Computing Stable Models for Nonmonotonic Existential Rules

Despoina Magka, Markus Krotzsch, Ian Horrocks
Department of Computer Science, University of Oxford
{desmag,markus.kroetzsch,ian.horrocks } @cs.ox.ac.uk

Abstract

In this work, we consider function-free existential
rules extended with nonmonotonic negation under
a stable model semantics. We present new acyclic-
ity and stratification conditions that identify a large
class of rule sets having finite, unique stable mod-
els, and we show how the addition of constraints on
the input facts can further extend this class. Check-
ing these conditions is computationally feasible,
and we provide tight complexity bounds. Finally,
we demonstrate how these new methods allowed
us to solve relevant reasoning problems over a real-
world knowledge base from biochemistry using an
off-the-shelf answer set programming engine.

1 Introduction

Logic-based knowledge representation (KR) languages are
widely used to model complex, structured information, e.g.,
in biology [Gkoutos et al., 2012] and chemistry [Hastings et
al., 2012]. Structured knowledge models, such as the ChEBI
database and ontology of chemical compounds [Hastings et
al., 2013], serve as shared reference terminologies. Reason-
ing supports a wide range of tasks including quality assur-
ance, modelling, data integration, and search, and can com-
plement statistical and machine learning approaches, e.g., in
classifying chemical structures [Ferreira and Couto, 2010].
Many ontologies, including ChEBI, are based on descrip-
tion logics (DLs); DLs are, however, severely limited in their
ability to model structures that are not tree-shaped. This ex-
plains, e.g., why ChEBI does not model molecular struc-
tures in its ontology, thus excluding its main content from
logical reasoning. Numerous extension of DLs, such as de-
scription graphs [Motik et al., 2009], provide carefully re-
stricted kinds of rule-based or graph-based modelling, but re-
main largely unrealised in tools and applications. Moreover,
a form of closed-world assumption is often needed to reason
about the absence of structural features, e.g., to conclude that
a molecule is inorganic if it does not contain carbon. This can
be naturally modelled using a nonmonotonic DL, but such
DLs currently lack tool support [Motik and Rosati, 2010].
This motivates the use of (nonmonotonic) rule languages
for modelling ontologies. Existential rules—function-free
Horn rules with existential quantifiers in rule heads—have

been proposed as an ontology and data integration language
[Cali ef al., 2010a; Baget et al., 2011al, and can be viewed
as a restricted kind of logic programs with function symbols.
Recent works have considered nonmonotonic rule-based on-
tology languages using stratified negation [Cali ez al., 2009;
Magka et al., 2012], stable model semantics [Eiter ef al.,
2012], and well-founded semantics [Gottlob et al., 2012]. If
we additionally remove the stratification requirement, then
the resulting language allows for the accurate modelling of
complex finite structures such as those found in ChEBI.

Unfortunately, reasoning in these formalisms is computa-
tionally challenging. If negation is stratified, then all of these
semantics agree, and programs have uniquely determined sta-
ble models; this is highly desirable and easy to check, but
too restrictive for many applications. Moreover, even without
negation, satisfiability, fact entailment, query answering, and
the existence of finite models are all undecidable; and, while
many non-stratified programs also have unique stable mod-
els, this property, too, is undecidable in general. As most on-
tologies are concerned with finite, uniquely determined struc-
tures, these problems raise serious doubts about the use of
such formalisms in ontological modelling.

We address this issue by presenting new conditions that
are computationally feasible to check, and that identify a
large class of programs having finite and unique stable mod-
els. These conditions are based on an analysis of whether
one rule relies on another, in the sense that it might either
be ‘triggered’ or ‘inhibited’ by the other rule’s application.
These relationships allow us to define R-acyclicity and R-
stratification. Specifically, our contributions are as follows:

e We define R-acyclic and R-stratified logic programs, and
show that recognising such programs is coNP-complete.

e We show that R-acyclic programs have finite stable mod-
els, and that reasoning is coN2EXPTIME-complete (NP-
complete for data complexity).

e We show that R-stratified programs have unique stable
models, so that reasoning becomes deterministic, and
that if programs are also R-acyclic, reasoning becomes
2EXPTIME-complete (P-complete for data complexity).

e We extend reliances to exploit constraints, and show that
this strictly generalises our earlier criteria. Reasoning
complexities carry over, but deciding R-acyclicity and
R-stratification under constraints is complete for I'[IZJ .

e We conduct a case study with ChEBI, which demon-
strates that our conditions do not preclude suitable mod-
elling, that R-stratification can be exploited to allow the
DLV reasoner [Leone et al., 2006] to scale to the large
number of rules in our experiments, and that DLV can
then be used to discover missing relationships in ChEBI.

We first introduce basic notions (Section 2) and discuss
the use of nonmonotonic existential rules in ontological mod-
elling (Section 3). Next, we study positive reliances and R-
acyclicity (Section 4), negative reliances and R-stratification
(Section 5), and the extension of these notions with con-
straints (Section 6). We then present the ChEBI case study
(Section 7), discuss related works (Section 8), and conclude
(Section 9). A companion report contains details and proofs
that were omitted for reasons of space [Magka et al., 2013].

2 Preliminaries

We consider a standard first-order language. We use the let-
ters a, b for constants, f, g for functions, x, y, z, for variables,
and ¢ for terms. Lists of terms {¢1,...,f,) are abbreviated as t,
similarly for lists of variables x. We treat lists as sets when or-
der is irrelevant. A special nullary predicate symbol L is used
to denote falsity. We use Pred(g), Var(g), , and Const(g) to
denote the predicates, variables, constants, and terms, respec-
tively, that occur in an expression €. Atoms, i.e., formulae
without operators, are written ¢, 3, Y. When used like a for-
mula, sets of atoms always denote the conjunction of their
members. Nonmonotonic negation is denoted not. For a set A
of atoms, we define not A := {not ¢ | & € A}. A nonmono-
tonic existential rule (or simply rule) is of the form

r: Vx.Vz.B" AnotB~ — 3Jy.H (1)

where the positive body BT, negative body B~, and head H
are sets (or conjunctions) of atoms without function sym-
bols, such that Var(B*) = xUz, Var(B~) C xUz, and
Var(H) C xUy. We abbreviate r as (B™,B~,H). When writ-
ing rules as in (1), universal quantifiers are usually omitted.
Sets of rules are called (logic) programs.

The skolemisation sk(r) of a rule r as in (1) is obtained by
replacing each variable y € y in H by a skolem term f,(x),
where f; is a fresh skolem function symbol of arity |x|. Given
a program P, we set sk(P) := {sk(r) | r € P}. Assuming a
fixed choice of skolem functions, sk is a bijection between
rules and their skolemisations, which allows us to use the term
rule liberally without risk of confusion. Our results refer to
rules (or their skolemisations), and do not generally hold for
arbitrary logic programming rules with function symbols.

A term or formula is ground if it contains no variables.
Ground atoms are called facts. The Herbrand universe HU(P)
of a program P is the set of all ground terms formed with con-
stants and function symbols from sk(P) (using an auxiliary
constant if Const(sk(P)) = 0). The grounding ground(P) of
P is the set of all rules that can be obtained from rules in sk(P)
by uniformly replacing variables with terms from HU(P).

An (Herbrand) interpretation M is a set of facts with
L ¢ M. Satisfaction is defined as usual: M = B not B~
holds if B¥ C M and B N M =0; M = (B",B",H)
if MEB ,notB~ or MEH; and MEPif M[Er

for all r € P. The Gelfond-Lifschitz reduct of P w.rt. M
is GL(P,M) := {(B",0,H) | (B",B~,H) € ground(P) and
B~ NM =0}. M is a stable model of P, written M =gy P,
if M = GL(P, M) and there is no smaller model M’ C M
with M’ = GL(P, M). We consider cautious entailment: for
a program P and a fact o, P |= o if oo € M for all stable
models M of P. Consequences of programs can be computed
with the Tp operator:

Definition 1. Consider a program P and set of facts F. For a
rule r € P with sk(r) = (B*,B™,H), define

r(F):={HO|Bt0 CF and B-ONF = 0}.
Moreover, let Tp(F) := F UJ,cpr(F) and define

TOF):=F, TpH(F):=Tp(TH(F)), T5(F):=|JTHF).
i>0

Given a program P, a sequence of disjoint programs
P =P,...,P, is a stratification of P if P = J!_| P; and,
for all programs F;,P; € P, rules (Bf,Bf,Hl) € P, and
(By ,B; ,H) € P;, and every predicate R € Pred(H;), we
have: (i) if R € Pred(B;) then i < j, and (ii) if R € Pred(B;)
then i < j. The elements of P are called strata. P is stratified
if it has a stratification. The Tp operator can be used to char-
acterise stable models; for stratified programs, we even obtain
a deterministic computation procedure [Apt and Bol, 1994].

Fact 1. Given a program P, a set of facts F, and a stable
model M =gy PUF, we have M = TE‘L(RM)(F)~

If P=Py,....P, is a stratification of P, then M :=
Tp: (... Tp (F)...) is the unique stable model of P if L ¢ M.

3 Modelling with Nonmonotonic Rules

Rule-based formalisms are well suited for modelling rela-
tional structures, irrespective of whether these structures are
tree-shaped or cyclic. We consider practical examples re-
lated to the modelling of chemical compounds in ChEBI.
The structure of molecules can be readily represented as a
logical structure. For example, the formula Mo (x,y,2) :=
o(x) Abond(x,y) Abond(x,z) Ah(y) Ah(z) could represent a
water molecule (using unidirectional bonds for simplicity).
We model molecules as members of a unary predicate mol,
related to their constituting atoms by the predicate hA (has
atom). The following rule infers the structure of the six atoms
of methanol (CH3OH), described by the formula Mcpson(y):

methanol (x) — Jy.mol(x) A Mcrzon (¥) AAL hA(x,y:) (2)

Molecules can also be classified by their structure, e.g., to
identify molecules that contain oxygen, or organic hydroxy
molecules (those with a substructure C-O-H):

hA(x,y) Ao(y) — hasO(x) 3

Mcon(y) A A= hA(x, i) — orgHydroxy (x) “)

It is not hard to express syntactic identity with a predicate

=, predefined in most rule engines; see [Magka et al., 2013]

for details. Using not we can express syntactic inequality and
define, e.g., molecules with exactly one carbon atom:

A2, hA(x,y;) Ac(yi) Anoty; =y, — multiC(x) (5)

mol(x) AhA(x,y) Ac(y) Anot multiC(x) — oneC(x) (6)

The fact methanol(a) and the rules (2)—(6) have a unique sta-
ble model (using skolem functions fi, ..., fg for (2)):

M := {methanol(a),hasO(a),orgHydroxy(a),oneC(a),
mol(a), hA(a, fi(a)){, Mcrson (fi(a), - . fo(a))}

We can thus conclude, e.g., that methanol is an organic hy-
droxy molecule. To obtain such inferences for organic hy-
droxy molecules in general, we can use another rule:

orgHydroxy(x) — 3y.Mcon(y) AAL hA(x,y) (7)

The fact orgHydroxy(b) and the rules (3)—(7) have a unique
stable model (using skolem functions g, ..., g3 for (7)):

My = {orgHydroxy(b),hasO(b),
hA(b,8:i(b));-1, Mcon(g1(b),g2(b),g3(b))}

Hence, organic hydroxy molecules are structures with oxy-
gen, as expected. However, if we consider all of the above
rules and facts together, then rather than M; U M, we ob-
tain M UM, U{hA(a, gi(a))?_ |, Mcon(g1(a),82(a), g3(a)),
multiC(a)} \ {oneC(a)} as the unique stable model, since
rule (7) is applicable to orgHydroxy(a). Thus, the stable
model is no longer a faithful representation of the molecule
a, which is wrongly classified as a multi-carbon molecule.

Nonmonotonic negation can be used to overcome this
problem. We replace rules (4) and (7) by the following, where
we abbreviate orgHydroxy by oH:

Mcon(y) A NZ1 hA(x,yi) Anot n(y;) — oH(x) Ar(x) (8)
oH(x) Anot r(x) — 3y.Mcon(y) AN hA(x,yi) An(y;) (9)

The predicates r (‘recognised’) and n (‘new’) ensure that
only one of these rules is applicable to a given structure.
The above facts with rules (2), (3), (5), (6), (8), and (9)
have the unique stable model M; U M U {r(a),n(g:(b)),
n(g2(b)),n(g3(b))}, as desired. However, the resulting set of
rules is not stratified, which causes various problems. First,
we cannot be sure that the stable model will be unique for
other sets of facts. Second, rule engines may need to apply
more complex algorithms to find the stable model. Our exper-
iments in Section 7 suggest that this may cause performance
issues that prevent rule engines from computing entailments
at all. The goal of this work is to overcome these issues.

4 Positive Reliances and R-Acyclicity

As recalled in Fact 1, every stable model of a logic program
can be obtained from a (possibly infinite) sequence of con-
secutive rule applications. Insights about the semantics of a
program can thus be gained by analysing, for all pairs of rules
r1 and rp, whether an application of r| can potentially enable
a later application of r;. In this section, we formalise this idea
of positive reliance between rules and define R-acyclic pro-
grams, which have stable models of bounded size.

Definition 2 (Positive Reliance). Let r; and ry be rules
such that sk(r\) = (Bf,By ,Hy) and sk(r;) = (B3 ,B; ,H>);
w.lo.g. assume that Var(r1) NVar(ry) = 0. Rule r; positively
relies on ry (written ri = ry) if there exists a set of facts F
that contains no skolem terms and a substitution 0 such that:

BIOCF (P1) B,0N(FUH0)=0 (P4)

B{ONF =0 (P2) BjOZF (P5)
By6 CFUH0 (P3) H,0 FUH0 (P6)

Thus, r; = 5 holds if there is a situation (defined by F)
where r; is applicable (P1)/(P2), r; is not applicable (P5), and
applying r; allows r; to derive something new (P3)/(P4)/(P6).

Example 1. Consider rule ruy of (4), and rule r(; ob-
tained from (7) by replacing variable x with xX'. We find
that ry & r(;) since F := {Mcou(b)} U {hA(a,b;)};_ and
0 :={x a,y— b,x' — a} satisfy (P1)~(P6).

In contrast, r27) 2 ray. Intuitively, ray can only derive facts
that are already necessary to apply r(’7) in the first place, thus
violating (P6). More formally, suppose that r(z) * ruy could
be shown using F' and 0'. By (P1) and (P6), 6'(x) # 6'(x).
Thus, by (P3), hA(x,y;)0" € F' for all i € {1,2,3}. Since
F' must not contain skolem terms, 0'(y;) # gi(0'(x')), so
Mcon(y)0’ C F’, again by (P3). Thus (P5) would be violated.

Various previous works consider similar notions. The acti-
vation relation by Greco et al. [2012] is most similar to Def-
inition 2, but allows F to contain function terms to accom-
modate arbitrary disjunctive logic programs with functions.
Our stronger restriction is needed to show r(;, % r(4) in Ex-
ample 1. This illustrates how we can take advantage of the
specific structure of existential rules to discard certain poten-
tial interactions. Other similar notions are the < relation by
Deutsch et al. [2008] and the rule dependency by Baget et al.
[2011al, neither of which cover negation. Baget et al. omit
condition (P6), needed to show r{;) 7% r(4) in Example 1.

If a finite program has an infinite stable model, some rule
with an existential quantifier must be applicable an infinite
number of times. This, however, requires that there is a cycle
in rule reliances, motivating the following definition.
Definition 3 (R-Acyclic). A program P is R-acyclic if there
is no cycle of positive reliances ri s ... = r, = rq that in-
volves a rule with an existential quantifier.

Example 2. The complete list of positive reliances for the
rules r@2),---,1(7) is r2) i) r@3), 1(2) i) Iy, r(2) i) r sy, 1) i)
re), I'4) i> r7y, (7)) — 1(3), I'(7) i) r(s), and r7y — 16)- Thus
the program is R-acyclic. To model =, we assume that y; = y;
is derived for all existential variables y;.

We prove that checking positive reliance for two rules is
NP-complete. Similar results are shown by Deutsch et al.
[2008] and by Baget et al. [2011Db] for rules without nega-
tion. The complexity refers to the size of the two involved
rules rather than to the size of the whole program: in practice,
positive reliances can be checked efficiently by checking the
applicability of one of the rules to a linear number of facts.

Theorem 1. Given rules ry and ry, the problem of deciding
whether ri *s ry is NP-complete. Checking whether a pro-

gram P is R-acyclic is coNP-complete.

The main result of this section shows that entailment under
stable model semantics is decidable for R-acyclic programs.
Hardness for coN2EXPTIME can be shown by reducing the

word problem of 2EXPTIME-bounded non-deterministic Tur-
ing machines to cautious entailment, adapting constructions
by Cali ef al. [2010b] and Krétzsch and Rudolph [2011].

Theorem 2. Let P be an R-acyclic program and let F U{a}
be a set of facts. Every stable model of PUF has size doubly
exponential in the size of P and polynomial in the size of F.
Deciding PUF = o is coN2EXPTIME-complete w.r.t. pro-
gram complexity and coNP-complete w.r.t. data complexity.

5 Negative Reliances and R-Stratification

While positive reliances allow us to estimate if one rule can
‘trigger’ another rule, the use of nonmonotonic negation may
also give rise to the opposite interaction where one rule ‘in-
hibits’ another. In this section, we formalise this by defining
negative reliances between rules. This suggests a new kind of
stratification, which generalises the classical notion but can
still be decided efficiently.

Definition 4 (Negative Reliance). Let r; and ry be rules
such that sk(r) = (B} ,By ,Hi) and sk(r;) = (B3 ,B; ,H>);
w.lo.g. assume that Var(r;) NVar(ry) = 0. Rule rp negatively
relies on ry (written ri = ry) if there exists a set of facts F
that contains no skolem terms and a substitution 0 such that:

Bf6CF (NI) B;ONH 0 #0 (N4)
BiONF=0 (N2 B;ONF=0 (N5)
B;OCF (N3)

Example 3. Consider rule re) of (8), and rule rég) obtained
from (9) by variable x with x'. We can show rgy, — rég) us-
ing F := {oH(a),Mcon(b)} U{hA(a,b;)}}_, and 6 := {x —
a,y + b,x" — a}. Conversely, (g, > 13 follows from a sim-
ilar argument as in Example 1, since F is not allowed to con-
tain skolem terms.

The following definition is inspired by the classical notion
of stratification in logic programming.

Definition 5 (R-Stratification). A sequence of disjoint pro-
grams P = Py,..., P, is an R-stratification of a program P if
P =" P and, for every two programs P,, P; € P and rules
r1 € P and ry € Pj, we have:
ifry, S rytheni<j and
P is R-stratified if it has an R-stratification.
Example 4. For P consisting of rules r(), ¥@3), 7(5), 1) 7(8)»
and rgy we obtain the reliances rpoy - rg) — ro) -5 ra),
r@) 5 1) 1) S 16 Te) 5 1s) = Ty o) =), and
r9) - r@). An R-stratification of P is therefore given by

P = {7(2);7(8)}; b= {7(3),}’(5),}”(9)}, and P3 := {7(6)}. In
contrast, P is not stratified due to rules rgy and r).

ifri = rptheni < j.

Together with the previous example, the next result shows
that R-stratification properly generalises stratification.

Proposition 1. If P is stratified, then P is R-stratified.

The graph structure that is induced by reliances, defined
next, can be used to decide R-stratification in practice, as
shown in Proposition 2 below.

Definition 6 (Graph of Reliances). For a program P, the
graph of reliances GoR(P) is a directed graph that has the

rules of P as its vertices and two sets of edges: positive edges
that correspond to the positive reliances of P and negative
edges that correspond to the negative reliances of P.

Proposition 2. P is R-stratified iff its graph of reliances
GoR(P) contains no directed cycle with a negative edge.

From the previous result it is clear that, given the graph of
reliances, R-stratification can be decided in polynomial time.
The overall complexity is therefore dominated by the com-
plexity of checking individual reliances—in this sense, it is
polynomial in the total number of rules, and coNP-complete
only in the maximal size of a rule. Moreover, in contrast to the
NP-completeness of checking positive reliances (Theorem 1),
negative reliances can be detected in polynomial time.

Theorem 3. Given rules r1 and r,, it can be decided in poly-
nomial time whether ri = ry. Checking whether a program
P is R-stratified is cONP-complete.

It remains to show that R-stratified programs have at most
one stable model, and that this model can always be obtained
by repeated application of rules according to their stratifica-
tion. This leads to a semi-decision procedure for entailment.
If the program is also R-acyclic, we obtain a decision proce-
dure and tight complexity bounds.

Note that Definition 4 does not include a condition that cor-
responds to (P6) from Definition 2. Indeed, as the next exam-
ple shows, such a condition would not lead to a notion of
R-stratification that ensures unique stable models.

Example 5. Given the rules r1 :notp — q and r, : q — p,
we find that ry = r» and ry = r1, so that the program is not
R-stratified. Indeed, it has no stable models for the empty set
of facts. Yet, if we would require that Hy0 ¢ F in Definition 4
then ry = r1; would not hold, and the program would be R-
stratified. Intuitively speaking, negative reliances do not just
consider the case where ry could derive something new, but
also the case where ry has already been used in a derivation
that is no longer justified after applying ry.

We now define a computation scheme that can be used to
obtain the unique stable model of R-stratified programs, or to
derive a contradiction _L if no such model exists.

Definition 7. For a set of facts F and a program P with R-
stratification P = Py, ..., B, define S%(F) :=F and

Sp ! (F) :=Tg (Sp(F)) for 0<i<n.

For the remainder of this section, let P denote an R-
stratified program with R-stratification P = Py, ..., B, let F
denote a set of facts, and define Sp := Sk (F).

We first show that Sp is a (not necessarily unique) stable
model of F U P, provided that L ¢ Sp. The next two lem-
mas are key ingredients to this proof. Intuitively speaking,
Lemma 1 asserts that, if the body of a rule r € P, is satisfied at
some point while computing Sp, then it will remain satisfied
in all later stages of the computation. The crucial claim is that
the negative part of the rule will not be derived at any later
stage. The proof of Lemma 1 relies on the definition of =.

Lemma 1. Consider numbers 1 <i< j<k<nand{>0,
a rule r € P, with skolemisation sk(r) = (B",B~,H), and
a substitution 0. Then T,fj (S{;l) E= BT 0,not B~ 0 implies
Sk = B*6,not B~ 0.

Lemma 2 complements the previous result. Intuitively
speaking, it states that a rule r € P;, which is clearly satisfied
after computing Sp, will remain satisfied in all later stages of
the computation. The key part of this claim concerns the case
that r is satisfied because its positive body is not satisfied. In
this case, the positive body will never become satisfied later
on, unless the head of the rule becomes satisfied as well. This
argument hinges upon the definition of =.

Lemma 2. Consider numbeijs 1<i<j<k<naruler€cP,
and a substitution 6. Then Sp, = sk(r)0 implies S = sk(r)6.

Using Lemmas 1 and 2, we can show the following result.
Proposition 3. If L ¢ S4, then S sy F UP.

The main result of this section is that stable models of R-
stratified programs are unique. Its proof is obtained by first
showing that M }=sm PUF implies Sp = M, which in turn is
established by showing inductively that, for all k € {0,...,n},

k __ oo
Sp= TGL(U{_(:1 P,-,M)(F) [Magka et al., 2013].
Theorem 4. If 1 ¢ Sp, then Sp is the unique stable model of
F UP. Otherwise F U P does not have a stable model.

We can further improve the complexity results of Theo-
rem 2 for programs that are both R-acyclic and R-stratified.
The Turing machine reduction used to show Theorem 2 can
directly be used to show hardness: the constructed program is
R-stratified precisely if the Turing machine is deterministic.

Theorem 5. Let P be an R-acyclic R-stratified program, let
F be a set of facts, and let a be a fact. Deciding PUF = o
is 2EXPTIME-complete w.r.t. program complexity and P-
complete w.r.t. data complexity.

6 Reliances under Constraints

To widen the classes of logic programs with unique stable
models, it has been proposed to study stratification for a par-
ticular set of facts [Bidoit and Froidevaux, 1991]. Indeed, it
might be that a program that does not have a unique stable
model for all sets of facts still has a unique stable model for
all sets of facts that arise in the context of a given applica-
tion. On the other hand, notions that depend on a particular
set of facts do not easily capture a wider class of relevant sets
of facts, making it hard to develop logic programs that are
robust to changing inputs.

In this section, we therefore propose a generalisation of R-
acyclicity and R-stratification that considers constraints, that
is, rules of the form BT — 1 where BT is a set of atoms. As
illustrated by the following example, constraints restrict the
possible types of input so that more programs are stratified.

Example 6. Organic molecules are those containing carbon
and each inorganic entity is a molecule of geological origin:
ri: mol(x) AhA(x,y) Ac(y) — organic(x)
rp : mol(x) Anot organic(x) — inorganic(x)
r3: inorganic(x) — mol(x) A geoOrigin(x)
It is easily checked that ry = ry 5 r3 25 1y, s0 {r1,r2,r3} is

not R-stratified by Proposition 2. Although the program has a
unique stable model for all sets of facts, there is no stratified

order of rule applications that produces the stable model. In
particular, the set of facts {inorganic(a),hA(a,b),c(b)} re-
quires us to apply r3 before r1. This situation is undesired,
since inorganic molecules usually do not contain carbon, and
a refined notion of reliance should take this into account.

Definition 8 (Reliances under Constraints). Let r; and r; be
rules, and let C be a set of constraints.

e 1, positively relies on 7| under C (written r| ¢ 1p) if
there exists a set of facts F and a substitution 0 that
satisfy the conditions in Definition 2, and where F |= C.

e 1 negatively relies on r| under C (written ri ¢ r2) if
there exists a set of facts F and a substitution 6 that
satisfy the conditions in Definition 4, and where F |= C.

The classes of programs that are R-acyclic under C and R-
stratified under C are defined as in Definition 3 and 5, respec-
tively, but using =s¢ instead of =s.

It should be noted that our earlier results treat constraints
like any other rule of P. This is still possible here, e.g., if
some constraints are not deemed to be relevant for showing
stratification. Indeed, the fewer constraints are part of C, the
fewer additional checks are needed to compute reliances.

Example 7. Consider the rules of Example 6 and the con-
straint ¢ : inorganic(x) AhA(x,y) Ac(y) — L. With C :={c},
we find r3 Jc ry, and indeed P :={r1}, P, := {ra,r3} is an
R-stratification under these constraints.

The consideration of constraints increases the complexity
of checking positive reliances from NP to 2123 , 1.e., the check
can be performed in polynomial time by a nondeterministic
Turing machine using an NP oracle. Yet, as before, the NP
computations correspond to checking the applicability of a
rule or constraint to a small set of facts, for which efficient
implementations exist. A lower bound can be shown by re-
ducing satisfiability of a quantified Boolean formula Jp.vq.¢
to testing a positive reliance under a set of constraints.

Theorem 6. Given rules ry and r,, and a set of constraints C,
deciding whether ri ¢ ry is 2123 -complete. Checking whether
a program P is R-acyclic under constraints is H’; -complete.

As before, the relations ¢ and —s¢ induce a graph of
reliances under constraints. Analogously to Proposition 2, we
can show that P is R-stratified under constraints if and only if
this graph does not contain cycles that involve —¢. This is the
basis for deciding R-stratification under constraints, leading
to the following result.

Theorem 7. Given rules ry and r, and a set of constraints C,
the problem of deciding whether r| =sc ry is in A‘ZD . Checking
whether a program P is R-stratified under C is Hg -complete.

Given an R-stratification of P under constraints C, we can
again define a computation scheme to obtain unique stable
models. C in this case is evaluated on all strata, though one
can also defer constraint checking to the highest stratum.

Definition 9. For a set of facts F and a program P with
R-stratification P = Py,...,P, under constraints C, define
Spc(F) :==Tc(F) and

Spe(F) =Ty, c(Spc(F)) for 0<i<n.

The following result can be shown using the same overall
proof structure as in Section 5. The main difference is that in
all arguments that discuss potential reliances between rules,
we also need to show satisfaction of the constraints. This is
usually a consequence of the assumption that L is not derived.

Theorem 8. If L ¢ Sp -(F), then Sp o (F) is the unique stable
model of F UPUC, or else F UPUC has no stable model.

Theorems 2 and 5 can be generalised to programs that are
R-acyclic and R-stratified under constraints:

Theorem 9. For a set of facts F, a fact a, and a program
P that is R-acyclic under a set of constraints C, deciding
PUFUC [a is coN2EXPTIME-complete (coNP-complete)
w.r.t. program (data) complexity. If P is also R-stratified un-
der C, deciding PUF UC = o becomes 2EXPTIME-complete
(P-complete) w.r.t. program (data) complexity.

7 Experimental Evaluation

In order to assess the practical utility of our solution, we con-
ducted a case study with ChEBI. Our test datasets, software,
and detailed results are published online [Magka et al., 2013].

The ChEBI database (release 97) contains about 20,000
molecular structures and taxonomic relations for about 8,000
chemical classes, while the DL-based ontology contains tax-
onomic information only. To obtain rules for reasoning, we
considered a sample of 500 molecules, with sizes ranging
from 2 to 138 atoms. The structure of each molecule (given
in MDL Molfile format) was converted to rules of the form
(2). Chemical classes, such as one-carbon molecule or or-
ganic hydroxy, do not have machine-readable descriptions in
ChEBI. We selected 50 chemical classes and manually for-
malised their human-readable descriptions as rules, such as
(3) and (6). In addition, we defined 30 molecule classes that
are characterised by small substructures (functional groups of
2 to 8 atoms), e.g., organic hydroxy. We modelled each with
two rules of the form (8) and (9), using distinct predicates
r and n for each pair of rules. Finally, existential quantifiers
were skolemised, and conjunctions in rule heads were decom-
posed into multiple rules. This led to a program P with 78,957
rules, the largest of which had 38 body atoms (8 negative). P
was not stratified, but was R-stratified and R-acyclic. In ad-
dition, we generated a set F of 530 facts of the form C(ac),
one for each molecule or functional group. This allowed us to
compute subsumptions between chemical classes: C is sub-
sumed by C' iff C'(ac) is in the unique stable model of PUF'.

We ran experiments on a desktop computer (2GHz quad-
core CPU, 4GB RAM) running Linux. In a first experiment,
we tried to compute a stable model of P U F using DLV
[Leone et al., 2006], but the system failed to compute this
result within a time limit of 600 seconds. In a second exper-
iment, we split P into R-strata and consecutively computed
the stable model of each stratum. Of the five R-strata of P, the
first stratum P; contained 78,251 rules, while the 706 rules of
the remaining four R-strata formed a stratified program P25.
We thus used DLV to compute the stable model of P UF,
converted the result into a new set of facts Sll,, and used DLV

to compute the stable model of Sj U P5. This took 17 seconds,
with 13.5 seconds being used for actual reasoning in DLV.

We obtained 8,639 non-trivial subsumptions between
chemical classes, which we compared to ChEBI’s manually
created taxonomy. This revealed several omissions in ChEBI,
e.g., the fact that every organic hydroxy (ChEBI id 33822)
is an organooxygen compound (ChEBI id 36963), illustrating
the practical relevance of our approach.

8 Related Work

Nonmonotonic extensions for existential rules are considered
by Cali er al. [2009] using stratified negation, and more re-
cently by Gottlob et al. [2012] using well-founded seman-
tics. Another approach to nonmonotonic ontological mod-
elling are FDNC programs [Eiter and Simkus, 20101, which
are related to DLs and inherit many of their limitations in
modelling finite structures.

Local stratification generalises stratification by consider-
ing the (infinite) groundings of normal logic programs [Przy-
musinski, 1989]. This condition is undecidable [Cholak and
Blair, 1994], but does not generalise R-stratification (see
[Magka et al., 2013] for a counterexample). Further exten-
sions along these lines led to weak stratification [Przymusin-
ska and Przymunsinski, 19901, effective stratification [Bidoit
and Froidevaux, 19911, modular stratification [Ross, 1994],
and left-to-right dynamic stratification [Sagonas et al., 2001],
all of which are known or suspected to be undecidable in the
presence of function symbols.

Many other works study the problem of recognising pro-
grams with finite models, such as omega-restrictedness,
which also uses a kind of ‘stratification’ to ensure finiteness
of stable models [Syrjinen, 2001]. Magka et al. [2012] de-
fine semantic acyclicity to ensure finite models in reasoning
about structured objects but only consider stratified negation.
For programs without negation, numerous acyclicity condi-
tions have been formulated, such as weak acyclicity [Fagin er
al., 20051, joint acyclicity [Krétzsch and Rudolph, 2011] and
model-faithful acyclicity [Cuenca Grau et al., 2012].

9 Conclusions

We showed that nonmonotonic existential rules can tackle
complex real-world modelling problems and presented novel
conditions to ensure efficient, deterministic reasoning. Our
experiments indicate that our approach can dramatically in-
crease the performance of existing reasoners, enabling them
to address new practically interesting application areas.

For future work, it is thus very promising to integrate our
approach into existing rule engines, which will also allow
more extensive evaluations. Section 6 suggests that cyclic or
non-stratified programs could be ‘repaired’ by adding suitable
constraints, which could inspire new tools for rule modelling.
Equality theories often lead to additional reliances, whereas
datatypes and numeric constraints could be exploited to dis-
card reliances—further work is needed to study these effects.

10 Acknowledgements

This work was supported by the Royal Society, the Seventh
Framework Program (FP7) of the European Commission un-
der Grant Agreement 318338, "Optique", and the EPSRC
projects EXODA, Score! and MaSI3.

References

[Apt and Bol, 1994] Krzysztof R. Apt and Roland N. Bol.
Logic programming and negation: A survey. J. Log. Pro-
gram., 19/20:9-71, 1994.

[Baget et al., 2011a] Jean-Frangois Baget, Michel Leclere,
Marie-Laure Mugnier, and Eric Salvat. On rules with ex-
istential variables: Walking the decidability line. Artif. In-
tell., 175(9-10):1620-1654, 2011.

[Baget et al., 2011b] Jean-Frangois Baget, Marie-Laure
Mugnier, and Micha&l Thomazo. Towards farsighted
dependencies for existential rules. In RR, 2011.

[Bidoit and Froidevaux, 1991] Nicole Bidoit and Christine
Froidevaux. Negation by default and unstratifiable logic
programs. Theor. Comput. Sci., 78(1):86—112, 1991.

[Cali et al., 2009] Andrea Cali, Georg Gottlob, and Thomas
Lukasiewicz. A general Datalog-based framework for
tractable query answering over ontologies. In PODS,
pages 77-86. ACM, 20009.

[Cali er al., 2010a] Andrea Cali, Georg Gottlob, Thomas
Lukasiewicz, Bruno Marnette, and Andreas Pieris.
Datalog+/-: A family of logical knowledge representation
and query languages for new applications. In LICS, 2010.

[Cali et al., 2010b] Andrea Cali, Georg Gottlob, and An-
dreas Pieris. Query answering under non-guarded rules
in Datalog+/-. In RR, pages 1-17, 2010.

[Cholak and Blair, 1994] Peter Cholak and Howard A. Blair.
The complexity of local stratification. Fundam. Inform.,
21(4):333-344, 1994.

[Cuenca Grau et al., 2012] Bernardo Cuenca Grau, Ian Hor-
rocks, Markus Krotzsch, Clemens Kupke, Despoina
Magka, Boris Motik, and Zhe Wang. Acyclicity condi-
tions and their application to query answering in descrip-
tion logics. In KR, 2012.

[Deutsch ef al., 2008] Alin Deutsch, Alan Nash, and Jef-
frey B. Remmel. The chase revisited. In PODS, pages
149-158, 2008.

[Eiter and Simkus, 2010] Thomas Eiter and Mantas Simkus.
FDNC: Decidable nonmonotonic disjunctive logic pro-
grams with function symbols. ACM TOCL, 11(2), 2010.

[Eiter et al., 2012] Thomas Eiter, Thomas Krennwallner, Pa-
trik Schneider, and Guohui Xiao. Uniform evaluation
of nonmonotonic DL-programs. In FolKS, pages 1-22.
Springer, 2012.

[Fagin et al., 2005] Ronald Fagin, Phokion G. Kolaitis,
Renée J. Miller, and Lucian Popa. Data exchange: seman-
tics and query answering. Theor. Comput. Sci., 336(1):89—
124, 2005.

[Ferreira and Couto, 2010] Jodo D. Ferreira and Fran-
cisco M. Couto. Semantic similarity for automatic clas-
sification of chemical compounds. PLoS Computational
Biology, 6(9), 2010.

[Gkoutos et al., 2012] Georgios Gkoutos, Paul Schofield,
and Robert Hoehndorf. Computational tools for compara-

tive phenomics: the role and promise of ontologies. Mam-
malian Genome, 23(9-10):669-679, 2012.

[Gottlob et al., 2012] Georg Gottlob, André Hernich,
Clemens Kupke, and Thomas Lukasiewicz. Equality-
friendly well-founded semantics and applications to
description logics. In AAAI, 2012.

[Greco er al., 2012] Sergio Greco, Francesca Spezzano, and
Irina Trubitsyna. On the termination of logic programs
with function symbols. In ICLP (Tech. Comm.), 2012.

[Hastings et al., 2012] Janna Hastings, Despoina Magka,
Colin R. Batchelor, Lian Duan, Robert Stevens, Marcus
Ennis, and Christoph Steinbeck. Structure-based classifi-
cation and ontology in chemistry. J. Cheminf., 4:8, 2012.

[Hastings et al., 2013] Janna Hastings, Paula de Matos,
Adriano Dekker, Marcus Ennis, Bhavana Harsha, Nam-
rata Kale, Venkatesh Muthukrishnan, Gareth Owen, Steve
Turner, Mark Williams, and Christoph Steinbeck. The
ChEBI reference database and ontology for biologically
relevant chemistry: enhancements for 2013. Nucleic Acids
Research, 41(Database-Issue):456-463, 2013.

[Krotzsch and Rudolph, 2011] Markus Krotzsch and Sebas-
tian Rudolph. Extending decidable existential rules by
joining acyclicity and guardedness. In IJCAI, pages 963—
968, 2011.

[Leone et al., 2006] Nicola Leone, Gerald Pfeifer, Wolfgang
Faber, Thomas Eiter, Georg Gottlob, Simona Perri, and
Francesco Scarcello. The DLV system for knowledge rep-
resentation and reasoning. ACM TOCL, 7(3), 2006.

[Magka ef al., 2012] Despoina Magka, Boris Motik, and Ian
Horrocks. Modelling structured domains using description
graphs and logic programming. In ESWC, 2012.

[Magka et al., 2013] Despoina Magka, Markus Krotzsch,
and Ian Horrocks. Stable models for nonmonotonic exis-
tential rules. Technical report, University of Oxford, 2013.

[Motik and Rosati, 2010] Boris Motik and Riccardo Rosati.
Reconciling description logics and rules. J. ACM, 57(5),
2010.

[Motik et al., 2009] Boris Motik, Bernardo Cuenca Grau,
Ian Horrocks, and Ulrike Sattler. Representing ontologies

using description logics, description graphs, and rules. Ar-
tif. Intell., 173(14), 20009.

[Przymusinska and Przymunsinski, 1990] H. Przymusinska
and T. C. Przymunsinski. Weakly stratified logic pro-
grams. Fundam. Inf., 13(1):51-65, March 1990.

[Przymusinski, 1989] Teodor C. Przymusinski. On the
declarative and procedural semantics of logic programs.
J. Autom. Reasoning, 5(2):167-205, 1989.

[Ross, 1994] Kenneth A. Ross. Modular stratification and
magic sets for Datalog programs with negation. J. ACM,
41(6):1216-1266, 1994.

[Sagonas et al., 2001] Konstantinos F. Sagonas, Terrance
Swift, and David Scott Warren. The limits of fixed-order
computation. Theor. Comput. Sci., 254:465-499, 2001.

[Syrjdnen, 2001] Tommi Syrjdnen. Omega-restricted logic
programs. In LPNMR, pages 267-279, 2001.

