
Faceted Search over RDF-Based Knowledge GraphsI

Marcelo Arenasa, Bernardo Cuenca Graub, Evgeny Kharlamovb, Šarūnas Marciuškab, Dmitriy Zheleznyakovb

aPontificia Universidad Catolica de Chile, Vicuna Mackenna 4860, Edificio San Agustin, Macul 7820436 Santiago, Chile.
bUniversity of Oxford, Department of Computer Science, Information Systems Group, Wolfson Building, Parks Road, Oxford OX1 3QD, UK.

Abstract

Knowledge graphs such as Yago and Freebase have become a powerful asset for enhancing search, and are being intensively
used in both academia in industry. Many existing knowledge graphs are either available as Linked Open Data, or they can be
exported as RDF datasets enhanced with background knowledge in the form of an OWL 2 ontology. Faceted search is the de
facto approach for exploratory search in many online applications, and has been recently proposed as a suitable paradigm for
querying RDF repositories. In this paper, we provide rigorous theoretical underpinnings for faceted search in the context of RDF-
based knowledge graphs enhanced with OWL 2 ontologies. We identify well-defined fragments of SPARQL that can be naturally
captured using faceted search as a query paradigm, and establish the computational complexity of answering such queries. We
also study the problem of updating faceted interfaces, which is critical for guiding users in the formulation of meaningful queries
during exploratory search. We have implemented our approach in a fully-fledged faceted search system, SemFacet, which we have
evaluated over the Yago knowledge graph.

Keywords: Faceted search, Ontology, OWL 2, RDF, SPARQL, Algorithms.

1. Introduction

Knowledge graphs are large collections of interconnected
entities enriched with semantic annotations, which have be-
come powerful assets for enhancing search and are now widely
used in both academia and industry. Prominent examples of
large-scale knowledge graphs include Yago [1], Freebase [2],
Google’s Knowledge Graph [3], Facebook’s Graph Search [4],
Microsoft’s Satori [5], and Yahoo’s Knowledge Graph [6].
Many existing knowledge graphs are either available as Linked
Open Data, or they can be exported as RDF datasets [7] en-
hanced with OWL 2 ontologies [8] capturing the relevant do-
main background knowledge.

SPARQL [9] has become the standard language for query-
ing RDF data and OWL ontologies, and an increasing number
of applications are relying on RDF, OWL 2, and SPARQL for
storing, publishing, and querying data; in particular, access to
knowledge graphs is often provided by a SPARQL endpoint.
Writing SPARQL queries, however, requires some proficiency
in the query language and is not well-suited for the majority of
users [10, 11]. Thus, an important challenge that has attracted
a great deal of attention in the Semantic Web community is the
development of simple yet powerful query interfaces for non-
expert users [12–17]. This challenge becomes even more crit-

IThis research was supported by the Royal Society, the EPSRC projects
Score!, DBOnto, and MaSI3 and the EU FP7 project Optique (n. 318338).

Email addresses: marenas@ing.puc.cl (Marcelo Arenas),
bernardo.cuenca.grau@cs.ox.ac.uk (Bernardo Cuenca Grau),
evgeny.kharlamov@cs.ox.ac.uk (Evgeny Kharlamov),
sarunas.marciuska@cs.ox.ac.uk (Šarūnas Marciuška),
dmitriy.zheleznyakov@cs.ox.ac.uk (Dmitriy Zheleznyakov)

ical in the context of knowledge graphs such as Yago or Free-
base, which are typically oriented towards end-users search.

Faceted search is a prominent approach for querying collec-
tions of entities where users can narrow down the search results
by progressively applying filters, called facets [18]. A facet
typically consists of a predicate (e.g., ‘gender’ or ‘occupation’
when querying entities about people) and a set of possible string
values (e.g., ‘female’ or ‘research’), and entities in the collec-
tion are annotated with predicate-value pairs. During faceted
search users iteratively select facet values and the entities anno-
tated according to the selection are returned as the search result.

Faceted search in the context of RDF has received significant
attention and a number of systems have been developed [19–
27]. Furthermore, several such systems have been successfully
exploited for performing exploratory search over large knowl-
edge graphs such as Freebase [28].

The theoretical underpinnings of faceted search in the con-
text of RDF and knowledge graphs, however, remain relatively
unexplored [10, 29, 30]. In particular, the following key ques-
tions have not been satisfactorily addressed in the literature (see
our Related Work section):

(Q1) What fragments of SPARQL can be naturally captured
using faceted search as a query paradigm?

(Q2) What is the complexity of answering such queries?

(Q3) What does it mean to generate and interactively update an
interface according to a given RDF graph?

Questions 1 and 2 correspond to the study of the expressive
power and complexity of query languages. These are central

Preprint submitted to Elsevier August 28, 2015

topics in data management, and addressing them is a key re-
quirement to develop information systems that can provide cor-
rectness, robustness, scalability, and extensibility guarantees.
Moreover, update (Question 3) is a key task in information sys-
tems where query formulation is fundamentally interactive. Our
first goal is to answer these questions, thus providing rigorous
and solid foundations for faceted search over RDF data.

Our second aim is to provide a framework for faceted search
that is also applicable to the wider setting of OWL 2 and hence
to ontology-enriched knowledge graphs such as Freebase and
Yago. Existing works have focused mostly on RDF, thus essen-
tially disregarding the role of OWL 2 ontologies. We see this
as an important limitation. Ontological axioms not only can be
used to enrich query answers over RDF datasets with implicit
information, but also to enhance the navigation process by pro-
viding rich schema-level structure. Furthermore, RDF-based
faceted search systems are data-centric and hence cannot be ex-
ploited to browse large ontologies such as SNOMED CT [31]
or to formulate meaningful queries at the schema level.

More specifically, we formalise in Section 3 our notions
of faceted interface and query, which are tailored towards
RDF and OWL 2. Our notion of interface enables navigation
across interconnected collections of entities, which is inherent
to faceted search over RDF data. Furthermore, it abstracts from
considerations specific to GUI design (e.g., facet and value
ranking), while at the same time reflecting the core functional-
ity of existing systems. Specifically, our interfaces capture both
the combination of facets displayed during search and the facet
values selected by users. The latter determine a faceted query,
whose answers constitute the current results of the search. We
describe such queries both as first-order logic queries satisfying
certain restrictions as well as a fragment of SPARQL.

In Section 4, we study the problem of answering faceted
queries over RDF graphs and ontologies captured by the OWL
2 profiles [32]—language fragments with favorable computa-
tional properties that are sufficiently powerful to capture the
ontologies underpinning most existing knowledge graphs. For
each of these profiles we establish tight complexity bounds and
propose query answering algorithms.

In Section 5, we focus on interface generation and update.
Existing techniques for RDF are based on exploration of the
underlying RDF graph. We lift this approach by proposing
a graph-based representation of OWL 2 ontologies and their
logical entailments for the purpose of faceted navigation,
which we refer to as a facet graph. Then, we characterise what
it means for an interface to conform to an ontology, in the sense
that every facet and facet value in the interface is justified by an
edge in the graph (and hence by an entailment of the ontology).
Finally, we propose generic interface generation and update
algorithms that rely on the information in the graph, and show
tractability of these tasks for ontologies in the OWL 2 profiles.

In Section 6, we present our faceted search system SemFacet
and report on a proof of concept performance evaluation as well
as on our practical experience with Yago.

This paper extends our conference publication [33] by pro-
viding (i) detailed proofs of our technical results; (ii) a pre-
cise account of the connection between our theoretical results

in terms of first-order logic and the SPARQL standard; (iii) a
detailed description of our system SemFacet; and (iv) a con-
crete case study based on Yago.1

2. Preliminaries

We use standard notions from first-order logic. We assume
pairwise disjoint infinite sets of constants C, unary predicates
UP, and binary predicates BP. A signature is a subset of
C∪UP∪BP. W.l.o.g., we assume all formulae to be rectified,
that is, no variable appears free and quantified in a first-order
formula ϕ, and every variable is quantified at most once in ϕ.
The set of free variables of a formula ϕ is denoted as fvar(ϕ).

A fact is a ground relational atom and a dataset is a finite set
of facts. A rule is a sentence ∀x∀z [ϕ(x, z) → ∃yψ(x,y)],
where x, z, and y are pairwise disjoint variable tuples, the body
ϕ(x, z) is a conjunction of atoms with variables in x∪z, and the
head ∃yψ(x,y) is an existentially quantified non-empty con-
junction of atoms ψ(x,y) with variables in x∪y. Note that we
consider only rules that are Horn (i.e., disjunction-free), which
is sufficient to capture all three profiles of OWL 2. As usual,
we assume rules to be safe; that is, every universally quantified
variable in the rule occurs in a body atom. Universal quantifiers
in rules are omitted for brevity. We say that a rule is Datalog
if its head has at most one atom and all variables are univer-
sally quantified. Finally, we define an ontology as a finite set
of rules and facts. Note that the restriction of rule heads being
non-empty ensures satisfiability of any ontology, which makes
query results meaningful.

We treat > as a special symbol in UP, which is used to rep-
resent a tautology, and assume that any ontology with signature
V mentioning > includes also the following rules:

A(x)→ >(x) for each A ∈ UP ∩ V,
R(x, y)→ >(z) for each z ∈ {x, y} and R ∈ BP ∩ V.

This treatment of> allows us to ensure safety of rules obtained
from OWL 2 ontologies. Similarly, we treat equality ≈ as an
ordinary predicate in BP, and assume that any ontology with
signature V mentioning equality contains the following rules
axiomatising its meaning:

x ≈ y → y ≈ x,
x ≈ y ∧ y ≈ z → x ≈ z,

R(x, y)→ z ≈ z for all z ∈ {x, y}, R ∈ BP ∩ V,
A(x)→ x ≈ x for all A ∈ UP ∩ V,

A(x) ∧ x ≈ y → A(y) for all A ∈ UP ∩ V,
R(x, y) ∧ x ≈ z → R(z, y) for all R ∈ BP ∩ V,
R(x, y) ∧ y ≈ z → R(x, z) for all R ∈ BP ∩ V.

1Some of the material in this paper has also been presented at workshops
without formal proceedings [34–36]; a preliminary version of SemFacet was
presented as a poster [37] and a short demo paper [38].

2

(1) A(x) ∧R(x, y1) ∧B(y1) ∧R(x, y2) ∧B(y2)→ y1 ≈ y2, (2) R(x, y)→ S(x, y),

(3) A(x)→ ∃y[R(x, y) ∧B(y)], (4) A(x)→ x ≈ a, (5) R(x, y) ∧ S(y, z)→ T (x, z),

(6) A(x)→ B(x), (7) A(x) ∧B(x)→ C(x), (8) R(x, y)→ A(x),

(9) A(x) ∧R(x, y)→ B(y), (10) A(x)→ R(x, a), (11) R(x, a)→ B(x),

(12) R(x, y)→ A(y), (13) R(x, y)→ S(y, x), (14) R(x, y) ∧B(y)→A(x)

Table 1: Rules corresponding to OWL 2 profiles.

OWL 2 defines three profiles: weaker languages with
favourable computational properties [32]. Each profile ontol-
ogy can be normalised as rules and facts using the correspon-
dence of OWL 2 and first-order logic and a variant of the struc-
tural transformation.2 An ontology where all rules are of the
form given in Table 1 is

• RL if it does not contain rules (3);

• EL if it does not contain rules (1), (9), and (13); and

• QL if it does not contain rules (1), (4), (5), (7), (9), (10),
(11), and (14).

Let V be a signature, at(V) the set of equality-free and
constant-free atoms over V , and eq(V) the set of atoms x ≈ c
with x a variable and c a constant from V . A positive exis-
tential query (PEQ) Q(x) is a formula with free variables x,
constructed using ∧, ∨ and ∃ from atoms in at(V) ∪ eq(V). A
PEQ Q is monadic if fvar(Q) is a singleton. It is a conjunc-
tive query (CQ) if it is ∨-free, and it is a union of conjunctive
queries (UCQ) if it is of the form

∨n
i=1Q

′
i(x) where each Q′i is

a CQ with the same free variables x as Q.
We consider two different semantics for query answering.

Under the classical semantics, a tuple t of constants is an an-
swer to PEQQ(x) w.r.t. an ontologyO ifO |= Q(t). Under the
active domain semantics, t is an answer to Q w.r.t.O if there is
a tuple t′ of constants from O s.t. O |= ϕ(t, t′), where ϕ(x,y)
is the formula obtained from Q by removing all quantifiers.

The evaluation problem under classical (resp. active domain)
semantics is to decide, given a tuple of constants t, a PEQ Q
and an ontology O in a language L, whether t is an answer to
Q w.r.t. O under the given semantics. The classical semantics
is the default in first-order logic, whereas active domain is the
default semantics of the SPARQL entailment regimes [39]. The
latter can be seen as an approximation of the former (an active
domain answer is also an answer under classical semantics, but
not vice versa). The differences manifest themselves only in
the presence of existentially quantified rules and queries; thus,
both semantics coincide if either the input ontology is Datalog
(and, in particular, if there is no ontology and we consider only
RDF data), or if all variables in the input query are free.

2Note that the profiles provide the special concept ⊥, which is immaterial
to query answering over satisfiable profile ontologies.

3. Faceted Interfaces and Queries

In this section we provide rigorous logic-based foundations
for faceted search over RDF data and OWL 2 ontologies.
Specifically, we formalise our notions of faceted interface and
faceted query. Furthermore, we describe faceted queries both
in terms of first-order logic and as a fragment of the SPARQL
query language. To motivate our definitions we use an exam-
ple based on an excerpt of DBpedia, where our goal is to find
US presidents who graduated from Harvard or Georgetown and
have a child who graduated from Stanford.

Example 1. The URIs :tr and :bc for Theodore Roosevelt and
Bill Clinton are annotated with the category ‘president’. Roo-
sevelt’s son Kermit :kr and Clinton’s daughter Chelsea :cc are
categorised as ‘person’. Georgetown :g , Harvard :h , and Stan-
ford :s are categorised under ‘university’, and the USA :us and
UK :uk as ‘country’. These annotations are given in RDF and
correspond to the following facts:

President(:tr), President(:bc), Person(:kr),
Person(:cc), Country(:us), Country(:uk),
Univ(:h), Univ(:g), Univ(:s).

Specific information about entities is represented by literals.
For example, Theodore Roosevelt’s date of birth is encoded as
dateOfBirth(: tr , 1858-10-27). Most importantly, entities are
also annotated with other entities; such annotations are given
in RDF and correspond to the following facts relating people to
their citizenship and to the university they graduated from:

citiz(:tr , :us), citiz(:bc, :us), child(:tr , :kr), child(:bc, :cc),
grad(:tr , :h), grad(:bc, :g), grad(:kr , :h), grad(:cc, :s).

Finally, DBpedia can be extended with ontological rules,
which describe the meaning of the predicates and constants
in the vocabulary. Consider for example the rules given next,
which can be captured by the EL profile of OWL 2:

President(x) ∧ citiz(x, :us)→ USpres(x), (1)
USpres(x)→ President(x) ∧ citiz(x, :us), (2)

grad(x, y)→ Person(x) ∧ Univ(y), (3)

Person(x)→ ∃y
(
citiz(x, y) ∧ Country(y)

)
. (4)

Rules (1) and (2) define US presidents as presidents with US
nationality. Rule (3) specifies that the predicate grad relates
people to the universities they graduated from. Finally, (4) man-
dates that each person has a (possibly unspecified) nationality.

3

Analogously to traditional faceted search, we represent facets
as pairs of a predicate and a set of values. In the context of RDF,
however, entities can be used to annotate other entities, and
thus annotations form a graph, rather than a tree. Thus, facet
values can be either entity URIs or literals. Examples of facet
predicates are the ‘graduated from’ and ‘date of birth’ relations,
and example values are the URI for Stanford or literals such as
Theodore Roosevelt’s date of birth. Selection of multiple values
within a facet can be interpreted conjunctively or disjunctively,
and hence we distinguish between conjunctive and disjunctive
facets. We also distinguish a special facet type, whose values
are categories (i.e., unary predicates) rather than entities or lit-
erals. Finally, a special value any denotes the set of all values
compatible with the facet predicate.

Definition 2. Let type and any be symbols not occurring in
C ∪ UP ∪ BP. A facet is a pair (X, ◦Γ), with ◦ ∈ {∧,∨},
Γ a non-empty set, and either (i) X = type and Γ ⊆ UP, or
(ii)X ∈ BP, any ∈ Γ and either Γ ⊆ C∪{any} or Γ ⊆ UP∪
{any}. A facet of the form (X,∧Γ) is conjunctive, and a facet
of the form (X,∨Γ) is disjunctive. In a facet F = (X, ◦Γ), X
is the facet predicate, denoted by F |1, and Γ contains the facet
values and it is denoted by F |2.

Example 3. The following facets are relevant to our example:

F1 = (type,∨{USpres,Country}),
F2 = (child,∨{any, :kr , :cc}),
F3 = (grad,∨{any, :h, :s, :g}),
F4 = (citiz,∧{any, :us, :uk}),
F5 = (citiz,∨{any, :us, :uk}).

The disjunctive facet F1 can be exploited to select the cate-
gories to which the relevant entities belong. Facet F2 can be
used to narrow down search results to those individuals with
children. In particular, given that F2 is a disjunctive facet, if
the values :kr and :cc are selected in F2, then we narrow down
the search to those individuals that have Kermit Roosevelt or
Chelsea Clinton as children. Furthermore, the value any in F2

can be used to state that we are not looking for any specific
child. The intuition behind F3 and F5 is analogous. Similarly,
F4 is a facet that can also be used to reduce search results.
However, if values : us and : uk are selected in this conjunc-
tive facet, then we narrow down the search to those individuals
which are citizens of both the US and the UK.

3.1. The Notion of Faceted Interface
We next move on to the definition of a faceted interface,

which encodes a query (the answers to which determine the
search results) as well as the choices of facet values available
for further refinement.

Definition 4. A basic faceted interface (BFI) is a pair (F,Σ),
with F a facet and Σ ⊆ F |2 the set of selected values. The
set of faceted interfaces (or interfaces, for short) is defined as
follows, where I0 and I1 = (F,Σ) are BFIs and F |1 ∈ BP:

I ::= path | (path ∧ path) | (path ∨ path),

path ::= I0 | (I1/I).

A BFI encodes user choices for a specific facet, e.g., the
BFI (F1, {USpres}) selects the entities categorised as US presi-
dents. BFIs are put together in paths: sequences of nested facets
that capture navigation between sets of entities annotated with
other entities by means of binary relations (e.g., child connects
parents to their children); thus, nesting (I1/I) requires the BFI
I1 to have a binary relation as facet predicate. With nesting we
can capture queries such as ‘people with a child who graduated
from Stanford’ by using the interface (F2, {any})/(F3, {: s})
which first selects people having (any) children and then those
children with a Stanford degree. Finally, two types of branch-
ing can be applied: (path1 ∧ path2) indicates that search results
must satisfy the conditions specified by both path1 and path2,
while (path1 ∨ path2) indicates that they must satisfy those in
path1 or path2.

Example 5. Consider the following interface Iex, which is de-
picted in our system as on the left-hand side of Figure 1.(

(F1, {USpres}) ∧ (F3, {:h, :g})
)
∧
(
(F2, {any})/(F3, {:s})

)
The interface consists of three paths connected by ∧-branching.
The first path selects US presidents. The second path selects
graduates of Harvard or Georgetown. The third path selects in-
dividuals with a child who is a Stanford graduate. Since paths
are combined conjunctively their constraints apply simultane-
ously. Thus, we obtain the US presidents who graduated from
either Harvard or Georgetown and who have a child who grad-
uated from Stanford.

Our notion of interface abstracts from several considerations
that are critical to GUI design. For instance, it is insensitive
to the order of BFIs composed by ∧- or ∨-branching, as well
as to the order of facet values (which are carefully ranked in
practice). Furthermore, we model type-facet values as ‘flat’,
whereas in applications categories are organised hierarchically.
Although these issues are important from a front-end perspec-
tive, they are immaterial to our technical results.

3.2. Faceted Queries
The query encoded by the selected values in an interface is

formally specified in terms of first-order logic as given next.

Definition 6. Let I be an interface, and let each xw with
w ∈ {0, 1, . . . , 9}∗ be a variable. The query of I is the formula
Q[I] = JI, xε, x0K with free variable xε defined as in Table 2.

Our semantics assigns to each interface a PEQ with one free
variable. For each facet F we have J(F, ∅), v, xwK = >(v),
indicating that no restriction is imposed by F if no value is se-
lected. BFIs with a type-facet are interpreted as the conjunction
(disjunction) of unary atoms over the same variable. BFIs hav-
ing as facet predicate a binary predicate result in either an atom
whose second argument is existentially quantified (if any is se-
lected), or in a conjunction (disjunction) of binary atoms having
a variable as second argument that must be equal to a constant
or belong to a unary predicate. Branching (path1 ◦ path2) with
◦ ∈ {∧,∨} is interpreted by constructing the conjunction (dis-
junction) of the queries for each pathi; furthermore, if for some

4

http://en.wikipedia.org/wiki/Bill_Clinton
William Jefferson "Bill" Clinton (born William
Jefferson Blythe III; August 19, 1946) is an
American politician who served as the 42nd
President of the United States from 1993 to
2001. Inaugurated at age 46, he was the third-
youngest president. He took office at the end
of the Cold War, and was the first president of
the baby boomer generation...

ANY

Country
USpres

Searchpoliticians

Stanford Uni.

Stanford Uni.
Harvard Uni.
Georgetown Uni.

type

has child

grad from

grad from

http://en.wikipedia.org/wiki/Harward
William Jefferson "Bill" Clinton (born William
Jefferson Blythe III; August 19, 1946) is an
American politician who served as the 42nd
President of the United States from 1993 to

ANY

Country
USpres

Searchpoliticians

Stanford Uni.

Stanford Uni.
Harvard Uni.
Georgetown Uni.

type

has child

grad from

grad from http://en.wikipedia.org/wiki/Georgetown
William Jefferson "Bill" Clinton (born William
Jefferson Blythe III; August 19, 1946) is an
American politician who served as the 42nd
President of the United States from 1993 to

ANY

Country
USpres

Searchpoliticians

Stanford Uni.

Stanford Uni.
Harvard Uni.
Georgetown Uni.

type

has child

grad from

grad from

http://en.wikipedia.org/wiki/Chelsea_Clinton
Chelsea Victoria Clinton (born February 27, 1980) is the
only child of former U.S. President Bill Clinton and
former U.S. Secretary of State Hillary Rodham Clinton.
She is a special correspondent for NBC News, and
works with the Clinton Foundation and Clinton Global
Initiative...

selected
facet value

keywords

refocusing

facet predicate

facet values

(refocused)
answers

Figure 1: Left: a visualisation the faceted interface from Example 5 in our SemFacet system; Centre and Right: refocusing of this faceted interface on universities
and children of US presidents (as in Example 13).

Basic Faceted Interfaces
If F = (X, ◦Γ), then J(F,Σ), v, xwK =

>(v) if Σ = ∅
∃xwX(v, xw) if any ∈ Σ

◦
C∈Σ

C(v) if X = type and Σ 6= ∅
◦

ti∈Σ
∃xwiX(v, xwi) ∧ xwi ≈ ti if X 6= type, any /∈ Σ,

Σ 6= ∅ and Σ ⊆ C

◦
Ci∈Σ

∃xwiX(v, xwi) ∧ Ci(xwi) if X 6= type, any /∈ Σ,
Σ 6= ∅ and Σ ⊆ UP

Nesting
If F = (X, ◦Γ), then J((F,Σ)/I), v, xwK =

>(v) if Σ = ∅
∃xwX(v, xw) ∧ JI, xw, xw0K if any ∈ Σ

◦
ti∈Σ
∃xwiX(v, xwi)∧ if any /∈ Σ, Σ 6= ∅

xwi ≈ ti ∧ JI, xwi, xwi0K and Σ ⊆ C

◦
Ci∈Σ

∃xwiX(v, xwi)∧ if any /∈ Σ, Σ 6= ∅
Ci(xwi) ∧ JI, xwi, xwi0K and Σ ⊆ UP

Branching
J(path1 ◦ path2), v, xwK =

(Jpath1, v, xw0K ◦ Jpath2, v, xw1K) if Jpath1, v, xw0K 6= >(v)
Jpath2, v, xw1K 6= >(v)

Jpath1, v, xw0K if Jpath1, v, xw0K 6= >(v)
Jpath2, v, xw1K = >(v)

Jpath2, v, xw1K if Jpath1, v, xw0K = >(v)
Jpath2, v, xw1K 6= >(v)

>(v) if Jpath1, v, xw0K = >(v)
Jpath2, v, xw1K = >(v)

Table 2: Semantics of faceted interfaces

pathi we have that Jpathi, v, xwK = >(v), indicating that no
value from the facets occurring in pathi is selected, then pathi
is ignored. Finally, nesting involves a ‘shift’ of variable from
the parent BFI to the nested sub-expression.

Example 7. Interface Iex encodes the following query:

Qex(x) = USpres(x) ∧
(
∃y1 (grad(x, y1) ∧ y1 ≈:h)

∨ ∃y2 (grad(x, y2) ∧ y2 ≈:g)
)

∧ ∃z
(
child(x, z) ∧ ∃w(grad(z, w) ∧ w ≈:s)

)
.

If we consider only facts, the answer set is empty (no entity is
categorised as ‘US president’). If we also consider the ontology
rules, however, we obtain Bill Clinton as the only answer under
both classical and active domain semantics.

We can now identify the class of faceted queries as the class
of first-order queries that can be captured by faceted interfaces.

Definition 8. A first-order formula ϕ is a faceted query if there
exists a faceted interface I such that ϕ and Q[I] are identical
modulo renaming of variables.

3.3. Faceted Queries as Restricted PEQs
Faceted queries correspond to PEQs of a rather restricted

shape, which is determined by Table 2. We next specify such
restrictions, which we exploit later on in Section 4 to establish
tractability results for query evaluation.

The first observation we can make in Table 2 is that variables
in a faceted query can be arranged in a tree with root xε and
where each variable xw.i is a child of xw. The tree-shaped na-
ture of faceted queries is captured by the following definition,
and we can readily check that query Qex(x) in Example 7 is
indeed tree-shaped.

Definition 9. Let Q(x) be a monadic PEQ. The graph of Q is
the smallest directed graphGQ with a node for each variable in
Q and a directed edge (y, y′) for each atom R(y, y′) occurring
in Q where R is different from ≈. Moreover, Q is tree-shaped
if (i) GQ is a (possibly empty) directed tree rooted at x; (ii) for
each edge (y, y′) there is at most one binary atom in Q of the
form R(y, y′).

The second important observation in Table 2 is that disjunc-
tion in a faceted query originates from either a disjunctive facet

5

or from ∨-branching between paths. In either case, disjunctive
subqueries are monadic tree-shaped PEQs.

These observations are reflected in the following proposition.

Proposition 10. Every faceted query Q is a monadic tree-
shaped PEQ with the following property: if ϕ = (ϕ1 ∨ ϕ2)
is a subformula of Q, then fvar(ϕ1) = fvar(ϕ2) = {x} for
some variable x.

Proof. The claim in the proposition follows by a simple induc-
tion on the structure of faceted queries. We show that for every
interface I the query JI, xε, x0K is a monadic tree-shaped PEQ
with a single free variable xε at the root of the tree and satisfy-
ing the property stated in the proposition.

Consider Table 2. For the base case consider BFIs. It can be
immediately seen that all queries are monadic PEQs with free
variable v. Furthermore, they are tree-shaped with v at the root
of the tree and (existentially quantified) variables xw and xw.i
as children of v in the graph of the query.

Let us now consider nesting. The first case is direct. For
the remaining cases we know, by the induction hypothesis, that
JI, xw, xw0K and JI, xwi, xwi0K are monadic tree-shaped PEQs
with free variable xw (resp. xwi) at the root of the tree, and sat-
isfying the property in the proposition. Since variable xw (resp.
xwi) becomes existentially quantified, then J((F,Σ)/I), v, xwK
has v as a free variable; furthermore, it is tree-shaped with v the
new root of the tree. Again, a disjunctive formula is introduced
if ◦ is∨ and each of the disjuncts has v as common free variable.

The case for branching of paths also follows directly from
the inductive hypothesis.

3.4. Expressing Faceted Queries in SPARQL

We have shown how faceted queries can be seen in terms
of first-order logic as a restricted form of PEQs. In practice,
however, we need to specify such queries in SPARQL, as they
will be executed over an RDF graph. In this section, we show
how faceted queries can be expressed in SPARQL by slightly
modifying the transformation rules given in Table 2. We will
use an example to explain the main ideas behind this modified
transformation and to provide a cleaner picture of the features
of SPARQL that are needed to capture faceted queries; the con-
struction sketched by our example can be easily generalised to
all the cases given in Table 2. Throughout this section we as-
sume basic familiarity with SPARQL, and refer the reader to
the normative documents for further details [9].

Consider the facets defined in Example 3 and the interface
Iex in Example 5. To encode the corresponding query in
SPARQL, we first need to translate unary and binary relational
atoms into SPARQL triple patterns. More precisely, an atom of
the form A(x), where x is a variable, is translated into a triple
pattern ?x rdf:type :A, where ?x is a SPARQL variable
representing variable x, :A is a URI representing unary predi-
cate A, and rdf:type is a reserved URI used to indicate that
?x is of type of :A. Thus, the previous triple pattern asks for
all the values for variable x that are elements of A, which is
the intended meaning of A(x). Similarly, an atom of the form
R(x, y), where x and y are variables, is translated into a triple

pattern: ?x :R ?y, where :R is a URI representing the binary
predicate R.

Let us consider the interface (F1, {USpres}), which is the
first component of Iex, and its corresponding first-order logic
query USpres(x). We capture this query in SPARQL by means
of the following query:

SELECT ?x
WHERE { ?x rdf:type :USpres . }

In this case, we first translate the atom USpres(x) into a triple
pattern, and then we indicate that we want to retrieve the value
of variable x by using the query form SELECT ?x.

Let us consider the interface (F2, {any}) in our example,
whose query is encoded as ∃y child(x, y) in first-order logic.
We encode such query in SPARQL as follows:

SELECT ?x
WHERE { ?x :child ?y . }

As in the previous case, we first translate child(x, y) into a triple
pattern, and then we indicate that we want to retrieve all persons
who have a child by using the query form SELECT ?x.

Consider the interface ((F2, {any})/(F3, {: s})), which is
translated recursively into first-order logic. Following Table 2,
we first construct a query of the form ∃y (child(x, y) ∧ ϕ(y))
from (F2, {any}), and then replace ϕ(y) by the query encoding
(F3, {: s}), namely ∃z(grad(y, z) ∧ z ≈: s). This recursive
procedure can be easily adapted to generate a SPARQL query.
For this, we first construct a template of the form:

SELECT ?x
WHERE { ?x :child ?y. ϕ(?y) . }

and then we recursively invoke the procedure to replace ϕ(?y)
by a SPARQL query for the interface (F3, {:s}). Finally, the
SPARQL query corresponding to ((F2, {any})/(F3, {: s})),
which retrieves all persons having a child who graduated from
Stanford, is as follows:

SELECT ?x
WHERE {

?x :child ?y .
{

SELECT ?y
WHERE {

?y :grad ?z .
FILTER (?z = :s) }

}
}

Note that the FILTER operator is used to indicate that the value
of variable ?z must be equal to the URI :s. Furthermore, ob-
serve that the translation of the interface nesting construct in
our language requires the use of nested queries, which were in-
troduced as a new feature in SPARQL 1.1 [9].

So far we have shown four key features of SPARQL needed
to encode faceted queries, namely triple patterns to encode
unary and binary relational atoms, the query form SELECT to

6

provide the output variable, nested queries to encode interface
nesting and the FILTER operator to encode equality atoms.
We are only missing one additional feature that is needed for
the transformation rules in Table 2: a restricted form of use of
the SPARQL operator UNION. Consider the faceted interface
(F3, {:h, :g}) in our running example. As F3 is a disjunctive
facet, (F3, {:h, :g}) is encoded as follows in first-order logic:

∃y1 (grad(x, y1) ∧ y1 ≈:h) ∨ ∃y2 (grad(x, y2) ∧ y2 ≈:g)

The two disjuncts of this first-order query are translated into
SPARQL as shown before, and are then combined by means of
the UNION operator as follows:

SELECT ?x
WHERE {

{
SELECT ?x
WHERE {

?x :grad ?y1 .
FILTER (?y1 = :h) }

}
UNION
{

SELECT ?x
WHERE {

?x :grad ?y2 .
FILTER (?y2 = :g) }

}
}

Notice that the operator UNION must be used in SPARQL in-
side a query form, which is why in this case we need to include
the outermost query form SELECT ?x. More importantly, for
every sub-query of the form P1 UNION P2 it holds that both
P1 and P2 have exactly one output variable, which must be the
same. This restriction in the use of UNION corresponds to that
in Proposition 10 in the context of first-order logic.

3.5. Faceted Interfaces with Refocusing
The interface in Example 5 finds presidents (such as Bill

Clinton) who graduated from either Harvard or Georgetown and
have children who graduated from Stanford. If we want to know
who these children are (i.e., see Chelsea Clinton as an answer),
we must provide refocusing (or pivoting) functionality [26, 27].
We now extend faceted interfaces with such functionality.

Definition 11. Let focus be a symbol not in C∪UP∪BP. An
extended basic faceted interface (EBFI) is either a BFI or a pair
(F,Σ∪{focus}), where (F,Σ) is a BFI and F |1 ∈ BP. More-
over, the set of extended faceted interfaces (EFIs) is defined by
the same grammar given in Definition 5, but where I0 is a BFI
and I1 = (F,∆) is an EBFI with F |1 ∈ BP. Finally, each EFI
I must have at most one occurrence of the symbol focus.

The value focus is used to change the free variable of the
query Q, which determines the kinds of objects returned as an-
swers. Thus, refocusing is used over a facet that introduces new
variables in the query, which by Table 2 requires F |1 ∈ BP.

Extended Basic Faceted Interfaces
If F = (X, ◦Γ), then J(F,Σ ∪ {focus}), v, xwK =

X(v, xw) if Σ = ∅
J(F, {focus}), v, xwK if Σ 6= ∅ and

Σ ⊆ C ∪ {any}
J
(
(F, {focus})/ if Σ 6= ∅ and
((type,∨Γ),Σ)

)
, v, xwK Σ ⊆ UP ∪ {any}

Nesting
If F = (X, ◦Γ), then J((F,Σ ∪ {focus})/I), v, xwK =

X(v, xw) ∧ JI, xw, xw0K if Σ = ∅
J((F, {focus})/I), v, xwK if Σ 6= ∅ and

Σ ⊆ C ∪ {any}
J
(
(F, {focus})/ if Σ 6= ∅ and(

((type,∨Γ),Σ) ∧ I
))
, v, xwK Σ ⊆ UP ∪ {any}

Table 3: Semantics of extended faceted interfaces

The query encoded by an extended interface can be specified
in terms of first-order logic as given next.

Definition 12. Let I be an EFI and JI, xε, x0K be a formula
defined by the extension of Table 2 with the rules in Table 3.
Then the query of I is the formula Q[I] defined as follows:

Q[I] =

{
JI, xε, x0K if focus does not occur in I ,
∃xε JI, xε, x0K otherwise.

A formula ϕ is an extended faceted query if there is an EFI I
s.t. ϕ and Q[I] are identical modulo renaming of variables.

Example 13. For example, consider the following EFI I , which
is focused on the children of the US presidents:(

(F1, {USpres})∧(F3, {:h, :g})
)
∧
(
(F2, {focus})/(F3, {:s})

)
Then, Q[I] is obtained from Qex(x) in Example 7 by first drop-
ping the existential quantifier ∃z from Qex(x), and then adding
∃x to the resulting query, thus obtaining Q′ex(z):

∃x
(
USpres(x) ∧

(
∃y1 (grad(x, y1) ∧ y1 ≈:h)

∨ ∃y2 (grad(x, y2) ∧ y2 ≈:g)
)

∧
(
child(x, z) ∧ ∃w(grad(z, w) ∧ w ≈:s)

))
.

The answer to Qex(z) is precisely Chelsea Clinton.

We conclude this section by pointing out that PEQs obtained
from faceted interfaces extended with refocusing also satisfy
Proposition 10, with the only difference that the corresponding
query graph is no longer rooted in the answer variable. Con-
sequently, as we will see later on, refocusing does not increase
the complexity of query evaluation.

4. Answering Faceted Queries

A faceted search system must compute the answers to a query
each time that a user selects a facet value to refine the search

7

Algorithm 1: ANSWER-FQ
INPUT : D a dataset; Q a faceted query
OUTPUT: Answers to Q w.r.t. D

1 S := Set of disjunctive subformulas of Q
2 �:= partial order on S s.t. ϕ � ϕ′ iff ϕ is a subformula of ϕ′

3 for each ϕ = (ϕ1 ∨ ϕ2) ∈ S listed in ascending �-order do
4 for each 1 ≤ i ≤ 2 do
5 ϕ′

i := REWRITE(ϕi)
6 Ansi := ANSWER-TREE-CQ(ϕ′

i,D)

7 D := D ∪ {Cϕ1∨ϕ2(d) | d ∈ Ans1 ∪ Ans2}
8 Q′ := REWRITE(Q)
9 Ans := ANSWER-TREE-CQ(Q′,D)

10 return Ans

Function REWRITE

INPUT : ϕ a faceted query
OUTPUT: A conjunctive query

1 case ϕ an atom return ϕ
2 case ϕ = ∃z ϕ′ return ∃z REWRITE(ϕ′)
3 case ϕ = ϕ1 ∧ ϕ2 return REWRITE(ϕ1) ∧ REWRITE(ϕ2)
4 case ϕ = ϕ1 ∨ ϕ2 return Cϕ1∨ϕ2(y) with y = fvar(ϕi)

results. Thus, query evaluation is a key reasoning problem for
the development of efficient and robust faceted search systems.

As discussed in Section 3, faceted queries are monadic posi-
tive existential queries resulting from the selection of facet val-
ues in an interface. By standard results for relational databases,
PEQ evaluation is an NP-hard problem, even if we restrict our-
selves to CQs and ontologies consisting of just a dataset.

In this section we show that, in contrast to PEQs (and even
CQs), faceted query evaluation over datasets is tractable due to
the restrictions in the structure of queries imposed by Propo-
sition 10. Furthermore, the problem remains tractable in most
cases if we consider ontologies in the OWL 2 profiles. Our
tractability results concern combined complexity, which takes
into account the size of the entire input (i.e., ontological rules,
RDF data and queries).

4.1. Faceted Query Answering Over Datasets

We next show how the restricted shape of faceted queries can
be exploited to make query answering more efficient under both
classical and active domain semantics. We start by providing a
polynomial time algorithm for answering faceted queries over
datasets.3 The key observation is that the disjunctive subqueries
ϕ = ϕ1 ∨ ϕ2 in the input query Q can be evaluated w.r.t. the
input data in a bottom-up fashion. To answer one such ϕ, we
solve ϕ1 and ϕ2 independently and store the answers as facts in
the dataset using a fresh unary predicate Cϕ associated to ϕ.

Example 14. Query Qex in Example 7 can be answered over
the dataset in our running example as follows. First, solve
the subquery ϕ asking for graduates from either Harvard or
Georgetown; each disjunct is a tree-shaped CQ, and we obtain

3Note that both semantics coincide in this case.

Bill Clinton, Theodore Roosevelt and Kermit Roosevelt as an-
swers. Then, extend the dataset with facts Cϕ(: bc), Cϕ(: tr)
and Cϕ(:kr) over a fresh predicate Cϕ. Finally, rewrite Qex

by replacing ϕ(x) with Cϕ(x) and answer the rewritten query
over the extended dataset. We obtain the empty set of answers
since no entity is explicitly categorised as US president.

Algorithm 1 implements these ideas. The algorithm re-
lies on a specialised algorithm ANSWER-TREE-CQ to answer
(monadic) tree-shaped CQs, which is used as a ‘black box’. The
following theorem establishes correctness of our algorithm.

Theorem 15. Algorithm 1 computes all answers to Q w.r.t. D.

Proof. First, note that the properties of faceted queries given
in Proposition 10 and the definition of the function REWRITE
ensure that the input passed to ANSWER-TREE-CQ in each call
is indeed a tree-shaped conjunctive query.

Correctness of the algorithm follows directly from the fol-
lowing property, which holds in each iteration of the main loop.

(?) Let ϕ = (ϕ1∨ϕ2) ∈ S be as in Line 3. Then, the answers
to ϕ w.r.t. the input ontology are precisely Ans1 ∪ Ans2
as in Line 7.

In what follows, we show that (?) indeed holds. Consider the
case where ϕ = ϕ1 ∨ ϕ2 is �-minimal. Then, neither ϕ1 nor
ϕ2 are disjunctive. In this case, ϕ′i in Line 5 is precisely ϕi, and
Property (?) holds directly by the semantics of first-order logic
and the fact that datasets have a single minimal model: d is an
answer to ϕ iff it is an answer to either of its disjuncts.

Consider the case ϕ = ϕ1 ∨ ϕ2 is not �-minimal. For each
ϕi we have two possibilities: (i) ϕi is not disjunctive, in which
case ϕ′i in Line 5 is precisely ϕi and thus the answers to ϕ′i
coincide with the answers to ϕi; (ii) ϕi contains disjunctive
sub-formulas, in which case the definition of REWRITE ensures
that ϕi will be rewritten as disjunction-free by replacing each
�-maximal disjunctive sub-formula γ of ϕi with Cγ(y). But
then, since each such γ � ϕi we have that the modified dataset
includes the answers to γ as facts over Cγ .

Thus, faceted queries can be evaluated in polynomial time
with an oracle for the evaluation of tree-shaped CQs. By a
classic result in database theory, acyclic CQs (and hence also
tree-shaped CQs as in Definition 9) can be answered in polyno-
mial time [40]. Thus, tractability of tree-shaped CQ evaluation
transfers to the evaluation of faceted queries.

Corollary 16. Faceted query evaluation over datasets is feasi-
ble in polynomial time.

In what follows we study query answering over ontologies
(and not just datasets) under both active domain and classical
semantics.

4.2. Active Domain Semantics
In practice, queries over ontology-enhanced RDF data are

typically represented in SPARQL and executed using off-the-
shelf reasoning engines with SPARQL support. The specifica-
tion of SPARQL under entailment regimes [39] is based on ac-
tive domain semantics, which requires existentially quantified

8

Algorithm 2: ANSWER-FQ-ACTIVE

INPUT : O an ontology; Q a faceted query
OUTPUT : Active domain answers to Q w.r.t. O

1 D := COMPUTE-ENTAILED-FACTS(O)
2 Ans := ANSWER-FQ(Q,D)
3 return Ans

variables in the query Q to map to actual constants in the input
ontology O. In this case, we can answer queries using Algo-
rithm 2, which computes the dataset D of all facts entailed by
O and then answers Q w.r.t. D. The correctness of Algorithm 2
follows from Theorem 15 and the following lemma.

Lemma 17. LetQ be a PEQ, letO be an ontology, and letD be
the set of all facts α such that O |= α. Then, the answer sets to
Q w.r.t.O and w.r.t.D coincide under active domain semantics.

Proof. First, note that since O |= D and D is a dataset, ev-
ery answer to Q w.r.t. D is an answer to Q w.r.t. O. To show
the converse, pick an active domain answer to Q w.r.t. O. By
the definition of active domain semantics, there must exist a
tuple t′ of constants from O such that O |= ϕ(c, t′), where
ϕ is the formula obtained from Q by removing all quantifiers.
Clearly, ϕ(c, t′) is a Boolean combination of facts. Since we
consider only Horn rules in this paper, we can transform O
into a Logic Program PO by Skolemising existentially quanti-
fied variable in rules using functional terms (note that standard
Skolemisation preserves entailment). Program PO has a (pos-
sibly infinite) Herbrand modelH that can be homomorphically
embedded into any other Herbrand model of PO [41]. Further-
more, H coincides with D when restricted to constants. We
have that O |= ϕ(c, t′) iff PO |= ϕ(c, t′) iff H |= ϕ(c, t′) iff
D |= ϕ(c, t′). Hence, we can conclude that c is also an answer
to Q w.r.t. D.

By showing that fact entailment is tractable for all the pro-
files, we can immediately prove tractability of faceted query
evaluation under active domain semantics. Thus, by commit-
ting to the active domain semantics of SPARQL we achieve
tractability without emasculating the ontology language.

Theorem 18. Active domain evaluation of faceted queries is in
PTIME w.r.t. all normative OWL 2 profiles. Furthermore, it is
PTIME-complete w.r.t. the EL and RL profiles.

Proof. PTIME-hardness for EL and RL follows from the known
hardness result for fact entailment in these profiles [32]. We
next show membership in PTIME for all profiles. By Lemma 17,
it suffices to show tractability of fact entailment. We first ob-
serve that entailment of unary facts is feasible in polynomial
time since instance checking for atomic class expressions is
tractable for each of the profiles [32].

We now argue that checking O |= α with α a binary fact
of the form R(c, d) is also tractable. If O is an OWL 2 EL
ontology, then this is the case iff the following holds, where A
is a fresh unary predicate

O ∪ {R(x, d)→ A(x)} |= A(c)

which can be checked in polynomial time. If O is in OWL 2
RL, then O |= R(c, d) iff R(c, d) the fact holds in the Least
Herbrand Model of O, which can be computed in polynomial
time given thatO has at most three variables per rule. Finally, if
O is in OWL 2 QL, then O |= R(c, d) iff OP does, where OP
is the subset of facts and rules of Type (2), (10), (12), and (16)
(from Table 1) in O. Since OP is also an OWL 2 RL ontology
then the check is also feasible in polynomial time.

4.3. Classical Semantics
Classical and active domain semantics coincide if we restrict

ourselves to Datalog ontologies. Thus, Algorithm 2 can also
be used for faceted query answering under classical semantics
if the input ontology is Datalog. Since OWL 2 RL ontologies
are Datalog it follows that our results in Theorem 18 transfer to
OWL 2 RL ontologies under classical semantics.

In contrast to RL, the EL and QL profiles can capture ex-
istentially quantified knowledge and hence active domain and
classical semantics may diverge for queries with existentially
quantified variables.

To deal with EL ontologies, we exploit techniques developed
for the combined approach to CQ answering [42–44]. As a first
step, we rewrite rules of Type (3) in Table 1 into Datalog by
Skolemising existentially quantified variables into constants.

Definition 19. Let O be in EL. The ontology Ξ(O) is obtained
fromO by replacing each ruleA(x)→ ∃y[R(x, y)∧B(y)] with
rules A(x)→ P (x, cR,B), P (x, y)→ R(x, y), and P (x, y)→
B(y), where P is a fresh predicate and cR,B is a globally fresh
constant uniquely associated with R and B.

Although this transformation strengthens the ontology, it pre-
serves the entailment of all facts [42, 45].

Lemma 20 (implicit in [44, 45]). LetO be an EL ontology and
let α be a fact mentioning only constants and predicates from
O. Then, Ξ(O) |= α implies O |= α.

As we show in the following Lemma, this result extends to
monadic tree-shaped CQs.

Lemma 21. let O be an EL ontology, let c be a constant from
O, and Q(x) a monadic tree-shaped CQ. Then, Ξ(O) |= Q(c)
implies O |= Q(c).

Proof. For each constant a in O, let Aa be a fresh unary predi-
cate associated to a. Let O1 be obtained from O by adding the
fact Aa(a) for each constant a in O. Also, let Q1 be the CQ
obtained from Q by replacing each equality atom y ≈ a in Q
with Aa(y). It is routine to show that the following holds:

1. The answers toQ w.r.t.O coincide with the answers toQ1

w.r.t. O1;

2. The answers toQ w.r.t. Ξ(O) coincide with the answers to
Q1 w.r.t. Ξ(O1).

Consider the Datalog rule ϕ(x,y)→ AQ1
(x), where AQ1

is
fresh and ϕ(x,y) is the conjunction of atoms in Q1. Since Q1

is tree-shaped, then the given rule can be written as the ontology

9

O2 which we define next. Let GQ1 be the tree associated to Q1

(c.f. Definition 9), and let Pz be a fresh unary predicate for each
variable z in GQ1

. If z is a leaf of GQ1
, let Oz be as follows:

Oz = {
∧

Ai(z) inQ1

Ai(z)→ Pz(z)}.

If z is not a leaf, thenOz is defined as follows, where z1, . . . , zn
are the children of z in GQ1

and Rj(z, zj) is the unique binary
atom involving z and zj in Q1:

Oz = {
∧

Ai(z) inQ1

Ai(z) ∧
n∧
j=1

[Rj(z, zj) ∧ Pzj (zj)]→ Pz(z)}.

Then, O2 is defined as follows:

O2 = [
⋃

z inQ1

Oz] ∪ {Px(x) ∧
∧

Ai(x) inQ1

Ai(x)→ AQ1
(x)}.

Clearly, the ontology O2 can be normalised into both EL and
RL. Furthermore, the following holds:

3. The answers toQ1 w.r.t.O1 and the instances ofAQ1 w.r.t.
O1 ∪ O2 coincide.

4. The answers to Q1 w.r.t. Ξ(O1) and the instances of AQ1

w.r.t. Ξ(O1 ∪ O2) coincide.

Assume that Ξ(O) |= Q(c). Then, by Property 2 be have
Ξ(O1) |= Q1(c) and by Property 4 Ξ(O1 ∪ O2) |= AQ1(c).
But then, Lemma 20 gives us O1 ∪ O2 |= AQ1

(c). Thus, by
Properties 3 and 1 we obtain O |= Q(c), as required.

Using Lemma 21, we can show that the evaluation of faceted
queries w.r.t. EL ontologies is also preserved under Ξ.

Lemma 22. Let Q be a faceted query, O an EL ontology, and
let c be a constant in O. Then, O |= Q(c) iff Ξ(O) |= Q(c).

Proof. The left-to-right implication is trivial since Ξ(O) |= O.
Assume now that Ξ(O) |= Q(c). Since Q(c) is a PEQ, there

is a (maybe exponentially larger) UCQU(c) =
∨n
i=1Q

′
i(c) that

is logically equivalent toQ(c). Consequently, Ξ(O) |= Q(c) iff
Ξ(O) |= U(c). Since Ξ(O) is a Datalog ontology, we have that
Ξ(O) |= U(c) iff Ξ(O) entails some CQ Q′i(c) occurring as a
disjunct in U(c). Hence, it suffices to show that O |= Q′i(c).
Since Q(c) is tree-shaped, so is U(c) (DNF normalisation does
not affect the arrangement of variables), and thus so is Q′i(c).
By Lemma 21 we have that O |= Q′i(c), as required.

It follows that faceted queries over an EL ontology O can be
answered under classical semantics by applying Algorithm 2 to
Ξ(O). Since Ξ is a linear transformation and Ξ(O) is an RL
ontology, tractability of faceted query evaluation follows.4

Theorem 23. Faceted query evaluation under classical seman-
tics is PTIME-complete for RL ontologies and EL ontologies.

4This result is consistent with existing results for acyclic CQs in EL [46].

Proof. As in the case of active domain semantics, hardness
follows from the known hardness result for fact entailment in
these profiles. Since each RL ontologyO is a Datalog program,
classical and active domain semantics coincide; hence, we can
use Algorithm 2 to evaluate faceted queries under classical se-
mantics as well. Program O contains at most 3 variables per
rule and hence procedure COMPUTE-ENTAILED-FACTS can be
implemented in polynomial time. Corollary 16 ensures that
ANSWER-FQ is feasible in polynomial time over datasets. In
the case of EL, Lemma 22 ensures that we can apply Algo-
rithm 2 to Ξ(O). Since Ξ(O) is RL and can be constructed in
linear time, tractability for RL implies tractability for EL.

In contrast, the evaluation of acyclic CQs is already NP-hard
for OWL 2 QL [47] and the proof in [47] can be adapted to
also show NP-hardness of faceted query evaluation. Further-
more, we can also show membership in NP, and hence NP-
completeness. of faceted query evaluation for OWL 2 QL.

Theorem 24. Faceted query evaluation under classical seman-
tics is NP-complete for QL ontologies.

Proof. We first prove membership in NP. We say that faceted
query Q1 is more specific than Q2 if Q1 can be obtained from
Q2 by replacing a subformula (ϕ1 ∨ ϕ2) of Q2 by either ϕ1

or ϕ2. Moreover, we define E as the reflexive and transi-
tive closure of the relation of being more specific, and given
a faceted query Q, we define the determinisation of Q, denoted
by det(Q), as the set of all CQs Q′ such that Q′ E Q. Deter-
minisation satisfies the following property (?).
(?) For every faceted query Q, QL ontology Q and constant c,
it holds that O |= Q(c) if and only if there exists Q′ ∈ det(Q)
such that O |= Q′(c).

It is well-known that evaluation of arbitrary CQs is in NP for
QL ontologies. From this and (?) we obtain that faceted query
evaluation under classical semantics is in NP for QL ontologies.

We show hardness by adapting the proof of Theorem 1
in [47], which shows NP-hardness of CQ evaluation w.r.t.
OWL 2 QL ontologies by reduction from propositional satisfia-
bility. Consider a propositional formula in CNF α =

∧m
j=1Dj

over variables p1, . . . , pn where each Dj is a propositional
clause. Next, consider the following OWL 2 QL ontology O
consisting of the following axioms for i ∈ [1, n], j ∈ [1,m]
and k = 0, 1:

Cj(x)→ A0(x),

Cj(x)→ Ai(x),

Xk
i (x)→ Ai(x),

Ai(x)→ ∃y(R(x, y) ∧Ai−1(y)),

Ai−1(x)→ ∃y(S(x, y) ∧Xk
i (y)),

S(x, y)→ R(y, x),

X0
i (x)→ ∃y(R(x, y) ∧ Cj(y)) if ¬pi ∈ Dj ,

X1
i (x)→ ∃y(R(x, y) ∧ Cj(y)) if pi ∈ Dj ,

Cj(x)→ ∃y(R(x, y) ∧ Cj(y)),

A0(a).

10

Further, when writing faceted interfaces, we will omit sets of
selected values for simplicity, that is, we will write (X, ◦Γ) in-
stead of ((X, ◦Γ),Σ), assuming that Σ = Γ. Moreover, (X, v)
will designate the facet (X,∨{v}). Consider now the following
family of sub-interfaces for j ∈ [1,m].

Ej =(R, any)/

(
(type, An−1)∧(

(R, any)/
(
(type, An−2) ∧ . . .

∧ ((R, any)/(type,∧{A0, Cj}))
)))

.

Next consider the following faceted interface I:

I =(type, A0) ∧
(

(S, any)/
(

(type, A1) ∧ . . .
(
(S, any)

/((type, An) ∧ E1 ∧ . . . ∧ En)
)))

.

Furthermore, Q[I] is isomorphic to the following query, where
y = (y1, . . . , yn) and zj = (zj0, . . . , z

j
n−1) for j ∈ [1,m].

∃y∃z1 . . . ∃zm
(
A0(y0) ∧

n∧
i=1

S(yi−1, yi) ∧Ai(yi)

∧
m∧
j=1

[
R(yn, z

j
n−1) ∧A0(zj0) ∧ C(zj0)∧

1∧
i=n−1

Ai(z
j
i) ∧R(zji , z

j
i−1)

])
.

It can be checked that a is an answer to Q[I] w.r.t. O iff the
propositional formula α is satisfiable.

4.4. Extended Faceted Queries
We conclude by arguing that the refocusing functionality

does not increase complexity of query evaluation. PEQs ob-
tained from EFIs satisfy Proposition 10, with the only differ-
ence that the corresponding query graph is no longer rooted in
the answer variable. Algorithm 1 can be extended to prove that
Corollary 16 also holds for extended faceted queries. From this,
and using the same techniques as in the proofs of Theorems 18
and 24, we obtain the following result.

Theorem 25. Extended faceted query evaluation under clas-
sical semantics is (i) PTIME-complete for RL and EL; and
(ii) NP-complete for QL.

Moreover, active domain evaluation of extended faceted
queries is in PTIME w.r.t. all normative OWL 2 profiles, and
it is PTIME-complete for RL and EL.

Proof. Note that the complexity results we have obtained for
faceted queries apply to the class of PEQs satisfying the prop-
erties given in Proposition 10 as we did not make in our proofs
any further assumptions about the structure of faceted queries.

Let us now consider extended faceted queries and their se-
mantics as in Definition 12. Their structure is exactly the same

as regular faceted queries with the only difference that the an-
swer variable does not need to be rooted in variable xε. Suppose
the answer variable to such query Q is y. To check whether
some constant c is an answer to Q we simply add the equality
atom y ≈ c to Q and existentially quantify y. The result is a
Boolean query that is tree-shaped (if we take xε as root) and
which satisfies the property stated in Proposition 10 for dis-
junctive subformulas. Hence, the complexity of faceted query
evaluation is exactly the same as the complexity of evaluating
extended faceted queries.

5. Interface Generation & Update

Faceted navigation is an interactive process. Starting with an
initial interface generated from a keyword search, users select
or unselect facet values and the system reacts to these user ac-
tions by updating the search results (query answers) as well as
the facets available for further navigation.

Example 26. Consider the interactive construction of our in-
terface Iex from Example 5. Navigation starts with an interface
with no selected value, which may have been generated as a re-
sponse to a keyword search (facets Fi are given in Example 3):

I0 = (F1, ∅) ∧ (F3, ∅) ∧ (F2, ∅) ∧ (F5, ∅).

We may then select the category USpres in F1, which narrows
down the search to US presidents. In response, the system may
construct the following new interface I1:

I1 = (F1, {USpres}) ∧ (F3, ∅) ∧ (F2, ∅).

Interface I1 incorporates the required filter on US presidents.
Furthermore, it no longer includes facet F5 since US presidents
have only US nationality and hence any filter over this facet
becomes redundant. Next, we select Harvard and Georgetown
in facet F3, which narrows down the search to US presidents
with either a Harvard or Georgetown degree and yields the
following interface:

I2 = (F1, {USpres}) ∧ (F3, {:h, :g}) ∧ (F2, ∅).

Next, we select any in facet F2 to look for presidents with chil-
dren. In response, the system constructs the following interface:

I3 = (F1, {USpres}) ∧ (F3, {:h, :g}) ∧
(
(F2, {any})/(F3, ∅)

)
.

Interface I3 provides a nested BFI (F3, ∅), which allows us to
select the university that children of US presidents attended.
We pick Stanford, and the system finally constructs Iex.

We next propose interface generation and update algorithms
that are guided by the (explicit and implicit) information in O.
Our algorithms are based on the same unifying principle: each
element of the initial interface (resp. each change in response to
an action) must be ‘justified’ by an entailment inO. In this way,
by exploring the ontology, we guide users in the formulation of
meaningful queries.

There is an inherent degree of non-determinism in faceted
navigation: if a user selects a facet value, it is unclear whether

11

the next facet generated by the system should be conjunctive or
disjunctive, and whether it should be incorporated in the inter-
face by means of conjunctive or disjunctive branching. In many
applications, however, different values in a facet are interpreted
disjunctively, whereas constraints imposed by different facets
are interpreted conjunctively. Thus, to resolve such ambigui-
ties and devise fully deterministic algorithms, we focus on a
restricted class of interfaces where conjunctive facets and dis-
junctive branching are disallowed.

Definition 27. A faceted interface I is simple if all facets
occurring in I are disjunctive, and it does not contain sub-
interfaces of the form (path1 ∨ path2).

5.1. The Ontology Facet Graph

We capture the facets that are relevant to an ontology O in a
facet graph, which can be seen as a concise representation of
O. Our interface generation and update algorithms are parame-
terised by such graph rather than by O itself.

The nodes of a facet graph are possible facet values (unary
predicates and constants), and edges are labelled with possible
facet predicates (binary predicates and type). The key property
of a facet graph is that every X-labelled edge (v, w) is justified
by a rule or fact entailed by O which semantically relates v
to w via X . We distinguish three kinds of semantic relations:
existential, where X is a binary predicate and (each instance
of) v must be X-related to (an instance of) w in the models of
O; universal, where (each instance of) v is X-related only to
(instances of) w in the models of O; and typing where X is
type and constant v is entailed to be an instance of the unary
predicate w.

Definition 28. A facet graph for O is a directed labelled multi-
graph G having as nodes unary predicates or constants fromO
and s.t. each edge is labelled with a binary predicate fromO or
type. Each edge e is justified by a fact or rule αe s.t. O |= αe
and αe is of the form given next, where c, d are constants, A,B
unary predicates and R a binary predicate:

(i) if e is c R−→ d, then αe is of the form

R(c, d) or R(c, y)→ y ≈ d;

(ii) if e is c R−→ A, then αe is a rule of the form

>(c)→ ∃y[R(c, y) ∧A(y)] or R(c, y)→ A(y);

(iii) if e is A R−→ c, then αe is a rule of either of the form

A(x)→ R(x, c) or A(x) ∧R(x, y)→ y ≈ c;

(iv) if e is A R−→ B, then αe is a rule of the form

A(x)→ ∃y[R(x, y) ∧B(y)] or A(x) ∧R(x, y)→ B(y);

(v) if e is c
type−−→ A, then αe = A(c).

Moreover, rangeG(R) denotes the set of nodes in G with an
incoming R-labelled edge.

The first (resp. second) option for each αe in (i)-(iv) encodes
the existential (resp. universal) R-relation between nodes in e,
whereas (v) encodes typing. A graph may not contain all jus-
tifiable edges, but rather those that are deemed relevant to the
given application.

Example 29. Recall our ontology in Example 1. A facet graph
may contain nodes for :bc (Bill Clinton) and :cc (Chelsea Clin-
ton), as well as for predicates such as USpres and Univ. Exam-
ple edges are: (i) a child-edge linking Bill Clinton to Chelsea
Clinton, which is justified by the fact child(:bc, :cc); (ii) a citiz-
edge from Person to Country justified by Rule (4); and (iii) a
grad-edge from : cc to Univ since Chelsea Clinton graduated
from Stanford and therefore the ontology entails the sentence
Person(:cc)→ ∃y(grad(:cc, y) ∧ Univ(y)).

It follows from the following proposition that facet graph
computation can be efficiently implemented. In practice, the
graph can be precomputed offline when first loading data and
ontology. It can then be stored in RDF and accessed using
SPARQL queries during search.

Proposition 30. Checking whether a directed labelled multi-
graph is a facet graph for O is feasible in polynomial time if O
is in any of the OWL 2 profiles.

Proof. It suffices to show that checking whether an edge in the
graph is justified is feasible in polynomial time. We show that
checking entailment for each different type of rule or fact α is
feasible in polynomial time for all profiles.

• αe = R(c, d) and αe = A(c). As already discussed, fact
entailment is tractable for all profiles.

• αe is a Datalog rule γ1 . . . γn → η. Consider a substitution
σ = {x 7→ e, y 7→ f} with e and f fresh constants not oc-
curring in O. Then, O |= αe iff O ∪ {σ(γi)}ni=1 |= σ(η).
Tractability of checking O |= αe then follows immedi-
ately from tractability of fact entailment in the profiles.

• αe = A(x)→ ∃y[R(x, y) ∧B(y)]. Tractability of check-
ing O |= αe follows from tractability of subsumption
checking for EL and QL. In the case of RL we have that
O |= αe iff O ∪ {A(e)} |= ∃y[R(e, y) ∧ B(y)], in which
case tractability follows from tractability of tree-shaped
CQ evaluation for RL.

• αe = >(c)→ ∃y[R(c, y) ∧ A(y)]. We have that O |= αe
iffO∪{>(c)} |= ∃y[R(c, y)∧A(y)]. The argument is then
the same as in the previous case for RL. If we consider EL
and QL, we have that O ∪ {>(c)} |= ∃y[R(c, y) ∧ A(y)]
iff c is an instance of the concept ∃R.Aw.r.t.O, a tractable
problem for both EL and QL.

To realise the idea of ontology-guided faceted navigation, we
require that interfaces conform to the facet graph, in the sense
that the presence of every facet and value in the interface is sup-
ported by a graph edge. In this way, we ensure that interfaces

12

mimic the structure of (and implicit information in) the ontol-
ogy and the interface does not contain irrelevant (combinations
of) facets. Since a given facet or value can occur in many differ-
ent places in an interface, we need a mechanism for unambigu-
ously referring to each element in the interface. To this end, we
introduce an alternative representation of interfaces in the form
of a tree. This representation will also be instrumental to our
notions of update in Section 5.3.

Definition 31. The node-labelled tree tree(I) = (N,E, λ) of
a simple EFI I is recursively defined as follows.

(i) If I is an EBFI, then N = {ε}, E = ∅, and λ(ε) = I .
(ii) If I = (I0 ∧ I1) where tree(Ii) = (Ni, Ei, λi), then

N = {ε} ∪ {0w | w ∈ N0} ∪ {1w | w ∈ N1},
E = {(ε, 0), (ε, 1)} ∪ {(iu1, iu2) | (u1, u2) ∈ Ei}.

Furthermore, λ(w) = ε if w = ε, and λ(w) = λi(u) if w
of the form iu with i ∈ {0, 1}.

(iii) If I = (I0/I1), where tree(I1) = (N1, E1, λ1), then
N = {ε} ∪ {0w | w ∈ N1},
E = {(ε, 0)} ∪ {(0u1, 0u2) | (u1, u2) ∈ E1}.

Furthermore, λ(ε) = I0, and for each w ∈ N \ {ε} it
holds that λ(w) = λ1(u) where w = 0u.

A position in I is a pair (w, v) where w is a node in tree(I)
with label an EBFI (F,Σ) and v ∈ F |2 ∪ {focus}.

We can now define conformance of interfaces to facet graphs.

Definition 32. Let G be a facet graph for O and I a simple
EFI. Let (w1, v1) and (w2, v2) be distinct positions in I , where
λ(wi) in tree(I) is (Fi,Σi) and Fi|1 = Xi for i = 1, 2. Po-
sition (w2, v2) is justified by (w1, v1) in G if w1 is the least
ancestor of w2 in tree(I) with λ(w1) 6= ε and one of the fol-
lowing properties holds: (i) there is an X2-labelled edge from
v1 to v2; or (ii) v1 = any and there is an X2-labelled edge
from some u ∈ rangeG(X1) to v2; or (iii) v2 = any and v1
has an outgoing X2-edge; or (iv) v1 = v2 = any and u has an
outgoing X2-edge for some u ∈ rangeG(X1).

Interface I conforms to G if for each position (w, v) in I ,
either (i) there is no ancestorw′ ofw in tree(I) with λ(w) 6= ε;
or (ii) there is a position (w′, v′) in I s.t. λ(w′) is (F ′,Σ′),
v′ ∈ Σ′ and (w, v) is justified by (w′, v′) in G.

Intuitively, (w2, v2) is justified by (w1, v1) if there is an edge
from v1 to v2 labelled with the facet predicate X2 of F2. This
indicates that there is an entailment in O that justifies the ap-
pearance of v2 given v1 and X2. Our definition, however, must
also consider that v1 can be any, which indicates that any value
reachable by using the facet predicate X1 of facet F1 can be
used to justify v2. Analogously, v2 can also be any, in which
case it is enough to use v1 to justify any value reachable by
using the facet predicate X2.

5.2. Interface Generation
Algorithm 3 shows how a fresh interface can be generated

from a starting set S of nodes in a facet graph G. The algo-
rithm starts by grouping all unary predicates categorising the
constants in S in a BFI (Lines 1-2). Then, for each binary pred-
icate R and each v ∈ S, the algorithm collects the nodes w

Algorithm 3: CREATEINTERFACE

INPUT : A facet graph G = (V,E) for O, a set S of nodes in
G

OUTPUT : A simple faceted interface
1 Υ = {w | v type−−→ w ∈ E and v ∈ S}
2 I = ((type,∨Υ), ∅)
3 for each R ∈ BP do
4 Γ,Υ′ := ∅
5 for each v ∈ S and v R−→ w ∈ E do
6 if w is a constant then Γ := Γ ∪ {w}
7 else Υ′ := Υ′ ∪ {w}
8 if Γ 6= ∅ then I := I ∧ ((R,∨(Γ ∪ {any})), ∅)
9 if Υ′ 6= ∅ then I := I ∧ ((R,∨(Υ′ ∪ {any})), ∅)

10 return I

with an incoming R-edge from v and groups them in sets Γ and
Υ′ depending on whether they are constants or unary predicates
(Lines 3-7). All constants in Γ (resp. predicates in Υ′) are put
together in a BFI with facet predicate R, which is coupled to
the interface using ∧-branching (Lines 8-9).

Algorithm 3 can be directly exploited to generate an initial
interface from a set of keywords. A faceted search back-end
would first compute an initial set D of entities relevant to the
keywords (e.g., using a text search engine), and then generate
an initial interface by calling Algorithm 3 with input D and a
facet graph for O. The resulting interface I has no selected
facet values or nested facets, which reflects that I constitutes
the starting point to navigation. Furthermore, I is conformant
to the input graph G.

Proposition 33. On input G and S, Algorithm 3 outputs a sim-
ple interface that conforms to G.

Proof. By construction, the output interface I contains only
disjunctive facets and does not contain subfacets of the form
(path1 ∨ path2); thus the algorithm outputs a simple interface.
Now, note that I is a conjunction of BFIs and hence no posi-
tion in I has an ancestor w′ with λ(w′) 6= ε. This proves the
conformance of I to G and concludes the proof.

5.3. Interface Update

The initial interface where no facet value has been yet se-
lected marks the start of the navigation process. We define the
elementary operations on facet values by exploiting the tree rep-
resentation of interfaces (c.f. Definition 31). We start with the
selection operation.

Definition 34. The action SELECT is applicable to a simple
EFI I , a position (w, v) in I , and a facet graph G for O under
the following preconditions: (i) v is not selected in λ(w) and
(ii) if an ancestor w′ of w in tree(I) is labelled with an EBFI
(F ′,Σ′), then Σ′ 6= ∅. The result is the interface computed by
Algorithm 4.

Algorithm SELECT starts by checking whether the value v is
focus, in which case it adds v to Σ and removes all other occur-
rences of focus in I (Lines 1-2). Otherwise, it generates a fresh

13

Algorithm 4: SELECT

INPUT : I, (w, v), and G as in Def. 34, with λ(w) = (F,Σ)
OUTPUT : A simple EFI

1 if v = focus then
2 Iout := remove all occurrences of focus in I , and then replace

Σ in λ(w) with Σ ∪ {focus}
3 else
4 I1 := replace Σ in I with Σ ∪ {v}
5 if v ∈ C ∪UP then I2 := CREATEINTERFACE(G, {v})
6 else I2 := CREATEINTERFACE(G, rangeG(F |1))
7 if w is a leaf in tree(I1) then
8 Iout := replace λ(w) in I1 with (λ(w)/I2)
9 else Iout := replace λ(w0) in I1 with (λ(w0) ∧ I2)

10 return Iout

Algorithm 5: UNSELECT

INPUT : I, (w, v) and G as in Def. 36, with λ(w) = (F,Σ)
OUTPUT : A simple EFI

1 if v = focus then Iout := replace Σ in I with Σ \ {focus}
2 else
3 S := {(w′, v′) | (w′, v′) is uniquely justified by (w, v) in G,

λ(w′) = (F ′,Σ′) and v′ ∈ Σ′}
4 for each (w′, v′) ∈ S do I := UNSELECT(I, (w′, v′), G)
5 Iout := replace Σ in I with Σ \ {v}
6 λout := labelling function of tree(Iout)
7 for each node w′ in tree(Iout) do
8 (F ′,Σ′) := λout(w

′)
9 if λout(w

′′) = (F ′′, ∅) for some ancestor w′′ of w′ in
tree(Iout) then Iout := replace Σ′ in Iout with ∅

10 return Iout

EFI I1 from I by adding v to Σ (Line 4), and constructs a new
EFI I2 that collects all the values adjacent to v in G (Line 5).
Notice that if v = any, then the value v itself is not considered;
instead, v is replaced by the values in G with an incoming F |1-
labelled edge. Finally, Algorithm SELECT includes in I1 the
navigation alternatives encoded in I2 by considering two cases.
If w is a leaf in tree(I1), then we incorporate I2 via nesting by
replacing λ(w) in I1 with (λ(w)/I2) (Line 7); otherwise, w has
a nested child w0 in tree(I1), in which case the navigation al-
ternatives encoded in I2 are included in w0 by replacing λ(w0)
in I1 with (λ(w0) ∧ I2).

Proposition 35. Assume that I , (w, v) and G are as in Defi-
nition 34. If I conforms to G, then SELECT(I, (w, v), G) is a
simple EFI that also conforms to G.

Proof. Clearly, the output interface Iout is simple since (i) the
input interface I is simple, (ii) the modifications in Lines 1-6
do not affect the simplicity, (iii) the only new subinterface I2
which is added in Line 8 or 9 consists of disjunctive facets, and
(iv) no subinterface of the form (path1 ∨ path2) is added.

Now we turn to the conformance to G. Since the input in-
terface I conforms to G, we need to check the conformance
conditions only for those positions in Iout that correspond to
I2. Let (w2, v2) be a such position; then it is easy to see that
(w, v) justifies (w2, v2). Indeed, if v 6= any, then (i) the least

ancestor of w2 is w, (ii) if v2 6= any, then it occurs in I2 only if
there is a F |1-labelled edge from v to v2, where F is a facet in
λ(w) (see Lines 5-7 in Algorithm 3), and (iii) if v2 = any, then
it occurs in I2 only if v has an outgoing F |1-labelled edge (see
Lines 8-9 in Algorithm 3). The case v = any is analogous.

We next define what it means to unselect a facet value. In-
tuitively, when unselecting v in a given position of an interface
all values that were justified by v (and only by v) should also be
unselected. In particular, we say that (w2, v2) is uniquely justi-
fied by (w1, v1) inG if (w2, v2) is justified by (w1, v1) inG and
(w2, v2) is not justified in G by any pair other than (w1, v1).

Definition 36. The action UNSELECT is applicable to a simple
EFI I , a position (w, v) in I and a facet graph G for an ontol-
ogyO, if v ∈ Σ with (F,Σ) the label of w in tree(I). The result
is the interface computed by Algorithm 5 .

Algorithm UNSELECT considers two cases depending on
what kind of value v is unselected. If v is focus, then the value
is simply unselected (Line 1). Otherwise, not only Σ must be
replaced in I with Σ \ {v}, but also all the positions in I that
are uniquely justified by (w, v) have to be unselected (Lines 2-
5). Unselecting a value propagates recursively along the tree of
I since positions deeper down the tree could ultimately be af-
fected. Finally, the algorithm makes sure that no selected value
remains disconnected to the rest (Lines 7-9).

Proposition 37. Assume that I , (w, v) and G are as in Defini-
tion 36. If I conforms to G, then UNSELECT(I, (w, v), G) is a
simple EFI that also conforms to G.

Proof. Note that the algorithm modifies only sets of selected
values Σ in some EBFIs occurring in the input interface I ,
which immediately yields that Iout inherits simplicity and the
conformance to G from I .

5.4. Minimising Interfaces
An important issue in the design of faceted interfaces is to

avoid the overload of users with redundant facets or facet val-
ues. Intuitively, an (unselected) facet value v is redundant if
selecting v either leads to a ‘dead end’ (i.e., an empty set of
answers) or it does not have an effect on query answers. Then,
a faceted interface is minimal if none of its component BFIs
contains redundant values.

Definition 38. Let I be a simple EFI and G a facet graph for
O. Then I is minimal w.r.t. G if for each position (w, v) in I s.t.
SELECT is applicable to I , (w, v) and G, the following holds:
(i) Q[SELECT(I, (w, v), G)] has a non-empty answer set w.r.t.
O; and (ii) the answers toQ[SELECT(I, (w, v), G)] w.r.t.O are
different from the answers to Q[I] w.r.t. O.

Example 39. The transition from interface I0 to I1 in Exam-
ple 26 involves a minimisation step. The BFI in I0 involving
F5 is pruned since selecting a value will either not affect the
search results (if any or :us is selected) or yield an empty set of
answers (if :uk is selected).

To avoid overwhelming users with irrelevant information,
systems can minimise the output of Algorithm 4 before show-
ing it to the user.

14

Start SemFacet search

User enters keywords

Relevant object IDs are computed

Facets of initial FI
are computed

Snippets are computed

Initial FI and snippets are displayed

User (un)selects facet values

Facets of FI is updated Snippets are updated

End SemFacet search

user's input
server component
client component

Updated FI and snippets are displayed

User refocusses

(a) Workflow diagram of SemFacet (FI stands for Faceted Interface).

http://en.wikipedia.org/wiki/Bill_Clinton
William Jefferson "Bill" Clinton (born William
Jefferson Blythe III; August 19, 1946) is an
American politician who served as the 42nd
President of the United States from 1993 to
2001. Inaugurated at age 46, he was the third-
youngest president. He took office at the end
of the Cold War, and was the first president of
the baby boomer generation...

ANY

Country
USpres

Searchpoliticians

Stanford Uni.

Stanford Uni.
Harvard Uni.
Georgetown Uni.

type

has child

grad from

grad from

Query
Converter

Composer of
Faceted

Interfaces

Snippet
Generator

Search
Engine

Facet
Generator

Snippet
Composer

Client

Server

Triple Store

Inverted Index
on DRF Data

RDF Data,
Ontology,

Materialisation Rules,
Facet Graph

Query
Answers

Query
Answering

Reaso
ners

(b) Architecture of SemFacet.

Figure 2: Workflow diagram and architecture.

6. SemFacet: a Faceted Search System

We next describe our faceted search system SemFacet, which
is implemented in Java and available for download under an
academic license. The system can be obtained from our project
website [48], where we also provide a collection of test data
and detailed installation and configuration instructions.5 In this
section, we also report on a proof of concept performance eval-
uation as well as on our practical experience with Yago.

6.1. System Description
System Overview. SemFacet’s workflow is summarised in Fig-
ure 2a, where the steps relevant to users’ activity are depicted
as ovals, and those relevant to system’s activity are represented
as boxes (double-lined for front-end tasks and single-lined for
back-end tasks). Users initiate the search by entering a set of
keywords, which are then matched to textual information as-
sociated to URIs in the data (such as labels and descriptions)
resulting in an initial set of relevant URIs.6 SemFacet then
computes the initial interface (with no value selections) based
on these relevant URIs, which constitutes the starting point for

5SemFacet is also available on GitHub [49].
6If the given set of keywords is empty, the system considers all URIs in the

data as relevant.

faceted navigation. We now provide further details on how the
main tasks performed by SemFacet are realised in the system.

• Matching of keywords. SemFacet exploits the values of
annotation properties to determine whether a URI is rel-
evant to a set of keywords. Roughly speaking, a URI u
is relevant to a keyword k w.r.t. an annotation property R
if the input data contains a triple of the form (u,R,w),
where w is a string containing k. Furthermore, u is rel-
evant to a set of keywords if at least one of them occurs
in w. To implement keyword search, SemFacet constructs
an inverted index on the strings occurring in the values of
these annotation properties. Alternatively, the system can
be configured to rely on existing search engines such as
Lucene [50] and delegate keyword search to them.

• Interface generation and update. SemFacet relies on
a facet graph G of the input RDF data and ontology to
generate and update faceted interfaces. The part of the
graph corresponding to entailed facts (i.e, edges of Type
(i) and (v)) in Definition 28) is materialised offline at load-
ing time. Edges of Types (ii)–(iv) in Definition 28 are
computed in the online phase by querying the materialised
graph. The initial interface is generated according to Al-
gorithm 3 by isolating inG the nodes corresponding to the

15

URIs returned by the keywords, the edges outgoing from
them, and the nodes reached by these edges. Faceted inter-
faces are updated in response to user actions using Algo-
rithms 4 and 5; moreover, SemFacet relies on the strate-
gies described in Section 5.4 for interface minimisation.
Specifically, our system executes each possible expansion
of an EFI in the background by calling the reasoner, and
prunes all facet values that either do not change query an-
swers, or make them empty. Finally, the current version
of the system can be customised so that facet values are
hierarchically arranged according to a user-specified pred-
icate, which greatly facilitates navigation in the presence
of a large number of values per facet.

• Query generation and execution. SemFacet compiles
faceted queries obtained from user selections in an inter-
face into SPARQL queries, which are then evaluated using
a reasoner. Our system currently bundles several reasoning
engines with different capabilities, and users can select the
reasoner that is deemed more appropriate for their appli-
cation at hand. Answers to SPARQL queries are typically
returned by reasoners in the form of a URI. This may not
be very informative for end users; hence, SemFacet also
displays the annotations associated to the answer URIs and
displays them in the form of a snippet.

System Architecture. Our system is based on a modular archi-
tecture, which is depicted in Figure 2b. On the client side,
SemFacet implements a GUI developed using HTML 5 con-
sisting of three main parts: a free text search box for keywords,
a hierarchically organised faceted interface, and a scrollable
panel containing snippet-shaped answers. User keywords are
sent by the client to the server where they are processed by the
search engine. For efficiency reasons, we implemented our own
simple engine based on an inverted index, and also allowed for
the possibility of delegating keyword search to Lucene [50].

User selections in the faceted interface are compiled into a
SPARQL query using the query converter and then sent to the
back-end reasoner for evaluation. The snippet and interface
composers receive information about facets and answers that
should be displayed to the user and update the currently dis-
played interface and query answers. The system updates the
faceted interface incrementally: only the parts of the interface
that are affected by users’ actions are updated, which allows for
a significantly faster response time. On the server side, the sys-
tem relies on an in-memory triple store to store the inverted
index, input data and ontology, facet graph, and query an-
swers. The current implementation bundles JRDFox [51, 52],7

Sesame [53, 54],8 Stardog [55, 56],9, PAGOdA [57–59],10

7JRDFox is an in-memory RDF triple store that supports shared memory
parallel Datalog reasoning. It is written in C++ and comes with a Java wrapper
allowing for a seamless integration with Java-based applications.

8Sesame is a widely-used Java framework for processing RDF data. It offers
an easy-to-use API that can be connected to all leading RDF storage solutions.

9Stardog is a Java-based triple store providing reasoning support for all
OWL 2 profiles as well as a SPARQL implementation.

10PAGOdA is a query answering system that exploits a hybrid approach to

and HermiT [60].11 Any other in-memory triple store pro-
viding similar functionality can be seamlessly integrated with
SemFacet. Please note that SemFacet requires that all data be
stored in main memory, which may limit the applicability of
the system. We are currently working on scalable solutions that
would involve access to secondary storage; a first step in this
direction would be to store on disk the inverted index used for
keyword matching as well as the annotations relevant to snippet
generation.

The facet generator is the back-end component responsible
for constructing the interface in response to user actions, while
the query answering component of the back-end executes the
SPARQL query obtained from the query converter using the
reasoning engine selected by the user.

Configuring the System. SemFacet offers a range of options
for system administrators to deploy and configure the system
(see Figure 3 for a screenshot of the system’s configuration
manager). These include (i) the reasoning engine of choice
(JRDFox, PAGOdA, Sesame, Stardog, or HermiT); (ii) the an-
notation properties relevant for keyword search and displaying
of query answers; and (iii) the facet that is first displayed to the
user. By default, values within a facet are interpreted disjunc-
tively; however, SemFacet provides advanced configuration ca-
pabilities for specifying which facets must be interpreted con-
junctively. Additionally, the hierarchical display of facet values
can also be configured by specifying the property used to con-
struct the hierarchy (typically rdfs:subClassOf or a property
capturing a partonomy relation).

6.2. Performance Evaluation
We have evaluated the performance of interface generation

and update in SemFacet using different triple stores on the sys-
tem’s back-end. The main goal of our experiments was to as-
sess the practical feasibility of our approach when implemented
on top of widely-used triple stores with reasoning capabilities,
rather than to benchmark the triple stores themselves.

Performance Metrics. Interface generation as described in Al-
gorithm 3 requires computing all triples (v, w, u) in the facet
graph G for each v in the input nodes S, and then iterating over
the results to compose the interface. Thus, performance of our
system critically depends on the following parameters of the
underlying triple store, which can be estimated empirically by
benchmarking the triple store over the dataset of interest:

• t[run query]: time to execute an atomic query; and

• t[look up]: time to iterate over query results.

We implemented Algorithm 3 using two appr0oaches: naive
and lazy. A naive approach is described in Algorithm 6: for

answer CQs over OWL 2 ontologies and combines a Datalog reasoner with
a fully-fledged OWL 2 reasoner in order to provide scalable ‘pay as you go’
performance.

11HermiT is the first publicly-available OWL reasoner based on a novel ‘hy-
pertableau’ calculus which provides much more efficient reasoning than any
previously-known algorithm.

16

Figure 3: Configuration manager of SemFacet.

Algorithm 6: CREATEINTERFACENAIVE

INPUT : G: facet graph; S: set of nodes in G
OUTPUT: A simple faceted interface

1 I := Empty interface
2 for each v ∈ S do
3 Pairsv := SELECT ?y,?z FROM G WHERE (v, ?y, ?z)
4 for each t ∈ Pairsv do I := COMPOSEINTERFACE(t, I)

each v ∈ S, it retrieves relevant pairs (w, u) by a single
SPARQL query to the store on the server side, and it uses a rou-
tine COMPOSEINTERFACE to construct the faceted interface on
the client side. For improved efficiency, our system implements
a variation of Algorithm 6 where facets are computed lazily:
facet predicates are computed first, and values are computed on
demand when users click on a facet. For this, we modify the
query in Line 3 such that ?y is the only answer variable.

To estimate the cost of interface generation (tCI), we estimate
the cost of Algorithm 6 and its lazy version. We are interested
only in the cost of the server computations and thus assume
constant time for the call to COMPOSEINTERFACE. The cost
can then be estimated as follows:

tCI = (|S| × t[run query]) + (#[answers]× t[look up]). (5)

In this expression, #[answers] is the union of all sets Pairsv
for each v ∈ S. In the worst-case, #[answers] is |G|, whereas
in the best-case it corresponds to |S|. Then, #[answers] is es-
timated as follows, where the number of facet predicates cor-
responds to the number of different edge labels in G, and the
number of facet values to the number of nodes:

#[answers]naive = O(#[facet predicates])×O(#[facet values]),

#[answers]lazy = O(#[facet predicates]).

The cost tCI in Equation (5) can also be used to estimate the cost
of interface updates. Algorithm 4 for selecting a facet value can

be seen as a variant of Algorithm 6 with S the set of values
relevant to the selection. In the case of unselecting a value, the
worst-case cost for Algorithm 5 is estimated as k × tCI, with k
the number of selected values in the interface. Indeed, k mea-
sures the worst-case number of recursive calls to UNSELECT,
whereas tCI estimates the cost of a single recursive call.

Experimental Setup. To estimate the parameters t[run query]
and t[look up], thus also estimating the cost tCI of interface gen-
eration, we have conducted experiments over a fragment of DB-
pedia enriched with RL rules and we have used JRDFox, Star-
dog, and Sesame as underpinning triple stores. All experiments
were conducted on a MacBook Pro laptop with OS X 10.8.5,
2.4 GHz Intel Core i5 processor, and 8GB 1333 MHz DDR3
memory. Since the triple stores bundled in SemFacet operate
in main memory, and we wanted to test our algorithms on stock
hardware, we considered a fragment that covers 20% of DBpe-
dia (3.5 million triples) and which can be loaded with 8GB of
RAM. Each experiment was executed 100 times; we measured
average and median running time for each experiment. Since
results never differ in more than 5% for a single experiment,
we report only average times. Please note that our experiments
were conducted locally on a single machine and hence do not
take into account important factors in client-server architectures
such as number of clients, or network usage and bandwidth. In
this sense, our experimental results reflect a best possible sce-
nario in terms of performance.

Evaluation Results. Results are summarised in Figure 4. Fig-
ure 4a estimates #[answers] × t[look up] by measuring time
required to iterate over an answer set of a given size. In turn,
Figure 4b estimates |S| × t[run query] by computing the times
required for the triple store to answer a given number of atomic
queries. We can make the following observations:

• The time needed to iterate over query results is small in
comparison to query execution times. For example, to run
10, 000 queries, JRDFox requires 0.498s, whereas to iter-
ate over 10, 000 answers it requires 0.002s. This should be
taken into account when optimising interface generation.

• In some triple stores (i.e., Stardog and Sesame), iteration
and query answering times do not grow linearly, and they
have to be determined empirically. In contrast, JRDFox
shows linear behaviour.

We first discuss query execution times. To generate the initial
interface, the size of S is determined by the number of relevant
results returned by the search engine from keywords. If the
ranking algorithm of the search engine produces high quality
results, one can establish a cap on S and the system allows for
this cap to be set via its Configuration Manager (see the screen-
shot in Figure 3 where the cap is set to 1, 000). As shown in
Figure 4b, obtaining a reasonable cap is important since query
execution is expensive. For example with a cap of 1, 000 results
in S, JRDFox would execute the queries necessary for interface
generation almost instantaneously.

Concerning iteration times over query results, JRDFox could
perform this task in 0.2s for 1 million results and 2s for 10

17

#(answers) JRDFox Stardog Sesame

100 0.000 0.010 0.011

1, 000 0.000 0.064 0.060

10, 000 0.002 0.521 0.294

100, 000 0.021 2.934 0.566

1, 000, 000 0.206 4.475 2.513

10, 000, 000 2.056 n/a n/a

(a) Average runtime in seconds for lookup in a set of query answers.

#(queries) JRDFox Stardog Sesame

1 0.000 0.007 0.012

10 0.000 0.188 0.233

100 0.004 2.414 0.630

1, 000 0.059 5.666 3.683

10, 000 0.498 15.025 26.126

100, 000 4.799 n/a n/a

(b) Average runtime in seconds for processing a set of queries.

Figure 4: Experimental results for JRDFox, Stardog, and Sesame.

Object Property
53,275,016

55%

String
26,073,408

27%

Number
15,484,483

16%

Date
1,961,540

2%

Figure 5: Distribution of triples in our Yago slice with 96,794,447 triples, be-
fore computation of facet graph.

million. We could not conduct experiments with 10 million an-
swers over Stardog and Sesame since loading the data in our
machine consumed all RAM and system behavior became un-
stable. The facet graph for the whole of DBpedia contains 24
million facet values and 1, 843 facet predicates [21]. JRDFox
would require 5s in the worst-case to iterate through that many
values using the exhaustive algorithm. When computing inter-
faces lazily, all triple stores would complete the required itera-
tion over facet predicates instantaneously.

6.3. Faceted Search Over Yago
We have investigated faceted navigation over Yago as a use

case. Since the current version of SemFacet relies on main
memory triple stores, we did experiments with slices of Yago
that could fit in the main memory of our machine. We used the
Taxonomy slice, which consists of domain and range restric-
tions as well as subclass relations, and the Core slice, which
contains instances of object and annotation properties. The ax-
ioms from Taxonomy constitute the ontology that we used for
experiments. We refer to this ontology together with the data
slice we used as FYago. To generate snippets, we also included
DBpedia abstracts, thumbnails, and links to Wikipedia articles.

Statistics Relevant to Faceted Search. FYago contains 97 mil-
lion triples involving over 3 million URIs. Fig. 5 shows that

55% of triples relate entities via object properties, 16% relate
entities to numbers, 2% relate entities to dates, and 27% relate
entities to other kinds of strings. FYago involve 89 predicate
URIs: an upper bound to the number of facet predicates. We
analysed the following measures for each facet predicate P :

• popularity: the number of entities annotated with P , i.e.,
those to which facets with predicate P are applicable;

• value load: the maximum number of facet values that a
facet with predicate P can contain; and

• filtering power: the average number of answers to expect
when a value in a facet with predicate P is selected.

Popularity determines the number of nodes in the facet graph
with outgoing N -edges, and hence how often a facet predicate
occurs in an interface. Value load determines the number of
nodes with an incomingN -edge, and hence the maximum num-
ber of values in a facet. Finally, the filtering power is associated
to the average number of nodes with outgoingN -edges pointing
to the same value, and hence determines the number of answers
obtained after selecting a facet value.

Popularity of Facet Predicates. FYago contains 8 facet pred-
icates with popularity exceeding 1 million entities; thus, a
facet involving such predicate will occur in most search ses-
sions. Additionally, 12 facet predicates with popularity between
100,000 and 1 million, which implies that they will occur rather
often. The remaining 69 facet predicates have popularity be-
low 100,000, and thus they will occur rarely; for instance, a
facet predicate with popularity 1,000 is relevant to 1,000 enti-
ties only, and hence only to 0.025% of all data triples. A de-
tailed distribution of popularity across facets in Figure 6. Ta-
ble 4 depicts the top 20 facets together with their popularity
rating. Observe that only 3 out of the top 8 facet predicates
(hasLongitude, hasLatitude, and rdf:type) are meaningful for
faceted navigation. The remaining facet predicates are either
annotations used for keyword search and/or displaying query
answers, or they involve URIs from the reserved vocabulary
other than rdf:type. The latter URIs can be used to improve the
GUI (e.g., rdfs:subClassOf is used to organise values of type-
facets into hierarchies). The remaining 12 predicates in Table 4
are highly relevant for faceted navigation over Yago. Finally,

18

0

5

10

15

20

25

<10 (10k,100k)(10,100) (100,1k) (1k,10k) (100k,1m) >1m

Figure 6: Distribution of popularity across 89 facet predicates in FYago. On
the horizontal axis: popularity values divided in 7 groups; on the vertical axis:
number of facets that fell into each group.

65 out of the 69 least frequent predicates are also meaningful
for faceted navigation. Based on these observations, we pre-
pared three inputs for facet graph computation: (i) FYago as
is (with no pre-processing); (ii) the subset of FYago involving
only meaningful facets; and (iii) the subset of FYago involv-
ing only the 15 most popular meaningful facets. The latter one,
which contains 68% of FYago, is the most attractive for naviga-
tion since any interface will contain at most 15 facet predicates.

Value Load for Facet Predicates. We computed statistics for
the facet predicates from Table 4. The three facet predicates
with popularity exceeding a million are overloaded with values
(e.g., there are millions of different longitudes and latitudes).
We do not see this as a limitation from the perspective of us-
ability since these values can be compactly represented using
intervals, where the user can perform selection using sliders. In
the system’s GUI we follow this approach and display numer-
ical values as intervals. Most other facet predicates can poten-
tially involve thousands of values, but only in the worst-case
where no keywords are used and users did not use an initial
facet such as rdf:type to initially prune the search space. We
have experimented with a range of relevant keywords and found
that on average they prune over 99% of possible search results;
consequently, the number of possible values per facet is consid-
erably reduced. Moreover, these estimations on value load are
for facets that are not nested; the deeper the nesting of a facet in
an interface, the fewer values it will have. Thus, when the user
starts faceted navigation using keywords with good selectivity
and then refines the search with nested facets, the value load of
facets in the interface is expected to be of manageable size. In
Table 4, we present two statistics for value load. The first one
corresponds to the case where only the data slice of FYago is
taken into account. The second corresponds to the case where
we take into account the facts derived using the ontology ax-
ioms as well. Clearly in the latter case the number of values per
facet increases, and the number of extra values per facet pred-
icate is presented in the column +Class. Observe that there is
no significant difference in the value load between both cases.
In Table 4 we also provide minimum, maximum, average, and

median values for value load for both cases.

Filtering Power. Observe that most values have good filtering
power; that is, selecting such value would result in a small num-
ber of answers. The only exception is hasGender, which only
has two values associated to it. Also observe that the values of
hasWebSite uniquely determine an entity (i.e., entities in FYago
have at most one website).

7. Related Work

In this section we review the literature on semantic faceted
search and describe other approaches to query formulation for
RDF and OWL ontologies.

7.1. Semantic Faceted Search

Faceted search in the context of RDF was pioneered by the
Ontogator system [61]. Ontogator was further developed in
[62, 63] and found applications in the cultural heritage do-
main [64], as well as in the clinical sciences [65]. In the
last few years faceted search has become a popular paradigm
for querying RDF data, and many systems have been devel-
oped. Prominent examples include mSpace [22], /facet [24],
Piggy Bank [25], Tabulator [19], gFacet [23], tfacet [66], Hum-
boldt [26], Parallax [27], Nested Faceted Browser [67], Long-
well [68], faceted DBpedia [21], Sewelis [30], X-ENS [20],
Broccoli [28], among others [69, 70].

Research in this area has so far been systems-centric and has
predominantly been driven by efficiency, effectiveness, and us-
ability concerns. In particular, the focus has been on problems
such as facet indexing [21, 71], ranking of facets and their val-
ues [21, 71], value grouping [21, 71], or visualisation [23, 66].
In contrast to most of existing work, we have investigated the
theoretic underpinnings of RDF faceted search and developed a
comprehensive logic-based framework which accounts for the
graph-based nature of the RDF data model, and formally cap-
tures the query languages underlying the aforementioned sys-
tems. Furthermore, our framework goes beyond RDF and also
describes the impact of ontologies on faceted search.

Although previous research has focused largely on sys-
tems, there have also been several attempts of formalisation
[10, 29, 30, 72–74]. Oren et al [29] provide an algebraic defini-
tion of faceted interfaces by means of operators on sets of enti-
ties. Wagner et al [10] define facets procedurally from a given
conjunctive query and dataset. Roughly speaking, a facet for
a variable corresponds to the outgoing edges of the data nodes
where the variable is mapped when evaluating the query. To for-
malise faceted navigation, they introduce operations on queries
that can be used to add or remove constraints, as well as to cap-
ture refocusing. Ferre and Hermann [30] define facets where
values are either queries or operators, rather than individuals
or literal values. Then, value selection amounts to a syntactic
query transformation, rather than to a filter on a set of entities.

We next compare these approaches to ours based on the un-
derlying query languages and the available mechanisms for in-
terface generation and update.

19

Facet predicate Facet Values Popularity Value Load +Classes Filtering Power
hasLongitude number 4,775,113 2,419,609 +0 1.97
hasLatitude number 4,774,930 1,822,094 +0 2.62
rdfs:subClassOf – 4,654,976 – – –
hasGeonamesEntityID – 4,615,914 – – –
rdfs:label – 4,084,428 – – –
prefLabel – 2,954,875 – – –
isPreferredMeaningOf – 2,943,554 – – –
rdf:type class 2,886,451 374,204 +2 7.71

hasGender object 923,364 2 +7 461,682.00
hasFamilyName string 838,669 282,537 +0 2.97
hasGivenName string 827,681 77,804 +0 10.64
wasBornOnDate date 796,090 72,457 +0 10.99
isLocatedIn object 668,010 59,245 +19,843 11.28
wasCreatedOnDate date 638,398 38,209 +0 16.71
diedOnDate date 359,532 56,400 +0 6.37
hasNumberOfPeople number 223,079 41,762 +0 5.34
hasWebSite string 191,952 217,283 +0 1.00
wasBornIn object 189,092 13,385 +6,928 14.13
isAffiliatedTo object 147,003 18,915 +6,569 7.77
hasArea number 129,715 29,137 +0 4.45

min 2 9 1.00
max 2,419,609 2,419,609 461,682.00

average 368,203 370,426 30,785.72
median 59,245 72,457 7.74

Table 4: Statistics on top-20 facet predicates: their popularity, value load (with and without classes), and filtering power.

Query Languages. None of the aforementioned formalisations
provides a precise characterisation of their query language in
terms of first-order logic. From the description in Oren et
al [29] we gather that their queries correspond to monadic tree-
shaped CQs with the root variable as output, and enhanced with
a limited form of epistemic negation. Thus, their language is in-
comparable to ours since we allow for disjunction, while they
support a form of negation. The language of [10] corresponds
to tree-shaped CQs and hence it is strictly contained in ours. Fi-
nally, Ferre at al [30, 72–74] allow queries as facet values, and
these queries can be constrained to any fragment of SPARQL.

The query language underpinning the faceted search systems
mentioned in the beginning of this section is rather difficult to
understand, given that their description is informal. To the best
of our knowledge, most systems support some form of conjunc-
tive nesting, branching, and refocusing [27, 28]. A few systems
also support a limited form of disjunction [20, 21].

Finally, we are not aware of any paper on RDF-based faceted
search where the computational complexity of query evalua-
tion is studied. The typical assumption in existing work is that
queries are compiled into SPARQL [30] or Prolog [24], and ex-
ecuted by means of an off-the-shelf query evaluation engine.

Interface Generation and Update. A common approach in ex-
isting systems, including [10, 29], is to generate and update
interfaces from RDF datasets under the assumption that URIs
in predicate position correspond to facet predicates while those
in object position are facet values. Facets are typically arranged
as trees [10, 11, 24, 29, 68] or more complex graphs [23]. Such
trees or graphs are, however, defined on RDF data only, and

they are also dependent on search results, or the specific GUI of
the system. In contrast, our notions of interface and facet graph
account for both data and ontologies, and they are independent
from search results as well as from the system’s GUI. Thus, we
see our approach as a generalisation of existing work. Finally,
to the best of our knowledge, the complexity of interface gen-
eration and update has not been studied in the literature.

7.2. Other Query Formulation Approaches
In recent years, query formulation has been extensively stud-

ied by the Semantic Web community. Most of the research has
focused on Visual Query Systems (VQS), while natural lan-
guage interfaces have also attracted a considerable attention.

Visual Query Systems. VQS [75] rely on a visual representa-
tion paradigm for constructing and modifying queries. Many
VQS provide a set of graphical primitives (e.g., boxes, cir-
cles, arrows) for query elements (e.g., variables, relations),
and a mechanism for combining such primitives into queries.
Thus, in VQS, the user is involved in the explicit construc-
tion of a query. In contrast, in faceted search, the main focus
is on exploration of the underlying data and ontology, rather
than on the deliberate construction of a query. Prominent ex-
amples of VQS are NITELIGHT [12], SEWASIE [76], iS-
PARQL [13], OntoVQL [77], Wonder [78], OptiqueVQS [79,
80], LUPOSDATE-VEdit [81], and QueryVOWL [14].

Natural Language. These systems offer a different approach
to query formulation and can be divided in two groups: Ques-
tion Answering and Controlled Natural Language. The for-

20

mer systems allow users to pose a free text question (or just
a set of keywords) and then interpret the input as a formal
query. Such systems include FALCON [15], AquaLog [82],
AutoSPARQL [83], QuestIO [84], Siemens’ query system [85],
and SPARK [16]. Systems in the second group, such as
Quelo [17], allow for natural language expressions to be used
at each step during query construction. Regarding comparison
with faceted search, recall that free text in faceted search is only
used to initiate the search (indeed, many papers do not discuss
text search); in contrast, in natural language systems the text
determines the query.

8. Conclusion and Future Work

In this paper, we have proposed a rigorous theoretical frame-
work for faceted search in the context of RDF-based knowledge
graphs enhanced with OWL 2 ontologies. Our framework has
allowed us to identify fragments of SPARQL that can be natu-
rally captured using faceted search as a query paradigm, and for
which query answering is tractable. Additionally, we have stud-
ied the problem of updating faceted interfaces, which is critical
for guiding users in the formulation of meaningful queries dur-
ing exploratory search, and implemented our techniques in a
fully-fledged faceted search system.

We see many directions for future work, which we briefly
summarise next.

• Keyword search could be enhanced by explicitly taking
into account the structure of the graph data; this would al-
low us to compute more suitable initial interfaces. A pos-
sible approach in this direction would be to also exploit
SPARQL queries for keyword matching.

• Ranking of facet values. In our work, we have so far ab-
stracted from GUI-specific considerations; as a next step,
we are planning to experiment with a number of ranking
algorithms for displaying facets and their values.

• Formalisation of advanced functionality. A number of
advanced features implemented in existing systems, such
as hierarchical facets and epistemic negation, are not cur-
rently taken into account in our formal framework. We are
planning to extend our results in Sections 3, 4, and 5 to
also capture such features.

• Query optimisation is a key challenge; faceted navigation
is an interactive process, where instant system response is
often required.

• Expressible queries. Our algorithms are generic, and they
have been designed to query arbitrary RDF-based knowl-
edge graphs. When it comes to specific applications,
however, our algorithms do not guarantee that all queries
deemed relevant can be effectively constructed via faceted
search. This may be because such queries cannot be cap-
tured by tree-shaped positive existential formulas, or be-
cause they are not easily ‘reachable’ using the information
available in the knowledge graph. Thus, it would be inter-
esting to investigate richer notions of interface that lead to

more expressive query languages, as well as techniques for
optimising faceted navigation given a set of application-
specific queries that are deemed relevant.

Finally, we are currently working with our collaborators at EDF
Energy [86], Siemens [87, 88], and Statoil [89–91] in the de-
velopment of faceted search solutions for their semantics-based
data management systems. We expect that our interaction with
these industrial partners will also provide us with large repos-
itories of realistic queries that we could subsequently use for
evaluation and optimisation purposes.

References

[1] F. M. Suchanek, G. Kasneci, G. Weikum, Yago: a core of semantic knowl-
edge, in: Proc. of WWW, 2007, pp. 697–706.

[2] Freebase: an open, shared database of the world’s knowledge, http:
//www.freebase.com/.

[3] Google’s Knowledge Graph, http://www.google.co.uk/
insidesearch/features/search/knowledge.html.

[4] Facebook’s Graph Search, https://www.facebook.com/
graphsearcher.

[5] Microsoft’s Satori, http://blogs.bing.com/search/2013/
03/21/understand-your-world-with-bing/.

[6] Yahoo’s Knowledge Graph, www.technobuffalo.com/2014/04/
21/yahoo-testing-its-
own-version-of-googles-knowledge-graph/.

[7] W3C: Resource Description Framework (RDF), http://www.w3.
org/RDF/.

[8] W3C: OWL 2 Web Ontology Language, http://www.w3.org/TR/
owl2-overview/.

[9] S. Harris, A. Seaborne, SPARQL 1.1 Query language, W3C Recommen-
dation (21 March 2013).

[10] A. Wagner, G. Ladwig, T. Tran, Browsing-oriented Semantic Faceted
Search, in: Proc. of DEXA, 2011, pp. 303–319.

[11] P. Heim, T. Ertl, J. Ziegler, Facet Graphs: Complex Semantic Querying
Made Easy, in: Proc. of ESWC, 2010, pp. 288–302.

[12] A. Russell, P. R. Smart, NITELIGHT: A graphical editor for SPARQL
queries, in: Proc. of ISWC (Posters and Demos), 2008.

[13] iSPARQL QBE, http://dbpedia.org/isparql/.
[14] F. Haag, S. Lohmann, S. Siek, T. Ertl, Visual querying of linked data with

QueryVOWL, in: Joint Proceedings of SumPre 2015 and HSWI 2014-15,
CEUR-WS, 2015.

[15] S. M. Harabagiu, D. I. Moldovan, M. Pasca, R. Mihalcea, M. Surdeanu,
R. C. Bunescu, R. Girju, V. Rus, P. Morarescu, FALCON: boosting
knowledge for answer engines, in: Proc. of TREC, 2000.

[16] Q. Zhou, C. Wang, M. Xiong, H. Wang, Y. Yu, SPARK: adapting keyword
query to semantic search, in: Proc. of ISWC, 2007, pp. 694–707.

[17] E. Franconi, P. Guagliardo, M. Trevisan, S. Tessaris, Quelo: an Ontology-
Driven Query Interface, in: Proc. of DL, 2011.

[18] D. Tunkelang, Faceted Search, Synthesis Lectures on Information Con-
cepts, Retrieval, and Services, Morgan & Claypool Publishers, 2009.

[19] T. Berners-Lee, J. Hollenbach, K. Lu, J. Presbrey, E. Prudhommeaux,
M. M. C. Schraefel, Tabulator Redux: Browsing and Writing Linked
Data, in: Proc. of LDOW, 2008.

[20] P. Fafalios, Y. Tzitzikas, X-ENS: Semantic Enrichment of Web Search
Results at Real-Time, in: Proc. of SIGIR, 2013, pp. 1089–1090.

[21] R. Hahn, C. Bizer, C. Sahnwaldt, C. Herta, S. Robinson, M. Bürgle,
H. Düwiger, U. Scheel, Faceted Wikipedia Search, in: Proc. of BIS, 2010,
pp. 1–11.

[22] m.c. schraefel, D. A. Smith, A. Owens, A. Russell, C. Harris, M. L. Wil-
son, The Evolving mSpace Platform: Leveraging the Semantic Web on
the Trail of the Memex, in: Proc. of Hypertext, 2005, pp. 174–183.

[23] P. Heim, J. Ziegler, S. Lohmann, gFacet: A Browser for the Web of Data,
in: Proc. of IMC-SSW, 2008, pp. 49–58.

[24] M. Hildebrand, J. van Ossenbruggen, L. Hardman, /facet: A Browser for
Heterogeneous Semantic Web Repositories, in: Proc. of ISWC, 2006, pp.
272–285.

21

[25] D. Huynh, S. Mazzocchi, D. R. Karger, Piggy Bank: Experience the Se-
mantic Web Inside Your Web Browser, J. Web Sem. 5 (1) (2007) 16–27.

[26] G. Kobilarov, I. Dickinson, Humboldt: Exploring Linked Data, in: Proc.
of LDOW, 2008.

[27] D. F. Huynh, D. R. Karger, Parallax and Companion: Set-based Browsing
for the Data Web, www.davidhuynh.net (2013).

[28] H. Bast, F. Bäurle, B. Buchhold, E. Haußmann, Easy Access to the Free-
base Dataset, in: Proc. of WWW, 2014, pp. 95–98.

[29] E. Oren, R. Delbru, S. Decker, Extending Faceted Navigation for RDF
Data, in: Proc. of ISWC, 2006, pp. 559–572.

[30] S. Ferré, A. Hermann, Semantic Search: Reconciling Expressive Query-
ing and Exploratory Search, in: Proc. of ISWC, 2011, pp. 177–192.

[31] SNOMED CT, http://www.ihtsdo.org/snomed-ct.
[32] B. Motik, B. Cuenca Grau, I. Horrocks, Z. Wu, A. Fokoue, C. Lutz,

OWL 2 Web Ontology Language Profiles, W3C Recommendation.
[33] M. Arenas, B. Cuenca Grau, E. Kharlamov, Š. Marciuška,

D. Zheleznyakov, Faceted Search over Ontology-Enhanced RDF
Data, in: Proc. of CIKM, 2014, pp. 939–948.

[34] B. Cuenca Grau, E. Kharlamov, D. Zheleznyakov, M. Arenas, Š. Mar-
ciuška, On Faceted Search over Knowledge Bases, in: Proc. of DL, 2014,
pp. 153–156.

[35] M. Arenas, B. Cuenca Grau, E. Kharlamov, Š. Marciuška,
D. Zheleznyakov, Enabling Faceted Search over OWL 2 with Sem-
Facet, in: Proc. of OWLED, 2014, pp. 121–132.

[36] B. Cuenca Grau, E. Kharlamov, Š. Marciuška, D. Zheleznyakov, Y. Zhou,
Querying Life Science Ontologies with SemFacet, in: Proc. of SWAT4LS,
2014.

[37] M. Arenas, B. C. Grau, E. Kharlamov, S. Marciuska, D. Zheleznyakov,
Towards Semantic Faceted Search, in: Proc. of WWW (Companion Vol-
ume), 2014, pp. 219–220.

[38] M. Arenas, B. Cuenca Grau, E. Kharlamov, Š. Marciuška,
D. Zheleznyakov, E. Jiménez-Ruiz, SemFacet: Semantic Faceted
Search over Yago, in: Proc. of WWW (Companion Volume), 2014, pp.
123–126.

[39] W3C: SPARQL 1.1 Entailment Regimes, www.w3.org/TR/
sparql11-entailment/.

[40] M. Yannakakis, Algorithms for Acyclic Database Schemes, in: Proc. of
VLDB, 1981, pp. 82–94.

[41] E. Dantsin, T. Eiter, G. Gottlob, A. Voronkov, Complexity and expressive
power of logic programming, ACM Comput. Surv. 33 (3) (2001) 374–
425.

[42] G. Stefanoni, B. Motik, I. Horrocks, Introducing Nominals to the Com-
bined Query Answering Approaches for EL, in: Proc. of AAAI, 2013, pp.
1177–1183.

[43] R. Kontchakov, C. Lutz, D. Toman, F. Wolter, M. Zakharyaschev, The
Combined Approach to Ontology-Based Data Access, in: Proc. of IJCAI,
2011, pp. 2656–2661.

[44] G. Stefanoni, B. Motik, Answering Conjunctive Queries over EL Knowl-
edge Bases with Transitive and Reflexive Roles, in: Proc. of AAAI, 2015.

[45] M. Krötzsch, S. Rudolph, P. Hitzler, ELP: Tractable Rules for OWL 2, in:
Proc. of ISWC, 2008, pp. 649–664.

[46] M. Bienvenu, M. Ortiz, M. Simkus, G. Xiao, Tractable Queries for
Lightweight Description Logics, in: Proc. of IJCAI, 2013, pp. 768–774.

[47] S. Kikot, R. Kontchakov, M. Zakharyaschev, On (In)Tractability of
OBDA with OWL 2 QL, in: Proc. of DL, 2011.

[48] SemFacet Project Page, http://www.cs.ox.ac.uk/isg/
tools/SemFacet/.

[49] GitHub of SemFacet, https://github.com/semfacet.
[50] Lucene, lucene.apache.org/.
[51] B. Motik, Y. Nenov, R. Piro, I. Horrocks, D. Olteanu, Parallel Materiali-

sation of Datalog Programs in Centralised, Main-Memory RDF Systems,
in: Proc. of AAAI, 2014, pp. 129–137.

[52] RDFox, www.cs.ox.ac.uk/isg/tools/RDFox/.
[53] J. Broekstra, A. Kampman, F. v. Harmelen, Sesame: A Generic Architec-

ture for Storing and Querying RDF and RDF Schema, in: Proc. of ISWC,
2002, pp. 54–68.

[54] Sesame, http://rdf4j.org.
[55] H. Pérez-Urbina, E. Rodrı́guez-Dı́az, M. Grove, G. Konstantinidis,

E. Sirin, Evaluation of Query Rewriting Approaches for OWL 2, in: Proc.
of SSWS+HPCSW, 2012.

[56] Stardog, http://stardog.com/.

[57] Y. Zhou, Y. Nenov, B. C. Grau, I. Horrocks, Pay-as-you-go OWL Query
Answering Using a Triple Store, in: Proc. of AAAI, 2014.

[58] PAGOdA, http://www.cs.ox.ac.uk/isg/tools/PAGOdA/.
[59] Y. Zhou, B. C. Grau, Y. Nenov, I. Horrocks, Pagoda: Pay-as-you-go abox

reasoning, in: Proceedings of the 28th International Workshop on De-
scription Logics, Athens,Greece, June 7-10, 2015., 2015.

[60] B. Glimm, I. Horrocks, B. Motik, G. Stoilos, Z. Wang, HermiT: An OWL
2 Reasoner, Journal of Automated Reasoning 53 (3) (2014) 245–269.

[61] E. Hyvönen, S. Saarela, K. Viljanen, Ontogator: Combining View- and
Ontology-Based Search with Semantic Browsing, in: Proc. of XML Fin-
land, 2003.

[62] O. Suominen, K. Viljanen, E. Hyvönen, User-Centric Faceted Search for
Semantic Portals, in: Proc. of ESWC, 2007, pp. 356–370.

[63] J. Kurki, E. Hyvönen, Collaborative Metadata Editor Integrated with On-
tology Services and Faceted Portals, in: Proc. of ORES, 2010.

[64] E. Hyvönen, E. Mäkelä, M. Salminen, A. Valo, K. Viljanen, S. Saarela,
M. Junnila, S. Kettula, Museumfinland - finnish museums on the semantic
web, J. Web Sem. 3 (2-3) (2005) 224–241.

[65] E. Hyvönen, K. Viljanen, O. Suominen, Healthfinland - finnish health
information on the semantic web, in: Proc. of ISWC, 2007, pp. 778–791.

[66] S. Brunk, P. Heim, tfacet: Hierarchical faceted exploration of semantic
data using well-known interaction concepts, in: Proc. of International
Workshop on Data-Centric Interactions on the Web, 2011.

[67] D. F. Huynh, The Nested Faceted Browser, people.csail.mit.
edu/dfhuynh/projects/nfb/ (2013).

[68] C. Veres, K. Johansen, A. L. Opdahl, Browsing and Visualizing Seman-
tically Enriched Information Resources, in: Proc. of CISIS, 2010, pp.
968–973.

[69] P. Haase, D. M. Herzig, M. A. Musen, T. Tran, Semantic Wiki Search, in:
Proc. of ESWC, 2009, pp. 445–460.

[70] S. Buschbeck, A. Jameson, R. Troncy, H. Khrouf, O. Suominen,
A. Spirescu, A Demonstrator for Parallel Faceted Browsing, in: Proc.
of EKAW, 2012.

[71] H. Bast, B. Buchhold, An Index for Efficient Semantic Full-Text Search,
in: Proc. of CIKM, 2013, pp. 369–378.

[72] S. Ferré, A. Hermann, Reconciling faceted search and query languages
for the semantic web, Int. Jour. of Metadata, Semantics and Ontologies
7 (1) (2012) 37–54.

[73] S. Ferré, Expressive and scalable query-based faceted search over
SPARQL endpoints, in: Proc. of ISWC, 2014, pp. 438–453.

[74] S. Ferré, SPARKLIS: a SPARQL endpoint explorer for expressive ques-
tion answering, in: Proc. of ISWC, 2014, pp. 45–48.

[75] T. Catarci, M. F. Costabile, S. Levialdi, C. Batini, Visual query systems
for databases: A survey, J. Vis. Lang. Comput. 8 (2) (1997) 215–260.

[76] D. Beneventano, S. Bergamaschi, F. Guerra, M. Vincini, The SEWASIE
Network of Mediator Agents for Semantic Search, J. UCS 13 (12) (2007)
1936–1969.

[77] A. Fadhil, V. Haarslev, OntoVQL: A Graphical Query Language for OWL
Ontologies, in: Proc. of DL, 2007.

[78] D. Calvanese, M. Keet, W. Nutt, M. Rodriguez-Muro, G. Stefanoni, Web-
based Graphical Querying of Databases Through an Ontology: the Won-
der System, in: Proc. of SAC, 2010, pp. 1388–1395.

[79] A. Soylu, E. Kharlamov, D. Zheleznyakov, E. Jiménez-Ruiz, M. Giese,
I. Horrocks, OptiqueVQS: Visual Query Formulation for OBDA, in: DL,
2014, pp. 725–728.

[80] A. Soylu, M. Giese, E. Jiménez-Ruiz, E. Kharlamov, D. Zheleznyakov,
I. Horrocks, OptiqueVQS: Towards an Ontology-based Visual Query Sys-
tem for Big Data, in: Proc. of MEDES, 2013, pp. 119–126.

[81] J. Groppe, S. Groppe, A. Schleifer, Visual query system for analyzing
social semantic web, in: Proc. of WWW (Companion Volume), 2011, pp.
217–220.

[82] V. Lopez, V. S. Uren, E. Motta, M. Pasin, Aqualog: An ontology-driven
question answering system for organizational semantic intranets, J. Web
Sem. 5 (2) (2007) 72–105.

[83] J. Lehmann, L. Bühmann, Autosparql: Let users query your knowledge
base, in: Proc. of ESWC, 2011, pp. 63–79.

[84] D. Damljanovic, V. Tablan, K. Bontcheva, A text-based query interface to
OWL ontologies, in: Proc. of LREC, 2008.

[85] M. Sander, U. Waltinger, M. Roshchin, T. Runkler, Ontology-based trans-
lation of natural language queries to SPARQL, in: Proc. of Natural Lan-
guage Access to Big Data, AAAI 2014 Fall Symposium, 2014.

22

[86] P. Chaussecourte, B. Glimm, I. Horrocks, B. Motik, L. Pierre, The energy
management adviser at EDF, in: ISWC, 2013, pp. 49–64.

[87] E. Kharlamov, N. Solomakhina, Ö. L. Özçep, D. Zheleznyakov,
T. Hubauer, S. Lamparter, M. Roshchin, A. Soylu, S. Watson, How Se-
mantic Technologies Can Enhance Data Access at Siemens Energy, in:
ISWC, 2014, pp. 601–619.

[88] E. Kharlamov, S. Brandt, M. Giese, E. Jimenez-Ruiz, S. Lamparter,
C. Neuenstadt, Ö. L. Özçep, C. Pinkel, A. Soylu, D. Zheleznyakov,
M. Roshchin, S. Watson, I. Horrocks, Semantic Access to Siemens
Streaming Data: the Optique Way, in: ISWC (Posters and Demos), 2015.

[89] E. Kharlamov, D. Hovland, E. Jimenez-Ruiz, D. Lanti, H. Lie, C. Pinkel,
M. Rezk, M. G. Skjæveland, E. Thorstensen, G. Xiao, D. Zheleznyakov,
I. Horrocks, Ontology Based Access to Exploration Data at Statoil, in:
ISWC, 2015.

[90] E. Kharlamov, E. Jimenez-Ruiz, C. Pinkel, M. Rezk, M. G. Skjæveland,
A. Soylu, G. Xiao, D. Zheleznyakov, M. Giese, I. Horrocks, A. Waaler,
Optique: Ontology-Based Data Access Platform, in: ISWC (Posters and
Demos), 2015.

[91] E. Kharlamov, M. Giese, E. Jiménez-Ruiz, M. G. Skjæveland, A. Soylu,
D. Zheleznyakov, T. Bagosi, M. Console, P. Haase, I. Horrocks, et al,
Optique 1.0: Semantic Access to Big Data: The Case of Norwegian
Petroleum Directorate’s FactPages, in: ISWC (Posters and Demos), 2013,
pp. 65–68.

23

