
How to Win a Hot Dog Eating Contest: Distributed
Incremental View Maintenance with Batch Updates∗ †

Milos Nikolic Mohammad Dashti Christoph Koch
{milos.nikolic, mohammad.dashti, christoph.koch}@epfl.ch

École Polytechnique Fédérale de Lausanne

ABSTRACT
In the quest for valuable information, modern big data applica-
tions continuously monitor streams of data. These applications de-
mand low latency stream processing even when faced with high
volume and velocity of incoming changes and the user’s desire to
ask complex queries. In this paper, we study low-latency incre-
mental computation of complex SQL queries in both local and dis-
tributed streaming environments. We develop a technique for the
efficient incrementalization of queries with nested aggregates for
batch updates. We identify the cases in which batch processing
can boost the performance of incremental view maintenance but
also demonstrate that tuple-at-a-time processing often can achieve
better performance in local mode. Batch updates are essential for
enabling distributed incremental view maintenance and amortiz-
ing the cost of network communication and synchronization. We
show how to derive incremental programs optimized for running
on large-scale processing platforms. Our implementation of dis-
tributed incremental view maintenance can process tens of million
of tuples with few-second latency using hundreds of nodes.

1. INTRODUCTION
Many big data applications demand real-time analytics over high-

velocity streaming data. In a growing number of domains – sensor
network monitoring, clickstream analysis, high-frequency algorith-
mic trading, and fraud detection to name a few – applications con-
tinuously monitor rapidly-changing datasets in order to promptly
detect certain patterns, anomalies, or future trends. Application
users construct complex queries to reveal more information and
expect to have fresh results available at all time. Such streaming
applications usually have strict latency requirements, which fre-
quently forces developers to build ad-hoc solutions in order to pull
off utmost performance.

We identify three essential requirements for stream processing
systems to serve these modern applications:

∗It is all about the bite size, and the best bite size is 1,000 to 10,000
tuples in local execution. We also address the distributed case.
†This work was supported by ERC Grant 279804.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD’16, June 26-July 01, 2016, San Francisco, CA, USA
c© 2016 ACM. ISBN 978-1-4503-3531-7/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2882903.2915246

• Support for complex continuous queries. Modern streaming en-
gines need to support continuous queries that can capture com-
plex conditions, such as SQL queries with nested aggregates.

• Low-latency (incremental) processing. Online and responsive
analytics enable data analysts to quickly react to changes in the
underlying data. Streaming datasets evolve through frequent,
small-sized updates, which makes refreshing query results us-
ing recomputation too expensive. Online systems rely on incre-
mental computation to sustain high update rates and achieve low
refresh latency.

• Scalable processing. Emerging big data applications demand
scalable systems for querying and managing large datasets. Scal-
able processing aims to speed up query evaluation and accom-
modate growing memory requirements.

Modern data processing systems often fail to simultaneously ad-
dress the above requirements. Traditional relational database sys-
tems support complex SQL queries but suffer from high query la-
tencies despite their support for incremental computation of mate-
rialized views [18, 17, 14]. Conventional data stream SQL process-
ing systems [26, 4] use incremental algorithms for evaluating con-
tinuous queries over finite windows of input data. Their usefulness
is yet limited by their window semantics, inability to handle long-
lived data, and lack of support for complex queries. Both classical
databases and stream processing engines have limited scalability.
Scalable stream processing platforms1, like MillWheel [7], S4 [29],
and Heron [25], offer low-level programming models that put the
burden of expressing complex query plans on the application de-
veloper. Naiad [27] and Trill [11] focus mostly on flat LINQ-style
continuous queries; encoding and efficiently incrementalizing com-
plex queries with nested aggregates is a non-trivial task left to the
user. Spark Streaming [39] supports running simple SQL queries
but only over windowed data.

In this work, we study low-latency incremental processing of
complex SQL queries in both local and distributed environments.
Our approach derives, at compile time, delta programs that capture
changes in the result for updates to the database. For efficient incre-
mental computation, we build upon our previous work on recursive
incremental view maintenance [20, 21], whose implementation in-
side the DBToaster system demonstrates 3−4 orders of magnitude
better performance than commercial database and stream process-
ing engines in local settings [22].

DBToaster’s recursive view maintenance can deliver µ-second
latencies for single-tuple updates on standard database workloads.
1We will, throughout this paper, use stream processing and contin-
uous queries interchangeably: We will not aim to ensure bounded
state size by e.g. window semantics. This is vindicated by the com-
mon use of the term streaming in this relaxed way in recent times.

In this work, we generalize this idea to batches of updates. We
present a novel technique called domain extraction that enables
efficient incremental maintenance of complex SQL queries with
nested aggregates for batch updates. We study the trade-offs be-
tween single-tuple and batched incremental processing and identify
the cases where batching can improve the performance of incre-
mental view maintenance. Our experiments show that maintenance
programs specialized for single-tuple processing can outperform
generic batched implementations in many cases. These results re-
fute the widespread belief that batching always wins over tuple-at-
a-time processing [30].

Batched processing enables distributed incremental view main-
tenance and amortizes increased costs of communication and coor-
dination in large-scale deployments. In this paper, we show how to
transform local view maintenance code into programs capable of
running on large-scale processing platforms. Our implementation
of distributed incremental view maintenance inside DBToaster runs
on top of Spark [38] and can process tens of million of updates with
few-second latency on a scale of hundreds of workers.

Our system compiles SQL workloads into aggressively special-
ized query engines. We rely on a modern compiler framework,
called LMS [35], to generate low-level native code that is free of
overheads of classical query processing engines (e.g., template-
based operators). We create custom data structures for storing ma-
terialized views that are optimized for the observed access patterns.
We also specialize query engines for different batch sizes, for in-
stance, to avoid materialization when processing single-tuple up-
dates or to use columnar mode when serializing large batches.

In this work, we make the following contributions:

1. We present techniques for the efficient recursively incremental
processing of queries with nested aggregates for batch updates.
This part of the paper generalizes our previous work [20, 21, 22].

2. We study the trade-offs between single-tuple and batched incre-
mental processing in local settings. We analyze the cases when
batching can greatly reduce maintenance costs.

3. We describe a novel approach for compiling incremental view
maintenance code into programs optimized for running in dis-
tributed environments.

4. We present techniques for code and data-structure specialization
of incremental view maintenance programs.

5. Our single-node experiments show that single-tuple processing
can often outperform batched processing. Our distributed view
maintenance implementation can deliver few-second latencies of
processing tens of million of tuples using hundreds workers.

This paper is organized as follows. We provide an overview of
incremental view maintenance in Section 2. We discuss delta pro-
cessing for batch updates in Section 3 and distributed incremental
view maintenance in Section 4. We present our code and data-
structure specialization techniques in Section 5, experimental eval-
uation in Section 6, and related work in Section 7.

2. VIEW MAINTENANCE
Database systems use materialized views to speed up execution

of frequently asked queries. Materialized views require mainte-
nance to keep their contents up to date for changes in the base
tables. Refreshing materialized views using recomputation is ex-
pensive for frequent, small-sized updates. In such cases, applying
only incremental changes (deltas) to materialized views is usually
more efficient than recomputing views from large base tables.

2.1 Classical Incremental View Maintenance
Let (Q,M(D)) denotes a materialized view, where Q is the view

definition query and M(D) is the materialized contents for a given
database D. When the database changes from D to (D+∆D), clas-
sical incremental view maintenance evaluates a delta query ∆Q in
order to refresh M(D).

M(D+∆D) = M(D)+∆Q(D,∆D)

The delta ∆Q often has a simpler structure than Q (e.g., has fewer
joins) and involves smaller delta updates instead of large base ta-
bles. So, computing ∆Q and refreshing M(D) becomes cheaper
than re-evaluating Q from scratch. Incremental view maintenance
derives one delta query for each referenced base table. The deriva-
tion process relies on a set of change propagation rules defined for
each operator of the view definition language. The derived delta
query takes its role in the associated view maintenance trigger.

EXAMPLE 2.1. Let query Q counts the tuples of a natural join
of R(A,B), S(B,C), and T (C,D) grouped by column B. Intuitively,
we write the delta query for updates to R as:

∆RQ := Sum[B](∆R(A,B) ./ S(B,C) ./ T (C,D))

Let MR, MS, and MT denote the materialized base tables, then the
maintenance trigger for updates to R looks as:

ON UPDATE R BY dR
M_R(A,B) += dR(A,B)
dQ(B) := Sum_[B](dR(A,B) * M_S(B,C) * M_T(C,D))
M_Q(B) += dQ(B)

Here, += , := , and ∗ denote bag union, assignment, and natural
join. Under the standard assumption that |∆R| � |R|, incremental
maintenance is cheaper than re-evaluation. 2

Incremental view maintenance is often cheaper than naïve re-
evaluation but is not free. Computing deltas can be expensive, like
in Example 2.1, where ∆RQ is a non-trivial join of one (small) input
update and two (potentially large) base tables.

2.2 Recursive Incremental View Maintenance
Delta queries can be expensive despite their simpler form. For

instance, a delta of an n-way join still references (n−1) base tables.
Instead of computing such a delta query from scratch, we could
re-apply the idea of incremental processing to speed up the delta
evaluation: store previously computed delta results, just as any
other query result, and compute the delta of a delta query (second-
order delta) to maintain the materialized delta result. That way,
the second-order delta query maintains the first-order delta view,
which in turn maintains the top-level view. Assuming that with
each derivation deltas become simpler, we could recursively apply
the same procedure until we get deltas with no references to base
tables. The described procedure is known as recursive incremental
view maintenance [20, 21, 22].

Recursive incremental view maintenance materializes the top-
level view along with a set of auxiliary views that support each
other’s incremental maintenance. The materialization procedure
starts from the top-level view and derives its delta queries for up-
dates to base relations. For each delta query, the procedure mate-
rializes its update-independent parts such that the delta evaluation
requires as little work as possible. Formally, the procedure trans-
forms ∆Q(D,∆D) into an equivalent query ∆Q′ that evaluates over
a set of materialized views M1, . . . ,Mk and update ∆D:

∆Q(D,∆D) = ∆Q′(M1(D),M2(D), ...,Mk(D),∆D)

But note that M1, . . . ,Mk also require maintenance, which again
relies on simpler materialized views. At first, it may appear coun-
terintuitive that storing more data can reduce maintenance costs.
However, the recursive incremental maintenance scheme makes the
work required to keep all views fresh extremely simple. For flat
queries, each individual aggregate value can be incrementally main-
tained using a constant amount of work [21], which is impossible to
achieve with classical incremental maintenance or recomputation.

EXAMPLE 2.2. Let us apply recursive incremental view main-
tenance on the query of Example 2.1 and updates to R. Consid-
ering ∆RQ, we materialize its update-independent part S(B,C) ./
T (C,D) as an auxiliary view MST (B). We projected away C and D
as they are irrelevant for the computation of ∆RQ. Repeating the
same procedure for updates to T , we materialize R(A,B) ./ S(B,C)
as MRS(B,C) to facilitate computing of ∆T Q. For updates to S, we
materialize R(A,B) ./ T (C,D) separately as MR(B) and MT (C)2.

Next, we derive second-order deltas for MST and MRS. Repeat-
ing the same delta derivation for updates to all three base relations,
we materialize one additional view MS(B,C) representing the base
relation S. Further derivation produces delta expressions with no
base relations. Overall, recursive view maintenance materializes
queries at three different levels: the top-level query MQ, two aux-
iliary views MRS and MST , and the base tables MR, MS, and MT .
The maintenance trigger for updates to R looks as:

ON UPDATE R BY dR
M_Q(B) += Sum_[B](dR(A,B) * M_ST(B))
M_RS(B,C) += Sum_[B](dR(A,B) * M_S(B,C))
M_R(B) += Sum_[B](dR(A,B))

We similarly build triggers for updates to S and T . 2

Recursive incremental view maintenance can produce triggers
with lower complexity than classical maintenance triggers. In the
previous example, each statement performs at most one join be-
tween the delta relation and one materialized view, which is clearly
less expensive than the classical approach. In practice, DBToaster’s
recursive view maintenance can outperform classical view mainte-
nance by several orders of magnitude for single-tuple updates [22].

2.3 Contributions
We summarize our contributions on our running example.
Domain extraction. Consider a modified query from Exam-

ple 2.1 that reports only distinct B tuples. The delta of this query
for updates to R is, unfortunately, more complex than the query
itself as it reevaluates the whole query from scratch just to com-
pute the incremental change. Clearly, that defeats the purpose of
incremental computation.

In Section 3, we show how to incrementally maintain such delta
queries. We observe that ∆R affects only the output tuples whose
B value appears in ∆R. We present an algorithm that restricts the
domain of delta evaluation to only those output tuples affected by
the given input change. We also discuss the cases in which re-
evaluation is preferable over incremental computation.

Single-tuple vs. batch processing. We study the trade-offs
between tuple-at-a-time and batched recursive incremental view
maintenance in local settings. The former yields simpler mainte-
nance code; in the trigger of Example 2.2, we can eliminate the
loop around ∆R for single-tuple updates and achieve constant-time
maintenance of MQ and MR. The latter can have positive or neg-
ative impacts on cache locality and can significantly reduce view
2Recursive incremental view maintenance avoids storing query re-
sults with disconnected join graphs for performance reasons [22].

maintenance cost; in the same example, we can pre-aggregate ∆R
as Sum[B](∆R(A,B)) to keep only distinct B values along with their
multiplicity. A small aggregated domain makes the maintenance
code cheaper: our experiments show that batch pre-aggregation can
bring up to 3 orders of magnitude performance improvements.

Distributed execution. In this work, we also study distributed
execution of incremental programs. Distributed incremental view
maintenance opens new problems compared to classical parallel
and distributed query processing [24, 34]. First, we optimize multi-
ple delta queries at once, where each query handles changes to one
base relation. Second, during optimization we also need to consider
the partitioning information of the target view being refreshed. Fi-
nally, recursive incremental view maintenance creates data-flow de-
pendencies among statements maintaining auxiliary materialized
views. These dependencies prevent arbitrary re-orderings of state-
ments inside a trigger function. For instance, evaluating an n-th
order delta relies on simpler, (n+ 1)-th order materialized views,
whose contents is maintained (if necessary) in subsequent state-
ments; in Example 2.2, we first maintain the query result, then the
auxiliary view, and finally the base relation. That is, we maintain
materialized views in decreasing order of their complexity. This
property creates a DAG of dependencies among trigger statements,
bringing more complexity to the problem.

Batch processing is essential for efficient implementation of dis-
tributed incremental view maintenance as it amortizes increased
costs of network communication and synchronization. In Section 4,
we show how to transform view maintenance code, like that from
Example 2.2, into programs optimized for running in distributed
settings. To achieve that goal, we redefine the query language with
location-aware constructs, introduce new operators for exchanging
data over the network, and develop a set of optimization rules that
are specific to distributed environments.

Program specialization. Commercial database systems rely on
embedded query evaluation mechanisms to compute deltas. In prac-
tice, they exhibit poor view maintenance performance due to over-
heads from components not directly related with view maintenance
(e.g, logging, buffer management, concurrency control, etc.) and
the use of general data structures and algorithms [22, 19, 28].

We argue that efficient view maintenance requires specialization
of incremental programs. We observe that nowadays most appli-
cations have static query workloads with template-derived queries.
Knowing the workload in advance allows us to tailor query process-
ing based on the application requirements and avoid unnecessary
features of database systems. Thus, we specialize incremental pro-
grams into low-level native or interpreted code and generate custom
data structures to facilitate efficient maintenance operations.

EXAMPLE 2.3. Let us show the idea of program specialization
on the trigger from Example 2.2. At compile time, we analyze the
access patterns inside triggers and create custom data structures
with index support for storing the view contents. For instance, we
optimize ∆R for scanning, while the other views may feature effi-
cient lookup, update, and/or slice operations. Then, we transform
trigger statements into function calls over these objects. For exam-
ple, the R trigger may have the following functional representation:

def onUpdateR(dR) {
dR.foreach((k1,v1) => // key-value pairs

mQ.update(k1.B, v1*mST.get(k1.B))
mS.slice(k1.B, (k2,v2) =>

mRS.update((k1.B,k2.C), v1*v2))
mR.update(k1.B, v1)

)
}

We cover the compilation process in more detail in Section 5.
The take-away here is that, in the quest for maximum performance,

we aspire to specialize high-level operators into optimized low-
level implementations that enable efficient view maintenance at the
speed of native code.

3. BATCHED DELTA PROCESSING
In this section, we focus on the problem of view maintenance for

batch updates. First, we revisit the data model and query language
from our previous work [22]; Appendix A provides more details.

3.1 Data Model and Query Language
Data Model. We materialize views as generalized multiset rela-

tions [22, 20, 21]. One relation contains a finite number of unique
tuples with a non-zero, positive or negative, multiplicity. The data
model generalizes tuple multiplicities from single count integers to
multiple (potentially non-integer) values that correspond to differ-
ent aggregate values (e.g., SUM, AVG). Traditional SQL represents
these aggregates as separate columns in the query result, while this
model keeps them in the multiplicities to facilitate incremental pro-
cessing – updating aggregate values means changing tuple multi-
plicities rather than deleting and inserting tuples from the result.
For simplicity, in this paper we associate each tuple with one count
or aggregate multiplicity.

Query Language. The query language uses algebraic formulas
to define queries (views) over generalized multiset relations. The
language consists of relations R(~A), bag union Q1+Q2, natural join
Q1 ./ Q2, multiplicity-preserving projection SumÃ(Q), constants,
values f (var1,var2, . . .), variable assignments (var :=value), and
comparisons. To support queries with nested aggregates, the query
language generalizes the assignment operator to take on arbitrary
expressions instead of just values: (var :=Q) defines a finite-size
relation containing tuples of expression Q with non-zero multiplic-
ities extended by column var holding that multiplicity. Each output
tuple has the multiplicity of 1. Expression Q may be correlated
with the outside as usual in SQL.

EXAMPLE 3.1. Consider a query over R(A,B) and S(B,C):
SELECT COUNT(*) FROM R WHERE R.A <

(SELECT COUNT(*) FROM S WHERE R.B = S.B)

The nested query is Qn := Sum[](S(B2,C) ./ (B = B2)), where B
comes from the outer query. The whole query is Sum[](R(A,B) ./
(X :=Qn) ./ (A < X))). 2

Variable assignment (var :=Q) can also express existential quan-
tification. Assume the query of Example 3.1 had an EXISTS condi-
tion instead of the comparison. Then, we would write the condition
part as (X :=Qn) ./ (X 6= 0).

Delta Queries. Delta queries capture changes in query results
for updates to base relations. For any query expression Q, we can
construct a delta query ∆Q using a set of derivation rules defined
for each operator of the query language. Our previous work studied
these rules in detail [21, 22]; in short, the delta rules for updates ∆R
to R are:

∆R(R(A1,A2, . . .)) :=∆R(A1,A2, . . .)

∆R(Q1 +Q2) := (∆RQ1)+(∆RQ2)

∆R(Q1 ./ Q2) := ((∆RQ1) ./ Q2)+(Q1 ./ (∆RQ2))

+ ((∆RQ1) ./ (∆RQ2))

∆R(Sum[A1,A2,...]Q) := Sum[A1,A2,...](∆RQ)

∆R(var :=Q) := (var :=(Q+∆RQ))− (var :=Q)

where −Q is syntactic sugar for (−1) ./ Q. For all other kinds of
expressions, ∆R(·) := 0.

3.2 Delta Evaluation for Batch Updates
In this section, we focus on the techniques for efficient evalua-

tion of delta queries for batches of updates to base relations. For
flat queries in which variable assignments involve only values, the
delta rules always produce a simpler expression. Here, we define
the complexity of a query in terms of its degree [21], which roughly
corresponds to the number of referenced base relations. Replacing
large base relations by much smaller delta relations reduces evalu-
ation cost, favoring incremental maintenance over recomputation.

For queries with nested aggregates and existential quantification,
the derivation rule for variable assignment prescribes recomputing
both the old and new results to evaluate the delta, which clearly
costs more than recomputing the whole query expression once. In
general, these classes of queries might have no benefit from incre-
mental maintenance. But, in many cases, we can specialize this
delta rule to achieve efficient maintenance.

3.2.1 Model of Computation
We describe our model of computation to understand the advan-

tages of alternative evaluation strategies. We represent an expres-
sion as a tree of operators, which are always evaluated from left
to right, in a bottom-up fashion. Information about bound vari-
ables flows from left to right through the product operation. For
instance, in expression R(A) ./ S(A), the term R(A) binds the A
variable which is then used to lookup the multiplicity value inside
S(A). The evaluation cost for such an expression is O(|R|), where
|R| is the number of tuples with a non-zero multiplicity in R.

Our model considers in-memory hash join as a reference join im-
plementation. In this model, the ordering of terms has an impact on
query evaluation performance. For example, when S(A) is smaller
than R(A), commuting the two terms like S(A) ./ R(A) results in
fewer memory lookups in R. Note that commuting terms is not
always possible – for instance, in expression R(A) ./ A, the two
terms do not commute, unless A is already bound.

3.2.2 Domain extraction
We present a technique, called domain extraction, for efficient

delta computation of queries with nested aggregates and existential
quantification. We explain the idea on the problem of duplicate
elimination in bag algebra. We formalize the technique afterwards.

For clarity of the presentation, we introduce Exists(Q) as syn-
tactic sugar for Sum[sch(Q)]((X :=Q) ./ (X 6= 0)), where sch(Q)

denotes the schema of Q. Exists(Q) changes every non-zero multi-
plicity inside Q to 1. The delta rule for Exists is ∆R(Exists(Q)) =
Exists(Q+∆RQ)−Exists(Q).

First, we introduce the notion of domain expressions. A domain
expression binds a set of variables with the sole purpose of speeding
up the downstream query evaluation. All domain expression tuples
have the multiplicity of one. For instance, we can write R(A,B)
as Exists(R(A,B)) ./ R(A,B) without changing the original query
semantics. Note that now Exists(R(A,B)) defines the iteration do-
main during query evaluation rather than R(A,B).

EXAMPLE 3.2. Consider an SQL query over R(A,B)
SELECT DISTINCT A FROM R WHERE B > 3

or equivalently Q := Exists(Sum[A](R(A,B) ./ (B > 3))). Let Qn
denotes the nested sum, then ∆Qn := Sum[A](∆R(A,B) ./ (B > 3))
and ∆Q := Exists(Qn +∆Qn)−Exists(Qn). Note that ∆Q recom-
putes Q twice, once to insert new tuples and then to delete the old
ones, which clearly defeats the purpose of incremental computa-
tion. Also, (Qn +∆Qn) might leave unchanged many tuples in Qn,
so deleting those tuples and inserting them again is wasted work.

def extractDom(e: Expr): Expr = e match {
case Plus(A, B) =>

interDoms(extractDom(A), extractDom(B))
case Prod(A, B) =>

unionDoms(extractDom(A), extractDom(B))
case Sum(gb, A) =>

val domA = extractDom(A)
val domGb = inter(sch(domA), gb)
if (domGb == gb) domA
else if (domGb == Nil) 1
else Exists(Sum(domGb , domA))

case Assign(v, A) if A.hasRelations =>
extractDom(A)

case Rel(_) =>
if (e.hasLowCardinality) Exists(e) else 1

case _ => e
}

Figure 1: The domain extraction algorithm. interDoms extracts
common domains, unionDoms merges domains, inter is set inter-
section, and sch(A) denotes the schema of expression A.

Our goal is to transform ∆Q into an expression that changes only
relevant tuples in the delta result. We want to iterate over only those
tuples in Qn whose A values appear in ∆R(A,B); other tuples are
irrelevant for computing ∆Q. To achieve that goal, we capture the
domain of A values in ∆R using Exists(∆R(A,B))3. To express only
distinct values of A in ∆R, we write:

Qdom := Exists(Sum[A](Exists(∆R(A,B)))).

The outer Exists keeps the multiplicity of 1. We prepend Qdom to
∆Q in order to restrict the iteration domain.

∆Q′ := Qdom ./ (Exists(Qn +∆Qn)−Exists(Qn))

We can make Qdom more strict by including (B > 3). 2

Figure 1 shows the algorithm for domain extraction. The algo-
rithm recursively pushes extracted domains up through the expres-
sion tree to bound variables in even larger parts of the expression.
At leaf nodes, it identifies relations with low cardinalities that can
restrict the iteration domain. We can either use cardinality esti-
mates for each relation or rely on heuristics. We also include terms
that can further restrict the domain size, like comparisons, values,
and variable assignments over values.

For Sum aggregates, we recursively compute the domain of the
subexpression and then, if necessary, reduce its schema to match
that of the Sum aggregate. For instance, in Example 3.2, we project
Exists(∆R(A,B)) ./ (B > 3) on column A. If the domain schema
is reduced, we enclose the expression with Exists to preserve the
domain semantics; if the schema is empty, the extracted domain
bounds no column and has little effect. When dealing with union,
we intersect two subexpressions to find the maximum common do-
main that can be propagated further up in the tree; for the product
operation, we union subexpressions into one common domain.

The domain extraction procedure allows us to revise the delta
rule for variable assignments as:

∆(var :=Q) := Qdom ./ ((var :=Q+∆Q)− (var :=Q))

where Qdom := extractDom(∆Q).

3.2.3 Re-evaluation vs. Incremental Computation
For non-nested queries, recursive incremental maintenance has

lower parallel complexity than non-incremental evaluation [21],
which often reflects in faster sequential execution in practice [22].
For queries with nested aggregates, there are cases when recomput-
ing from scratch is better than computing the delta.
3∆R can contain both insertions and deletions.

EXAMPLE 3.3. Consider a query over R(A,B) and S(B,C).
SELECT COUNT(*) FROM R
WHERE R.A < (SELECT COUNT(*) FROM S) AND R.B=10

The nested query computes an aggregate value and has no cor-
relation with the outer query. The domain extraction procedure
cannot restrict the domain of the delta query for updates to S, so re-
evaluation is a better option. We can still speed up the computation
by materializing the query piecewise, for instance, by precomputing
and maintaining the expression Sum[A](R(A,B) ./ (B = 10)). Note
that we can incrementally maintain the top-level query for updates
to R by materializing the nested query result as a single variable.

Nested queries are often correlated with the outside query. When
the correlation involves equality predicates, extracting the domain
of the inner query might restrict some of the correlated variables.
This range restriction can reduce the maintenance cost. In general,
the decision on whether to incrementally maintain or recompute
the query result requires a case-by-case cost analysis. In our exper-
iments, we incrementally maintain a query whenever the extracted
nested domain binds at least one equality-correlated variable.

3.3 Single-tuple vs. Batch Updates
Incremental programs for single-tuple updates are simpler and

easier to optimize than batched incremental programs. The param-
eters of single-tuple triggers match the tuple’s schema to avoid box-
ing and unboxing of the primitive data types in the input. We can
inline these parameters into delta expressions and eliminate one-
element loops. In local environments, we can process one batch of
updates via repeated calls to single-tuple triggers. Aside from the
increased invocation overhead, we identify three reasons why such
an approach can be suboptimal.

Preprocessing batches. Preprocessing a batch of updates can
merge or eliminate changes to the same input tuples. Static analysis
of the query can identify subexpressions that involve solely batch
updates (e.g., domain expressions). Then, we can precompute a
batch aggregate by keeping only relevant batch columns of the tu-
ples that match query’s static conditions. Batch pre-aggregation
can produce much fewer tuples, which can significantly decrease
the cost of trigger evaluation; smaller batches also reduce commu-
nication costs in distributed environments. Batch pre-aggregation
can have a limited effect when there is no filtering condition and
there is a functional dependency between the aggregated columns
and the primary key of the delta relation; then, we can eliminate
only updates targeting the same key.

Skipping intermediate views states. When a maintenance trig-
ger evaluates the whole query from scratch, batching can help us
to avoid recomputation of intermediate query results. For instance,
considering the query of Example 3.3 and updates to S, processing
one batch of updates refreshes the inner query result once and trig-
gers one recomputation of the outer query. In contrast, the tuple-at-
a-time approach evaluates the outer query on every update.

Cache locality. Processing one update batch, in a tight loop, can
improve cache locality and branch prediction for reasonably-sized
batches; too large batches can have negative impacts on locality.

In our experiments, we evaluate these trade-offs between single-
tuple and batch maintenance for different update sizes.

4. DISTRIBUTED VIEW MAINTENANCE
In this section, we present our compiler that transforms mainte-

nance triggers generated for local execution into maintenance pro-
grams optimized for running on large-scale processing platforms
with synchronous execution, like Spark or Hadoop. Our approach

Annotator

Local Incremental
Programs

Partitioning
Information

Optimizer

Distributed Incremental
Programs

Code
Generator

Distributed
Executables

(Spark)

Figure 2: Compilation of incremental programs

is general and applies to any input program formed using our query
language, not just recursive view maintenance programs.

Distributed Execution Model. We assume a synchronous ex-
ecution model where one driver node orchestrates job execution
among workers, like in Spark or Hadoop. Processing one batch of
updates may require several computation stages, where each stage
runs view maintenance code in parallel. All workers are stateful,
preserve data between stages, and participate in every stage.

Our approach naturally leverages the fault tolerance mechanisms
of the underlying execution platform, in our case, the Spark com-
puting framework. Using data checkpointing, we can periodically
save intermediate state to reliable storage (HDFS) in order to shorten
recovery time. Checkpointing may have detrimental effects on the
latency of processing, so the user needs to carefully tune the fre-
quency of checkpointing based on application requirements.

Types of Materialized Views. We classify materialized views
depending on the location of their contents. Local views are stored
and maintained entirely on the driver node. They are suitable for
materializing top-level aggregates with small output domains. Dis-
tributed views have their contents spread over all workers to balance
CPU and memory pressure. Each distributed view has an associ-
ated partitioning function that maps a tuple to a non-empty set of
nodes storing its replicas.

4.1 Compilation Overview
Figure 2 shows the process of transforming a local incremental

program into a functionally equivalent, distributed program. The
input consists of statements expressed using our query language.
To distribute their execution, the compiler relies on partitioning
information about each materialized view. Deciding on the opti-
mal view partitioning scheme happens outside of the compilation
process; we assume that such partitioning information is available
(e.g., provided by the user).

The compilation process consists of three phases. First, we an-
notate a given input program with partitioning information and,
if necessary, introduce operators for exchanging data among dis-
tributed nodes in order to preserve the correctness of query eval-
uation. Next, we optimize the annotated program using a set of
simplification rules and heuristics that aim to minimize the number
of jobs necessary for processing one update batch. Finally, we gen-
erate executable code for a specific processing platform. Only the
code generation phase depends on the target platform.

4.2 Well-formed Distributed Programs
The semantics of the query operators, presented in Section 3.1

and Appendix A, cannot be directly translated to distributed en-
vironments. For instance, unioning one local and one distributed
view has no clear meaning. Even among views of the same type,
naïvely executing query operators at each distributed node might
yield wrong results. For instance, a natural join between two dis-
tributed views produces a correct result only if the views are iden-
tically partitioned over the join (common) keys; otherwise, one or
both operands need to be repartitioned.

We extend our query language with new location-aware prim-
itives that allow us to construct well-formed query expressions.

Such expressions preserve the correctness of distributed query eval-
uation for the given partitioning strategy.

Location Tags. To reason about the semantics and correctness
of query evaluation, we annotate query expressions with location
tags: 1) Local tag denotes the result is located on the driver node;
2) Dist(P) tag marks the result is distributed among all workers
according to partitioning function P ; and 3) Random tag denotes the
result is randomly distributed among all workers.

A relation (materialized view) can take on a Local, Dist, or
Random tag. Constants, values, comparisons, and variable assign-
ments involving values are interpreted (virtual) relations whose con-
tents is deterministic and never materialized. The location of such
terms is irrelevant from the perspective of query evaluation, and
they can freely participate in both local and distributed expressions;
in distributed settings, one can view these terms as fully replicated.

Location Transformers. To support distributed execution, we
extend the language with new operators for manipulating location
tags and exchanging data over the network.

• RepartP2(Q
{Dist(P1),Random}) = QDist(P2)

Partition the distributed result of Q using function P2.

• ScatterP (QLocal) = QDist(P)

Partition the local result of Q using function P .

• Gather(Q{Dist(P),Random}) = QLocal

Aggregate the distributed result of Q on the driver node.

The location transformers are the only mechanism for exchang-
ing data among nodes. Repart and Gather operate over distributed
expressions, while Scatter supports only local expressions.

Distributed Query Operators. We extend the semantics of our
query operators with location tags.

• Relation R(A1,A2, ...)
T stores the contents at location T .

• Bag union QT
1 +QT

2 merges tuples either locally or in parallel
on every node, and the result retains tag T . Requires the same
location tag for both operands.

• Natural join QT
1 ./ QT

2 has the usual semantics when T = Local.
For distributed evaluation, both operands need to be partitioned
on the join keys; the result is distributed and consists of locally
evaluated joins on every node. Joins on Random are disallowed.

• Sum[A1,A2,...]Q
T , when T = Dist(P), computes partial aggre-

gates on every node. The result has tag T only if Q is key parti-
tioned on one of the group-by columns; otherwise, we annotate
with a Random tag. In other cases, the result retains tag T .

All other language constructs – constants, values, comparisons,
and variable assignments – are location independent and their se-
mantics remain unchanged.

Next, we present an algorithm for transforming a local program
into a well-formed distributed program based on the given parti-
tioning information. The algorithm annotates and possibly extends
the expression trees of the statements to preserve the semantics
of each operator. For each statement, we start by assigning loca-
tion tags to all relational terms in the expression tree. Then, in a
bottom-up fashion, we annotate each node of the tree with a loca-
tion tag. We introduce location transformers where necessary to
preserve the semantics and correctness of each query operator, as
discussed above. Upon reaching the root node, we ensure that the
RHS query expression evaluates at the same location where the tar-
get LHS view is materialized, and, if necessary, introduce a Gather
or Scatter transformer. To obtain a well-formed distributed pro-
gram, we apply this procedure to every input statement.

EXAMPLE 4.1. Let us construct a well-formed statement for

M(A) += Sum[A](M1(A,B) ./ M2(A,B))

when M(A) and M1(A,B) are partitioned by A, while M2(A,B) is
partitioned by B. We associate location tags to the materialized
views. We use M(A)[A] to denote that M(A) is partitioned on col-
umn A. Since the join operands have incompatible location tags,
we introduce Repart around one of the operands (e.g., left):

Repart[B](M1(A,B)[A])[B] ./ M2(A,B)[B]

The join result remains partitioned on B. The Sum expression
computes partial aggregates grouped by column A. Such an ex-
pression cannot have location tag [B] since B is not in the output
schema; so, we assign a Random tag to the expression. Now, we
have reached the root of the expression tree. We need to ensure that
the RHS expression has the same location tag as the target view. So,
adding a Repart transformer produces a well-formed statement:

M(A)[A] += Repart[A](Sum[A](

Repart[B](M1(A,B)[A])[B] ./ M2(A,B)[B])Random)[A]
2

The algorithm for constructing well-formed expressions has no
associated cost metrics and might produce suboptimal solutions.
In the above example, executing the final statement requires two
communication rounds (Reparts) between the driver and workers.
Such communication overhead is unnecessary – if we repartition
the other join operand, we produce an equivalent, less expensive
well-formed statement with only one communication round:

M(A)[A] += Sum[A](M1(A,B)[A] ./ Repart[A](M2(A,B)[B])[A])[A]

To optimize well-formed programs we rely on a set of simplifi-
cation and heuristic rules, which we present next.

4.3 Optimizing Distributed Programs
In this section, we describe how to optimize well-formed pro-

grams in order to minimize communication and processing costs.
We divide this task into two stages. The first stage relies on a sim-
ple cost-based model to simplify each individual statement. The
second stage exploits commonalities among statements to avoid re-
dundant communication and minimize the number of jobs needed
to execute the given program.

4.3.1 Intra-Statement Optimization
Intra-statement optimization aims to minimize the amount of

network traffic required to execute one well-formed statement. Our
cost model takes the number of communication rounds as the basic
metric for cost comparison. Each location transformer (Repart,
Scatter, and Gather) shuffles data over the network, so state-
ments containing fewer of them require less communication. Our
cost model also relies on few heuristics to resolve ties between
statements with the same cost. We reshuffle expressions that in-
volve batch updates rather than whole materialized views as the
formers are usually smaller in size; we favor expressions with fewer
Gather transformers to distribute computation as much as possible.

The optimizer uses a trial and error approach to recursively op-
timize a given statement. It tries to push each location transformer
down the expression tree, following the rules from Figure 3. Note
that these rules might produce more expensive expressions, in which
case the algorithm backtracks. During each optimization step, the
compiler tries to simplify the current expression using the rules
from Figure 4. Each simplification rules always produces an equiv-
alent expression with fewer location transformers.

RepartP (Q1 ./ Q2) ⇔ RepartP (Q1) ./ RepartP (Q2)

RepartP (Q1 +Q2) ⇔ RepartP (Q1)+RepartP (Q2)

RepartP (Sum[A1,A2,...](Q)) ⇔ Sum[A1,A2,...](RepartP (Q))

RepartP (var := Q) ⇔ (var := RepartP (Q))

Figure 3: Bidirectional optimization rules for Repart. The same
rules apply to Scatter and Gather.

RepartP (Q
Dist(P)) ⇒ QDist(P)

Gather(QLocal) ⇒ QLocal

RepartP1 ◦ RepartP2 ⇒ RepartP1

RepartP1 ◦ ScatterP2 ⇒ ScatterP1

Gather ◦ RepartP ⇒ Gather

Gather ◦ ScatterP ⇒ Gather

ScatterP ◦ Gather ⇒ RepartP

Figure 4: Simplification rules for location transformers. The ◦ sign
denotes operator composition.

In Example 4.1, the optimizer pushes the outer Repart[A] through
Sum and ./ , and then simplifies Repart[A]◦Repart[B] to Repart[A].
The optimized statement requires only one communication round.

4.3.2 Inter-Statement Optimization
Location transformers represent natural pipeline breakers in query

evaluation since they need to materialize and shuffle their contents
before continuing processing. In this section, we show how to
analyze inter-statement dependencies to minimize the number of
pipeline breakers and their communication overhead.

Single Transformer Form. To facilitate inter-statement analy-
sis, we first convert a given program into single transformer form
where each statement has at most one location transformer. The
transformer, if present, always references one materialized view.
In other words, we normalize the input program by: 1) materializ-
ing the contents being transformed (if not already materialized), 2)
extracting the location transformers targeting the materialized con-
tents into separate statements, and 3) updating the affected state-
ments with new references. To achieve that, we recursively bottom-
up traverse the expression tree of every statement.

Single transformer form sets clear boundaries around the con-
tents that needs to be communicated, which eases the implemen-
tation of further optimizations. We apply common subexpression
elimination and dead code elimination to detect expressions shared
among statements and to eliminate redundant network transfers. In
contrast to the classical compiler optimizations, our routines are
aware of the location where each expression is executed.

Statement Execution Mode. The location tag associated with
each statement determines where and how that statement is going to
be executed. Statements targeting local materialized views are, as
expected, executed at the driver node in local mode. Statements in-
volving distributed views run in distributed mode, where the driver
initiates the computation.

All location transformations run in local mode since the driver
governs their execution. But, materializing the contents to be reshuf-
fled can happen in both local and distributed mode. For instance,
preparing contents for Scatter takes place on the driver node,
while for Repart and Gather happens on every worker node.

Statement Blocks. Distributed statements are more expensive
to execute than local statements. To run a distributed statement, the
driver needs to serialize the task closure, ship it to all the work-

!!LOCAL!QUERY3LINEITEM1_DELTA!!:=!!!{!DELTA_LINEITEM!}!

!!LOCAL!scatter1!!:=!!SCATTER<(orders_orderkey,long)>!{!scatterToPartition1!}!

!!DISTRIBUTED!QUERY3!!+=!!!{!scatterToIndex1,!QUERY3LINEITEM1!}!

!!DISTRIBUTED!QUERY3ORDERS1_P_2!!+=!!!{!scatterToIndex1!}!

!!DISTRIBUTED!QUERY3CUSTOMER1!!+=!!!{!scatterToIndex1,!QUERY3LINEITEM1CUSTOMER1!}!

!!LOCAL!QUERY3ORDERS1_DELTA!!:=!!!{!DELTA_ORDERS!}!

!!LOCAL!scatter4!!:=!!SCATTER<(customer_custkey,long)>!{!scatterToPartition4!}!

!!DISTRIBUTED!repartition1!!:=!!!{!scatterToIndex4,!QUERY3ORDERS1_P_1!}!

!!LOCAL!repartition2!!:=!!REPARTITION<(orders_orderkey,long)>!{!repartitionToPartition1!}!

!!DISTRIBUTED!QUERY3!!+=!!!{!repartitionToIndex1,!QUERY3ORDERS1_P_2!}!

!!DISTRIBUTED!repartition3!!:=!!!{!scatterToIndex4,!QUERY3ORDERS1_P_1!}!

!!LOCAL!repartition4!!:=!!REPARTITION<(orders_orderkey,long)>!{!repartitionToPartition2!}!

!!DISTRIBUTED!QUERY3LINEITEM1!!+=!!!{!repartitionToIndex2!}!

!!LOCAL!scatter6!!:=!!SCATTER<(orders_orderkey,long)>!{!scatterToPartition6!}!

!!DISTRIBUTED!QUERY3LINEITEM1CUSTOMER1!!+=!!!{!scatterToIndex6!}!

!!DISTRIBUTED!QUERY3CUSTOMER1!!+=!!!{!scatterToIndex6,!QUERY3ORDERS1_P_2!}!

!!LOCAL!QUERY3CUSTOMER1_DELTA!!:=!!!{!DELTA_CUSTOMER!}!

!!LOCAL!scatter8!!:=!!SCATTER<>!{!scatterToPartition8!}!

!!DISTRIBUTED!QUERY3!!+=!!!{!scatterToIndex8,!QUERY3CUSTOMER1!}!

!!DISTRIBUTED!QUERY3LINEITEM1!!+=!!!{!scatterToIndex8,!QUERY3LINEITEM1CUSTOMER1!}!

!!LOCAL!scatter10!!:=!!SCATTER<(customer_custkey,long)>!{!scatterToPartition10!}!

!!DISTRIBUTED!QUERY3ORDERS1_P_1!!+=!!!{!scatterToIndex10!}!
22"

!!LOCAL!QUERY3LINEITEM1_DELTA!!:=!!!{!DELTA_LINEITEM!}!

!!LOCAL!scatter1!!:=!!SCATTER<(orders_orderkey,long)>!{!scatterToPartition1!}!

!!LOCAL!QUERY3ORDERS1_DELTA!!:=!!!{!DELTA_ORDERS!}!

!!LOCAL!scatter4!!:=!!SCATTER<(customer_custkey,long)>!{!scatterToPartition4!}!

!!LOCAL!scatter6!!:=!!SCATTER<(orders_orderkey,long)>!{!scatterToPartition6!}!

!!LOCAL!QUERY3CUSTOMER1_DELTA!!:=!!!{!DELTA_CUSTOMER!}!

!!LOCAL!scatter8!!:=!!SCATTER<>!{!scatterToPartition8!}!

!!LOCAL!scatter10!!:=!!SCATTER<(customer_custkey,long)>!{!scatterToPartition10!}!

!!DISTRIBUTED!QUERY3!!+=!!!{!scatterToIndex1,!QUERY3LINEITEM1!}!

!!DISTRIBUTED!QUERY3ORDERS1_P_2!!+=!!!{!scatterToIndex1!}!

!!DISTRIBUTED!QUERY3CUSTOMER1!!+=!!!{!scatterToIndex1,!QUERY3LINEITEM1CUSTOMER1!}!

!!DISTRIBUTED!repartition1!!:=!!!{!scatterToIndex4,!QUERY3ORDERS1_P_1!}!

!!DISTRIBUTED!repartition3!!:=!!!{!scatterToIndex4,!QUERY3ORDERS1_P_1!}!

!!DISTRIBUTED!QUERY3LINEITEM1CUSTOMER1!!+=!!!{!scatterToIndex6!}!

!!DISTRIBUTED!QUERY3CUSTOMER1!!+=!!!{!scatterToIndex6,!QUERY3ORDERS1_P_2!}!

!!DISTRIBUTED!QUERY3!!+=!!!{!scatterToIndex8,!QUERY3CUSTOMER1!}!

!!DISTRIBUTED!QUERY3LINEITEM1!!+=!!!{!scatterToIndex8,!QUERY3LINEITEM1CUSTOMER1!}!

!!DISTRIBUTED!QUERY3ORDERS1_P_1!!+=!!!{!scatterToIndex10!}!

!!LOCAL!repartition2!!:=!!REPARTITION<(orders_orderkey,long)>!{!repartitionToPartition1!}!

!!LOCAL!repartition4!!:=!!REPARTITION<(orders_orderkey,long)>!{!repartitionToPartition2!}!

!!DISTRIBUTED!QUERY3!!+=!!!{!repartitionToIndex1,!QUERY3ORDERS1_P_2!}!

!!DISTRIBUTED!QUERY3LINEITEM1!!+=!!!{!repartitionToIndex2!}!

Figure 5: The block fusion effect in TPC-H Q3: before and after.
Green blocks are local, blue blocks are distributed.

ers, and wait for the completion of each one of them. For short-
running tasks, and recursive view maintenance is often such, non-
processing overheads can easily dominate in the execution time.

To amortize the cost of executing distributed statements, we pack
them together into processing units called statement blocks. A
statement block consists of a sequence of distributed statements
that can be executed at once on every node without comprising the
program correctness. Apart from distributed blocks, we also in-
troduce blocks of local statements whose purpose is to determine
which network operations can be batched together (the driver initi-
ates Repart, Scatter, and Gather in local mode).

Data-flow dependencies among statements prevent arbitrary re-
orderings of statements and blocks. In Appendix C.3, we show
methods for checking the commutativity of statements and blocks.

Block Fusion Algorithm. We prefer program execution plans
with as few statement blocks as possible. Here, we describe an
algorithm that reorders and merges together consecutive blocks to
minimize their number. Appendix C.3 presents the algorithm.

First, we promote each statement into a separate block that keeps
statement’s execution mode (local or distributed). Then, the al-
gorithm tries to fuse together the first block with the others that
share the same execution mode and commute with all intermediate
blocks. On success, the algorithm merges the new block sequence
recursively; otherwise, it handles the remaining blocks recursively.

Figure 5 visualizes the effects of block fusion on the incremental
program of TPC-H Q3. Before running the algorithm, the anno-
tated input program contained 10 local and 12 distributed statement
blocks. After reordering and merging these blocks, the algorithm
outputs only 2 local and 2 distributed compound blocks.

4.4 Code Generation
Statement blocks considerably simplify code generation. Isolat-

ing distributed blocks enables workers to safely run code gener-
ated for single-node execution on their local data partitions. Pure
local statements without transformers also correspond to unmodi-
fied single-node code. Distributed code generation, thus, relies to a
great extent on single-node code generation.

Code generated for location transformers uses platform-specific
communication primitives for exchanging data. To minimize net-
work overhead, we encapsulate transformers of the same type into
one compound request per block. For instance, we coalesce multi-
ple Scatter transformers and their materialized data into just one
Scatter request that uses a container data structure.

5. IMPLEMENTING VIEW MAINTENANCE
In this section, we describe how to compile queries of our lan-

guage into low-level code that uses specialized data structures.

5.1 From Queries to Native Code
DBToaster compiles maintenance programs into imperative or

functional code optimized for the execution in local mode (C++)

or distributed mode (Scala for Spark). The compiler relies on the
model of computation described in Section 3. As discussed, the
query language exploits the notion of information flow, which is
common in programming languages. The information about bound
variables always flows from left to right during query evaluation,
which eases compilation of the language construct. In generated
code, we replace all high-level operators, like natural joins, unions,
etc., with concrete operations over the underlying data structures.

When compiling a relational term, we distinguish several cases:
(1) if all its variables are free, we transform it into a foreach loop
that iterates over the whole collection; (2) if all its variables are
bound, we replace it with a get (lookup) operation; (3) otherwise,
we form a slice operation that iterates over only the elements
matching the current values of the bound variables. Note that cases
(2) and (3) may benefit from specialized index structures.

We use continuation passing style [8] to facilitate code gener-
ation and avoid intermediate materializations, such as redundant
computations of bag unions and aggregates. The compilation pro-
cess relies on an extensible compiler library, called LMS [36], to
perform both classical optimizations, like common subexpression
elimination, dead code elimination, loop unrolling and fusion, and
also domain-specific optimizations, like data-structure specializa-
tion and automatic indexing.

Our compiler optimizes incremental programs for single-tuple
processing. It specializes the parameters of single-tuple triggers to
the concrete primitive types of the updated relation. Then, the na-
tive compiler can treat such parameters as constants and move them
out of loops and closures when possible. Our compiler eliminates
loops around one-element batches and uses primitive type variables
rather than maps to store intermediate materializations.

5.2 Data Structure Specialization
The design of the data structure for storing materialized views

depends on whether the view contents can change over time and
the types of operations that need to be supported. Materialized
views defined over static base relations are immutable collections
of records stored in fixed-size arrays with fast lookup and scan op-
erations. In typical streaming scenarios, however, updates to muta-
ble base relations can be fast-moving and unpredictable, indicating
that any array-based solution for storing tuples of dynamic mate-
rialized views might be expensive either in terms of the memory
usage or maintenance overhead.

We materialize the contents of dynamic materialized views in-
side record pools, shown in Figure 6. One record pool stores records
of the same format inside main memory and dynamically adapts its
size to match the current working set. The pool keeps track of
available free slots to facilitate future memory allocations and ease
memory management. We specialize the format of pool records at
compile time. Each record contains key fields corresponding to the
schema of the materialized expression and value fields storing tuple
multiplicities. The key fields uniquely identify each record.

5.2.1 Automatic Index Support
We can associate multiple index structures with one record pool,

as shown in Figure 6. Each index structure provides a fast path
to the records that match a given condition. We use unique hash
indexes to provide fast lookups and non-unique hash indexes for
slice operations4. Both indexes maintain an overflow linked list for
each bucket. To shorten scanning in one bucket, non-unique hash
indexes cluster records that share the same key. Pool records keep

4Studying other index types, like B++ trees (for range operations)
or binary heaps (for min/max), we leave for future work.

...

Rec #1

K1 K2 V1 V2
Rec #2

I1 I2

N
H
D

N
H
D

K1 K2 V1 V2 I2
N

on
-u

ni
qu

e
H

as
h

In
de

x
I1

Record Pool

U
nique H

ash Index

N
H
D

N
H
D

Figure 6: Multi-indexed data structure used for materialization.
Each bucket (shaded cells) has a linked list of collisions. Legend:
(D)ata, (H)ash, (N)ext, (K)ey, (V)alue, and (I)ndex.

back-references to their indexes to avoid hash re-computation and
additional lookups during update and delete operations.

Our compiler analyzes the following access patterns: 1) scan
over the entire collection (foreach), 2) lookup for a given unique
key (get, update, delete), and 3) index scan for a given non-
unique key (slice). We build a unique hash index for get oper-
ations, that is, when all lookup keys are bound at evaluation time.
The same rule applies to update, insert, and delete operations.
For slice operations, we create a non-unique index over the vari-
ables bound at evaluation time. When the access pattern analysis
detects only foreach operations, we omit index creation.

DBToaster creates all relevant index structures. From our ex-
perience, most data structures produced during recursive compila-
tion have only few indexes. For instance, the materialized views
produced compiling the TPC-H queries usually have zero or one
secondary indexes, with rare exceptions of up to three non-unique
indexes. Our empirical results indicate that the benefit of creating
these indexes greatly outperforms their maintenance overheads.

5.2.2 Column-oriented layout
Record pools keep tuples in a row-oriented format. Material-

ized views store aggregated results in which all unused attributes
are projected away during query compilation. Thus, during query
evaluation, each access to one record likely references all its fields.

The row-oriented layout is, however, unsuitable for efficient data
serialization and deserialization, which are important considera-
tions in distributed query evaluation. To speed up these operations,
the compiler creates array-based data structures for storing serial-
izable data in columnar mode. It also generates specialized trans-
formers for switching between row- and column-oriented formats.

We also use columnar data structures for storing input batches.
Batched delta processing often starts by filtering out tuples that do
not match query’s static conditions. As these conditions are often
simple (e.g., A > 2), using a columnar representation can improve
cache locality. After filtering, we typically aggregate input batches
to remove unused columns and store the result in a record pool.

6. EXPERIMENTS
We evaluate the performance of recursive incremental view main-

tenance for batch updates of different sizes in local and distributed
settings. In the single-node evaluation, we analyze the through-
put and cache locality of C++ incremental programs generated us-
ing the DBToaster Release 2.2 [2]. In the distributed evaluation,
we scale out incremental view maintenance to hundreds of Spark
workers. Our experimental results show that:

• In local mode, view maintenance code specialized for tuple-at-a-
time processing can outperform or be on par with batched pro-
grams for almost half of our queries.

• Preprocessing input batches can boost the performance of incre-
mental computation by multiple orders of magnitude.

• Large batches can have negative impacts on cache locality. In lo-
cal mode, the throughput of most of our queries peaks for batches
with 1,000 – 10,000 tuples.

• In distributed mode, we show that our approach can scale to hun-
dreds of workers for queries of various complexities, while pro-
cessing input batches with few second latencies.

Experimental Setup. We run single-node experiments on an In-
tel Xeon E5-2630L @ 2.40GHz server with 2×6 cores, each with
2 hardware threads, 15MB of cache, 256GB of DDR3 RAM, and
Ubuntu 14.04.2 LTS. We compile generated C++ programs using
GCC 4.8.4. For distributed experiments, we use 100 such server
instances connected via a full-duplex 10GbE network and running
Spark 1.6.1 and YARN 2.7.1. We generate Scala programs for run-
ning on Spark and compile using Scala 2.10.4.

Query and Data Workload. Our query workload consists of
the TPC-H queries that are modified for streaming scenarios [22]
and a subset of TPC-DS queries from [23] (excluding four queries
with the OVER clause, which we currently do not support). We
run these queries over data streams synthesized from TPC-H and
TPC-DS databases by interleaving insertions to the base relations
in a round-robin fashion. We process 10GB streams in local mode
and 500GB streams in distributed mode. We run experiments with
a one-hour timeout on query execution, not counting loading of
streams into memory and forming input batches of a given size.

6.1 Single-node Evaluation
Our local experiments compare tuple-at-a-time and batched in-

cremental programs. The former have triggers with tuple fields as
function parameters, which can be inlined into delta computation;
the latter consist of triggers accepting one arbitrary-sized columnar
batch. In both cases, we generate single-threaded C++ code.

Batched incremental programs have extra loops inside triggers
for processing input batches. To avoid redundant iterations over the
whole batch, we materialize input tuples that match query’s static
conditions, retaining only the attributes (columns) used in incre-
mental evaluation. These pre-aggregated batches are smaller in size
due to having fewer attributes and, potentially, fewer matching tu-
ples, which can significantly affect view maintenance costs. In con-
trast, single-tuple triggers avoid materialization of input batches.

6.1.1 Batch Size vs. Throughput
Figure 7 shows the normalized throughput of batched incremen-

tal processing of the TPC-H queries for different batch sizes using
the tuple-at-a-time performance as the baseline. For ease of pre-
sentation, we use two graphs with different y-axis scales.

For almost half of our queries, batched incremental processing
performs worse or just marginally better than specialized tuple-
at-a-time processing. This result comes at no surprise once we
start analyzing the pre-aggregated batches of these queries for up-
dates to their largest (and usually most expensive) relation. For in-
stance, Q5, Q9, and Q18 aggregate LINEITEM deltas by orderkey
and, possibly, some other fields; Q16 aggregates PARTSUPP deltas
by the primary key (partkey, suppkey). In these cases, batch
pre-aggregation retains (almost) the same number of input tuples,
bringing no performance improvements; on the contrary, it intro-
duces extra materialization and looping overheads. For two-way

join queries, Q4, Q12, and Q13, the simplicity of their view main-
tenance code makes these overheads particularly pronounced.

Batch pre-aggregation keeps only input tuples that match static
query conditions. This step can speed up the rest of view mainte-
nance code, bringing improvements that depend on the selectivity
of query predicates. For instance, preprocessing in Q3, Q7, Q8,
Q10, and Q14 filters out tuples of LINEITEM and ORDERS batches
and yields improvements from 19% in Q7 to 306% in Q8.

Batch pre-aggregation can project input tuples onto a set of at-
tributes with small active domains. For instance, Q1 projects a
LINEITEM batch onto columns containing only few possible values,
which enables cheap maintenance of the final 8 aggregates. So, the
single-tuple implementation performs more maintenance work per
input tuple. For Q2 and Q19, batch filtering and projection can give
up to 1.3x and 5.1x better performance. This benefit can increase
for queries with more complex trigger functions. For instance, Q22
filters and projects an ORDERS batch on custkey, while Q20 filters
and projects PARTSUPP and LINEITEM batches on suppkey. In both
cases, the projected columns have much smaller domains, bringing
significant improvements, 2,243x in Q20 and 4,319x in Q22.

Incremental programs for single-tuples updates are easier to op-
timize than their batched counterparts due to having simpler input
and fewer loops in trigger bodies. This virtue emerges in Q17 and
Q21. For these queries, our compiler fails to factorize common
subexpressions as efficiently as during the single-tuple compilation,
which causes same expressions to be evaluated twice.

For Q11 and Q15, incremental view maintenance is more ex-
pensive than re-evaluation due to inequality-based nested aggre-
gates. Increasing batch sizes results in fewer re-evaluations, which
increases the overall throughput at the expense of higher latencies.

Bulk processing amortizes the overhead of invoking trigger func-
tions. For instance, maintaining a single aggregate over LINEITEM
in Q6 with batches of 10,000 tuples can bring up to 2x better per-
formance than the single-tuple execution. However, these results
hold only when function inlining is disabled. Since the single-tuple
trigger body of Q6 consists of just one conditional statement, the
C++ compiler usually decides to inline this computation, causing
single-tuple execution to always outperform batched execution.

Comparison with PostgreSQL. Figure 8 compares the through-
put of recursive incremental processing in C++ and re-evaluation
and classical incremental view maintenance in PostgreSQL for TPC-
H Q17. We implement incremental processing in PostgreSQL us-
ing the domain extraction procedure described in Section 3.2. The
results show that the generated code outperforms PostgreSQL re-
evaluation from 233x to 14,181x and classical incremental view
maintenance from 120x to 10,659x, for different batch sizes.

Appendix B contains the performance numbers for the TPC-H
and TPC-DS queries from our workload. The results show that, in
all but four cases, recursive view maintenance outperforms classi-
cal view maintenance by orders of magnitude, even when process-
ing large batches, for which the database system is optimized for.

Memory requirements. Recursive incremental view mainte-
nance materializes auxiliary views in order to speed up the work
required to keep all views fresh. The sizes of these auxiliary views
created to maintain a given query, in general, depend on the query
structure. Our query workloads, TPC-H and TPC-DS, are based on
the star schema with one large fact table and several dimension ta-
bles. In such cases, auxiliary materialized views cannot have more
tuples than the fact table due to integrity constraints. In practice,
the sizes of materialized views are much smaller than the size of
the fact table as their view definition queries often involve static fil-
tering conditions. In addition, materialized views discard columns
unused in a given query and aggregate over the remaining columns.

6.2 Distributed Evaluation
For distributed experiments, we use Spark [38] for parallelizing

the execution of incremental view maintenance code. Spark offers
a synchronous model of computation in which the driver governs
job execution and coordination with workers.

We execute a subset of the TPC-H queries with different com-
plexities on a 500GB stream of tuples. We chunk the input stream
into batches of a given size, and, for each batch, we run one or
more Spark jobs to refresh the materialized view. To avoid scala-
bility bottlenecks caused by the driver handling all input data, we
simulate a system in which every worker receives, independently
of the driver and other workers, a fraction of the input stream. In
our experiments, we ensure that each worker gets a roughly equal
random partition of every batch. Each worker preloads its batch
partitions before starting the experiment.

Materialized views are either stored locally on the driver or dis-
tributed among workers. The decision on how to partition mate-
rialized views in order to minimize their maintenance costs is a
challenging problem, which might benefit from previous work on
database partitioning [15, 31]. We leave this question for future
work. For this paper, we rely on a simple heuristics rule: we parti-
tion materialized views on the primary key of a base table appearing
in the view schema (e.g., orderkey); if there are multiple such pri-
mary keys of base tables (e.g., orderkey, custkey), we partition
on the one with the highest cardinality (orderkey); otherwise, if
there are no primary keys in the view schema, we assume the final
aggregate has a small domain and can be stored on the driver.

Query Complexity in Spark. Generated Spark code runs a se-
quence of jobs in order to perform incremental view maintenance.
Each job consists of multiple stages (e.g., map-reduce phases), and
each stage corresponds to one block of distributed statements, de-
fined in Section 4.3. The number of jobs and stages for a given
query depends on the query structure and the provided partitioning
information. Appendix C.1 shows the complexity of the TPC-H
queries in terms of the number of jobs and stages necessary for
processing one update batch, for the above partitioning strategy.

6.2.1 Weak Scalability
We evaluate the scalability of our approach when each worker

receives batch partitions of size 100,000. Figure 9 shows the mea-
sured latency and throughput for a subset of the TPC-H queries.

Q6 computes a single aggregate over LINEITEM. Given the ini-
tial random distribution of batches and small query output size, we
create one stage during which each worker computes a partial ag-
gregate of its batch partition, and then, we sum these values up to
update the final result at the driver. The purpose of running Q6 is
to measure Spark synchronization overheads as a function of the
number of workers. The query requires minimal network commu-
nication as each worker sends one 64-bit value per batch. Also each
worker spends negligible time aggregating 100,000 tuples (6 ms on
average), thus the results from Figure 9a are close to pure synchro-
nization overheads of Spark. The median latency of processing
a batch of size (100,000× #workers) increases from 65 ms for 50
workers to 386 ms for 1,000 workers, while the throughput rises up
to 267 million tuples per sec for 600 workers. Both metrics suffer
from synchronization costs, which increase with more workers.

Q17 computes a two-way join with an equality-correlated nested
aggregate. Incremental computation of Q17 relies on the domain
extraction procedure described in Section 3.2. We partition both
base relations on partkey and store the result at the driver. The ex-
ecution graphs consists of two stages. The first stage pre-aggregates
batch partitions and shuffles the result on partkey. The second

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q12 Q13 Q14 Q16 Q17 Q18 Q21

No
rm

al
ize

d	
Th

ro
ug
hp

ut
BATCH	SIZE	=	1 BATCH	SIZE	=	10

BATCH	SIZE	=	100 BATCH	SIZE	=	1,000

BATCH	SIZE	=	10,000 BATCH	SIZE	=	100,000

0.5
1
2
4
8
16
32
64

128
256
512
1024
2048
4096

Q11 Q15 Q19 Q20 Q22

Figure 7: Normalized throughput of the TPC-H queries for different batch sizes with single-tuple execution as the baseline.

1

10

100

1000

10000

100000

1000000

SINGLE	 BS	=	1 BS	=	10 BS	=	100 BS	=	1000 BS	=	10000 BS	=	100000

Av
g.
	V
ie
w
	R
ef
re
sh
	R
at
e	
(tu

p/
se
c)

Re-eval	(PostgreSQL) IVM	(PostgreSQL) RIVM	(C++)

Figure 8: Throughput comparison for TPC-H Q17 of re-evaluation
and incremental maintenance in PostgreSQL and recursive incre-
mental maintenance in generated C++ code for different batch
sizes. SINGLE denotes specialized single-tuple processing in C++.

stage refreshes the base relations and aggregates partial results at
the driver to update the final result.

Figure 9b shows the performance of incremental maintenance of
Q17. The throughput rises up to 600 nodes, while the median la-
tency increases from 1.3s for 50 workers to 4s for 800 workers.
Q17 achieves higher latency than Q6 due to several reasons: 1)
workers perform more expensive view maintenance (526 ms on av-
erage), 2) the shuffling phase requires serialization and deserializa-
tion of data, writing to local disks, and reading from remote loca-
tions, and 3) more processing stages incur more synchronization
overheads. Pre-aggregation of input batches reduces the amount
of shuffled data from 7.6 MB to 1.8 MB per worker. This amount
remains constant regardless of the number of workers.

Figure 9c shows that the average throughput of Q3 increases up
to 400 workers. Compared with Q17, the median latency of Q3
is lower at smaller scales and almost identical when using more
workers. Q3 uses one additional stage to replicate pre-aggregated
CUSTOMER deltas and join them with materialized views partitioned
over orderkey. The amount of shuffled data per worker grows
with the batch size, from 439 KB for 50 workers to 2.4 MB for
1,000 workers. The trigger processing time per worker (exclud-
ing all other overheads) changes on average from 120 ms for 50
workers to 305 ms for 1,000 workers, with less than 10% deviation
among workers in both cases. Thus, at larger scales, the increased
shuffling cost dominates the processing time.

Q7 is one of the most complex queries in our workload from the
perspective of incremental view maintenance. The driver stores the
top-level result and runs three jobs to process one batch of updates.
The median latency grows more rapidly compared to other queries,
from 1.5s on 50 workers to 16.9s on 800 workers. The average
running time of the update triggers per worker also increases but

more steadily, from 0.6s to 3.7s, while the amount of shuffled data
per worker grows from 2.1 MB to 8.4 MB. This increased network
communication induces higher latencies and brings down the aver-
age throughput beyond 400 workers.

In all these cases, using more workers increases the variability
of latency. From our experience with using Spark, stragglers can
often prolong stage computation time by a factor of 1.5−3x despite
almost perfect load balancing. We also observe that the straggler
effect is more pronounced with queries shuffling relatively large
amounts of data, such as Q3 and Q7. Examining logs and reported
runtime metrics gives no reasonable explanation for such behavior.

6.2.2 Strong Scalability
We measure the scalability of our incremental technique for con-

stant batch sizes and varying numbers of workers. Figure 10 shows
the measured throughput for a subset of the TPC-H queries. We use
batches with 50, 100, 200, and 400 million tuples to ensure enough
parallelizable work inside update triggers. Figure 11 in Appendix C
shows results for more TPC-H queries. We compare our approach
against re-evaluation using Spark SQL for batches with 400 million
tuples. Note that Spark SQL can handle only flat queries.

Figure 10a shows that the median latency of Q6 decreases with
more workers until the cost of synchronization becomes compara-
ble with the cost of batch processing. Processing 100 million tuples
using 100 workers takes on average 14 ms per worker, leaving no
opportunities for further parallelization. For the four batch sizes,
the lowest median latencies are 98 ms, 130 ms, 153 ms, and 211 ms.
Re-evaluating Q6 on each update using Spark SQL achieves the
median latency of 32.8 seconds per batch on 100 nodes.

The incremental view maintenance of Q17 scales almost linearly,
as shown in Figure 10b. The median latency of processing one
batch of 400 million tuples declines by 10.7x (from 68.5s to 6.4s)
when using 16x more resources (from 50 to 800 workers). Here,
the amount of shuffled data per worker decreases from 77.4 MB to
4.2 MB, while the trigger processing time per worker drops from
27.3s to 2.3s. We observe similar effects when processing smaller
batches. When using 800 workers, the median latency of process-
ing different batch sizes varies from 3.6s to 6.4s.

Figure 10c shows that the median latency of processing Q3 de-
creases with more nodes, from 30s with 25 workers to 4.2s with
400 workers for input batches with 400 million tuples. Adding
more workers decreases the amount of work performed inside each
trigger and the amount of shuffled data per worker while at the same
time increases synchronization overheads. Using larger batches
creates more parallelizable work and enables scalable execution
across more nodes, as shown in Figure 10c. Re-evaluating Q3 us-
ing Spark SQL performs slower than our incremental program for
the corresponding batch size, from 8.5x using 25 workers to 20.9x
using 400 workers.

0

50

100

150

200

250

300

0

100

200

300

400

500

0 200 400 600 800 1000

Th
ro
ug
hp

ut
	(m

illi
on

	tu
p/
s)

Ba
tc
h	
pr
oc
es
sin

g	t
im
e	
(m

s)

Number	of	workers

Latency Throughput

(a) Q6

0

5

10

15

20

25

0

1

2

3

4

5

0 200 400 600 800

Th
ro
ug
hp

ut
	(m

illi
on

	tu
p/
s)

Ba
tc
h	
pr
oc
es
sin

g	t
im
e	
(s
ec
)

Number	of	workers

Latency Throughput

(b) Q17

0

5

10

15

20

25

30

0

1

2

3

4

5

0 200 400 600 800

Th
ro
ug
hp

ut
	(m

illi
on

	tu
p/
s)

Ba
tc
h	
pr
oc
es
sin

g	t
im
e	
(s
ec
)

Number	of	workers

Latency Throughput

(c) Q3

0

1

2

3

4

5

6

7

0

4

8

12

16

20

0 200 400 600 800

Th
ro
ug
hp

ut
	(m

illi
on

	tu
p/
s)

Ba
tc
h	
pr
oc
es
sin

g	t
im
e	
(s
ec
)

Number	of	workers

Latency Throughput

(d) Q7

Figure 9: Weak scalability of the incremental view maintenance of TPC-H queries. Each worker processes batches of size 100,000.

0.06

0.25

1

4

16

64

256

16 32 64 128 256 512

Ba
tc
h	
pr
oc
es
sin

g	t
im
e	
(s
ec
)

Number	of	workers

50M 100M 200M 400M SparkSQL	400M

(a) Q6

1

2

4

8

16

32

64

128

32 64 128 256 512 1024

Ba
tc
h	
pr
oc
es
sin

g	t
im
e	
(s
ec
)

Number	of	workers

50M 100M 200M 400M

(b) Q17

1
2
4
8
16
32
64
128
256

16 32 64 128 256 512

Ba
tc
h	
pr
oc
es
sin

g	t
im
e	
(s
ec
)

Number	of	workers

50M 100M 200M 400M SparkSQL	400M

(c) Q3

1
2
4
8
16
32
64
128
256
512

16 32 64 128 256 512

Ba
tc
h	
pr
oc
es
sin

g	t
im
e	
(s
ec
)

Number	of	workers

50M 100M 200M 400M SparkSQL	400M

(d) Q7

Figure 10: Strong scalability of the incremental view maintenance of TPC-H queries for different batch sizes (in million of tuples). Ap-
pendix C contains results for more TPC-H queries.

Q7 requires the most expensive maintenance work among the
four TPC-H queries. The median latency of processing 100 million
tuples drops from 44.8s with 25 workers to 10.4s with 200 work-
ers. Beyond 200 workers, even though the size of shuffled data per
worker decreases, managing large data creates stragglers that pro-
long execution time. Compared with Spark SQL re-evaluation, our
approaches achieves 3.3x lower median latency with 200 workers.

Using fewer workers increases the variability of latency in al-
most all our queries due to larger amounts of shuffled data per
worker. This observation confirms our previous conclusion that
shuffling large data among many workers creates stragglers.

Optimization effects. We evaluate the effects of our optimiza-
tion from Section 4 on TPC-H Q3. We present the numbers in
Appendix C. We consider the naive implementation with all opti-
mizations turned off; then, we include simplification rules for lo-
cation transforms to minimize their number, followed by enabling
the block fusion algorithm. Finally, we apply CSE and DCE opti-
mizations to eliminate trigger statements doing redundant network
communication during program execution. Our analysis indicates
that merging together statements using the block fusion algorithm
brings largest performance boosts and enables scalable execution.

7. RELATED WORK
Incremental view maintenance. Classical incremental view

maintenance [17, 13, 14] is typically used for processing batch up-
dates in data warehouse systems [6, 37, 33], where the focus is
on achieving high throughput rather than low latency. Commer-
cial database systems support incremental view maintenance but
only for restricted classes of queries [3, 1]. Our approach is based
on using recursive incremental view maintenance [20, 21]. The
DBToaster system [22] implements recursive incremental process-
ing for single-tuple updates in local mode. In contrast, we target
batched execution in both local and distributed settings. To sup-
port efficient batched incremental maintenance of SQL queries, we
develop a new technique, called domain extraction.

Scalable stream processing. Scalable stream processing plat-
forms, such as MillWheel [7], Heron [25], and S4 [29], expose
low-level primitives to the user for expressing complex query plans.
S-Store [10] provides triggers for expressing data-driven process-
ing with ACID guarantees in streaming scenarios. Naiad [27] and

Trill [11] support flat LINQ-style continuous queries, while for
complex queries with nested aggregates the user has to encode effi-
cient execution plans. Spark Streaming [39] allows running simple
SQL queries but only for windowed data. In contrast to these sys-
tems, our approach: 1) favors declaritivity as the user only needs
to specify input SQL queries without execution plans; 2) can in-
crementally maintain queries with equality-correlated nested ag-
gregates; 3) generates code tailored to the given workload; our
compilation framework can target any scalable system with a syn-
chronous execution model. Percolator [32] handles incremental
updates to large datasets but targets latencies on the order of min-
utes. Scalable batch processing systems like Pig, Hive, and Spark
SQL [9] aim for high throughput rather than low latency.

Distributed query processing. Our approach uses well-known
techniques from distributed query processing [24, 16, 34], like the
basic shuffling primitives and batch pre-processing for minimizing
network communication. In contrast to classical distributed query
optimization [5, 24, 12], the problem of optimizing recursive in-
cremental programs is more complex since it has to keep track of
data-flow dependencies among the program statements that main-
tain auxiliary views. These dependencies prevent arbitrary state-
ment re-orderings inside trigger functions.

8. CONCLUSION
In this paper, we focus on the problem of low-latency incremen-

tal processing of SQL queries in local and distributed streaming
environments. We present the domain extraction procedure for
maintaining queries with equality-correlated nested aggregates. We
study the effect of batch size on the latency of processing in local
settings: we show that pre-processing input batches can boost the
performance of incremental computation but also demonstrate that
tuple-at-a-time processing can outperform batch processing using
code specialization techniques (on roughly one half of the bench-
marked queries). In local settings, our approach exhibit up to four
orders of magnitude better performance than PostgreSQL in incre-
mental batched processing. For distributed view maintenance, we
show how to compile local maintenance programs into distributed
code optimized for the execution on large-scale processing plat-
forms. Our approach can process tens of million of tuples with
few-second latency using hundreds of Spark workers.

9. REFERENCES

[1] Create Indexed Views.
http://msdn.microsoft.com/en-us/library/ms191432.aspx.

[2] DBToaster Release 2.2 revision 3387, Nov. 27, 2015.
http://www.dbtoaster.org/index.php?page=download.

[3] Materialized View Concepts and Architecture.
http://docs.oracle.com/cd/B28359_01/server.111/b28326/
repmview.htm.

[4] D. Abadi, Y. Ahmad, M. Balazinska, M. Cherniack,
J. Hwang, W. Lindner, A. Maskey, E. Rasin, E. Ryvkina,
N. Tatbul, Y. Xing, and S. Zdonik. The design of the Borealis
stream processing engine. In CIDR, pages 277–289, 2005.

[5] S. Adali, K. S. Candan, Y. Papakonstantinou, and
V. Subrahmanian. Query Caching and Optimization in
Distributed Mediator Systems. In ACM SIGMOD Record,
volume 25, pages 137–146. ACM, 1996.

[6] D. Agrawal, A. El Abbadi, A. Singh, and T. Yurek. Efficient
View Maintenance at Data Warehouses. In SIGMOD,
volume 26, pages 417–427, 1997.

[7] T. Akidau, A. Balikov, K. Bekiroğlu, S. Chernyak,
J. Haberman, R. Lax, S. McVeety, D. Mills, P. Nordstrom,
and S. Whittle. MillWheel: Fault-tolerant Stream Processing
at Internet Scale. PVLDB, 6(11):1033–1044, 2013.

[8] A. W. Appel and T. Jim. Continuation-passing,
closure-passing style. In POPL, pages 293–302, 1989.

[9] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K.
Bradley, X. Meng, T. Kaftan, M. J. Franklin, A. Ghodsi, and
M. Zaharia. Spark SQL: Relational Data Processing in
Spark. In SIGMOD, pages 1383–1394, 2015.

[10] U. Cetintemel, J. Du, T. Kraska, S. Madden, D. Maier,
J. Meehan, A. Pavlo, M. Stonebraker, E. Sutherland,
N. Tatbul, K. Tufte, H. Wang, and S. Zdonik. S-Store: A
Streaming NewSQL System for Big Velocity Applications.
Proc. VLDB Endow., 7(13):1633–1636, 2014.

[11] B. Chandramouli, J. Goldstein, M. Barnett, R. DeLine,
D. Fisher, J. C. Platt, J. F. Terwilliger, and J. Wernsing. Trill:
A High-performance Incremental Query Processor for
Diverse Analytics. PVLDB, 8(4):401–412, 2014.

[12] S. Chaudhuri. An overview of query optimization in
relational systems. In PODS, pages 34–43, 1998.

[13] S. Chaudhuri, R. Krishnamurthy, S. Potamianos, and
K. Shim. Optimizing queries with materialized views. In
ICDE, pages 190–200, 1995.

[14] R. Chirkova and J. Yang. Materialized Views. Databases,
4(4):295–405, 2011.

[15] C. Curino, E. Jones, Y. Zhang, and S. Madden. Schism: A
Workload-driven Approach to Database Replication and
Partitioning. PVLDB, 3(1-2):48–57, 2010.

[16] R. Epstein, M. Stonebraker, and E. Wong. Distributed Query
Processing in a Relational Data Base System. In SIGMOD,
pages 169–180, 1978.

[17] A. Gupta, I. S. Mumick, et al. Maintenance of materialized
views: Problems, techniques, and applications. IEEE Data
Eng. Bull., 18(2):3–18, 1995.

[18] A. Gupta, I. S. Mumick, and V. S. Subrahmanian.
Maintaining Views Incrementally. SIGMOD Rec.,
22(2):157–166, 1993.

[19] Y. Klonatos, C. Koch, T. Rompf, and H. Chafi. Building
Efficient Query Engines in a High-level Language. PVLDB,
7(10):853–864, 2014.

[20] C. Koch. Incremental query evaluation in a ring of databases.
In PODS, pages 87–98, 2010.

[21] C. Koch. Incremental query evaluation in a ring of databases,
2013. Technical Report EPFL-REPORT-183766,
https://infoscience.epfl.ch/record/183766.

[22] C. Koch, Y. Ahmad, O. Kennedy, M. Nikolic, A. Nötzli,
D. Lupei, and A. Shaikhha. DBToaster: Higher-order delta
processing for dynamic, frequently fresh views. VLDBJ,
23(2):253–278, 2014.

[23] M. Kornacker, A. Behm, V. Bittorf, T. Bobrovytsky,
C. Ching, A. Choi, J. Erickson, M. Grund, D. Hecht,
M. Jacobs, et al. Impala: A Modern, Open-Source SQL
Engine for Hadoop. In CIDR, 2015.

[24] D. Kossmann. The state of the art in distributed query
processing. CSUR, 32(4):422–469, 2000.

[25] S. Kulkarni, N. Bhagat, M. Fu, V. Kedigehalli, C. Kellogg,
S. Mittal, J. M. Patel, K. Ramasamy, and S. Taneja. Twitter
Heron: Stream Processing at Scale. In SIGMOD, pages
239–250, 2015.

[26] R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu,
M. Datar, G. Manku, C. Olston, J. Rosenstein, and R. Varma.
Query processing, approximation, and resource management
in a data stream management system. In CIDR, 2003.

[27] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham,
and M. Abadi. Naiad: A Timely Dataflow System. In SOSP,
pages 439–455, 2013.

[28] T. Neumann. Efficiently Compiling Efficient Query Plans for
Modern Hardware. PVLDB, 4(9):539–550, 2011.

[29] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari. S4:
Distributed Stream Computing Platform. In ICDMW, pages
170–177, 2010.

[30] S. Padmanabhan, T. Malkemus, A. Jhingran, and
R. Agarwal. Block Oriented Processing of Relational
Database Operations in Modern Computer Architectures. In
ICDE, pages 567–574, 2001.

[31] A. Pavlo, C. Curino, and S. Zdonik. Skew-Aware Automatic
Database Partitioning in Shared-Nothing, Parallel OLTP
Systems. In SIGMOD, pages 61–72, 2012.

[32] D. Peng and F. Dabek. Large-scale Incremental Processing
Using Distributed Transactions and Notifications. In OSDI,
pages 1–15, 2010.

[33] D. Quass and J. Widom. On-line Warehouse View
Maintenance. SIGMOD Rec., 26(2):393–404, 1997.

[34] R. Ramakrishnan and J. Gehrke. Database Management
Systems. McGraw-Hill, 2003.

[35] T. Rompf and M. Odersky. Lightweight modular staging: a
pragmatic approach to runtime code generation and
compiled DSLs. In GPCE, pages 127–136, 2010.

[36] T. Rompf and M. Odersky. Lightweight modular staging: a
pragmatic approach to runtime code generation and
compiled dsls. Commun. ACM, 55(6):121–130, 2012.

[37] J. Wiener, H. Gupta, W. Labio, Y. Zhuge, H. Garcia-Molina,
and J. Widom. A System Prototype for Warehouse View
Maintenance. 1995.

[38] M. Zaharia, M. Chowdhury, M. Franklin, S. Shenker, and
I. Stoica. Spark: Cluster Computing with Working Sets. In
HotCloud, 2010.

[39] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and
I. Stoica. Discretized Streams: Fault-tolerant Streaming
Computation at Scale. In SOSP, pages 423–438, 2013.

Re-evaluation (PostgreSQL) IVM (PostgreSQL) Recursive IVM (DBToaster, C++)

Batch size 1 10 100 1000 10000 100000 1 10 100 1000 10000 100000 Single 1 10 100 1000 10000 100000

TPC-H 1 10 32 103 187 1003 2889 57 332 2478 9686 12250 12194 1267132 307715 1186926 2812549 4179921 4163385 4372480
TPC-H 2 11 146 427 493 5685 13420 28 125 193 4726 1995 12044 756611 456559 911141 1005175 971154 986810 691260
TPC-H 3 34 111 301 522 2120 5722 17 78 222 61 9100 5676 3736860 1251162 3004637 4401315 5323732 5182684 4580003
TPC-H 4 23 122 400 400 3713 7333 55 93 5857 10223 12550 12971 10076062 1603637 4652895 9012747 10687864 10790913 9752380
TPC-H 5 30 88 253 460 2304 5424 11 174 9 11 153 8665 584261 387568 625805 690475 658595 618632 509490
TPC-H 6 27 88 282 319 2500 6528 58 579 4065 11091 12742 12556 138216710 17017320 44270149 78310773 98176845 116931875 101327791
TPC-H 7 34 117 311 317 2985 7083 7 30 2 16 6908 5944 650650 397643 689015 753051 775288 770259 646018
TPC-H 8 35 114 338 335 2629 5886 28 8 21 19 222 5571 91221 73786 219613 279041 273387 277808 221020
TPC-H 9 30 151 335 513 1952 5999 14 25 22 21 197 1545 104370 78460 90949 109515 102940 86251 76296
TPC-H 10 32 88 322 207 2282 5701 33 165 372 123 7836 12306 2889537 1391237 3605282 5771226 6354245 7050705 5964290
TPC-H 11 22 61 191 366 1930 8734 23 71 220 367 2062 9414 768 776 1923 13500 109603 407547 591716
TPC-H 12 33 109 356 646 3279 4823 49 1050 6248 10837 630 5306 8675929 1678780 3905117 7131341 8236605 7706686 7469474
TPC-H 13 21 74 170 489 345 2578 33 94 283 267 2108 7334 779515 444588 685871 758725 701083 679684 474765
TPC-H 14 26 74 230 313 2322 6556 35 40 56 148 11686 11611 33041606 2769955 13146565 27984674 43468480 51827803 53436252
TPC-H 15 18 74 203 154 1613 4674 N/A 34 38 86 923 3944 17 17 27 52 109 285 964
TPC-H 16 19 58 203 330 1161 2822 18 35 302 1317 5304 10095 123936 115749 131902 121464 108208 75015 58721
TPC-H 17 27 57 88 194 481 666 36 111 564 948 589 1288 379303 210671 256882 208937 279930 155138 131964
TPC-H 18 20 66 207 223 1190 2114 20 18 17 77 676 5881 1133647 572132 1040612 1278945 1272541 1274853 971313
TPC-H 19 31 72 234 329 2218 6139 42 422 502 144 291 11944 1946309 2461229 5829592 8753856 9988084 9737049 8776165
TPC-H 20 6 9 15 18 36 56 11 7 5 21 25 43 977 950 1504 129092 874469 2191422 1871407
TPC-H 21 32 110 347 417 794 7333 31 54 24 10 10583 6797 836800 282532 449838 508128 501657 478923 407540
TPC-H 22 14 45 141 247 1551 5462 12 36 97 298 1252 741 189 183 336 5918 54459 434245 815903

TPC-DS 3 35 92 328 2045 3136 6694 164 1785 4457 5444 6866 8416 12309621 2072493 5945894 8116538 8718851 7740490 6442932
TPC-DS 7 1 14 109 219 1635 5000 98 1104 4262 4438 6721 6694 858649 361726 1024456 1227564 1076421 963048 392581
TPC-DS 19 1 106 132 264 2480 5056 0 78 232 82 7231 6139 30 29 29 29 29 25 7
TPC-DS 27 107 837 3706 5760 7307 8037 76 867 4326 6331 6846 8212 588394 196141 560333 669487 529235 497035 202849
TPC-DS 34 0 4 42 208 1821 4730 1 4 41 173 7510 6350 2803540 1019381 4742812 9219979 10612493 11445739 10689928
TPC-DS 42 9 79 405 196 4322 5594 153 1234 4607 5124 6766 7694 21127917 2589874 7953492 10242024 11325623 9460881 8530989
TPC-DS 43 0 4 42 201 1643 4411 91 710 3232 4702 7246 6972 3103901 589052 3488082 9893883 12851893 14494762 14605017
TPC-DS 46 0 4 43 204 2050 5040 0 1 14 56 6599 6611 185 149 149 149 149 147 90
TPC-DS 52 8 79 406 191 4289 6583 136 869 4266 5066 6808 8121 21005081 2456902 8102885 10552388 11401574 10311449 9074722
TPC-DS 55 31 97 294 875 2444 5444 52 1128 4639 5726 6528 6825 34822881 2343359 7680837 10282103 10993911 10028796 8951066
TPC-DS 68 0 4 42 202 2226 5238 0 1 14 57 6628 6361 182 149 149 149 149 147 88
TPC-DS 73 107 810 3866 5892 7308 8111 139 896 4352 6396 6919 8184 2104283 1028758 4739743 8906107 10620186 10460940 9176666
TPC-DS 79 0 4 39 197 1819 4066 1 4 41 170 5036 6111 838490 427822 1903781 3289301 3869664 3254954 2834858

Table 1: Throughput comparison of re-evaluation and incremental maintenance in PostgreSQL and recursive incremental maintenance in
generated C++ code for different batch sizes (in tuples per second).

APPENDIX
A. QUERY LANGUAGE

Here, we revisit the query language from our previous work [22].
The language uses algebraic formulas to define queries (views) over
generalized multiset relations. Valid queries result in relations with
finite support, and because the tuples in a relation are unique, we
can interpret query results as maps (dictionaries) with tuples being
the keys and multiplicities being the values.

We first present a fragment of the language sufficient for express-
ing flat queries with aggregates.

• Relation R(A1,A2, ...) represents the contents of a base table.
It defines a mapping from every unique tuple of the relation to
its multiplicity. The SQL equivalent is SELECT A1, A2, ...,
COUNT(*) FROM R GROUP BY A1, A2, ..., modulo the aggre-
gate value, which is now part of the multiplicity.

• Bag union Q1 +Q2 merges tuples of Q1 and Q2, summing up
their multiplicities.

• Natural join Q1 ./ Q2 matches tuples of Q1 with tuples of Q2 on
their common columns, multiplying the multiplicities.

• Sum[A1,A2,...]Q serves as multiplicity-preserving projection. The
SQL equivalent is a group-by SUM(1) aggregate, except that the
aggregate value is stored inside the multiplicity of the group-by
tuples.

• Constant c can be interpreted as a singleton relation mapping the
empty tuple to the multiplicity of c. The empty tuple joins with
any other tuple.

• Value f (var1,var2, . . .) is an interpreted relation defining a map-
ping from tuple 〈var1,var2, . . .〉 to its multiplicity determined by

f (var1,var2, . . .). Constant c is a special case of a value term.
Value terms are valid only if all variables are bound at evalua-
tion time. For example, expression A has a free (unsafe) vari-
able, thus it is invalid, while expression R(A,B) ./ A has finite
support. Note that the latter expression corresponds to the SQL
query SELECT A, B, SUM(A) FROM R GROUP BY A, B.

• Variable assignment (var :=value) defines a singleton relation
mapping a single-column tuple with the indicated value to a mul-
tiplicity of 1. Multiple assignments can be joined together to
construct an arbitrary wide tuple.

• Comparison (value1 θvalue2) is an interpreted relation where
each tuple has a multiplicity of either 0 or 1 depending on the
truthfulness of the boolean predicate. Joining an expression with
a comparison filters out tuples that do not satisfy the predicate by
setting their multiplicity to 0; the multiplicities of the matching
tuples remain unchanged.

To support queries with nested aggregates, the query language
generalizes the assignment operator to take on arbitrary expres-
sions instead of just values. Then variable assignment (var :=Q)
defines a finite-size relation containing tuples of expression Q with
non-zero multiplicities extended by column var holding that mul-
tiplicity. Each output tuple has the multiplicity of 1. Expression Q
may be correlated with the outside as usual in SQL.

B. SINGLE-NODE EXPERIMENTS
In this section, we provide more single-node experimental re-

sults, including a comparison of recursive incremental view main-
tenance in DBToaster and re-evaluation and classical incremental
view maintenance in PostgreSQL.

0.25

0.5

1

2

4

8

16

32 64 128 256 512 1024

Ba
tc
h	
pr
oc
es
sin

g	t
im
e	
(s
ec
)

Number	of	workers

50M 100M 200M 400M

(a) Q1

8

16

32

64

128

16 32 64 128 256 512

Ba
tc
h	
pr
oc
es
sin

g	t
im
e	
(s
ec
)

Number	of	workers

50M 100M 200M 400M

(b) Q2

0.5

1

2

4

8

16

32

32 64 128 256 512 1024

Ba
tc
h	
pr
oc
es
sin

g	t
im
e	
(s
ec
)

Number	of	workers

50M 100M 200M 400M

(c) Q4

8

16

32

64

128

256

16 32 64 128 256 512

Ba
tc
h	
pr
oc
es
sin

g	t
im
e	
(s
ec
)

Number	of	workers

50M 100M 200M 400M

(d) Q8

8

16

32

64

128

256

16 32 64 128 256 512

Ba
tc
h	
pr
oc
es
sin

g	t
im
e	
(s
ec
)

Number	of	workers

50M 100M 200M 400M

(e) Q10

1

2

4

8

16

32

64

32 64 128 256 512 1024

Ba
tc
h	
pr
oc
es
sin

g	t
im
e	
(s
ec
)

Number	of	workers

50M 100M 200M 400M

(f) Q11

0.25

0.5

1

2

4

8

16 32 64 128 256 512

Ba
tc
h	
pr
oc
es
sin

g	t
im
e	
(s
ec
)

Number	of	workers

50M 100M 200M 400M

(g) Q12

1

2

4

8

16

32

64

32 64 128 256 512 1024

Ba
tc
h	
pr
oc
es
sin

g	t
im
e	
(s
ec
)

Number	of	workers

50M 100M 200M 400M

(h) Q13

0.25

0.5

1

2

4

16 32 64 128 256 512

Ba
tc
h	
pr
oc
es
sin

g	t
im
e	
(s
ec
)

Number	of	workers

50M 100M 200M 400M

(i) Q14

0.5

1

2

4

8

16 32 64 128 256 512

Ba
tc
h	
pr
oc
es
sin

g	t
im
e	
(s
ec
)

Number	of	workers

50M 100M 200M 400M

(j) Q19

1

2

4

8

16

32

32 64 128 256 512 1024
Ba
tc
h	
pr
oc
es
sin

g	t
im
e	
(s
ec
)

Number	of	workers

50M 100M 200M 400M

(k) Q22

Figure 11: Strong scalability of the incremental view maintenance of TPC-H queries for different batch sizes (in million of tuples).

Batch size Single 1 10 100 1000 10000 100000

instructs 19,633 145,670 33,407 17,199 15,750 15,425 15,868
I1 misses 2.0 6.8 3.5 2.0 1.8 1.8 1.4

LLC refs 485 683 533 424 402 578 668
LLC misses 369 562 416 302 258 302 316

Table 2: Cache locality of TPC-H Q3. All numbers are in millions.

B.1 Comparison with PostgreSQL
Table 1 compares the throughput of recursive incremental view

maintenance using our generated C++ programs and re-evaluation
and classical incremental view maintenance using PostgreSQL for
TPC-H and TPC-DS queries. These numbers demonstrate that our
view maintenance and code specialization techniques outperform,
in all but few cases, the database system by orders of magnitude,
even when processing large update batches.

B.2 Cache Locality
In this experiment, we measure the cache locality of generated

programs for single-tuple and batched incremental processing on a
10GB input stream. We use perf 3.13.11 to monitor CPU perfor-
mance counters during the view maintenance of TPC-H Q3. We
start profiling after loading the streams and forming input batches.
Table 2 presents the obtained results.

The numbers of retired instructions of the single-tuple and batched
programs roughly correspond to the normalized throughput num-
bers from Figure 7. The batch processing with size 1 executes al-
most 10x more instructions than with size 1,000, which translates
into a 4.3x slowdown in running time. The generated programs ex-
hibit low numbers of L1 instruction cache misses compared to the
total number of instructions. These results are indicators of good
code locality of our view maintenance code.

0.0

1.0

2.0

3.0

4.0

5.0

6.0

Q3 Q7 Q19 Q27 Q34 Q42 Q43 Q46 Q52 Q55 Q68 Q73 Q79

No
rm

al
ize

d	
Th

ro
ug
hp

ut

BATCH	SIZE	=	1 BATCH	SIZE	=	10 BATCH	SIZE	=	100
BATCH	SIZE	=	1,000 BATCH	SIZE	=	10,000 BATCH	SIZE	=	100,000

Figure 12: Normalized throughput of TPC-DS queries for different
batch sizes with single-tuple execution as the baseline.

The second block shows the number of caches references and
misses that reached the last level cache. Extremely large and small
batch sizes have negative effects on cache locality. Relatively high
numbers of cache misses are expected given that in this streaming
scenario most input data passes through the query engine clearing
out the cache and without being referenced again. Batched process-
ing with size 1,000 exhibits the lowest number of cache references
and cache misses, which corresponds to the result from Figure 7.

B.3 TPC-DS Benchmark
Figure 12 shows the normalized throughput of batched incre-

mental processing of a subset of the TPC-DS queries for different
batch sizes using the tuple-at-a-time performance as the baseline.
These results show that single-tuple processing of TPC-DS queries
often outperforms batched processing due to simpler maintenance
code. Preprocessing input batches to filter out irrelevant tuples and
remove unused columns can bring up to 5x better performance for
four TPC-DS queries from our workload.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11

Jobs 1 1 1 1 2 1 3 2 3 1 2
Stages 1 3 3 2 5 1 6 6 7 3 4

Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22

Jobs 1 2 1 1 3 1 1 1 1 2 2
Stages 2 4 2 3 5 2 3 2 3 4 3

Table 3: View maintenance complexity of TPC-H queries in Spark.

C. DISTRIBUTED EXPERIMENTS
In this section, we present more scalability results of the TPC-

H queries, shown in Figure 11, and provide additional information
about our distributed incremental view maintenance approach.

C.1 Query Complexity in Spark
Generated Spark code runs a sequence of jobs in order to perform

incremental view maintenance. Each job consists of multiple stages
(e.g., map-reduce phases), and each stage corresponds to one block
of distributed statements. In Table 3, we show the complexity of
the TPC-H queries in Spark expressed as the number of jobs and
stages necessary to process one batch of updates to base relations,
assuming the partitioning strategy described in Section 6.2. The
structure of each query determines the number of jobs and stages.

C.2 Optimization Effects
Figure 13 shows the effects of our optimizations from Section 4

on the distributed incremental view maintenance of TPC-H Q3 for
input batches with 200 million tuples. We consider the naive imple-
mentation with all optimizations turned off; then, we include sim-
plification rules for location transforms to minimize their number,
followed by enabling the block fusion algorithm. Finally, we apply
CSE and DCE optimizations to eliminate trigger statements doing
redundant network communication during program execution.

Our results show that applying simplification rules can reduce
the median latency of incremental processing of Q3 by 35% when
using 400 workers. Grouping together trigger statements using
the block fusion algorithm reduces the number of stages neces-
sary to process one input batch, which enables scalable execution.
Eliminating redundant network communication statements further
decreases the latency by 11% for 400 workers. The final opti-
mized program relies on the Spark framework to pipeline process-
ing stages, bringing up to 22% performance improvements.

2

4

8

16

32

64

128

16 32 64 128 256 512

Ba
tc
h	
pr
oc
es
sin

g	t
im
e	
(s
ec
)

Number	of	workers

NAÏVE	(O0)
SIMPLIFICATIONS	+	O0	(O1)
BLOCK	FUSION	+	O1	(O2)
CSE	+	DCE	+	O2	(O3)
OPTIMIZED

Figure 13: Optimization effects on the distributed incremental view
maintenance of TPC-H Q3 for batches with 200 million tuples.

C.3 Block Fusion Algorithm
Here, we present the block fusion algorithm described in Sec-

tion 4.3.2 for reordering and merging together consecutive state-
ment blocks with the goal of minimizing their number.

def commute(s1: Stmt , s2: Stmt): bool =
!s2.rhsMaps.contains(s1.lhsMap) &&
!s1.rhsMaps.contains(s2.lhsMap)

def commute(b1: Block , b2: Block): bool =
b1.stmts.forall(lhs =>

b2.stmts.forall(rhs => commute(lhs, rhs)))

def mergeIntoHead(hd: Block , tl: List[Block]) =
tl.foldLeft (hd,Nil) { case ((b1,rhs),b2) =>

if (b1.mode == b2.mode &&
rhs.forall(b => commute(b,b2)))

(Block(b1.mode , b1.stmts++b2.stmts), rhs)
else (b1, rhs :+ b2) }

def merge(blocks: List[Block]) = blocks match {
case Nil => Nil
case hd::tl =>

val (hd2,tl2) = mergeIntoHead(hd,tl)
if (hd == hd2) hd::merge(tl)
else merge(hd2::tl2) }

