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Abstract. Ontologies play a key role in the development of the Semantic Web and are being used in many diverse application
domains such as biomedicine and e-commerce. An application domain may have been modeled according to different points
of view and purposes. This situation usually leads to the development of different ontologies that intuitively overlap, but that
use different naming and modeling conventions. The problem of (semi-)automatically integrating independently developed on-
tologies through mappings, is usually referred to as the ontology matching problem. Ontology matching systems, however, rely
on lexical and structural heuristics, and the integration of the input ontologies and the mappings may lead to many undesired
logical consequences, which could sensibly diminish their usefulness. The present paper, on the one hand aims at veryfing the
hypothesis that classification of large ontologies via mappings still poses a challenge to OWL 2 reasoners. On the other it also
explores the applicability of OWL 2 reasoning for the repair of unintended entailments (namely, unsatisfiable concepts or viola-
tions of the conservativity principle). In this paper we provide an update on the feasibility of using OWL 2 reasoners to repair the
integration of ontologies via mappings, providing a more accurate evaluation of the feasibility of extracting all the justifications.
Additionally, the current evaluation also encompasses the analysis of the use of OWL 2 reasoners for solving the violations of
the so-called conservativity principle.

Keywords: Reasoning, Ontology Matching, Ontology Alignment Debugging, Ontology-based Data Integration

1. Introduction

The problem of (semi-)automatically computing
mappings between independently developed ontolo-
gies is usually referred to as the ontology matching
problem. A number of sophisticated ontology match-
ing systems have been developed in the last years
[8,29]. Ontology matching systems, however, rely on
lexical and structural heuristics and the integration of
the input ontologies and the mappings may lead to
many undesired logical consequences (e.g., unsatisfi-
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able classes or violations of the conservativity princi-
ple).

The fix of undesired logical consequences caused
by ontology mappings is known as the mapping re-
pair problem [14]. Mapping repair can be addressed
using state-of-the-art approaches for debugging OWL
2 ontologies, which rely on the extraction of justifi-
cations for the unwanted axiom (e.g., [13,15,27,34]).
However, in [12] it was pointed out that justification-
based technologies do not scale when the number of
such axioms is large (a typical scenario in mapping re-
pair problems).

This paper extends our previous evaluations pre-
sented in [12,32], in different respects. [12] provided
a first evaluation on the use of OWL 2 reasoning for
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the classification and repair of integrated ontologies.
[32] also considered reasoners for OWL 2 profiles (i.e.,
ELK), and tested the extraction of more than a single
justification for computing a repair for logical viola-
tions represented by incoherent classes.

Our extended evaluation is based on the datasets and
ontology matching systems from the Ontology Align-
ment Evaluation Initiative (OAEI) [8]. In addition to
the previous versions of the evaluation, in this paper we
also: (i) consider the so-called violations of the con-
servativity principle, that is, novel axioms entailed by
the aligned ontology, involving elements of one of the
two input ontologies, that are not entailed by the input
ontologies in isolation [1,31]. (ii) provide extended ex-
perimental results concerning the extraction of (a sub-
set of) all the justifications for a given entailment, pro-
viding additional insights on the problem. (iii) com-
pare the black-box justification extraction techniques
with one of the latest glass-box approaches based on
tracing, for the optimization of the justifications ex-
traction.

Our results suggest that the classification of the in-
tegration of large ontologies via mappings still poses a
challenge to OWL 2 reasoners. Furthermore, the repair
of unintended entailments (e.g., unsatisfiable concepts
or conservativity violations) using OWL 2 reasoners
critically compromises the performance of mapping
repair systems in the best case, or it is simply not
tractable when all the justifications need to be ex-
tracted in order to compute an optimal repair.

The remainder of the paper is organised as follows:
Section 2 introduces the needed preliminaries, Sec-
tion 3 describes the dataset, the environment used for
the evaluation, and also provides and discusses in de-
tail its results. Finally, Section 4 concludes the paper.

2. Preliminaries

In this section, we present the formal representa-
tion of ontology mappings (Section 2.1), the notions of
semantic difference (Section 2.2), mapping coherence
and conservativity principle violations (Section 2.3).

2.1. Representation of Ontology Mappings

Mappings are conceptualised as 4-tuples of the form
〈e1, e2, n, ρ〉, where e1, e2 are entities in the vocabu-
lary or signature of the relevant input ontologies O1

and O2 (i.e., e1 ∈ Sig(O1) and e2 ∈ Sig(O2)), n is
a confidence measure between 0 and 1, and ρ is a re-

lationship between e1 and e2, typically subsumption
(i.e., e1 is more specific than e2), equivalence (i.e., e1

and e2 are synonyms) or disjointness (i.e., e1 and e2

cannot share individuals) [7].
RDF Alignment [5] is the main format used in the

Ontology Alignment Evaluation Initiative (OAEI) to
represent mappings containing the aforementioned el-
ements. Additionally, mappings are also represented
as OWL 2 subclass, equivalence, and disjointness ax-
ioms [4]; mapping confidence values (n) are then
represented as axiom annotations. Such a representa-
tion enables the reuse of the extensive range of OWL
2 reasoning infrastructure that is currently available.
Note that alternative formal semantics for ontology
mappings have been proposed in the literature (e.g.,
[2,7,23]), but they are out of scope of the present arti-
cle because the reasoning in the aligned ontology can-
not be achieved directly with OWL 2 reasoning infras-
tructure, rather it requires custom reasoning facilities.

2.2. Semantic Consequences of the Integration

The ontology resulting from the integration of the
two ontologies O1 and O2 via a set of mappings M
typically entails axioms that do not follow from O1,
O2, or M alone. These new semantic consequences
can be captured by the notion of deductive difference
[18,19].

Intuitively, the deductive difference between O and
O′ w.r.t. a signature Σ is the set of entailments con-
structed over Σ that do not hold in O, but do hold in
O′. No algorithm is available for computing the de-
ductive difference for DLs more expressive than EL,
for which the existence of tractable algorithms is still
open [18].

Thus in this paper we rely on the approximation of
the deductive difference given in Definition 1. This ap-
proximation only requires comparing the classification
hierarchies of O and O′ provided by an OWL 2 rea-
soner, and it has successfully been used in the past in
the context of ontology integration [13].

Definition 1 (Approximation of the Deductive Differ-
ence). Let A,B be atomic concepts from Σ,O andO′
be two OWL 2 ontologies, with Σ a signature. We de-
fine the approximation of the Σ-deductive difference
between O and O′ (denoted diff≈Σ(O,O′) as the set of
axioms of the form A v B satisfying: (i) O 6|= A v
B, and (ii) O′ |= A v B.
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2.3. Violations and Mapping Repair

As already discussed in Section 2.2, the notion
of deductive difference can capture the novel entail-
ments of an aligned ontology w.r.t. the input ontolo-
gies. However, some of these entailments may be un-
desired, and are called violations, stemming from er-
roneous mappings in M, or from an inherent incom-
pabilities between the input ontologies O1 and O2.

A set of mappings that leads to unsatisfiable classes
in O1 ∪ O2 ∪ M is referred to as incoherent w.r.t.
O1 and O2 [21], as formalized in Definition 2. Anal-
ogously, a set of mappings that leads to violations of
the conservativity principle in the aligned ontology
O1 ∪ O2 ∪M is referred to as nonconservative w.r.t.
O1 and O2 [1,31], as formalized in Definition 3.

Definition 2 (Mapping Incoherence). A set of map-
pings M is incoherent with respect to O1 and O2, if
a class A exists in the signature of O1 ∪ O2 such that
O1 ∪ O2 6|= A v ⊥ and O1 ∪ O2 ∪M |= A v ⊥.

Definition 3 (Mapping Nonconservativity). A set of
mappings M is nonconservative with respect to O1

and O2, if a pair of classes A,B exist in the signature
of Oi, with B 6= ⊥, such that Oi 6|= A v B, and
O1 ∪ O2 ∪M |= A v B.

More generally, an alignment being incoherent
and/or nonconservative, is called problematic, as intro-
duced in Definition 4.

Definition 4 (Problematic Mappings). A set of map-
pingsM between two ontologies O1 and O2 is prob-
lematic, if M is incoherent and/or nonconservative
with respect to O1 and O2.

A problematic set of mappings M can be fixed by
removing mappings fromM. This process is referred
to as mapping repair (or repair for short).

Definition 5 (Mapping Repair). LetM be a problem-
atic set of mappings w.r.t. O1 and O2. A set of map-
pingsR ⊆M is a mapping repair forM w.r.t.O1 and
O2 ifM\R is not problematic w.r.t. O1 and O2.

A trivial repair is R = M, since an empty set of
mappings is obviously nonproblematic. Nevertheless,
the objective is to minimize a loss function over the
alignment (e.g., to remove as few mappings as possi-
ble or to minimize the total confidence of the removed
mappings). Minimal (mapping) repairs are typically
referred to in the literature as mapping diagnosis [20]
— a term coined by Reiter [25] and introduced to the
field of ontology debugging in [28].

Definition 6 (Mapping diagnosis). Let R be a repair
forM with respect to O1 and O2. R is a diagnosis if
each R′ ⊂ R is not a repair forM with respect to O1

and O2.

In the literature there are different approaches to
compute a repair or diagnosis for an incoherent set
of mappings. Early approaches were based on Dis-
tributed Description Logics (DDL) (e.g., [22,23,24]).
Alternatively, if mappings are represented as OWL 2
axioms, a repair or diagnosis can also be computed us-
ing the state-of-the-art approaches for debugging and
repairing OWL 2 ontologies, which rely on the ex-
traction of justifications for the undesired entailments
(e.g., [13,15,27,34]).

“A justification for an entailment in an ontology is a
minimal subset of the ontology that is sufficient for the
entailment to hold. The set of axioms corresponding
to the justification is minimal in the sense that if an
axiom is removed from the set, the remaining axioms
no longer support the entailment.” [10] Definition 7
formally introduces the notion of justification.

Definition 7 (Justification [10]). Given an ontologyO,
and an entailment η such that O |= η, J is a justifica-
tion in O of η if J ⊆ O, J |= η, and for all J ′ ( J
it is the case that J ′ 6|= η.

In ontology matching scenarios the use of incom-
plete reasoning techniques to enhance scalability is
very frequent (e.g., [1,11,20,26,31]). Incomplete rea-
soning leads to an approximate repair R≈, i.e., there
is no guaranteee thatM\R≈ is nonproblematic, but
the number of violations caused by the original set of
mappingsM tends to be reduced while minimizing the
loss function over the original alignment.

Given that the justifications for an entailment are
usually exponential in the size of the ontology, [10] ap-
proximate mapping repair techniques, based on the ex-
traction of a single justification, has been successfully
used in the past to achieve scalability (e.g., LogMap-
Full [11]). For this reason, our empirical evaluation
does not only consider the (limited) extraction of all
the justifications, but also the computation of a single
one, as described in details in [10].

3. Experimental Evaluation

This section describes the conducted experimental
evaluation. In Section 3.1 we present the used datasets
and mapping sets. Section 3.2 introduces the evalua-
tion setting. The obtained results are discussed in Sec-
tion 3.3.
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3.1. Datasets

The datasets are based on the OAEI, an interna-
tional campaign for the systematic evaluation of ontol-
ogy matching systems. The matching problems in the
OAEI are organised in several tracks, with each track
involving different kinds of test ontologies [3,6,8]. In
this paper, we have focused on the anatomy, largebio,
library and conference tracks. For largebio we used
both the small setting, in which reduced fragments of
FMA, NCI and SNOMED CT are employed (where
the fragments are relevant portions of one of the on-
tologies with respect to the other two), and the big set-
ting, employing the whole ontologies (at the excep-
tion of SNOMED CT, for which a large fragment for
both FMA and NCI is used). Library is composed by
not very expressive medium-sized ontologies, while
conference ontologies are very expressive but of lim-
ited size. Anatomy is composed by a fragment of NCI
ontology (named HUMAN in this context to avoid
confusion with the largebio dataset) involving human
anatomy, that should be matched with an ontology de-
scribing the anatomy of mice (called MOUSE ontol-
ogy). Table 1 summarizes the metrics of the selected
ontology pairs for the evaluation, while Tables 2–4
provides the details about the selected subset of map-
ping sets computed by ontology matching systems par-
ticipating in the OAEI 2013 and 2014 campaigns. Due
to the excessive time required for running a so expen-
sive evaluation, we were forced to select only a rep-
resentative subset of the computed mappings sets (we
have selected, for each track, the alignments with the
highest or lowest precision and recall values).1 Please
refer to [3,6] for more information about the datasets
and ontology matching systems.

3.2. Evaluation Settings

System Details. The test environment consists of a
desktop computer equipped with 32GB DDR3 RAM
at 1333MHz and an AMD Fusion FX 4350 (quad-
core, each running at 4.2GHz) as CPU. The dataset
is stored on a 128GB SSD, where the operating sys-
tem (Ubuntu 12.04, 64-bit version) is installed. The
employed build of Java Runtime Environment (JRE)
is 1.8.0_45-b14, while the one for the Oracle 64-Bit

1Due to space reasons we can only present a subset of
the computed evaluation, a technical report with the full anal-
ysis is available at ftp://ftp.disi.unige.it/person/
SolimandoA/aijournaltr.pdf

Table 2
Metrics about the relevant mapping sets of the largebio dataset.

Ontology 1 Ontology 2 # Mappings Matching System

FMA NCI 5862 AML14 (BIG)
FMA NCI 5686 GOMMA13 (BIG)
FMA NCI 3788 IAMA13 (BIG)
FMA NCI 6823 LogMapBio14 (BIG)
FMA NCI 2806 OMReasoner14 (BIG)
FMA NCI 6048 Reference13 (BIG)
FMA NCI 5518 YAM++13 (BIG)
FMA SNOMED 12384 AML14 (BIG)
FMA SNOMED 11294 GOMMA13 (BIG)
FMA SNOMED 3198 IAMA13 (BIG)
FMA SNOMED 13704 LogMapBio14 (BIG)
FMA SNOMED 18016 Reference13 (BIG)
FMA SNOMED 13684 YAM++13 (BIG)

SNOMED NCI 25252 AML14 (BIG)
SNOMED NCI 24880 GOMMA13 (BIG)
SNOMED NCI 17686 IAMA13 (BIG)
SNOMED NCI 24984 LogMapBio14 (BIG)
SNOMED NCI 37688 Reference13 (BIG)
SNOMED NCI 25200 YAM++13 (BIG)

FMA NCI 5380 AML14

FMA NCI 5252 GOMMA13

FMA NCI 3502 IAMA13

FMA NCI 5960 MaasMatch14
FMA NCI 5781 LogMapBio14
FMA NCI 2724 OMReasoner14
FMA NCI 5122 YAM++13

FMA SNOMED 13582 AML14

FMA SNOMED 7332 GOMMA13

FMA SNOMED 2500 IAMA13

FMA SNOMED 12884 LogMapBio14
FMA SNOMED 16232 MaasMatch14
FMA SNOMED 3040 OMReasoner14
FMA SNOMED 13270 YAM++13

SNOMED NCI 28262 AML14

SNOMED NCI 21110 GOMMA13

SNOMED NCI 16812 IAMA13

SNOMED NCI 28711 LogMapBio14
SNOMED NCI 14240 OMReasoner14
SNOMED NCI 23344 YAM++13

Java Virtual Machine (JVM) is the 25.45-b02 (mixed
mode). The amount of memory allocated for the heap
of the JVM is 12GB, the processes not involved in the
evaluation require approximately 3GB of space, thus
leaving 17GB of free RAM (plus 1.8GB of swap mem-
ory, that is not used unless totally necessary2).

Tested Reasoners. The versions of the employed rea-
soners are: (i) Konclude 0.6.0-408 64-bit [33] (linux

2This behaviour is enforced by means of the swappiness Linux
kernel parameter set to 0, see http://en.wikipedia.org/
wiki/Swappiness for more information.

ftp://ftp.disi.unige.it/person/SolimandoA/aijournaltr.pdf
ftp://ftp.disi.unige.it/person/SolimandoA/aijournaltr.pdf
http://en.wikipedia.org/wiki/Swappiness
http://en.wikipedia.org/wiki/Swappiness
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Table 1
Metrics about the ontologies employed in the evaluation.

Ontology Track #Concepts #DatatypeP. #ObjectP. DL

MOUSE Anatomy 2744 0 3 ALE(D)

HUMAN Anatomy 3304 0 2 S(D)

CMT Conference 36 10 49 ALCIN (D)

CONFERENCE Conference 60 18 46 ALCHIF(D)

CONFOF Conference 38 23 13 SIN (D)

EKAW Conference 74 0 33 SHIN
IASTED Conference 140 3 38 ALCIN (D)

SIGKDD Conference 49 11 17 ALEI(D)

FMA (NCI) LargebioSmall 3696 24 0 ALCN (D)

FMA (SNOMED) LargebioSmall 10157 24 0 ALCN (D)

NCI (FMA) LargebioSmall 6488 0 63 ALC
NCI (SNOMED) LargebioSmall 23958 0 82 ALCH
SNOMED (FMA) LargebioSmall 13412 0 18 ALER
SNOMED (NCI) LargebioSmall 51128 0 51 ALER
FMA LargebioBig 78988 54 0 ALCN (D)

NCI LargebioBig 66724 1 123 ALCH(D)

SNOMED (NCI and FMA) LargebioBig 122464 1 55 ALER
STW Library 6575 0 0 AL
TheSoz Library 8376 0 0 AL

Table 3
Metrics about the relevant mapping sets of the conference dataset.

Ontology 1 Ontology 2 # Mappings Matching System

CMT IASTED 10 AML14

CMT IASTED 10 AMLbk13
CMT IASTED 32 MaasMatch14
CMT IASTED 8 Reference14
CMT IASTED 15 XMapGen13
CMT IASTED 11 XMapSig13

CONFOF IASTED 10 AML14

CONFOF IASTED 10 AMLbk13
CONFOF IASTED 18 Reference14
CONFOF IASTED 19 XMapGen13
CONFOF IASTED 9 XMapSig13
CONFOF IASTED 16 YAM++13

CONFERENCE EKAW 164 MaasMatch14
CONFERENCE IASTED 68 MaasMatch14
CONFERENCE IASTED 12 AML14

CONFERENCE IASTED 12 AMLbk13
CONFERENCE IASTED 28 Reference14
CONFERENCE IASTED 17 XMapGen13
CONFERENCE IASTED 13 XMapSig13
CONFERENCE IASTED 12 YAM++13

IASTED SIGKDD 70 AOTL14

IASTED SIGKDD 68 MaasMatch14

binaries), (ii) ELK 0.4.2 [17],3 (iii) Pellet 2.3.1 [30],
(iv) HermiT 1.3.8 [9].

ELK, Pellet, and HermiT implement the OWLRea-
soner interface of the OWL-API and they all are called

3Version compiled on the 29th of May 2015 from the sources
available at https://github.com/klinovp/elk/tree/
feature/tracing-complete

Table 4
Metrics about the relevant mapping sets of the anatomy and library
datasets.

Ontology 1 Ontology 2 # Mappings Matching System

MOUSE HUMAN 2956 AML14

MOUSE HUMAN 2954 AMLbk13
MOUSE HUMAN 5400 AOT14

MOUSE HUMAN 336 AOTL14

MOUSE HUMAN 3077 GOMMAbk13
MOUSE HUMAN 1962 IAMA13

MOUSE HUMAN 3107 LogMapBio14
MOUSE HUMAN 2235 LogMapC14

MOUSE HUMAN 4024 MaasMatch13
MOUSE HUMAN 2206 ODGOMS13

MOUSE HUMAN 3032 Reference14
MOUSE HUMAN 1891 RSDLWB14

MOUSE HUMAN 1872 WeSeE13

MOUSE HUMAN 2056 WMatch13
MOUSE HUMAN 2790 YAM++13

STW TheSoz 9582 AML13

STW TheSoz 7254 AML14

STW TheSoz 12032 Hertuda13
STW TheSoz 378 IAMA13

STW TheSoz 5684 LogMap13
STW TheSoz 2925 LogMapC14

STW TheSoz 8922 MaasMatch14
STW TheSoz 7794 ODGOMS13

STW TheSoz 6322 Reference14
STW TheSoz 1624 StringsAuto13
STW TheSoz 342 RSDLWB14

STW TheSoz 11948 Xmap14
STW TheSoz 80686 XMapGen13
STW TheSoz 2870 XMapSig13
STW TheSoz 7940 YAM++13

https://github.com/klinovp/elk/tree/feature/tracing-complete
https://github.com/klinovp/elk/tree/feature/tracing-complete


6

on a fresh thread. A timeout on the classification task is
enforced by killing the thread after reaching the time-
out value, times are measured using the getNanoSec
function, because it measures the elapsed time without
skew corrections.4

ELK is a (very fast) reasoner for the OWL 2 EL pro-
file, thus it cannot guarantee complete results for on-
tologies outside this profile.

Konclude does not implement the OWL-API’s OWL-
Reasoner interface and its invocation through OWLlink
1.2.1 is raising an OWLlinkReasonerRuntimeExcep-
tion exception caused by an IndexOutOfBoundsExcep-
tion exception during the parsing of most of the on-
tologies in our dataset (expressed in OWL/XML for-
mat). Thus, Konclude is instead called using an exter-
nal process,5 using the ProcessBuilder class,6 and it is
allowed to use all the available cores. For Konclude,
timeout on classification is enforced using timeout pro-
gram for Linux,7 and wall-clock time is measured us-
ing the time program.8

Note that due to its invocation, the measured time
for Konclude also includes the loading time of the
aligned ontology. However, given that we aim at veri-
fying the feasibility of using full OWL 2 reasoners in a
mapping diagnosis context, and not at comparing rea-
soners, all these biases are not influencing our analy-
sis.

It was not possible to extend our analysis to FaCT++
because its invocation using JNI is permanently failing
with a StackOverflowError.

Justification Extractor. Our evaluation is based on
the black-box justification extractor described in [10].9

Black-box extractors typically allow to use any rea-
soner implementing the axiom pinpointing service. In
addition to our previous evaluation, we have also com-
pared the performance of the aforementioned black-
box approach using ELK 0.4.2, and the glass-box trace

4https://docs.oracle.com/javase/8/docs/api/
java/lang/System.html#nanoTime--

5Konclude is runned with "Konclude classification -w AUTO -i
aligneOntology.owl"

6https://docs.oracle.com/javase/8/docs/api/
java/lang/ProcessBuilder.html

7With the command "timeout –preserve-status –s TERM timeout-
Val cmd"

8Using "/usr/bin/time -f %E cmd" command.
9Current version available at https://github.com/

matthewhorridge/owlexplanation For the experiments
we used the version available here: https://github.com/
protegeproject/mvn-repo/tree/master/releases/
org/semanticweb/owl/explanation/3.3.0

Algorithm 1 Conducted evaluation over (part of) the
OAEI 2013-2014 dataset
Input:O1,O2: input ontologiesM: mappings forO1 andO2

1: OU := O1 ∪ O2 ∪M
2: for each reasoner do
3: Compute classification ofOU (store time in (I))
4: Compute all the unsatisfiable concepts unsats in OU (store their

number in (II))
5: if #unsats > 50 then
6: unsats← randomly select 50 concepts
7: end if
8: Compute a single justification for each unsat c (store total time in

(III))
9: Compute 50 justifications for each c (store total time in (IV))

10: if #conservV iols > 50 then
11: conservV iols← randomly select 50 violations
12: end if
13: Compute a single justification for each violations v (store total time

in (V))
14: Compute 50 justifications for each v (store total time in (VI))
15: end for

extraction technique offered by ELK reasoner [16].
The tracing functionality offerred by ELK keeps track
of the subset of the ontology used for the entailment
check of the axiom of interest, then the black-box jus-
tification module is run only against this relevant sub-
set of the ontology, allowing, in principle, a significant
reduction of the required runtime. [10] When we re-
fer to this additional functionality offered by ELK, the
reasoner will be referred to as ELKtrace.

3.3. Conducted Evaluation

The evaluation algorithm is presented in Algo-
rithm 1, which takes as input a pair of ontologies (O1

and O2) and an alignmentM between them from the
datasets described in Section 3.1. For each of the avail-
able reasoners we compute the classification10 and
record the classification times in seconds (see Tables 5-
9 and Class.(s) in Tables 10–31). Then, if the classifi-
cation succeeds, we record the number of unsatisfiable
concepts (#Unsat in Tables 10–31). For at most 50 of
them, we compute justifications11 (a single one and up
to a maximum of 50 justifications, recording the total
time in seconds required for completing the respective
operations (1Just.(s) and 50Just.(s) in Tables 10–31,
respectively). In addition, we also keep track of the
percentage of violations for which neither error nor
timeout occurred (%1JustOK and %50JustOK). When

10With a timeout of 10, 60, 20 and 10 minutes for anatomy, large-
bio, library and conference, respectively.

11With a timeout of 60 seconds to find each new justification.
ELKtrace has a timeout of 60 seconds for computing the trace, and
than another timeout of 60 seconds for computing each justification.

https://docs.oracle.com/javase/8/docs/api/java/lang/System.html#nanoTime--
https://docs.oracle.com/javase/8/docs/api/java/lang/System.html#nanoTime--
https://docs.oracle.com/javase/8/docs/api/java/lang/ProcessBuilder.html
https://docs.oracle.com/javase/8/docs/api/java/lang/ProcessBuilder.html
https://github.com/matthewhorridge/owlexplanation
https://github.com/matthewhorridge/owlexplanation
https://github.com/protegeproject/mvn-repo/tree/master/releases/org/semanticweb/owl/explanation/3.3.0
https://github.com/protegeproject/mvn-repo/tree/master/releases/org/semanticweb/owl/explanation/3.3.0
https://github.com/protegeproject/mvn-repo/tree/master/releases/org/semanticweb/owl/explanation/3.3.0
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a timeout or an error occurs, the measured time is only
a lower-bound of the real required time.

Analogously, the number of detected conservativity
violations are recorded (#Viols in Tables 10–31), and,
for at most 50 of them, we compute justifications.

Notice that when computing more than one justifi-
cation, the timeout is enforced for each single justifi-
cation computation, and reaching a timeout on one of
them stops the whole computation. This is motivated
by the fact that the search space for justifications is ex-
plored by increasing the number of axioms compos-
ing them, and it is therefore reasonable that at the first
failure the justification module will not be able to find
other ones within the given time limit.

Classification. In Tables 5-9 the classification time
for a selection of the testcases is shown.

For the anatomy dataset (Table 5), all the reason-
ers succesfully managed to compute the classification
of the aligned ontology. The only reasoner that expe-
rienced problems was Pellet, that permanently raised
a ConcurrentModificationException exception on sev-
eral aligned ontologies of this dataset.

In the largebio-small dataset (Table 6), for the map-
ping sets involving FMA and NCI, none of the reason-
ers failed at classifying the aligned ontology. For the
FMA and SNOMED testcase, Pellet failed to classify,
due to timeouts (T/OUT), half of the cases. For the in-
tegration of SNOMED and NCI, Pellet failed due to
timeouts in all the cases, and exclusively ELK could
classify the aligned ontology in 3 out of 7 testcases.12

Konclude, for instance, failed with an out of memory
error (OOM), and HermiT reached the timeout.

For the largebio-big dataset (Table 7), not all the
mapping sets are available because some of the on-
tology matchers failed at computing the alignment for
this extended case. Regarding classification, the results
are very similar to the small version of the dataset, with
a little increase of the number of timeouts for Pellet
due to the increase of size of the aligned ontologies.

For library (Table 8), instead, the reasoners suc-
ceeded in most of the cases (with the partial excep-
tion of Pellet), but only Konclude managed to clas-
sify, within the timeout, the integrated ontology via the
mappings computed by XMapGen. These mappings
include an extremely high number of many to many

12Note that ELK is an OWL 2 EL reasoner and since NCI falls
outside the OWL 2 EL profile, the classification computed by ELK
for the integration of SNOMED and NCI is incomplete.

correspondences, that caused problems to all the rea-
soners but Konclude.

Concerning conference, the classification could be
performed in the vast majority of the cases, with only
a single failure for both HermiT and Pellet. In Table
9 we only report the cases in which the classification
either required a time greater than 1 second, or during
which a timeout or error occurred.

Computation of Justifications for Unsatisfiabilities.
Tables 10–30, instead, show the details for justifica-
tion computation for the existing unsatisfiabilites, for
relevant cases. For the library dataset, the results are
omitted due to the lack of unsatisfiable classes in the
aligned ontologies (the input ontologies are simple and
they do not contain disjointness axioms). Note that
Konclude, since it was invoked from the command
line, could not be evaluated on the justification ex-
traction tasks, due to the limitation of using it from
the command line. Missing rows mean that the corre-
sponding reasoner failed at classifying the integrated
ontology, due to timeout or an error, and has been ex-
cluded.

Note that, the computed times in the Tables 10–
30 are only for 50 unsatisfiable classes. Thus, the to-
tal times given below for all unsatisfiable classes have
been extrapolated from these results.

A subset of the results for the anatomy dataset is
reported in Tables 10–11. Consider for instance Ta-
ble 10a, which presents the justification extraction for
the mapping set computed by MaasMatch. Computing
a single justification for each of the 5, 972 unsatisfiable
classes, would require for ELK 2h (68s for 50 unsatis-
fiable classes), while >11 days for computing fifty of
them (>2h for 50 unsatisfiable classes).

The available version of ELKtrace is still in beta
quality, and therefore we experienced some problems
in the justification extraction process. For this reason,
despite the great improvement in the runtime for com-
puting justifications, it exhibited a high number of er-
rors during the evaluation. For instance, for the present
task, ELKtrace did not manage to correctly compute
any justification. When HermiT is used, >37m and
>90h would be required, respectively. These times are
surprisingly lower than the corresponding for ELK, de-
spite the latter is an approximated reasoner.

While already the reported times could be consid-
ered to be incompatible with “online” repair scenarios,
we also need to consider that the runtime is a lower-
bound, limited to at most 50 justifications, of the one
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extracting all the justifications, whose number is usu-
ally exponential in the size of the ontology.

Considering the conference dataset, composed by
small sized ontologies having high expressivity, we
also find cases that could not be compatible with an
“online” mapping repair (e.g., almost two hours for
HermiT in Table 14a,>53m for Pellet in Table 13a and
>47m for ELK in Table 15a). Notice also that in this
last case, only 16% of the computations involving Pel-
let finished before the timeout, and therefore the total
runtime is expected to be much higher. The worst re-
sult for ELKtrace, instead, is in Table 15a, with a run-
time >22m.

For the largebio datasets, shown in Tables 16-30,
both big and small variants, the values are definitely
higher and not affordable for an online repair process.
Computing a single justification for each unsatisfiable
concept in the largebio testcase of Table 20a would re-
quire>63h for ELK,>6h for ELKtrace,>68h for Her-
miT , while >613 days, >485 days and >51 days for
computing 50 of them, respectively.

Even considering a testcase of largebio-small, with
a fairly limited number of unsatisfiable classes (2058
for the mapping set involving FMA and SNOMED and
computed by GOMMA, Table 25a), the runtime is still
prohibitive if more than one justification is computed.
Indeed, computing a single justification would require
>10m for ELK, >44s for ELKtrace, >6m for HermiT
and >4m for Pellet, while >24 days, >32h, >10 days
and >7 days for computing 50 of them, respectively.

It is evident that the proposed runtimes for largebio
might be only acceptable in an off-line mapping repair
process for the small testcases, while they are not af-
fordable for the largest ones.

Computation of Justifications for Conservativity Viola-
tions. In Tables 10–31 we show the details for justi-
fication computation for the conservativity violations,
restricted to the relevant cases.

What is evident from the analyzed testcases is that,
the average runtime required for computing the justi-
fications for a conservativity violation (that is, a sub-
sumption axiom between named classes) is in general
lower than the time required for computing the justifi-
cations for an unsatisfiable class.

On the other hand, it is also true that the number of
violations is usually higher than the number of unsat-
isfiabilities, with millions of violations like in the li-
brary testcase, and this is balancing the required time
for computing justifications.

For instance, for the anatomy dataset, in Table 10b,
computing a single justification requires >25m for
ELK, >5h for ELKtrace, and >4m for HermiT , while
>50h, >43h, and >16h for computing 50 justifica-
tions, respectively. It is again notable that the required
runtimes for HermiT are lower than the corresponding
for ELK (both variants).

The conference dataset exhibits a very limited num-
ber of conservativity violations, in general, favored by
the extremely reduced size of the signature of the in-
volved ontologies. An exception is represented by the
testcase of Table 13b, where computing a single justi-
fication requires less than 2 seconds for all the tested
reasoners, but computing 50 justifications caused 32%
of timeouts for Pellet. All the other reasoners were still
able to accomplish the task within one minute.

For largebio, Table 26b presents a very limited num-
ber of conservativity violations (2270), that paired with
the reduced runtime for the computation of their justi-
fications, as already discussed, requires at most 10 sec-
onds for computing a single justification, and at most
39 minutes for computing 50 justifications. Even if the
required time can appear to be limited, we need to re-
mind again that in order to provide a complete and
minimal repair, all the (possibly exponentially many)
justifications must be computed, while the proposed
runtime is for computing at most 50 justifications.

In other largebio testcases, such as that described
in Table 28b, ELK would need 12 hours to compute a
single justification (ELKtrace raised an error on 90% of
the computations and its runtime cannot be compared),
while >127 days would be required by ELK, and >5
days by ELKtrace for computing 50 justifications.

The highest number of conservativity violations oc-
curs in the library dataset, favored by the extremely
high number of many to many correspondences that
its mapping sets exhibit. For instance, in the testcase
of Table 31b, the required time for the computation of
a single justification is >229 days for ELK, and >18
days for HermiT , while for computing 50 justifications
the runtime is >48 and >7 years, respectively. The
results for ELKtrace are omitted because, for the se-
lected testcases, all the single justification computation
failed, and all that for multiple justifications reached
the timeout. Similarly to the anatomy testcase, also for
library the runtime for justification computation with
HermiT has been lower than that of ELK.

It is again evident that despite the smaller runtime
required for computing justifications for conservativity
violations, the total runtime would be prohibitive in the
majority of the cases, also for off-line repair scenarios.
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4. Conclusions

In this paper, we have extended previous evaluations
of the feasibility of using OWL 2 reasoning capabili-
ties in mapping repair related tasks, under different as-
pects. Firstly, the evaluation has been extended to ex-
tract more justifications than in the previous evalua-
tion, in order to provide more accurate results. Addi-
tionally, the black-box justification extraction method
has also been compared against glass-box techniques
offered by ELK reasoner, which provides the capabil-
ity of extracting a trace of the relevant subset of an on-
tology, for the entailment check of a given axiom. Fi-
nally, we also analyzed the performances of justifica-
tion extraction for repairing the so-called conservativ-
ity principle.

Our empirical results on the performances of sev-
eral top-level reasoners suggest that the classification
of the integration of medium/large size ontologies via
mappings is hard to compute for current OWL 2 rea-
soners. Furthermore, when OWL 2 reasoners are to be
used in mapping repair tasks, the computation time in-
creases considerably, and in the majority of the cases it
becomes impractical, even when restricting to reason-
ers for one of the OWL 2 profiles. From the extended
empirical evaluation presented in this paper, the prob-
lem is even exacerbated when considering conserva-
tivity violations, in addition to consistency ones.

Hence, the integration of ontologies via mappings
seems an ideal reasoning benchmarks, and its hard-
ness motivates the interest in approximated repair tech-
niques in the context of ontology matching.
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Table 5
Classification times (s), anatomy dataset with selected mapping sets.

AML14 AMLBK13 AOT14 AOTL14 GOMMABK13 IAMA13 LogMapBio14 LogMapC14

ELK 0.07 0.05 17 0.11 0.12 0.45 0.13 0.08
HERMIT 0.6 0.5 5.93 0.6 1.03 1.12 0.7 0.48
KONCLUDE 0.54 0.7 0.61 0.51 0.57 0.79 0.57 0.6
PELLET 2.45 2.22 ERR ERR ERR ERR ERR ERR

MaasMatch13 ODGOMS13 Reference14 RSDLWB14 WeSeE13 WMatch13 YAM++13
ELK 6.67 0.12 0.05 0.08 0.28 0.11 0.06
HERMIT 5.6 0.91 0.58 0.88 4 0.84 0.8
KONCLUDE 0.6 0.55 0.53 0.55 0.62 0.67 0.56
PELLET ERR ERR 2.11 ERR ERR ERR 2.32

Table 6
Classification times (s), largebio-small dataset with selected mapping sets.

FMA-NCI AML14 GOMMA13 IAMA13 LogMapBio14 MaasMatch14 OMReasoner14 Reference13 YAM++13
ELK 0.12 1.17 0.1 0.19 0.21 0.1 1.07 0.11
HERMIT 16 21 15 18 3.58 18 53 18
KONCLUDE 7.6 7.45 7.44 8.25 1.3 9.52 6.01 9.81
PELLET 19 17 17 29 T/OUT 16 11 22

FMA-SNOMED AML14 GOMMA13 IAMA13 LogMapBio14 MaasMatch14 OMReasoner14 Reference13 YAM++13
ELK 0.78 0.75 0.49 0.78 4.22 0.57 0.89 0.58
HERMIT 11 9.33 0.54 11 2.86 11 3.75 5.23
KONCLUDE 4.82 4.33 1.52 4.63 5.77 4.99 3.37 3.83
PELLET 2,119 273 1.73 T/OUT T/OUT 192 T/OUT T/OUT

SNOMED-NCI AML14 GOMMA13 IAMA13 LogMapBio14 OMReasoner14 Reference13 YAM++13
ELK 4.26 3.58 3.09 4.8 2.95 4.36 3.41
HERMIT T/OUT 53 57 T/OUT 74 4.94 T/OUT
KONCLUDE OOM 17 16 OOM 18 19 OOM
PELLET T/OUT T/OUT T/OUT T/OUT T/OUT T/OUT T/OUT

Table 7
Classification times (s), largebio-big dataset with selected mapping sets.

FMA-NCI AML14 GOMMA13 IAMA13 LogMapBio14 OMReasoner14 Reference13 YAM++13
ELK 2.01 1.99 1.95 2.05 2.04 1.94 1.99
HERMIT 330 446 315 327 486 1,003 406
KONCLUDE 60 61 63 70 61 39 60
PELLET 1,182 722 827 1,997 1,108 165 2,292

FMA-SNOMED AML14 GOMMA13 IAMA13 LogMapBio14 Reference13 YAM++13
ELK 6.16 6 6.3 6.72 6.65 6.47
HERMIT 840 840 89 883 302 730
KONCLUDE 63 71 26 64 41 55
PELLET T/OUT T/OUT 1,762 T/OUT T/OUT T/OUT

SNOMED-NCI AML14 GOMMA13 IAMA13 LogMapBio14 Reference13 YAM++13
ELK 7.34 8.01 7 8.1 9.4 7.45
HERMIT T/OUT 51 144 T/OUT 18 T/OUT
KONCLUDE OOM 33 37 OOM 33 OOM
PELLET T/OUT T/OUT T/OUT T/OUT T/OUT T/OUT

Table 8
Classification times (s), library dataset with selected mapping sets.

AML13 AML14 Hertuda13 IAMA13 LogMap13 LogMapC14 MaasMatch14 ODGOMS13
ELK 13 0.47 35 0.06 1.06 0.07 9.76 0.32
HERMIT 1,059 16 68 1.03 1.68 0.9 37 1.91
KONCLUDE 5.81 2.28 17 1.13 1.72 0.78 2.3 1.14
PELLET T/OUT 7.79 T/OUT 0.22 1.08 0.17 T/OUT 1.69

Reference14 RSDLWB14 StringsAuto13 Xmap14 XmapGen13 XmapSig13 YAM++13
ELK 0.1 0.06 0.07 29 T/OUT 0.16 2.09
HERMIT 0.86 0.94 0.86 56 T/OUT 1.57 7.5
KONCLUDE 0.86 1.2 0.81 8.06 59 1.77 2.22
PELLET 0.29 0.22 0.2 T/OUT T/OUT 1 87
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Table 9
Classification times (s), conference dataset with selected mapping sets.

CMT-IASTED AML14 AMLbk13 MaasMatch14 Reference14 XMapGen13 XMapSig13 YAM++13
ELK 0.02 0.02 0.02 0.02 0 0.07 0.02
HERMIT 0.11 0.18 0.14 0.13 0.12 0.12 0.12
KONCLUDE 0.1 0.18 0.09 0.08 0.17 0.08 0.08
PELLET 2.58 4.11 ERR 2.64 2.6 2.58 2.57

CONFOF-IASTED AML14 AMLbk13 Reference14 XMapGen13 XMapSig13 YAM++13
ELK 0.01 0 0.12 0 0.01 0.04
HERMIT 0.22 0.26 0.24 0.22 0.21 0.22
KONCLUDE 0.12 0.2 0.07 0.18 0.13 0.11
PELLET 3.28 3.48 3.36 4.26 3.28 3.3

EDAS-IASTED AML14 AMLbk13 Reference14 XMapGen13 XMapSig13 YAM++13
ELK 0.03 0.01 0.02 0.01 0 0.01
HERMIT 0.14 0.14 0.16 0.26 0.14 0.15
KONCLUDE 0.18 0.16 0.08 0.22 0.12 0.11
PELLET 2.11 2.3 2.08 6.76 2.44 2.1

CONFERENCE-IASTED:MaasMatch14 IASTED-SIGKDD:AOTL14 IASTED-SIGKDD:MaasMatch14
ELK 0.06 0.02 0.04
HERMIT T/OUT 13 0.58
KONCLUDE 0.36 0.25 0.09
PELLET 7.05 16 2.86

Table 10
Justification extraction in the anatomy dataset with MaasMatch13

(a) Unsatisfiabilites

Reasoner Class.(s) #Unsat 1Just.(s) %1JustOK 50Just.(s) %50JustOK

ELK 6.67 5,972 68 100 8,542 100
ELKtrace 6.67 5,972 769 0 6,001 0
HermiT 5.6 5,972 19 100 2,726 100

(b) Conservativity violations

Reasoner Class.(s) #Viol 1Just.(s) %1JustOK 50Just.(s) %50JustOK

ELK 6.67 64,580 1.17 100 140 100
ELKtrace 6.67 64,580 15 0 120 0
HermiT 5.6 64,580 0.2 100 47 100

Table 11
Justification extraction in the anatomy dataset with WeSeE13

(a) Unsatisfiabilites

Reasoner Class.(s) #Unsat 1Just.(s) %1JustOK 50Just.(s) %50JustOK

ELK 0.28 2,015 7.65 100 51 100
ELKtrace 0.28 2,015 1.19 0 160 98
HermiT 4 2,015 5.98 100 497 100

(b) Conservativity violations

Reasoner Class.(s) #Viol 1Just.(s) %1JustOK 50Just.(s) %50JustOK

ELK 0.28 7,298 0.12 100 43 100
ELKtrace 0.28 7,298 0.01 16 4.66 98
HermiT 4 7,298 0.08 100 71 98
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Table 12
Justification extraction in the conference dataset (CONFERENCE-EDAS) with MaasMatch13

(a) Unsatisfiabilites

Reasoner Class.(s) #Unsat 1Just.(s) %1JustOK 50Just.(s) %50JustOK

ELK 0 78 5.67 100 583 100
ELKtrace 0 78 0.44 0 271 100
HermiT 0.02 93 2.77 100 455 100
Pellet 0.03 93 1.92 100 277 100

(b) Conservativity violations

Reasoner Class.(s) #Viol 1Just.(s) %1JustOK 50Just.(s) %50JustOK

ELK 0 7 0.11 100 10 100
ELKtrace 0 7 0.01 0 4.79 100
HermiT 0.02 8 0.04 100 11 100
Pellet 0.03 8 0.03 100 6.99 100

Table 13
Justification extraction in the conference dataset (CONFERENCE-EKAW) with MaasMatch14

(a) Unsatisfiabilites

Reasoner Class.(s) #Unsat 1Just.(s) %1JustOK 50Just.(s) %50JustOK

ELK 0.02 54 37 100 1,037 100
ELKtrace 0.02 54 1.52 0 694 98
HermiT 0.01 63 3.3 100 296 100
Pellet 0.01 63 62 98 2,569 16

(b) Conservativity violations

Reasoner Class.(s) #Viol 1Just.(s) %1JustOK 50Just.(s) %50JustOK

ELK 0.02 114 0.46 100 29 100
ELKtrace 0.02 114 0.05 12 7.48 98
HermiT 0.01 115 0.04 100 4.1 100
Pellet 0.01 115 0.02 100 21 68

Table 14
Justification extraction in the conference dataset (CONFOF-EDAS) with XMapGen13

(a) Unsatisfiabilites

Reasoner Class.(s) #Unsat 1Just.(s) %1JustOK 50Just.(s) %50JustOK

ELK 0 23 2.7 100 23 100
ELKtrace 0 23 0.29 0 8 100
HermiT 0.02 31 2.26 100 6,702 97
Pellet 0.01 31 1.22 100 6,169 97

(b) Conservativity violations

Reasoner Class.(s) #Viol 1Just.(s) %1JustOK 50Just.(s) %50JustOK

ELK 0 6 0.03 100 1.36 100
ELKtrace 0 6 0.01 0 0.49 100
HermiT 0.02 6 0.02 100 27 100
Pellet 0.01 6 0.01 100 13 100
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Table 15
Justification extraction in the conference dataset (CONFOF-SIGKDD) with AOTL14

(a) Unsatisfiabilites

Reasoner Class.(s) #Unsat 1Just.(s) %1JustOK 50Just.(s) %50JustOK

ELK 0.01 61 25 100 2,355 100
ELKtrace 0.01 61 1.53 0 1,104 90
HermiT 0 61 1.9 100 1,054 100
Pellet 0.01 61 1.01 100 1,015 100

(b) Conservativity violations

Reasoner Class.(s) #Viol 1Just.(s) %1JustOK 50Just.(s) %50JustOK

ELK 0.01 2 0.3 100 1,500 50
ELKtrace 0.01 2 0.03 0 60 50
HermiT 0 2 0.04 100 1,500 50
Pellet 0.01 2 0.01 100 1,500 50

Table 16
Justification extraction in FMA-NCI (largebio-big dataset) with Reference13

(a) Unsatisfiabilites

Reasoner Class.(s) #Unsat 1Just.(s) %1JustOK 50Just.(s) %50JustOK

ELK 1.94 30,494 41 100 20,294 92
ELKtrace 1.94 30,494 2.58 0 1,587 82
HermiT 1,003 30,590 49 100 13,836 92
Pellet 165 30,590 42 100 30,878 80

(b) Conservativity violations

Reasoner Class.(s) #Viol 1Just.(s) %1JustOK 50Just.(s) %50JustOK

ELK 1.94 20,710 0.88 100 429 86
ELKtrace 1.94 20,710 0.01 36 22 86
HermiT 1,003 20,814 1.06 100 422 88

Table 17
Justification extraction in FMA-NCI (largebio-big dataset) with GOMMA13

(a) Unsatisfiabilites

Reasoner Class.(s) #Unsat 1Just.(s) %1JustOK 50Just.(s) %50JustOK

ELK 1.99 5,561 45 100 153 100
ELKtrace 1.99 5,561 2.28 0 55 100
HermiT 446 5,574 76 100 700 100
Pellet 722 5,574 62 100 1,333 100

(b) Conservativity violations

Reasoner Class.(s) #Viol 1Just.(s) %1JustOK 50Just.(s) %50JustOK

ELK 1.99 14,187 0.85 100 3.37 100
ELKtrace 1.99 14,187 0.03 68 1.61 100
HermiT 446 14,635 1.17 100 13 100
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Table 18
Justification extraction in FMA-SNOMED (largebio-big dataset) with Reference13

(a) Unsatisfiabilites

Reasoner Class.(s) #Unsat 1Just.(s) %1JustOK 50Just.(s) %50JustOK

ELK 6.65 78,482 75 100 20,709 88
ELKtrace 6.65 78,482 7.3 0 2,666 78
HermiT 302 78,482 102 100 4,169 98

(b) Conservativity violations

Reasoner Class.(s) #Viol 1Just.(s) %1JustOK 50Just.(s) %50JustOK

ELK 6.65 187,121 1.7 100 76 100
ELKtrace 6.65 187,121 0.02 30 29 94
HermiT 302 187,121 3 100 55 100

Table 19
Justification extraction in FMA-SNOMED (largebio-big dataset) with YAM++13

(a) Unsatisfiabilites

Reasoner Class.(s) #Unsat 1Just.(s) %1JustOK 50Just.(s) %50JustOK

ELK 6.47 57,074 67 100 12,052 96
ELKtrace 6.47 57,074 6.83 0 2,098 82
HermiT 730 57,074 179 100 5,001 100

(b) Conservativity violations

Reasoner Class.(s) #Viol 1Just.(s) %1JustOK 50Just.(s) %50JustOK

ELK 6.47 117,316 1.74 100 440 86
ELKtrace 6.47 117,316 0.03 40 31 86
HermiT 730 119,236 4.44 100 269 94

Table 20
Justification extraction in SNOMED-NCI (largebio-big dataset) with GOMMA13

(a) Unsatisfiabilites

Reasoner Class.(s) #Unsat 1Just.(s) %1JustOK 50Just.(s) %50JustOK

ELK 8.01 127,850 90 100 20,741 90
ELKtrace 8.01 127,850 9.37 0 1,746 86
HermiT 51 131,222 94 100 15,983 84

(b) Conservativity violations

Reasoner Class.(s) #Viol 1Just.(s) %1JustOK 50Just.(s) %50JustOK

ELK 8.01 151,488 2.43 100 250 96
ELKtrace 8.01 151,488 0.01 4 22 92
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Table 21
Justification extraction in SNOMED-NCI (largebio-big dataset) with LogMapBio14

(a) Unsatisfiabilites

Reasoner Class.(s) #Unsat 1Just.(s) %1JustOK 50Just.(s) %50JustOK

ELK 8.1 37 123 100 4,387 100
ELKtrace 8.1 37 8.4 0 349 100

(b) Conservativity violations

Reasoner Class.(s) #Viol 1Just.(s) %1JustOK 50Just.(s) %50JustOK

ELK 8.1 439,887 3.58 100 706 86
ELKtrace 8.1 439,887 0.02 14 31 100

Table 22
Justification extraction in SNOMED-NCI (largebio-big dataset) with Reference13

(a) Unsatisfiabilites

Reasoner Class.(s) #Unsat 1Just.(s) %1JustOK 50Just.(s) %50JustOK

ELK 9.4 158,645 99 100 17,293 92
ELKtrace 9.4 158,645 13 0 1,674 90
HermiT 18 161,202 83 100 15,126 90

(b) Conservativity violations

Reasoner Class.(s) #Viol 1Just.(s) %1JustOK 50Just.(s) %50JustOK

ELK 9.4 576,736 3.03 100 332 92
ELKtrace 9.4 576,736 0.02 0 44 88
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Table 23
Justification extraction in FMA-NCI (largebio-small dataset) with Reference13

(a) Unsatisfiabilites

Reasoner Class.(s) #Unsat 1Just.(s) %1JustOK 50Just.(s) %50JustOK

ELK 1.07 4,401 19 100 25,929 84
ELKtrace 1.07 4,401 1.53 0 1,864 78
HermiT 53 4,402 5.84 100 7,338 96
Pellet 11 4,402 7.3 100 12,609 94

(b) Conservativity violations

Reasoner Class.(s) #Viol 1Just.(s) %1JustOK 50Just.(s) %50JustOK

ELK 1.07 21,296 0.15 100 253 94
ELKtrace 1.07 21,296 0.02 36 21 88
HermiT 53 21,400 0.07 100 309 90

Table 24
Justification extraction in FMA-NCI (largebio-small dataset) with LogMapBio14

(a) Unsatisfiabilites

Reasoner Class.(s) #Unsat 1Just.(s) %1JustOK 50Just.(s) %50JustOK

ELK 0.19 0 0 0 0 0
ELKtrace 0.19 0 0 0 0 0
HermiT 18 467 16 100 3,777 100
Pellet 29 467 11 100 2,288 100

(b) Conservativity violations

Reasoner Class.(s) #Viol 1Just.(s) %1JustOK 50Just.(s) %50JustOK

ELK 0.19 26,657 0.14 100 61 98
ELKtrace 0.19 26,657 0.04 74 3.14 98
HermiT 18 26,603 0.08 100 1.44 100

Table 25
Justification extraction in FMA-SNOMED (largebio-small dataset) with GOMMA13

(a) Unsatisfiabilites

Reasoner Class.(s) #Unsat 1Just.(s) %1JustOK 50Just.(s) %50JustOK

ELK 0.75 2,058 16 100 50,919 70
ELKtrace 0.75 2,058 1.09 0 2,855 62
HermiT 9.33 2,058 9.42 100 22,909 86
Pellet 273 2,058 6.47 100 15,963 90

(b) Conservativity violations

Reasoner Class.(s) #Viol 1Just.(s) %1JustOK 50Just.(s) %50JustOK

ELK 0.75 18,425 0.29 100 73 98
ELKtrace 0.75 18,425 0.06 88 8.68 94
HermiT 9.33 18,425 0.14 100 67 98
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Table 26
Justification extraction in FMA-SNOMED (largebio-small dataset) with IAMA13

(a) Unsatisfiabilites

Reasoner Class.(s) #Unsat 1Just.(s) %1JustOK 50Just.(s) %50JustOK

ELK 0.49 22,925 8.7 100 10,839 94
ELKtrace 0.49 22,925 0.77 0 1,040 88
HermiT 0.54 22,925 5.78 100 151 100
Pellet 1.73 22,925 4.96 100 66 100

(b) Conservativity violations

Reasoner Class.(s) #Viol 1Just.(s) %1JustOK 50Just.(s) %50JustOK

ELK 0.49 2,270 0.23 100 51 100
ELKtrace 0.49 2,270 0.01 2 26 90
HermiT 0.54 2,270 0.13 100 12 100

Table 27
Justification extraction in FMA-SNOMED (largebio-small dataset) with MaasMatch14

(a) Unsatisfiabilites

Reasoner Class.(s) #Unsat 1Just.(s) %1JustOK 50Just.(s) %50JustOK

ELK 4.22 21,946 40 100 10,267 98
ELKtrace 4.22 21,946 5.82 0 3,626 78
HermiT 2.86 21,946 25 100 3,219 100

(b) Conservativity violations

Reasoner Class.(s) #Viol 1Just.(s) %1JustOK 50Just.(s) %50JustOK

ELK 4.22 717,697 0.89 100 289 100
ELKtrace 4.22 717,697 0.04 2 91 58
HermiT 2.86 697,459 0.51 100 188 98
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Table 28
Justification extraction in SNOMED-NCI (largebiosmall dataset) with LogMapBio14

(a) Unsatisfiabilites

Reasoner Class.(s) #Unsat 1Just.(s) %1JustOK 50Just.(s) %50JustOK

ELK 4.8 23 210 87 10,030 87
ELKtrace 4.8 23 5.3 0 585 100

(b) Conservativity violations

Reasoner Class.(s) #Viol 1Just.(s) %1JustOK 50Just.(s) %50JustOK

ELK 4.8 750,226 2.87 100 733 86
ELKtrace 4.8 750,226 0.03 10 34 98

Table 29
Justification extraction in SNOMED-NCI (largebiosmall dataset) with Reference13

(a) Unsatisfiabilites

Reasoner Class.(s) #Unsat 1Just.(s) %1JustOK 50Just.(s) %50JustOK

ELK 4.36 66,832 74 100 6,983 98
ELKtrace 4.36 66,832 6.23 0 1,417 94
HermiT 4.94 69,218 58 100 6,913 88

(b) Conservativity violations

Reasoner Class.(s) #Viol 1Just.(s) %1JustOK 50Just.(s) %50JustOK

ELK 4.36 576,736 1.53 100 266 96
ELKtrace 4.36 576,736 0.02 0 42 86

Table 30
Justification extraction in SNOMED-NCI (largebiosmall dataset) with OMReasoner14

(a) Unsatisfiabilites

Reasoner Class.(s) #Unsat 1Just.(s) %1JustOK 50Just.(s) %50JustOK

ELK 2.95 35,568 38 100 9,501 96
ELKtrace 2.95 35,568 3.74 0 1,517 86
HermiT 74 39,942 38 100 24,054 88

(b) Conservativity violations

Reasoner Class.(s) #Viol 1Just.(s) %1JustOK 50Just.(s) %50JustOK

ELK 2.95 62,783 1.03 100 201 96
ELKtrace 2.95 62,783 0.01 12 25 90
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Table 31
Justification extraction in the library dataset

(a) Conservativity violations with AML13

Reasoner Class.(s) #Viol 1Just.(s) %1JustOK 50Just.(s) %50JustOK

ELK 13 15,708,616 35 66 2,794 14
HermiT 1,059 15,708,616 3.58 100 315 100

(b) Conservativity violations with Hertuda13

Reasoner Class.(s) #Viol 1Just.(s) %1JustOK 50Just.(s) %50JustOK

ELK 35 26,782,359 37 62 2,878 12
HermiT 68 26,782,359 2.91 100 414 98

(c) Conservativity violations with XMap14

Reasoner Class.(s) #Viol 1Just.(s) %1JustOK 50Just.(s) %50JustOK

ELK 29 24,507,254 33 62 2,641 22
HermiT 56 24,507,254 2.07 100 303 98


