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Abstract. We study confidentiality enforcement in ontologies under the
Controlled Query Evaluation (CQE) framework. In a CQE system, a pol-
icy specifies the sensitive information, and a censor ensures that answers
to user’s queries that could violate the policy are not returned. Our goal
is the design of optimal CQE algorithms, which ensure confidentiality
while maximising access to information. We study two natural classes
of censors that can be realised using existing infrastructure for query
answering and propose optimal CQE algorithms for the standardised
profiles of the ontology language OWL 2.

1 Introduction

As ontology-based information systems are becoming increasingly mature, there
is a pressing need to devise mechanisms for ensuring that data is only made
accessible to authorised users [1, 7–12, 20, 21].

Controlled Query Evaluation (CQE) is a prominent formal framework for
confidentiality enforcement. In CQE, sensitive information is declaratively spec-
ified by means of a policy and confidentiality is enforced by a censor : when given
a user query, a censor checks whether returning the answer might lead to a pol-
icy violation, in which case it returns a distorted answer. CQE was introduced
in [18], and studied in [3, 4, 6] for propositional databases with complete infor-
mation. It was extended to (propositional) incomplete databases in [5]. Beyond
propositional logic, CQE remains largely unexplored [2].

In this paper we study CQE in the context of ontologies. Our basic framework
is described in Section 3. We assume data to be hidden and that users interact
with the system by means of a query interface. An ontology, which we assume to
be known to all users, provides the vocabulary and background knowledge needed
for users to formulate accurate queries, as well as to enrich query answers with
implicit information. Policies are given as a set of ground atoms that follow from
the ontology and data. When given a (conjunctive) query, the system returns
the subset of certain answers determined by the censor; in this way, the role
of the censor is to preserve confidentiality by filtering out those answers that
could lead to a violation of the policy. Formally, we model the information that
users could gather by querying the system as an (infinite) first-order theory;

? This paper recapitulates and extends our previous work [11]. It comes with a tech-
nical report available at http://tinyurl.com/DL14paper55.



confidentiality preservation then amounts to ensuring that such theory together
with the ontology does not entail any atom in the policy. In this setting, there is
a danger that confidentiality enforcement may over-restrict users’ access. Thus,
we focus on optimal censors, which maximise answers to queries while ensuring
confidentiality of the policy. Furthermore, we are interested in censors that can
be implemented by reusing off-the-shelf query answering infrastructure. To fulfil
this requirement, we introduce in Section 4 two classes of censors, which we call
view and obstruction censors, respectively.

View censors return only those answers that follow from the ontology and
a materialised dataset (a view). In this way, a view encodes the information
that users are authorised to access: the censor answers faithfully all queries
against the view, and any information not captured by the view is inaccessible
by default. View censors require the ability to materialise implicit data, and
hence are especially well-suited for RDF-based applications in which reasoning
is performed by a triple store. Obstruction censors are dual to view censors in
the sense that they explicitly specify information which users are denied access
to (with all other information being accessible by default). Obstruction censors
are specified by a finite set of “forbidden query patterns” (obstructions), and all
query answers that instantiate such patterns are filtered out. In contrast to view
censors, obstruction censors do not require modification of the data and hence
are well-suited for OBDA applications, where data is typically managed by an
RDBMS. We finally characterise the duality of views and obstructions and argue
that it is not always possible to “simulate” one with another.

In Section 5 we focus on view censors. First, we investigate their intrinsic lim-
itations, and then show how these limitations can be circumvented. We propose
algorithms for computing optimal view censors for knowledge bases with OWL
2 RL, EL and QL ontologies under relatively minor restrictions. Our algorithms,
however, rely on views that can be of exponential size in the worst case. So,
we identify natural conditions on ontologies that guarantee polynomial size of
optimal views. In particular, all OWL 2 QL ontologies satisfy these conditions.

In Section 6 we turn our attention to obstruction censors and provide suf-
ficient and necessary conditions for an optimal such censor to exist. Then, we
propose algorithms for computing optimal obstruction censors for knowledge
bases with OWL 2 QL as well as restricted OWL 2 RL ontologies, which are
based on obstructions of polynomial size.

2 Preliminaries

We adopt standard notions in first-order logic over finite function-free signatures.
We treat equality≈ as an ordinary predicate, but assume that any set of formulae
Σ contains all the axioms of equality for Σ. A fact is a ground, equality-free
atom, and a dataset is a finite set of facts. A structure I is a pair (∆I , ·I) of a
domain and interpretation function for the symbols in the signature. We define
homomorphisms between structures I and J in the standard way and I ↪→ J
denotes the fact that such a homomorphism from I to J exists.



(1 ) A(x) ∧R(x, y1) ∧B(y1) ∧R(x, y2) ∧B(y2)→ y1 ≈ y2,

(2 ) R(x, y)→ S(x, y), (3 ) A(x)→ ∃y.[R(x, y) ∧B(y)],

(4 ) A(x)→ x ≈ a, (5 ) R(x, y) ∧ S(y, z)→ T (x, z),

(6 ) A(x)→ R(x, x), (7 ) A(x) ∧B(x)→ C(x),

(8 ) R(x, x)→ A(x), (9 ) A(x) ∧R(x, y)→ B(y),

(10 ) R(x, y)→ S(y, x), (11 ) R(x, a)→ B(x),

(12 ) R(x, y)→ A(y), (13 ) A(x)→ R(x, a),

(14 ) A(x)→ B(x), (15 ) R(x, y) ∧B(y)→ A(x).

Table 1. Horn-SROIF rules; unary predicates can be >.

A rule is a sentence of the form ∀x.∀z.[ϕ(x, z) → ∃y.ψ(x,y)], where x, z,
and y are pairwise disjoint vectors of variables, the body ϕ(x, z) is an equality-
free conjunction of atoms with variables x ∪ z, and the head ψ(x,y) is a con-
junction of atoms with variables x ∪ y. For simplicity universal quantifiers in
rules are usually omitted. A rule is (i) Datalog if its head consists of a single
atom and y is empty; (ii) guarded if it has a body atom (a guard) mentioning
all universally quantified variables; (iii) linear if it has a single body atom; and
(iv) multi-linear if the body contains only guards. An ontology is a finite set of
rules. We assume that both rule heads and bodies are non-empty and they do
not contain the nullary atoms > and ⊥. Thus, O ∪ D is satisfiable for each on-
tology O and dataset D, and O 6|= α for each fact α, which ensures a separation
between schema and data.

To capture all OWL 2 profiles, we focus on Horn-SROIF . Table 1 provides
the normalised axioms of this DL in the form of rules. To capture the semantics
of >, usually allowed in DLs, we treat it as a unary predicate and assume that
each ontology O contains the rule P (x1, . . . , xn) → >(xi) for each predicate P
and 1 ≤ i ≤ n. A Horn-SROIF ontology is in (i) RL if it has no rules of
Type (3); (ii) QL if it contains only rules of Types (2), (3), (10), (12), and (14);
(iii) EL if it does not contain rules of Types (1), (9), and (10).

A conjunctive query (CQ) is a formula Q(x) of the form ∃y.ϕ(x,y), with
ϕ(x,y) a conjunction of atoms. A union of CQs (UCQ) is a formula

∨
iQi(x),

with eachQi(x) a CQ. A CQ is Boolean (BCQ) if x is empty. A tuple of constants
t is a (certain) answer to Q(x) over ontology O and dataset D if O ∪D |= Q(t).
Then, cert(Q,O,D) is the set of answers to Q(x) over O and D. Given a BCQ Q,
A[Q] denotes the structure interpreting each relation R with (f(u1), . . . f(un))
for every atom R(u1, . . . , un) in Q, where f maps each constant in Q to itself
and each variable y to a fresh element dy in the structure.

3 Basic Framework

Given an ontologyO and datasetD, we assume thatD is hidden whileO is known
to users, who can formulate arbitrary CQs via a query interface. A policy, which



is unknown to users, is given as a set of facts entailed by O∪D. It is assumed that
system administrators are in charge of specifying policies, and that each policy
is assigned to a specific (group of) users by means of standard mechanisms such
as role-based access control techniques [17].

Definition 1. A policy P for O and D is a dataset such that O ∪ D |= P. A
CQE-instance I is a triple (O,D,P), with P a policy for O and D.

Example 1. Consider the following ontology and dataset that describe an excerpt
of a social network including information about movies:

Oex = {FOf (x, y)→FOf (y, x),Susp(x)∧Cr(x)→Thr(x),
Likes(x, y) ∧ Thr(y)→ ThrFan(x)},

Dex = {FOf (John,Bob), FOf (Bob,Mary),Likes(John,Seven),
Likes(Bob,Seven), Susp(Seven), Cr(Seven)}.

Here, Oex states that friendship is symmetric; movies that are both suspense and
crime are thrillers; and everyone who likes a thriller is a thriller fan. Assume that
John wants to hide his friend list. Then, Pex = {αex} with αex = FOf (John,Bob),
and Iex = (Oex,Dex,Pex).

A key component of a CQE system is the censor, whose goal is to decide accord-
ing to the policy which query answers can be safely returned to users.

Definition 2. A censor for a CQE-instance I = (O,D,P) is a function cens
that maps each CQ Q to a subset of cert(Q,O,D). The characteristic theory
Thcens of cens is the (possibly infinite) set of sentences

{Q(t) | t ∈ cens(Q) and Q(x) is a CQ}.

Censor cens is confidentiality preserving if O∪Thcens 6|= α for each α ∈ P. It is
optimal if (i) it is confidentiality preserving and (ii) no confidentiality preserving
censor cens′ 6= cens exists such that cens(Q) ⊆ cens′(Q) for every Q.

Intuitively, Thcens represents the information that a user can potentially gather
by asking an unbounded number of queries to the system. If the censor is confi-
dentiality preserving, then no information can be obtained about P, regardless
of the CQs asked. Finally, optimal censors maximise information accessibility
without compromisig the policy.

4 View and Obstruction Censors

The idea behind view censors is to associate to a CQE instance I a new dataset,
called a view. Intuitively, a view encodes the information that a user is allowed
to see. The user gets only those query answers that follow from O and this view.
In this way, the main workload of the censor boils down to the computation of
certain answers, which can be fully delegated to the query answering engine.1

1 We assume that all the definitions in this section are parameterised by a (fixed)
instance I = (O,D,P).



Definition 3. The view censor vcensVI for I based on a dataset V (a view), is
the function mapping each CQ Q(x) to the set cert(Q,O,D) ∩ cert(Q,O,V).

Obviously, if we want the censor to enjoy the properties we are after, the view
V must be constructed with care. For the censor to be confidentiality preserving,
O ∪ V must not entail any atom from the policy P, and to be optimal V must
encode as much information from the hidden dataset as possible.

Example 2. Consider a view Vex obtained from the dataset Dex by replacing Bob
with a fresh constant anb. Intuitively, Vex is the result of “anonymising” the
constant Bob, while keeping the structure of the data intact. Since Vex contains
no information about Bob, we have Oex ∪ Vex 6|= αex, that is the censor based
on Vex is confidentiality preserving. View Vex, however, is not optimal: Oex ∪Vex
does not entail the fact Likes(Bob,Seven), which is harmless for confidentiality.
Indeed, Oex∪V ′ex 6|= αex holds for the extension V ′ex of Vex with Likes(Bob,Seven).

View censors require the ability to materialise implicit data, and hence are es-
pecially well-suited for RDF-based applications, in which reasoning is performed
by a triple store. In OBDA scenarios, however, data is typically managed by an
RDBMS and materialisation is not possible. To fulfill the requirement of OBDA
applications, we need a different kind of censors.

The idea behind obstruction censors is to associate to I an obstruction in
the form of a Boolean UCQ U , such that given a query Q(x) and an answer t
over O and D, the censor returns t only if no CQ in U follows from Q(t). Thus,
the obstruction can be seen as a collection of “forbidden query patterns”, which
should not be disclosed.

Definition 4. The obstruction censor ocensUI for I based on a Boolean UCQ U
(called an obstruction) is the function mapping each CQ Q(x) to the set

{t | t ∈ cert(Q,O,D) and A[Q(t)] 6|= U}.

Similarly to view censors, obstruction censors do not require dedicated algo-
rithms: checking A[Q(t)] |= U can be delegated to an RDBMS. Also, obstruc-
tions can be maintained virtually without the need of data materialisation.

Example 3. The censor based on Vex from Example 2 can also be realised with
following obstruction Uex:

∃x.FOf (x,Bob) ∨ ∃x.FOf (Bob, x) ∨ ∃x.Likes(Bob, x) ∨ ThrFan(Bob).

Intuitively, Uex “blocks” query answers involving Bob; and all other answers are
the same as over Oex ∪ Dex.

As seen in Examples 2 and 3, the same censor may be based on both a view
and an obstruction. View and obstruction censors, however, behave rather dif-
ferently: a view explicitly encodes the information accessible to users, whereas
obstructions specify information which users are denied access to. Thus, obstruc-
tions are dual to views. Unsurprisingly, even in simple cases it is not obvious
whether (and how) a view can be realised by an obstruction, or vice-versa.



We next focus on Datalog ontologies and characterise when a given view V
and obstruction U yield the same censor. Each Datalog ontology O and dataset
D have a unique least Herbrand model HO,D, that is a finite structure that sat-
isfies t ∈ cert(Q,O,D) iff A[Q(t)] ↪→ HO,D and hence captures the information
relevant to query answering. We can then formalise the duality between views
and obstructions in a natural way: U and V implement the same censor iff U cap-
tures the structures not homomorphically embeddable into HO,V . To formalise
this statement, we recall the notion of (non-uniform) constraint satisfaction [13].

Definition 5. Let J be a finite structure and C a class of finite structures. The
CSP of J relative to C (denoted CSP[C](J )) is the set {I ∈ C | I ↪→ J}.

A central problem is to determine whether a class of finite structures can be
captured by a single formula.

Definition 6. Let C be a class of finite structures and let C′ ⊆ C. First-order
sentence ψ defines C′ if I ∈ C′ is equivalent to I |= ψ for every structure I ∈ C.

The correspondence between view and obstruction censors is then as follows.

Theorem 1. Let I = (O,D,P) be a CQE-instance with O Datalog ontology,
and C the class of finite structures I with I ↪→ HO,D. Then, vcensVI = ocensUI
iff U defines ¬CSP[C](HO,V), for any view V and obstruction U .

Using Theorem 1 together with definability results in Finite Model Theory,
we can show that views and obstructions cannot simulate one another in general.

Theorem 2. There is a CQE-instance for which there exists a view censor,
but no obstruction censor. There is a CQE-instance for which there exists an
obstruction censor, but no view censor.

5 Optimal View Censors

Our discussion in Section 4 shows that view and obstruction censors should be
studied independently. In this section, we focus on view censors.

Before investigating the design of view-based CQE algorithms, we first es-
tablish the theoretical limitations of our approach. We show that an optimal
view-based censor for an instance I is not guaranteed to exist since the optimal-
ity requirement may lead to infinite “views”, even for EL and RL ontologies.

Theorem 3. There are CQE-instances I1 and I2 such that

- the ontology of I1 uses rules of Types (1) and (9), and
- the ontology of I2 uses rules of Types (5), (8) and (15),

for which no optimal view censors exist.

The construction of I1 shows that equality rules lead to non-existence of
optimal views; in turn, the construction of I2 shows that equality is not needed
to preclude optimality in the presence of recursion, transitivity axioms, and Self
restrictions.
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Fig. 1. Essential part of an exhaustive view (solid arrows represent FOf relation).

5.1 View Censors for Guarded RL

We next describe how to compute an optimal view for guarded RL ontologies.
The idea is to create anonymised copies of constants in the data to encode the
information required for optimality. Such a view may use exponentially many
anonymised copies of constants.

Definition 7. Let I = (O,D,P) be a CQE-instance with O a guarded RL on-
tology. A view V consisting of unary atoms V1

c on constants from I, unary atoms
V1
∃ on new constants (anonymised copies), and binary atoms V2, is exhaustive

on I if it satisfies all of the following.
1. The part V1

c is a maximal set of unary atoms from HO,D such that O∪V1
c 6|= α

for each α ∈ P.
2. For each constant a from I, and each set A of unary predicates, such that

- A(a) ∈ HO,D for every A ∈ A,
- if A,B ∈ A, and O |= A(x) ∧B(x)→ C(x), then C ∈ A,
- if A ∈ A, then O 6|= A(x)→ x ≈ a for each a,
- O ∪ V1

c ∪ {A(a′)|A ∈ A} 6|= α for each α ∈ P and a fresh constant a′,
the view V uses a fresh constant aA, and the part V1

∃ contains all unary
atoms A(aA) such that A ∈ A.

3. For each constant a from I, let σa be the set of constants consisting of a
itself and all the constants aA. The binary part V2 of the view V contains
the atom R(a∗1, a

∗
2) for constants a∗1, a

∗
2 iff

- R(a1, a2) ∈ HO,D, where a∗1 ∈ σa1 and a∗2 ∈ σa2 ,
- O ∪ {R(a∗1, a

∗
2)} 6|= α for any α ∈ P, and

- O ∪ V1
c ∪ V1

∃ ∪ {R(a∗1, a
∗
2)} |= A(a∗) implies that A(a∗) ∈ V1

c ∪ V1
∃.

This definition is constructive and it is routine to devise an algorithm, which
for any instance (non-deterministically) constructs an exhaustive view.

Example 4. Consider the following CQE-instance (O,D,P):

O = {ThrFan(x)→ MovieFan(x),ThrFan(y) ∧ FOf (x, y)→ MovieFan(x)},
D = {FOf (John,Bob),ThrFan(John),ThrFan(Bob)},
P = {MovieFan(Bob),MovieFan(John)}.

The essential part of the exhaustive view on this CQE-instance is given in Fig-
ure 1, where V1

c = ∅, V1
∃ contains unary atoms over the anonymised copies an1b ,

an2b of Bob, and anj of John, and V2 contains the depicted binary atoms. Two
anonymised copies of Bob are necessary in any optimal view for I to answer



correctly “harmless” queries like

∃x, y, z.ThrFan(z) ∧MovieFan(z) ∧ FOf (y, z) ∧ ThrFan(y) ∧
MovieFan(y) ∧ FOf (y, x) ∧MovieFan(x) ∧ FOf (John, x).

The following theorem formulates the desired properties of exhaustive views.

Theorem 4. Let I = (O,D,P) be a CQE-instance with O a guarded RL ontol-
ogy, and V an exhaustive view on I. Then V is optimal. Furthermore, if O is
linear, then vcensVI is the only optimal censor for I.

The proof relies on the following facts. First, the construction ensures that
HO,V = V for any exhaustive view V, that is, no rules are applicable to V.
Also, properties of V1

c , V1
∃, and V2 guarantee that V does not entail any policy

atom. Optimality follows from the fact that for any a in I, each combination
of its unary atoms that satisfies the relevant axioms in O is “witnessed” by a
new constant from σa, and all possible binary atoms which are compatible with
those combinations are added to the view. Then, no essentially new atom can be
“added” to the view V without disclosing a policy. The uniqueness of the optimal
censor for linear ontologies follows from the lack of choices in the construction
of V. An exhaustive view may use exponentially many constants. However, for
multi-linear ontologies, optimal views are of polynomial size.

Proposition 1. Let I = (O,D,P) be a CQE-instance with O a multi-linear RL
ontology. There is an optimal censor for I based on a view of polynomial size.

5.2 View Censors for EL and QL

In contrast to OWL 2 RL, the QL and EL profiles can capture existentially
quantified knowledge. To bridge this gap, we show that, under some mild con-
ditions, we can transform an ontology O into a Datalog ontology O′ such that
an optimal view for (O,D,P) can be directly obtained from such a view for
(O′,D,P). Thus, devising an optimal view censor for an instance is reduced to
devising one for an instance with a Datalog ontology.

Definition 8. Let σ be a set of constants. A Datalog ontology O′ is a ( Datalog)
σ-rewriting of an ontology O if for each fact β and dataset D over constants from
σ we have that O ∪D |= β iff O′ ∪ D |= β.

Proposition 2. Let I = (O,D,P) be a CQE-instance with D using set of con-
stants σ, O′ a σ-rewriting of O such that O′ |= O, and V ′ an optimal view for
(O′,D,P). Then HO′,V′ is an optimal view for I.

Now, we just need to transform a QL (or guarded EL) ontology into a stronger
guarded RL ontology, which, however, entails the same facts for any dataset. We
exploit techniques developed for the combined approach to query answering [14–
16, 19]. The idea is to transform rules of Type (3) into Datalog by Skolemising
existentially quantified variables into globally fresh constants. Such transfor-
mation strengthens the ontology; however, if applied to a QL or guarded EL
ontology, it preserves entailment of facts for any dataset over σ [19].



Definition 9. Let O be an ontology and σ a set of constants. The ontology
Ξσ(O) is obtained from O by replacing each rule of the form A(x)→ ∃y.[R(x, y)∧
B(y)] with A(x) → P (x, a), P (x, y) → R(x, y), P (x, y) → B(y), where P is a
fresh predicate and a is a globally fresh constant not from σ, unique to A and R.2

Proposition 3. If O is a Horn-SROIF ontology, then Ξσ(O) |= O. If also O
is either a QL or guarded EL ontology, then Ξσ(O) is a σ-rewriting of O.

Propositions 2 and 3 ensure that HΞσ(O),V is optimal for I = (O,D,P) with
O a QL or guarded EL ontology, whenever V is such a view for (Ξσ(O),D,P).
The transformation ofO to Ξσ(O) preserves linearity and guardedness, so Ξσ(O)
is a guarded RL ontology, and the results of Section 5.1 are applicable.

Theorem 5. A CQE-instance with a QL or guarded EL ontology has an optimal
view censor. For QL, it is unique and can be based on a polynomial size view.

6 Obstruction Censors

We start our study of obstruction censors by focusing on Datalog ontologies and
characterising optimality in terms of resolution proofs of the policy. To this end,
we first recapitulate the standard notions on (clause) SLD resolution.

Definition 10. A goal is a conjunction of atoms. The SLD resolution step takes
a goal β1 ∧ . . . ∧ βm and a Datalog rule

∧k
i=0 γi→ δ and produces a new goal

(
∧k
i=0 γiθ)∧β2θ∧ . . .∧ βmθ, where θ is a most general unifier (MGU) of β1 and

δ. A proof of a goal G0 in a Datalog ontology O and dataset D is a sequence

G0
r1,θ1−−−→ G1

r2,θ2−−−→ . . .
rn,θn−−−−→ Gn, where Gn = > and the goal Gi is obtained from

the goal Gi−1 and sentence ri ∈O∪D by an SLD resolution step with MGU θi.

SLD resolution is sound and complete: for each satisfiable O∪D and goal G,
a proof of G exists in O∪D iff O∪D |= ∃∗G, with ∃∗G the existential closure of
G. We next provide a characterisation of optimality based on proofs. Consider a
policy atom α ∈ P and some proof π of α in O∪D. If a censor answers positively
sufficiently many BCQs ∃∗G for goals G in π, then a user could “reconstruct”
(a part of) π and compromise the policy. Also, there can be many proofs of α,
and a user can compromise the policy by reconstructing any of them. Thus, to
ensure that a censor is confidentiality preserving, we must guarantee that the
obstruction contains enough CQs to prevent reconstruction of any π. If we want
the censor to be optimal, the obstruction should not “block” too many queries.
As we will see later on, these requirements may be in conflict and lead to an
infinite “obstruction”. To formalise this intuition we need an auxiliary notion.
A core of a set of Boolean CQs Q is a minimal subset C of Q such that for each
Q ∈ Q there exists Q′ ∈ C with Q |= Q′.

2 To correctly deal with Self restrictions (rules (6) and (8)) a slightly more complex
transformation is required. These changes are straightforward but require introduc-
ing further notation, so we present here only the basic transformation for simplicity.



Definition 11. Given a CQE-instance I = (O,D,P) with O a Datalog ontology,
let Q(I) be the set of all Boolean CQs ∃∗G with G 6= > a goal in a proof of a
fact α ∈ P in O∪D, and let S be a maximal subset of Q(I) such that O∪S 6|= α
for any α ∈ P. Then, a pseudo-obstruction Υ of I is a core of Q(I) \ S.

We now relate pseudo-obstructions and optimality.

Theorem 6. Let I = (O,D,P) be a CQE-instance with O a Datalog ontology.

1. If Υ is a finite pseudo-obstruction for I, then U =
∨
Q∈Υ Q is an optimal

obstruction for I.
2. If each pseudo-obstruction for I is infinite, then no optimal obstruction censor

for I exists.

This theorem has consequences on the expressive power of obstructions. Us-
ing the results from Section 5.1 we can see that optimal view and obstruction
censors are incomparable. This complements Theorem 2, which talks about not
necessarily optimal censors.

Theorem 7. There is a CQE-instance with ontology in both RL and EL (respec-
tively, RL) for which an optimal view (respectively, obstruction) censor exists,
but no optimal obstruction (respectively, view) censor exists.

Next, we show how to apply resolution-based techniques to compute opti-
mal obstructions for instances with linear RL ontologies. These results are then
adapted to the case of QL. The algorithm for linear RL is based on the compu-
tation of the set Q(I). To do this computation efficient, we need the following
auxiliary structure.

Definition 12. Let O be a linear RL ontology, D a dataset, x and y fresh vari-
ables, and A the set of all equality-free atoms over the signature of O∪D extended
with x and y. The proof graph of O ∪ D is the directed graph with the set of
nodes A ∪ {>}, and edges (β, γ) such that γ can be derived from β by means of
a single SLD resolution step with a rule from O ∪D.

The following example illustrates proof graphs.

Example 5. Consider a CQE-instance I1ex with ontology O1
ex = {Likes(x, y) →

Movie(y), Likes(x, y) → MovieFan(x)}, dataset D1
ex = {Likes(John,Seven)},

and the policy of single atom α1
ex = MovieFan(John). A fragment of the proof

graph is given in Figure 2.

Using proof graphs we can compute optimal censors.

Theorem 8. Let I = (O,D,P) be a CQE-instance with O a linear RL ontology.
For each α ∈ P, let Sα be the set of nodes in the proof graph of O∪D in a path
from α to >. Finally, let U be the Boolean UCQ∨

α∈P

∨
G∈Sα\{>}

∃∗G.

Then, ocensUI is the unique optimal censor for I, and U can be computed in
polynomial time in the size of I.
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Likes(John,Seven)

Likes(x,Seven)

Movie(Seven)

Movie(y)

MovieFan(x)↵1
ex = MovieFan(John)

>

Fig. 2. Fragment of proof graph for O1
ex ∪ D1

ex

Example 6. For I1ex from Example 5, there is only one path in the proof graph
from α1

ex to > and Sα1
ex
\ {>} = {MovieFan(John), likes(John, y)}. Thus, U =

MovieFan(John) ∨ ∃y.Likes(John, y) is optimal.

Finally, note that the transformation of a QL ontology O to an RL ontology
Ξσ(O) given in Definition 9, preserves linearity of rules. Hence, Proposition 3
and Theorem 8 yield the following result.

Theorem 9. For every CQE-instance with a QL ontology there exists a unique
optimal obstruction censor.

7 Discussion and Conclusions

We have studied CQE in the context of ontologies. Our results yield a flexible way
for system designers to ensure selective access to data and provide insights on the
fundamental tradeoff between accessibility and confidentiality of information.
We have proposed algorithms applicable to the profiles of OWL 2, which can
be implemented using off-the-shelf query answering infrastructure. Thus, our
algorithms provide a starting point to the development of CQE systems.

The problems studied here remain rather unexplored and we see many open
questions. From a theoretic point of view, we plan to consider policies beyond sets
of facts (e.g., given as CQs). We also plan to study weaker notions of optimality
that can ensure polynomiality of views and obstructions for more expressive
languages. From a practical perspective, we will implement our algorithms and
test their scalability using state-of-the art Datalog engines such as RDFox.3

The approach closest to ours is the view-based access authorisation frame-
work in [9]. In this setting, policies are represented as authorisation views: CQs
that define the only information accessible to the user; since queries are answered
faithfully against the views, there is no explicit notion of policy violation. In con-
trast, in our setting policies express inaccessible information, and our goal is to
maximally answer queries without violating the policy.

Acknowledgements. Work supported by the Royal Society, the EPSRC projects
Score!, Exoda, and MaSI3, and the FP7 project OPTIQUE.

3 http://www.cs.ox.ac.uk/isg/tools/RDFox/
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A Appendix

The following proposition will be used in several places throughout this appendix.

Proposition 4. The censor vcensVI based on a view V is confidentiality preserv-
ing if and only if O∪V 6|= α for each α ∈ P. Additionally, it is optimal if and only
if for each CQ Q(x) and each t ∈ cert(Q,O,D), the fact that O∪V∪{Q(t)} 6|= α
for any α ∈ P implies that t ∈ cert(Q,O,V).

Proof. Assume that O ∪ V 6|= α for each α ∈ P. Trivially, O ∪ V |= ThvcensVI and

hence we have O ∪ ThvcensVI 6|= α for each α ∈ P, as required. Assume that cens

is confidentiality preserving, in which case O ∪ ThvcensVI 6|= α for each α ∈ P.

Next, assume for the sake of contradiction that O∪V |= α for some α ∈ P; since
O ∪D |= α by the definition of policy we have that vcensVI (α) = True and thus
α ∈ ThvcensVI ; thus, O ∪ ThvcensVI |= α, which is a contradiction.

We next focus on the optimality statement. Assume that vcensVI is not opti-
mal. Then, there is a confidentiality preserving censor cens that extends vcensVI ;
this means that for some CQ Q(x) and, t ∈ cert(Q,O,D) we have t ∈ cens(Q),
but t /∈ vcensVI (Q). The fact that t /∈ vcensVI (Q) and t ∈ cert(Q,O,D) im-
plies that t 6∈ cert(Q,O,V). Furthermore, the fact that cens is confidentiality-
preserving implies that O ∪ Thcens ∪ {Q(t)} 6|= α; but then, since cens extends
vcensVI , we have that ThvcensVI ⊆ Thcens and hence O ∪ThvcensVI ∪ {Q(t)} 6|= α, as
required.

Finally, assume that there exists some CQ Q(x) and, t ∈ cert(Q,O,D) such
that O ∪ V ∪ {Q(t)} 6|= α for each α ∈ P, but O ∪ V 6|= Q(t); then, we can
define a censor cens that behaves exactly like vcensVI , with the exception of
answering Q(t) positively. Thus, Thcens = ThvcensVI ∪ {Q(t)}. But then, since

O ∪ V ∪ {Q(t)} 6|= α for each α ∈ P and O ∪ V |= ThvcensVI we have that

O∪Thcens 6|= α, which implies that cens is confidentiality preserving and ThvcensVI
is not optimal, as required.

A.1 Proofs for Section 4

Before proving Theorem 1 we present the following notation and a lemma. Let I
be a finite structure and f a function associating a fresh variable to each domain
element of I. The query QI for I is the Boolean CQ defined as follows, with
R1, . . . Rn the predicates interpreted by I:

QI = ∃∗
∧

1≤i≤n

{Ri(f(u1), . . . , f(umi)) | (u1, . . . , umi) ∈ RIi }.

Lemma 1. Let J be a finite structure and let C be a class of all finite structures.
Then, the following holds:

¬CSP[C](J ) = {I ∈ C | I |=
∨

K∈C,K6↪→J

QK}.



Proof. We need to show the following:

{I ∈ C | I 6↪→ J} = {I ∈ C | I |=
∨

K∈C,K6↪→J

QK}.

Let I ∈ C be such that I 6↪→ J ; clearly, I |= QI and hence I |= ∨
K∈C,K6↪→J Q

K,

as required. Conversely, assume that I ∈ C is such that I |= ∨
K∈C,K6↪→J Q

K;

then, there exists K such that K ∈ C, K 6↪→ J and I |= QK. The latter implies
that K ↪→ I and hence we can deduce I 6↪→ J , as required (otherwise, we would
have by composition of homomorphisms that K ↪→ J , which is a contradiction).

Theorem 1. Let I = (O,D,P) be a CQE-instance with O Datalog ontology,
and C the class of finite structures I with I ↪→ HO,D. Then, vcensVI = ocensUI
iff U defines ¬CSP[C](HO,V), for any view V and obstruction U .

Proof.
(⇐) Assume that U defines ¬CSP[C](HO,V). Then, for each I ∈ C we have that
I 6↪→ HO,V iff I |= U . By Lemma 1, the following holds for each I ∈ C:

I |= U iff I |=
∨

K∈C,K6↪→HO,V

QK. (1)

LetQ(x) be a CQ, and let t ∈ cert(Q,O,D), which implies that A[Q(t)] ↪→ HO,D
and hence A[Q(t)] ∈ C. We show that t ∈ vcensVI (Q) iff t ∈ ocensUI (Q).

For the forward direction, assume that t ∈ vcensVI (Q); then, O ∪ V |= Q(t)
and hence A[Q(t)] ↪→ HO,V . We can then conclude A[Q(t)] 6|= ∨

K∈C,K6↪→HO,V Q
K

(otherwise, K ↪→ A[Q(t)] for some QK in U and since we have established that
A[Q(t)] ↪→ HO,V and homomorphism compose we would have K ↪→ HO,V which
is a contradiction). But then, (1) implies that A[Q(t)] 6|= U and by the definition
of obstruction-censor that t ∈ ocensUI (Q), as required.

For the backward direction, assume now that t ∈ ocensUI (Q). Then, by the
definition of obstruction censor we have A[Q(t)] 6|= U . By (1) we then have
A[Q(t)] 6|= ∨

K∈C,K6↪→HO,V Q
K; Lemma 1 immediately implies that A[Q(t)] 6∈

¬CSP(HO,V). From this, we must conclude that A[Q(t)] ∈ CSP(HO,V) and
hence A[Q(t)] ↪→ HO,V , which implies O ∪ V |= Q(t) and t ∈ vcensVI (Q), as
required.

(⇒) Assume that ocensUI = vcensVI . To show that U defines ¬CSP[C](HO,V) we
prove that I |= U iff I 6↪→ HO,V for every structure I such that I ↪→ HO,D. If
I ↪→ HO,D and I |= U , then ocensUI (QI) = False. Since ocensUI = vcensVI we also
have that vcensVI (QI) = False and hence O∪V 6|= QI . Consequently, I 6↪→ HO,V ,
as required. If I 6↪→ HO,V , then O∪V 6|= QI ; consequently, vcensVI (QI) = False.
Since ocensUI = vcensVI we have ocensUI (QI) = False and hence since I ↪→ HO,D
we necessarily have I |= U .

Theorem 2. There is a CQE-instance for which there exists a view censor,
but no obstruction censor. There is a CQE-instance for which there exists an
obstruction censor, but no view censor.



Proof. First we illustrate that obstruction censors cannot always simulate view
censors. Consider CQE-instance I = (∅,D, ∅), where D represents an undirected
graph with nodes “green” g and “blue” b, which are connected by edge in all
possible ways:

D = {edge(g, b), edge(b, g), edge(b, b), edge(g, g)}.

Clearly, D entails every Boolean CQ over the edge relation and thus every graph
can be homomorphically embedded into D. Consider V = {edge(g, b), edge(b, g)}.
Since the ontology is empty,H∅,V = V and ¬CSP(V) is the class of all graphs that
are not 2-colourable. It is well-known that this class of graphs is not first-order
definable and hence cannot be captured by a UCQ.

Next we construct an obstruction censor which cannot be simulated by a
view censor. Consider the instance I = (O,D, ∅), where D = {edge(a, a)} and O
consists of the single transitivity rule

edge(x, y) ∧ edge(y, z)→ edge(x, z).

Clearly, O ∪ D entails each Boolean CQ over the edge relation. Consider ob-
struction U = ∃y.edge(y, y), which defines the class of directed graphs with self
loops. Suppose that some view V realises ocensUI . By Theorem 1, the obstruction
U must define ¬CSP[C](HO,V), where C is the class of all directed graphs. Thus,
any graph G must satisfy the property

G has no self loops iff G ↪→ HO,V .

Due to the rule in O, we conclude that V is a DAG, that is, it has no edge-loops.
Take a DAG G extending (a graph isomorphic to) HO,V with a new node v
and edges connecting all its sink nodes to v. Clearly G has no self loops, but
G 6↪→ HO,V , which is a contradiction.

A.2 Proofs for Section 5

Theorem 3. There are CQE-instances I1 and I2 such that

- the ontology of I1 uses rules of Types (1) and (9), and
- the ontology of I2 uses rules of Types (5), (8) and (15),

for which no optimal view censors exist.

Proof. The first case of the theorem was proved in the work [11] for censors
based on sound views, and the same proof extends to the general case. So, we
next focus on showing the second case. To this end, let I = (O,D,P) be the
CQE-instance defined as follows:

O = {E(x, y) ∧ E(y, z)→ E(x, z),

E(x, x)→ F (x), E(x, y) ∧ F (y)→ F (x)},
D = {E(a, a)},
P = {F (a)}.



Consider also the following (infinite) sequence of Boolean conjunctive queries
(for k ≥ 1):

Qk(a) = ∃x1, . . . , xk. E(x, x1) ∧ . . . ∧ E(xk−1, xk).

Clearly, O ∪D |= Qk(a) for each k ≥ 1. Next, we show the following properties:

(P1) if an interpretation I satisfies I |= O ∪ {Qk(a)|k ≥ 1} and I 6|= F (a), then
I has an infinite domain;

(P2) if cens is optimal for I, then O ∪ Thcens |= {Qk(a)|k ≥ 1}.
To prove Property (P1), assume for the sake of contradiction that a fi-

nite model I of O ∪ {Qk(a)|k ≥ 1} exists such that I 6|= F (a). Let m be
the size of the interpretation domain of I. Since I |= Qm(a), there must ex-
ist elements a0, a1, . . . , am−1, am in the domain of I such that a0 = a, and
(a0, a1), . . . , (am−1, am) ∈ EI . Since the size of the domain is just m, there
must exist objects ai and aj for 0 ≤ i < j ≤ m such that ai = aj and as
a result EI encodes a cycle. Since O axiomatises E to be a transitive rela-
tion, we have (ai, ai) ∈ EI as well. This implies that ai ∈ F I and hence rule
E(x, y) ∧ F (y)→ F (x) will ensure that a ∈ F I , which contradicts our assump-
tion that I 6|= F (a).

To prove Property (P2), consider an arbitrary confidentiality preserving cen-
sor cens for I. It suffices to show that the censor cens′ defined such that Thcens′ =
Thcens∪{Qk(a)|k ≥ 1} is also a confidentiality preserving censor for I. Since cens
is assumed to be confidentiality preserving, it holds that O∪Thcens 6|= F (a); thus,
there exists an interpretation J such that J |= O ∪ Thcens, but J 6|= F (a). Let
J ′ be the (infinite) interpretation over elements of J and fresh elements ak,
k ≥ 1, defined as follows, where Trans of a relation instance is the fixpoint of the
program axiomatising transitivity of the relation together with the instance:

EJ
′

= Trans(EJ ∪ {(a, a1)} ∪ {(ak, ak+1)|k ≥ 1}),
FJ

′
= FJ .

We can check that J ′ |= O. Also, J ′ |= Thcens because J does and J ′ simply
extends J with new information (remember that Thcens consists of existentially
quantified positive formulas). Also, J ′ |= {Qk|k ≥ 1} and J ′ 6|= F (a); thus,
O ∪ Thcens′ 6|= F (a), as required.

Next, we use properties (P1) and (P2) to show the claim of the theorem.
Assume for the sake of contradiction that for some view V we have that vcensVI
is optimal. Then, Proposition 4 and Property (P2) imply O∪V |= {Qk(a)|k ≥ 1}.
Clearly, Since O ∪ V is satisfiable and O is Datalog, we have HO,V |= O ∪ V.
Furthermore, since O∪V |= {Qk(a)|k ≥ 1} and HO,V |= O∪V we must also have
thatHO,V |= O∪{Qk|k ≥ 1}. However,HO,V 6|= F (a) since cens is confidentiality
preserving, which together with the fact that HO,V is finite contradicts Property
(P1).

Theorem 4. Let I = (O,D,P) be a CQE-instance with O a guarded RL ontol-
ogy, and V an exhaustive view on I. Then V is optimal. Furthermore, if O is
linear, then vcensVI is the only optimal censor for I.



Proof. First, note that by the construction of exhaustive view HO,V = V, that
is, no rules from O can be applied to V. Indeed, this follows from the facts that

- the set V1
c is maximal, so it is closed, i.e., HO,V1

c
= V1

c ,
- the sets V1

∃ and V2 are also closed,
- binary atoms in V2 cannot influence unary atoms in V1

c ∪ V1
∃,

- no rules can be applied to identify any constants: constants from I are al-
ready identified in HO,D, and new constants (anonymous copies) cannot be
identified by their second requirement.

Since it is explicitly required that no policy atom is in the V, we can conclude
that the censor vcensVO,D is confidentiality preserving.

From the construction we immediately have that if O ∪ V |= Q(t) then
O ∪D |= Q(t) for any CQ Q and tuple t, that is V is sound.

Next we show that vcensVO,D is optimal. Consider arbitrary CQ Q(x) and
tuple of constants t such that O ∪ D |= Q(t) and V ∪Q(t) 6|= α for any α ∈ P.
We need to prove that V |= Q(t), i.e., there exists a homomorphism from A[Q(t)]
to V. Consider the structure HO,A[Q(t)]. Since O ∪D |= Q(t), i.e., t is a certain
answer to Q over O ∪ D, there exists a homomorphism h from HO,A[Q(t)] to
HO,D. For every element d in HO,A[Q(t)] denote A(x) the set

{A | A(d) ∈ HO,A[Q(t)]}.
Note, that for every element d in HO,A[Q(t)] which is not a constant from I, there
exists a variable x in Q(x), such that d = dx. Recall, that dx is the individual in
A[Q(t)] which corresponds to x. Moreover, the set σh(d) in the view V contains
the constant (h(d))A(x)—the anonymous copy of h(d) with exactly the same set
of unary predicates, as d. Hence, we can define a mapping h′ from the domain
of HO,A[Q(t)] to the domain of V as follows:

- h′(a) = a for every constant a,
- h′(d) = (h(d))A(x) for every d which is not a constant.

This mapping is a homomorphism from HO,A[Q(t)] to V. Indeed,

- for every constant a from I if A(a) is in HO,A[Q(t)], then it is in V1
c (and,

hence, in V), because V1
c is maximal and V ∪ Q(t) does not disclose the

policy;
- for every element d which is not a constant we have A(h′(d)) ∈ HO,A[Q(t)]

iff A((h(d))A(x)) ∈ V by the construction above;
- finally, for any pair of elements d1, d2, if R(d1, d2) ∈ HO,A[Q(t)] then it holds

that R(h′(d1), h′(d2)) ∈ V2 (and, hence, in V), because (i) V2 is constructed
in a way that it is maximal among whose that does not change unary atoms,
and do not disclose the policy; and (2) V ∪ Q(t) also does not disclose the
policy.

Since h′ is a homomorphism from HO,A[Q(t)] to V, there exists also a homomor-
phism from A[Q(t)] to V, which means that V |= Q(t).

Finally, the fact that if O is linear then I has a unique optimal censor is
shown in the proof of Theorem 8 below (of course, without using this theorem
or any of its consequences).



Proposition 1. Let I = (O,D,P) be a CQE-instance with O a multi-linear RL
ontology. There is an optimal censor for I based on a view of polynomial size.

Proof. Consider an exhaustive view V on I. For every constant a the set σa
contains the constant aA∗ such that

A∗ = {A | A(a) ∈ HO,D,O 6|= A(x)→ x ≈ a for each a}.

The set A∗ is subset maximal among all the constants in σa, i.e., if aA ∈ σa then
A ⊆ A∗.

First, note that if R(aA, bB) is in the binary part V2 for two new constants
(anonymous copies) aA, and bB), then so is R(aA∗ , bB∗). Similarly, from the fact
that O is multi-linear, we conclude that if S(aA, b) is in V2 for a new constant
aA, constant b from I and binary predicate or inverse of a binary predicate S,
then so is S(aA∗ , b).

Hence, for any CQ Q(x) and any tuple t of constants, V |= Q(t) holds if and
only if V∗ |= Q(t), where V∗ is the sub-view of V based on the constants a and
aA∗ . So, these two views realise the same censor, which is optimal by Theorem 4.
The fact that V∗ is of polynomial size completes the proof.

Proposition 2. Let I = (O,D,P) be a CQE-instance with D using set of con-
stants σ, O′ a σ-rewriting of O such that O′ |= O, and V ′ an optimal view for
(O′,D,P). Then HO′,V′ is an optimal view for I.

Proof. First we show the confidentiality preservation of the censor. Since vcensV
′

I′

is confidentiality-preserving, we have that O′ ∪V ′ 6|= α for each α ∈ P. Since O′
is Datalog, it is clear that HO′,V = HO′,V′ ; thus, O′∪V 6|= α for each α ∈ P. But
then, since P contains only facts and O′ is a rewriting of O we have O ∪ V 6|= α
for each α ∈ P, as required.

Now we concentrate of the optimality of the view. Assume by contradiction
that vcensVI is not optimal, then there exists a BCQ Q such that (i) O∪D |= Q;
(ii) O ∪ V 6|= Q; and (iii) O ∪ V ∪ {Q} 6|= α for each α ∈ P. Since O ∪ D |= Q
and O′ |= O we have (iv) O′ ∪D |= Q. Furthermore, condition (iii) implies that
O ∪ V ∪ A[Q] 6|= α and since α is a fact and O′ is a rewriting of O we have
O′ ∪ V ∪A[Q] 6|= α, which by the fact that V |= V ′ then also implies that (v)
O′ ∪ V ′ ∪ {Q} 6|= α for each α ∈ P. But then, (iv) and (v) and the fact that V ′
is optimal for (O′, D,P) we must have O′ ∪ V ′ |= Q. Since V = HO′,V′ we have
V |= Q, which contradicts (ii).

A.3 Proofs for Section 6

For the sake of ease in the proofs for theorems and propositions of this section we
will consider only the class of BCQs with constants. Clearly, any results obtained
for this class will also hold for the class of all CQs. Before proceeding to the main
proofs, we introduce few definitions and lemmas.



Let O be a Datalog ontology and D a dataset; let Q be a possibly infinite set
of queries such that O ∪D |= Q for each Q ∈ Q. Then a censor censQ is defined
as follows:

censQ(Q) = True iff cert(Q,O,D) = True and A[Q] 6|= Q′ for each Q′ ∈ Q.

Lemma 2. Let I = (O,D,P) be a CQE-instance; let Υ be a pseudo-obstruction
based on a subset S of Q(I). Then, censΥ = censQ(I)\S.

Proof. Let Q be a CQ such that cert(Q,O,D) = True.
Assume that censQ(I)\S(Q) = False; this yields that A[Q] |= Q′ for some

Q′ ∈ Q(I)\S. Then there exists Q′′ ∈ Υ such that Q′ |= Q′′ and thus A[Q] |= Q′′,
i.e., censΥ (Q) = False.

Assume that censΥ (Q) = False; this yields that A[Q] |= Q′′ for some Q′′ ∈ Υ .
Note that Q′′ ∈ Q(I) \ S since Υ ⊆ Q(I) \ S and thus censQ(I)\S(Q) = False.

The proposition above allows us to speak of obstruction censors in terms
of either Υ or Q(I) \ S, whatever way is more convenient to show the required
results. We are going to show now that a censor cens is optimal for a given CQE-
instance I iff there exists a maximal subset S of Q(I) such that cens = censQ(I)\S.
But first we need the following notion of a normalised proof.

Definition 13. Let O be a Datalog ontology, D a dataset, and G0 a goal. A
proof π of length n of G0 in O ∪ D is normalised if there is k ≤ n such that
ri ∈ O for each i < k and rj ∈ D for each j ≥ k. Moreover, the number k is
called the frontier of π, denoted fr(π).

Intuitively, a normalised proof π works as follows: first we rewrite the initial
query G0 over the ontology O until we obtain the query Gfr(π)−1 that can be
mapped into D, and then we perform such a mapping applying (ri, θi) with
i ≥ fr(π). Observe that for every Gi with i < fr(π) it holds that O ∪Gi |= G0.

We exploit the following known result about SLD-resolution over Datalog
ontologies.

Lemma 3. Let O be a Datalog ontology, let D be a dataset, and let G0 be a goal
such that O ∪ D |= G0. Then there exists a normalised SLD-proof π of G0 in
O ∪D.

Lemma 4. Let I = (O,D,P) be a CQE-instance with O a Datalog ontology and
cens a censor for O and D. Then cens is optimal for I iff there exists a maximal
subset S of Q(I) such that (i) O∪S 6|= α for each α ∈ P and (ii) cens = censQ(I)\S.

Proof. We start with the “only if”-direction. Let us assume that such maximal
subset S exists. We show that censQ(I)\S is optimal.

First, we show that censQ(I)\S is confidentiality preserving. Assume the con-
trary; then, there is a (finite) subset F of ThcensQ(I)\S such that O ∪ F |= α
for some α ∈ P. This yields the existence of proof π of α in O ∪ A[F], where
A[F] =

⋃
Q∈F A[Q]. Due to Lemma 3, we can assume that π is normalised with



frontier k + 1. Let Gk be the goal right before frontier in π. Since π is nor-
malised, then Gk is proved by using only facts from A[F]. So, we can write Gk
as Gk = B1 ∧ . . . ∧ Bm, where each Bj is the conjunction of all atoms that are
proved using facts only from a particular A[Qj ]. Obviously, the order in which
these Bj are proved is irrelevant, so let us assume that all Bj have been proved
except for Bi; since, the different Bj can share variables, the remaining goal to
prove may not be just B1, but rather Biθi, with θi some substitution. We make
the following observations:

1. Biθi does not mention any constants not in O ∪D. Indeed, for any distinct
queries Qk, Qj in F we have that A[Qk] and A[Qj ] only share constants
from O∪D A[Qk]; thus, if Biθi contains some constant coming from A[Qj ]
with j 6= i, it wouldn’t be possible to prove Biθi using only facts from A[Qi].

2. There exists a proof of α in O ∪ D such that Biθi occurs as a subgoal. We
construct such proof as follows. First, we can “reach” goal Gk because it
only requires rules from O. Note also that each Bj follows from O ∪ D, so
we can continue the proof by showing all Bj except for Bi. Then, we can do
it in such a way we reach precisely Biθi as a subgoal.

3. Qi |= ∃∗Biθi since Biθi is provable from A[Qi].

Observation 2 means that Biθi ∈ Q(I) for all 1 ≤ i ≤ m. Furthermore, since the
censor answers True for each Qi we have that Biθi ∈ S. But then, O ∪ S |= α,
which is a contradiction.

Now we show the optimality of censQ(I)\S. To do this we make use of the
following result from [11]: a censor cens for I = (O,D,P) is optimal if and only if
for each CQQ(x) and each t ∈ cert(Q,O,D) the fact thatO∪Thcens∪{Q(t)} 6|= α
holds for each α ∈ P implies that O ∪ Thcens |= Q(t).

Due to this result, censQ(I)\S is optimal if and only if for each Q such
that cert(Q,O,D) = True and O ∪ ThcensQ(I)\S ∪ {Q} 6|= α, it holds that O ∪
ThcensQ(I)\S |= Q. Assume to the contrary that there exists a CQ Q such that
cert(Q,O,D) = True and O ∪ ThcensQ(I)\S ∪ {Q} 6|= α, but O ∪ ThcensQ(I)\S 6|= Q.
The latter means that censQ(I)\S(Q) = False, that is, A[Q] |= Q′, for some
Q′ ∈ Q(I) \ S.

Recall that for any Q ∈ Q(I)\S it holds that O∪S∪{Q} |= α by maximality
of S. Observe that S ⊆ ThcensQ(I)\S ; this yields O ∪ ThcensQ(I)\S ∪ {Q} |= α, which
contradicts the initial assumption and concludes the “only if”-direction.

Now we consider the “if”-direction. Let us now assume that cens is optimal,
and let Q = {Q | cens(Q) = False}. Consider the following subset S of Q(I):
S = Q(I) \ Q. To prove the theorem, it suffices to prove the following two
conditions: (i) S is a maximal subset of Q(I) such that O ∪ S 6|= α for each
α ∈ P and (ii) censQ(I)\S = cens.

To show (i), assume that O ∪ S ∪ {Q} |= α for some α ∈ P. Clearly, since
by construction S ⊆ Thcens, it holds that O ∪ Thcens ∪ {Q} |= α, and therefore
cens(Q) = False, i.e. Q ∈ Q, which implies (i).

To show (ii), let us pick an arbitrary Q such that O∪D |= Q but cens(Q) =
False and hence Q ∈ Q. Since cens is optimal, we have that O∪Thcens∪{Q} |= α



for some α ∈ P, so let F be any minimal subset of Thcens such that O∪F∪{Q} |=
α. Following the same arguments as we used in the “only if” direction we have
that there exists G ∈ Q(I)\S such that Q |= G; since G is part of the obstruction,
then censQ(I)\S(Q) = False. Finally, assume that censQ(I)\S(Q) = False; then,
Q |= G for some G ∈ Q(I)\S. Since Q(I)\S ⊆ Q, we have that cens(Q) = False,
as required.

Theorem 6. Let I = (O,D,P) be a CQE-instance with O a Datalog ontology.

1. If Υ is a finite pseudo-obstruction for I, then U =
∨
Q∈Υ Q is an optimal

obstruction for I.
2. If each pseudo-obstruction for I is infinite, then no optimal obstruction censor

for I exists.

Proof. Let us prove Statement 1. Assume that Υ is a finite pseudo-obstruction.
By Lemma 2, we have that censΥ = censQ(I)\S. By the “only if” statement in
Lemma 4, we have that censQ(I)\S is optimal. But then, since Υ is finite, then U
is an obstruction.

Next, we show Statement 2. Assume by contradiction that each pseudo-
obstruction is infinite, but there is an optimal censor based on an obstruction U .
Since ocensUI is an optimal censor, then the “if” direction of Lemma 4 tells us
that there exists a pseudo-obstruction Υ such that ocensUI = censΥ . We can show
that this contradicts the fact that Υ is both a core and infinite. Pick any CQ
Q from U ; then, clearly, ocensUI (Q) = False and hence censΥ (Q) = False. The
latter implies that there exists Q′ ∈ Υ such that Q |= Q′. Let us now construct
U ′ =

∨
Q∈U Q

′, which is finite and also a “subset” of Υ . To obtain a contradic-

tion, it thus suffices to show now that ocensU
′

I = censΥ . Indeed, for each CQ Q
such that cert(Q,D,O) = True (recall that ocensUI = censΥ ):

– Assume that ocensUI (Q) = False; then there is Q′ in U such that A[Q] |= Q′,

which yields A[Q] |= Q′′ withQ′′ from U ′, and therefore ocensU
′

I (Q) = False.

– Assume that ocensU
′

I (Q) = False; then A[Q] |= Q′′ for some Q′′ in U ′, and
consequently, since Q′′ ∈ Q(I) \ S, we conclude that censΥ (Q) = False.

The obtained contradiction concludes the proof.

Theorem 7. There is a CQE-instance with ontology in both RL and EL (respec-
tively, RL) for which an optimal view (respectively, obstruction) censor exists,
but no optimal obstruction (respectively, view) censor exists.

Proof. To show the first statement, consider I1 = (O1,D1, P1), where D1 =
{R(a, a), A(a)}, P1 = {A(a)}, and the guarded RL (and EL) ontology O1 =
{R(x, y)∧A(y)→ A(x)}. Since the ontology O1 is guarded, by Theorem 4 we can
devise an optimal view. In contrast, there are infinitely many “non-redundant”
proofs of A(a) in O1 ∪ D1. To see this, note that we have all of the following



(infinitely many) normalised proofs for n ≥ 1, and where the first line marks the
frontier

A(a)→ R(a, y1) ∧A(y1)→ . . .→ R(a, y1) ∧ . . . ∧R(yn−1, yn) ∧A(yn)→
R(a, y1) ∧ . . . ∧R(yn−1, a)→ . . .→ R(a, a)→ >.

This means, that for every n, Q(I1) contains all of the following CQs for n ≥ 1:

Qn = ∃y.[R(a, y1) ∧ . . . ∧R(yn−1, yn) ∧A(yn)].

It is clear that no maximal subset S of Q(I1) such that O ∪ S 6|= A(a) can
contain any of such queries; therefore, for any such S we have Q(I1) \ S contains
all such Qn. But then, the core of such set also contains all these Qn every
pseudo-obstruction not entailing the policy atom must contain all such queries.
Therefore, each pseudo-obstruction is infinite and by Theorem 6, no optimal
obstruction censor can exist.

To show the second statement, consider CQE-instance I2 = (O2,D2, P2),
whith D2 = {R(a, a)}, P2 = {A(a)}, and O2 = {R(x1, y) ∧ R(x2, y) → x1 ≈
x2, R(x, y) → A(y)}. From [11] we know that no optimal view exists for this
instance, and the proof extends also to the case where views are not required
to be sound. However, U = A(a) ∨ ∃x.R(x, a) is an optimal obstruction, since
there is only one proof of A(a) with subgoal R(x, a).

Theorem 8. Let I = (O,D,P) be a CQE-instance with O a linear RL ontology.
For each α ∈ P, let Sα be the set of nodes in the proof graph of O∪D in a path
from α to >. Finally, let U be the Boolean UCQ∨

α∈P

∨
G∈Sα\{>}

∃∗G.

Then, ocensUI is the unique optimal censor for I, and U can be computed in
polynomial time in the size of I.

Proof. Optimality and uniqueness follows from Theorem 6 and the facts that
(i) the set

∨
α∈P Sα is exactly Q(I) (ii) the only maximal subset S of Q(I) such

that O∪S does not entail any α is the empty set. To prove the former fact, first
observe that any goal that can appear in any SLD-proof in O ∪D is isomorphic
to one of the nodes of the proof-graph of O ∪ D; then Fact (i) follows directly
from the construction of the proof-graph. Fact (ii) follows from the observation
that each SLD-proof is normalised, and therefore for each Q ∈ Sα it holds that
O ∪Q |= α.

Finally, polynomiality follows from the fact that in linear RL the size of the
proof-graph of α is at most cubic in |O ∪ D ∪ {α}|.

Theorem 9. For every CQE-instance with a QL ontology there exists a unique
optimal obstruction censor.

Proof. Let cens′ be the optimal censor for I′ = (Ξσ(O),D,P), where σ is a set of
constants of I and Ξσ(O) is a linear RL ontology. By Theorem 8, cens′ = ocensUI′



for the UCQ U as defined in the theorem. Let cens = ocensUI . We are going to
show that cens is an optimal censor for I.

Confidentiality preservation. Assume that cens is not confidentiality pre-
serving for I, that is, O ∪ Thcens |= α for some α ∈ P. This means that there
exist Q1, . . . , Qn ∈ Thcens such that O ∪ {Q1, . . . , Qn} |= α; clearly, O ∪ D |=
Qi for each i ∈ {1, . . . , n}. By Proposition 3, Ξσ(O) |= O and consequently
Ξσ(O) ∪ D |= Qi for each i ∈ {1, . . . , n}. Since cens′ is confidentiality preserv-
ing for I′, we conclude that {Q1, . . . , Qn} 6⊆ Thcens′ , so there is j ∈ {1, . . . , n}
such that cens′(Qj) = False; i.e., A[Qi] |= U . The last entailment implies that
cens(Qj) = False, i.e., Qj /∈ Thcens, which yields a contradiction and thus cens
is confidentiality preserving for I.

Optimality. Assume for the sake of contradiction, that cens is not optimal
for I, that is, there exists Q such that (i) O ∪ D |= Q, (ii) Q /∈ Thcens, and
(iii) O ∪ Thcens ∪ {Q} 6|= α for each α ∈ P. This yields A[Q] |= u for some
disjunct u in U and consequently cens′(Q) = False. Note that for each disjunct
u in U , it holds that Ξσ(O) ∪ {u} |= α for some α ∈ P; thus Ξσ(O) ∪ {Q} |= α.
There are the following cases depending on the form of u.

– If u is of the form A(a) or R(a, b) with a, b ∈ σ, then O ∪ {u} |= α since,
due to Proposition 3, Ξσ(O) is a σ-rewriting of O; thus, O∪{Q} |= α which
yields a contradiction with (iii).

– If u is of the form ∃y.R(a, y) with a ∈ σ, then let Omin be a minimal subset of
Ξσ(O) such that Omin∪{u} |= α. Due to the assumption, it holds O∪{u} 6|=
α; thus, Omin 6⊆ O and therefore Omin includes one of the rules introduced
by Ξ. That is, Omin contains (some of) the following rules that come from
the Skolemisation Ξσ(r) of some rule r = A(x) → ∃y.[S(x, y) ∧ B(y)] of
Type (3) in O:

A(x)→ PS(x, cA,S), PS(x, y)→ S(x, y), and PS(x, y)→ B(y). (2)

Consider a proof π = G0 → . . .→ Gn of α in Ξσ(O) ∪A[∃y.R(a, y)], where
G0 = α. Clearly, Gi can be obtained from Gi−1 by applying a rule from Omin

for each i = 1, . . . , n− 1, and Gn−1 = R(a, x′) for some x′ since the last step
of the proof is applying the only rule from A[∃y.R(a, y)]. Let Gk be the first
goal in π obtained from Gk−1 by applying a rule from Equation (2); clearly,
O ∪ {∃∗Gk−1} |= G0. We have the following cases.

• Assume that we apply the third rule from Equality (2) to Gk−1 = B(b)
for some constant b (note that a goal B(x) with x a Skolem constant
cannot appear by applying QL rules except for Type (3)). Then Gk =
PS(x, b), and the only rule that has PS in its head is the first one from
Equality (2); however, this rule cannot be applied to Gk since we cannot
unify b and cA,S . Thus, this case is invalid.

• Assume that we apply the second rule from Equality (2) to Gk−1 =
S(b, d) for some constants b and d. This case is always invalid due to the
same reason as the previous one.



• Assume that we apply the third rule from Equality (2) to Gk−1 = S(b, x)
for some constant b and Skolem constant x. Then, Gk = PS(b, x) and
Gk+1 is obtained from Gk by applying the first rule from Equation (2);
that is,Gk+1 = A(b). But then we have that A(x)→ ∃y.[S(x, y)∧B(y)] ∈
O and consequently O ∪ {A(b)} |= ∃∗Gk−1. W.l.o.g. we can assume
that starting from Gk+1 rules only from O are used, which means that
O ∪A[∃y.R(s, y)] |= A(b).

• No other case is possible.
Thus O ∪ {u} |= α which contradicts (iii).

Thus, cens is optimal for I, which concludes the proof.


