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Abstract-Clutter-prone environments are challenging for 
range-based localization, where distances between anchors and 
the unlocalised node are estimated using wireless technologies 
like radio, ultrasound, etc. This is so due to the incidence of 
Non-Line-Of-Sight (NLOS) distance measurements as the direct 
path between the two is occluded by the presence of clutter. 
Thus NLOS distances, having large positive biases, can severely 
degrade localization accuracy. Till date, NLOS error has been 
modelled as various distributions including uniform, Gaussian, 
Poisson and exponential. In this paper, we show that clutter 
topology itself plays a vital role in the characterization of NLOS 
bias. We enumerate a feature-set for clutter topologies, including 
features that can be practically deduced without complete knowl­
edge of the clutter topology. We then analyze the significance of 
these features, both individually and in combination with each 
other, in the estimation of the NLOS rate as well as the NLOS 
bias distribution for arbitrary clutter topologies. We show that 
we can obtain the NLOS rate with an error of only 0.03 for a 
given clutter topology using only those clutter topology features 
that can be practically realized in a real deployment. We show 
that estimating the NLOS bias distribution is more challenging 
which give a small number of poor estimations. 

I. INT RODUCTION 

Location awareness has become an integral part of the 
modern lifestyle. For example, GPS enabled smartphone and 
GPS receivers enable us to navigate to our destination or 
provide us information pertinent to our current location. Fleet 
managers are able to locate and monitor cargo moving in 
transit. Office and home areas are instrumented to furnish 
information relating to the time and area we are currently 
at. Most location services function with the help of anchors, 

nodes aware of their own positions, and distances measured 
to them. When there are obstacles in the environment, the 
accuracy of these measured distances, and thus the estimated 
position, suffers significantly. This degradation is caused by 
the existence of Non-Line-of-Sight (NLOS) distances which 
have large positive biases. 

Until now, a large body of research has been conducted 
to address this issue. Some techniques [1], [2] try to detect 
and separate these erroneous distances from the position 
estimation process, while others [3], [4], [5], [6] incorporate 
these distances in a way that mitigates their negative influence 
on the location accuracy. 

NLOS bias is hard to model accurately as it is shown to 
depend on the (arbitrary) underlying topology/arrangement of 
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the obstacles in the environment [7], [8], [9], [10], [11], [12]. 
For this reason, it is typically assumed to be uniform [6], [5], 
[13], [1], Gaussian [14] or exponential [1], [15], [4] for the 
sake of convenience. Jourdan et al. [12] mention the use of 
empirically derived NLOS bias distributions in calculating the 
PEB error bound for localization in a cluttered environment. 

This paper addresses the problem by explicitly considering 
NLOS characteristics, namely NLOS rate and the NLOS 
bias distribution, as being dependent on the clutter topology. 
In other words, we illustrate the variation of NLOS rates 
and NLOS bias distributions with different types of clutter 
arrangements. To this end, we identify various features for 
a given clutter topology and analyse the influence of each 
feature, individually as well as in combination with other 
features. We then use machine learning tools to estimate both 
the NLOS rate as well as the bias distribution for an arbitrary 
clutter topology, using its features as input. 

The remaining part of the paper is organized as follows: 
we state the problem in Section (II). In Section (III) we 
define various features of the clutter topology as well as other 
factors affecting NLOS bias. In Section (IV), we discuss the 
methodology of how we generate and analyze data in the 
paper. In Sections (V) and (VI) we describe and discuss our 
techniques to learn and predict NLOS incidence probability 
and NLOS bias distribution from a given clutter topology. We 
discuss related work and the need for clutter-based NLOS 
characterization in Section (VII). Finally we discuss future 
work and summarize our conclusions in Section (VIII). 

II. P RO BLEM STATEMENT 

In this section we define the problem of NLOS bias char­
acterization. We first discuss the causes for NLOS distance 
measurements. Later we state the parameters for characterizing 
NLOS error that we use in the paper. 

A. Preliminaries 

Distance measurements are obtained between a transmitter 
and receiver using a ranging signal. The ranging signal can 
either be Ultrawideband (UWB) radio or even a combination 
of radio and ultrasound such as the MIT Cricket nodes [16]. 
The time duration of the signal flight from the transmitter to 
the receiver, in other words, the difference between the time of 



transmission and the time of reception is calculated and thus 
the distance is estimated. It is assumed that a suitable method 
is used to synchronize the receiver to the transmitter, in order 
to accurately calculate the signal flight duration. In case the 
direct path between the two is blocked by clutter, the ranging 
signal still reaches the receiver after reflecting off surfaces in 
the environment. Thus, the inflated flight time duration leads to 
the positive bias in the estimated distance measurement, which 
can be significant when compared to the actual distance. Thus, 
we can have a Line of Sight (LOS) distance measurement 
when there is a clear direct path between the two, and 
a Non-Line-Of-Sight (NLOS) distance measurement arising 
otherwise. 

If d denotes the true distance between the transmitter and 
receiver, a distance measurement d can be represented by 

(1) 

where n represents a Gaussian distributed random error and 
b represents the NLOS bias. In the case of a LOS distance 
measurement, b = O. In case d is NLOS in nature, we 
assume that the positive bias b render the Gaussian error n 
insignificant. 

We assume that the ranging signal will be reflected off 
obstacles in its path of propagation, such as ultrasound sig­
nal [16]. In other words, the ranging signal does not propagate 

through the clutter. 

B. NLOS Characterization 

We can characterize the NLOS error for a given clutter 
environment using two components : 1) NLOS Incidence Prob­

ability (f) : This is the probability of a distance measurement 
being NLOS, as opposed to LOS, for an arbitrary pair of points 
in the clutter topology. 2) NLOS Bias Distribution (P) : This 
denotes the distribution of NLOS biases for an arbitrary pair 
of points in the clutter topology. 

Given a set of sample distances, some being LOS and 
others being NLOS, for arbitrary pairs of points in the clutter 
topology, f can be obtained as the fraction of NLOS distances 
to the total number of distances. We can calculate the NLOS 
bias distribution using the non-parametric histogram model 
method. Fig. (1) shows the variation of f and P for various 
clutter topologies. Next we will discuss various features and 
parameters of the clutter topology which cause this variation 
in NLOS characteristics. 

III. F ACTO RS INFLUENCING NLOS E R RO R  

In this section we  will enumerate various factors that 
determine the non-Iine-of-sight (NLOS) bias obtained dur­
ing ranging measurements in an obstacle-prone environment. 
Communication range, the maximum distance an ultrasound 
or radio ranging signal can reach even after colliding with 
an unbounded number of surfaces in the clutter, is entirely 
independent of the clutter. However, the remaining features 
are related to the clutter topology and they are in fact various 
ways to characterize the clutter topology. 
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(a) Sample Clutter Topologies 

NLOS Bias (units) NLOS Bias (units) 
(b) Pel (fel = 0.4264) (c) Pc2 (fc2 = 0.4498) 

(d) Pc3 (fc3 = 0.5146) 
Fig. I. Dependence of NLOS incidence probability and bias distribution on 
the underlying clutter topology. f and P obtained with 10000 samples. 

1) Clutier Area Fraction: The ratio of the clutter area to the 
total area, ca, is an important indicator of the level of clutter 
in the environment. 

Total Area of Clutter 
ca= =-�------�--����------

Total Area of Enclosed Environment 

In case of semi-open areas, a convex hull can be con­
structed across the openings in the environments in order 
to calculate the total area of the environment. However, it 
cannot independently help estimate NLOS incidence or bias 
error as NLOS distance measurements are dependent both on 
the spacing in the environment between the clutter and the 
enclosure boundaries, and the total amount of clutter in the 
environment. 

2) Communication Range: Communication range C, or the 
signal transmission energy, of the ranging device is vital in 
determining the NLOS bias. NLOS distance measurements are 
obtained only when the ranging signals have enough energy 
to travel indirect paths, reflecting off obstacles on the way. 
In other words, the communication range should be at least 
greater than the Euclidean distance between the two ranging 
devices involved in the distance estimation. Additionally, the 
loss of energy in the reflected signal as it bounces off obstacles 



e, 

e,� 
(a) Samples for CDt (b) Samples for CDr 

5 '0 '5 ro � � � � Distance (units) 
(c) CDt for C2 with 1000 samples (d) CDr for C2 with 1000 samples 

Fig. 2. Building the two clutter space distributions, CDt and CDr. Here, 
for the case of CDt, three random points are chosen along with three random 
direction 01, 02 and 03, that give the corresponding spacing distances d1, d2 
and d3. In case of CDr, if we take the same three positions, the corresponding 
spacing distances d�, d; and d3 represent the radii of the smallest circles 
that can be fitted before touching, in the first instance, a clutter piece or the 
enclosure wall. In practice, one can build these distributions with 500 or 1000 
samples points. 

is also vital to determine the effective communication range 
through the clutter. 

3) Clutter Spacing Distribution: The space in midst of 
the obstacles and bounding enclosure plays a vital role in 
determining the NLOS distance biases. We define two types 
of clutter spacing distributions: 

• Linear Clutter Spacing Distribution eDl : This is the 
distribution obtained by measuring the space from a 
random position in the clutter topology (outside any 
obstacle) in a random direction till it strikes an obstacle 
or the enclosure walls in its path, as seen in Fig. (2a). 

• Radial Clutter Spacing Distribution CDr : This is the 
distribution obtained by measuring the maximum circle 
that can be drawn centered at a (random) point such that 
it does not intersect an obstacle or the enclosure walls, 
as seen in Fig. (2b). 

Fig. (2) illustrates the construction of the two spacing 
distributions. A desirable feature of eDl and CDr is that they 
can be obtained through practical means without the need for 
explicit knowledge of the clutter topology. For example, a laser 
rangefinder can be used to obtain eDl while a laser range 
scanner can be used to obtain CDr . 

4) Occupancy Grid: The occupancy grid of the clutter 
topology is a literal representation of the actual map of the 
clutter topology scaled by a factor s. In other words, if OCCl 
represents the matrix representation of the clutter topology, 
with Is denoting the enclosure boundaries and clutter and Os 
denoting free space, OCCs is the corresponding matrix with 
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(b) OCC(12.5) 

Fig. 3. Occupancy grid representation of clutter topology C2 

(a) ft3.125 of CI (b) ft3.125 of C2 (c) ft3.125 of C3 

Fig. 4. Fourier transform characterization of clutter topologies Ct, C2, C3 

norm([XOy0J) 
dimensions scaled by a factor of S, where S = norm([)L y�J) 
and (Xp , Yp) are the original dimensions of the clutter map 
image and (XL, YL) are the dimensions of the scaled image. 
For example, if OCCl is a 100xlOO matrix, then OCC12.5 will 
be represented by a 8x8 matrix and OCC3.l25 by a 32x32 
matrix. We select bilinear interpolation scheme for matrix 
compression. Fig. (3) shows the graphical representations 
of OCC3.l25 and OCCl2.5 for clutter topology C2. The idea 
behind this representation is to capture the low-level structure 
of the clutter topologies while abstracting the higher level 
representation. 

5) Fourier Transformation: The Fourier Transform is pop­
ular technique in the image processing research commu­
nity [17], [18], [19]. It highlights the dominant spatial fre­
quencies as well as the dominant orientations of the structures 
contained in the image. The Fourier transformation of a image 
provides its representation in the frequency domain. We use 
the two dimensional Fourier transformation (its) of the occu­
pancy grid OCCs, where S is the scale factor of the occupancy 
grid, as a characterization of the spacing and structure of the 
clutter. We use the magnitude of the 20 Fourier transform 
as the feature in our analysis. Fig. (4) shows the pictorial 
representation of jt3.l25 for clutter topologies Cl, C2 and C3. 
Here the centers of each image represent the intensity of lower 
frequency sinusoids while the higher frequency sinusoids 
are represented towards the boundaries. Fig. (4c) shows the 
increased intensity of high frequency sinusoidal waves towards 
the boundaries representing the numerous, dispersed clutter in 
Fig. Od). 

6) GIST characterization: GIST [20] (9) characterization 
of an image, widely used in the area of image classification, 
defines a set of 'perceptual' dimensions, such as naturalness, 
openness, roughness, expansion, ruggedness, that represent the 
dominant spatial structure of the image. A set of 384 Gabor 



, # element of signature vector # element of signature vector 

(c) gc3 
Fig. 5. GIST characterization of clutter topology Ct, C2 and C3 

filters each with a distinct set of parameters like frequency, 
orientation, etc. are individually convolved with the image to 
give a 384 length signature vector. The technique can be used 
to capture low level details of the image, for example in our 
case, the spacing and shapes of the clutter topology, while 
abstracting away the high-dimensional detail. Fig. (5) shows 
the variation in the GIST characterization for various clutter 
topologies. 

IV. EX PERIMENT A L  SETUP 

In this section we will discuss the setup and fidelity of the 
experimental data. We assume, for the results discussed in this 
paper, that the ranging signal follows laws of reflection when 
it strikes obstacles or enclosure boundaries and do not pass 

through clutter itself, for example, ultrasound ranging signals. 
We first briefly describe the ray tracer tool we use to generate 
NLOS distance measurements in a given clutter topology. We 
then analyze the consistency of the data, which is vital for 
comparing results later on in the paper. 

A. 2D Ray Tracer 

In order to simulate NLOS distances between two points in a 
two dimensional enclosed environment that are occluded from 
each other by clutter, we use a ray tracer tool as shown in Fig. 
(6). The ray tracer works by shooting rays in various directions 
around the source point and traces the reflections across the 
clutter topology. While a number of such rays may eventually 
be incident on the destination point, we choose the shortest 

indirect ray as the NLOS distance. Note that in case there 
is no clutter between a pair of points, the distance between 
them is considered to be line-of-sight (LOS) and is simply the 
shortest direct Euclidean distance between the two. 

The ray tracer has a number of parameters : 
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Fig. 6. 20 ray tracer simulator outputs the shortest indirect path between two 
points in the clutter topology when clutter obscures the direct path between 
the two. 

(a) Clutter sample t (b) Clutter sample 2 

Fig. 7. Arbitrary clutter samples generated by overlaying simple rectangular 
boxes in the enclosure area. 

1) Direction Granularity (RTgran) : It is the measure of 
the angle interval between each consecutive ray shot out 
from the source point. For example, if RTgran is 0.10, 
then rays will be shot out at angles 00, 0.10, 0.20, etc. 

2) Maximum Ray Distance (RT mxdist) : It denotes the 
maximum distance a ray can travel reflecting off edges 
in the clutter topology before it is deemed inviable to 
continue. It can be used to represent the communication 
range of a transceiver device. 

3) Maximum Distance from Destination (RTmxdest) : It 
denotes the maximum distance allowed for a ray to pass 
through in proximity of the destination point and still 
be considered incident on the destination itself. It is an 
approximation of the ray tracer device. For example, if 
we set KI'mxdest to 2 units, then during the ray tracing 
process if a ray passes within 2 units from the destination 
point, it is considered incident on the actual destination 
point. 

B. Clutter Topology Generation 

We build complex clutter topologies by sequentially over­
laying simple boxes over each other. We use a 2D rectan­
gular enclosure area with dimensions Lx and Ly. We then 
generate ncl boxes with random start points (Xi, Vi) and 



dimensions Ix and lV, where Ix = U(Xi,Xi + di!:,fac ) and 

ly = U(Yi,Yi + di!".rac ) ' ncl is a randomly chosen natural 
number between [1,10] and dimfac is set to 3 in order to 
allow boxes to have dimensions at most a third of the enclosure 
dimensions. Each box is validated to fit inside the rectangular 
enclosure. Fig. (7) shows a couple of random clutter samples 
used in our analysis. 

C. NLOS Characterization Data 

Given a clutter topology, we generate the NLOS incidence 
probability f and the NLOS bias distribution P by taking 
N samples of uniform random generated points in the clutter 
topology. f is calculated as the ratio of the NLOS distances 
observed in the N samples taken. The histogram P is built 
using the bias of the NLOS distances in the N samples. One 
can use techniques like LOESS [21], [12] in order to obtain a 
smoothed probability distribution from P. 

In order to establish the consistency of the NLOS characteri­
zation data, we vary the number of samples N and measure the 
consistency of the f and P values. In other words, we want to 
determine, if we take N random samples, multiple times, how 
close will the values of f (or of P) be to each other. We use 
the three clutter topologies shown in Fig. (1a) for our analysis. 
For each clutter topology, we repeatedly (10 times) take N 
samples and calculate f and P. For each clutter topology, we 
compute the dissimilarity between the 10 instances of f (,and 
similarly between the 10 instances of Pl. 

For f, we use average pair-wise distances between the 10 
instances of f, for 3 clutter topologies each, to measure con­
sistency. err f represents the average of the pair-wise distances 
over three clutter topologies. In case of the bias distribution P, 
we use the Kullback Leibler Divergence (KLD) distance [22] 
to measure similarities (or dissimilarities) between instances of 
P. The KLD distance is an inherently non-symmetric metric 
and for two distributions P and Q, is given by 

. P(i) DKL(PIIQ) = L P(z)ln Q(i) , 
(2) 

(3) 

where both P and Q sum up to 1, Q(i) > 0 every time 
P( i) > 0 and In represents the natural logarithm. We use the 
symmetric version of the KLD distance given by Eqn. (4) to 
evaluate the dissimilarity between two histograms/distributions 
throughout the paper. 

The consistency of P is measured by taking the average of 
D K S between the first instance and each of the remaining nine 
instances of P for a given clutter topology. errp represents 
the average over three clutter topologies and similarly 0" ( errp ) 
denotes the standard deviation. 

Tables (I) and (II) represent the consistency of the NLOS 
characterization data we generate for our analysis. We choose 
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Sample Size (N) err! u(errf) 
100 0.0565 0.0536 
500 0.0244 0.0171 

1000 0.0199 0.0141 
5000 0.0083 0.0055 

10000 0.0070 0.0056 
50000 0.0023 0.0017 

TABLE I 
MEASURE OF CONSISTENCY LEVEL OF NLOS INCIDENCE PROBABILITY 

(j) IN GENERATED DATA 

Sample Size (N) errp u(errp) 
100 1.7861 0.6555 
500 0.3253 0.1061 

1000 0.1364 0.0517 
5000 0.0287 0.0165 

10000 0.0072 0.0024 
50000 0.0016 0.0004 

TABLE II 
MEASURE OF CONSISTENCY LEVEL OF NLOS BIAS DISTRIBUTION (P) IN 

GENERATED DATA 

N as 50000 for our data generation, which yields a consistency 
error of approximately 0.002 for both f and P (DKS value). 

V. NLOS INCIDENCE P RO B A BILITY E STIM ATION 

In this section, we will look at the estimation of the NLOS 
probability of an arbitrary clutter topology when we are 
given only the features that characterize the clutter topology, 
as enumerated in Section (III). We use a Support Vector 
Regressor (SVR) which learns a given training set and is able 
to predict the NLOS incidence probability f. 

A. Support Vector Regressor 

An E-SVR [23], [24] solves the following optimization 
problem 

1 
I 

minimize "2 11wI12 + CL((i + C) 
,=1 {Yi- < W,Xi >-b 

subject to < W� Xi > +b - Yi 
(t, (i 

::; E + (i 
::; E + (t 
20 

(5) 

where (i and (t are slack variables and E is the precision. The 
unknown parameters, wand b, are determined based on the 
training set {Xk' yd£'=1' where Xk E IRn is the input and Yk E 
IR the respective output. In our case, the input Xi represents 
the feature set F7 of the ith clutter topology sample, where n 
denotes the number of features we are considering at a time. 
The output is the NLOS incidence probability k We found 
that non-linear E-SVR together with the Radial Basis (RBF) 
kernel gives the best results during our analysis. Fig. (8) gives 
a graphical overview of the process of estimation of fusing 
the SVR. 
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Predicted f 

Fig. 8. Estimation of NLOS incidence probability f using Support Vector 
Regressor (SV R) 

Fig. 9. Estimation error of f, err f, for individual features 

B. Results 

We use a training set of ntrn (=10000) and test set of ntB 
(=5000) distinct randomly generated clutter topologies. Each 
sample is split into features (or input) and labels (output). 
Three values have been used for C : 100, 200 and 500. While 
the labels are set to f, the features, drawn from those defined 
in Section (III), are varied in number and composition. The 
SVR is first trained with the training set and we then supply 
it with a feature set Ff from the test set and ask it to predict 
the value of f. 

First, we analyze the estimation accuracy of P when the 
SVM is used with only one feature at a time. Fig. (9) shows the 
perfonnances of the features when taken individually to predict 
f. The clutter spacing distributions, CDl and CDr, perfonn 
the best, followed by the GIST representation of the clutter 
topology, 9. Communication range, C, perfonns the worst 
since it alone has least significance in detennining whether 
a range measurement will be NLOS or not. 

Next, we use combinations of various features for the 
estimation of P. The results for feature sets that give the best 
results (lowest errf in Table (III). Here Fj represents the 
feature set that produces the least error when any combination 
of n features is used. The estimation accuracy is denoted 
by the mean (absolute) estimation error, denoted by err f 
and its standard deviation. We see that the clutter spacing 
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Fig. 10. Effect of the sample size for the clutter spacing distributions, C Dt 
and CDr, on the accuracy of the NLOS probability (f) estimation using 
SVM regression. 

distributions play a significant role in detennining the value of 
f and are aided by other features like communication range (C) 
and ca. We note that combinations of features can give non­
intuitive results as well. For example, in Fig. (9), the GIST 
representation 9 perfonns well on its own, better than ca and 
C. However when taken in combination with other features, we 
found that the feature set Ff={ C Dl, CDr, 9} performs worse 
than Ff={ca, CDl, CDr} and Ff={ca, C, CDl, CDr}. For 
comparison purposes we use a baseline Hf, which is simply 
the average of {fd ��'in. We see that there is a substantial 
improvement of the prediction accuracy with the use of the 
SVR over the (naive) average of all the training data results. 
Besides, as seen in Table (III), we can get a average estimation 
error of only 0.0272 for as little as two features, Ff = {C Dl, 
CDr}. 

Finally, we investigate the effect of consistency of the 
spacing distributions on err f. This is important because we 
find that CDl and CDr are the most effective features in 
the accurate prediction of f. Fig. (10) shows the effect on 
the number of samples used to build the CDl and CDr 
distributions on the actual estimation error of the NLOS 
probability (j). Having a sample size as low as 100 can 
yield an estimation error of around 5 percent. This shows the 
viability of these clutter features in a practical scenario where 
f has to be estimated in arbitrary cluttered environments. 
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Fig. II. Estimation of NLOS bias distribution/histogram P using k-NN 
algorithm 

VI. NLOS BI AS DIST RIBUTION E STIM ATION 

In this section, we investigate the estimation of the NLOS 
bias distribution and analyze how various factors of the clutter 
topology affect the estimation process. We first briefly discuss 
the basics of the k-nearest neighbors (k-NN) approach we use 
for estimating the bias distribution. We then discuss the results 
and the dependence of the accuracy of the bias distribution 
estimation on various parameters of the k-NN estimation 
technique. 

A. k-Nearest-Neighbor Estimation 

The k-Nearest-Neighbor estimation algorithm is a method 
for classifying objects based on the closest training examples 
in the feature space. It is an instance-based learning technique 
where an object is classified by the majority vote of its 
neighbors, with the assumption that the object is probably 
the class most common amongst its k neighbors. In our case, 
instead of classification, we estimate the bias distribution as 
a function of the individual bias distributions of the k-nearest 
neighbors. 

Suppose our feature set, Fp is an arbitrary set of the features 
discussed in Section (III). Treating the feature set as input, we 
have {xd r!;n where ntrn is the number of training samples 
and Xi E nn. The ntrn samples of the training set can be 
viewed to represent a set of points in n-dimensions. Given a 
new feature set input x E nn, we try to find the k-nearest 
neighbors of the point x in the n-dimensional space. The bias 
distribution P(x) is obtained as a linear interpolation of the 
bias distributions [25] of its k -nearest neighbors using the 
Euclidean distances to neighbors as interpolation weights. Fig. 
(11) gives a graphical overview of the process of estimation 
of P using the k-NN algorithm. 

Let N N� C3p, 1 ::; p ::; ntrn and N N� = xp) denote 
the kth nearest neighbors of x, separated by the Euclidean 
distance d�. If P(N N�) is the NLOS bias distribution of the 
kth nearest neighbors of x, the NLOS bias distribution P(x) 
is estimated as 
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Fig. 12. Estimation error of P, ep, for individual features 

k 
P(x) = L ,/jP(NN�) 

j=l 

'/j = 
",k _(diP Li=l e x 

(6) 

(7) 

where '/j denotes the yth weight in the weighted sum cal­
culation. Since the interpolation weights are normalized, the 
resulting P(x) is guaranteed to be a probability distrbution as 
well. 

B. Results 

We use a training set of ntrn (= 10000) and test set of nts 
(= 5000) distinct clutter topologies. Here, the search space is 
built with features which can vary in composition. Fp denotes 
the feature set with i features mentioned in Section (III). We 
exhaustively try the various features, individually as well as 
in combination with other features. The k-NN algorithm is 
initially trained with the training set. We set k=lO for our 
analysis. 

We begin by analyzing the impact of individual features in 
estimating P using the k-NN algorithm. The accuracy of the 
estimation of P by taking DKs (given by Eqn. (4)) between 
the estimated and actual bias distributions. Fig. (12) shows 
the performance of individual features in predicting the P for 
the test set. We find that none of the features perfom well on 

average in estimating P. The reason for this is that the NLOS 
bias distribution is too complex for a single feature to be able 
to predict it accurately. 

Next, we analyze the efficacy of various combinations of 
features in predicting P for the test set. We use exhaustive 
combinations of features, using two, three and four features 
together. We list the results for feature sets that give the best 
results (lowest errp in Table (IV). errp is calculated as the 
symmetric KLD metric (DKS) between the estimated bias dis­
tribution and the actual bias distribution of the test data, which 
measures the dissimilarity between the two distributions. We 
use the mean and standard deviation of errp for the entire 
test set to measure the accuracy of NLOS bias distribution 
estimation. Again, here Ff represents the feature set that 



Estimation Technique using k-NN errp (mean) errp (std) 

Sp 0.3452 0.5827 

Fj, = {C} 0.1934 0.4947 

Ff, = {C, CDr} 0.1620 0.3812 

F"f:, = {ca, C, CDr} 0.1551 0.3783 

Fj, = {ca, C, CDt, CDr} 0.2426 0.4272 

TABLE IV 
ESTIMATION OF NLOS BIAS DISTRIBUTION (P) USING K-NN. HERE, THE 
SET Fp DENOTES THE SET OF i FEATURES WHICH ACHIEVE THE MINIMUM 

errp 

produces the least error when any combination of n features is 
used. Sp represents a baseline solution with the given training 
data, where P is estimated by taking the average of all NLOS 
bias distributions in the training data. 

On studying Table (IV), we see that communication range C 
plays a significant role in improving the estimation error errp. 
However we do note the unusually large variances in errp 
when compared to the mean errp values, that suggests that 
the k-NN algorithm is not able to find accurate estimates for a 
small number of test samples. We also note that increasing the 
number of features does not necessarily improve the estimation 
accuracy of P. For instances, errp is lower for F� than F� 
as seen in the Table (IV). 

While we find that the k-NN algorithm is not able to predict 
P for good accuracy for every element of the test set, we 
nevertheless find that in a large number of cases the errp is 
low. We can deduce that large outliers seen in the boxplots 
Fig. (13a) and Fig. (13b) are the reason for the high standard 
deviation seen in Fig. (12) and Table (IV) respectively. Fig. 
(13c) shows the empirical cumulative distribution of errp, for 
feature sets F� and F� where we see that in case of F�, more 
than 80% of the test set yields an errp < 0.2. Furthermore, 
we see that there is a substantial improvement in the accuracy 
of predicting P when compared to using the naive average of 
all training set P (Sp). 

Next, we provide a visual representation of the estimated 
P for various features. Fig. (14) shows a comparison of 
the estimation of P by various features sets for a single 
test clutter topology. Fig. (14d) - (14k) show the results for 
individual features, while Fig. (14a) and (14b) show actual 
bias distribution and the baseline bias distribution (obtained 
by averaging all P in the training set) respectively. Fig. (14c) 
shows the estimation of P using the feature set Fp = {ca, C, 
CDr}, gives a low dissimilarity measure DKs of 0.0095. 

Finally, in order to analyse the effect of neighbor size k, 
we perform the k-NN estimation for varying values of k. Fig. 
(15) demonstrates the effect of varying the maximum nearest 
neighbor set size on errp. We conclude that a neighbor set 
of size k=lO is the optimal size for F} and FJ which also 
yields the lowest errp. 

VII. REL ATED W O R K  

NLOS identification and mitigation is  a mature area of 
research, with a substantial amount being done in the area of 
cellular networks, where it is desired that a mobile terminal 
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Fig. 15. Effect of the maximum number of nearest neighbor k considered, 
on the accuracy of P 

(MT) can be located using timmg signals from the cellular 
basestations [26], [1], [2]. Current techniques can be classified 
into NLOS-elimination and NLOS-mitigation. In the first 
category, the NLOS distance measurement is identified and 
removed completely from the position estimation [13], [1], 
[2]. The second category, instead of discarding the information 
contained in NLOS distances, uses them in position estimation, 
albeit mitigating their effect [4], [5]. 

A number of papers use the characterization of NLOS biases 
itself as an input for their NLOS mitigation techniques. Wylie 
et al. [2] attempt to identify NLOS distances by comparing the 
variance of the distances over time to a pre-defined threshold. 
Similarly, Gezici et al. [7] compare the distribution of ranges 
to a known measurement error distribution in order to classify 
the signal as NLOS or not. Guvenc et al. [4] use multipath 
channel statistics of UWB signals in the weighted least squares 
position estimation. The authors use the kurtosis and the 
mean excess delay of the multi path channel, to determine 
the weights to assign for each reference. Marano et al. [3] 
use various characteristics of the impulse response of the 
received UWB signal in order to detect and even estimate the 
approximate NLOS bias. The paper builds a database from an 
UWB distance measurement campaign and then uses a Least­
Squares Support Vector Machine (LS-SVM) to classify and 
estimate the NLOS bias. 

A number of papers require knowledge of the NLOS 
bias distribution and make assumptions accordingly. Jourdan 
et al. [12] derive the Position Error Bound (PEB) using 
empirically derived NLOS bias distributions. A number of 
papers [15], [4] assume exponential error distribution for 
NLOS bias for UWB signals, while [5], [13], [6] assume the 
NLOS bias to be uniformly distributed within a predefined 
range. Borras et al. [14] assume that the NLOS bias follows 
a Gaussian distribution while defining a decision theoretic 
framework for NLOS identification. Huang et al. [8] derive 
the Cramer Rao Bound for localization in NLOS environments 
where the NLOS bias distribution is obtained through a non­
parametric Gaussian kemel density method. 
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Fig. 13. Distribution of estimation error errp 

The effect of clutter topology on the NLOS bias has been 
shown in a number of papers [9], [10]. Wang et al. [9] 
conclude that the NLOS bias for broadband channel sounder is 
strongly dependent on the clutter geometry and is frequency­
dependent for severe clutter. Alsindi et al. [10] conclude 
that the NLOS bias follows a log-normal distribution with 
large bias forming the long tail, when there is an obstruction 
between the two ranging nodes. Furthermore, the authors show 
that the parameters of this lognormal distribution is dependent 
on the clutter environment and system bandwidth [11], [27]. 

In this paper, we did not present a NLOS identification or 
mitigation technique. Instead, we show that the NLOS bias 
distribution has a strong relationship with the clutter topology 
and that it is possible to characterize the NLOS error from 
the clutter topology itself. However it is important to note 
that the ranging signal technology and the interaction of the 
ranging signals with the clutter are also key in determining the 
NLOS bias [9], [4] and should ideaIly be taken into account in 
conjunction with the clutter topology. In this paper, our focus 
is only on the impact of the clutter topology. 

VIII. CONCLUSION AND FUTURE WO R K  

In  this paper, we investigated the influence of  clutter topol­
ogy on the NLOS error, namely the NLOS incidence proba­
bility and the NLOS bias distribution. We also showcased an 
approach whereby we can estimate NLOS error characteristics 
as a function of the clutter topology. We enumerate a number 
of features that help characterize clutter topologies and show 
that there is a significant influence of various features of the 
clutter topology on NLOS bias error. We estimated the NLOS 
error characteristics using various machine learning tools. We 
conclude that while NLOS rate can be accurately predicted 
with an error of only 2.7%, NLOS bias distribution can be 
difficult to predict with good accuracy. We also see that clutter 
features like the spacing distributions we defined in Section 
(III) are much better in estimating NLOS characteristics than 
feaatures like GIST and occupancy grid, which unlike the 
former, do require concrete information about the clutter 
topology beforehand. For future work, we are looking into 
the characterization of NLOS error taking into account both 
clutter topology and the interaction of the ranging signal with 
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actual clutter material. We are currently working towards the 
verification of these results in an actual test-bed using MIT­
Cricket [16] motes for distance measurements. 
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