

Department of Computer Science

CS-RR-14-02

Department of Computer Science, University of Oxford
Wolfson Building, Parks Road, Oxford, OX1 3QD

ONTOLOGY-BASED QUERY ANSWERING WITH
GROUP PREFERENCES

Thomas Lukasiewicz
Maria Vanina Martinez

Gerardo I. Simari
Oana Tifrea-Marciuska

DEPARTMENT OF COMPUTER SCIENCE RESEARCH REPORT

DEPARTMENT OF COMPUTER SCIENCE RESEARCH REPORT 14-02, MAY 2014

ONTOLOGY-BASED QUERY ANSWERING WITH GROUP
PREFERENCES

(PRELIMINARY VERSION, 9 MAY 2014)

Thomas Lukasiewicz Maria Vanina Martinez
Gerardo I. Simari Oana Tifrea-Marciuska 1

Abstract. The Web has recently been evolving into a system that is in many ways centered on
social interactions and is now more and more becoming what is called the Social Semantic Web.
One of the many implications of such an evolution is that the ranking of search results no longer
depends solely on the structure of the interconnections among Web pages — instead, the social
components must also come into play. In this paper, we argue that such rankings can be based
on ontological background knowledge and on user preferences. Another aspect that has become
increasingly important in recent times is that of uncertainty management, since uncertainty can arise
due to many uncontrollable factors. To combine these two aspects, we propose extensions of the
Datalog+/– family of ontology languages that both allow for the management of partially ordered
preferences of groups of users as well as uncertainty, which is represented via a probabilistic model.
We focus on answering k-rank queries in this context, presenting different strategies to compute
group preferences as an aggregation of the preferences of a collection of single users. We also study
merging operators that are useful for combining the preferences of the users with those induced
by the values obtained from the probabilistic model. We then provide algorithms to answer k-rank
queries for DAQs (disjunctions of atomic queries) under these group preferences and uncertainty that
generalizes top-k queries based on the iterative computation of classical skyline answers. We show
that such DAQ answering in Datalog+/– can be done in polynomial time in the data complexity,
under certain reasonable conditions, as long as query answering can also be done in polynomial
time (in the data complexity) in the underlying classical ontology. Finally, we present a prototype
implementation of the query answering system, as well as experimental results (on the running time
of our algorithms and the quality of their results) obtained from real-world ontological data and
preference models, derived from information gathered from real users, showing in particular that
our approach is feasible in practice.

1Department of Computer Science, University of Oxford, UK; e-mail: {thomas.lukasiewicz, vanina.martinez,
gerardo.simari, oana.tifrea}@cs.ox.ac.uk.

Acknowledgements: This work was supported by the EPSRC grant EP/J008346/1 “PrOQAW: Probabilistic
Ontological Query Answering on the Web”, by the European Research Council (FP7/2007–2013/ERC) grant
246858 (“DIADEM”), by a Google European Doctoral Fellowship, and by a Yahoo! Research Fellowship.
We are grateful to the reviewers of this article’s preliminary abstract at WI 2013 [24] for their extensive
comments, which have helped to improve this work. Finally, we wish to thank Giorgio Orsi for his help with
the Datalog+/– query answering engine, and all the participants who volunteered to take part in our empirical
evaluation.
Copyright c� 2014 by the authors

RR-14-02 I

Contents

1 Introduction 1
1.1 Related Work . 1
1.2 Outline of this Work . 2

2 Preliminaries 3
2.1 Datalog+/– . 3
2.2 Preference Datalog+/– . 5

3 GPP-Datalog+/– 5

4 Query Answering in GPP-Datalog+/– 7
4.1 Preference Merging and Aggregation . 7

4.1.1 Collapse to Single User . 9
4.1.2 Voting-Based Preference Aggregation . 11

4.2 Answering k-Rank Queries to GPP-Datalog+/– Ontologies 11

5 Semantic Properties of k-Ranking over Group Preferences 13
5.1 Semantic Properties of Voting-Based Strategies . 14
5.2 Semantic Properties of the CSU Strategy . 15

6 Implementation and Experimental Evaluation 15
6.1 Implementation and Hardware . 16
6.2 Experimental Setup . 16
6.3 Performance Evaluation . 17
6.4 Quality Evaluation . 18

6.4.1 Evaluation Metrics . 18
6.4.2 Results . 19

7 Discussion 21

A The Chase 25

B Proofs 25

C Further Details for the Experimental Evaluation 31

RR-14-02 1

1 Introduction

In the recent years, several important changes have been taking place on the classical Web. First, the so-
called Web of Data is increasingly being realized as a special case of the Semantic Web. Second, as a part of
the Social Web, users are acting more and more as first-class citizens in the creation and delivery of contents
on the Web. The combination of these two technological waves is called the Social Semantic Web (or also
Web 3.0), where the classical Web of interlinked documents is more and more turning into (i) semantic
data and tags constrained by ontologies, and (ii) social data, such as connections, interactions, reviews,
and tags. The Web is thus shifting away from data on linked Web pages towards fewer such interlinked
data in social networks on the Web relative to underlying ontologies. This requires new technologies for
search and query answering, where the ranking of search results is not solely based on the link structure
between Web pages anymore, but on the information available in the Social Semantic Web — in particular,
the underlying ontological knowledge present in user-created content, as well as the user’s preferences
implicitly or explicitly present in such content.

Modeling the preferences of a group of users is also an important research topic in its own right. With
the growth of social media, people post their preferences and expect to get personalized information. More-
over, people use social networks as a tool to organize events, where it is required to combine the individual
preferences and suggest items obtained from aggregated user preferences. For example, if there is a movie
night of friends, family trip, or dinner with working colleagues, one has to decide which is the ideal movie
or location for the group, given the preferences of each member. To address this problem, individual user
preferences can be adopted and then aggregated to group preferences. However, this comes along with two
additional challenges. The first challenge is to define a group preference semantics that solves the possible
disagreement among users (a system should return results in such a way that each individual benefits from
the result). For example, people (even friends) often have different tastes in restaurants. The second chal-
lenge is to allow for efficient algorithms, e.g., to compute efficiently the answers to queries under aggregated
group preferences [2].

Example 1 To illustrate this, consider a situation in which three friends Alberto, Bruno, and Charles must
decide where to go for dinner among three possible restaurants: r1, r2, and r3. Alberto’s preferences are
hr1, {r2, r3}i (meaning that he prefers r1 and then he does not have a preference between r2 and r3), Bruno’s
are hr2, {r1, r3}i, and Charles’s are hr1, r2, r3i. Finally, the three friends have consulted a review site that
gives a score to each restaurant stating how likely it is that it will have seating available tonight; these
probabilities are 0.2 for r1, 0.9 for r2, and 0.6 for r3.

Taking a simple voting approach where the majority decides would lead the friends to choose r1, since
it is the first choice of two of them; however, it is also the least likely to have seating available — r2, on the
other hand, seems to be a better choice, since it is well-ranked by both Bruno and Charles, and has a high
probability as well.

1.1 Related Work

Many studies address the area of group modeling. Indirectly, it is related to the area of social choice (group
decision making, i.e., aiming at the decision that is best for a user given the opinion of individuals), which
was studied in mathematics, economics, politics, and sociology [30, 34]. Other areas related to social choice
are meta-search [25], collaborative filtering [19], and multi-agent systems [35]. Current approaches that
deal with group preferences have also been studied in the area of recommender systems [2, 13, 29], which
focus on quantitative preferences. However, in many real-world scenarios, the ordering of preferences is

2 RR-14-02

incomplete — cf. Example 1, where Alberto and Bruno both only declared a favorite restaurant and failed
to fully order the rest. This appears due to privacy issues or an incomplete elicitation process (for instance,
users may not want to be asked too many questions). Furthermore, it is often difficult to determine the
appropriate numerical preferences and weights that maximize the utility of a decision [5]. For example, it is
difficult for a user to determine a numerical value (i.e., 0.7 or 0.9) to rate a restaurant. These arguments thus
support the use of qualitative over quantitative formalisms for representing and reasoning with incomplete
preferences [31, 18, 1, 21].

In [21], we have introduced an extension of the Datalog+/– family of ontology languages with pref-
erences for a single user; i.e., the addition of groups is novel in this line of research. Datalog+/– enables
a modular rule-based style of knowledge representation — it has been studied in depth in the context of
lightweight ontology languages, and has been shown to embed the entire DL-Lite family, the EL description
logic, as well as F-Logic Lite [7]. We now focus on extending Datalog+/– with preferences of a group of
users that comes with the two additional aforementioned challenges. This paper solves them by providing
aggregated answers for DAQs (disjunctions of atomic queries) in polynomial time.

The presence of uncertainty in the Web in general is undeniable [17, 20, 28, 11]. Different sources of
uncertainty that must be dealt with in answering queries in the Social Semantic Web are, e.g., information
integration (as in travel sites that query multiple sources to find interesting tours), automatic processing of
Web data (analyzing an HTML document often involves uncertainty), as well as inherently uncertain data
such as the probability of a restaurant being crowded as discussed in Example 1.

1.2 Outline of this Work

The current challenge for Web search is therefore inherently linked to: (1) leveraging the social components
of Web content towards the development of some form of semantic search and query answering on the Web
as a whole, and (2) dealing with the presence of uncertainty in a principled way throughout the process.
In this paper, we develop a novel integration of ontology languages with both preferences of groups of
users and uncertainty management mechanisms. We do this by developing an extension of the Datalog+/–
family of ontology languages [7] with a preference model over the consequences of the ontology, as well
as a probabilistic model that assigns probabilities to them. The preference and the probabilistic model are
assumed to model the preferences of a group of users and the uncertainty in the domain, respectively.

The main contributions of this paper can be summarized as follows.

• We introduce GPP-Datalog+/–, a language that combines the Datalog+/– [7] ontology language with
group preferences (a generalization of preference handling in relational databases) and probabilis-
tic uncertainty. To our knowledge, this is the first combination of ontology languages with group
preferences (with and without probabilistic uncertainty). The preference and the probabilistic mod-
els are assumed to represent the preferences of a group of users and the uncertainty in the domain,
respectively.

• We formalize the notion of k-rank query answering based on operators for merging single-user and
probability-based preferences (in the form of a strict partial and a weak order, respectively), and
aggregating multiple single-user preference relations. We analyze two approaches to computing an
answer to a k-rank query that are suitable for partially ordered sets of preferences: collapse to single
user (CSU), which constructs a single virtual user that aggregates the preferences of all the individuals
from the group and the k-rank answers are computed over this new preference relation; and voting-
based aggregation, where k-rankings are computed first for each individual user and then aggregation

RR-14-02 3

techniques based on voting strategies are used to aggregate the answers and obtain a single k-ranking.

• Based on an algorithm for the above preference merging and aggregation, we give algorithms for
answering k-rank queries for DAQs (disjunctions of atomic queries), which generalize top-k queries
based on the iterative computation of classical skyline answers. We show that answering DAQs in
GPP-Datalog+/– is possible in polynomial time in the data complexity modulo the cost of computing
probabilities.

• Finally, we developed a prototype implementation of a group preference-based query answering sys-
tem, and conducted a series of experiments based on real-world ontological data and preference mod-
els derived from information gathered from real users. The results (on the running time of our algo-
rithms and the quality of their results) show in particular that the strategies proposed and developed
in this work are feasible in practice.

The rest of this paper is organized as follows. In Section 2, we recall some basics on Datalog+/– and
PrefDatalog+/–. Section 3 introduces the syntax and the semantics of GPP-Datalog+/–, in particular, the
general group preference model and the probabilistic model, along with preference merging and aggregation
operations. In Section 4, we present algorithms for k-rank query answering, along with correctness and data
tractability results. Section 5 studies a set of properties that can be considered desirable for the aggregation
of group preferences. The experimental setup and results are presented in Section 6. Finally, Section 7
summarizes the main results of this paper and gives an outlook on future research. Detailed proofs of all
results in this paper are given in the appendix.

2 Preliminaries

In this section, we briefly recall some necessary background concepts on Datalog+/– and its generalization
by preferences.

2.1 Datalog+/–

We first recall some basics on Datalog+/– [7], namely, on relational databases, (Boolean) conjunctive
queries ((B)CQs), tuple- and equality-generating dependencies (TGDs and EGDs, respectively), negative
constraints, the chase, and ontologies in Datalog+/–.

Databases and Queries We assume (i) an infinite universe of (data) constants � (which constitute the
“normal” domain of a database), (ii) an infinite set of (labeled) nulls �N (used as “fresh” Skolem terms,
which are placeholders for unknown values, and can thus be seen as variables), and (iii) an infinite set of
variables V (used in queries, dependencies, and constraints). Different constants represent different values
(unique name assumption), while different nulls may represent the same value. We denote by X sequences
of variables X1, . . . , Xk with k> 0. We assume a relational schema R, which is a finite set of predicate
symbols (or simply predicates). A term t is a constant, null, or variable. An atomic formula (or atom) A
has the form p(t1, . . . , tn), where p is an n-ary predicate, and t1, . . . , tn are terms. It is ground iff every ti
belongs to �.

A database (instance) D for a relational schema R is a (possibly infinite) set of atoms with predicates
from R and arguments from �[�N . A conjunctive query (CQ) over R has the form Q(X) = 9Y�(X,Y),
where �(X,Y) is a conjunction of atoms (possibly equalities, but not inequalities) with the variables X

4 RR-14-02

and Y, and possibly constants, but without nulls. A Boolean CQ (BCQ) over R is a CQ of the form Q(),
often written as the set of all its atoms, without quantifiers. Answers to CQs and BCQs are defined via
homomorphisms, which are mappings µ : �[�N [V ! �[�N [V such that (i) c 2 � implies µ(c) = c,
(ii) c 2 �N implies µ(c) 2 � [�N , and (iii) µ is naturally extended to atoms, sets of atoms, and conjunc-
tions of atoms. The set of all answers to a CQ Q(X)= 9Y�(X,Y) over a database D, denoted Q(D),
is the set of all tuples t over � for which there exists a homomorphism µ : X[Y!� [�N such that
µ(�(X,Y))✓D and µ(X)= t. The answer to a BCQ Q() over a database D is Yes, denoted D |=Q, iff
Q(D) 6= ;.

Given a relational schema R, a tuple-generating dependency (TGD) � is a first-order formula of the form
8X8Y�(X,Y)!9Z (X,Z), where �(X,Y) and (X, Z) are conjunctions of atoms over R (without
nulls), called the body and the head of �, denoted body(�) and head(�), respectively. Such � is satisfied in
a database D for R iff, whenever there exists a homomorphism h that maps the atoms of �(X,Y) to atoms
of D, there exists an extension h0 of h that maps the atoms of (X,Z) to atoms of D. Since TGDs can be
reduced to TGDs with only single atoms in their heads, in the sequel, every TGD has w.l.o.g. a single atom
in its head.

Query answering under TGDs, i.e., the evaluation of CQs and BCQs on databases under a set of TGDs
is defined as follows. For a database D for R, and a set of TGDs ⌃ on R, the set of models of D and ⌃,
denoted mods(D,⌃), is the set of all (possibly infinite) databases B such that (i) D✓B and (ii) every � 2⌃
is satisfied in B. The set of answers for a CQ Q to D and ⌃, denoted ans(Q,D,⌃), is the set of all tuples
a such that a 2 Q(B) for all B 2mods(D,⌃). The answer for a BCQ Q to D and ⌃ is Yes, denoted D [
⌃ |=Q, iff ans(Q,D,⌃) 6= ;. Note that query answering under general TGDs is undecidable [3], even when
the schema and TGDs are fixed [6]. There are sets of TGDs for which answering BCQs is decidable and can
even be done in polynomial time in the data complexity, for example, sets of linear, multi-linear, guarded,
sticky, or sticky-join TGDs [7, 8].

Negative constraints (or simply constraints) � are first-order formulas of the form 8X�(X)!?, where
�(X) (called the body of �) is a conjunction of atoms (without nulls). Under the standard semantics of query
answering of BCQs in Datalog+/– with TGDs, adding negative constraints is computationally easy, as for
each constraint 8X�(X)!?, we only have to check that the BCQ �(X) evaluates to false in D under ⌃;
if one of these checks fails, then the answer to the original BCQ Q is true, otherwise the constraints can
simply be ignored when answering the BCQ Q. As another component, the Datalog+/– language allows
for special types of equality-generating dependencies (EGDs). Since they can also be modeled via negative
constraints, we omit them here, and we refer to [7] for their details.

The chase algorithm for a database D and a set of TGDs ⌃ consists of an exhaustive application of the
TGDs (cf. Appendix A). The (possibly infinite) chase relative to TGDs is a universal model, i.e., there exists
a homomorphism from chase(D,⌃) onto every B 2mods(D,⌃) [7]. This implies that BCQs Q over D
and ⌃ can be evaluated on the chase for D and ⌃, i.e., D[⌃ |= Q is equivalent to chase(D,⌃) |= Q. For
tractable fragments, such BCQs Q can be evaluated in polynomial time in the data complexity.

Datalog+/– Ontologies A Datalog+/– ontology O=(D,⌃), where ⌃=⌃T [⌃E [⌃NC, consists of a
finite database D over �, a finite set of TGDs ⌃T , a finite set of non-conflicting EGDs ⌃E , and a finite set
of negative constraints ⌃NC. In the rest of this paper, we assume that all ontologies belong to one of the
data-tractable fragments of Datalog+/–.

Example 2 A simple Datalog+/– ontology O=(D,⌃) for food is given below. Intuitively, the database D
encodes that (i) sushi, pizza, pasta, salad, and fish are types of food, (ii) p1 and p2 are places, where p1 is a

RR-14-02 5

pizzeria, serving Italian cuisine, while p2 is a sushi bar, serving Japanese cuisine, and located in the city c1,
and (iii) Italian cuisine includes pizza and pasta, Japanese cuisine includes sushi and fish, and vegetarian
cuisine includes pizza and salad. The set of constraints ⌃ encodes that every place is located in a city, and
that every place that serves a type of food of a particular cuisine also serves that cuisine.

D = { food(sushi), food(pizza), food(pasta), food(salad), food(fish), place(p1), place(p2),
type(p1, pizzeria), serves(p1, Italian), type(p2, sushi bar), serves(p2, Japanese),
in city(p2, c1), cuisine(Italian, pizza), cuisine(Italian, pasta), cuisine(Japanese, sushi),
cuisine(Japanese, fish), cuisine(vegetarian, pizza), cuisine(vegetarian, salad)} ,

⌃ = { place(T)!9C in city(T,C), serves(P, F) ^ food(F) ^ cuisine(C,F)! serves(P,C)} .

2.2 Preference Datalog+/–

We now recall the PrefDatalog+/– language introduced in [21], which is a generalization of Datalog+/– with
preferences. For a more general survey of preferences in the context of databases, we refer the reader to
[33]. The approach to define preferences logically was pursued in [9].

In the following, we denote by �Ont, VOnt, and ROnt the infinite set of constants, the infinite set of
variables, and the finite set of predicates, respectively, of standard Datalog+/– ontologies, as described in the
previous section. For the preference extension, we assume a finite set of constants �Pref ✓�Ont, an infinite
set of variables VPref ✓VOnt, and a finite set of predicates RPref ✓ROnt. These sets give rise to corresponding
Herbrand bases HOnt and HPref, as well as Herbrand universes UOnt and UPref, respectively, consisting of all
constructible ground atoms and ground terms, respectively, where HPref ✓HOnt and UPref ✓UOnt.

A preference relation is any binary relation �✓HPref ⇥HPref. In this work, we are interested in strict
partial orders (SPOs), which are irreflexive and transitive relations — we consider these to be the minimal
requirements for a preference relation to be useful in the applications that we envision. In the following,
we consider two kinds of preference models that induce preference relations. The first, which follows the
qualitative approach to specifying preferences, consists of a set of preference formulas (here, we consider a
slight generalization of the proposal by [9]); these are first-order expressions of the form pf : C(a, b) defining
a preference relation �pf on HPref as follows: a�pf b if C(a, b). We call C(a, b) the condition of pf, denoted
cond(pf). The preference relation defined via a set of preference formulas P is denoted by �P .

Example 3 Consider again the ontology O=(D,⌃) from Example 2. The food preferences of a user may
be represented by the preference formulas in U1 below, which encode that food that belongs to the Italian
cuisine is preferred by the user over food that belongs to the Japanese cuisine, that pizzerias are preferred
over sushi bars, and that places that serve pasta are preferred over those that serve salad. Figure 1, top left,
shows the SPO induced by these preference formulas.

U1 :

8
><

>:

C1 : food(X) � food(Y) if cuisine(Italian, X) ^ cuisine(Japanese, Y) ^X 6= Y

C2 : place(X) � place(Y) if type(X, pizzeria) ^ type(Y, sushi bar) ^X 6= Y

C3 : place(X) � place(Y) if serves(X, pasta) ^ serves(Y, salad) ^X 6= Y .

3 GPP-Datalog+/–

In this section, we introduce the GPP-Datalog+/– language, an extension of Datalog+/– with both a group
preference model and a probabilistic model; it is based on several previously proposed formalisms: the

6 RR-14-02

8�

8�

���SODFH�S��

IRRG�SDVWD�

IRRG�SL]]D�

���

����

���

IRRG�VXVKL�

IRRG�ILVK�

SODFH�S��

����

���

3U0

IRRG�VDODG�

���

8�

IRRG�SDVWD�

IRRG�ILVK�IRRG�VXVKL�

IRRG�SL]]D�

IRRG�VDODG�

SODFH�S��

SODFH�S��

IRRG�SDVWD�

IRRG�ILVK�IRRG�VXVKL�

IRRG�SL]]D�
IRRG�VDODG�

SODFH�S��

SODFH�S��

SODFH�S��

SODFH�S��

IRRG�SDVWD�

IRRG�VDODG�IRRG�SL]]D�

IRRG�ILVK�IRRG�VXVKL�

Figure 1: Group preferences and probability-based preference relation for Example 2.

PrefDatalog+/– language described above [21] (this language does not contemplate probabilities nor groups),
PP-Datalog+/– [22] (which includes probabilities, but not groups), and G-PrefDatalog+/ [23] (including
groups, but not probabilities). As we discuss in this paper, the combination of all three characteristics yields
challenges not present in these previous proposals.

Group Preference Model We start by generalizing the preference models presented in Section 2.2 to
represent preferences about groups of individuals. Specifically, a group preference model U =(U1, . . . , Un)
for n> 1 users is a collection of n user preference models.

Example 4 Consider again the Datalog+/– ontology O = (D,⌃) from Example 2. Suppose that we have
the following group preference model for three users U =(U1, U2, U3):

U1 :

8
><

>:

C1,1 : food(X) � food(Y) if cuisine(Italian, X) ^ cuisine(Japanese, Y) ^X 6= Y,

C1,2 : place(X) � place(Y) if type(X, pizzeria) ^ type(Y, sushi bar) ^X 6= Y,

C1,3 : place(X) � place(Y) if serves(X, pasta) ^ serves(Y, salad) ^X 6= Y,

U2 :

(
C2,1 : food(X) � food(pasta) if cuisine(Japanese, X),

C2,2 : place(X) � place(Y) if type(X, sushi bar) ^ in city(X, c1) ^X 6= Y,

U3 :

(
C3,1 : food(X) � food(Y) if cuisine(vegetarian, X) ^ cuisine(Italian, Y) ^X 6= Y,

C3,2 : place(X) � place(Y) if type(Y, sushi bar) ^X 6= Y.

Figure 1 (where we assume the transitive closure of the graphs) shows the SPOs induced by the preference
models U1, U2, and U3.

RR-14-02 7

Probabilistic Model To incorporate the probabilistic model, in addition to what was stated in Section 2.2,
we also assume the existence of a finite set of constants �M, a finite set of predicates RM such that RM \
ROnt = ;, and an infinite set of variables VM. We denote the corresponding Herbrand base (the sets of all
possible ground atoms) with HM. We assume the existence of a probabilistic model M that represents a
probability distribution PrM over some set X = {X1, . . . , Xn} of Boolean variables such that there is a 1-
to-1 mapping from X to the set of all ground atoms over RM and �M. Examples of the type of probabilistic
models that we assume in this work are Markov logic and Bayesian networks. The probabilistic extension
adopted here was first introduced in [15, 14].

In the rest of this paper, we assume the existence of a preference relation �M , defined as a �M b iff
PrM (a) > PrM (b) — we refer to �M as the probability-based (preference) relation.

Example 5 Continuing with the running example, suppose that we have access to an online probabilistic
model that assigns probabilities specifying how likely it is that certain events happen. This uncertainty could
arise, for instance, from the fact that the system is aggregating information from multiple sources, which
may contain conflicting information, as well as uncertainty due to other factors. Such a system could inform
the user of the probability of a place, specific food or cuisine, of being available and recommendable at
the time of the query by taking into account reviews, crowds, season, etc. For instance, we can query the
probability of a particular place, or type of place, of being open with availability of space, or the probability
of finding in the area at a certain time a specific kind of food or cuisine.

Figure 1 gives an example of such a probability assignment, along with the preference relation as a
graph that is induced by these values, assuming that higher probabilities are more preferable. The model M
assigns to place(p1) the highest probability, while it assigns to place(p2) the lowest. ⌅

We are now ready to define GPP-Datalog+/– ontologies.

Definition 1 A GPP-Datalog+/– ontology has the form KB =(O,U ,M), where O is a Datalog+/– on-
tology, U =(U1, . . . , Un) is a group preference model with n> 1, and M is a probabilistic model (with
Herbrand bases HOnt, HPref, and HM, respectively, such that HPref ✓ HOnt).

4 Query Answering in GPP-Datalog+/–

In this section, we concentrate on skyline queries [4], a well-known class of queries that can be issued over
preference-based formalisms — intuitively, answers to skyline queries consist of those elements that are not
dominated by any other according to the input preferences. We also focus on the iterated computation of
skyline answers [9] that allows us to assign a rank to each answer by iterating the following procedure: (1)
initialize ` to 0; (2) assign the rank ` to the skyline answers; and (3) remove from consideration all answers
of rank `, increment ` by one, and go back to (2). As a generalization of classical top-k queries, we adopt
here k-rank queries; answers to them are k-tuples of answers sorted by rank.

4.1 Preference Merging and Aggregation

As seen in Figure 1, there are two challenges encountered in query answering with GPP-Datalog+/– ontolo-
gies. The first challenge is that each user preference model yields a certain precedence relation that might
be in disagreement with the one induced by the probabilistic model. The second challenge is that the user
preference models may be in disagreement with each other.

8 RR-14-02

Preference Merging. To address the first challenge, we introduce the notion of preference merging oper-
ators, which are functions that take two preference relations and produce a third one satisfying two basic
properties as stated below.

Definition 2 Let �U be an SPO and M be a probabilistic model. A preference merging operator ⌦(M,�U)
yields a relation �⇤ such that (i) �⇤ is an SPO, and (ii) if a1 �U a2 and a1 �M a2, then a1 �⇤ a2.

The two properties required by Definition 2 are the minimal required to produce a “reasonable” merging
of the two relations. A simple example of such an operator is to produce a new SPO that sorts elements
according to their rank in �U and uses �M to break ties.

In the sequel, we adopt the following family of preference merging operators to combine individual
preferences with those based on probabilities, defined by the following algorithm. Given a relation �U ,
probability-based relation �M , and value t2 [0, 1] (that allows the user to choose how much influence the
probabilistic model has on the output preference relation), the algorithm works by iterating through all pairs
(a, b) of elements in �U and, if (i) �M disagrees with �U , (ii) the difference in probability is greater than t,
and (iii) changing (a, b) to (b, a) does not introduce a cycle in the associated graph, then the pair is inserted
in reverse order into the output; otherwise, the output contains the same pair as �U . Finally, the algorithm
outputs the transitive closure of this relation. In the rest of this paper, we use the notation ⌦t to denote
the particular instance of this operator ⌦ given a specific value of t. The following result shows that ⌦t is
indeed a preference merging operator according to Definition 2.

Proposition 1 Let �U be an SPO, M be a probabilistic model, and t2 [0, 1]. Then, ⌦t as defined above is
a preference merging operator.

The following is an example of our merging operator.

Example 6 Consider again the running example. Figure 3 shows the result of the individual mergings of
the preference relation for each user with the probability-based relation using t=0 for u1, t=0.1 for u2,
and t=0.3 for u3. Observe that even though user u2 prefers place(p2) to place(p1), after merging with �M ,
this preference is reversed (Figure 3). ⌅

Finally, the next proposition states that for t = 0, the result depends on the ordering given by �M and
not the actual probabilities.

Proposition 2 Let �U be an SPO, M be a probabilistic model, and t2 [0, 1]. If M 0 is a probabilistic model
such that �M =�M 0 and t=0, then ⌦t(M,�U)= ⌦t (M 0,�U).

Preference Aggregation. To address the second challenge, we define preference aggregation operators,
which are functions that take a set of preference models and produce a new one.

Definition 3 Let U =(U1, . . . , Un) be a group preference model, where every Ui is an SPO. A preference
aggregation operator

U
on U yields an SPO �⇤.

A simple example of an aggregation operator is to consider all pairs of elements and do a Pareto composi-
tion [9].

We now explore two different approaches to a preference aggregation operator
U

. In the first one, called
collapse to single user (CSU), we reduce the group modeling problem to a single-user problem by creating

RR-14-02 9

Algorithm 1: AggPrefsCSU(�U1 , . . . ,�Un)
Input: SPOs (�U1 , . . . ,�Un).
Output: Preference relation �⇤✓ HOnt ⇥HOnt.

1. initialize G as an empty graph;
2. add as nodes in G all elements appearing in the preference relations �Ui ;
3. for every user i2 {1, . . . , n} do
4. initialize currUserG as the graph corresponding to �Ui ;
5. for every edge (u, v) in currUserG do
6. if there is no edge (u, v) in G then
7. add edge (u, v) to G and label it with 1;
8. if there is an edge (u, v) in G and it is labeled with n> 1 then
9. increase the label of edge (u, v) in G by 1;

10. if there is an edge (v, u) in G and it is labeled with 1 then
11. remove edge (u, v) from G;
12. if there is an edge (v, u) in G and it is labeled with n > 1 then
13. decrease the label of edge (v, u) in G by 1;
14. return inducedPreferenceRelation(removeCycles(transitiveClosure(G))).

Figure 2: An algorithm for combining the relations in a group preference model with a probabilistic prefer-
ence relation.

a single virtual user that is constructed by aggregating the preferences of the individuals from the group. In
the second approach, called voting-based aggregation, we first compute the k-rankings according to each
individual user and then apply aggregation techniques based on voting strategies (originally developed for
quantitative preferences [27]) to aggregate the relations induced by the rankings.

4.1.1 Collapse to Single User

Under the CSU strategy, the preference relation for all users, along with the probabilistic preference relation,
are taken into account in the generation of a new preference relation that encodes the dominant preferences.
This single-user preference relation is then used to compute the answers to queries. The following algo-
rithm computes this particular approach to defining a

U
operator; below, we provide an algorithm that uses

this operator for answering k-rank queries to GPP-Datalog+/– ontologies in polynomial time in the data
complexity (modulo the cost of computing probabilities with respect to the probabilistic model M).

Algorithm AggPrefsCSU. The algorithm in Figure 2 implements preference aggregation operator]CSU; the
output is a new preference relation consisting of the collapsed preferences of all relations. A graph is used
as an intermediate data structure representing the collapsed preferences; the nodes of this graph are all the
atoms that appear in the preference relations, while the edges are labeled with an integer representing the
number of relations that have this edge in their individual graph. The algorithm iterates through all the users
i, looks at all the edges in currUserG, and updates the general graph G by incrementing or decrementing
the edge labels and introducing or removing edges. After the final iteration of the for-loop in Line 3, the
edge labels of G correspond to the number of users that have that edge in their preference relation. The final
step of the algorithm computes the transitive closure of the graph and eliminates any cycles by applying the
procedure removeCycles (note that cycles can arise even though all individual relations are cycle-free). We
say that this subroutine does not unnecessarily remove edges if there does not exist an edge e in G such
that removeCycles(G) [{e} does not contain cycles. Since this subroutine is not explicitly given,]CSU is

10 RR-14-02

8� W� ���� 8� W� ����

IRRG�SDVWD�

IRRG�ILVK�IRRG�VXVKL�

IRRG�SL]]D� IRRG�VDODG�

SODFH�S��

SODFH�S��

8� W� ��

IRRG�SDVWD�

IRRG�ILVK�IRRG�VXVKL�

IRRG�SL]]D�
IRRG�VDODG�

SODFH�S��

SODFH�S��

SODFH�S��

SODFH�S��

IRRG�SDVWD�

IRRG�VDODG�

IRRG�SL]]D�

IRRG�ILVK�

IRRG�VXVKL�

Figure 3: The merged preference relation obtained for each user. The three graphs show the merging of each
individual preference with the probabilistic preference.

Figure 4: Collapse to single user graph.

actually a family of operators.

Example 7 Continuing from Example 6, Figure 4 shows the final collapsed graph. Consider the atoms
place(p1) and place(p2) in this graph. We mentioned in Example 6 that the preference of user u2 was
reversed, because of the probabilities for those items; as a result, we have an unanimous preference of
place(p1) over place(p2) in the final graph. ⌅

The following theorem states that]CSU satisfies Definition 3.

Theorem 3 Let KB =(O,U ,M) be a GPP-Datalog+/– ontology, where U = (U1, . . . , Un). Let �⇤=]CSU
(�U1 , . . . ,�Un). Then, the following properties hold: (i) if removeCycles preserves transitivity, then �⇤ is a
preference aggregation operator; and (ii) if removeCycles only removes edges (v1, v2) whenever there does
not exist another edge in the cycle labeled with a lower number then, given a1, a2 2 HOnt such that for all
Ui 2U it holds that (a1, a2)2Ui, then we have that a1 �⇤ a2.

RR-14-02 11

4.1.2 Voting-Based Preference Aggregation

As an alternative to the approach described in the previous section, we now briefly discuss specific strategies
that can be used to combine the answers to k-rank queries computed individually for each user based on a
small set of well-known voting mechanisms from the social choice literature. Recall that this is essentially
different from the CSU approach above, where a single k-ranking is computed from a preference relation
distilled from all the users’ individual preferences. We consider the following voting mechanisms: plural-
ity voting, where each user votes for their top-preferred items, the items’ frequency for all the users are
summed up, and the items with highest number of votes win; the least misery strategy first removes from
consideration the elements that are the least preferred by each user, and then applies plurality voting — the
idea behind it is that a group is as happy as its least happy member; in the average without misery strategy,
the least misery approach is generalized by removing the t least liked elements for each member (instead of
just one); and the fairness strategy, which is often applied when people try to fairly divide a set of items —
one person chooses first, then another, until everyone has made one choice, and next, everybody chooses a
second item, often starting with the person who had to choose last in the previous round; an advantage of
this strategy is that the top items from all individuals are always selected.

In the following, we use]vote to denote the family of preference aggregation operators defined as: (i)
for each input SPO, compute a ranking (linear order); and (ii) apply a voting-based strategy over these linear
orders. For particular voting strategies, we use specific names such as]plu,]plu,fair,]plu,mis, and so on.
Therefore, we must adapt the voting strategies to work over linearly sorted lists of elements. Plurality voting
then works by assigning one vote to each element in the list. If a misery strategy is used, then each user’s
undesired elements are marked as unavailable before obtaining the individual rankings. Finally, if fairness
is used, we iterate through each user, who picks their highest-ranked elements in turn.

Example 8 Consider the preference relations for users u1, u2, and u3 from Figure 6 from our running
example. The first step towards applying a voting-based aggregation technique is to compute a ranking for
each user from their corresponding SPOs. For k=4, the following are some possible k-rankings for these
users:

r1 = hplace(p1), food(pasta), food(pizza), food(salad)i,
r2 = hfood(pasta), food(pizza), place(p1), food(salad)i,
r3 = hfood(pizza), food(fish), food(sushi), place(p1)i.

If we apply the aggregation operator]plu, then we have 3 votes for place(p1), 3 votes for food(pizza), 2
votes for food(salad) and food(pasta), 1 vote for food(fish) and food(sushi), and 0 votes for place(p1). The
SPO output by]plu arises from this tally. ⌅

4.2 Answering k-Rank Queries to GPP-Datalog+/– Ontologies

In this section, we first consider disjunctive atomic queries (DAQs) and then briefly discuss the extension to
conjunctive queries (CQs). We show that the former can be answered in polynomial time, while answering
the latter turns out to be ⌃p

2-complete.
We use the standard notions of substitutions and most general unifiers. More specifically, a substitution

is a mapping from variables to variables or constants. Two sets S and T unify via a substitution ✓ iff
✓S = ✓T , where ✓A denotes the application of ✓ to all variables in all elements of A; here, ✓ is a unifier.

12 RR-14-02

Algorithm 2: k-Rank-GPP(KB , Q, k, t,⌦,])
Input: GPP-Datalog+/– ontology KB = (O,U ,M), where U = (U1, . . . , Un), DAQ Q(X),

k > 0, t = (t1, . . . , tn) 2 [0, 1]n, and operators ⌦ and].
Output: k-rank answer ha1, . . . , ak0i to Q, with k0 6 k.

1. for every user i 2 {1, . . . , n} do
2. �i := ⌦ti (M,�Ui);
3. return iteratedSkyline(KB , Q,](�1, . . . ,�n), k).

Figure 5: Algorithm for computing a k-rank answer to DAQ Q.

A most general unifier (mgu) is a unifier ✓ such that for all other unifiers !, there is a substitution � such
that ! = � � ✓.

We now formally define skyline and k-rank answers to DAQs in a GPP-Datalog+/– ontology.

Definition 4 Let KB =(O,U ,M) be a GPP-Datalog+/– ontology, where U = (U1, . . . , Un), ⌦ and
U

be
preference merging and combination operators, respectively, and let Q(X)= q1(X)_· · ·_qn(X) be a DAQ.
A skyline answer to Q(X) relative to �⇤=

U
(⌦(M,�U1), . . . ,⌦(M, �Un)) is any ✓qi entailed by O such

that no ✓0 exists with O |= ✓0qj and ✓0qj �⇤ ✓qi, where ✓ and ✓0 are ground substitutions for the variables
in Q(X). For transitive relations, a k-rank answer to Q(X), k> 0, is a sequence S= h✓1ql1 , . . . , ✓k0qlk0 i of
maximal length of ground instances ✓iqli of atoms qli in Q(X), built by subsequently appending the skyline
answers to Q(X), removing these atoms from consideration, and repeating the process until (a) either the
length of S is k, or (b) no more skyline answers to Q(X) remain.

In Definition 4, note that k-rank answers are only defined when the preference relation is transitive; this
kind of answer can be seen as a generalization of traditional top-k answers [33] that are still defined when
�⇤ is not a weak order, and their name arises from the concept of rank introduced in [9]. Conceivably, other
ways of sorting answers given an SPO are possible; here, we focus on iterated skylines, since it is the most
general approach.

Intuitively, for DAQs, both kinds of answers can be seen as atomic consequences of O that satisfy the
query: the skyline answers can be seen as sets of atoms that are not dominated by any other such atom,
while k-rank answers are k-tuples sorted according to the preference relation. We refer to these as answers
in atom form.

We now present a general algorithm for obtaining k-rank answers using the machinery developed up to
now. Figure 5 presents the pseudocode — essentially, the algorithm follows Definition 4 by first applying
the merging operator ⌦ to each user’s preference relation and then applying the aggregation operator].
Finally, the result is obtained by computing a k-rank over this aggregation.

Example 9 Consider the running example, with Q= food(X), For k=4 and t=(t1, t2, t3)= (0, 0.1, 0.3),
one possible k-rank answer to Q given by both k-Rank-GPP(KB , Q, k, t,⌦,]CSU) and k-Rank-GPP(KB ,
Q, k, t,⌦,]plu) is hfood(pizza), food(pasta), food(salad), food(sushi)i — clearly, if different rankings from
the ones computed in Example 8 are used, then the result with respect to]plu could be different from that
of]CSU. ⌅

The following theorem proves the correctness of the k-Rank-GPP algorithm, and it shows that it runs
in polynomial time under certain conditions.

RR-14-02 13

Theorem 4 Let KB = (O,U ,M) be a GPP-Datalog+/– ontology, ⌦ and] be merging and aggregation
operators, respectively, Q be a DAQ, and k > 0. Then, (i) Algorithm k-Rank-CSU correctly computes
k-rank answers to Q; (ii) if] =]CSU and the removeCycles subroutine does not unnecessarily remove
any edges, then k-Rank-CSU runs in O(poly(kDk) · S + C) time in the data complexity; and (iii) if
] =]vote, and] can be computed in polynomial time in the data complexity, then k-Rank-CSU runs in
O(poly(kDk)·S) time in the data complexity. Here, kDk denotes the size of D, poly(kDk) is a polynomial in
kDk, S is the cost of computing PrM (a) for any atom a such that O |= a, and C is the cost of removeCycles.

Note that the running time depends on the cost of the removeCycles subroutine. Though cycles can
be removed in polynomial time, depending on the properties that we wish the output of this subroutine to
satisfy, the actual cost may vary considerably — for instance, if we wish to remove the minimum number
of edges possible, this is already NP-complete. The computational cost also depends on the implementation
of the voting strategies, which can clearly be computed in polynomial time in the data complexity for the
strategies discussed above; since cycles can never arise, the C factor from part (ii) does not appear.

k-Ranking for Conjunctive Queries. For (non-atomic) conjunctive queries, the substitutions in answers
no longer yield single atoms but rather sets of atoms; thus, to answer such queries relative to a preference
relation, we must extend the preference specification framework to take into account sets of atoms instead
of individual ones. One such approach was proposed in [37], where a mechanism to define a preference
relation over tuple sets �PS: 2HPref ⇥ 2HPref is introduced. In the following, we briefly treat their complexity
and discuss how methods from the relational databases can be applied to answer them. The following result
says that this change has a direct impact on the complexity of both skyline and k-rank query answering; its
proof is a straightforward generalization of the result presented in [21, Theorem 16].

Theorem 5 Let KB =(O,U ,M) be a GPP-Datalog+/– ontology, where O=(D,⌃) and U =(U1, . . . , Un).
Let each �Ui describe a preference relation �PS: 2HPref ⇥ 2HPref such that membership can be tested in poly-
nomial time. Let ⌦ and] be preference merging and aggregation operators, respectively, and let Q be a
CQ. If the relational schema and ⌃ are fixed, deciding whether the set of skyline answers or a k-rank answer
to Q are non-empty is ⌃p

2-complete.

The heuristic algorithms presented in [37] for relational databases can be applied to GPP-Datalog+/– by
computing the chase relative to the query and thus materializing the necessary part of the ontology into a
database. The result in [21, Theorem 17] provides a way to leverage tools developed for relational databases
for first-order (FO) rewritable fragments; if the user preferences are given as sets of preference formulas [9],
this result can be easily extended for GPP-Datalog+/– ontologies.

5 Semantic Properties of k-Ranking over Group Preferences

We now study a set of properties that can be considered desirable for the results of the aggregation of group
preferences. These properties are based on the ones usually studied in social choice theory [12], but extended
for k-rank query answers. Since the two kinds of aggregation strategies being studied are different in nature,
we study a different set of properties for each; essentially, the ones for voting-based strategies focus on the
ordering of elements (by individual users, subgroups, and groups), while the properties for CSU focus on
the relationship between specific pairs of elements. Note that these properties are only with respect to the
aggregation strategies, and do not involve the merging operations used to combine SPOs with preferences
arising from probabilistic models.

14 RR-14-02

In the presentation of the properties, when we say that an element is added, we refer to the modification
of individual SPOs by adding a new element along with any preference edges between that element and
existing ones; we assume that the rest of the SPO is left unchanged, except for the addition of any necessary
edges to satisfy transitivity. Similarly, when we say that an element is removed, we refer to the operation
of removing the element from the SPO and any preference edges associated with it. In the sequel, let P =
(U1, . . . , Un), PA = (UA

1 , . . . , UA
n), and PB = (UB

1 , . . . , UB
n) be group preference models, and PA[B =

(UA
1 , . . . , UA

n , UB
1 , . . . , UB

m). Given a group preference model P , we refer to the SPO corresponding to the
aggregation of the preferences in P as �⇤

P =] (�U1 , . . . ,�Un).

5.1 Semantic Properties of Voting-Based Strategies

Unanimous Winner (UW): If an element a is in a k-rank answer to Q for each Ui 2 P , then there exists a
k-rank answer to Q for P that contains element a.

Unanimous Loser (UL): If element a is in none of the k-rank answers to Q for each Ui 2 P , then a does not
belong to any k-rank answer to Q for P .

In the following, let Padd be a group preference model obtained from P by adding a new element c to
choose from and Prem be a group preference model obtained from P by removing from consideration an
element c.

Weak Stability (WS): For each k-rank answer r = ha1, . . . , aki to Q for P , there exists a k-rank answer
r0 = hb1, . . . , bki to Q for Padd such that either r= r0 or {b1, . . . , bk}� {a1, . . . , ak} = {c}.

This property states that whenever a new element is added, the set of elements in the result either remains
unchanged or differs in the added element.

Stability 1 (S1): For each k-rank answer r = ha1, . . . , aki to Q for P , there exists a k-rank answer r0 =
hb1, . . . , bki to Q for Padd such that either r= r0 or (i) {b1, . . . , bk} � {a1, . . . , ak} = {c}, (ii) for some j,
1 6 j 6 k, bj = c, and (iii) for each bi, bj such that 1 6 i < j 6 k and bi = ai0 and bj = bj0 it holds that
i0 < j0.

As a stronger version of WS, this property requires the order to be the same among the elements in the
result.

Stability 2 (S2): For each k-rank answer r = ha1, . . . , aki to Q for P , if c 6= ai for 1 6 i 6 k, then every
k-rank answer r = hb1, . . . , bki to Q for Prem is such that bi = ai and bi 6= c, for 1 6 i 6 k.

If an element not in the k-rank is removed from consideration, the result must be the same.

Monotonicity 1 (M1): Let r = ha1, . . . , ai�1, c, ai+1, . . . , aki be a k-rank answer to Q for some Ui 2 P ,
and P 0 be equal to P except that one of the Ui’s is changed to U 0

i such that there exists a k-rank answer
r0 = ha01, . . . , a0j�1, c, a

0
j+1, . . . , a

0
ki to Q with j 6 i. Then, there exists a k-rank answer r00 = hb1, . . . , bki

to Q for P 0 such that bm = c, for some 1 6 m 6 k.
Intuitively, Monotonicity 1 states that if an element is in a k-rank, it is still in a k-rank if a profile changes

to rank it higher.

Monotonicity 2 (M2): Let c be an element such that for every k-rank answer r = ha1, . . . , aki to Q for P
we have c 6= ai for 1 6 i 6 k, and let P 0 be equal to P except that one of the Ui’s is changed to U 0

i such
that for every k-rank answer r0 = ha01, . . . , a0ki to Q for U 0

i we have that c 6= a0i for 1 6 i 6 k. Then, every
k-rank answer r = hb1, . . . , bki to Q for P 0 is such that c 6= bi for 1 6 i 6 k.

RR-14-02 15

UW UL WS S1 S2 M1 M2 ND
P X X X X X X X X
F ⇥ X X X X X X ⇥ (k = 1) / X(k 6= 1)

PM X X X X X X X X
FM ⇥ X X X X X X X

Figure 6: Summary of properties satisfied by each voting-based strategy.

If an element is not in the k-rank, then it is not in the k-rank when some profile is changed to lower its
rank.

Non-dictatorship (ND): There is no Ui in P such that the k-rank answers to Q for P are determined by that
preference model alone.

Proposition 6 The following properties hold for the specific voting-based strategies:

• Plurality satisfies UW, UL, WS, S1, S2, M1, M2, and ND.

• Fairness satisfies UL, WS, S1, S2, M1, M2, and ND with k 6= 1.

• Plurality with misery satisfies UW, UL, WS, S1, S2, M1, M2, and ND.

• Fairness with misery satisfies UL, WS, S1, S2, M1, M2, and ND.

5.2 Semantic Properties of the CSU Strategy

Group Union Preservation First Position (GUPF): Let r = ha1, . . . , aki and r0 = hb1, . . . , bki be k-rank
answers to Q for PA and PB , respectively. If a = a1 = b1, then there exists a k-rank answer r00 =
ha, c1, . . . , ck�1i to Q for PA[B .

Intuitively, if element a appears in the first position of a k-rank answer to Q for both PA and PB , then a
appears in the first position of a k-rank answer to Q for the union of the group preference models.

UW First Position (UWF): If for every Ui in P , there exists a k-rank answer to Q for Ui of the form
ha, b1, . . . , bk�1i, then there exists a k-rank answer to Q for P of the form ha, c1, . . . , ck�1i.

Intuitively, if element a appears in the first position of a k-rank answer to Q for each Ui 2 P , then a
appears in the first position of a k-rank answer to Q for P .

Unanimity on preference relation (UP): If removeCycles only removes edges (v1, v2) whenever there does
not exist another edge in the cycle labeled with a lower number, then whenever t1 �Ui t2 for each Ui in P ,
then t1 �⇤

P t2.

Proposition 7 The CSU strategy (as implemented in Algorithm AggPrefsCSU) satisfies GUPF, UWF, and
UP.

6 Implementation and Experimental Evaluation

In this section, we evaluate and analyze the running time of our algorithms and the quality of their results,
over experiments done with real-world data. Further details are included in Appendix C.

16 RR-14-02

City No. of Businesses Average No. of Nodes Average No. of Pref. Edges
Peoria 109 42.33 1,136.53
Gilbert 163 61.68 2,872.91
Glendale 242 91.93 7,171.96
Chandler 349 136.17 16,222.71
Tempe 465 180.97 27,835.80

Figure 7: Size information for the different subsets of the used dataset and corresponding average size of
the CSU-PrefChase built during the query answering process (using the CSU aggregation strategy).

6.1 Implementation and Hardware

We implemented G-PrefDatalog+/– by extending the Datalog+/– query answering engine in [16], which
supports FO-rewritable fragments of the Datalog+/– family of ontology languages. Essentially, the exten-
sion involved adding query answering based on group preferences, as well as handling of merging and
aggregation operators. As for the latter, we implemented collapse to single user (CSU), plurality vot-
ing, and plurality voting with misery. All graph operations were implemented using the JGraphT library
(http://jgrapht.org/), which provides efficient data structures for the representation of graph struc-
tures as well as efficient implementations of operations such as reachability and cycle detection. The entire
implementation was done in Java.

All runs were done on an Intel Core i7 processor at 2.2 GHz and 8GB of RAM, under the Mac
OS X 10.6.8 operating system and a Sun JVM Standard Edition with maximum heap size set at 512 MB of
RAM. To minimize experimental variation, all results are averages of three independent runs.

6.2 Experimental Setup

Inputs to our system consist of tuples of the form hQ,O,P, ki with O=(D,⌃), where Q is a query, D
is a database, ⌃ is a finite set of TGDs, P is a group preference model, and k is the number of query
results that we are interested in. The CSU-PrefChase consists of a graph that stores all user preferences after
constructing the chase. The preference graph is a labeled directed multigraph (N,E, `), where N is the
node set (the atoms), E is the edge set (the preference relation), and the labeling function ` stores for each
edge the identity of its user. That is, edges in E are pairs of nodes (u, v), which state that u is preferred to
v by the user specified in the label `(u, v). The CSU-PrefChase is adapted for obtaining the answer to all
queries, depending on the chosen strategy. A high-level overview of the architecture of our system can be
found in Appendix C.
Data. All runs were carried out using an ontology built on the basis of the data from the Yelp Dataset Chal-
lenge [36]; this dataset contains 11, 537 businesses in the Phoenix metropolitan area in the United States,
8, 282 check-in sets, 43, 873 users, and 229, 907 reviews — each business has one or more associated cat-
egories. The Datalog+/– ontology used for these experiments was constructed as follows. We manually
wrote TGDs using categories related to the dataset, yielding a set of 53 TGDs. For example, the “Asian” and
“Chinese” categories give rise to the TGD chinese(X) ! asian(X). The database instance was automati-
cally generated using the mapping between businesses and categories. To test our algorithms on instances of
different sizes, we considered five different subsets of the dataset corresponding to different cities in the state
of Arizona (cf. Figure 7). Finally, the database for this ontology was stored in a PostgreSQL 9.3 database.
See Appendix C for further details on the construction of the underlying ontology.
User preferences. We requested users to define preferences over places along two dimensions: meal (break-

RR-14-02 17

fast, lunch, and dinner) and details of the meal: cuisine (Italian, Asian, etc.), type of food (pizza, sandwich,
etc.), and type of place (bar, cafe, etc.) — each combination of these produced a set of nine so-called
choice scenarios, such as “cuisine for lunch” or “type of food for dinner”. Preferences were entered using a
graphical interface (illustrated in Figure 14 in Appendix C). A total of 49 people responded to our request,
yielding a total of 364 SPOs (not all users entered their preferences for all nine scenarios). These SPOs
were then processed using the set of businesses in the dataset in such a way that business X is preferred
over business Y iff the SPO establishes the preference over their corresponding categories (for instance, if
the users specified that they prefer bagels over sushi, then all bagel businesses are preferred over all sushi
businesses).
Group definition. The groups of users were created manually, such that all members know each other. From
the total of 49 users, we generated 19 different groups, ranging from 3 to 9 users. This produced a grand
total of 19 · 9 = 171 group choice scenarios; for each data point in the group size variation experiments
below, we randomly chose ten SPOs and reported the average.
Probabilistic model and choice of parameters. For each business, the Yelp dataset provides a numerical
rating ranging from 0 to 5. We used this information to create our probabilistic model by using the category
supplied in the dataset; the probability assigned to a business in a category is computed as (rating+0.5)/5.5
if the categories match, and zero otherwise. Though more complex models are of course possible, this is
outside the scope of our experiments. Finally, values for the parameter t were generated automatically as
uniformly distributed random values in the interval [m��,m+�], where m is the mean value of the ratings,
and � is the standard deviation.
Queries. We used the following three queries: Q1(X)= food(X), Q2(X)= cuisine(X), and Q3(X) =
place(X), representing the situations where groups wish to decide about where to go to eat, based on the
preferences over kinds of food, cuisine, and place, respectively. Unless stated otherwise, all experiments
were run with 5 6 k 6 20, in steps of 5.

6.3 Performance Evaluation

The main performance metric that we investigate in this study is the time that is required to carry out query
answering when certain parameters are varied. Figure 8, left side, shows scatterplots for the running time
when three different parameters are varied: aggregation strategy (one graph per strategy), group size (x
axis), and number of businesses in the database (different markers in each graph); as described above, the
numbers for the latter arise from the selection of five different cities that were chosen in order to evaluate
how running times vary when the number of businesses increases gradually. Note that groups of size 6 do
not have data points associated with them — this is due to the fact that our data did not contain enough
instances of combinations of groups of this size with choice scenarios. The dotted/dashed lines in these
graphs correspond to trend lines showing the increase in running time when the group size increases.

The graphs in Figure 8, right side, show how the running time increases as the number of businesses in
the database increases (each point is an average over the group sizes considered) — note that the y axis in
these figures is on a logarithmic scale. These results show that our prototype implementation yields a top-3
answer for a city with 465 businesses to choose from in about 27 seconds. The table in Figure 7 shows the
number of nodes in the preference chase for each city, as well as the number of edges for the collapsed graph
when the CSU strategy is used.

The results in Figure 8 show that the three different strategies have similar running times for these runs;
however, the way in which the running time is used by the two main approaches (CSU and plurality) is
different. To illustrate this difference, Figure 9 plots the partial times in pie charts; for instance, observe

18 RR-14-02

0

5

10

15

20

25

30

3 4 5 6 7 8 9

Ti
m
e
�(s
e
co
n
d
s)

Group�Size

Query�Answering�Running�Time�വ�CSU�Strategy,��k�=�3

465

349

242

163

109

0.0625

0.125

0.25

0.5

1

2

4

8

16

32

0 100 200 300 400 500

Ti
m
e
�(s
e
co
n
d
s)

Number�of�Businesses

Query�Answering�Running�Time�വ�CSU�Strategy,��k�=�3

0

5

10

15

20

25

30

3 4 5 6 7 8 9

Ti
m
e
�(s
e
co
n
d
s)

Group�Size

Query�Answering�Running�Time�വ Plurality�Strategy,��k�=�3

465

349

242

163

109

0.0625

0.125

0.25

0.5

1

2

4

8

16

32

0 100 200 300 400 500

Ti
m
e
�(s
e
co
n
d
s)

Number�of�Businesses

Query�Answering�Running�Time�വ�Plurality�Strategy,��k�=�3

0

5

10

15

20

25

30

3 4 5 6 7 8 9

Ti
m
e
�(s
e
co
n
d
s)

Group�Size

Query�Answering�Running�Time�വ�Plurality�w/Misery�Strategy,��k�=�3

465

349

242

163

109

0.0625

0.125

0.25

0.5

1

2

4

8

16

32

0 100 200 300 400 500

Ti
m
e
�(s
e
co
n
d
s)

Number�of�Businesses

Query�Answering�Running�Time�വ�Plurality�w/Misery�Strategy,��k�=�3

Figure 8: Running times for top-3 query answering when varying the number of businesses in the database,
the group size, and the preference aggregation strategies.

that CSU takes more time computing the top-k, while plurality takes more time computing the result of the
merging operator.

6.4 Quality Evaluation

In this section, we discuss experiments carried out to evaluate the quality of the results produced by our
algorithms. We first discuss the metrics used, and then go on to discuss the results. The experimental setup
is identical to the one used in the previous experiments, except that we focused on a single city (Gilbert),
since the number of businesses is not varied.

6.4.1 Evaluation Metrics

Usually, methods based on precision and recall are used when comparing two lists of results — however,
since these methods rely on the availability of “ground truth” and there is no clear notion of what such a

RR-14-02 19

Chase�
Construction

7.99%

Query�Rewriting
14.08%

Preference�
Construction

0.55%

Merging�
Operator
68.46%

TopͲk�
Computation

8.92%

Distribution�of�Running�Time�വ�CSU�Strategy

Chase�
Construction

9.64%

Query�Rewriting
12.26%

Preference�
Construction

0.63%

Merging�
Operator
77.48%

TopͲk�
Computation

1.65%

Distribution�of�Running�Time�വ�Plurality�Strategy

Figure 9: Distribution of running times for the CSU and plurality strategies.

ground truth is for our setting, these methods are not applicable. Therefore, we use quality measurements
that are often applied in evaluating information retrieval and group recommender systems [10, 29]; the main
ones adopted are tuple agreement, Kendall tau distance, and Spearman’s footrule.

Given two top-k lists, tuple agreement is defined as the number of tuples that appear in both lists (i.e.,
it does not consider the actual ordering of the tuples). To allow comparisons across different values of k,
we normalize the tuple agreement and call this value Agreement. Note that higher is better for Agreement,
a value of 1 indicating lists with the same elements (perhaps in different order). The second measure is
a variation of the Kendall tau distance for partial orders that computes the distance between two partial
rankings based on the number of pairwise disagreements between them [10] — a disagreement receives a
penalty of 1, while for agreement there is no penalty. In case the two top-k lists are permutations of each
other, this is the number of exchanges required to convert one into the other. However, if a pair (i, j) appears
in one list but not in the other, we do not know if the penalty should be 0 or 1; therefore, it takes a parameter
p indicating how pessimistic the metric should be (p=1 is most pessimistic). The measure is normalized
by the square of the length of the union of the two lists, and this value is called Kendallp. Note that lower
is better for Kendall, since it measures differences instead of agreement. Finally, the third measure is a
variation of the Spearman’s footrule metric for partial orders that computes the distance between two partial
rankings using the difference of positions of elements of one list in comparison with the other [10]. Where
Kendall just counts number of swaps, this metric counts how far each element must be moved to reach the
place occupied in the other list. This measure is normalized as before, and the result is called Spearman.
Note that, like Kendall, lower is better for Spearman.

6.4.2 Results

We now discuss two research questions: “Which aggregation method yields the best results?” and “How
different are the results produced by each aggregation method?”. We discuss each of these questions in turn.

Question 1: “Which aggregation method yields the best results?” To answer this question, for each
group, we computed a top-k query answer rg, as well as a top-k query answer ri for each user in the group.
We then computed the value of each measure over rg and ri, and finally report the mean of all such results.
We carried out three different comparisons: overall, varying group size, and varying the value of k — for
the first, we report five different measures, while for the other two, we focus on Agreement and Spearman
for reasons of space.

20 RR-14-02

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

Agreement Spearman Kendall-0 Kendall-0.5 Kendall-1

M
e

as
u

re

Methods vs. User

CSU

Plurality

Misery

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

Agreement Spearman Kendall0 Kendall05 Kendall1

M
e

as
u

re

Method Comparison

CSU vs Plurality

CSU vs Misery

Plurality vs Misery

Figure 10: Comparison of the approaches with user preferences (left) and pairwise comparison of ap-
proaches (right). Higher is better for Agreement, while lower is better for the rest.

0.20

0.30

0.40

0.50

0.60

0.70

0.80

2 3 4 5 6 7

A
gr

e
e

m
e

n
t

Group Size

Methods vs. User (Agreement Measure) – Varying Group Size

CSU
Plurality
Misery

0.20

0.30

0.40

0.50

0.60

0.70

0.80

2 3 4 5 6 7

Sp
e

ar
m

an

Group Size

Methods vs. User (Spearman Measure) – Varying Group Size

 CSU
Plurality
Misery

Figure 11: How Agreement (left, higher is better) and Spearman (right, lower is better) change depending
on group size.

0.20

0.30

0.40

0.50

0.60

0.70

0.80

5 10 15 20

A
gr

e
e

m
e

n
t

k

Methods vs. User (Agreement Measure) – Varying k

CSU
Plurality
 Misery

0.20

0.30

0.40

0.50

0.60

0.70

0.80

5 10 15 20

Sp
e

ar
m

an

k

Methods vs. User (Spearman Measure) – Varying k

 CSU
Plurality
Misery

Figure 12: How Agreement (left, higher is better) and Spearman (right, lower is better) change depending
on the value of k.

Overall comparison. Figure 10 (left) shows an overall comparison between each aggregation method and
the users’ rankings. Here, we see that plurality voting performed best in our experiments both in terms of the
agreement between the desires of each individual user and what the aggregated result yields (Agreeement
measure), as well as in terms of the ordering of the results (the rest of the measures). Plurality with misery

RR-14-02 21

was the worst performer, both in terms of agreement and ordering of the top-k. This is likely due to the
fact that this method empowers users to veto options that could be ranked high by several others. Another
problem could arise due to cycles; for efficiency, our implementation of removeCycles iteratively chooses
a random edge from a cycle and removes it without taking into consideration the effect of this operation
on the opinions of the other members. Developing a better way to address cycles is an interesting topic of
future research.
Varying group size. Figure 11 shows the results of experiments varying the group size between 2 and 7
(Agreement measure on the left, Spearman on the right) — we eliminated group sizes for which we did not
have enough data. Results show that all aggregation methods tend to worsen with both measures as group
size increases — this is consistent with the fact that groups of larger size are more difficult to satisfy when
k is fixed since it is more likely that conflicting preferences exist.
Varying value of k. Figure 12 shows our results when varying k between 5 and 20 — as before, we have
results for the Agreement measure on the left and for Spearman on the right. Opposite to what was observed
when varying group size, we see that increasing the value of k affords an increase of performance for all
aggregation methods over both measures. One possible exception is misery with respect to the Agreement
measure, which seems to slightly worsen as k increases – this special behavior is likely a consequence of
the same issues discussed above. This overall tendency to perform better as k increases makes sense for a
group of fixed size, since more space becomes available in the result to accommodate potentially conflicting
user preferences.

Question 2: “How different are the results produced by each aggregation method?” Figure 10 (right)
shows an overall comparison between the results produced by each of our aggregation methods. Focusing on
plurality (the overall best performer in the experiments for Question 1), we now compare how similar CSU
and misery are to plurality. We can see that with respect to the Agreement measure, plurality and CSU are
the most similar for these runs; interestingly, for the rest of the measures, the most similar to plurality was
misery. Figures 17 and 18 in Appendix C complement these results — the former shows the same behavior
when varying k for Agreement, though for Spearman, CSU turns out to be a little better than misery. The
latter experiment, however, returns to the same pattern with respect to variations in group size, and CSU is
most similar to plurality relative to Agreement, while misery is most similar relative to Spearman (though
the differences are not large at the highest setting of the parameter).

These results suggest that CSU is good at getting the right elements in the result, but misery is good at
getting the order right (using the results obtained by plurality as a baseline).

7 Discussion

In this paper, we have proposed a two-fold extension of the Datalog+/– ontology language: allowing for
partially ordered preferences of groups of users, and the management of probabilistic uncertainty. To our
knowledge, this is the first combination of ontology languages with group preferences. We focused on an-
swering k-rank queries in this context, and studied different approaches to computing answers to queries
based on group preferences; the main challenge is to find a principled way in which to combine the pref-
erences of each individual in the group, while also taking into account the preferences induced by the
probabilities obtained from the uncertainty model. We then studied algorithms to answer k-rank queries for
disjunctions of atomic queries under these conditions, and showed that it can be done in polynomial time in
the data complexity, as long as query answering can also be done so in the underlying classical ontology.

22 RR-14-02

Finally, we presented a prototype implementation of our framework, including an empirical analysis using
real-world data and preference models obtained from real users, showing that our approach is feasible in
practice.

An interesting question that comes up when implementing these techniques in a real-world scenario is
how to decide which aggregation technique to use — this will indeed have an impact on how group decisions
are made, as seen in Section 6. Some guidelines regarding this question for the techniques studied here are
the following: (i) CSU is a fine-grained approach that, given its consideration of all pairs, allows for a better
leveraging of user preference information; (ii) on the other hand, the voting-based approach taken in this
paper computes k-rankings as a first step, which may end up containing arbitrary elements. For instance,
coming back to the friends in Example 1, consider the case in which k = 2 and Alberto’s preferences yields
ranking hr1, r3i, Bruno’s yields hr2, r3i, and Charles’s hr1, r2i — note that Charles is the only one who
actually cares about the position of the second element, while the answers of the other two were completed
arbitrarily after the first position. The misery and fairness techniques can help mitigate these issues, but in
general they can still arise. On the other hand, CSU has the weakness of only working on partial graphs
— in carrying out our experiments with real users, we found that people do not find partial orderings of
elements natural (most questions were variations of “Do I have to fill in all possible pairs?”). Thus, the
voting-based approaches have the advantage of simplicity, since it is possible to directly request a linear
ordering of elements from each user, since this is the first step in the aggregation anyway.

Regarding the limitations of our work, perhaps the most evident is the fact that the only information
being leveraged when computing answers to k-rank queries are the preferences of the users; this affords a
lightweight query answering framework that requires a relatively minimal amount of input from the user.
The weakness, however, is that cases may arise in which users pose completely opposite preferences leading
to a tie which cannot be broken without making an arbitrary choice. Some of the suggestions discussed
below on how to continue this research address this issue directly. Also, from our quality evaluation it
seems that plurality is the most similar to what individual users want; still, many times users are willing to
make compromises depending on other group members and our current approach does not contemplate this.

Topics for future work include further exploration of the similarity of preference aggregation and merg-
ing strategies to human judgment; this will shed light on how well-suited each of them is as a general
aggregation strategy for search and query answering in the Social Semantic Web. Related to this effort, and
to the limitations mentioned above, our experimental evaluation shows that new methods for measuring user
satisfaction within a group should be developed, perhaps based on the difference between least and most
satisfied users, and incorporated into our framework. Another interesting vein for future development is
deriving explanations along with the answers to queries — in social situations, it is likely that users’ sat-
isfaction with the answer is tied to how it was produced; for instance, if close friends heavily influenced
the result the user will probably respond better than if the result was influenced by strangers. Towards this
end, we propose to explore the use of provenance models [26] as well as approaches based on argumenta-
tion [32], among others, in our framework. Finally, another interesting social aspect to work on is that of
contemplating “past footprints” of group decisions as part of further information that can be leveraged when
answering queries over closely related groups — in this paper, we assumed a one-shot process where this
is not applicable, but this kind of information could be valuable, for instance, in enforcing another form of
fairness since individuals favored in the past can be guaranteed to have less weight in future decisions.

RR-14-02 23

References

[1] Michael Ackerman, Sul-Young Choi, Peter Coughlin, Eric Gottlieb, and Japheth Wood. Elections with
partially ordered preferences. Public Choice, 157(1/2):145–168, 2012.

[2] S. Amer-Yahia, S.B. Roy, A. Chawla, G. Das, and C. Yu. Group recommendation: Semantics and
efficiency. Proc. VLDB Endow., 2(1):754–765, 2009.

[3] C. Beeri and M. Y. Vardi. The implication problem for data dependencies. In Proc. ICALP, volume
115 of LNCS, pages 73–85. Springer, 1981.

[4] S. Börzsönyi, D. Kossmann, and K. Stocker. The skyline operator. In Proc. of ICDE, pages 421–430.
IEEE Computer Society, 2001.

[5] R.I. Brafman and C. Domshlak. Preference handling — An introductory tutorial. AI Mag., 30(1):58–
86, 2009.

[6] A. Calı̀, G. Gottlob, and M. Kifer. Taming the infinite chase: Query answering under expressive
relational constraints. In Proc. KR, pages 70–80. AAAI Press, 2008.

[7] A. Calı̀, G. Gottlob, and T. Lukasiewicz. A general Datalog-based framework for tractable query
answering over ontologies. J. Web Sem., 14:57–83, 2012.

[8] A. Calı̀, G. Gottlob, and A. Pieris. Query answering under non-guarded rules in Datalog+/–. In Proc.
of RR, volume 6333 of LNCS, pages 1–17. Springer, 2010.

[9] J. Chomicki. Preference formulas in relational queries. ACM Trans. Database Syst., 28(4):427–466,
2003.

[10] R. Fagin, R. Kumar, and D. Sivakumar. Comparing top k lists. SIAM J. Discrete Math., 17(1):134–160,
2003.

[11] M. Finger, R. Wassermann, and F.G. Cozman. Satisfiability in EL with sets of probabilistic ABoxes.
In Proc. of DL, 2011.

[12] W. Gaertner. A Primer in Social Choice Theory: Revised Edition. Oxford University Press, 2009.

[13] M. Gartrell, X. Xing, Q. Lv, A. Beach, R. Han, S. Mishra, and K. Seada. Enhancing group recom-
mendation by incorporating social relationship interactions. In Proc. of GROUP, pages 97–106. ACM
Press, 2010.

[14] G. Gottlob, T. Lukasiewicz, M. V. Martinez, and G. I. Simari. Query answering under probabilistic
uncertainty in Datalog+/– ontologies. Ann. Math. Artif. Intell., 69(1):37–72, 2013.

[15] G. Gottlob, T. Lukasiewicz, and G. I. Simari. Answering threshold queries in probabilistic Datalog+/–
ontologies. In Proceedings SUM, volume 6929 of LNCS, pages 401–414. Springer, 2011.

[16] G. Gottlob, G. Orsi, and A. Pieris. Ontological queries: Rewriting and optimization. In Proc. of ICDE,
pages 2–13. IEEE Computer Society, 2011.

24 RR-14-02

[17] J. C. Jung and C. Lutz. Ontology-based access to probabilistic data with OWL QL. In Proc. of ISWC,
volume 7649 of LNCS, pages 182–197. Springer, 2012.

[18] J. Lang, M. S. Pini, F. Rossi, D. Salvagnin, K. B. Venable, and T. Walsh. Winner determination
in voting trees with incomplete preferences and weighted votes. Auton. Agent. Multi-Agent Syst.,
25(1):130–157, 2012.

[19] G. Linden, B. Smith, and J. York. Industry report: Amazon.com recommendations: Item-to-item
collaborative filtering. IEEE Internet Computing, 7(1):76–80, 2003.

[20] T. Lukasiewicz, M. V. Martinez, G. Orsi, and G. I. Simari. Heuristic ranking in tightly coupled proba-
bilistic description logics. In Proc. of UAI, pages 554–563. AUAI, 2012.

[21] T. Lukasiewicz, M. V. Martinez, and G. I. Simari. Preference-based query answering in Datalog+/–
ontologies. In Proc. of IJCAI, pages 1017–1023. IJCAI/AAAI, 2013.

[22] T. Lukasiewicz, M. V. Martinez, and G. I. Simari. Preference-based query answering in probabilistic
Datalog+/– ontologies. In Proc. of ODBASE, volume 8185 of LNCS, pages 501–518. Springer, 2013.

[23] T. Lukasiewicz, M. V. Martinez, G. I. Simari, and O. Tifrea-Marciuska. Group preferences for query
answering in Datalog+/– ontologies. In Proc. of SUM, volume 8078 of LNCS, pages 360–373. Springer,
2013.

[24] T. Lukasiewicz, M. V. Martinez, G. I. Simari, and O. Tifrea-Marciuska. Query answering in probabilis-
tic Datalog+/– ontologies under group preferences. In Proc. of WI, pages 171–178. IEEE Computer
Society, 2013.

[25] M. Manoj and Elizabeth Jacob. Information retrieval on internet using meta-search engines: A review.
J. Sci. Ind. Res., 67(10):739–746, 2008.

[26] U. Marjit, K. Sharma, and U. Biswas. Provenance representation and storage techniques in linked data:
A state-of-the-art survey. Int. J. Comput. Appl., 38(9):23–28, 2012.

[27] J. Masthoff. Group modeling: Selecting a sequence of television items to suit a group of viewers. User
Model. User-Adapt. Interact., 14(1):37–85, 2004.

[28] J. Noessner and M. Niepert. ELOG: A probabilistic reasoner for OWL EL. In Proc. of RR, volume
6902 of LNCS, pages 281–286. Springer, 2011.

[29] E. Ntoutsi, K. Stefanidis, K. Nørvåg, and H.-P. Kriegel. Fast group recommendations by applying user
clustering. In Proc. of ER, volume 7532 of LNCS, pages 126–140. Springer, 2012.

[30] P. K. Pattanaik. Voting and Collective Choice: Some Aspects of the Theory of Group Decision-Making.
Cambridge University Press, 1971.

[31] M. S. Pini, F. Rossi, K. B. Venable, and T. Walsh. Aggregating partially ordered preferences.
J. Log. Comput., 19(3):475–502, 2009.

[32] I. Rahwan and G. R. Simari. Argumentation in Artificial Intelligence. Springer, 1st edition, 2009.

RR-14-02 25

[33] K. Stefanidis, G. Koutrika, and E. Pitoura. A survey on representation, composition and application of
preferences in database systems. ACM T. Database Syst., 36(3):19:1–19:45, 2011.

[34] A. D. Taylor. Social Choice and the Mathematics of Manipulation. Cambridge University Press, 2005.

[35] M. Wooldridge. An Introduction to Multiagent Systems. Wiley, 2009.

[36] Yelp. Yelp Dataset Challenge, 2012.

[37] X. Zhang and J. Chomicki. Preference queries over sets. In Proc. of ICDE, pages 1019–1030. IEEE
Computer Society, 2011.

A The Chase

The chase was first introduced to enable checking implication of dependencies, and later also for checking
query containment. By “chase”, we refer both to the chase procedure and to its output. The TGD chase
works on a database via so-called TGD chase rules (see [7] for an extended chase with also EGD chase
rules).

TGD Chase Rule. Let D be a database, and � be a TGD of the form�(X,Y) ! 9Z (X,Z). Then, � is
applicable to D iff there exists a homomorphism h that maps the atoms of �(X,Y) to atoms of D. Let � be
applicable to D, and h1 be a homomorphism that extends h as follows: for each Xi 2 X, h1(Xi) = h(Xi);
for each Zj 2 Z, h1(Zj) = zj , where zj is a “fresh” null, i.e., zj 2 �N , zj does not occur in D, and zj
lexicographically follows all other nulls already introduced. The application of � on D adds to D the atom
h1((X,Z)) if not already in D.

The chase algorithm for a database D and a set of TGDs ⌃ consists of an exhaustive application of
the TGD chase rule in a breadth-first (level-saturating) fashion, which outputs a (possibly infinite) chase
for D and ⌃. Formally, the chase of level up to 0 of D relative to ⌃, denoted chase0(D,⌃), is defined
as D, assigning to every atom in D the (derivation) level 0. For every k> 1, the chase of level up to k
of D relative to ⌃, denoted chasek(D,⌃), is constructed as follows: let I1, . . . , In be all possible images
of bodies of TGDs in ⌃ relative to some homomorphism such that (i) I1, . . . , In✓ chasek�1(D,⌃) and
(ii) the highest level of an atom in every Ii is k � 1; then, perform every corresponding TGD application
on chasek�1(D,⌃), choosing the applied TGDs and homomorphisms in a (fixed) linear and lexicographic
order, respectively, and assigning to every new atom the (derivation) level k. The chase of D relative to ⌃,
denoted chase(D,⌃), is defined as the limit of chasek(D,⌃) for k!1.

B Proofs

Proof of Proposition 1. Let �⇤= ⌦t(M,�U). We now prove that (i) �⇤ is an SPO, and (ii) if a1 �U a2
and a1 �M a2, then a1 �⇤ a2.

(i) We must show that �⇤ is irreflexive and transitive. Let �0 be the intermediate result of the ⌦t operator
just before computing the transitive closure. By assumption, �U is irreflexive, and (as �0 cannot contain any
new self-edges) this property is preserved in �0. By construction, �⇤ is the transitive closure of �0. Since
this operation does not add cycles, �⇤ is also irreflexive, in addition to clearly being transitive. Overall, �⇤

is an SPO.

26 RR-14-02

(ii) A necessary condition for ⌦t to change the order of a pair in �U is that the pair in �M be reversed.
Since by hypothesis this is not the case, the statement follows. ⇤

Proof of Proposition 2. If t=0, then we check whether there are pairs (a, b) in �U with PrM (b) �
PrM (a) > t relative to �M . Since by assumption, �M =�M 0 , it must be the case that PrM (b)�PrM (a) >
t relative to �M iff this is the case relative to �M 0 , and thus the outputs in both cases must be identical. ⇤

Proof of Theorem 3. (i) By hypothesis, �⇤ is transitive and cycle-free — the former is assumed by hypoth-
esis and the latter is ensured by removeCycles. Therefore, �⇤ is irreflexive and antisymmetric, and thus an
SPO.

(ii) By Proposition 1, for 1 6 i 6 n, we know that ⌦ti(M,�Ui) are all SPOs and therefore cycle-free.
Towards a contradiction, suppose that a1 6�⇤ a2; by the construction of the graph G in AggPrefsCSU and
the hypothesis that (a1, a2) 2 ⌦ti(M,�Ui) for all 1 6 i 6 n, this can only happen if (a1, a2) belongs to
a cycle, and the algorithm chose to remove this cycle by deleting this edge. Since the label of (a1, a2) is n
and, by the assumption of how removeCycles works, the entire cycle is composed of edges labeled with n;
but this contradicts ⌦ti(M,�Ui) being SPOs. ⇤

Proof of Theorem 4. First of all, we show that the computation of �⇤ in Line 2 of k-Rank-CSU is such
that �⇤=

U
(⌦t1(M,�U1), . . . ,⌦tn(M,�Un)). The AggPrefsCSU algorithm iterates through all the users

u and directly applies the definition of the ⌦ti operator to produce the currUserG graph. Once this graph
is computed, the algorithm updates graph G and its labels accordingly — the edge labels after the final
iteration of the for-loop in Line 3 correspond to the number of users that have that edge in their preference
relation after combining it with the probabilistic one according to t (the last computation steps compute the
transitive closure and remove cycles).

Now, correctness is a consequence of the direct application of the definition of k-rank: the while-loop
in Line 5 iteratively computes the skyline answers to Q by means of a subroutine, adds these results to the
output in arbitrary order, and removes them from consideration. Line 10 ensures that at most k results are
returned.

Finally, we show that k-Rank-CSU runs in O(poly(kDk) · S + C) time in the data complexity. As O
is assumed to be tractable, the (necessary finite portion of the) chase of O relative to Q can be computed in
polynomial time in the data complexity [7]. The �⇤ relation is computed in time O(k�Uk · S + C), where
k�Uk is a polynomial in kDk. Now, computeSkyline(KB , Q,�⇤) can be computed in polynomial time by
a linear-time scan of the chase structure for Q (of polynomial size, by hypothesis), and the results can be
removed by another such scan. ⇤

Proof of Proposition 6. Results for Unanimous Winner (UW)

• Plurality satisfies UW.

Proof: If everyone in a group of n users has element a in a k-rank answer, then element a has n votes.
The only way that no ranking with element a exists is that there are k elements with at least n + 1
votes, which is impossible. ⇤

• Fairness does not satisfy UW.

Proof by counterexample: Suppose we have two group preference models P1 = hU1i and P2 = hU2i,
a query Q, and the following are k-rank answers to Q for each of them with k = 3:

RR-14-02 27

P1 :

Element
b

a

c

P2 :

Element
d

e

c

Element c belongs to a 3-rank answer to Q for P1 and P2; however, no matter which order we take
between U1 and U2, no 3-rank answer to Q for P1 [P2 contains element c.

• Plurality with misery satisfies UW.

Proof: Analogous to the proof for plurality; note that if the an element is a unanimous winner then it
cannot be a misery element. ⇤

• Fairness with misery does not satisfy UW.

Proof by counterexample: Consider the same counterexample for the proof that fairness does not
satisfy UW.

Results for Unanimous Loser (UL):

• Plurality satisfies UL.

Proof: If element a is in none of the individual k-rank answers, then it has zero votes in the final
k-rank answer. By hypothesis, there are at least k elements in the union of all the k-rank answers that
have non-zero votes, which means that they will beat element a in any final ranking. ⇤

• Fairness satisfies UL.

Proof: If the element does not appear in any k-rank answer, it is impossible for it to be chosen for the
final one. ⇤

• Plurality with misery satisfies UL.

Proof: Analogous to plurality — it does not matter if the element is a misery element or not. ⇤

• Fairness with misery satisfies UL.

Proof: If the element does not appear in any k-rank answer, it is impossible for it to be chosen for the
final one; note that it does not matter if the element is a misery element or not. ⇤

Let rank(a,�, Q,KB) be defined as follows: rank(a,�, Q,KB) = 1 iff a is a skyline answer to Q for
�, and rank(a,�, Q,KB) = k + 1 iff a is a skyline answer to Q for � after removing from consideration
all elements b such that rank(b,�, Q,KB) = k.

Lemma 8 Let � be an SPO, KB =(O,U ,M,⌦,
U
) be a GPP-Datalog+/– ontology, and Q be a DAQ. If

��a is an SPO that results from removing element a from �, then for every element b in � we have that
either rank(b,��a, Q,KB) = rank(b,�, Q,KB) or rank(b,��a, Q,KB) = rank(b,�, Q,KB)� 1. Also,
If �+a is an SPO that results from adding an element a to �, then for every element b in � we have that
either rank(b,�+a, Q,KB) = rank(b,�, Q,KB) or rank(b,�+a, Q,KB) = rank(b,�, Q,KB) + 1.

28 RR-14-02

Proof: By direct consequence of the definition of rank (above), we have that an element’s rank is equal to
the length of the longest path from any element in the skyline to that element. Therefore, adding an element
can only increase such length by one. On the other hand, removing an element can only decrease the length
by one, given that the transitivity property holds. ⇤
Results for Weak Stability (WS):

• Plurality satisfies WS.

Proof sketch: By Lemma 8, adding an element a to choose from can at most have the effect that
each user now incorporates a into their k-rank answers, and so no longer vote their previously least
preferred of the k — this only benefits element a, and no other. Thus, at group level, this can only
make a be in a k-rank answer and shift the rest of the elements down one place, as WS requires. ⇤

• Fairness satisfies WS.

Proof: By Lemma 8 we have that the added element can appear in each individual k-rank answer,
but the rest of the elements maintain their original relative ordering. Therefore, if the added element
ranks high enough to be chosen, the end result will differ by that element only. Otherwise, the result
will be the same. ⇤

• Plurality with misery satisfies WS.

Proof: If the element added is a misery element, the result will be the same. Otherwise, the same
argument used for plurality applies. ⇤

• Fairness with misery satisfies WS.

Proof: If the element added is a misery element, the result will be the same. Otherwise, the same
argument used for fairness applies. ⇤

Results for Stability 1 (S1):

• Plurality satisfies S1.

Proof sketch: By the same argument made for plurality in WS, the new element a might get enough
votes to make it into position i of the final k-rank answer; these votes were previously held by other
elements. Since the votes lost by the rest of the elements only go to element a, a final k-rank answer
exists that maintains the relative order given by the original rank. ⇤

• Fairness satisfies S1.

Proof: Analogous to the argument for WS. ⇤

• Plurality with misery satisfies S1.

Proof: If the element is a misery element, the result will be the same. Otherwise, the proof is analogous
to that for plurality. ⇤

• Fairness with misery satisfies S1.

Proof: If the element is a misery element, the result will be the same. Otherwise, the proof is analogous
to that of WS for fairness. ⇤

RR-14-02 29

Stability 2 (S2):

• Plurality satisfies S2.

Proof: Using Lemma 8, we can ensure that there exists a k-rank answer that is the same as the original.
The removed element can never have enough votes to beat the last one in the original ranking, since
otherwise it would have beaten it in the first place. Therefore, whatever element (or elements) comes
in to replace it will be in the same conditions. ⇤

• Fairness satisfies S2.

Proof: By Lemma 8, we have that when removing an element not in the a k-rank answer, the ranks of
those in the final k-rank answer cannot improve nor decrease. Therefore, the result will be the same.

⇤

• Plurality with misery satisfies S2.

Proof: If the element is a misery element, the result will be the same. Otherwise, the proof is analogous
to that for plurality. ⇤

• Fairness with misery satisfies S2. ⇤
Proof: If the element is a misery element, the result will be the same. Otherwise, it is analogous to
fairness.

Results for Monotonicity 1 (M1):

• Plurality satisfies M1.

Proof: Trivial (the element can only gain votes). ⇤

• Fairness satisfies M1.

Proof: If the element was chosen, improving its position in some rankings can only help it to be
chosen earlier. ⇤

• Plurality with misery satisfies M1.

Proof: Analogous to the proof for plurality, since if the element is chosen, it cannot be a misery
element. ⇤

• Fairness with misery satisfies M1.

Proof: Same argument as for fairness; note that if the element is chosen, it cannot be a misery element.
⇤

Monotonicity 2 (M2):

• Plurality satisfies M2.

Proof: Trivial (the element can only lose votes). ⇤

30 RR-14-02

• Fairness satisfies M2.

Proof: If an element is not chosen, ranking it even lower cannot cause it to be chosen. ⇤

• Plurality with misery satisfies M2.

Proof: If the element is a misery element, the result will be the same. Otherwise, the proof is analogous
to that for plurality. ⇤

• Fairness with misery satisfies M2.

Proof: Same argument as for fairness; note that if the element is a misery element, the result will be
the same. ⇤

Non-dictatorship (ND):

• Plurality satisfies ND.

Proof: One user can only influence the choice by adding k votes (one to each element in their ranking).
Therefore, a single user cannot dictate the outcome of the result. ⇤

• Fairness satisfies ND for any k 6= 1.

Proof: If k = 1, the first user to choose is the dictator. Otherwise, the result is determined by at least
two users. ⇤

• Plurality with misery satisfies ND.

Proof: Same argument as that of plurality. ⇤

• Fairness with misery satisfies ND.

Proof: Though the scenario for k = 1 could cause the first user to choose to be a dictator, that user’s
choice might be in another user’s misery list. ⇤

Proof of Proposition 7.

• CSU satisfies GUPF.

Proof: If element a is in the first position of a k-rank answer to both PA and PB , then it belongs to
the skylines of both PA and PB , which implies that it also belongs to the skyline of PA[B . Therefore,
there exists a k-rank answer to Q for P that contains a in the first position. ⇤

• CSU satisfies UWF.

Proof: It is a direct consequence of the fact that CSU satisfies GUPF. ⇤

• CSU satisfies UP if removeCycles only removes edges (v1, v2) whenever there does not exist another
edge in the cycle labeled with a lower number.

Proof: Follows directly from condition (ii) in Theorem 3. Note that if there is a cycle, there must
exist an edge in the cycle with a lower number of votes than the removed edge. ⇤

RR-14-02 31

C Further Details for the Experimental Evaluation

A high-level overview of the architecture of our system can be found in Figure 13. The input consists of
a tuple of the form hQ,O,P, ki with O=(D,⌃), where Q is a query, D is a database, ⌃ is a finite set of
TGDs, P is a group preference model, and k is the number of query results that we are interested in. The
set of TGDs ⌃ for the ontology in our experiments is given in Figure 15, while the structure of the database
for this ontology is shown in Figure 16. Note that this ontology is different from the one that we used in
the examples throughout the paper — we have based our examples on this domain, but have rewritten the
ontology for a greater readability.

The constraint and query managers and the rewriting engine are directly taken from the Datalog+/–
system of [16]: the constraint manager checks unions of conjunctive queries that are used to check if D
satisfies ⌃; the query manager schedules queries for rewriting and execution; finally, the rewriting engine
converts the input query into a union of conjunctive queries after all the TGDs are applied. The list of
queries obtained after the rewriting step is the input for the CSU-PrefChase subsystem, which constructs the
preferences over the atoms that are answers to this query.

The CSU-PrefChase builds a graph that stores all the preferences of the users after the standard chase is
computed. The preference graph is a labeled directed graph (N,E, `), where N is the node set (the atoms),
E is the edge set (the preference relation), and the labeling function ` stores for each edge the identity of
its user. That is, edges in E are pairs of nodes (u, v), which state that u is preferred over v by the user
specified in the label `(u, v). Note that CSU-PrefChase is used not only for the CSU strategy, but also for
the plurality with misery and fairness with misery strategies — the latter strategies involve calling CSU-
PrefChase individually for each user to obtain the result of merging the users’ SPOs with the one derived
from the probabilistic model.

Additional Results. Figures 17 and 18 contain results that complement our analysis in Section 6.4 (Ques-
tion 2, Page 21).

32 RR-14-02

Figure 13: The architecture of our system.

Figure 14: Preferences of a user for dinner (e.g., prefers Mediterranean food over Mexican food)

RR-14-02 33

⌃ = { barbecue(X) ! food(X), local flavor(X) ! food(X),
hot dogs(X) ! food(X), vegetarian(X) ! food(X),
seafood(X) ! food(X), chicken wings(X) ! food(X),
pizza(X) ! food(X), dessert(X) ! food(X),
sandwiches(X) ! food(X), gluten free(X) ! food(X),
burgers(X) ! food(X), fast food(X) ! food(X),
donuts(X) ! dessert(X), bagels(X) ! dessert(X),
ice cream(X) ! dessert(X), dance clubs(X) ! place(X),
juice bars and smoothies(X) ! place(X), cafes(X) ! place(X),
bakeries(X) ! place(X), breweries(X) ! place(X),
steakhouses(X) ! place(X), lounges(X) ! place(X),
buffets(X) ! place(X), bars(X) ! place(X),
dive bars(X) ! bars(X), pubs(X) ! bars(X),
sports bars(X) ! bars(X), sushi bars(X) ! bars(X),
wine bars(X) ! bars(X), mexican(X) ! cuisine(X),
american(X) ! cuisine(X), local services(X) ! cuisine(X),
asian(X) ! cuisine(X), middle eastern(X) ! cuisine(X),
mediterranean(X) ! cuisine(X), chinese(X) ! asian(X),
indian(X) ! asian(X), thai(X) ! asian(X),
korean(X) ! asian(X), japanese(X) ! asian(X),
vietnamese(X) ! asian(X), greek(X) ! mediterranean(X),
italian(X) ! mediterranean(X), french(X) ! mediterranean(X),
food(X) ! 9Y hasName(X,Y), food(X) ! 9Y inCity(X,Y),
food(X) ! 9Y inState(X,Y), cuisine(X) ! 9Y hasName(X,Y),
cuisine(X) ! 9Y inCity(X,Y), cuisine(X) ! 9Y inState(X,Y),
place(X) ! 9Y hasName(X,Y), place(X) ! 9Y inCity(X,Y),
place(X) ! 9Y inState(X,Y)}

Figure 15: Set of TGDs for the ontology used in the experimental evaluation.

Figure 16: The database structure of the Datalog+/– ontology.

34 RR-14-02

0.20

0.30

0.40

0.50

0.60

0.70

0.80

5 10 15 20

A
gr

e
e

m
e

n
t

k

Method Comparison (Agreement Measure) – Varying k

 CSU vs Plurality

CSU vs Misery

Plurality vs Misery
0.20

0.30

0.40

0.50

0.60

0.70

0.80

5 10 15 20

Sp
e

ar
m

an

k

Method Comparison (Spearman Measure) – Varying k

CSU vs Plurality

CSU vs Misery

Plurality vs Misery

Figure 17: How Agreement (left, higher is better) and Spearman (right, lower is better) change depending
on the value of k.

0.00

0.10
0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

2 3 4 5 6 7

A
gr

ee
m

e
n

t

Group Size

Method Comparison (Agreement Measure) – Varying Group Size

CSU vs. Plurality (Agreement)

CSU vs. Misery (Agreement)

Plurality vs. Misery (Agreement)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

2 3 4 5 6 7

Sp
e

ar
m

an

Group Size

Method Comparison (Spearman Measure) – Varying Group Size

CSU vs. Plurality (Spearman)

CSU vs. Misery (Spearman)

Plurality vs. Misery (Spearman)

Figure 18: How Agreement (left, higher is better) and Spearman (right, lower is better) change depending
on group size.

