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Abstract—Localization is a research area that, due to its
overarching importance as an enabler for higher level services,
has attracted a vast amount of research and commercial inter-
est. For the most part, it can be claimed that GPS provides
an unparalleled solution for outdoor tracking and navigation.
However, the same cannot yet be said about positioning in GPS-
denied or challenged environments, such as indoor environments,
where obstructions such as floors and walls heavily attenuate
or reflect high frequency radio signals. This has led to a
plethora of competing solutions targeted towards a particular
application scenario, yielding a fragmented solution landscape.
In this paper, we present a fresh approach to 3-D positioning
based on the use of very low frequency (kHz) magneto-inductive
(MI) fields. The most important property of MI positioning is
that obstacles like walls, floors and people that heavily impact the
performance of competing approaches are largely “transparent”
to the quasi-static magnetic fields. MI has a number of challenges
to robust operation that distort positions, including the presence
of ferrous materials and sensitivity to user rotation. Through
signal processing and sensor fusion across multiple system layers,
we show how we can overcome these challenges. We showcase
its highly accurate 3-D positioning in a number of environments,
with positioning accuracy below 0.8 m even in heavily distorted
areas.

Index Terms—Localization, Indoor, Magnetic fields, Magnetic
modulators, Distortion, Design.

I. INTRODUCTION

IN this paper, we present a fresh approach to positioning

based on a technology that is inherently suited to the

problem of operation in complex and cluttered environments.

Key to this is the use of very low frequency (kHz) magneto-

inductive (MI) vector fields that allow for 3-D positioning be-

tween a single transmitter-receiver pair. Secondly, the most im-

portant property of MI positioning is that obstacles like walls,

floors and people that heavily impact the performance of high

frequency radio, sound and light based location approaches

are largely “transparent” to the quasi-static magnetic fields.

In addition, due to the extremely long wavelengths (km),

multipath is not a concern. Thus, the inherent properties of

these fields neatly solve the two main challenges (attenuation

and multipath) faced by existing technologies.

Put together, these features of 3-D single transmitter po-

sitioning and excellent signal penetration result in a shift in

the conventional approach to installing a positioning system,

Manuscript received August 15, 2014; revised December 5, 2014, January
21, 2015; accepted February 10, 2015. The authors would like to thank EPSRC
for funding this research (Grant ref. EP/L00416X/1 Digital Personhood: Being
There: Humans and Robots in Public Spaces (HARPS)).

commanding a unique vantage point. The current approach to

positioning is to install a number of devices, typically spread

within the area of interest, elevated to provide good coverage.

For most systems, a minimum of four non-colocated position-

ing devices are required to provide 3-D positioning. In many

ways, the user has to place positioning devices in locations

which are desirable from the point of view of the location

system, rather than convenient from the user’s standpoint. The

perspective we adopt is that a positioning system should be a

service, invisible, hidden away in a cupboard or a basement,

just like any other service like heating or plumbing.

Although MI has a number of advantages that set it apart

from existing techniques, it also presents some unique chal-

lenges that require careful system level design, from the

physical through to the application layer. We believe that

these challenges prevent its widespread use and adoption.

In particular, real systems suffer from two major sources

of distortion. The first is caused by ferrous materials in the

environment which act to bend and concentrate flux lines.

This leads to inaccurate position estimation. To address this,

we present a novel technique to automatically detect these

distortions based on the measured channel and reject position

estimates with large errors. The second source of distortion is

due to user dynamics, as rotation of the receiver smears the

recovered magnetic signal. With the aid of short-term inertial

measurements, we compensate for change in the receiver’s

orientation whilst receiving a transmission. Furthermore, we

emphasize that unlike many sensor fusion localization tech-

niques in the literature using Bayesian filters, we employ

fusion at multiple functional layers such as: raw magnetic

signal rotation correction using inertial data, automatic sensor

selection depending on the environment, and particle filtering

in the final stage. In particular, the following specific contri-

butions are made:

1. Full design, implementation and optimization of a robust

magneto-inductive positioning system

2. A rotation stabilization technique to compensate for re-

ceiver rotation, and appropriately correct the distorted

magnetic signals using inertial measurements

3. We propose a novel method to automatically detect field

distortions due to the environment and switch to an

appropriate operation mode

4. Using a single transmitter, in outdoor and many undis-

torted indoor environments, we demonstrate 3-D position-

ing with a mean accuracy of 0.3 m, over a 20 m diameter
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Fig. 1. The MagLoc system: A triaxial transmitter generates low frequency
magneto-inductive fields which can be arbitrarily oriented. A mobile MI
receiver detects these fields, and with the aid of an IMU, determines accurate
3-D positions.

sphere

5. When operating in heavily distorted environments, we can

attain mean positioning accuracy below 0.8 m through the

use of our multi-level fusion approach

The rest of our paper is organized as follows: Section II

presents the high-level architecture of the proposed MagLoc

system. Section III describes the multiple-input multiple-

output (MIMO) magnetic channel. The related signal pro-

cessing algorithms are provided in Section IV. In Section V,

we show how 3-D localization can be achieved in different

environments. Section VI describes our hardware/software im-

plementation used to obtain the experimental results. Section

VII provides extensive experiments carried out in five different

environments, one outdoor, and four indoor. A survey of the

related work is provided in Section VIII. Section IX concludes

the paper.

II. MAGLOC SYSTEM ARCHITECTURE

The overall objective is to develop a robust 3-D positioning

system that is able to operate in a number of challenging

environments with sub-meter accuracy. The MagLoc system

itself is shown in Fig. 1. It comprises a triaxial transmitter (TX)

which generates low frequency magneto-inductive (MI) fields

which can be arbitrarily oriented in 3-D space, using three

orthogonal coils. The mobile receiver has triaxial receiving

coils which detect the weak quasi-static magnetic fields and

determines, with the aid of an inertial measurement unit

(IMU), the position of the receiver.

In this section, we provide an overview of the main system

components, and their functional role. In particular, we opti-

mize the signal processing chain in the receiver in order to

reliably extract weak signals, in the presence of background

noise. The high-level receiver (RX) architecture is shown in

Fig. 2. It contains three main components (corresponding to

the light-green boxes in the figure): Sensors block, MI signal

processing block, and Localization block.

Within the Sensors block (see Fig. 2), three mutually

orthogonal coils act as MI sensors measuring a 3-D-modulated

magnetic vector field in a particular location. To cope with

receiver dynamics, an inertial measurement unit (IMU) is also

incorporated within the sensors block, which serves three main

purposes. i) Rotation stabilization: The IMU provides a stable

RX navigation frame in the short term over a few seconds,

such that the magnetic signals sensed in each RX coil are

unaffected by the fast changes in the user orientation during

the transmission of a frame. ii) Sanity check of the MI-based

estimated 3-D position displacements over short time periods;

iii) Tracking the receiver position over longer time periods

using a particle filter; we emphasize the fact that the sensor

fusion is done at three different functional layers, not just in

the final filtering stage, as commonly done in the literature.

The MI signal processing block (see Fig. 2) contains three

different sub-blocks: Rotation stabilization, 3-D correlator,

and Channel matrix estimation sub-block. The MI signals

are passed through a correlator (Fig. 2) which uses short,

low power codes for close range navigation and long, high

power codes for long distance positioning. Based on the

correlator output, the channel matrix is estimated along with

the corresponding magnetic RSSI (received signal strength

indicator).

The Localization block (see Fig. 2) consists of several

sub-blocks which will be explained in detail throughout the

paper. The novel distortion detection sub-block automatically

determines whether the environment acts similarly to free-

space, or if it acts to distort the magneto-inductive field. Note

that even in metal rich environments, not all measurements are

distorted. This property allows us to use sporadic non-distorted

3-D position estimates to calibrate and compensate the system.

Based on its decision, the system switches to an appropriate

operation mode: 1) “undistorted environment” (lower branch

in a white box in Fig. 2), or 2) “distorted environment” (upper

branch in a white box in Fig. 2). The two operation modes

are briefly described below.

1) In an undistorted environment, the channel matrix can

be directly used to derive the precise 3-D position of the

receiver. However, in order to double check the reliability of

the position, an IMU-based sanity check is included i.e., to

determine whether the relative motion predicted by the inertial

data over a few seconds is similar to the one predicted by the

magnetic data.

2) In order to make the system more flexible, it also needs

to operate in metal rich environments such as inside reinforced

steel buildings. It must be noted that although an environment

may frequently distort the channel, there are sporadic locations

where distortion is low and these can be used as periodic

3-D “anchors” to compensate for IMU drift. Although the

elements of the channel matrix may be distorted, as large

metal objects act to concentrate the flux lines, changing their

direction, the relationship between range and energy can be

accurately modeled as a logarithmic relationship. The range

estimates are still very reliable, as it will be shown later.

A particle filter (PF) is used in the final fusion stage in

order to track the user’s location. When the channel conditions

are poor, the PF fuses magneto-inductive RSSI-based range

estimates with inertial data, otherwise it fuses full 3-D position

estimates with inertial data.



3

MI triaxial 

acquisition

Rotation

stabilization

3-D 

correlation
Channel matrix

estimation 
Distortion

detection

3-D Position

estimation

Range estimation

3-D position

inertial data

range

undistorted

environment

RSSI

distorted

environment

IMU

yes

no

Sensors MI signal processing Localization

Path-loss

model Particle

�lter

3-D trajectory

IMU-based

sanity check

Fig. 2. Receiver architecture design, showing how MI and IMU data are processed in order to achieve real-time 3-D tracking.

III. MAGNETO-INDUCTIVE CHANNEL

In this section, we introduce the 3-D channel model, which

is used to predict the magnetic field at a particular location,

under the assumption of operation in a distortion-free envi-

ronment. We apply the magnetic dipole equations [1] to a

TX-RX pair equipped with three mutually orthogonal coils

(for more details, see also [2]). Consider a triaxial transmitter

located at the origin of a North-East-Down coordinate system,

(x, y, z) = [0, 0, 0]T . Let the triaxial RX position in 3-D be

described by the position vector r = [xr, yr, zr]
T in the same

TX frame. The TX-RX range is r = ‖r‖2. TX is sequentially

energized in each axis, i.e., a signal is transmitted on the

X-axis, then the Y , and finally, the Z . The corresponding

magnetic moments are:

mi = NTXITXATXei, (1)

where NTX is the number of turns of the transmitter coil, ITX

is the transmitter coil current, ATX is the cross-sectional area

of the transmitter coil, and ei, i = 1, 2, 3 are the excitation

versors corresponding to the standard Euclidean basis vectors.

Given an arbitrary magnetic moment m, the magnetic flux

density at an arbitrary position r can be described in the TX

frame using the magnetic dipole equations [1]:

B(r,m) =
µTX

4π

[3r(mT
r)

r5
−

m

r3

]

=
µTX

4πr3

[3rrT

r2
− I3

]

m,

(2)

where µTX is the magnetic permeability of the TX coil core,

I3 is the 3 × 3 identity matrix, and (·)T denotes the matrix

transpose operation. For each value of the magnetic moment

mi, i = 1, 2, 3 in Eq. (1), we obtain a vector bi = B(r,mi),
still expressed in the transmitter frame.

Let Ω ∈ SO(3) be an orthogonal matrix describing the

orientation of the receiver frame with respect to the transmitter

frame. Grouping the three column vectors bi in a matrix

B1,2,3 = [b1,b2,b3], the magnetic vector field can be

described in the receiver frame as:

ΩB1,2,3 =
µTXNTXITXATX

4πr3
Ω

[3rrT

r2
− I3

]

[e1, e2, e3]
︸ ︷︷ ︸

I3,

(3)

The vector of voltages induced in each of the three RX axes

due to the excitation ei at TX is

vi = 2πfµRXNRXARXΩbi, (4)

where f is the frequency of the excitation, µRX is the magnetic

permeability of the coil core, NRX is the number of turns,

and ARX is the area of the RX coil. The input excitation

corresponds to a space-time code whose coding matrix is I3

(see Eq. (3)). Therefore, we can define the 3×3 MIMO channel

matrix whose ith column is the vector vi in Eq. (4), as follows:

S , [v1, v2, v3] = 2πfµRXNRXARXΩB1,2,3. (5)

The element sj,i of matrix S (which from now on we will call

the channel matrix) describes the voltage induced from the ith
TX coil to the jth RX coil. It can be seen that the detected

signals are a function not only of the relative location between

transmitter and receiver, but also the relative orientation be-

tween the transmitter and receiver frames. However, note that

the orientation of the receiver is an orthogonal transform, i.e.

it preserves the Frobenius norm (overall power) in the signal.

We show later that the channel Gram matrix defined as

C , S
T
S (6)

is orientation invariant, and in an undistorted environment, can

be used to estimate the 3-D position.

IV. MI SIGNAL PROCESSING

In this section, we explain the MI signal processing block

(see Fig. 2) and its related estimation techniques. We follow a

similar approach to magnetic vector modulation in [3], where

each TX axis generates a BPSK encoded signal sequentially.

However, unlike this approach, we do away with the initial

preamble and carrier tone and treat the message in its entirety

as a 3-D magnetic vector signal to be correlated, i.e., each

symbol is now regarded as a “chip” instead of a bit. By not

treating each axis separately, we are able to yield gains in

detecting weak signals as the loss of a single bit in the frame

will not cause the loss of the whole frame. Equally well, if

a single axis, either on the transmitter or receiver, is subject

to strong background noise, it is still possible to recover the

frame from the remaining two axes, allowing for estimation

of range even in noisy environments. In this section, we first

describe the novel rotation stabilization technique, followed

by the correlation estimator and lastly the channel matrix

estimation. To allow a multi-transmitter operation, we employ

a hybrid CDMA/FDMA transmission.
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A. IMU-based Rotation Stabilization

One of the issues of using a correlation decoder is that it

relies on the channel maintaining coherence over the period

of the signal to be correlated. Although the channel itself is

virtually stationary and is not subject to fading due to the

absence of multipath, rotation of the receiver whilst receiving

a transmitter frame causes the signal to smear among the

receiver axes, as Eq. (3) shows. This can result in poor channel

estimates, as energy will be shared between channels over

the duration of the transmission. The Gram matrix C (6) is

orientation invariant as long as the channel remains stationary

over the frame duration. However, the RX rotation perturbs the

off-diagonal coefficients of C, which are estimated based on

the entire packet and used to derive the 3-D position. More

problematic is if the rotation results in a phase reversal of

the carrier, as this will garble the channel estimation, both in

terms of magnitude, but also in terms of relative sign. Thus,

although using correlation decoding provides processing gain,

boosting weak signal detection, it requires that the receiver is

kept stationary over the transmission. This is undesirable from

the perspective of providing responsive and accurate mobile

tracking. To tackle this issue, we exploit the on-board IMU

to perform a rotational correction over the duration of the

transmitter frame. As frames are transmitted at equal time

intervals, it is possible to learn the timing using a delay-locked-

loop (DLL), to indicate the expected time instant of the start

of a frame. Over a short-time period (up to a few seconds),

an IMU can provide an excellent estimate of its orientation

relative to a starting point, before drift starts to become a

dominating concern. Informed by the DLL, at the predicted

start of the frame the orientation is set to identity matrix.

Note that this is not the absolute orientation of the sensor

frame in global coordinates, as this would require accurate

measurements of compass heading which is notoriously inac-

curate when operating in metal rich environments. A Kalman

Filter is then used to estimate the subsequent rotation of the

sensor frame, relative to the starting orientation, outputting a

matrix Ωn at each symbol time instance n. This is then used

to correct the received voltage vectors vi (4), shifting each

measurement back to a stable reference frame, i.e., Ωnvi.

Fig. 3 shows the fluctuations of off-diagonal coefficients of

the Gram matrix C = S
T
S before and after the user rotation

compensation. The magnitude of coefficients ci,j of C decays

with the inverse 6th power of distance, thus exhibiting a very

high dynamic range. For illustrative purposes, we compress

their range as follows: Ci,j = sign(ci,j)|ci,j |1/6, i ≤ j ≤ 3.
We may notice in Fig. 3 that the variation of the coefficients

has been reduced. In our experiment, the receiver was kept

at a fixed location while performing two full rotations on the

(x, y)-plane. We would like to point out that Ci,j may also

serve as rotation invariant fingerprints.

B. 3-D Signal Correlation

Typical indoors sources of electromagnetic noise include

electric appliances (monitors, air conditioning, lighting equip-

ment, microwave oven, vacuum cleaner, etc.) that generate
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Fig. 3. IMU-based rotation stabilization. The elements of C are invariant w.r.t.
user orientation if and only if the channel remains constant during one frame.
Otherwise, the rotation will cause a periodic fluctuations which need to be
corrected.

high-order harmonics. Due to the fast field decay, the in-

terference decreases significantly already one meter away

from the source [4]. We also observed experimentally that

the generated harmonics are unnoticeable around the carrier

frequency of 2.5 kHz, this being one of the reasons why

we chose this operating frequency. Given a certain level of

background noise, there are two ways to increase detection

range - transmit the same signal using a greater power or

transmit at the same power output for a longer period. We

adopt the latter approach, using 3-D direct sequence spread

spectrum (DSSS) coding to provide processing gain, trans-

mitting chips on different transmitter axes, much like MIMO

diversity. The major difference with traditional MIMO is that

the channel is purely real and does not have any multipath,

due to near-field quasi-static operation [5]. In practice, the

dynamic range of the signal is such that saturation occurs

nearby the transmitter. In order to overcome this challenge,

we use two different power levels within the same transmitted

frame. The correlator is a matched filter and a maximum

likelihood estimator. In addition, by broadening the spectrum,

the impact of narrowband interferers, such as mains harmonics

(e.g. near power transformers) is greatly reduced. In extreme

EM interference environments, such as transforming power

stations, special care in choosing the carrier frequency may be

required. Our software defined magnetic transceiver provides

flexibility in terms of carrier frequencies and modulation

techniques, thus enabling application-specific designs.

C. Channel Matrix Estimation

Given a set of received signals corrupted by noise, the aim of

this block is to provide an accurate estimation of the channel

between the transmitter and receiver. Let PTX be a known

N × 3 sequence transmitted over the three transmitter axes,

and PRX its received version corrupted by Gaussian noise (we

have verified that this assumption holds). The least-squares

estimate of the channel matrix (which in this case is also
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Maximum Likelihood estimate) is

Ŝ = [P†
TXPRX]

T , (7)

where (·)† denotes the Moore-Penrose pseudoinverse.

V. LOCALIZATION

In this section, we explain the Localization block in Fig. 2,

and its main sub-blocks. The novelty of our system is that we

fuse the MI and IMU sensors at various functionality layers,

and not just in the filtering stage, as commonly done in the

literature. First, the inertial data is used to correct the raw mag-

netic signal affected by the user’s change of orientation during

the frame transmission. Second, we automatically detect the

environment distortions, and discard unreliable data. A sanity

check compares the estimated position displacements from

MI and IMU measurements to ensure reliable measurements.

Depending on these decisions, we treat the sensor outputs

differently. Thirdly, these outputs are fed to the final fusion

stage which undertakes traditional filtering and fusion, in order

to estimate the user’s trajectory. We first discuss our novel

distortion detection technique which predicts the reliability of

the 3-D position estimates. If low distortion is detected, then

a full 3-D position is computed. However, if high distortion

is detected, then the TX-RX range is used instead. Lastly, the

fusion block integrates measurements from the IMU and the

MI to determine an accurate position of the receiver.

A. Distortion detection

Distortion is introduced by metallic objects which alter the

spatial distribution of the magnetic field. This manifests as

a shift in the relative energy among axes, as compared to

the free-space. The purpose of this sub-block is to determine

whether a redistribution of energy has indeed taken place. It

should be noted that although an environment may be distort-

ing in general, it typically does not distort all measurements

and there are sporadic positions where distortion is negligible.

In order to select the appropriate operation mode of the system,

it is necessary to automatically detect whether or not the

receiver is operating within a distorted environment. Based

on Eqs. (3) and (5), we can write

S = c
︸︷︷︸

range-dependent

Ω

[3rrT

r2
− I3

]

︸ ︷︷ ︸

range-independent

. (8)

where c , µTXµRXNTXNRXITXATXARXf/(2r
3) is a scal-

ing factor that is inversely proportional to the cube of the

range (see Eqs. (3) and (4)). With this definition of c, we are

able to separate Eq. (8) in range dependent and independent

parts. Since the range r = ‖r‖, the factor Ω[3rrT /r2 − I3] is

range-independent (only depends on the 3-D direction of r, not

on its norm). We first get rid of the arbitrary RX orientation

Ω ∈ SO(3) as follows. Let us consider the channel Gram

matrix C = S
T
S. Using Eq. (8), it can be seen that

C = c2
[3rrT

r2
− I3

]T

Ω
T
Ω

︸ ︷︷ ︸

I3

[3rrT

r2
− I3

]

, (9)

and that the sensor orientation has been removed. In an

undistorted environment, Eq. (9) is satisfied with high fidelity.

In distorted environments, we do not require this equation

to be satisfied. Instead, we exploit it in order to detect

whether the field is distorted or not. The orientation invariance

we are interested in holds in any environment, for arbitrary

orientations of the sensor frame. In the case of undistorted

signals, the full channel matrix S may be used directly to

estimate the 3-D position, as it will be shown in Section V-B.

Recall that the MIMO channel matrix S in Eq. (5) describes

the voltages induced from the TX triaxial coil into the RX

triaxial coil. Looking at the Gram matrix C = S
T
S from

an energy transfer perspective, the quantity trace{C} = ‖S‖2F
corresponds to the total energy received by all receiver coils,

from all transmitter coils. In Eq. (9), notice that the eigenvalues

of C are {4c2, c2, c2} (the maximum eigenvalue is four times

larger than the remaining two, as expected from the dipole

equation). In order to get rid of the range-dependent scaling

factor c, we divide by the average of the eigenvalues (which

is trace{C}/3 = 2c2), and we obtain the following scaled

eigenvalue vector

λ =
[

2,
1

2
,
1

2

]T

(10)

In an undistorted environment, the vector λ remains constant

regardless of the locations and orientations of transmitter and

receiver. Therefore, any deviations from this may be used

to indicate the presence of distortions in the environment.

Distortions are caused by large amounts of metal, typically

steel mesh used in concrete reinforcement, which causes the

channel model to become inaccurate at predicting the received

signals. In the presence of metallic objects, the coupling

of each transmitter coil to each receiver coil is different

compared to an undistorted environment. Consequently, the

energy transfer matrix S may differ substantially. The different

mutual coupling is reflected in how the eigenvalues of C are

spread, i.e., how the energy has “moved” from one axis to

another. In order to quantify the change in the eigenvalues

spread, we define the following criterion that penalizes the

departure of the estimated scaled eigenvalue vector λ̂ from

the theoretical free-space value λ given in Eq. (10)

J (λ̂) =
‖λ̂− λ‖2
‖λ‖2

, (11)

where λ̂ corresponds to the eigenvalues of estimated Gram

matrix Ĉ = Ŝ
T
Ŝ sorted in descending order, and divided by

their average. If J (Eq. (11)) exceeds a predefined threshold a,

then the environment is considered to be distorted. A suitable

threshold can easily be determined experimentally by taking

position measurements in various environments, but values of

a < 0.1 generally show good performance. Alternatively, a

soft decision can be used to inform the probabilistic fusion

stage.

B. Operation in low distortion conditions

Many environments have low concentrations of ferrous

material and in these cases, the theoretical model of the

magnetic field vector distribution very closely agrees with real
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measurements. These environments include outdoors, under-

ground, underwater, and some indoor environments. In these

cases, the channel matrix contains sufficient information to

uniquely position the receiver in 3-D, subject to a hemispher-

ical ambiguity. This is due to the inherent symmetry of the

magnetic fields, leading to two possible estimated positions

(x̂r, ŷr, ẑr), or (−x̂r,−ŷr,−ẑr) [2, Ch. 13]. This can easily be

removed at the application layer, with the aid of a map, inertial

measurements or signals from two (or more) transmitters. In

this section, we show how magneto-inductive positioning can

be used to derive the position of a triaxial receiver in 3-D,

using signals from a triaxial transmitter.

1) Range Estimation : The latter factor in Eq. (8) depends

only on the versor r/‖r‖ and therefore, the Frobenius norm

of S defines the received power, which in free-space, is

proportional to the inverse cube of the range, i.e., ‖S‖F ∝ r−3.

Since rotations preserve the Frobenius norm, using triaxial

coils both at TX and RX makes the range invariant w.r.t. the

relative orientation of TX and RX. We define the overall RSSI

(Received Signal Strength Indicator) measured in dB as

ρ , 20 log10 ‖S‖F. (12)

The law describing the RSSI vs. distance in free-space is

ρ = ρ0 − 60 log10(r/r0), (13)

where ρ0 is the RSSI measured at some reference distance r0,

and can be determined by calibration. Thus, the range between

transmitter and receiver can be estimated as

r̂ = r010
(ρ0−ρ)/60. (14)

Since the near-field channel model is characterized and dom-

inated by an inverse cube roll-off, the field strength decays at

a rate of 60 dB/decade [5] i.e. a ten-fold increase in distance

results in a thousand-fold reduction in signal strength. For

some applications, such as secure communication, the rate of

attenuation is a desirable property. For positioning, rapid decay

is a mixed-blessing. On the one hand, it limits the operation

range, which requires careful signal and hardware design. On

the other hand, the steep relationship between strength and

distance means that a small change in distance results in a

large and measurable change in signal strength, yielding high

accuracy. This is demonstrated by our experiment in Section

VII-B.

2) 3-D position estimation : In order to determine the po-

sition vector r, we propose an elegant matrix-based technique

that exploits the rank-one term rr
T /r2 in Eq. (8). The modulus

r = ‖r‖ (the range) has been estimated by now (Eq. (14)),

we only need to determine the direction of r in 3-D. Let

C = UDU
T be the eigendecomposition of the Gram matrix

(6). From Eq. (8), we obtain

r

‖r‖

r
T

‖r‖
=

1

3c
C

1/2
︸ ︷︷ ︸

UD1/2UT

+
1

3
I3
︸︷︷︸

UUT

= U

[ 1

3c
D

1/2 +
1

3
I3

]

U
T

(15)

which is a rank-one matrix. Consequently, the position versor

r/‖r‖ we are interested in corresponds to the maximal eign-

evector ûmax of the estimated Gram matrix Ĉ. Finally the 3-D

position vector can be written as

r̂ = r̂ûmax. (16)

C. IMU-based sanity check

In the short term (over a few seconds), the IMU provides

very reliable estimates of the position displacement. We take

advantage of this property in order to detect occasional failures

of the distortion detection algorithm, although the failure rate

is very low (as it will be seen in experiments). When the

displacement predicted by the MI-based positioning deviates

significantly from the displacement predicted by the inertial

sensors, we rely on the latter measurements. This way, we

prevent these bad position estimates from propagating through

to the final fusion stage (PF). Note that we still use the range

measurements, as these remain reliable.

D. Operation in Distorted Environments

When operating in environments characterized by an abun-

dance of metal, such as in typical steel-reinforced buildings,

the measured and predicted magnetic fields can vary greatly.

This is because metallic objects act as flux concentrators,

bending the field lines and degrading overall positioning

accuracy from tens of centimeters to over a meter. Thus, it

is necessary to calibrate the path-loss model which relates

total received signal energy to transmitter-receiver range, by

modifying Eq. (12), with the following

r̂ = r010
(ρ0−ρ)/(10α), (17)

where α is the estimated path loss exponent (α = 6 in

free-space) and r0 is the reference (offset) level. The two

values r0 and α may be estimated using linear regression

similarly to RF channel model. Our experiments show that MI

RSSI measurements exhibit much lower variance compared

to RF-based RSSI, thus much fewer measurements need to

be collected to obtain a reasonable model estimation. The

estimated range is used as an input to the final fusion block,

which is the particle filter.

E. Particle filter

Finally, a particle filter is employed to fuse the MI measure-

ments (range or position, depending on distortion detection)

with the inertial measurements, and to track the user location

over time. The likelihood of the position is inferred from the

magnetic measurements, whereas the user motion is predicted

from the inertial data using a pedestrian dead-reckoning (PDR)

algorithm.

PDR: Our RX includes a low-cost IMU, and therefore, the

double integration technique may lead to large trajectory drifts.

As we assume that the device is carried by a pedestrian, we

opted for an existing PDR algorithm [6] to detect the steps and

the heading of the user. The displacement vector is ∆xk =
[(d̂k+∆dk) cos(θ̂k+∆θk), (d̂k+∆dk) sin(θ̂k+∆θk),∆zk]

T .

Both the magnitude d̂k and the angle θ̂k of the estimated

horizontal displacement vector are assumed to be additively

affected by Gaussian noises, i.e., ∆dk ∼ N (∆dk; 0, σ
2
d),

and ∆θk ∼ N (∆θk; 0, σ
2
θ), respectively [6], where σ2

d is the
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variance of the estimated horizontal displacement magnitude,

and σ2
θ is the variance of the heading estimates. The vertical

displacement ∆zk = 0, unless a staircase is detected (for

details, see [7]). Then, ∆zk equals the stair height hs (which

can be determined from the floor map assuming that the floor

height and the number of stairs are known).

Prediction: The ith particle 3-D position x
i
k = [xi

k, y
i
k, z

i
k]

T

at time k is updated using the estimated displacement vector

∆xk from the inertial measurements as: xi
k+1 = x

i
k +∆xk.

Likelihoods: The weight of each particle is determined

by how much the position of this particle agrees with the

magnetic path-loss model. Specifically, the weight of the ith
particle is determined as wi

k = N (rik; r̂
p
k, σ

2
r) where rik is the

distance between the current particle and TX, r̂pk is the distance

estimated from the magnetic RSSI using the path-loss model,

and σ2
r is the variance of the distance estimates. When a 3-

D position estimate x̂k = [x̂k, ŷk, ẑk]
T is available, the angle

between the ith particle’s position vector and the estimated

position vector φ̂i
k = ∠(xi

k, x̂k) is assumed to be affected

by a zero-mean additive Gaussian noise. The corresponding

weights are wi
k = N (rik; r

p
k, σ

2
r)N (φ̂i

k ; 0, σ
2
φ), where σ2

φ is

the angular variance of the 3-D position estimates. The joint

likelihood function is the product of the range and angular

likelihoods corresponding to all transmitters in range.

Resampling and backward belief propagation: The resam-

pling process generates a new set of particles by replicating

particles in the current set in proportion to their weights. Our

particle filter also implements a backward belief propagation

mechanism, which not only updates the current state, but also

traces back the trajectory of a particle in the state space to

improve the localization in the past [8]. This is done by

replacing the history of a particle removed in the resampling

stage with the history of the surviving particle after the

resampling stage.

VI. IMPLEMENTATION

This section describes our particular hardware/firmware

and software implementation that was used to obtain the

experimental results. The focus of the design was to be able

to have a flexible platform for experimentation, and in many

ways resembles Software Defined Radio (SDR). This is made

especially easy by the low frequencies required.

Fig. 4. Magnetic transmitter (left) and receiver (right) equipped with triaxial
coils. In the RX, the three orthogonal coils (left of the board) are connected
to the analog stage (center of the board), and then to the digital stage (right).

A. Transmitter

The objective of the transmitter design is to make them as

simple and low-cost as possible, allowing them to be deployed

easily in an area without requiring any configuration or a

secondary communication channel like WiFi or Ethernet. Each

transmitter is equipped with three mutually orthogonal coils,

wound from 1 mm2 cross-section area insulated magnet wire

wrapped on a wooden 30 cm cube former. Each coil consists of

approximately 80 turns, and is loaded with a series capacitor.

The transmitted multi-axis BPSK signal (similar to [3]) is

generated by an STM32F4 micro-controller through direct

digital synthesis. The three modulated signals are amplified

using a 10 W audio amplifier (TDA2003), operating from a

12 V, 1.2 Ah battery, or from a mains transformer. Although

the peak current in the coil can easily exceed 1 A (due to the

resonant nature of the LC circuit), the supply current of the

entire TX is around 100 mA, which is very reasonable for a

static device. Each transmitter can be digitally tuned to operate

over a 500 Hz band, centered at the chosen resonant frequency

of 2.5 kHz. A symbol rate of 62 symbols/s was chosen, along

with a three axis frame length of 31 symbols. TX size can be

reduced without decreasing the transmission range. According

to Eq. (1), we need to increase either the number of turns in

the coil (more copper), or the input current (hence the power

consumption). Alternatively, we may increase the magnetic

permeability (e.g. using a ferrite core - see Eq. (2)). We opted

for a larger, but lighter (air core) and lower-power TX device.

Wiser designs are certainly possible.

We would like to point out the fact that our TX complies

with the ICNIRP guidelines for limiting exposure to time-

varying electro-magnetic fields [9]. The occupational RMS

value at 2.5 kHz is 1.2 × 10−4 T which is higher than the

maximum field generated by the TX coil (when user is located

on-axis, touching the coil). Moreover, the fast decay of the

field ensures that our TX is absolutely safe.

B. Receiver

The receiver was laid out on a 4 layer PCB, with two

ground planes to reduce analog noise. The analog and digital

sections were separated, each with their own ground planes.

The receiver is powered by a 3.7V 1.3 Ah Lithium Polymer

battery, which provides over 12 hours of operation. A picture

of a receiver unit is shown in Fig. 4 (right), with board

dimensions of 12× 7 × 2 cm. This is the third generation of

highly configurable receiver, with improved noise performance

over the earlier versions. The size of the receiver can be

reduced to few cubic centimeters, similarly to our previous

work on MI animal tracking [10]. The low noise amplifier

boosts the signals from the three orthogonal coils, which are

simply 12 µH ferrite cored inductors, of length 18 mm. The

signals are digitized by a simultaneous sampling ADS1174I

16 bit ADC, operating in I2S mode to reduce sample jitter.

The three-axis signals are then digitally down-converted with

a locally synthesized carrier, performed by an ARM STM32F4

micro-controller. After filtering and decimation, frame timing

is recovered with a matched filter, tuning a delay-locked loop

to synchronize to the start of the frame. This information
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is used to correct the impact of changes in orientation of

the receiver whilst acquiring a signal, with the aid of the

Kalman filtered rotation estimations obtained from the IMU.

Depending on the signal strength, either the short, low power

correlation or the long, higher power correlation product is

used, based on a signal strength heuristic. This is used to

estimate the 3 × 3 channel matrix, which is transmitted to

the user display (either a laptop or a mobile phone) via USB

or WiFi.

VII. EXPERIMENTS

We conducted various experiments in different environments

to showcase the advantages of MI positioning, in particular

its high accuracy 3-D positioning with low drift. This section

includes three different types of experiments. First, we evaluate

the performance of our novel distortion detection algorithm

presented in Section V-A to predict large positioning errors

in various environments. In the second set of experiments, we

test the ranging accuracy in different environments, as well

as the ability of our system to detect tiny displacements. The

time stability of the magnetic RSSI in presence of moving

people is also tested, and compared to the WiFi. Our last

experiment investigates dynamic tracking accuracy in metallic-

rich environments.
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Fig. 5. Prediction of position estimation error based on the eigenvalue spread
of the Gram matrix. The probability to miss larger positioning errors is
significantly lower in 2-D (bottom) than in 3-D (top).

A. Automatic environment distortion detection

In this experiment, we prove the effectiveness of our novel

distortion detection approach presented in Section V-A. We

show the ability of the proposed eigenvalue-based criterion

J (11) to discriminate between undistorted and distorted

environments. We selected various environments that contain

heavily reinforced metallic structures structures such as: office,

large lab, medium-size lab. A number of 734 measurements

were collected (120 outdoor and 614 indoor). Fig. 5 (top)

shows the criterion J (see Section V-A) versus the 3-D

positioning estimation errors e corresponding to the channel

Gram matrix C = S
T
S. We notice in Fig. 5 (top) that

the outdoor measurements (marked by black crosses) form

a compact cluster, and exhibit very low values of both the

criterion J and positioning error e. Most of the indoor

measurements (marked by red circles) exhibit larger values of

the criterion, and larger errors. Large ranging errors correspond

to high values of J . Only few points classified as “good” result

in a larger positioning error. Therefore, by using a threshold a
that can be determined experimentally, large positioning errors

can be detected with high probability. We also define a fixed

threshold e0 = 1 m for the position estimation errors (sub-

meter) above which we consider the estimates to be poor.

From now on, we will focus strictly on the measurements

in distorted environments (shown by the red circles in Fig.

5 (top). At first glance, the criterion is quite “pessimistic”,

since there are many points that are classified as “bad” while

the positioning errors are rather small. In order to show the

true classification ability of our criterion, we analyze three

key probabilistic metrics as follows. 1) the probability that the

criterion fails to detect a large positioning error, defined as

Pmiss = Prob[(e > e0) ∪ (J < a)] 2) the false alarm rate,

i.e., the probability that the criterion classifies the point to

be unreliable when it actually is reliable, defined as PFA =
Prob[(e < e0) ∪ (J > a)] 3) the fraction of time that the

channel matrix proved to be useful in distorted environments,

defined as Puseful = Prob[(e < e0) ∪ (J < a)].
From our experiments, in all indoor environments we have

tested, the dominant component of the positioning error is

along the z-axis. Fig. 5 (bottom) shows how the criterion

behaves in the case of 2-D positioning in the (x, y) plane. We

may notice that the overall positioning errors are smaller in 2-

D than in 3-D. There are also much fewer points corresponding

to large positioning errors that exhibit low values of J . In

Fig. 5, we use two different thresholds a1, a2 for J that

lead to different classification performance. The classification

performance is summarized in Table I, for the two threshold

values a1, a2, and for both for 2-D and 3-D positioning.

Performance metric 3-D positioning 2-D positioning

Pmiss[%] 0.98 0
PFA[%] (a1 = 0.05) 73.8 85.7
Puseful[%] 5.5 6.5

Pmiss[%] 4.1 0.98
PFA[%] (a2 = 0.1) 51.0 60.1
Puseful[%] 28.3 31.7

TABLE I
CLASSIFICATION PERFORMANCE OF THE EIGENVALUE-BASED CRITERION.

We may notice that choosing a more conservative threshold

(a1 = 0.05) for the criterion J results in a very low value

of Pmiss, but unfortunately, also in a high false alarm rate PFA
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Fig. 6. Estimated path-loss model in different environments (outdoor – top row, library – middle row, office – bottom row) vs. theoretical free-space model
(TX1 – left column, TX2 – middle column). The CDF of the ranging errors (right column) is shown for the estimated models, as well as for the case when
the theoretical free-space model is used instead (the gray curves).

and less frequent use of the channel matrix (lower Puseful).

Increasing the threshold value to (a2 = 0.1) decreases PFA,

and more importantly, the channel use increases to one third

of the time, with the price of slightly higher value of Pmiss.

Therefore, the criterion proves to be useful in practical sce-

narios, where sporadic good estimates help adjust the system

performance in an opportunistic manner.

B. Range estimation

The following tests were designed to address the following

questions: 1) How accurate is the ranging (i.e., the estimated

TX-RX distance) in the absence/presence of metallic struc-

tures? 2) Are the readings obtained by the system accurate

enough to distinguish between points located just few cm apart

from each other? 3) Are the readings stable over time?

1) Ranging accuracy – Indoor vs. outdoor: This exper-

iment aimed at testing the system ranging accuracy both

indoors and outdoors, for distances ranging between 1 m and

10 m. Each row in Fig. 6 corresponds to an experiment in a

different environment, as follows: outdoors (top), library (mid-

dle), office environment (bottom). We performed tests with

two different transmitters (TX1 and TX2). The corresponding

path-loss models are shown in the first, and the second column

of subplots in Fig. 6, respectively. The third column in Fig. 6

shows the CDF of the ranging errors corresponding to the

estimated model, and the free-space model.

The first experiment was performed outdoors. We took

measurements at 12 fixed positions on each circle of radius

1–10 m (the angular separation is approximately 30◦). Fig. 6

(top row) shows that the slope of the estimated model agrees

extremely well with the theoretical free space model for both

transmitters (left, middle). The CDF plot (right) shows that we

achieve accuracy of less than 20 cm in 90% of the cases.

The second experiment was conducted in a university li-

brary. Fig. 6 (middle row) shows the relationship between

log-distance and RSSI (left and middle plots). In this indoor

environment, we observe a slight slope difference between

the fitted and theoretical free-space model. However, the

variance of the measurements remains very low, unlike for RF-

based indoor channel models. Therefore, the number of points

required to get a reasonable channel model is much lower

(from our experiments, we found that 10 to 20 measurements

are sufficient). The CDF subplot (right) shows that we can

achieve errors less than 20 cm in 90% of the cases for TX1

and 50% for TX2. Even if the free-space model is used instead

of the estimated model, the ranging errors remain below 50 cm

in 90% of the cases, which is a remarkable feature of the MI-

based ranging.

The third experiment was carried out in an office envi-

ronment with area of size 11 × 21 m, which includes two

rooms and a corridor wrapping around them. TXs were placed

in the middle of each room, and the channel properties for

each transmitter are shown in Fig. 6 (bottom row). The CDF

subplot (right) shows that even in an environment with metallic

induced distortions, we can achieve range accuracy better than

50 cm for up to 70% of the measurements. We also evaluate
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the ranging errors in the case when the theoretical free-space

model was used instead of the estimated model. For TX1, the

ranging errors remain below 60 cm in 80% of the cases, and

for TX2, below 90 cm in 80% of the cases. In applications

where collecting measurements in advance for the model is

undesirable, the free-space channel model may be used as a

reasonable starting model, and then learned during operation,

in a SLAM-like fashion [11]–[14].

2) Ability to detect tiny displacements: This experiment

was also conducted in the library. When the receiver is

stationary, we can use magnetic signals to distinguish between

locations extremely close to each other. In order to demonstrate

this potential, we placed the receiver on top of 8 folders located

next to each other on the same shelf, as shown in Fig. 7 (left).

The displacements of 5 cm (as we move from one book to

another) correspond to distance changes of 4 cm with respect

to the transmitter. We were surprised to see that even these

tiny changes in range are detectable based on RSSI only. Fig. 7

shows the distinct steps as we move from one folder to another,

and the agreement between true and estimated ranges.
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Fig. 7. Sensitivity of the signal strength to tiny receiver displacements (top)
and ability to perform accurate ranging (bottom).

3) Time stability of the magnetic RSSI: The next experiment

shows that the generated magnetic field strength is very stable

over a long period of time, unlike the common RF signals.

In Fig. 8, we show the variation of the RSSI of the magnetic

link versus the RSSI corresponding to a WiFi link. RX and

TX were stationary, placed at the same location in both cases,

about 4 m apart, with TX at the origin. The RSSI was recorded

for a period of approximately 8 minutes for each of the

transceivers, while two persons were walking between TX and

RX, crossing the link, and approaching TX and RX. Fig.8

shows that the signal is extremely stable despite the fact that

multiple people were passing by, and crossing line of sight to

the transmitters. This is a unique advantage of the magnetic

modality compared to radio-based techniques.
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Fig. 8. The stability of magnetic signal strength vs. WiFi signal strength at a
fixed location.

C. Localization

1) Outdoor localization: The goal of this experiment was to

validate the 3-D position estimation algorithm for undistorted

environments proposed in Section V-B. It was performed at

a park along a semicircular path as shown in Fig. 9. A rope

of length 5 m was tethered at Point O (2.5 m away from

TX). A person holding the edge of the rope moved along the

path at fast walking speed. The 3-D positions shown in Fig. 9

were estimated purely based on the magnetic field without

any filtering. In this experiment, we did not fuse with inertial

data because we wanted to test the position accuracy of the

magnetic system alone. The mean absolute 3-D error in this

experiment was 0.32 m and the standard deviation was 0.4 m.
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Fig. 9. Outdoor 3-D localization on the move.
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(a)

(b)

Fig. 10. Location tracking in library environment using modulated magnetic
field and inertial sensors. (a) Library experiment site on two floors and ground
truth. (b) Estimated 3-D Trajectory. The 8-shaped loop was performed once
on the upper floor and three times on the lower floor.

2) Location Tracking in Multi-floor Building: In this sec-

tion, we use our system to track the position of a user. The

experiments were conducted on two levels of a university

library; both levels house large collections of books and are

also used as reading rooms. The floor-to-ceiling distance is

6.87 m for the upper level and 4.17 m for the lower level.

Measurements were taken during a period of 3 hours, while

people were crossing the test site. One transmitter was placed

on the upper level (TX1) and another on the lower level

(TX2), diagonally opposite, as shown in Fig. 10(a). Bookcases

were placed both around and in the middle of the area, thus

frequently blocking the line of sight from the transmitter to the

receiver locations. Line of sight was also often blocked by the

bodies of the people performing the experiments. The ground

truth of the trajectory is shown in Fig. 10(a). A person holding

MagLoc receiver followed an “8-shaped” trajectory around

the book cases of the upper floor, came out of the reading

room, went down the stairs, and repeated (three times) a

similar “8-shaped” trajectory in the reading room of the lower

floor. The following PDR parameters are used: σd = 0.5 m,

σθ = π/8, and hs = 0.18 m. The particle filter parameters

are σr = 1.5 m, and σφ = π/8. The number of particles is

104. By fusing magnetic and inertial data only, and without

using the building’s floor-plan, we are able to obtain a 3-D

trajectory as shown in Fig. 10(b). The mean error w.r.t. ground

truth locations on the lower floor is 0.3 m, and the standard

deviation is 0.21 m.

10 meters

(a)

(b)

(c)

(d)

Fig. 11. Location tracking in office environment using modulated magnetic
field and inertial sensors. (a) Ground truth. (b) The inertial only trajectory.
(c) MagLoc using the magnetic channel model and the inertial data. (d) CDF
of the positioning error.

3) Location Tracking in Office Environment: The last set

of experiments was run in an office environment that is

heavily reinforced with steel beams and mesh, and as such,

the level of metallic induced distortion is very high. The

ground truth of the trajectory is shown in Fig. 11(a). We tested

the position accuracy of MagLoc system following tortuous

trajectories around desks and other office furniture. Figs. 11(b)

and 11(c) show the paths estimated using inertial data only, and
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using the proposed multi-layer fusion of inertial and magnetic

data, respectively. In this study, we employ a particle filter,

as described in Section V-E. Accuracy is measured against

ground truth data from labeled positions, which are obtained

from a mobile phone camera. Notice that by fusing magnetic

and inertial data, we achieve a mean position accuracy of 0.8 m

and a standard deviation 0.48 m without the need of a floor

map, and without fingerprinting. The CDF of the position

errors in both cases is shown in Fig. 11(d). Our sub-meter

accuracy localization performance justifies the use of fixed

infrastructure in many application where accuracy is crucial.

VIII. BACKGROUND

Radio-based positioning: There is a plethora of radio

technologies for positioning in GPS-denied environments, in-

cluding RFID, WiFi, BTLE, FM and UWB. RFID technology

is mainly used for proximity sensing when tagged objects are

in the vicinity of RFID readers. WiFi RSS-based systems have

gained a lot of attention recently due to the wide availability of

WiFi access points and smartphones. The first generation of

WiFi systems relied on a radio propagation model to infer

the distance between a transmitter (e.g. WiFi AP) and a

receiver (e.g. smartphone) as a function of the transmitted

and received signal strength. However, in practice, even so-

phisticated models are not sufficient to capture the complexity

of WiFi signal propagation in challenging environments. This

problem is partly addressed by the second generation of WiFi-

based systems, which is based on the idea of fingerprinting.

Fingerprinting techniques, such as Radar [15] and Horus [16]

typically involve two phases: In an initial training phase, they

collect RSSI information from multiple APs at different loca-

tions of a building and build a radio map. In the second phase,

they infer location by comparing the RSSI detected by a device

with those stored in the radio map. Further techniques have

been developed to deal with heterogeneous wireless clients

[17] or to exploit additional features of the environment, e.g.

FM signals [18], sound, light and color [19]. The key problem

with fingerprinting approaches is the intensive surveying effort

required to collect training data. The third generation of WiFi-

based systems addresses this problem by means of crowd-

sourcing WiFi and inertial data, and using automated zero-

effort fingerprinting techniques to build a radio map (see

Fusion techniques below). Radio-interferometric localization

techniques have also been proposed (e.g. [20]).

WiFi (and more recently BTLE) RSS-based positioning sys-

tems face a fundamental limitation arising from the properties

of the signal that they employ. Specifically, the time variability

of radio signals and the complex multi-path and attenuation

effects due to fixed and moving obstacles prevent them from

crossing the barrier of 2-3 m of accuracy in benign environ-

ments, and causes their severe degradation in more challeng-

ing environments. Time-delay based (ToA/RTT/TDOA) (e.g.

[21], [22] and angle-of-arrival methods are more accurate,

but they are still impaired by multi-path and/or non-line-of-

sight effects in indoor environments. Ultrawideband (UWB)

has enhanced ability to separate multipath contributions in

line-of-sight conditions, but still suffers to some extent from

dispersion/attenuation in non-line-of sight conditions. As it is a

conventional trilateration approach, it requires good placement

of non-colocated detectors, with a minimum of four receivers

for 3-D tracking. For maximum accuracy, the UWB receivers

need to be placed around the perimeter of the area to be

tracked. However, this comes at a significant infrastructure cost

and complexity. Infrastructure nodes must be synchronized

exactly, requiring line of sight or timing cables, and must

be placed carefully (distributed as evenly as possible and at

elevated positions) to obtain good position accuracy and to

avoid blind spots [23].

Motion sensing: This involves fusing data generated by

IMUs to compute the user trajectory relative to her initial

position. Some techniques assume that IMUs are mounted on

the foot of the person [24]–[26], whereas others obtain data

from IMUs embedded in consumer electronic devices, such

as smartphones [27]. Inertial motion sensing is performed by

iteratively repeating the following three tasks: 1) Motion Mode

Recognition, which uses accelerometer data to distinguish

between different modes of movement (e.g. static, walking

and hand texting, walking with phone in a bag, etc.) [27]; 2)

Orientation Tracking, which uses magnetometer, accelerom-

eter and, optionally, gyroscope data to estimate the device

orientation [28], [29]; 3) Step Length Estimation, which uses

accelerometer data to estimate step length [30]. The last two

tasks iteratively extend the trajectory by detecting a step, and

extending the trajectory by the estimated length of that step,

along the estimated orientation. Practical challenges in motion

sensing, such as the sensitivity to phone position and the

variability in user walking profiles, are explored in [31]. In

cooperative scenarios, accuracy can further be improved by

fusing inertial data with user encounter information [32], [33].

Magnetic-based positioning: In the past years, there has

been a growing interest in localization systems using mag-

netic fields [3], [10], [34]–[38]. This is partly because cheap

magnetic sensors are nowadays available in almost every hand-

held smart device. In addition, these systems usually operate

at extremely low frequencies, in the near field region [5].

Consequently, the corresponding signals are non-propagating,

and they do not experience multipath and shadow fading, such

as the high frequency radio waves. Unlike microwaves, the

magnetic fields experience no absorption by water (e.g. by the

human body), which makes them very attractive for localiza-

tion inside highly populated buildings, where people are con-

tinuously moving. Moreover, they do not usually require line-

of-sight between devices, as they have the ability to penetrate

through soil, concrete and rock with negligible attenuation

[10]. Most existing magnetic localization approaches use either

indigenous magnetic fields, such as the Earth’s magnetic field

and/or the magnetic fields generated by home electronics

[36]–[38]. There are also approaches based on low-frequency

magnetic fields generated locally for localization purposes

[10], [34], [35]. In [10], the field was created by a grid of

long coils which is impractical indoors. A very short range

relative proximity detection platform (LiveSynergy) using near

field MI devices equipped with 3-D coils was proposed in

[39]. In [34] location was estimated under the assumption

of controlled and known receiver orientation, which is not
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realistic for on-the-move localization. Unlike the work in [35]

we do not have the need for time synchronization between

transmitters and receivers, and triple the range through signal

processing and an optimized receiver design, requiring a much

sparser network. We would like to point out that the differ-

ence between the proposed MI and the plethora of existing

geomagnetic localization systems. It is not just the magnetic

field being generated locally, but there are several fundamental

differences. First, we are using 3-D modulated vector field

orientation to do 3-D positioning. We are using triaxial coils

both at TX and RX, and this allows us to obtain a 3×3 channel

matrix. This matrix enables the orinetation invariance property

for both TX and RX. In addition, it leads to completely

different 3-D position estimation algorithms. In Section V-B,

we propose an elegant matrix solution for 3-D position esti-

mation, which geomagnetic localization alone cannot achieve,

even in undistorted environments, unless extra-sensors are

used. For example, IndoorAtlas [37] exploits the distortions

in the Earth’s magnetic field, caused by the reinforced steel

superstructure of modern buildings, to provide infrastructure-

less 2-D indoor positioning. However, the accuracy of these

techniques is fundamentally limited by the spatial variability of

the distortions in the magnetic field maps, making it unusable

in undistorted environments such as outdoors. Moreover, they

require the user to move before it is possible to converge to a

potential 2-D position.

Fusion techniques: Most existing algorithms, such as Hid-

den Markov Models (HMMs), Kalman and Particle Filters,

are typically based on Bayesian estimation. HMMs have been

widely used for map matching and location estimation, both

outdoors using road maps [40]–[42] as well as indoors [43],

[44]. An alternative approach is to consider the location of a

user as a continuous variable and resort to a Kalman Filter

variant (e.g. [45]). Another common technique for data fusion

and map matching is to use particle filters [8], [25], [31], [46],

[47], or conditional random fields [6]. Other approaches such

as WiFi-based SLAM fuse RSS and motion sensor data to

simultaneously build a map of the environment and locate

the user within this map [11]–[14]. More recent approaches

focused on organic landmark maps and their use for posi-

tioning [48], [49]. Thanks to the stability properties of the

magnetic channel, our novel MI positioning system is an ideal

candidate for fusion with other sensor modalities, such as

inertial data, as demonstrated in Section VII.

IX. CONCLUSIONS

The vision of localization is to have a simple to deploy,

highly accurate and responsive 3-D positioning system that is

immune to non-line of sight issues caused by obstacles and

moving people. An accurate and reliable positioning service

is essential for a multitude of applications such as indoor

location-based-advertising, assistive living, warehousing and

robotics. MagLoc positioning system presented in this paper

is a step towards this ideal, as it provides excellent positioning

accuracy in 3-D from a single transmitter which can be hidden

away in a convenient location. Not only is it able to track in 3-

D, it also is able to operate over multiple floors through solid

concrete, a major advantage over existing techniques. Through

a process of optimization over the entire signal chain, from

front-end topologies to correlation and fusion, we are able

to overcome a number of limitations inherent to Magneto-

Induction, and we believe that it is a strong contender to

become a ubiquitous positioning solution. Although current

mobile phones are unable to detect these magnetic fields due to

insufficient bandwidth, analog magneto-resistive sensors exist

which can operate up to 5 MHz. Thus, it is perfectly feasible

that the next generation of smartphones could detect these

fields, a goal we are working towards.
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