBS (Partitioning Based Scheduling) algorithm
presented by Ekici et al. [20] groups nodes together that
have similar buffer overflow times, and computes mobile
sink trajectories based on knowledge of the data generation
rate of sensors and their locations. Chakrabarti et al. [22]
assume a fixed mobile sink trajectory, and analyse how the
transmission range and data rates of sensor nodes impact the
power consumed in transferring data to the mobile sink.

For data collection protocols that utilise single-hop com-
munication, a large data buffer is required to enable storage
of all generated data between mobile sink visits. Additionally,
visiting all nodes individually can often be infeasible due to
difficult terrain, and also logistics problems or danger if in
a hostile environment. Our proposed algorithm, TwinRoute,
avoids these problems by combining mobile sink movement
with multi-hop communication among static sensors.

Multi-hop communication. TwinRoute makes similar as-
sumptions to this final class of algorithms, i.e. multi-hop
communication and delay-tolerant collection of sensor data.
The MRME algorithm [20] extends the PBS algorithm by
additionally relaying urgent messages using multi-hop routing
to sensor nodes that guarantee data delivery within a delay
threshold. Similar to MRME and P-scheme, Chen et al. [6]
estimate the interarrival time of an uncontrolled mobile sink at
sensor nodes to decide on whether to forward data in a multi-
hop manor or store data locally for timely data collection.
Like the P-scheme, Chen et al. and MRME exploit inherent
patterns of sink mobility, and cannot easily handle unexpected
sink movements. In SCAR [23], nodes determine whether
a neighbour is a suitable carrier for their data based on its
collocation with the sinks, its change in degree of connectivity
and its battery level. It is similar to the P-scheme in that nodes
that are frequently visited by mobile sinks tend to attract and
forward data on behalf of nearby, less visited, nodes.

Somasundara et al. [1] present another delay-tolerant ap-
proach that utilises multi-hop routing. They assume a fixed
sink trajectory and establish data dissemination trees rooted
at nodes within reach of the trajectory. The mobile sink
visits for longer periods those nodes that gather data from
larger subtrees. Kansal et al. [24] propose adaptive algorithms
to control mobility, and propose modifications to directed
diffusion to allow for efficient data routing from multiple static
nodes to a single mobile sink. MobiQuery [7] is a reactive data
collection algorithm that predicts the movement of a mobile
sink in order to wake sleeping nodes in the predicted area,
thus enabling the nodes to respond to sink queries. Unlike
R-scheme, the queries posed in MobiQuery are of spatio-
temporal nature in that a data interest exists only for nodes

200

within a fixed distance of the sink.

To our knowledge, TwinRoute is the first delay-tolerant
protocol that combines proactive and reactive multi-hop rout-
ing, does not rely on controlled sink mobility, and is suitable
for scenarios that involve both predictable and random sink
movements.

VI. CONCLUSIONS AND FUTURE WORK

This paper includes a study of three classes of data col-
lection algorithms - variants of existing proactive and reac-
tive schemes, and variants of a novel hybrid scheme called
TwinRoute. Our findings are as follows: 1) the performance
of pure and hybrid schemes significantly depends on their
parameter settings; all schemes trade communication cost for
delivery ratio of fresh packets; an increase in the storage delay
threshold parameter, decreases the communication cost of P-
scheme and TwinRoute, at the expense of lower delivery ratio;
an increase in the tree depth parameter, increases the delivery
ratio of R-scheme and TwinRoute at the expense of higher
communication cost. 2) Given application requirements for
data freshness, a network designer can choose the most energy-
efficient variant of P-scheme, R-scheme and TwinRoute; in
applications where sinks move in a very random manner,
the best R-scheme typically outperforms the best P-scheme;
in applications where sink traces are more predictable, the
best P-scheme often outperforms the R-scheme; the proposed
TwinRoute protocol outperforms the pure schemes in almost
all cases. 3) The application scenario where TwinRoute fea-
tures the highest communication savings with respect to P-
scheme and R-scheme is one that involves a mix of time-
critical and delay-tolerant packets, requires the vast majority
of packets to be delivered within their freshness thresholds,
and involves both highly predictable and unpredictable sink
movement. TwinRoute also featured significant communica-
tion savings when tested in an animal monitoring scenario
using real zoologist traces and a realistic sensor deployment
for monitoring badgers.

In the future, we will analyse the algorithms using an
extended set of WSN scenarios that also vary in their sensor
topology and data generation rate. Furthermore, we plan to
design adaptive pure and hybrid collection algorithms that
adjust their parameters by leveraging feedback from sinks
about the delay of collected packets. We are particularly
interested in designing an adaptive version of TwinRoute that
is capable of changing the balance of its proactive and reactive
elements in response to changing sink mobility and network
conditions.

REFERENCES

[1] A. Somasundara, A. Kansal, D. Jea, D. Estrin, and M. Srivastava,
“Controllably mobile infrastructure for low energy embedded networks,”
1IEEE Transactions on Mobile Computing, vol. 5, no. 8, 2006.

[2] J. Luo, J. Panchard, M. Piérkowski, M. Grossglauser, and J.-P. Hubaux,
“Mobiroute: Routing towards a mobile sink for improving lifetime in
sensor networks,” in DCOSS, 2006, pp. 480—497.

[3] S. Gandham, M. Dawande, R. Prakash, and S. Venkatesan, “Energy
efficient schemes for wireless sensor networks with multiple mobile base
stations,” in Global Telecommunications Conference(GlobeCom), Vol. 1,
2003, pp. 377-381.

201

(4]

(10]

(12]

[13]

(14]

(15]

[16]

(17]

(18]

(20]

[21]

(22]

(23]

(24]

J. Luo and J.-P. Hubaux, “Joint mobility and routing for lifetime
elongation in wireless sensor networks,” in Intl Conference on Computer
Communications (Infocom), 2005, pp. 1735-1746.

Z. Wang, S. Basagni, E. Melachrinoudis, and C. Petrioli, “Exploiting
sink mobility for maximizing sensor networks lifetime,” in Annual
Hawaii Intl Conference on System Sciences, 2005.

C. Chen, J. Ma, and K. Yu, “’designing energy efficient wireless sensor
networks with mobile sinks”,” in ”Proc. of ACM Sensys’06 Workshop
WSW?”, 2006.

C. Lu, G. Xing, O. Chipara, C.-L. Fok, and S. Bhattacharya, “A
spatiotemporal query service for mobile users in sensor networks,”
Distributed Computing Systems, 2005. ICDCS 2005. Proceedings. 25th
IEEE International Conference on, pp. 381-390, June 2005.

P. Levis, N. Lee, M. Welsh, and D. Culler, “Tossim: accurate and
scalable simulation of entire tinyos applications,” in Ist Intl Conference
on Embedded networked sensor systems (Sensys), 2003, pp. 126-137.

H. Luo, F. Ye, J. Cheng, S. Lu, and L. Zhang, “TTDD: Two-tier Data
Dissemination in large-scale wireless sensor networks,” ACM/Kluwer
Mobile Networks and Applications (MONET), Special Issue on ACM
MOBICOM, 2003.

C.-J. Lin, P-L. Chou, and C.-F. Chou, “Hecdd: hierarchical cluster-
based data dissemination in wireless sensor networks with mobile sink,”
in Intl Conference on Wireless communications and mobile computing
(IWCMC), 2006, pp. 1189-1194.

H. Kim, T. Abdelzaher, and W. Kwon, “Minimum-energy asynchronous
dissemination to mobile sinks in wireless sensor networks,” in /st Intl
Conference on Embedded networked sensor systems (Sensys), 2003, pp.
193-204.

C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, and F. Silva,
“Directed diffusion for wireless sensor networking,” IEEE/ACM Trans.
Netw., vol. 11, no. 1, pp. 2-16, 2003.

J. Jetcheva and D. Johnson, “Adaptive demand-driven multicast routing
in multi-hop wireless ad hoc networks,” in ACM Intl Symposium on
Mobile ad hoc networking & computing (MobiHoc), 2001, pp. 33-44.
P. Baruah, R. Urgaonkar, and B. Krishnamachari, “Learning-enforced
time domain routing to mobile sinks in wireless sensor fields,” in IEEE
Intl Conference on Local Computer Networks (LCN), 2004.

S. Ray, D. Starobinski, A. Trachtenberg, and R. Ungrangsi, “Robust
location detection with sensor networks,” in IEEE JSAC (Special Issue
on Fundamental Performance Limits of Wireless Sensor Networks),
2003.

J. Albowicz, A. Chen, and L. Zhang, “Recursive position estimation
in sensor networks,” in Intl Conference on Network Protocols (ICNP),
2001, pp. 35-41.

K. Akkaya and M. Younis, “Energy-aware routing to a mobile gateway
in wireless sensor networks,” in Global Telecommunications Conference
Workshops (GlobeCom), 2004, pp. 16-21.

K. I. Hwang, T. Y. Kim, and D. S. Eom, “Proactive data delivery scheme
with optimal path for dynamic sensor networks,” in UIC, 2007, pp. 412—
421.

S. Jain, R. Shah, W. Brunette, G. Borriello, and S. Roy, “Exploiting
mobility for energy efficient data collection in wireless sensor networks,”
Mob. Netw. Appl., vol. 11, no. 3, pp. 327-339, 2006.

E. Ekici, Y. Gu, and D. Bozdag, “Mobility-based communication in
wireless sensor networks,” IEEE Communications Magazine, vol. 44,
no. 7, pp. 56-62, July 2006.

A. Somasundara, A. Ramamoorthy, and M. Srivastava, “Mobile element
scheduling for efficient data collection in wireless sensor networks with
dynamic deadlines,” in IEEE Intl Real-Time Systems Symposium (RTSS),
2004, pp. 296-305.

A. Chakrabarti, A. Sabharwal, and B. Aazhang, “Using predictable
observer mobility for power efficient design of sensor networks,” in
Intl Conference on Information Processing in Sensor Networks (IPSN),
2003.

C. Mascolo and M. Musolesi, “Scar: context-aware adaptive routing in
delay tolerant mobile sensor networks,” in Intl conference on Wireless
communications and mobile computing (IWCMC), 2006, pp. 533-538.
A. Kansal, A. Somasundara, D. Jea, M. Srivastava, and D. Estrin, “In-
telligent fluid infrastructure for embedded networks,” in Intl conference
on Mobile systems, applications and services (MobiSys), 2004, pp. 111—
124.

