Underground, Incrementally Deployed
Magneto-Inductive 3-D Positioning Network

Traian E. Abrudan, Member, IEEE, Zhuoling Xiao, Student Member, IEEE, Andrew Markham, and Niki Trigoni
Department of Computer Science, University of Oxford
E-mails: firstname.lastname @cs.ox.ac.uk

Abstract—Underground mines are characterized by a network
of intersecting tunnels and sharp turns, an environment which is
particularly challenging for RF-based positioning systems due
to extreme multipath, non-line-of-sight propagation and poor
anchor geometry. Such systems typically require a dense grid
of devices to enable 3-D positioning. Moreover, the precise
position of each anchor node needs to be precisely surveyed,
a particularly challenging task in underground environments.
Magneto-inductive positioning, which provides 3-D position and
orientation from a single transmitter and penetrates thick layers
of soil and rock without loss, is a more promising approach, but
so far has only been investigated in simple point-to-point contexts.
In this paper, we develop a novel magneto-inductive positioning
approach to cover an extended underground 3-D space with
unknown geometry using a rapidly deployable anchor network.
Key to our approach is that the position of only a single anchor
needs to be accurately surveyed — the positions of all secondary
anchors are determined using an iterative refinement process
using measurements obtained from receivers within the network.
This avoids the particularly challenging and time intensive task
in an underground environment of accurately surveying the
positions of all the transmitters. We also demonstrate how
measurements obtained from multiple transmitters can be fused
to improve localization accuracy. We validate the proposed
approach in a man-made cave, and show that with a portable
system that took 5 minutes to deploy, we were able to provide
accurate through-the-earth location capability to nodes placed
along a suite of tunnels.

Index Terms—Underground, Magneto-inductive, Localization

I. INTRODUCTION

Underground mines, characterized by a network of inter-
secting tunnels, are a dangerous working environment where
people and machinery operate in close proximity. Working
conditions are often hazardous due to the unstable terrain,
high humidity, low visibility, poor ventilation, flammable and
toxic gases, and corrosive water and dust [1]. In spite of strict
work safety regulations, the risk of fatal accidents remains
substantial, and accidents such as explosion, tunnel collapse
and flooding often result in many casualties. One major factor
which affects work safety is the lack of a reliable underground
positioning system. Such a system could greatly improve mine
operations by maintaining safe distances between plant equip-
ment and workers and by logging the most recent location
of each worker in the tunnel system. Accurate location is also
important for optimizing operations, helping to reduce running
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costs. One area which has yet to be sufficiently explored is
the challenge of providing positioning for a team of rescuers,
similar to the way that GPS has revolutionized terrestrial
rescue operations. The main challenge with rescue applications
is the fact that a permanent infrastructure cannot be relied on
but must be incrementally deployed.

Accurate localization may be obtained using a hand-held
laser scanner [2], but the device is too bulky to be carried by
the user for long periods of time spent underground. Moreover,
such devices are prohibitively expensive to be used by large
teams of workers [2]. Conventional localization solutions that
have been widely used indoors are cheaper, and have been
adapted to underground scenarios. They usually rely on radio-
frequency (RF), i.e., ultra-wideband [3]-[6] or ZigBee [1], [7]
enabled wireless sensor networks, and WiFi [8]. However, the
RF-based techniques face scrious challenges such as extreme
path-loss, non-line-of-sight propagation, multipath fading, am-
bient noise, ionized air, and the waveguide effect [1]. Most
limiting is the requirement of good geometry between anchor
nodes, with signals from at least four non-colocated anchors to
provide range-based positioning in 3-D. Moreover, geometry
has a high impact on the network connectivity and energy
consumption [9]. It is extremely difficult to achieve a good
geometry for RF positioning systems in mines, where tunnels
impose strong (typically linear) geometric constraints, and
block line-of-sight travel. This leads to severely degraded
positioning accuracy, precluding the use of RF based systems
for robust and precise positioning.

Magneto-inductive (MI) positioning, on the other hand, does
not rely on a propagating wave, but rather establishes a quasi-
static field. As the relative magnetic permeability of most
materials in an underground environment is close to unity [10],
a low frequency (up to a few kilohertz) field can propagate
without loss, multipath or fading. This makes MI eminently
suitable for underground conditions that correspond to RF
non-line-of-sight. However, most work to date has focused on
point-to-point positioning in indoor environments [11]—-[14]. In
this work, we consider, for the first time, how a network of 3-D
MI transmitters can be used to provide robust 3-D underground
positioning, even when there is no RF line-of-sight between
nodes. In the proposed system, all TXs and RXs are placed
underground, no survey is required, and two TXs are sufficient
to determine the RX 3-D position and orientation.

In this work, we consider the problem of localization with a
network of MI transmitters. In particular, we address the key
challenge of providing a rapidly deployable positioning system



that requires no surveying or precise anchor positioning.
This is in stark contrast to existing positioning algorithms
which assume that the anchor positions are known accurately
which is extremely difficult, time-consuming and expensive
to achieve in the underground environment. For the presented
system it is only necessary that the position of a single anchor
is known - there are no other constraints on the positions
and orientations of the rest of the deployed infrastructure,
other than to maintain coverage. The algorithms presented
determine the position of these secondary anchors, using
measurements from receivers within range of two or more
transmitters. Thus, no additional effort is required to precisely
determine the positions and orientations of these additional
anchors, a very desirable property of a rapidly deployable
localization system. An application in particular that would
benefit from such a system is underground rescue, where it is
necessary to keep track of the locations of a team of rescue
personnel. In such a scenario, the time taken to survey and
maintain positioning slows down the entire operation, which
in time-critical emergencies could be the difference between
a successful rescue or a fatality.
The major contributions of this work are as follows:

1) The system design of a rapidly deployable 3-D magneto-
inductive positioning network.

2) A technique for estimating the positions of secondary
anchors, bootstrapped from the single surveyed reference
anchor.

3) Using a single anchor node, we propose a calibration
algorithm that iteratively refines the positions and orien-
tations of both receivers and secondary anchors.

4) A fusion algorithm to reduce position and orientation
errors from multiple anchors.

5) Proof-of-concept experimental results using real-world
data collected in a man-made cave showing sub-meter
positioning accuracy in 3-D.

The remainder of the paper is organized as follows. In
Section II, we describe the principles of mageto-inductive
localization using a single transmitter-receiver pair, whereas
in Section III, we introduce a multi-transmitter maximum
likelihood estimation algorithm. In Section IV, we present the
architecture of the proposed magneto-inductive network. The
network deployment algorithm is formulated in mathematical
terms in Section V. In Section VI, we evaluate the system
performance using real-world data that are collected in a man-
made cave. In Section VII, we provide a survey of the related
work. Section VIII concludes the paper.

II. PRINCIPLES OF MAGNETO-INDUCTIVE POSITIONING

In this section, we turn to the fundamental physics that
explain how a single magnetic vector source can be used
to find the position and orientation of a vector sensor in 3-
D. In Section II-A, we address the behavior of very low
frequency (VLF) magnetic fields under the ground, and show
that the magnetic dipole model is applicable to most natural
underground materials. In Section II-B, we introduce the
magnetic channel model used to estimate the 3-D position and
orientation, which is later addressed in II-C.

A. Underground Magneto-Inductive Transmission Medium

In free-space, the very low frequency magnetic field can be
predicted using the magnetic dipole equations [15], [16]. In
this section, we show that the dipole equations can still be ap-
plied in most underground environments under the assumption
that frequency is sufficiently low. There are two key material
properties that undermine the validity of the dipole model:
magnetic permeability and electrical conductivity. These will
be addressed next, followed by a summary that provides atten-
uation figures for the most common underground materials.

1) On Magnetic Permeability: Magnetic materials typically
possess different permeability values compared to free-space,
thus changing the direction of the incident vector field at
the earth-air interface, and invalidating the dipole equations.
However, Telford et al. [10] address in detail the magnetism of
rocks and minerals showing that the vast majority of rocks are
non-magnetic, and that the magnetically important minerals
are surprisingly few in number [10, Sec. 3.3.5]. Except for
some iron and titanium-based compounds, such as magnetite,
pyrrhotite and titanomagnetite, all the other minerals have
relative magnetic permeability very close to one. In con-
clusion, since most soils in nature do not contain massive
amounts of such minerals in high concentrations, we can safely
assume that the relative permeability of most underground
environments is close to one. The same assumption was used
in [17] for the magneto-inductive communications.

2) On Electric Conductivity: Conductivity gives rise to
eddy currents that produce an out-of-phase secondary field
[18]. This field superimposes with the primary field, thus dis-
torting the dipole field shape. As a result, the field magnitude
decays fast through the material. This decay is associated
with the skin effect [19]. However, the conductivity of most
underground materials is sufficiently low, such that eddy
currents can be ignored at very low frequencies [18], [19]. For
example, for the 2.5 KHz carrier used in this paper, the skin
depth (defined as the distance at which the signal attenuates by
1/e, i.e., approx. 8.6 dB) exceeds few tens of meters for the
vast majority of rocks and minerals, as shown in Section II-A3.
Our through-the-earth experiments carried out in a man-made
cave also confirm that the free-space dipole equations hold
with high fidelity. By contrast, high frequency radio waves
experience extreme attenuation through the ground, as well as
distortion due to reflections.

3) Attenuation of VLF Magnetic Fields Underground: In
free-space, the magnitude of the VLF decays more rapidly
compared to the high-frequency radio waves (60 dB/decade
vs. 20 dB/decade), which calls for a very sensitive RX (or
a higher TX power). This challenge also strengthens the
motivation for using multi-hop networks, such as the one
we are proposed in this paper. However, in other materials,
conductivity plays an important role, and causes the RF waves
undergo extreme attenuation, much higher than VLF. For other
materials, the operation range is related to the skin depth. At
2500 Hz operation frequency, the skin depth values exceed
few tens of meters for most natural materials, whereas for
higher frequencies (e.g. already at 10 MHz) the skin depth
diminishes considerably. In order to quantify the penetration
capabilities of the field, in Table I, we provide values of the



(a) Rocks, sediments and water Skin depth [m]
2.5KHz| 10 MHz

>1000 | >113

Ice, Petroleum, Siltstone (coarse grain),
Gneiss (various), Dacite, Siltstone
Hornfels, Granite, Conglomerates,
Olivine norite, Gabbro, Mica, Slates
(various), Dolomite, Serpentine,
Andesite, Marble, Soil waters, Lavas
Limestones, Meteoric waters, Rock salt,
Consolidaled shales, Diabase (various),
Schists (calcareous and mica), Surface
waters (sediments), Argillites, Basalt,
Gypsum, Lignite, Natural waters (ign.
Rocks), Oil sands, Marls, Clays, Sea wa-
ter, Sandstones

Bitum. Coal, Surface waters, Anthracite

>100 >1.06

> 0.05

107% -
149

031 -
4911

(b) Minerals and ores Skin depth [m]

2.5KHz]| 10 MHz

Calcite, Sylvite, Quartz >1000 >1000
Limonite, Bauxite >100 >3.5
Siderite, Rutile, Diamond, Gypsum, An- |[ >10 >0.05
hydrite, Sphalerite, Chromite
Hematite, Cassiterite, Stannite, Pyrite, 551073 2.7.10~°
Cuprite, Magnetite, Ilmenite, Pyrolusite, || — 784 — 111
Titanomagnetite, Chalcocite, Bornite,
Graphite,  Pyrrhotite, ~ Chalcopyrite,
Covellite

TABLE 1

(a) SKIN DEPTH FOR DIFFERENT ROCKS AND (b) MINERALS AT TWO
DIFFERENT FREQUENCIES: 2.5 KHZ AND 10 MHZ (SORTED IN
DESCENDING ORDER, BY MINIMUM VALUE).

skin depth for most common underground materials. We used
the general expression for the skin depth as a function of
frequency, derived by [20]. We used the electric conductivity,
dielectric constant, and magnetic permeability ranges provided
in [10], [21] for the most common underground materials, and
for different temperature ranges and water content. Table I(a)
shows that the 2500 Hz magnetic field penetrates deeply into
most rocks, sediments and water, except for some highly con-
ductive coals, and heavily mineralized waters (electrolytes).
The same is valid for many common minerals and ores, except
for a few highly conductive sulfides of metals and graphite,
as shown in Table I(b).

For comparison, we also included the skin depth values
corresponding to a higher frequency (10 MHz) that is used for
MI communication in order to provide higher bandwidth (see
e.g. [17]). The 10 MHz frequency magnetic field is unable to
penetrate deeply into most rocks and minerals. By contrast, the
superior penetration capabilities of the VLF are obvious, since
the frequency is 4 orders of magnitude lower. In [19], it was
shown that accurate localization can be achieved even beyond
one skin depth, by exploiting the geometric properties of the
magnetic fields, at the cost of using at least three transmitters,
which would increase the infrastructure costs. More sophisti-
cated models for conductive media have also been proposed
in the literature, such as homogeneous earth model [18], [19],
stratified carth model [22], and image theory model [23]

in highly distorted environments. Channel models for MI
communications have been proposed in the literature (e.g. in
[17]), but in order to achieve large communication bandwidth,
the operation frequency is several orders of magnitude higher
than in our system (10 MHz vs. 2.5 KHz in e.g. [17]). This
leads to completely different penetration capabilities of the
corresponding fields, and to a much more complicated channel
model that must account for the complex-values impedances.
By contrast, our system is extremely narrowband (few tens of
Hz), and the the imaginary part of the complex impedance
vanishes. In addition, the higher frequencies experience very
high attenuation due to the skin effect. Table I shows that by
using VLE, the skin effect is negligible in most underground
materials. Simple magnetic dipole model can be still used
in most common underground scenarios, since we are still
operating on the near field region [18], [19]. The real-world
experiment confirms beyond any doubt the validity of the
model in the man-made cave we considered.

B. Triaxial Magnetic Channel

The magnetic source (referred to as a transmitter, TX for
parity with conventional RF positioning) is equipped with
three mutually perpendicular triaxial coils which can be in-
dividually energized with a low frequency modulated current
to generate a quasi-static magnetic field [11]. A triaxial sensor
(referred to as a receiver, RX) can detect the vector field
created by the TX. As the position and orientation of the RX
is changed relative to the TX, the received signals will also
change in terms of amplitude and phase. The magnetic channel
matrix is a 3 x 3 matrix that relates the three TX coils to the
three RX coils (like in MIMO communications). The magnetic
channel matrix contains the RX’s 3-D position and orientation
information, and its characterization is therefore fundamental
for localization.

Consider a magnetic TX located at the origin of a local
coordinate frame. Let r be the RX 3-D position vector,
and ©, € SO(3) an orthogonal matrix that expresses the
orientation of the RX frame in the TX frame. Our goal is
to provide a model which can be used to estimate the RX 3-D
position and orientation, using the received triaxial magnetic
signals only. In this paper, we adopt a space-time magnetic
vector modulation [24], where each TX axis generates a BPSK
encoded signal sequentially. Consider a 3 xS matrix Py whose
rows contain the S symbols that are transmitted subsequently
over each of the three coils. Let Py = SP« + V be the
corresponding sequence received at the RX triaxial coil, where
S is the 3 x 3 magnetic channel matrix, and V is the zero-mean
white Gaussian noise. The entries s;; of S express the energy
transferred from the ¢th TX coil to the jth RX coil, as well
as the relative phases of the currents in the triaxial coils. At
extremely low frequencies (here, a 2.5 KHz carrier is used),
the channel matrix can be predicted in free-space using the
magnetic dipole equations [15], [16], and may be expressed
in terms of RX position and orientation as follows (the proof
is provided in [11])
3rr”
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where c¢ is a range-dependent scaling factor, 7 = [|r||2 is the
TX-RX range, I3 is the 3 x 3 identity matrix, and (-)”" denotes
the matrix transpose. The scaling factor ¢ oc 7~2 decays with
the cube of the distance, and also incorporates the TX/RX
coils and transceiver chain specific parameters (number of
turns in the coils, their cross-sectional areas, core magnetic
permeability, driving current, amplifier gains and operation
frequency), and can easily be determined by calibration from
a single measurcment taken at a known distance [11]. Note
that the channel matrix S in Eq. (1) depends on the position
vector r and the orientation €2, we are interested in, and can
be estimated at the RX using the training sequence Py, as
is typically done in wireless communications (e.g. by least-
squares estimation [11]).

C. 3-D Position and Orientation Estimation — Single TX Case

In this section, we overview the principles of magneto-
inductive localization for a single TX-RX pair. We extend this
in Sec. IIT to the case of multiple TX-RX pairs. Both the
position r and the orientation €2, of the RX in 3-D can be
estimated solely based on the received triaxial magnetic chan-
nel matrix S in Eq. (1). Using linear algebra, it is possible to
find either the position or the orientation independently i.e. the
channel matrix can be reformulated to be rotationally invariant
or translationally invariant respectively. We first describe how
to find the position of the RX, followed by orientation.

1) RX 3-D Position Estimation : First, we determine the
range from the overall received power at the three RX axes,
which corresponds to the squared Frobenius norm of S. We
define the overall RSSI (Received Signal Strength Indicator)
measured in dB as

p = 20logq [IS]k- )

Since ||S|[r o 773, in the near field, the corresponding RSST
decays at a rate of 60 dB/decade [25], and can be used
for range estimation [11]. The law describing the RSSI vs.
distance in free-space is

p = po — 60logo(r/ro) +n, 3)

where pg is the RSSI measured at some reference distance
ro (determined by calibration) and r is the distance between
TX and RX. The uncertainties that contribute to the RSSI
measurement, corresponding to the residuals in Figure 1(a),
are well-approximated by a zero-mean Gaussian distribution
n ~ N (n;0,02). This assumption is quite common in wireless
communications, and is also supported by our experiments.
Thus, the maximum likelihood estimate of the range is

P = 1100 =P)/60, 4)

The magnetic RSSI model and the corresponding ranging
errors derived from underground measurements are shown in
Fig. 1. The left subplot in Fig. 1 shows the measured magnetic
RSSI as a function of log-distance, as well as the estimated
underground channel model which is very close to the free-
space channel model. Since there is no multipath and fading,

Channel - correlation—-based CDF of the ranging errors
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Fig. 1. Through-the-earth magnetic ranging. Path-loss channel model esti-
mated from underground measurements vs. free-space model (left). The CDF
of the corresponding ranging estimation errors (right).

the variance of the residual error is extremely low, unlike RF
RSSI. Moreover, the steep slope of the linear model allows
for very accurate ranging, and detect tiny displacements, as
demonstrated in [11]. The right subplot in Fig. 1 shows the
CDF of the range estimation errors using the magnetic RSSI,
as in Eq. (4). Using our through-the-ground measurements,
we concluded that the tested underground behaves almost
like free-space. We were able to achieve a ranging error less
than 30 cm for 90% of the measurements corresponding to
distances up to 15 meters. Having the estimated range 7, we
only need to determine the direction of the position vector
in 3-D, which from now will be called bearing versor. The
algebraic solution proposed in [11] exploits the rank-one term
rrl’/r? in Eq. (1). First, the orientation is removed by defining
the so-called channel Gram matrix C £ S”'S, and then the RX
bearing versor is estimated as its maximal eigenvector Upax.
Therefore, the estimated RX position vector expressed in the
TX frame can be written as

I = Plpax ©)

where U« i the maximal eigenvector of the estimated Gram
matrix. Due to the symmetry of the magnetic ficld, the RX 3-D
position T can be estimated up to a hemispherical ambiguity,
i.e., the solution is either r, or —r. In the single TX case, the
ambiguity may be removed by knowing a minimum amount of
information such as “RX is above/below TX” (or on a certain
side of an arbitrary plane passing through TX).. By using a
second TX, no ambiguities occur.

2) RX Orientation Estimation : The RX orientation matrix
2, can be estimated by combining Eqgs. (1) and (5)

S = O [3unutif — L) (©)

P

where P £ 3up.ul — I3 is always an invertible matrix
(its eigenvalues are {2, —1, —1}). The orthogonal Procrustes
problem in Eq. (6) can be solved for orthogonal €, by polar
decomposition. The polar decomposition of cPS” = UH is
a product of an orthogonal matrix U and a positive semi-
definite symmetric matrix H. The nearest matrix satisfying
the equality (6) under Frobenius norm is the orthogonal polar

factor of PST Ve > 0 (for details, see [26]). Therefore, the



matrix describing the orientation of the RX frame in the TX
frame is . =
Q= spH{PST}, )

max — I3 and S is the estimated channel
matrix. For a full-rank matrix A, the polar factor can be
calculated as pf{A} £ A(ATA)~'/2. The multiplication by
s 2 sign[det(pf{PST'})] ensures that €2, is a proper rotation.

where P = 311, 0%

III. 3-D POSITION AND ORIENTATION ESTIMATION BY
FUSING INFORMATION FROM MULTIPLE TRANSMITTERS

In Sec. II-C, we showed how the RX 3-D position and
orientation can be determined for a single TX-RX pair. In this
section, we show how information from multiple transmitters
can be fused by a single RX for improved estimation. Let us
assume that there are N magneto-inductive infrastructure TXs
and one RX carried by the user. Again, we consider position
and orientation estimation independently.

A. 3-D position fusion

We express the 3-D position of the RX w.r.t TX in terms
of range and bearing versor (a unit vector pointing from a TX
in direction of RX).

1) Range likelihood: From Eq. (3), it follows that the
likelihood of the range corresponding to the nth TX is

lr(rn) :N(pn§p~n(rn)70'72¢): (8)

where p,, is the measured RSSI, and p,(r,) = pon —
601og,y (1 /70,n) is the RSSI predicted by the path-loss model
in Eq. (3) for the range 7,,. For the sake of generality, the RSSI
model intercept point pg,, and variance o2 may be different
for each transmitler n (e.g. depending on the site topography,
they may use different transmit powers).

Let p and t,, denote the position vectors in the world frame
corresponding to the RX and the nth TX, respectively. Then,
the range can be expressed as 7, = ||p —ty|. In lack of other
information concerning correlation among adjacent location
estimation errors, we assume that the RSSI uncertainties
are mutually independent for all N transmitters. Therefore,
the joint log-likelihood function including the corresponding
ranges is

N

_ 2
Lip) =e1= 3 é (Pn—po.n+6010g10 ”pr—ot”) L)
where c; is a constant that does not depend on p.

Fig. 2 illustrates the range joint likelihood function for 2
transmitters. The two spheres have radii equal to the most
likely range, and the likelihood function is maximized at their
intersection. True RX position is shown by the black dot.

2) Bearing Angle Likelihood: Unlike conventional range-
based multilateration, we are able to estimate angles between
transceivers in 3-D. In order to deal with angular uncertainties,
we need probability density functions defined in a proper
parameter space, which is the 2-sphere. We model the bearing
versor angular error using von Mises-Fisher distribution, which
is defined for the random 3-D unit vector x € R? as follows:

exp(rp’ x), (10)

(3: ) = ————
X, K) =
PG H, R 47 sinh k

The joint range likelihood
R 0.045

0.04

nnag

YIml 1o% -10

10
X [m]

u,

Fig. 2. Ilustration of the range joint likelihood function for 2 TXs. The two
spheres have radius equal to the estimated range, and the likelihood function
is maximized at their intersection. True RX position is shown by the black
dot.

where g is a unit vector pointing in the mean direction, and
k is the concentration parameter. The reason for choosing
the von Mises-Fisher distribution is that it is perhaps the
simplest distribution defined on a unit sphere that describes
measures such as central tendency and variance similarly to
the Gaussian distribution on Euclidean spaces. In order to
deal with the hemispherical ambiguity in position estimation
which magneto-inductive positioning is subject to due to the
field symmetry, we use a balanced mixture of two Fisher
distributions [27] whose means correspond to the estimated
position versor of the nth TX 0, = ¥,/r in Eq. (5), and
its antipodal point —1,, respectively. To the best of our
knowledge, mixture of such distributions has been used in the
context of antenna arrays [27], but not for magneto-inductive
positioning. The corresponding bimodal bearing likelihood for
the nth TX is I, (r) = [p(r; 4y, k) + p(r; =04, k0 )] /2, ie.,

()= —n (1n

T
= - cosh(kn,u, 1).
47 sinh Ky, nt)

For N transmitters, the joint log-likelihood function that
includes the bearing versors U, = (p — t,,)/||P — tnl is

(p B tn)T (IA) B tn)
||p - tn” ||f) - tn”

N
L,(p)=co+ Z In cosh {/{n

n=1

, (12)

where ¢ is a constant that does not depend on p.

When fusing 3-D position estimates from multiple trans-
mitters, it is crucial to find suitable weights for the angular
errors. In order to set the concentration parameter &, which
characterizes the spread of von Mises-Fisher p.d.f., we exploit
the eigenstructure of the Gram channel matrix C as in [11
by using an eigenvalue criterion

T ) = ([An = All2) /1A,

(13)
where A = [2, 1, 1]7 corresponds triaxial dipole in free-
space, and A,, corresponds to the eigenvalues of the nth TX’s
estimated Gram matrix C,, sorted in descending order, and

divided by their average. Large values of the criterion J (:\n)



criterion show that the channel eigenstructure deviates from
the triaxial dipoles, i.e., the presence of distortions in the
environment. Therefore, the angle estimation will be poor, as
also demonstrated in [11].

Fig. 3(a) shows the criterion value vs. angular estimation er-
rors obtained from real-world measurements in three different
scenarios: outdoor undistorted environment (with no ferrous
materials), indoors (reinforced concrete and massive building
structures), and cave scenario (unknown distortion sources).
We may notice that in the undistorted outdoor environment
[green “+” markers in Fig. 3(a)], both the angular errors and
the values of the criterion J are small. Indoors, large angular
errors tend to be associated with large values of J [red “o”
markers in Fig. 3(a)]. Many of the very large angular errors
occur when the channel matrix is singular [shown by magenta
“x” markers in Fig. 3(a)], and can be detected and discarded
from the angle estimation. Unlike outdoors and indoors, it was
impossible to tell in advance whether the cave measurement
data are distorted or not. The cave measurement data [shown
by the blue star markers in Fig. 3(a)] secem to be more similar
to the undistorted outdoor data. This is the case of many
underground environments, as the extremely low frequency
magnetic field penetrates soil, rock and concrete practically
the same as free-space [17], [24], [28], [29].
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Fig. 3. (a) Angular estimation errors vs. eigenvalue criterion J for measure-
ments collected in 3 different environments. The largest angular errors occur
when the channel matrix is singular. (b) 2-D log-pdf fit. The most likely
angular error for a given value of J corresponds to the maximum value of
the density along the vertical dimension. These maxima lie approximately
along a straight line (black line). The 80% confidence bound for the angular
error is shown by the continuous blue line.

Overall, the relationship between the value of the criterion
J and the angular error is not obvious in Fig. 3(a), and
therefore, we attempt to predict the angular error from J

in a probabilistic manner. We model the 2-D histogram of
the data in Fig. 3(a) as a p.d.f parametrized by 4 parameters,
and estimate the most likely value of the angular error given
a value of J. Due to the shape of the histogram, polar
coordinates seem more appropriate. In order to obtain a
smooth 2-D histogram a very large number of points would
be necessary. Therefore, we approximate the histogram by
using two independent log-normal random variables for radius
and angle, respectively (4 parameters in total). The resulting
2-D log-p.d.f. approximation is shown in Fig. 3(b). For a
given value of J, the most likely value of the angular error
corresponds to the maximum value of the density along the
vertical dimension. The maxima lic approximatcly along a
straight line (black line in Fig. 3(b). These estimates are
rather optimistic, i.e. there are many cases when the error is
underestimated, and this may give too much confidence on
poor estimates. A more reliable approach is to ensure that
the predicted angular error is less than the actual error with a
certain probability. The 80% confidence bound is shown by the
blue dotted line in Fig. 3, for a given value of J. Therefore,
the angular error confidence bound is predicted as

o, =mJ (An), (14)

where m = 1.2 is the slope of the 80% confidence line
when the angle is measured in radians (in Fig. 3). Given this
bound, we need to find the concentration parameter £, of
the von Mises-Fisher distribution such that the semi-vertical
angle of the confidence cone comprises 80% of the samples.
The confidence cone is illustrated in Fig. 4(a). We ran Monte
Carlo simulations to find the value of x,, given a confidence
cone semi-vertical angle value (see Fig. 4(b)). Considering that
kn behaves like the inverse of the variance, we have found that
the concentration parameter for the nth TX can be very well

approximated as
~3.25

Rp =

S (15)
€%
where the predicted angular error confidence bound is given
in Eq. (14), and this corresponds to the semi-vertical angle of
the confidence cone. This very simple approximation matches
very well the Monte Carlo simulation, as shown in Fig. 4(b).

(a) Nlustration of the 80% confidence cone (b) Estimation of the cor ion |
—&— Monte Carlo simulation
70014 —— analytical appreximation

0 20 %0 60 20
80% confidence cone Semi-vertical angle [deg]

Fig. 4. Estimation of the concentration parameter . (a) The 80% confidence
cone (blue) is illustrated on the unit sphere for random von Mises-Fisher
samples (black dots) and k, = 10. (b) The estimated k. using Monte
Carlo simulations (blue curve with circle markers) and the corresponding
analytical approximation (red curve with cross markers) for a given value of
the confidence cone semi-vertical angle.



Fig. 5 illustrates the bimodal angular likelihoods corre-
sponding to two transmitters. The 3-D hemispherical ambi-
guity can be completely removed using at least two TXs.

The angular likelihoods

Y [m] e '
10\/0/ 10 H

10
X [m]

Fig. 5. Illustration of the independent angular likelihood function for 2 TXs.
Each likelihood is maximized at two antipodal points. True RX position is
shown by the black dot.

3) Joint Log-likelihood Maximization: Our goal is to maxi-
mize the joint log-likelihood corresponding to the N TXs that
includes range and 3-D bearing information

L(p) = Li(r) + L(r),

and this is achicved by using a steepest ascent algorithm. Fig.
6 shows that the joint range and bearing likelihood function
has a well-defined maxima in the vicinity of the true position.
The ML position estimate at iteration £ is

dL

(k) _ o (k—1) [_]
p P +7 ap o’

(16)

a7

where 7 is the step size, and [dL/dp],_px-1) is the gradient
vector of the joint likelihood function evaluated at p(*~1). The
gradient expression is given by

N
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B. 3-D Orientation fusion

In order to fuse the orientation estimates from [NV different
transmitters, we need to combine multiple rotation matrices.
The problem of means and averaging in the group of n X
n rotations SO(n) has been extensively studied in applied
mathematics and robotics (see [30], [31]). In this paper, we
use the projected barycentric mean method, where the average
of the estimated rotations is projected onto SO(3) using polar
decomposition [30]. The orientation matrix after the fusion is

P — tn)

(18)

The joint range-angle likelihood
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Fig. 6. Illustration of the joint range-bearing likelihood function for two
transmitters TX1 and TX2. The two spheres correspond to the most likely
ranges. The joint likelihood is maximized close to the true RX position (shown
by the black dot).

obtained as the orthogonal polar factor of the average of the
independently estimated rotations €2,,:

a=pi{y 0.}

IV. SYSTEM ARCHITECTURE AND OPERATION

(19)

The proposed system consists of several magnetic TXs
(which constitute the infrastructure), and RXs (which are the
user devices). By “single anchor”, we mean the only TX in
the entire network whose position and orientation are known,
either in global coordinates, or it is used as a local origin for
the whole network. The remaining TXs whose positions and
orientations are unknown, and need to be estimated, are called
secondary TXs. In this section, we describe the two operation
modes of the proposed system: /) network deployment and
discovery mode and 2) user localization mode. In the network
deployment and discovery mode, the goal is to automatically
determine all the positions and orientations of the secondary
TXs, using received magnetic signals from those secondary
TXs, as well as from the single anchor node, or from other
secondary TXs whose positions and orientations have been
estimated. In this mode, RX localization is a secondary goal,
ie., it is just required to aid the discovery of the spatial
topology of the network. Once all TXs have been localized,
they may act as new anchor nodes. The user localization mode
is the normal operation mode with the goal of determining
the RX position and orientation. This paper addresses both
operation modes of the system.

A. Network Deployment and Discovery Mode

In the network deployment and discovery mode, the in-
frastructure is installed in the area of interest. Note that the
infrastructure can be incrementally deployed, for example, as
a cave is explored, more TXs can be installed to maintain
coverage. The goal of this mode is to determine the location
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Fig. 7. Single anchor localization network deployment. Phase I: RX finds its
own 3-D position and orientation using the MI signal from the anchor node.
Phase II: Several RX positions, which from now will be referred to as “RX
test locations” are used to estimate the 3-D positions and orientations of all
the other TXs in range. Phase ITI: All TXs in range act as new anchors.
TX/RX positions and orientations are then refined iteratively.

and orientation of all TXs in the network. The rapid network
deployment mode consists of three phases, which are illus-
trated in Fig. 7 and explained as follows:

Phase I: The system starts with a single anchor node, a TX
whose position and orientation are known with respect to the
global frame, e.g. at the tunnel entrance. If a global coordinate
system is not needed, this can simply be assigned as the origin
of a local system of coordinates for relative positioning. Using
signals received from the TX, a RX finds its own 3-D position
and orientation in the anchor’s frame.

Phase II: Several RX positions, which from now will be
referred to as “RX test locations” are used to estimate the 3-D
positions and orientations of all the other secondary TXs in
range, as the RX moves away from the single anchor.

Phase III: All TXs in range act as new anchors. The RX
now refines its position using the MI signals from all TXs and
ML estimation. However, the positions of either the secondary
anchors or the RX could be inaccurate, as they are based on
only a few measurements. A joint iterative TX/RX position
and orientation refinement procedure is used to improve the
estimates of the secondary anchors. As more measurements
are taken, the spatial network topology reaches a steady state.
This concludes the network discovery mode phase and the MI
network is now ready to achieve full 3-D RX position and
orientation estimation.

Note that all computation is performed at the RX - there
is no need for a bidirectional communication link between
TXs and RXs. As the system is RX-centric, the number of
RXs that the system supports is practically unlimited. There
is no need for the TXs to know the RX location. Each RX
can operate independently to determine its own position and
orientation based on the beacons continuously sent by the
TXs. Multiple RXs could of course share position estimates
to increase convergence speed, but in this paper for simplicity
we consider the case of a single RX.

The complete algorithm behind the network deployment and
discovery strategy is presented in detail in Section V.

B. User Localization Mode

This is the normal operation mode of the magnetic network,
and its goal is to determine the RX position and orientation
using the deployed infrastructure. In this phase, it is assumed
that the locations of all anchors are known. Using signals from
one or more TXs in range, a RX can compute its 3-D position
and orientation.

V. NETWORK DEPLOYMENT AND DISCOVERY
ALGORITHM

In this section, we describe in detail the algorithm that
enables rapid network deployment. First, we explain the single
anchor concept used for estimating the initial network spatial
topology. Then, we provide the iterative refinement procedure
that fine-tunes the initial topology in order to improve the
overall localization accuracy.

A. Single Anchor System Deployment

In this section, we describe our core contribution, a tech-
nique for determining the positions of all unsurveyed TXs
relative to the single anchor. The key novelty of our system is
that it only requires a single TX whose position and orientation
are known accurately. This node acts as a single anchor node
for the entire network and can be placed, for example, at the
entrance of the cave, where it is easy to get global coordinates,
e.g. using satellite navigation solutions. Using this anchor
node, the positions and oricntations of the sccondary TXs
can be determined with high accuracy, provided that there are
locations where the RX carried by the user receives signal
both from the anchor and from those TXs whose positions
and orientations need to be estimated. Once the positions and
orientations of those TXs have been determined, they can
further act as new anchors, until the positions and orientations
of all TXs in the network have been identified.

The “single anchor” concept simply cannot be used with
the conventional range-based localization systems. In order
to achieve 3-D localization, such systems require at least
four anchor nodes whose positions are known with high
accuracy. In underground environments with tortuous tunnels,
this is extremely difficult to ensure. Moreover, accurate 3-D
positioning requires that these anchors exhibit a very good ge-
ometric configuration almost everywhere (geometric dilution
of precision), which is very impractical. For example, if all
four nodes lie on a plane, or on a line, as often happens along
tunnels, the 3-D position becomes ambiguous, or exhibits very
high variance in certain directions. This is not the case in
our proposed system, since with a single TX, it is possible
to determine both position and orientation of a RX in 3-
D. Those are subject to hemispherical ambiguity which can
easily be removed based on a very rough knowledge of the
map, for example just knowing which half-side of the TX
to choose). Note that the proposed single anchor approach
differs from the robot relative pose estimation [32] in several
aspects: i) instead of using multiple cooperating agents, our
RX is moved at different test locations; ii) our approach is
for 3-D positioning, not for 2-D; iii) unlike [32], we require a
single anchor (landmark) instead of two (or three in 3-D) in



order to unambiguously solve for positions and orientations of
all network nodes; iv) no inertial sensors are required.

We assume that there is one anchor node TX, whose
position t, and orientation ®, in the world frame are known.
The anchor TX, frame is shown in red color. The world
coordinate frame is shown in black color. The nth TX position
t,, and orientation ®,, are unknown for all IV secondary TXs.
The network deployment and discovery mode consists of the
three phases introduced in Section IV.

Phase I: RX position p and orientation €2 in the world
frame are determined using the anchor node TX,, as described
in Section II-C1.

Phase II: The nth TX position t,, and orientation ®,, in
the world frame are determined from the estimated relative
position and orientation w.r.t. to RX. The procedure will be
described in Sections V-A2 and V-Al, respectively.

Phase III: The TX and RX positions and orientations are
re-estimated iteratively, as detailed in Section V-B.

Obviously, as we depart from the single anchor (origin),
the global accuracy of the map degrades. Possible loops in
the network spatial topology may be exploited to spread the
error across the network, and prevent the error accumulation in
a SLAM-like fashion [33]. However, if no loops are available,
despite the degradation of global accuracy, the estimated
spatial topology is locally accurate, similarly to distributed
multi-dimensional scaling [34]. The secondary anchors may be
used as landmarks to provide locally accurate relative position
and orientation estimation.

1) TX Position Estimation using Single Anchor: The proce-
dure is as follows. Let rp be the RX position vector expressed
in the local frame of the anchor node TX,, whose position
vector to and orientation @, in the world frame are known.
The RX position in the world frame using the anchor node
may be written as:

P = ta + Oara (20)
Similarly, using the nth TX, the RX position the may be
written as: p = t,, + ©,r,, where the nth TX position t,,
is unknown, and needs to be determined. Therefore, using the
estimated values instead of the true ones, we can write:

ty = ta + Oafa — Oply, @n
where o and 1, are the RX positions estimated in the local
frames of the anchor TXy4, and in the frame of the nth TX,
respectively, from the corresponding magnetic signals. The
matrix C:')n is the estimated orientation of the nth TX in the
world frame, and the corresponding estimation problem is
addressed in Section V-A2. Measurements collected at two
different locations from both the anchor TX and the nth TX
whose position and orientation are unknown are sufficient
to unambiguously estimate the nth TX position. Assuming
that M measurements collected at different RX positions are
available, the nth TX position estimation can be improved by
averaging over all estimated positions:

Y M-
tn =ta + ®ArA — ®n T, (22)

where  Fa = (1/M) van[:l fAm, and T, =
(1/M) z%zl Iy, arc the centers of mass of the mth
estimated position vectors T'a ,, and T, ,,, respectively, with
m=1,..., M.

2) TX Orientation Estimation using Single Anchor: Accu-
rately knowing the TX orientation is crucial for 3-D magnetic
positioning, as an orientation error of just 10° causes a 3-
D positioning error of about 3.5 meters at 10 meters away
from the TX, even if the range is estimated perfectly. We
propose an approach for TX orientation estimation, and show
experimentally that it is capable to achieve errors of around
5°, in the presence of ranging errors.

Let 24 be the RX orientation expressed in the local frame of
the anchor node TX 4, which can be estimated from the triaxial
magnetic signal received from the anchor using Eq. (7). The
RX orientation in the global frame €2 can be expressed as:

Q= O, (23)

A similar equation can be written for the nth TX whose
orientation ®,, in the world frame is unknown 2 = ®,,€2,,,
where ,, is the RX orientation expressed in the local frame
of TX,,, and which can be determined {rom the corresponding
magnetic signal. Therefore, the estimated TX,, in the world
frame may be written as:

O, = O, (24)

where QA and fln are the estimated local RX orientations in
the TX s frame and the nth TX frame, respectively. Assuming
that M measurements collected at different RX positions are
available, the nth TX orientation estimation can be improved.
Let Q5 = [QA?l,...,QAVM] be a collection of RX orien-
tation estimates QA,m from the anchor TX at each position

m = 1,..., M. Similarly, let Q, = [Qn,l,...,ﬂn’M] be a

collection of RX orientation estimates €2, ,,, from the nth TX,

m =1,..., M. Then, we obtain
O, = 0,9, 25)
Using the fact that f_]nlef = M13, we can write:
= 1 z =
O, = —O,0,0; 26
77 24028, (26)

Obviously, in the presence of orientation estimation errors,
Eq. (26) does not hold exactly, and the result will not be
an orthogonal matrix. The solution is to use the projected
mean onto SO(3) using polar decomposition [30]. The nth
TX orientation estimated from measurements collected at M
positions is the orthogonal polar factor of O,

O = pf{O,).

27
B. Joint Iterative TX/RX Positions and Orientations Refine-
ment Algorithm

The single anchor estimation approach just described in
Section V-A can be used to obtain very good initial estimates
of the TX positions and orientations. After determining their
positions and orientation, these new TXs act as new anchors,
and ML can be used to refine the RX position and orientation.



Then, the new RX position and orientation can help to refine
the TX position and orientation estimates. The procedure can
be iterated until a steady-state is reached. The steady state
may be evaluated by comparing the changes in positions and
orientation from an iteration to the next iteration to a certain
threshold.

The stopping criteria for the position refinement quantifies
the average variation of subsequent TX positions estimates t,,
for all N TXs, and RX position estimates p,,, for all M RX
positions.

N

1 e

= Dl Z b —p
n=1

where T is a threshold for the average position changes (can
be set to e.g. 0.1 meters)

A similar criterion can be used for the orientation refinement
taking into account the geodesic distance between subsequent
orientation estimates for both for TX and RX. For two arbitrary
rotations W1, Wy € SO(3), the geodesic distance [30
defined as

<’€>||+ pED | < 7o, (28)

5 |Log(WI W
where Log(-) denotes the matrix logarithm. The geodesic
distance is the natural metric in the group of rotations SO(3),
and has an very intuitive meaning. It corresponds to the angle
f (measured in radians) required to rotate the orthogonal frame
defined by W around a fixed axis, such that it overlaps with
Wo.
direction of the rotation axis vector. This stems from the Euler
theorem of rotations, being intimately related to quaternions.
The stopping criterion for orientation changes is

d(W1i, Wy) £ (29)

N M
1 A (k—=1) A (k) 1 (k=1) A (k)
N nz_:l d(®” 0, )+ M Z d(ﬂm 79 ) < Torient,

m=1

(30)
where Toriene 18 @ threshold for the average orientation changes
(can be set to e.g. 1°) If both the overall position and
orientation changes from one iteration to the next one are
below the corresponding thresholds, the algorithm terminates.
Algorithm 1 summarizes the joint refinement procedure.
The entire algorithm runs on the RX side (RX centric). If
passing the information back to a supervisor was required,
then obviously, it would imply that the fixed infrastructure
is capable of receiving and routing the information to a
supervisor. Magneto-inductive communication can be used
to achieve through-the-earth communication [24]. Steps 4—
5 are used to estimate the initial RX and TXs position and
orientation that are iteratively refined in steps 3-8, in a manner

similar to iterative multi-dimensional scaling [34].

C. Computational Requirements

In this section, we evaluate the computational cost of the
proposed algorithm when it operates in the network deploy-
ment and discovery mode, as well as in user localization mode.

1: Inputs: True anchor position and orientation: ta, ®a,
Estimated channel matrices from TX, and all the others
TX,, in range, at all positions m: SA m. and Sn m. YN, m.
2: Phase I: Estimate the RX 3-D positions p,,, and orienta-
tion Qm,Vm in the world frame using S A,msta, Oa, and
Egs. (5),(20) and (23).
3: while steady-state has not been reached in Eqgs. (28) and
(30) do A
4:  BEstimate RX 3-D position t, ,, and orientation €2,, ,,
in the local frames of TX,, in range using, S, m,, Vn,m,
and Egs. (5), (7).

5:  Phase II Estimate TX;, 3-D positions tM and orienta-
tions @ , Vn using rnym, Qmm, and Egs. (22), (27).

6:  Phase III. Refine the RX 3-D position p,, and orien-
tation Qm in the world frame using ML estimation in
Egs. (17), (19), ¥m positions. Signals from anchor and
all TXs whose positions have been determined are used.

7. Refine all TX,, positions and orientations using the

new ML estimates (translated into the local frames),
as described in item 5.

8: end while

9: Outpu}s: Estimated TX,, 3-D positions t,, and orienta-
tions ®,,,vn TXs. Estimated RX 3-D position p,, and
orientation 2, Vm RX positions

Algorithm 1: Joint Iterative TX/RX Positions and Orientations
Refinement

1) The cost of network deployment and discovery mode:
During network deployment and discovery mode, an RX starts
from the anchor and subsequently discovers new secondary
TXs. Let N be the number of active TXs heard by the
RX at a given location. In general, N < 5, in order to
decrease the infrastructure cost (minimum is 2, in order
to resolve the hemispherical ambiguity). Running the ML
algorithm requires a number of inner iterations IKyy, of the
steepest ascent. According to our results, this number is
typically less then 100, and can be further decreased by using
e.g. a conjugate gradient algorithm. Fusing the position and
orientation information from N TXs in range requires an
order of complexity of O(N Kyy) at each location. Given a
number of RX test locations M for each set of TXs in range,
the complexity of estimating all these locations increases
to O(MNKyy.) . The number of RX test locations ranges
between 2 and few tens, depending on the network size.
The user moving across the network encounters Nyx trans-
mitters. Consequently, a first complete iteration of the joint
TX/RX position and orientation estimation procedure requires
O(NrxM N Kyy) computations. The iterative refinement pro-
cedure requires few outer iterations K. Therefore, the cost
of the entire network deployment and discovery procedure
involves O(KyefNyx M N Kyp,) computations. In our simple
experiment, K. = 5 iterations are sufficient to obtain accurate
TX/RX position and orientation estimates, but the estimates
provided in the first iteration are already accurate enough. The
number of iterations might increase with the dimension of the
network, but this is not a big issue, as there are no real-time
constraints, like in the user localization mode.
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Fig. 8. 2-D schematic layout of cave system (not at scale), showing single
anchor (TX1), secondary TX at unknown position (TX2) and test points (t1—
t7) where the RX is localized. Note that there are no RF line-of-sight paths
between either TX and most RX test locations, or between the two TXs.

Fig. 9. Cave tunnel.

2) The cost of user localization mode: The computa-
tional cost while operating in user localization mode is of
O(NKwy), and is extremely low, since RX hears N €
{2,3,4,5} active TXs, and uses ML to estimate its own posi-
tion and orientation. The cost is equivalent to few hundreds of
matrix operations (of size 3-by-3) for each estimated location,
and that is casily achievable by an embedded device. This is
the reason why our RX device can operate continuously for
more than 12 hours being supplied by a 3.7 V, 1300 mAh
Lithium-polymer battery, making it sufficiently small and
portable to be used under the ground.

VI. PROOF OF CONCEPT EXPERIMENTAL EVALUATION

In order to validate the proposed proof-of concept, we
carried out experiments in the Hellfire Caves (England), which
is a network of man-made caverns that mostly consist of humid
calcite and mineral quartz. The experiment space measures
15 x 30 x 2 m?, as illustrated in Fig. 8. It is well-known
that accurately mapping underground caves in 3-D is an
extremely difficult and time-consuming task. In order to have
a base for evaluation, we surveyed the TX and RX positions
using laser-based range and inclination m. Bricks with holes
were used as landmarks along the paths, with a thin wire
passing through their holes. The distance between consecutive
landmarks, as well as the angle between consecutive segments
of wire along with the inclination of each segment were
carefully measured. In order the reduce the error propagation
to subsequent measured landmarks positions, and improve the
overall accuracy of the cave map, Graph SLAM algorithm [33]

was employed along the semi-circular closed loop in Fig. 8.
The loop enclosed the main chamber of circular shape, whose
height was several m, unlike the tunnel surrounding it, which
was narrow, as shown in Fig. 9. The roof of the main chamber
was supported by a reinforced steel mesh. A small window
with steel bars provided view from the semi-circular tunnel
to the main chamber. The origin was set closer to the cave
entrance, such that its global position can be inferred easily
(see Fig. 8). TX1 was placed at the origin and acted as a single
anchor, and TX2 was placed in the semi-circular tunnel (their
positions and orientations are shown by the green frames).
The tunnels were not horizontal, they exhibit a difference in
elevation of approximately 2 m. We performed two different
experiments.

The first one, which from now on we will refer to as “linear
displacement experiment” corresponds to RX locations t1 to
t7, in Fig 8. A measuring tape was laid on the ground and
magneto-inductive measurements were collected from TXI1
and TX2, every two m along the tape. The surveyed RX 3-
D positions and orientations are shown in Fig. 11(a) by the
magenta dots and frames, respectively (points t1 to t7 in
magenta color). The subsequent relative RX orientations were
with the z-axis parallel to the tape, pointing in the direction
opposite to the center of the main chamber, and the z-axis
pointing downwards.

The second experiment which from now on we will refer to
as “main chamber experiment” took place in and around the
main chamber, whose footprint is approximately circular with
average diameter of about 10 m (See Fig. 8). The surveyed RX
3-D positions are shown in Fig. 12(a) by the magenta dots, and
the corresponding indices c1 to ¢7. The true RX orientations
were with the x-axis pointing approximately along the path,
and the z-axis pointing downwards. TX1 and TX2 were kept
at the same positions, and have the same orientations as in the
linear displacement experiment.

We used our own hardware to produce and receive modu-
lated magnetic signals. The two TXs and the RX are shown
in Fig. 10. TXs are equipped with square triaxial coils (30 cm
side, 80 turns, wound on a cubic wooden frame), and the
magnetic moment of each coil is about 5 Am?. They are using
CDMA/FDMA, and their operating frequencies are 2450 and
2550 Hz, respectively. The code length is N = 511, and the
chip rate is fym = 64 chips/s. RX is equipped with an ARM®
Cortex-M4 processor and 16-bit ADC, and contains small
triaxial coils (18 mm length, 5 mm diameter, and 25 turns
wound on cylindrical ferrite cores) and an IMU for gravity
vector estimation. The RX crude noise floor is about -53 dB,
but additional signal-to-noise ratio boost is obtained from the
CDMA processing gain. The data were recorded from the RX
unit via serial port.

Next, the system performance is evaluated in both operation
modes. In Section VI-A, we test the network deployment
and discovery operation mode, i.e., the single anchor concept,
and the joint iterative TX and RX position and orientation
refinement algorithm proposed in Section V. The performance
of our system operating in user localization mode is evaluated
in Section VI-B in terms of RX position and orientation esti-
mation errors. The performance of the ML approach proposed



Fig. 10. The two TXs and the RX used in the experiments.

in Section III for fusing position and orientation information
from multiple TXs is also compared to the single TX case.

A. Network Deployment and Discovery Operation Mode

In this section, we evaluate the performance of the proposed
network deployment and discovery algorithm in Section VI-A,
as well as the joint iterative TX-RX position and orientation
refinement algorithm proposed in Section V-B. Figs. 11 shows
the three phases of the network deployment and discovery
algorithm in Section VI-A, for the linear displacement exper-
iment.

Phase I is shown in Fig. 11(b), where the RX 3-D positions
and orientations are estimated using TX1 only as an anchor.
The hemispherical ambiguity was removed with the basic
knowledge that the measured locations are on the positive side
of the y-axis of the anchor TX1. The orientation ambiguity
was removed based on the gravity vector, which was estimated
from the RX inertial measurement unit.

Phase II is depicted in Fig. 11(c), where two estimated
RX test locations are used to estimate the position and the
orientation of TX2.

Phase III is shown in Fig. 11(d), just before the iterative
refinement procedure. The newly discovered anchor TX2 is
used to estimate the RX 3-D positions and orientations with the
maximum likelihood based fusion algorithm presented in Sec-
tion III. These TX and RX position and orientation estimates
are used to initialize the joint iterative refinement procedure,
which will be addressed next. The single anchor approach
achieves a maximum 3-D positioning error of approximately
0.7 m and a maximum orientation error of about 8° for the
secondary anchor TX2. These values are going to be further
decreased in the iterative procedure.

Fig. 12 shows the results corresponding to the main chamber
experiment. Phase IIT only is shown in Fig 12(b), using
the TX positions and orientations determined in the linear
displacement experiment. The maximum 3-D positioning error
is approximately 2 m, and will be reduced to less than 1 m
after the iterative procedure, as shown next.

1) Iterative TX Position and Orientation Refinement: Fig.
13(a) and Fig. 13(b) show the convergence of the TX2
position and orientation estimates, respectively, using real-
world measurements. The algorithm converges in just about 5
iterations. The initial TX?2 positioning error (the first iteration)
achieved by the single anchor approach introduced in Section
V-A is already low, around 0.7 m. After the convergence of
the refinement algorithm, the TX2 positioning error stabilizes
to approximately 0.4 m. The TX2 3-D orientation estimation
errors shown in Fig. 13(b) are quantified in terms of geodesic
distance on SO(3) between the surveyed orientation and the
estimated one [given in Eq. (29)]. The initial orientation error
is around 8°, whercas the final orientation error is around 5°.
We may notice in Fig. 13(b) a slight increase in the TX2
orientation error, and this is because the optimization is done
jointly, at the same time, for both TX and RX positions and
orientations. Although some position and orientation errors
may exhibit a slight increase, the overall TXs and RX position
and orientation estimation errors decrease at every iteration.

2) Iterative RX Position and Orientation Refinement: In
terms of RX position refinement, the single anchor estimation
approach already provides a very reliable initial estimate
for most locations, as shown in Fig. 13(c). For the linear
displacement experiment (positions t1 to t 7 shown by black
dashed line), the positioning errors are already well below 1 m
for most of the locations, as shown in Fig. 13(c). Therefore,
the RX positioning errors remain almost the same after the
iterative refinement procedure. However, the RX orientation
errors decrease significantly, as shown in Fig. 13(d). The initial
RX orientation errors range between approximately 4° and
13°, whereas the final errors range between 3° and 9°.

For the the main chamber experiment, the iterative refine-
ment leads to substantial reduction of the RX positioning
errors as well, as shown in Fig. 13(c) by the gray solid lines.
The initial positioning error ranges between approximately 0.4
and 2 m, whereas after the algorithm convergence, they range
between approximately 0.5 and 0.9 m.

In Fig. 13(c,d), the initial and the subscquent RX position
and orientation estimates correspond to the beginning of Phase
IIT of the network deployment and discovery operation mode.
The final errors after convergence correspond to the end
of Phasc IIl, when the system recady to operate on user
localization mode, which will be addressed next.

B. User Localization Mode

In this section, we evaluate the performance of the proposed
localization system operating in user localization mode, in
terms of RX position and orientation estimation errors. We
also compare the performance of the ML approach proposed
in Section III for fusing position and orientation information
from multiple TXs to the single TX case.

The system performance in user localization mode is shown
by the final values of the RX position and orientation errors in
Fig. 13(c) and 13(d), respectively. As shown in Fig. 13(c), sub-
meter accuracy is achieved for all the tested locations whose
TX-RX distances range between 4.5 to 15 m. The orientation
estimation errors remain below 10 degrees.
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Fig. 13. (a) The single anchor algorithm achieves a low initial TX2 3-D
positioning error already, and it is further decreased in the iterative refinement
procedure. (b) TX2 3-D orientation error also decreases by few degrees. (c)
RX 3-D positioning error exhibits a significant decrease in the main chamber
experiment, compared to the initial estimate. (d) The RX 3-D orientation error
(shown in terms of geodesic distance) decreases by several degrees for the
majority of the locations. Overall the TX and RX position and orientation
errors are decreased at every iteration.

The RX 3-D position and orientation estimation errors from
each TX after position and orientation refinement, as well as
the ML position estimation error using both TXs are shown
in Fig. 14, for each position t1 to t7. RX positioning errors
corresponding to the ML algorithm remain below 1 m for all
positions measured, as shown by the red line in Fig. 14(a). RX
orientation estimation errors also decrease substantially when
using the information from two TXs, as shown by the red line
in Fig. 14(b). Therefore, fusing 3-D position and orientation
information from both TX1 and TX2, improved results are
obtained compared to TX1 and TX2 only. Using more than
two TXs may further improve the results.

In conclusion, the proposed joint iterative TX-RX position
and orientation refinement algorithm shows overall improve-
ment in position and orientation estimates both TX and RX
This makes the system suitable for rapid deployment in
complex underground landscapes, and ready to operate reliably
in user localization mode, which is its ultimate goal.
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Fig. 14. RX Position (a) and RX orientation (b) estimation errors correspond-
ing to each TX (TX1 — blue curves with star markers, TX2 — black curve
with circle markers), as well as both TXs (ML — red curve with dot markers).

VII. RELATED WORK

The current underground localization systems typically rely
on radio frequency (RF) [1], [3]-[8]. They use either trilat-
eration, multi-dimensional scaling (MDS) [34], or machine
learning techniques [3]. A ZigBee anchor-free underground
localization method using MDS was proposed in [7], and
evaluated using simulations and laboratory experiments. An
underground localization system that uses the rich UWB
impulse response features for fingerprinting was introduced in
[3], and relies on neural networks. The work in [5] proposes a
Hybrid TDOA/RSS underground localization algorithm based
on UWB ranging. A UWB-based WSN for monitoring under-
ground coal mines and detecting the structural changes in the
event of underground mine collapses was proposed in [4].

Typically, accurate 3-D positioning requires 3-D laser scan-
ners [2], but the device is bulky to carry underground, and
prohibitively expensive to be used by teams of workers. To
overcome this problem, an automatic position refinement and
tracking approach that takes into account the node placement
uncertainties was proposed in [6], and it relies on ultra-
wideband based round-trip time-of-flight estimation. Time-of-
flight provided by special sensor nodes combined with step
detection from knee-mounted accelerometer was proposed for
underground localization in [35], but only tested in laboratory
and simulations. RFID localization to monitor vehicles under-
ground was introduced in [36] using an a priori node map,
i.e., it is not applicable in unknown environments. A WiFi-
based underground localization system using Markov chains
was recently proposed in [8], and evaluated in simulations
only.

Underground environment poses scrious challenges to ra-
dio wave propagation [1], [37], hence degrading both the
localization accuracy and the communication between nodes.
The underground channel propagation characteristics were
addressed in [17], [38], and signal propagation techniques
for wireless underground communication were proposed in
[39], both for RF-based and through-soil magneto-inductive
communications. The research challenges for the wireless
underground sensor networks such as energy, spatial topology
and environment extremes have also been addressed in [37].
The work in [1] addresses the safety assurance and rescue
communication systems in mines, and identifies the risks and



the challenges for underground safety systems, both in terms
of communication and localization. The authors point out
the difficulty to set up a ZigBee network in humid, dusty
environment, and provide realistic figures. Due to non-line-of-
sight (NLOS) conditions, the RF range often did not exceed
15 meters. At lower distances, the packet error rate was worse
than 50% for most of the motes, due to channel changes
induced by moving personnel, NLOS conditions, and antenna
misalignment. Excavations and movement of the mining ma-
chinery and people can also radically alter the RF environment
resulting into degradation of the localization accuracy and
communication disruption. An underground 2-D localization
systems that relies on acoustic signals was recently proposed
in [40], and its goal is to prevent workers from approaching
dangerous mining machinery.

The work in [1] emphasizes that the lack of practical
approaches has prevented a robust, gencrally applicable sys-
tem, and concludes that the underground networks need a
custom design. In this paper, we break up with the traditional
underground localization techniques, and propose a magneto-
inductive (MI) system that is capable of estimating both the
user 3-D position and orientation.

MI 3-D position and orientation estimation using triaxial
coils was first proposed by Raab et al. in their pioneering
paper [41]. For more details on MlI-based position and ori-
entation estimation, see also [11], [12], [14], [42], [43]. Our
previous work [11] focused on MI indoor localization with
additional inertial sensors. Only the single-hop approach was
considered, and the positions an orientations of all TXs were
assumed to be known. Underground magneto-inductive 3-D
animal tracking was addressed in [28], [29] using surface
antenna loops, but this is restricted to small areas and is
not scalable. Reliable through-the-earth communication has
been addressed in [17], [24], but did not consider localization.
In [44], a numerical MI tracking solution using monoaxial
TX coil and triaxial search-coil magnetometer as RX was
proposed, but its operation environment is unknown. MI
techniques for geophysical prospecting have been addressed
in [10]. A cave-to-surface mapping MI system using surface
horizontal monoaxial RXs and underground vertical monoaxial
TX was introduced in [18]. A “zero-azimuth” underground
positioning system was proposed in [19], with TX placed at
the surface and the RX underground. Despite being able to
opcrate through various underground media, the methods [18],
[19] exploit the geometry of the magnetic field, and therefore,
at least three TXs are needed to locate an RX, which increases
the infrastructure cost and complexity, or require surveying a
large area in order to determine the depth. In the proposed
system, all TXs and RXs are placed underground, no survey
is required, and two TXs are sufficient to unambiguously solve
for the RX 3-D position and orientation.

VIII. CONCLUSION

In this paper, we propose a underground localization sys-
tem that uses extremely low frequency magnetic fields. The
modulated magnetic signals are appropriate for underground
environments, since they do not experience fading, or NLOS

attenuation while passing through soil, rock, concrete, water
and most natural materials. The proposed system is capable
of estimating both 3-D position and orientation of users. It
relies on a single anchor node, and it is able to automatically
discover the spatial topology of the entire network. The
infrastructure is made of transmitters that may have completely
arbitrarily positions and orientations, as long as the user is
within the coverage area of at least two transmitters, without
the need for tedious and expensive underground surveying of
anchor positions. A limitation of the current system however
is that whilst relative 3-D positioning accuracy is maintained,
global positioning errors will accumulate with increasing net-
work depth. This can be addressed either with SLAM based
techniques such as loop closure, or with sparse surveying
information. Unlike conventional range-based systems, our
system imposes no constraints on the geometry of the deployed
nodes in order to achieve accurate full 3-D localization,
which is a desirable feature in narrow tortuous tunnels. We
have shown that increased position and orientation estimation
accuracy is achieved by fusing information from multiple
anchors. We demonstrated that a network of transmitters was
able to maintain accurate 3-D positioning, even through solid
rock and obstructions, something which is impossible using
conventional RF based technologies.
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