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Abstract—Inertial tracking and navigation systems have been
playing an increasingly important role in indoor tracking and
navigation. They have the competitive advantage of leveraging not
requiring expensive infrastructure - only existing smart mobile
devices with embedded inertial measurement units. When aided
with other sources of information, such as radio data from exist-
ing WiFi/BLE infrastructure, and environment constraints from
floor plans or radio maps, they often report great performance
of 0.5-2 meters. Given the promising results, what is it that
prevents the widespread adoption of this tracking solution? We
argue that pedestrian dead reckoning (PDR) techniques are often
evaluated in a specific context, and are not mature enough to
handle variations in user motion, device type, device placement
or environment. They typically use a number of parameters that
require careful context-specific tuning, which is labor intensive
and requires expert knowledge. In this paper, we propose two
novel approaches to addressing these problems: Our first con-
tribution is a Robust Pedestrian Dead Reckoning algorithm (R-
PDR), that is based on general physics principles that underpin
human motion and is by design robust to context changes. The
second contribution is a novel way of interaction between the
PDR and map matching layers based on the principle of lifelong
learning. Unlike traditional approaches where information flows
unidirectionally from the PDR to the map matching layer, we
introduce a feedback loop that can be used to automatically
tune the parameters of the PDR algorithm. This is not dissimilar
to the way that people improve their navigation skills when they
repeatedly visit the same environment. Extensive experiments
in multiple sites, with a variety of users, devices and device
placements show that the combination of a robust PDR with
a lifelong learning tracker can achieve sub-metre accuracy with
no user effort for parameter tuning.

Index Terms—Indoor positioning, pedestrian dead reckoning,
lifelong learning.

I. INTRODUCTION

Indoor tracking and navigation is a fundamental need for
pervasive and context-aware smartphone applications. Appli-
cations of indoor positioning include smart retail, navigation
through large public spaces like transport hubs, and assisted
living. The ultimate objective of an indoor positioning system
is to provide continuous, reliable and accurate positioning on
smartphone class devices. Inertial tracking with or without the
aid of existing maps has received a lot of attention recently, but
existing solutions lack generality and robustness. They are typ-
ically targeted at achieving high accuracy in specific contexts,
and are fine tuned for specific phone placements, users, devices
or environments. When tested in different conditions that the
ones designed for, their performance degrades significantly.
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For example, the majority of existing solutions assume
that the user holds the device in a specific way (e.g. texting
mode) [1]. More advanced solutions first use a classifier to
infer the user walking pattern and phone placement (e.g. hand
swinging, texting, etc.) [2], [3], and then exploit this infor-
mation to optimize the inertial tracking system [4]. However,
even the state of the art approaches can only handle a limited
number of phone placement options. When the user deviates
from this predefined set, the tracking system is at a loss for
how to handle the new case. Another major issue is that
the inertial tracking system typically assumes knowledge of
a number of parameters that account for user, device and
environment variability. Examples of user variability param-
eters include those that relate the user height, step frequency
and acceleration variance to their step length [5]-[8]. Further
parameters are needed to model the noise of inertial sensors,
and environment-specific magnetic distortions [9]. The vast
tuning effort involved in optimizing PDR systems is one of
the major hurdles that prevent inertial tracking systems from
becoming mainstream. In this paper, we move away from
context-specific fine-tuning, and pursue the vision of general-
purpose robust tracking with lifelong learning. Our proposed
approach is based on two overarching principles:

Robustness: We propose a phone placement classification
scheme that is simple, yet comprehensive, i.e. covers all
possible ways of attaching the phone to the human body.
Based on this scheme, we propose R-PDR, a robust pedestrian
dead reckoning (PDR) algorithm that is based on general
physics principles underpinning human motion, and avoids
using context-specific heuristics, such as if phone is in a pant
pocket, use technique A; else if in text mode, use technique
B. By design, R-PDR is robust to user, device and phone
placement variability.

Lifelong learning: We appreciate the fact that PDR param-
eters often require context-specific tuning, but we propose
that this information should be learnt, rather than manually
tuned or assumed as input. To this end, we exploit the
interplay between the pedestrian dead reckoning (PDR) and
the map-matching (MM) layers. Existing work typically feeds
PDR output into a map matching technique (e.g. particle
filter/HMM/CRF), which exploits map information to correct
the inertial trajectory. Our proposed system named Lifelong
Learning Tracker (LL-Tracker) introduces a reverse link be-
tween the two layers. It augments the functionality of the map-
matching layer to learn context-specific parameters, which
are then fed back to the underlying PDR layer. Although
in this paper we demonstrate the efficacy of LL-Tracker in
learning parameters of our robust pedestrian dead reckoning



algorithm (R-PDR), we argue that the idea of lifelong learning
is broadly applicable to improve the performance of any PDR
implementation that requires parameter tuning.

To summarise, the contributions of this paper are as follows:

o A novel comprehensive way of classifying human motion.

o A robust pedestrian dead reckoning algorithm (R-PDR)
that exploits the new classification scheme and is robust
to user, device and phone placement variability.

o A lifelong learning tracker (LL-Tracker) that eases the
effort of parameter tuning by introducing a feedback loop
between the map matching and PDR layer.

o Evaluation of R-PDR and LL-Tracker in a wide range of
contexts, varying device type, user, phone placement and
building.

The remainder of this paper is organized as follows: Sec. II
outlines the proposed system architecture, and Sec. III and
IV delve into the details of the proposed algorithms, R-PDR
and LL-Tracker, and compare them with related work. Sec. V
evaluates the performance of proposed and competing tracking
algorithms and Sec. VI concludes the paper.

II. SYSTEM ARCHITECTURE

The main motivation of our work is to build an indoor
tracking system that is robust to noise introduced by inertial
measurement unit (IMU) and to context variability. Note that
PDR algorithms typically include tasks for motion mode
recognition, step detection, step length estimation and step
heading estimation. In accurately accomplishing these tasks,
we have addressed the following key challenges:

Motion classification: Despite a plethora of work on recog-
nising different motion modes, to our knowledge, there is still
a lack of a comprehensive classification scheme that captures
the wide range of human motion and device attachment.
Moreover, solutions that capture many motion modes are
typically complex, since they have to include a large number
of motion-specific optimisation rules, especially for solving
the problem of step detection.

Device orientation estimation: The performance of the
PDR algorithm largely depends on the ability to accurately
track the orientation of the mobile device. This task is par-
ticularly challenging in the context of unconstrained devices
embedded with low-cost IMU sensors. Generally, the gyro drift
and magnetic disturbances, especially in indoor environments,
are the major obstacles to accurate orientation estimation.
Addressing this problem is essential, because orientation in-
formation is used by nearly all tasks of the PDR algorithm
(Sec. IID).

Acceleration long/short term drift: Another major chal-
lenge is the correction of short-term and long-term drift in
the acceleration signal. The noise that distorts the acceleration
signal is a major issue because it creeps into all four PDR
tasks, as will be explained in Sec. III.

Parameter tuning: The inertial tracking system generally
needs careful tuning of parameters such as sensor bias and
step length estimation parameters, to name a few. The fact
that certain parameters are context-specific, i.e. dependent on
the environment, device or individual, poses a great challenge
to the widespread application of inertial tracking systems.

Fig. 1 shows the proposed system architecture that was
designed to address the challenges discussed above. The layer
referred to as Robust Pedestrian Dead Reckoning (R-PDR),
is equipped with three novel capabilities: Firstly, it features
a novel motion classification scheme, which only includes
two classes, but captures a wide spectrum of human mo-
tion and device placement combinations. Secondly, leveraging
simple observations about human motion, R-PDR provides
a robust mechanism for correcting short-term and long-term
acceleration bias. Thirdly, R-PDR features a novel and robust
mechanism for estimating device orientation. Sec. III-A first
describes in detail the three new capabilities of R-PDR,
while Sec. III-B explains how they become instrumental to
reinforcing its four steps.

The output of the robust R-PDR algorithm is then fed
into the Map Matching layer, which takes into account map
constraints to correct long-term drift. Unlike existing systems
where information flows upwards only, we introduce a feed-
back loop, wherein the output of map matching is used to fine
tune the PDR parameters. The resulting end-to-end algorithm
is a Lifelong Learning Tracker (LL-Tracker), which learns
from experience and gradually gets better at handling familiar
tracking scenarios. In Sec. IV, we describe the feedback loop
in more detail and provide examples that illustrate the benefits
of cross-layer optimisation.

III. ROBUST PEDESTRIAN DEAD RECKONING
A. Novel Capabilities

We are now in a position to drill down to the three novel
capabilities of R-PDR, starting with a novel scheme devised
to address the current challenges in classifying human motion.
Novel Motion Classification: Existing work has proposed
techniques for identifying a variety of motion modes, in-
cluding phoning, texting, hand swinging, static, etc. [10],
[11]. However, these motion modes are only a subset of
all possible human motion modes, and suffice in controlled
experiment settings. To make the motion mode recognition
work in unconstrained real world settings, a large number of
new motion modes has to be defined, leading to a steep rise if
we aim to count all possible motion modes of human beings.
In this paper, instead of separating motion modes according
to their differences, we take the approach of grouping them
together using the features they have in common. Specifically,
we define a very simple classification scheme consisting of
only two modes: symmetric and asymmetric. Informally, the
symmetric mode is the class of motions that are impacted in
a similar manner by the movement of the left and right leg;
the asymmetric mode includes all other types of motion.

Examples of typical symmetric motion modes include, but
are not limited to: 7exting: The mobile device is held in front
of the user while walking; Phoning: The mobile device is
held close to the head while walking; Heavy bag: The mobile
device is put in a heavy bag (so the hand of the pedestrian is
not swinging) while walking; Shirt pocket: The mobile device
is put in a shirt pocket while walking; Static: The mobile
device is not moving, wherever it is put.

Similarly, some typical asymmetric motion modes include:
Hand swinging: The mobile device is held in a swinging hand
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Fig. 1. System architecture of LL-Tracker.

while walking; Trouser pocket: The device is put in a trouser
pocket (front or back) while walking; Belt: The device is
fastened to the belt while walking; Handshaking: The device
is (possibly periodically) shaken while not moving.

Fig. 2 illustrates a few examples of symmetric and asym-

metric motion modes. Notice that all symmetric motion modes
have similar periodic acceleration signals, with a period cor-
responding to a single step, while all asymmetric motion
modes have similar periodic orientation patterns, with a period
corresponding to two steps. The benefits of classifying motions
into symmetric and asymmetric are three fold. First, it is a
comprehensive scheme that leaves no motion out. Second,
the motion recognition step itself is a very easy task, which
requires simple cross correlation with sine waves (Sec. III-B).
Lastly, the fact that symmetric motions have periodic accel-
eration signals while asymmetric motion modes has periodic
orientation signals greatly facilitates the task of step detection
also discussed in Sec. III-B.
Robust Orientation Estimation: Being able to accurately
track the device’s orientation is the foundation for accurate
long term inertial tracking. This is because most steps of
PDR, including step detection, and step length and head-
ing estimation, are based on the orientation of the device.
However, tracking device orientation remains a major issue
with low-cost IMU sensors embedded in unconstrained mobile
devices. The gyro drift and magnetic disturbances especially
in indoor environments are the major obstacles on the way to
accurate orientation tracking. Most existing work uses Kalman
filters, e.g. indirect Kalman filters [12], extended Kalman
filters (EKF) [13] and Unscented Kalman filters (UKF) [14],
to track device orientation with angular velocities from gy-
roscope to periodically update the orientation. The gyro drift
in horizontal plane (yaw) can be compensated with magnetic
field measurements especially if we have a map of the area’s
magnetic distortions. However, the gyro drifts in roll and pitch
angles are still a pressing problem for devices with motion
acceleration [15]. We argue that this problem can be addressed
by accurately estimating the gravitational acceleration from the
raw accelerometer signal. We can then use the gravity vector
as an observation in the Kalman filter to correct drift in roll
and pitch.

Currently there are two dominant approaches to estimate
the gravity component of accelerometer measurements. The
first approach, proposed by Mizell et. al [16], uses the mean
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over a window of fixed duration to estimate the gravity. This
approach is elegant and simple but it is not suitable for mobile
devices used by pedestrians. The major reason is that a change
in orientation introduces a considerable lag to accurate gravity
estimation. To reduce the lag, it is possible to shorten the time
window over which the gravity is estimated [17]. However, this
comes with a decrease in the accuracy of gravity estimates.
The second approach, proposed by Hemminki et. al [18],
estimates gravity only when the variation of the acceleration
signals over a period of time is below a certain threshold.
This approach reduces the lag introduced by the first approach,
but also suffers from two fundamental limitations. First, this
approach works only when the mobile device is static for a
period of time; it does not work when the user is in motion,
which is when gravity estimates are mostly needed. Secondly,
the thresholds of variations in different motion modes are
different, making it hard to apply in real-world settings. A
similar approach [19] opportunistically estimates the gravity
for the device’s attitude estimation when the angular velocity
of the device is detected to be less than a threshold.

To address these limitations, we propose a novel algorithm
that can accurately estimate the gravity vector without lag
and works all the time. The key fact that it exploits is that
gyro sensors are reliable over a short period of time. Assume
we want to estimate the gravity at time ¢ given a window of
historical accelerometer data a;_.; of size T'. We first rotate
acceleration signals a;_7.;—1 to the same orientation as a,
and then estimate the gravity at time ¢ as the mean of the
acceleration readings after the rotation:

t
g=Re Y Ria;T
T=t—T

(D

where R, is the rotation matrix from the earth coordinate
system to the device coordinate system at time 7. The rotation
R; can be easily converted from the orientation at time 7.
Experiments have been conducted to compare the proposed
algorithm with the state-of-the-art gravity estimation tech-
niques. In the experiments the pedestrian walked normally
with the mobile device in texting mode. The gravity vector is
estimated using the proposed and competing approaches and
then rotated to the earth coordinate system according to the
current orientation estimate of the device. The gravity value,
as shown in Fig. 3(a), is then estimated as the acceleration
in the Z axis. It is observed that Mizell’s approach is the
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Fig. 2. Acceleration and orientation signals of some typical motions. Note how symmetric motions have strong periodicity in acceleration, whereas asymmetric

motion has strong periodicity in pitch.

most inaccurate due to its inability to manage the orientation
change of the device. Hemminki’s approach provides more
accurate, yet very sparse gravity estimates, because in most
cases the motion of the pedestrian makes the variation in
acceleration bigger than the threshold. In comparison, the
proposed approach offers accurate gravity estimates and works
continuously.

The gravity vector estimates are then fed into the Kalman

filter as additional observations (along with magnetometer
measurements) to estimate the orientation of the device. We
can indirectly see the benefits of the proposed orientation
tracking approach as follows. We first rotate every acceleration
vector to the earth coordinate system according to the device
orientation estimate at that moment. Then the gravity magni-
tude is simply estimated as the mean of the acceleration in Z
axis in a short window. Fig. 3(b) shows the long term estimate
of gravity with and without the proposed orientation tracking
algorithm. As expected, the drift of device orientation grows
quickly without the proposed approach, leading to the gravity
magnitude estimate drifting away from the ground truth. This
acceleration drift caused by orientation drift can result in
miscounting user steps, as will be explained in Sec. III-B.
However, this drift has been successfully corrected by the
proposed approach which computes and relies on accurate
gravity vector estimates.
Accurate Acceleration Estimation: Though the proposed
gravity estimation algorithm can guarantee the robust long
term orientation tracking of the device, it is not sufficient to
accurately estimate acceleration on the horizontal plane, which
is important for step detection. The major reason is that even a
very small tilt of the device, e.g. two degrees, which may not
be corrected by the above algorithm, can significantly impact
the acceleration signal on the horizontal plane. For instance,
a tilt of two degrees can only change the acceleration reading
in Z axis from 9.806 m/sZ to 9.801 m/s2, but it can offset
the acceleration on the horizontal plane (either X or Y) by
0.342 m/s2. To make things worse, this offset is significantly
amplified through double integration which results in large
errors in distance estimation. For example, the two degree
tilt error can result in an error of up to 20 meters within 10
seconds.

To address this problem, we have further explored the
physical constraints from human walking. It is demonstrated

in [20] that humans have surprisingly consistent walking
patterns for consecutive steps. Inspired by [20], we design an
algorithm to estimate and correct the orientation error using
the repetitiveness in walking patterns, called repetitive pattern
update (REPUT). We rely on two key assumptions: first, we
consider the velocity of the mobile device to be almost the
same after each step in symmetric motion mode or every two
steps in asymmetric motion mode!. Second, we assume that
the orientation drift, described as the reverse rotation R, is the
same during one or two steps. Let a single/double step start
at time £y with velocity vy and end at time ¢, with velocity
v.. The end velocity is expressed as follows:

te
've:UO—I—ZR-at-At, 2)

t=to
where R is the rotation matrix that corrects the orientation
drift, a; = [af, a}, af] is the acceleration vector at time ¢, and
At is the acceleration sampling interval. Then based on our

REPUT assumption, we have

te
Av:ve—vo:RZ-at-At:Q 3)
t=to
Other repetitive patterns can also be formulated. For in-
stance, in 2D positioning the device has the same distance off
the ground before and after one step, which can be formulated

as
te t
Al=R>" (Z@m) At =0. )

t=t0 T=t0

where a7 is the vertical acceleration along Z axis. It is possible
that these conditions could contradict each other because
either the velocity difference Av or distance difference Al
cannot be strictly zero. Therefore, least-square solutions of
the counter-drift rotation matrix R should be obtained from
simple optimization.

To test the effectiveness of the REPUT algorithm, we have
conducted a simple experiment during which the pedestrian
walks normally with the device at hand. Fig. 4 shows the
a typical example of acceleration signals before and after
the REPUT algorithm. We can observe that the acceleration

IThe start and end of every step or two can be easily detected with an
enhanced zero crossing detector in Sec. III-B.
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Fig. 3. Illustrative examples of robust orientation estimation.

signals along X and Y axis drift significantly over time, if we
do not exploit the repetitive pattern assumption; the drift is
successfully corrected by REPUT.

B. R-PDR steps

We are now in a position to show how they are employed to
design robust versions of the four pedestrian dead reckoning
steps: namely R-Motion Identification, R-Step Detection, R-
Step Length Estimation, and R-Heading estimation.
R-Motion Identification: This step exploits the novel classi-
fication scheme, which consists of two motion classes only
- symmetric and asymmetric. In addition, it leverages the
corrected orientation and acceleration signals in order to
identify the motion class. Fig. 2 illustrates an interesting
pattern that we exploit for motion identification. In symmetric
motion modes, e.g. texting and phoning, acceleration signals
resemble sine waves, whereas in asymmetric motion modes,
orientation signals are closer to sine waves. Thus, our classifier
is based on assessing which one of the vertical acceleration or
orientation waveforms has the strongest periodic component.
More precisely, we compute the discrete Fourier transform
(DFT) of acceleration and orientation over the frequency
range that corresponds to human walking, typically between
1.2 Hz and 2.5 Hz. We then use an energy detector to
decide whether the device placement is resulting in symmetric
(vertical acceleration has stronger periodicity than orientation)
or asymmetric motion (orientation has stronger periodicity
than vertical acceleration).

R-Step Detection: Once the motion mode is identified, the
next task of a PDR algorithm is to detect human steps.
Typical existing step detection algorithms detect steps by
identifying the cyclic patterns in acceleration signal, e.g.
peak detection [5], [7], [21], zero-crossings [22]-[24], spectral
analysis like Fourier transform [25], [26], short time Fourier
transform [27], and continuous wavelet transform [8], and
auto/cross correlation [28], [29]. The aforementioned tech-
niques assume that only walking behavior generate periodic
acceleration signals but this is not true. Hence, they cannot
distinguish between a real step and a simple hand swing
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without the user really moving forward. This is because the
two actions can actually generate very similar acceleration
signal patterns. The problem of false positive step detection is
worse when applying algorithms that use the magnitude of the
acceleration signals [30], and is further exacerbated with less
constrained motion modes, like crawling, stumbles, side-steps,
and shuffles [31].

To summarise, existing techniques only focus on identifying
the boundaries of step-like signal segments, referred to as
step pattern extraction. In comparison, the proposed R-Step
Detection algorithm not only proposes a novel way of perform-
ing step pattern extraction, but also introduces an additional
classification step for distinguishing whether the extracted step
is real or fake. To clarify, a real step is defined as a step with
locomotion, as opposed to a fake step without locomotion.
An example of a fake step is one detected when a person
swings the phone in her hand without actually moving her
legs. Details of the novel step pattern extraction and step
classification modules are provided below.

Part 1: Step pattern extraction: The proposed approach here
aims to identify the boundaries of step-like signal segments in
a lightweight online fashion. We leverage our novel motion
mode classification scheme to extract steps very accurately
with time domain analysis. The approach that we use depends
on whether the motion is symmetric or asymmetric. If it is
symmetric, we use the acceleration signal for step detection,
because it has a simple sine-wave-like pattern in symmetric
motion mode. Step boundaries here are detected with enhanced
zero crossing detector similar to [24]. However, as shown
in Fig. 2, the acceleration patterns of the asymmetric mo-
tion modes differ significantly, making it extremely difficult
to identify steps with temporal features like peaks or zero
crossings. Therefore, if the motion is asymmetric, we identify
the orientation signal as the key to the step extraction, because
the change of orientation instead of acceleration is highly
periodic in asymmetric motion modes, as shown in Fig. 2.
In this case, step boundaries are the peaks and troughs of the
device orientation signal - e.g. first step is from trough to peak,
second step is from peak to trough etc. (provided that they are
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far apart to avoid local fluctuations).

Part 2: Step classification: The step pattern extraction step
is not sufficient to distinguish between real and fake steps.
We argue that a further classification task is needed, that
takes into account informative features of the orientation and
acceleration signals. In particular, the horizontal and vertical
displacements are identified as informative features in telling
whether real locomotion happens to the mobile device. They
are derived from the double integration of the acceleration
signal during one step (in the x-y plane / z axis resp.).
These two features are extremely informative because they
can capture the fundamental difference between real and fake
steps. In real steps, the horizontal displacement is higher and
the vertical displacement is lower than in fake steps. The cross
correlation between the acceleration signal and the orientation
signal is also identified as an effective feature to reject fake
steps because the acceleration and orientation signals tend to
be strongly correlated if we shake the device, which is not true
for normal walking behaviour. The orientation offset is another
feature used for real/false step classification. The orientation
offset measures how much the orientation has changed during
one step. This feature is proposed to prevent the acceleration
generated by turns from being taken into account in calculating
the horizontal and vertical displacement.

The strong features defined above allow us to accurately
distinguish between real and fake steps using a simple de-
cision tree. We run a series of experiments to compare the
proposed R-Step Detection algorithm with state-of-the-art step
detection algorithms, including peak detection (PD) [21], zero-
crossing detection (ZD) [24], short time Fourier transform
(STFT) [32], continuous wavelet transform (CWT) [33], and
auto-correlation (AC) [29]. Our experiments involve different
users, attachments and a total of over 15,000 real steps.
The step detection accuracy of the competing approaches in
our experiments is similar to the accuracy reported in [27].
Fig. 5(a) shows the step detection accuracy of the proposed
and competing approaches. It is observed that the proposed
approach consistently features very high accuracy regardless of
the device attachment. We also demonstrate the performance of
existing algorithms in determining whether a step has actually
been taken or not, using data from a number of behaviours that
are repetitive but do not correspond to forward displacement.
Each behaviour, such as tapping, nodding, and foot tapping,
was performed 200 times. It is observed from Fig. 5(b) that
the proposed algorithm reports close to 0 real steps while
all other algorithms report approximately 200 steps, which

demonstrates the effectiveness of the proposed algorithm in
rejecting false positive steps.

R-Step Length Estimation: Unlike the foot-mounted inertial
navigation system [34], double integration of the acceleration
to get the step length is not applicable to handheld devices,
reason being that zero velocity update (ZUPT) is not applica-
ble to handheld devices because only the heel can be regarded
as static when one foot is planted on the floor during walking.

Various models have been proposed to address the step
length estimation problem. The simplest approach is to make it
a constant [35] because pedestrians have surprisingly constant
step length with a natural walking pace [20]. However, when
walking with others, people are likely to adjust their natural
walking pace, which leads to a significant change of the step
length [31]. The most common approaches used to estimate
the step length are linear [6], [8] or nonlinear [5], [7] model to
relate the step length to variables like pedestrian height, step
frequency, acceleration variance, etc. These models are easy to
implement and thus widely adopted in practice. An alternative
of the linear/nonlinear model is regression. Machine learning
regression techniques like support vector machine [3], [30] and
neural networks [36] have also been applied based on various
features extracted from the sensor data.

In this study we use a simple step length model [10], which
uses acceleration signal to detect the step frequency (denoted
with f; at time ¢) which is later used to estimate step length
lti

ly = h(afi + B) + . ()

where h is the pedestrian height, o is the step frequency
coefficient, 8 is the step constant given pedestrian height,
and ~v is the step constant. The accuracy of this model
is not satisfactory by itself because step length parameters
vary across different users and environments. The proposed
R-Step Length Estimation algorithm however benefits from
being fed with carefully configured parameter values thanks
to the feedback loop between R-PDR and Map Matching.
This unsupervised learning approach, referred as LL-Tracker,
is described in detail in Sec. IV.

R-Heading Estimation: To estimate the heading of the pedes-
trians, most existing work assumes the knowledge of the
position where the mobile device is attached, thereby making
the assumption that the heading of the pedestrian is always
consistent with the heading of the mobile devices [37], which
is not true in real world settings. Zee [29] demonstrated that
the heading can be estimated by observing the frequency
spectrum of a typical walk. Although this is an interesting
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idea, it suffers from direction ambiguity. WalkCompass [4]
samples the acceleration signal during the segment of a
step with maximum deceleration. After removing noise and
rotating samples to a stable coordinate system, it averages
them to obtain the walking direction in 3D. It then projects the
estimated direction to the horizontal walk plane. This approach
works for various device placements, but is sensitive to noise
as shown below.

In this paper, instead of averaging like WalkCompass, we
fit the straight line that best matches the acceleration readings
of a single step in the horizontal plane (X and Y) using simple
least squares. We disambiguate between the two headings of
the straight line using the first 50% of acceleration samples.
If the residual error is small (Fig. 6(a) top and middle) we
use the resulting estimate as the offset between device and
user heading; otherwise (6(a) bottom), we use the most recent
offset that was reliably estimated. Figs. 6(b) and 6(c) compares
the proposed and competing techniques for tracking a user in
a sports centre for 110 seconds. Notice that the proposed R-
PDR approach can detect and avoid noisy heading estimates,
thus yielding higher accuracy than the competing approaches.

The proposed heading estimation approach relies on being
able to correctly rotate acceleration data to the earth coordinate
system. This requires accurate device orientation estimates,
which in turn depends on the quality of gyro data as discussed
in Sec. III-A. Our approach to addressing the issue of long
term drift of the gyro sensors, and further improving the
accuracy of R-Heading Estimation, is to learn the sensor bias
via the lifelong learning approach of LL-Tracker, as discussed
in Sec. IV.

IV. LIFELONG LEARNING TRACKER

Background: Although the proposed R-PDR is robust to
device, attachment and user motion variability, it does not
fully address the problem that all PDR algorithms suffer from
- the fact that over time, the estimated position drifts further
away from the true position. A well established approach to
correcting the long-term drift in PDR is to use map constraints,
such as those encoded in floor plans, radio RSSI maps and
magnetic distortion maps. This is a reasonable assumption
given the wide availability of maps (esp. floor plans), and
the intensive effort invested by major players, such as Google,

Microsoft, Apple and Qualcomm, in indoor mapping. The map
matching layer can be implemented in a number of ways.
Traditionally, it has used recursive Bayesian filters such as
HMMs, Kalman Filters and Particle Filters, the latter being
the most widely used approach due to its simplicity, ease of
implementation and accuracy when a large number of particles
is used. More recently, a novel approach based on undirected
graphical models (specifically, conditional random fields) was
introduced, and shown to be more lightweight and accurate
than competing Bayesian filters [1].

In this paper, we argue that although the map matching
layer has already a key role in indoor positioning, it has
yet to achieve its full potential. It can be used not only
for correcting the long-term drift in the PDR trajectory, but
also for the novel purpose of lifelong learning. Similar to
humans who become better at finding their whereabouts as
they visit the same environment multiple times, so should an
indoor positioning algorithm as it runs repeatedly in the same
context. This idea is not entirely new in indoor positioning. An
illustrative example is the implementation of map matching
using a Simultaneous Localisation And Mapping approach,
such as WiFiSLAM [38]. Bayesian filters are also adapted in
map matching, e.g. Zee [29], [37], where the radio map or the
magnetic distortion map [39] are learned after the trajectories
have been matched to a given map. In principle, the more
a user visits an environment, the more accurate the inferred
radio maps become, and the better the performance of map
matching. However, so far, the concept of lifelong learning
has only been used to optimise the functionality of the map
matching layer itself.

In stark contrast, in this paper, we suggest that information
from the map matching layer could play a key role in opti-
mising the performance of the R-PDR layer. It can be used
to learn a variety of parameters such as those that depend
on the device / device attachment (e.g. sensor bias), or on
the user/environment (e.g. step length parameters). We refer
to our proposed end-to-end lifelong learning tracking system
as LL-Tracker. This consists of R-PDR, map matching and
a feedback loop from map matching to R-PDR, as shown in
Fig. 1.

Note that we have implemented MapCraft map matching
algorithm as described in [1]. MapCraft can flexibly fuse
various sensor observations such as inertial and WiFi sensor
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(a) Least squares heading estimation.

Fig. 6. Heading estimation: algorithm and illustrative example.

data, as well as leverage constraints drawn from a variety of
maps, such as floor plans and radio maps. For details on how
sensor observations and constraints are fused please refer to
MapCraft [1]. In what follows, we first describe the parameter
learning process, which is central to the feedback loop, and
then provide a couple of illustrative examples.
Feedback Loop and Parameter Tuning: The accuracy of
R-PDR depends on a number of parameters employed in its
four steps. These are hard to tune manually because they may
depend on the device, attachment, user and environment. To
address this issue, we propose to use an unsupervised approach
to learning R-PDR parameters. This approach is triggered
every time the map constraints are such that there is only
one and only one matched trajectory that can best support
the raw trajectory with high probability. This guarantees the
existence and uniqueness of the matched trajectory solution.
When this condition is met, R-PDR parameter tuning becomes
the following optimization problem:

x* = argmax In p(S(x)|Z(x)), (6)

xT

where x is the parameter (or vector of parameters) of R-PDR
(or indeed another PDR implementation) that requires tuning,
S(x) is the matched trajectory and Z () is the raw trajectory
fed from R-PDR to map matching. The key idea is that only
when the estimated parameter values are the same as (or very
close to) the correct ones, can we maximize the conditional
probability of the matched trajectory given the raw trajectory
p(S(z)|Z()).

The solution to this optimization can be obtained with
the expectation maximization (EM) approach. However, the
soft EM approach does not work because the optimization of
parameters x in the M-step actually changes the state space
of the model, which makes the E-step unable to evaluate the
expectation in the next iteration [1]. Therefore, the hard EM
approach, also known as Viterbi training is employed to solve
the optimization problem [40].

Illustrative examples: We now show a couple of examples
that demonstrate the effectiveness of the feedback loop be-
tween R-PDR and map matching for parameter tuning.

(b) Comparison of heading estimation techniques.

(c) Example of heading estimation in a real trace. Note that
Zee trajectory is not available due to heading ambiguity

Learning of gyro bias: The learning of sensor bias, espe-
cially for low-cost sensors, is crucial to the performance of
PDR algorithms. The motion sensor bias is the bottleneck that
stops the inertial tracking from being widely used because
the sensor bias is accumulated, leading to significant errors
in the trajectory, especially when used in open space where
no additional constraints can be applied. To make things
worse, motion sensors also suffer from both time drift and
thermal drift, which makes the bias varying with time and
temperature. Therefore, the lifelong learning of sensor bias is
essential to accurate PDR tracking. In practice all three motion
sensors available, including accelerometer, magnetometer, and
gyroscope, have drift or error. However, of all three motion
sensors, the gyroscope plays the key role in terms of deter-
mining the accurate orientation of the device, which builds the
foundation for long-term tracking. In addition, the calibration
of gyroscope sensors is especially difficult compared to the
calibration of accelerometers and magnetometers. Therefore,
the learning of the gyroscope bias is an essential capability.

The key idea of learning the gyro bias is that only when
the estimated heading is the same as (or very close to) the
real heading can we maximize the conditional probability
p(S(x)|Z(x)) in Eqn. (6). Since the orientation of the device
g(w, b) can be easily derived from the gyro bias b and the
angular velocity w [15], the learning of gyro bias can be
achieved by optimizing

b* = argmax In p(S| Z(q(w, b)), )
b
in which the formulation of p(S|Z(g(w, b))) is discussed in
detail in [1]. Since MapCraft uses conditional random fields
to perform map matching, this optimization problem can be
solved by iterating the forward-backward algorithm [1].

We have conducted experiments to test the effectiveness of
the sensor bias learning. Fig. 13 shows the trajectory with
one Nexus 5 device in an indoor basketball court without
any floorplan or other map constraints. It is observed that
the trajectory largely deviates from the ground truth with-
out sensor bias learning. It is greatly improved in terms of
heading estimation after the sensor bias of this device has
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Fig. 7. Inertial trajectories of 0.5 km in a basketball court without any map constraints before and after sensor bias learning, showing an improvement in
loop closing loop error from 17.3m to 2.3m, and demonstrating the importance and effectiveness of the learning algorithm.

been learned in a completely different (office) environment
shown in Fig. 15(a). This example serves to show how lifelong
learning can exploit one environment’s structure to benefit
navigation in more challenging open space environments. The
implications of cross-environment learning can extend to other
users: the high tracking accuracy of a user with “lifelong
learning experience” can be exploited to create an accurate
radio map of the environment, which can in turn benefit other
algorithms like WiFiSLAM [38] and users tracking with only
radio maps.

Learning of step length constant: The second example
shows how we can use the feedback loop between R-PDR and
map matching to improve the performance of R-Step Length
Estimation, the third step of R-PDR. In particular, we learn
the step constant v (Eqn. (5)) for different individuals because
1) the average step length plays a crucial role in the tracking
accuracy due to the high consistency of step length in human
walking patterns; and 2) the parameters « and 3 are very
similar for different individuals in our experiments.

The step length constant learning is achieved in the same
way as the learning of the gyro bias by replacing learning
variable from b in Eqn. (7) to the step length constant ~y. In
practice, b and  are learned simultaneously as a vector of
variables.

We have conducted experiments in an office environment, a
museum environment, and a market to show the effectiveness
of the feedback loop on step length estimation. Notice in
Fig. 8(a) that the step constants ~ are very different for
different pedestrians (Ul to U4), and very different even for
the same pedestrian in different environments (office, museum,
and market) as shown in Fig. 8(b). Fig. 8(c) shows that the step
constant that maximizes the conditional probability p(S|Z)
also minimizes the RMS error of tracking, allowing us to cope
with user and environment variability.

Learning of Environment: In addition to the device or
individual-specific parameters, LL-Tracker can also learn en-
vironment specific parameters including various radio and
magnetic distortion maps. Traditionally, these maps can be
obtained via either labor-intensive manual mapping [41] or
SLAM [38]. Most SLAM approaches are unable to pro-
vide global sensible maps without external information or
require the manual setting of landmarks [42] or fingerprinting
points [38].

Compared with existing mapping techniques, the proposed
LL-Tracker can globally map the environment-specific pa-
rameters with zero-effort from users. Based on the estimated
trajectories from the map matching algorithm, we can then
build the radio map or magnetic distortion map easily. These
maps can later on be used by R-PDR and the map matching
layer to improve positioning accuracy for other users.

Experiments have been conducted to learn the WiFi radio
map and magnetic distortion map. Fig. 9(a) compares the radio
map learned and the one manually built to test the accuracy
of the learning technique. It is observed that the learned map
is highly consistent with the one manually built. Figs. 9(b)
and 9(c) show the magnitude and heading distortion of the
magnetic field of the earth learned from an office building. It
is observed that the magnetic field of the earth suffers from
significant distortion in indoor environments. These distortions
can then be used as unique signatures for localization, similar
to radio maps. In addition, together with the radio map,
the magnetic distortion map can also improve the heading
estimation accuracy of PDR, especially the initial heading.

V. EVALUATION

Sites: LL-Tracker is evaluated and compared against compet-
ing approaches in three real-world settings with known floor
plans: an office building (65 x 35m?), a museum (109 x 89m?),
and a sports center hall (30 x 20m?). For the majority of the
tests, the office building is used as it has the most distorted
trajectories. Overall, 224 trajectories of average length over
400 m were collected over 30 days. Error is expressed in [m]
RMS.

Participants: The variations between different people are
taken into account by acquiring data from 15 people of
different genders, heights, and ages. During the experiments,
the subjects are mounted with several devices simultaneously
in different parts of the body, typically hand, watch, glasses,
shirt pocket, and trousers pocket. Then they walk anywhere
in the building without planned routes, to realistically capture
real pedestrian motion, rather than artificial, constant speed
trajectories. They are told to move freely and may have dif-
ferent motion modes including walking, standing still, sitting
down, bending to pick up something on the floor, etc.
Devices and Implementation: Different types of mobile
devices and wearable sensors are involved in experiments,
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Fig. 9. Example experiments showing the effectiveness of the LL-Tracker in learning parameters of the environments.

including LG Nexus 4, LG Nexus 5, Asus Nexus 7, Samsung
Galaxy S IV, x-IMU-1, and x-IMU-2. These devices differ
greatly in terms of sensors, functionality and price. A snapshot
of our application prototype has been shown in Fig. 1.
Ground Truth: To provide accurate ground truth, numbered
labels were placed along corridors and within rooms on a 2 m
grid. During the experiments, the test subject always held one
camera at hand. These labels were filmed at the same time
experiments were conducted. The time-synchronized video
streams were then mapped to locations on the floorplan, and
intermediate locations interpolated using footstep timing, also
obtained from the video.

Proposed Algorithms: In this section we evaluate the per-
formance of two proposed and two competing end-to-end
positioning solutions. The proposed ones are LL-Tracker and
R-Tracker. In particular, LL-Tracker combines R-PDR and
map matching with lifelong learning, i.e. with the feedback
loop from map matching to fine tune the parameters of R-
PDR. On the other hand, R-Tracker consists of R-PDR and
map matching without lifelong learning.

Competing Algorithms: Practical indoor positioning algo-
rithms are required to be infrastructure-free or use existing
infrastructures like WiFi and Bluetooth low energy (BLE).
Existing practical algorithms fall into two categories: RF
category where only WiFi/BLE are used and fusion category
where inertial data and WiFi/BLE data are fused to perform
positioning. Typical examples in the RF category are HO-
RUS [43], RADAR [41], and EZ [44]. The state-of-the-art
algorithms in the fusion category are MapCraft [1], Zee [29],
UnLoc [42], WifiSLAM [38], and the algorithm in [37]. To
evaluate the performance of LL-Tracker, we select the algo-

rithm that reports the best accuracy from each category, HO-
RUS from RF category and MapCraft from fusion category, as
competing approaches. In addition, we have implemented NA-
WalkCompass as a state of the art competing algorithm. NA-
WalkCompass combines the normalized autocorrelation [29]
for step detection with the WalkCompass approach [4] for
heading estimation.

HORUS [43] is a fingerprinting-based localization approach
which uses an existing radio map, e.g. RSS-location pairs
denoted with < R;,L; >, i = 1---N. To localize mobile
devices, HORUS 1) takes a set of RSS 7, 2) estimates the
likelihood of this set given RSS-location pairs in the radio

map as
H p(r

where M is the dimension of r and p(r; = R, ;|L;) is the
distribution of the RSS at location L; (assumed to be Gaussian)
and then 3) selects the location from the pair with the highest
likelihood or a weighted mean of all locations based on the
likelihood as the estimated location.

MapCraft [1] is a recently proposed lightweight indoor
positioning algorithm, which employs conditional random
fields for map matching. It has reported an RMS error of
around 1 ~ 2 meters but, so far, it has been designed and
implemented with the assumption of mobile devices held by
the user in texting mode. To avoid penalising it for this reason,
we compare the performance of the proposed algorithms using
a variety of mobile device attachments, to that of MapCraft
using a single device attachment (text mode).

The combination of Normalized Autocorrelation [29] and

p(r|R;) i = Rij|Li), ®)
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Fig. 10. Accuracy comparison of various tracking algorithms.

TABLE I
COMPARISON OF TRACKING ACCURACY (RMS [M]).

. . PDR algorithm
Lifelong Learning —yr erafte | AC-WalkCr | R-PDR | [ORUS
Disabled 1.61 1.78 1.07 462
Enabled 1.16 1.23 0.86 )

* MapCraft implements naive PDR algorithm which only works with
device held by hand in texting mode.

WalkCompass [4], called NA-WalkCompass, has also been
implemented for comparison. The normalized autocorrelation
has reported the best step detection results compared with
other existing approaches, as discussed in Sec. III-B. However,
since normalized autocorrelation cannot distinguish between
real steps and other repetitive motions like nodding and
tapping, we only evaluate the accuracy of NA-WalkCompass
using trajectories without such repetitive motions. In addition,
WalkCompass, the most practical existing heading estimation
approach, still has two limitations. The first limitation lies in
the fact that WalkCompass has no mechanism to correct the
long term drift of inertial sensors, which indicates that the
performance of WalkCompass can be significantly degraded in
long-term tracking. Since we have some fairly long trajectories
(>2 km) which WalkCompass cannot manage, we enhance
WalkCompass with the proposed robust orientation estimation
to make it capable of working for long term tracking (called
NA-WalkCompass+). The other limitation is that WalkCom-
pass does not work well with devices attached to the shirt
pocket or head, as the authors also suggested. Therefore, we
only evaluate the performance of this approach with devices
at hand or in the pocket.

A. Accuracy

To evaluate the accuracy of the proposed tracking system,
we have conducted experiments with 15 users, 5 different
devices and 5 different attachments in the office and mu-
seum environments. The same IMU and WiFi data were fed
into the proposed R-Tracker, LL-Tracker, and the compet-
ing approaches including MapCraft, NA-WalkCompass+, and
HORUS. Fig. 10 compares the error cumulative distribution
function of the four approaches without lifelong learning
ability. It is observed from Fig. 10(a) that R-Tracker out-
performs all other approaches, followed by MapCraft, NA-
WalkCompass+, and lastly HORUS which is used as a baseline

yznl
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(b) Lifelong learning enabled

for tracking accuracy. Note that all PDR algorithms compared
in this section are fused with the map matching algorithm
used in MapCraft to estimate the locations while HORUS only
exploits knowledge of the radio map, but does not perform
map matching.

The tracking accuracy of these algorithms is further im-
proved when the lifelong learning capability is enabled, as
shown in Fig. 10(b). The tracking errors of these combinations
of approaches are compared in Table. I. It can be observed
that the lifelong learning ability can improve the tracking
accuracy of not only the proposed approach from 1.07m (R-
Tracker) to 0.86m (LL-Tracker), but also other PDR-based
approaches from 1.61m (MapCraft) to 1.16m (LL-MapCraft),
and from 1.78m (AC-WalkCompass+) to 1.23m (LL-AC-
WalkCompass+). The reason lies in the fact that the proposed
lifelong learning algorithm optimizes generic PDR parameters,
e.g. sensor bias, step constant, etc. instead of algorithm-
specific parameters.

LL-Tracker outperforms competing approaches because it
combines robust pedestrian dead reckoning (i.e. the ability to
distinguish between real and fake steps) with lifelong learning
of R-PDR parameters. Unlike LL-Tracker, the performance of
both MapCraft and NA-WalkCompass+ can be easily degraded
under non-ideal experiment conditions. For example, motions
of the test subjects like occasionally shaking the device,
opening/closing the door, etc. generate signals similar to steps
and thus lead to over counting of steps using these algorithms,
which thereby degrades the tracking accuracy.

B. Robustness

The next set of experiments is designed to validate the
robustness of the proposed LL-Tracker as we change the
experimental conditions.

User Variability: To evaluate the robustness over the user
variability, 15 different people with different genders, ages
from 20 to 55, and height from 150cm to 190cm are in-
volved in the experiments. To minimize the impacts from
other factors, we fixed the experiment site to be the office
environment, the device to be Nexus 5 phone and attachment
to be handheld only. Different step constant parameters are
learned for different pedestrians. Fig. 11(a) shows some typical
step constants for different people in the office environment
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Fig. 11. Tracking accuracy of LL-Tracker with different devices, showing the effectiveness of the lifelong learning algorithms.
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Fig. 12. Tracking accuracy with various behaviors and varying walking speed.

and the time taken to learn these parameters. Fig. 11(b) shows
how the tracking performance has been improved with the
convergence of the parameter learning. It is also shown in
Fig. 11(c) that the proposed LL-Tracker has almost the same
RMS tracking error regardless of different users while the
counterpart, MapCraft, has individual specific tracking errors.
To further demonstrate the robustness of LL-Tracker, we
have performed experiments taking into account various mo-
tion behaviors and time-varying walking speed. A set of be-
haviors including walking, sitting down, standing up, standing
still, accelerating, decelerating, bending down to pick up things
on the floor were performed by the pedestrian. We can observe
some of these behaviors from the acceleration shown at the
top of Fig. 12 while the bottom of Fig. 12 shows the tracking
accuracy over the whole trajectory. Note that the big tracking
error shortly after 200 seconds is due to the deliberate sudden
significant change of walking speed and random shaking of
the device. In this case the learning algorithm takes around 20
seconds to converge again.
Device Variability: To evaluate the robustness over the device
variability, five different devices, including Nexus 5, Nexus
4, Samsung S4, X-IMU 1 and X-IMU2 are involved in the
experiments. Again, we fixed other variables like the experi-
ment site (office environment), users (User 1), and attachment
(handheld). It is shown in Fig. 13(b) that the tracking accuracy
for different devices are remarkably stable after each device
has been used for 5 ~ 10 minutes. The trend is especially
apparent for the devices used in open space like the sports
centre where no map constraints are available to improve the
tracking accuracy. It is observed that after walking for 0.5km
in the basketball court, the RMS tracking error can be as high

as 15m without the bias learning algorithms while the error can
decrease to around only 2m if the gyro bias has been learned in
the office environments before it is used in the basketball court.
In addition, in the office environment where the map matching
can compensate for the sensor bias, the sensor bias learning
still improves the tracking accuracy by over 20% (from 0.96m
to 0.75m).

Attachment Variability: Five typical attachments are tested
in this experiment to evaluate the robustness of LL-Tracker,
including handheld, watch, glasses, shirt pocket, and trousers
pocket. This experiment is also conducted by User 1 with
Nexus 5 phone in the office environment. The traveled distance
in this set of experiments is over 12 km in total. The test
subject had different motion modes during the experiments
including walking, standing still, sitting down, bending to pick
up something on the floor, etc. It is observed from Fig. 13(c)
that the RMS errors of LL-Tracker are extremely similar for
different attachments. Please note that MapCraft only works
for handheld attachment.

Environment Variability: We then evaluate the performance
of LL-Tracker in a variety of environments, namely an office
environment, a museum, and a sports center. All of these
environments have different floor plans and methods of con-
struction which affect the obtained sensor data. The museum is
a multi-storey stone building with large, open spaces. Testing
was conducted on the ground floor. The office environment
(where the majority of the tests have been conducted) is a
multi-storey office building with a stone and brick construc-
tion, reinforced with metal bars; testing was conducted on the
fourth floor. The sports center is a big multi-functional hall
where the experiments were conducted in the basketball court
for the convenience of ground truth collection. In this set of
experiments, data from all 15 experiment subjects, 5 different
devices, and 5 different attachments are taken into account.

We have taken very complex and tortuous trajectories which
typically are the weakness of inertial tracking systems, due to
drift and the absence of absolute anchor measurements. Fig. 15
shows a couple of illustrative examples of how LL-Tracker
succeeds in accurately tracking a pedestrian through the of-
fice and museum environments. The cumulative distribution
functions of these environments are shown in Fig. 14(a). The
RMS errors are 0.86m in the office and 0.90m in the museum.
Note that LL-Tracker starts tuning R-PDR parameters after
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Fig. 14. The performance of proposed LL-Tracker in multi-sites.

it converges to a single trajectory on the map with high
probability; the CDF of the convergence distance in the office
and museum environments is presented in Fig. 14(b).

The performance in open space is always the limitation of
PDR algorithms because the errors can be accumulated quickly
within a short time when no external constraints, e.g. the floor
plan, can be utilized to correct the drift, especially with low-
cost IMU sensors. In order to understand the limitation of the
proposed R-PDR algorithm, we have tested the performance
of various devices in a sports center with results reported in
Fig. 14(a). The devices used in this experiment have been
calibrated with the feedback loop from map matching layer in
the office environment shown in Fig. 15(b). It is observed that
the proposed LL-Tracker only has a RMS error of around 1.27
meters even in open space (basketball court) with trajectories
as long as 0.5 km. An example trajectory in this environment
can be found in Fig. 7(c).

The automatic learning of parameters is crucial to the
performance of PDR-based tracking systems. We have ob-
served from the extensive experiments that PDR parameters
especially the gyro bias have much greater impact on the
tracking performance in environments with less constraints
like the sports center than in more constrained environments
like the office building and the museum where the floor
plan can provide sufficient constraints. The gyro bias plays a
crucial role in the tracking performance because the proposed
system heavily relies on the accurate orientation estimation
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(b) Convergence distance of the proposed learning
algorithms

of the device. In comparison, the impact of learning and
tuning the step constant offset is less significant when the
map matching algorithm is applied in environments with rich
floorplan constraints.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have demonstrated the merits of a novel
indoor positioning system LL-Tracker, consisting of a robust
PDR and a lifelong learning component. On the one hand,
the new motion classification scheme and the use of general
motion principles to counteract sensor noise have enabled
us to move away from artificial and controlled settings, and
develop a system that works reliably across a diverse range of
real world settings. On the other hand, the lifelong learning
aspect of LL-Tracker is a step change in optimising positioning
systems: it is a simple yet general idea that can be applied to
any positioning system implementation. Unlike existing work,
where lifelong learning has only been used to optimize the
map matching layer, in this paper we generalise this idea
to optimize the entire system, reaping the fruits of cross-
layer optimisation. LL-Tracker achieves sub meter accuracy
more than 80% of the time, compared to the state of the
art MapCraft algorithm, even when LL-Tracker is tested in
unconstrained settings and MapCraft uses a single known
device attachment. We have further shown that LL-Tracker
is robust not only to device and its attachment, but also to
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(b) Reconstructed traj.

(d) Reconstructed traj.

(c) Museum ground truth

Fig. 15. Experiments in the office and museum sites, showing the ground truth and reconstructed trajectories.

user and environment variability. It learns PDR parameters in
an unsupervised manner and thus requires zero user effort.
Notably, we have illustrated cases in which its operation in
one environment can boost its performance in a new and
more challenging environment. LL-Tracker has widespread
application, as it can be used with a wide variety of sensors
and different types of maps. In the future, we plan to learn a
wider variety of parameters, and to study in depth the sensi-
tivity of each parameter to context (user, device, attachment,
or environment) variability. Our next step is to incorporate
algorithms that detect context changes, and select appropriate
parameter settings.
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