
On a Process Algebraic Representation of
Sequence Diagrams

Jaco Jacobs and Andrew Simpson

Department of Computer Science, University of Oxford
Wolfson Building, Parks Road, Oxford OX1 3QD

United Kingdom

Abstract. Sequence diagrams depict the interaction between entities as
a sequence of messages arranged in a temporal order. However, they lack
a formal execution semantics: the Unified Modeling Language (UML)
specification opts to use natural language to describe fundamental con-
cepts such as interaction operators that alter the behaviour of a frag-
ment. Communicating Sequential Processes (CSP) is a process-algebraic
formalism that is suited to modelling patterns of behavioural interaction.
Moreover, the associated refinement checker, Failures-Divergence Refine-
ment (FDR), gives rise to a practical approach that enables us to reason
about these interactions in a formal setting. In this paper, we show how
CSP and FDR have been used to provide a process-algebraic represen-
tation of sequence diagrams that is amenable to refinement-checking.

1 Introduction

Sequence diagrams are used to depict the interactions between entities in a se-
quential, temporal order and have been applied in a wide range of contexts,
including: the automatic generation of test cases [1]; the specification of in-
teraction protocols in multi-agent systems [2]; and in technical documentation
outlining the specification and design of a product [3]. In this paper, we give
consideration to sequence diagrams within the context of the Systems Modeling
Language (SysML),1 an extension of a subset of the Unified Modeling Language.2

The UML specification makes use of meta-models in order to capture the ab-
stract syntax of a diagram. While the benefits of this approach are significant, a
drawback is that the execution semantics are expressed using natural language [4,
5]. The lack of sufficient formalism in the specification makes it problematic to
interpret the precise meaning of a complex diagram [5]. In addition, the use of
natural language may lead to ill-defined semantics, or induce further confusion
with regards to how a diagram ought to be interpreted. Thus, approaches that
translate UML diagrams into formal representations are advantageous. Our fo-
cus is the process algebra Communicating Sequential Processes (CSP) [6], with a
view to establishing a formal framework that supports the automated reasoning
about patterns of behaviour exhibited by sequence diagrams.

1 www.sysml.org
2 www.uml.org

One notable reference where sequence diagrams are translated into CSP (via
a model-driven engineering approach) is that of Li and Li [7], where the emphasis
is placed on the translation process, which is insightful in terms of a mechanised
implementation approach. In contrast, we direct our efforts towards the defini-
tion of adequate and succinct CSP processes in an implementation-independent
manner. Our objective therefore is to provide concise definitions — using the
process algebra CSP — of the patterns of behaviour represented by the different
interaction operators. This is done in the spirit of work undertaken by Ng and
Butler for state machines [8], and Dong et al. for activity diagrams [9]. We view
the mechanised translation, using, for example, model-driven techniques, as an
implementation of our approach; as such, will address this separately. While
these contributions have their benefits, none of them provide a satisfactory (for
our purposes) behavioural semantics for sequence diagrams in terms of CSP.

2 Background

2.1 Communicating Sequential Processes

Events are at the heart of CSP, with an event being an indivisible communication
or interaction. We denote by Σ the set of all possible events for a particular
specification. We can also give consideration to the alphabet of a process — the
events that it can perform. We write αP to denote the alphabet of a process P .

A communication takes place when two or more processes agree on an event.
The communication can either be a primitive event, or can take a more struc-
tured, message-passing form, utilising channels. The message-passing mechanism
is based on the principle of a rendezvous between a sending and a receiving pro-
cess: if the communication takes place on channel c, and a sending process wants
to output a value e, the receiving process has to allow for this (by inputting on
c). Once this has happened, the event is abstracted as c.e.

CSP is compositional in that it provides operators that allow us to define a
process in terms of other, constituent processes. The CSP syntax utilised in this
paper can be defined thus (where P , P1 and Pn denote processes, e denotes an
event, X and Y denotes sets of events, and b denotes a Boolean condition):

P =̂ P | Stop | Skip | e → P |
P 2 P | 2 e : X • e → P | P u P | u e : X • e → P |
P \ X | P o

9 P | if b then P else P |
P [X ‖Y] P | P [|X |] P | ‖ i • [Xi]Pi | P ||| P | ||| i • Pi |

Stop is the deadlocked CSP process: it will refuse to participate in all events.
Skip models successful termination: it performs the special internal event X,
before behaving like Stop. The process e → P , modelled using the prefixing
operator, performs the event e and subsequently behaves as P .

CSP provides two choice operators: the external or deterministic choice op-
erator, 2, offers the environment the choice between the initial events of its

Entity 1 Entity 2 Entity 3
A

B

D

C Combined Fragment

Interaction Operator

Interaction Operand

Interaction

Lifeline
Asynchronous Message

Synchronous Message

Acknowledgement

Send Occurrence
Specification

Receive Occurrence
SpecificationE

opt

sd Example

Fig. 1. Relevant constructs of the sequence diagram.

argument processes; conversely, the internal or nondeterministic choice opera-
tor, u, offers no such choice and the observed behaviour may be that of either
process. Indexed versions exist for both operators.

The hiding operator, \, conceals the events of X from the view of the external
environment of P . The process P1

o
9 P2 represents the sequential composition of

P1 and P2. This process behaves as P1 until it terminates successfully, after
which it behaves as P2. A conditional choice construct is available in the form
if b then P1 else P2, where a process behaves as P1 if b is true and P2 otherwise.

The process P1 [| X |] P2 uses the generalised parallel operator to define an
interface on which P1 and P2 must synchronise. Events outside X may occur
independently in either process. The process P1 [X ‖Y] P2 denotes alphabetised
parallel, where synchronisation takes place on events in the set X ∩ Y . The
interleaving operator, |||, expresses the unsynchronised concurrent interleaving
of the events of its constituent processes. Indexed forms exist for each.

The refinement checker Failures-Divergence Refinement (FDR) — which uses
the machine-readable dialect of CSP, CSPM [10] — employs CSP’s theory of
refinement to investigate whether a potential design meets its specification. If
such a test fails, a counter-example is returned to indicate why this is so. We
write P vT Q when the process Q is a traces-refinement of the process P . While
other forms of refinement exist, traces-refinement is sufficient for our purposes.

2.2 Sequence Diagrams

Sequence diagrams facilitate the modelling of interactions between structural
constructs as sequences of temporal occurrences. These interaction occurrences,
or occurrence observations, can be broadly categorised into three classes: the
sending or receiving of a message; the creation or destruction of an instance;
and the start or end of another behaviour. In the interests of brevity, we restrict
our treatment to the first class of occurrence observations.

Messages can be exchanged either synchronously or asynchronously. If the
communication is synchronous, the sender blocks until the arrival of a response.
Conversely, during an asynchronous exchange, the sender does not block; rather,
it continues execution after sending the message. In SysML, for example, an

interaction executes within the context of its owning block, and specifies the
interaction between parts or references [11]. A sequence diagram depicts this
interaction graphically.

Figure 1 shows the notation of interest. On the diagram, lifelines correspond
to the parts (or references). A lifeline is represented as a dashed line with the
name of the reference or part enclosed in a rectangle. A synchronous message
exchange is indicated using a solid line with a filled arrowhead from the sending
lifeline to the receiving lifeline; the return message, unblocking the sender, is
a dashed line with opposite direction. An asynchronous message is represented
using a solid line from the sending lifeline to the receiving lifeline; there is no
associated return message as the interaction does not block. When an interaction
executes, it produces a sequence of interaction occurrences, termed a trace.

Several interaction operators exist. An operator either alters the behaviour
of the prescribed sequence, or alters our interpretation of the trace. Examples
include the optional interaction operator, opt, and the assertion operator, assert.

3 Formalisation Using CSP

An interaction, I , is a quintuple of the form I =̂ (LI ,EI ,M
S
I ,M

O
I ,OI), where:

– LI denotes the set of lifelines of the sequence diagram, I ;
– EI denotes the set of event types (partitioned by disjoint sets for the signals,

ES
I , or operations, EO

I , that type messages);
– M S

I : ID 7→ ES
I uniquely identifies the asynchronous messages of an interac-

tion and associates a message with the signal that typed it;
– M O

I : ID 7→ EO
I uniquely identifies the synchronous messages of an interac-

tion and associates a message with the operation that typed it; and
– OI ⊆ LI × seq (ID ×{snd , rcv , ack}) describes all interaction occurrences as

a set of pairs, with the first element being the lifeline and the second being
a sequence of occurrence observations.

We partition EI into two disjoint sets, ES
I and EO

I , representing signal events
and operation events, respectively. An instance of a signal event corresponds to
the sending and receiving of an asynchronous message in the interaction; simi-
larly, an operation event types an operation call and can be either synchronous
or asynchronous. For the purposes of this paper, we will treat all call operations
as synchronous (asynchronous call operations are similar to signals).

To provide each message (we view the acknowledgement message as part of
the synchronous message) with a unique identifier, we require that the domains
of the functions M S

I and M O
I be pairwise disjoint: dom (M S

I) ∩ dom (M O
I) = ∅.

As an additional constraint, we assume that each synchronous message has an
associated acknowledgement (with opposite direction). This acknowledgement is
not a message in the conventional sense — it merely exists in order to unblock
the sender. We can think of the acknowledgement as a rendezvous between the
communicating lifelines in order to unblock the sender. As such, we do not
associate it with its own identifier (it uses that of the corresponding synchronous

message); nor do we associate with it snd or rcv occurrence observations. In order
for the communicating lifelines to synchronise on this event, both observe it as
an ack.

In addition, we define the following auxiliary functions:

– sd : ID 7→ LI returns, for a message identifier, the sending lifeline;
– rv : ID 7→ LI returns, for a message identifier, the receiving lifeline; and
– occurrences : LI 7→ seq (ID × {snd , rcv , ack}) denotes the sequence of event

occurrences on the argument lifeline in temporal order.

Interaction occurrences appear in temporal order on a lifeline, with time pro-
gressing downwards. An interaction implicitly imposes an order on the messages
sent between lifelines. This weak sequencing implies that the order of interaction
occurrences on a particular lifeline is significant, but that ordering between oc-
currences on different lifelines can be interleaved. An additional (and seemingly
obvious) constraint is that, for a particular message, the send occurrence must
happen before the receive occurrence. For example, consider again Figure 1.
Message A (and all other messages) must be sent before it can be received. Ad-
ditionally, for entity 2, A must be received before B can be sent. However, there
are no direct constraints between the send occurrences of messages D and E .

Our approach for translating sequence diagrams to CSP is based on mirroring
the structure of the corresponding diagram. Broadly, each lifeline is mapped to a
process and each occurrence observation is mapped to a CSP event. The process
then enforces weak sequencing by insisting that the occurrence observations
appear in the temporal order specified on the corresponding lifeline. The acts
of sending and receiving a message are completely detached; as such, we require
an additional constraint process to enforce the fact that a message cannot be
received before it was sent.

We treat the various interaction operators of sequence diagrams using tem-
plate processes that describe their respective patterns of behaviour. These are
defined formally in Section 4.

Consider an interaction, I , with a corresponding sequence diagram. Our ap-
proach can be outlined as follows.

– With each lifeline, l ∈ LI , we associate a sequence of events of the same
temporal order. The sequence of events is given by occurrences (l). An el-
ement of this sequence is a pair of the form (id , obs), where id ∈ ID and
obs ∈ {snd , rcv , ack}.

– We model each occurrence observation with a corresponding CSP event.
The unique identifier is communicated as part of the event due to the finer
nuances of weak sequencing semantics. Let obs ′ ∈ {snd , rcv}. Recall that for
acknowledgements we use the same id as that of the associated synchronous
message. Depending on the observation and the nature of the message, the
event takes the following form:
• for asynchronous messages, msg .asynch.id .obs ′.sd(id).rv(id).M S

I (id)
• for synchronous messages, msg .synch.id .obs ′.sd(id).rv(id).M O

I (id)
• for acknowledgements, msg .synch.id .ack .rv(id).sd(id).M O

I (id)

– Each lifeline has a corresponding CSP process that communicates the events
in the required order (defined in the template process).

– For each message in an interaction, we associate a triple, (from, to,name),
where {from, to} ⊆ LI and name ∈ EI .

– Each message has an associated process with send and receive occurrence
events that synchronise with the appropriate sending and receiving lifelines
(defined in the template process).

– Depending on the interaction, we instantiate the correct template process
(as defined in the next section) to describe the behaviour.

– A sequence diagram that consists of more than one interaction operator
is subsequently defined as the sequential composition of the CSP template
processes that describe the respective interaction operators.

The approach does not require fixed sized buffers to model asynchrony, as
the sending and receiving lifelines do not synchronise on a message. This allows
for a uniform treatment of synchronous and asynchronous messages: in an asyn-
chronous exchange neither the sending nor the receiving lifelines are blocked;
conversely, for a synchronous exchange, the sending lifeline blocks until the re-
ceiving lifeline communicates the acknowledgement.

In order to simplify the CSP presented here, we do not model passing argu-
ments for call operations or signals; however, these can be readily incorporated
via the use of CSP channels.

4 Complex Interactions

Combined fragments allow for the description of complex patterns of interaction
in a concise and compact manner. UML (and, therefore, SysML) defines different
interaction operators, each enabling the specification of different rules with re-
gards to the ordering of messages (and their associated occurrence observations).
A combined fragment is an interaction operator with associated operands. Fig-
ure 1 gives an example of the use of the opt interaction operator.

The operands of an interaction operator is dependant upon the type of the
operator: the alternative and parallel operator each “have multiple horizontal
partitions, separated by dashed lines that correspond to their operands. Others
have just a single partition” [11]. For single partition operators, their operands
correspond to the messages enclosed in the combined fragment. In addition, the
operands of the interaction operators follow weak sequencing semantics (unless
it is the strict operator): “During execution of an interaction, all operands use
weak sequencing semantics on their contents” [11].

The weak sequencing interaction operator, seq, is the default. The operator
imposes a weak sequencing semantics on its operands, with the operands of the
weak sequencing operator being the messages contained within the combined
fragment. The UML specification [4] defines weak sequencing as follows.

1. “The ordering of occurrence specifications within each of the operands [mes-
sages] are maintained in the result.”

2. “Occurrence specifications on different lifelines from different operands [mes-
sages] may come in any order.”

3. “Occurrence specifications on the same lifeline from different operands [mes-
sages] are ordered such that an occurrence specifications of the first operand
[message] comes before that of the second operand [message].”

Thus: a message needs to be sent before it can be received; occurrence specifi-
cations between different lifelines (also between different messages) impose no
additional ordering constraints upon each other; and the temporal order of the
occurrence specifications on each lifeline must be honoured.

The process Message asserts that the sending of a message necessarily occurs
before its reception, as per condition 1. The parameters type and id correspond
to the type (synchronous or asynchronous) and unique identifier, respectively;
from and to model the sending and receiving lifelines; and name corresponds to
the signal or operation (an instance of an event type).

Message (type, id , from, to,name) =
msg .type.id .snd .from.to.name → msg .type.id .rcv .from.to.name → Skip

αMessage (type, id , from, to,name) =
{| msg .type.id .snd .from.to.name,msg .type.id .rcv .from.to.name |}

PrefixComposition, if supplied a sequence as input, is the process that com-
municates the events in order and then behaves as Skip. Given a temporal se-
quence of interaction occurrences for a lifeline, we use PrefixComposition to
enforce condition 3:

PrefixComposition (s) =
if null (s) then Skip else head (s)→ PrefixComposition (tail (s))

The process Lifelines models the parallel composition of a set of lifelines.
The process takes as input a set of sequences, where each sequence describes
occurrence specifications for a lifeline in temporal order. Each lifeline in the
composition synchronises on its entire alphabet. (In the following, the function
set converts a sequence to a set.)

Lifelines (l) = ‖ line : l • [set (line)]PrefixComposition (line)
αLifelines (l) =

⋃
{line : l • set (line)}

The process Messages is the parallel composition of the Message processes,
with each taking a quintuple of the form (type, id , from, to,name) as input.

Messages (m) =

‖(t , id , from, to,n) : m • [Message (t , id , from, to,n)]
αMessages (m) =⋃

{(t , id , from, to,n) : m • αMessage (t , id , from, to,n)}

We can now model weak sequencing behaviour. By placing Messages and
PrefixComposition in parallel, we restrict the traces to adhere to the behaviours

Lifeline 1 Lifeline 2 Lifeline 3 Lifeline 4

A
B

C
D

E
F

G
H

I

D

sd Seq

Fig. 2. The default seq operator (adapted from [11]).

imposed by the first and last condition. Condition 2 places no further restrictions
on the behaviour, and, as the interaction occurrences between different lifelines
do not have any shared events in common, we require no process to model this
behaviour. Seq , which models weak sequencing, is defined thus (for brevity, we
write αLifelines (l) and αMessages (m) as Lα and Mα, respectively):

Seq (l ,m) = Lifelines (l) [Lα ‖Mα] Messages (m)

The operands of the strict sequencing operator, strict, are the messages con-
tained within the combined fragment: “the semantics of strict sequencing defines
a strict ordering of the operands [messages]” [4].

Strict sequencing semantics therefore impose an additional constraint upon
weak sequencing, in that the operands (messages) must be sequenced across all
participating lifelines [11]. This implies that, for a particular message, the send
and receive occurrences must occur in strict succession.

We can subsequently define strict sequencing by placing another process
(Enforce) in parallel to constrain the behaviour of weak sequencing.

The process Strict is defined as follows:

Strict (l ,m) = (Lifelines (l) [Lα ‖Mα] Messages (m)) [|Mα |] Enforce (m)

Enforce (m) = 2 (msg .m.i .snd .f .t .n) : Mα •
msg .m.i .snd .f .t .n → msg .m.i .rcv .f .t .n → Enforce (m)

2 Skip

Our approach allows for detecting when the operands of an interaction oper-
ator are not well-defined. For example, when we try and enforce strict semantics
on the sequence of Figure 2, FDR detects a deadlock and returns a counter-
example — message overtaking is not possible using strict semantics.

The parallel operator, par, designates an interleaving between its operands.
The horizontal partitions (within the combined fragment) correspond to the
operands. The interleaving operator of CSP models this pattern of behaviour
perfectly. We therefore define the par interaction operator as the interleaved
behaviour of sequentially interleaved processes. For readability, the definition
below assumes that there are only two partitions within the combined fragment;

we can, however, easily extend this to cover more partitions, or even generalise
the definition to cover an arbitrary number of horizontal partitions.

Par (l1,m1, l2,m2) = Seq (l1,m1) ||| Seq (l2,m2)

The alternative operator, alt, offers the choice between the behaviours of its
operands, based on the guard associated with each partition. Recall that the hor-
izontal partitions (within the combined fragment) correspond to the operands.
In a scenario in which more than one guard evaluates to true, the choice is non-
deterministic; if none evaluate to true, an optional else partition is selected [11].
We can use the nondeterministic and conditional choice constructs to model this
behaviour. Below we provide a definition for a combined fragment consisting of
two conditionally guarded partitions and one else clause. This definition can be
generalised to handle an arbitrary number of conditional clauses, but a simplified
version is presented here to illustrate the concepts.

Alt (l1,m1, g1, l2,m2, g2, l3,m3) =
if (g1 ∧ g2) then Seq (l1,m1) u Seq (l2,m2)
else if g1 then Seq (l1,m1)

else if g2 then Seq (l2,m2) else Seq (l3,m3)

The operator opt models optional behaviour. The operand (messages con-
tained within the combined fragment) is only executed if the guard condition is
true. This behaviour is precisely that of an alt operator with a single operand.

Opt (l ,m, g) = if (g) then Seq (l ,m) else Skip

The break interaction operator is used to model a breaking scenario from
another enclosing fragment. The behavioural semantics is such that if the guard
associated with the break evaluates to true, then its operand is executed (rather
than the remainder of the enclosing fragment). For example, consider a break
nested within an enclosing seq fragment, which we model in terms of the process
Break . The first two parameters (lpre and mpre) describe the lifelines and mes-
sages of the enclosing fragment preceding the break; the final two parameters
(lpost and mpost) model the remainder of the enclosing behaviour. The l , m and
g parameters correspond to the operands of the break fragment.

Break (lpre ,mpre , l ,m, g , lpost ,mpost) =
Seq (lpre ,mpre) o

9 (if g then Seq (l ,m) else Seq (lpost ,mpost))

The loop operator repeats its operand (the messages contained within the
combined fragment) until the termination condition imposed upon it is satisfied.
The semantics of the loop operator allows for the termination condition to be
expressed as either: an iteration bound (of the form (lower , upper) or (exact));
a Boolean condition; or a combination of both. (In practice, however, one would
use one or the other, rather than a combination.)

The UML specification is ambiguous with regards to the semantics when the
termination condition is expressed as a combination of an iteration bound and

Boolean guard: it is unclear what happens if the Boolean condition evaluates to
false before the minimum number of iterations have executed. This ambiguity
arises as a result the following two quotes from the UML specification: “after
the minimum number of iterations have executed and the Boolean expression is
false the loop will terminate” [4], and “the loop will only continue if that specifi-
cation evaluates to true during execution regardless of the minimum number of
iterations specified in the loop” [4]. As such, we consider in our treatment only
the cases where either an iteration bound or Boolean guard is specified.

The sequencing operator of CSP is used to express behaviour as a sequence
of process executions. We can convey the desired behaviour of the loop operator
through successive application of the sequencing operator (to the CSP process
modelling the behaviour of the operand) in accordance with the stated termina-
tion condition. Consider the case where there is a single integer iteration bound
is specified as the termination condition. The process Loop models this:

Loop (l ,m, e) = if (e ≥ 1) then (Seq (l ,m) o
9 Loop (l ,m, e − 1)) else Skip

5 Interaction Interpretation

The interaction operators described in the previous section allowed us to model
different forms of control flow — alternative or parallel behaviour, for example.
In this section, we introduce the three operators that change our interpretation
of a particular interaction sequence. We discuss these in the context of how they
might possibly be used in a refinement check. In addition, we motivate why it is
inappropriate to define process definitions in the spirit of the preceding section.

The ignore interaction operator provides, as part of the combined fragment,
a set of messages that are to be ignored. Consequently, the messages are not
allowed within the interaction fragment. The interpretation is that the messages
are insignificant and irrelevant and are to be ignored if they appear in the in-
teraction. An alternative interpretation is that the ignored messages can appear
anywhere in a trace and still be considered valid.

It is possible to model this as a template process, where the ignored traces
are interleaved with those of the interaction (assuming we followed the second
interpretation, and ignore contained all the valid observations of the ignored
events between participating lifelines):3

Ignore (l ,m, ignore) = Seq (l ,m) ||| Run (ignore)

A more elegant solution can be achieved via the hiding operator and the
first interpretation: in a refinement, we simply hide the ignored events from any
behaviour we are comparing against. For example, StateMachines \ ignore vT

Seq (lifelines,messages) would test if an interaction is valid for a pair of com-
municating state machines, StateMachines.

The consider interaction operator specifies a set of messages that are to be
considered as part of this combined fragment; all other messages are ignored.

3 Here, Run (E) = 2 e : E • e → Run (E).

Lifeline 1 Lifeline 2 Lifeline 3

A

D
loop (3)

alt
[b]

[else]

B

C

Lifeline 1 Lifeline 2 Lifeline 3

A

D

B

D

D

sd Interaction1 sd Interaction2

Fig. 3. Example 1

Consequently, the combined fragment can only contain the considered messages.
The semantics is interpreted to mean that other messages might occur as part
of the interaction, but that these are irrelevant and ought to be ignored. The
consider operator can be defined in terms of ignore: ignore all other messages not
considered. As was the case for ignore, there exists an alternative interpretation,
where all messages that are not considered may appear anywhere in the traces.
(In the interests of brevity, we do not expand further on the consider operator.)

The assertion operator, assert, declares that the interaction fragment models
the only valid continuations; any other eventuality is considered invalid. In this
case, we need the refinement relation to hold in both directions.

6 Examples

Having defined a process-algebraic formal semantics for sequence diagrams, we
can test whether the behaviour of one interaction sequence is contained within
another by considering trace semantics. Consider Figure 3. If we regard the
behaviour (in terms of traces) of I2 = Seq (L2,M2) as the valid behaviours (a
safety specification), and we want to test whether another interaction sequence,
I1 = Seq (L11,M11) o

9 Alt (L12,M12, b,L13,M13) o
9 Loop (L14,M14, 3), does not

deviate from this, we can use a traces-refinement (I2 vT I1) to confirm this.

As another example, we might want to be sure that interaction diagrams at
different levels of the specification are consistent (see Figure 4). Such vertical
consistency problems are induced by a development process where models are
iteratively refined: we start with an interaction sequence at a higher level and
add more detail as we move closer to the implementation level specification. As-
suming Higher = Seq (Lh ,Mh) and Lower = Seq (Ll ,Ml), we can check whether
Higher vT Lower \ hidden (where hidden denotes those occurrence observations
present at the lower level, but not at the higher level).

Lifeline 1 Lifeline 2 Lifeline 3

A

D

B

D

B

sd Lower

Lifeline 1 Lifeline 2 Lifeline 3

A

D

sd Higher

D

Fig. 4. Example 2

stm Block3

stm Block2

/A
s1 s2

B

stm Block1

A /B,C
s1 s2

D

C /D
s1

b1

A

D

b2 b3

sd Interaction

B

C

Fig. 5. Example 3

Finally, we might make use of sequence diagrams to check the validity of
communicating state machines, as described in [12, 13]. We can, for example,
test whether a particular sequence of events is possible when we consider the
combined behaviour of a set of communicating state machines. We can check
Blocks vT SEQ , where SEQ = Seq (L,M). Here, Blocks denotes the compo-
sitional process describing the combined behaviour of the communicating state
machines. We would also expect to make use of the CSP renaming operator in
order to consolidate the events of our interaction semantics with the events of
the state machine semantics, as proposed in [13].

7 Related Work

State machine diagrams were given a CSP semantics by Ng and Butler in [8];
activity diagrams were formalised by Dong et al. [9]. To the best of our knowl-
edge, there has been no such mapping done in the spirit of the aforementioned

papers for sequence diagrams. Both [8] and [9] focus on the provision of a CSP
semantics in an implementation-independent fashion; this was our goal for se-
quence diagrams. Other examples where state-based graphical models have been
given a formal CSP semantics include [14] and [15].

Li and Li [7] considered the automatic translation of sequence diagrams to
CSP using a model-driven approach. Sibertin-Blanc et al. [16] showed four possi-
ble semantic interpretations of sequence diagrams, partly due to the semi-formal
nature of the UML specification. Rasch and Wehrheim [17] used sequence di-
agrams to check the validity of scenarios in a UML model. Our work differs,
in that they define a semantics for sequence diagrams in terms of the messages
communicated; in addition, they exclude the interaction operators from their
analysis. Our work considers sequence diagrams in terms of occurrence observa-
tions, rather than messages, and extends to all operators. The checking of the
validity of scenarios, using our semantics as a model of interaction, will be a
focus of future research. Other notable works of reference can be found in [18]
and [19].

8 Discussion

We have introduced patterns of behaviour to model the interaction operators as
per the UML standard. In addition, we have provided a uniform treatment of
synchronous and asynchronous messages. Furthermore, our approach does not
rely on fixed size buffers in order to model asynchronous exchanges. Finally, we
are able to deal with lost and found messages, as well as message overtaking.

The process-algebraic approach suggested enables us to compare the be-
haviour of a sequence of interactions against another interaction in a natural
fashion. This is in contrast to approaches that rely on traditional model check-
ing, such as the work of Lima et al. [20] — where such comparisons are not
possible. Furthermore, the only other formalisation of the semantics of sequence
diagrams that makes use of CSP that we are aware of is that of Li and Li [7]. Our
approach differs in that we define our semantics for sequence diagrams in terms
of templates that describe the patterns of behaviour for the various interaction
operators. Additionally, we consider the seq, strict, ignore, consider, and assert
operators. The advantage of our approach is that any implementation of an auto-
mated translation mechanism would only have to instantiate the proposed CSP
processes in order to describe the behaviour of the desired interaction operator.

The work of Li and Li [7] models the sending of a message between lifelines
L1 and L2 using the channel construct, with the lifelines synchronising on the
message being exchanged. The problem here, from our perspective, is that we
require the sending and receiving of a message to be modelled as two, separate,
detached events (the sending and receiving occurrence specifications related to
the message exchange). However, the suggested approach abstracts them into
a single event. This might have been appropriate, for example, if we were only
concerned with the act of exchanging a message. However, this is not our desire

here. Instead, we wish to decompose the exchange into two separate events. In
doing so, we will be able to operate our CSP models at a finer granularity.

Consider making use of sequence diagrams to check the validity of commu-
nicating state machines, as described by the present authors in [12] and [13].
Activities are considered in [21]. Using our model for sequence diagrams, we
would be able to make use of events (like a state machine sending an asyn-
chronous message) that correspond to interaction occurrences on the sequence
diagram. Of course, the sending of an asynchronous message by one state ma-
chine does not guarantee that the message is received by another. Even if it is
received immediately, it might still be placed in an event queue, so the receiving
state machine might only process it later. If we operated at a coarser granularity,
we would have to be content with only modelling the exchange of the message,
making it impossible to distinguish between when it was sent and when it was
received.

The approach presented here is novel as we give a detailed account of inter-
action operators. Moreover, due to the nature of a process-algebraic formalism
like CSP, where the focus is on describing intricate patterns of behaviour, we
are able to deal with interaction operators that alter our interpretation of an
interaction sequence more naturally that in approaches that rely on traditional
model checking using temporal logics [20]. In addition, the refinement checker,
FDR, which allows the behaviour of one process to be compared against that of
another in terms of a refinement hierarchy, provides a practical means of com-
paring behaviour of one sequence diagram against that of another (incorporating
the operators that alter interaction interpretation, for example).

Possible areas of future work include checking the validity of scenarios. Other
avenues that we will be pursuing include the development of a model-driven
framework that automates the translation approach introduced in this paper.
The resulting framework should ultimately enable us to verify the validity of
interactions at a more fundamental level.

References

1. Swain, S.K., Mohapatra, D.P., Mall, R.: Test case generation based on use case
and sequence diagram. International Journal of Software Engineering 3(2) (2010)
21–52

2. Odell, J.J., Van Dyke Parunak, H., Bauer, B.: Representing agent interaction
protocols in UML. In: Proceedings of the 1st International Workshop on Agent-
Oriented Software Engineering (AOSE 2000). Volume 1957 of Lecture Notes in
Computer Science. Springer (2001) 121–140

3. Bist, G., MacKinnon, N., Murphy, S.: Sequence diagram presentation in technical
documentation. In: Proceedings of the 22nd International Conference on Design
of Communication: The Engineering of Quality Documentation (SIGDOC 2004),
ACM (2004) 128–133

4. Object Management Group: Unified Modeling Language Specification, version
2.4.1. (2011)

5. Kim, S.K., Carrington, D.A.: A formal model of the UML metamodel: the UML
state machine and its integrity constraints. In: Proceedings of the 2nd International

Conference of B and Z Users on Formal Specification and Development in Z and
B (ZB 2002). Volume 2272 of Lecture Notes in Computer Science. Springer (2002)
497–516

6. Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall (1985)
7. Li, D., Li, D.: An approach to formalize UML sequence diagrams in CSP. Interna-

tional Proceedings of Computer Science and Information Technology 53(2) (2010)
109–115

8. Ng, M.Y., Butler, M.: Towards formalizing UML state diagrams in CSP. In: Pro-
ceedings of the 1st International Conference on Software Engineering and Formal
Methods (SEFM 2003), IEEE (2003) 138–147

9. Dong, X., Philbert, N., Zongtian, L., Wei, L.: Towards formalizing UML activity
diagrams in CSP. In: Proceedings of the International Symposium on Computer
Science and Computational Technology (ISCSCT 2008), IEEE (2008) 450–453

10. Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice Hall (1997)
11. Friedenthal, S., Moore, A., Steiner, R.: A Practical Guide to SysML: The Systems

Modeling Language. Morgan Kaufmann Publishers (2008)
12. Jacobs, J., Simpson, A.C.: A process algebraic approach to decomposition of com-

municating SysML blocks. International Journal of Modeling and Optimization
3(2) (2013) 153–157

13. Jacobs, J., Simpson, A.C.: Towards a process algebra framework for supporting
behavioural consistency and requirements traceability in SysML. In: Proceedings of
the 15th International Conference on Formal Engineering Methods (ICFEM 2013).
Volume 8144 of Lecture Notes in Computer Science. Springer (2013) 266–281

14. Yeung, W.L., Leung, K.R.P.H., Dong, W., Wang, J.: Improvements towards for-
malising UML state diagrams in CSP. In: Proceedings of the 12th Asia-Pacific
Software Engineering Conference (APSEC 2005), IEEE (2005) 176–182

15. Roscoe, A.W., Wu, Z.: Verifying Statemate statecharts using CSP and FDR. In:
Proceedings of the 8th International Conference on Formal Engineering Methods
(ICFEM 2006). Volume 4260 of Lecture Notes in Computer Science. Springer
(2006) 324–341

16. Sibertin-Blanc, C., Hameurlain, N., Tahir, O.: Ambiguity and structural properties
of basic sequence diagrams. Innovations in Systems and Software Engineering 4(3)
(2008) 275–284

17. Rasch, H., Wehrheim, H.: Checking the validity of scenarios in UML models. In:
Proceedings of the 7th International Conference on Formal Methods for Open
Object-Based Distributed Systems (FMOODS 2005). Volume 3535 of Lecture
Notes in Computer Science. Springer (2005) 67–82

18. Sibertin-Blanc, C., Tahir, O., Cardoso, J.: Interpretation of UML Sequence Di-
agrams as Causality Flows. In: Proceedings of the 5th International School and
Symposium (ISSADS 2005). Volume 3563 of Lecture Notes in Computer Science.
Springer (2005) 126–140

19. Bernardi, S., Merseguer, J.: Performance evaluation of UML design with Stochastic
Well-formed Nets . Journal of Systems and Software 80(11) (2007) 1843–1865

20. Lima, V., Talhi, C., Mouheb, D., Debbabi, M., Wang, L., Pourzandi, M.: Formal
verification and validation of UML 2.0 sequence diagrams using source and desti-
nation of messages. Electronic Notes in Theoretical Computer Science 254 (2009)
143–160

21. Jacobs, J., Simpson, A.C.: On the formal interpretation of SysML blocks using
a safety critical case study. In: Proceedings of the 8th Brazilian Symposium on
Software Components, Architectures, and Reuse (SBCARS 2014), IEEE (2014)

