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Abstract

We formulate a compositional specification theory for interface automata,
where a component model specifies the allowed sequences of input and out-
put interactions with the environment. A trace-based linear-time refinement
is provided, which is the weakest preorder preserving substitutivity of com-
ponents, and is weaker than the classical alternating simulation defined on
interface automata. Since our refinement allows a component to be refined
by refusing to produce any output, we also define a refinement relation that
guarantees safety and progress. The theory includes the operations of paral-
lel composition to support the structural composition of components, logical
conjunction and disjunction for independent development, hiding to support
abstraction of interfaces, and quotient for incremental synthesis of compo-
nents. Our component formulation highlights the algebraic properties of the
specification theory for both refinement preorders, and is shown to be fully
abstract with respect to observation of communication mismatches. Exam-
ples of independent and incremental component development are provided.

Keywords: component-based design, interfaces, specification theory,
compositionality, refinement, substitutivity, synthesis

1. Introduction

Interface automata (de Alfaro and Henzinger, 2001) are an influential
formalism for modelling the interactions between components and their en-
vironment. Components are assumed to communicate by synchronisation
of input and output (I/O) actions, with the understanding that outputs are
non-blocking. If an output is issued when a component is unwilling to receive
it, a communication mismatch is said to occur. This allows one to reason
about the allowed behaviours of the environment, which is crucial for, e.g.,
assume-guarantee reasoning.
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An important paradigm for developing complex reactive systems is component-
based design, which should be supported by a specification theory. A specifi-
cation captures the requirements for a component to function in the intended
system context, while operators and refinement relations allow for the com-
posing and comparing of specifications in analogy with how components are
composed and refined towards the overall system design. Substitutive re-
finement is essential for dynamic systems of components, as it allows for the
replacing of components without introducing errors into the system.

The original theory of interface automata defines a substitutive refine-
ment in terms of alternating simulation (Alur et al., 1998), along with a
parallel composition operator for observing component interaction. In sub-
sequent papers, variants of the framework have also been extended with ad-
ditional operators, including conjunction (defined for synchronous automata
by Doyen et al. (2008)) and quotient for supporting incremental development
(defined for deterministic automata by Bhaduri and Ramesh (2008)).

In this article, we formulate a theory for components that is conceptually
similar to interface automata, but is based on a linear-time notion of substitu-
tive refinement involving trace containment. We define a specification theory
for component behaviours, which includes the operations of: parallel compo-
sition for structural composition of components; conjunction for supporting
independent development, by constructing a component that will work in
any environment compatible with at least one of its arguments; disjunction
for constructing a component that has an environment compatible for both
of its operands; hiding to support abstraction in hierarchical development;
and quotient for incrementally synthesising new components to satisfy par-
tial requirements. We prove compositionality for all the operations and show
that the specification theory enjoys strong algebraic properties.

Our formalism addresses the following shortcomings of the interface au-
tomata theory as formulated by de Alfaro and Henzinger (2001):

e Alternating simulation is conceptually more complex than refinement
based on trace containment, which is standard in widely used theories
such as CSP (Brookes et al., 1984) and I/O automata (Lynch and
Tuttle, 1989; Jonsson, 1994). Further, alternating simulation is overly
strong in comparison to our refinement based on traces, which is the
weakest preorder preserving compatibility with the environment.

e [t is not clear how to extend a refinement relation based on alternating
simulation so that it also preserves liveness properties. This should be



contrasted with the conceptually simple handling of liveness properties
in formalisms such as I/O automata, which use trace inclusion. In the
case of our refinement, we are able to extend it with the notion of quies-
cence to guarantee observational progress, in addition to substitutivity.
We prove that compositionality results for all the operations continue
to hold for this enhanced refinement.

The contribution of this article is therefore a compositional, linear-time
specification theory for interface automata based on fully abstract substitu-
tive and progress-preserving refinement. Our framework includes all desirable
operations on components known from the literature, and satisfies strong al-
gebraic properties, including characterisation of conjunction and disjunction,
respectively, as the meet and join of the refinement preorder. The theory
naturally supports a component-based design process that starts from some
initial design considerations and applies the operations of the theory com-
positionally and in a stepwise fashion, relying on substitutivity to guarantee
that no errors will be introduced even if components are refined at runtime.

A preliminary version of this article appeared as (Chen et al., 2012), where
we introduced the operations of parallel, conjunction and quotient, but did
not consider an extension with quiescence. To demonstrate the applicability
of the theory in component-based design, the quotient operation was used to
synthesise mediator components in (Inverardi and Tivoli, 2013). The flexibil-
ity and expressiveness of our specification theory has been shown through a
compositional assume-guarantee reasoning framework (Chilton et al., 2013)
and a real-time extension (Chilton et al., 2012).

1.1. Related Work

Interface automata. These are essentially finite state automata with 1/0 dis-
tinction on actions (de Alfaro and Henzinger, 2001). The models in this arti-
cle are conceptually similar, except that our refinement preorder is a linear-
time alternative to the alternating simulation of Alur et al. (1998) defined on
interface automata. Both refinements are substitutive, but alternating sim-
ulation is overly strong due to the conflict between non-determinism in the
automaton and the selection of a matching transition to complete the simu-
lation. We essentially work with the same notion of parallel composition as
on interface automata, except that we encode inconsistency due to commu-
nication mismatches explicitly in the model. To the best of our knowledge,
conjunction and disjunction have not been defined on interface automata, al-
though Doyen et al. (2008) define conjunction (called shared refinement) on
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a synchronous component model. A definition of quotient has been provided
for deterministic interface automata by Bhaduri and Ramesh (2008), which
mirrors the method developed by Verhoeff (1994).

I/0 automata. Due to Lynch and Tuttle (1989); Jonsson (1994), I/O au-
tomata are conceptually similar to interface automata, except that each state
is required to be input-enabled. This input receptiveness means that commu-
nication mismatches cannot arise between a component and its environment.
Consequently, substitutive refinement can be cast in terms of trace contain-
ment (Jonsson, 1994). The operation of parallel composition is defined in
the same way as for interface automata, except that consideration need not
be given to inconsistencies. Conjunction can be defined as a synchronous
product, meaning that its set of traces is the intersection of its operands’
traces. Disjunction can be defined similarly. Hiding is already defined on
outputs (Jonsson, 1994) and quotient can be defined in a straightforward
manner (Drissi and v. Bochmann, 1999).

We mention a process-algebraic characterisation of /O automata due
to de Nicola and Segala (1995), which is also applicable to interface automata,
since a process exhibits chaotic behaviour on receiving a non-enabled input.
Refinement is defined by trace inclusion, but this does not extend to incon-
sistent trace containment. Consequently, the theory is not able to distinguish
a non-enabled input from one that is enabled and can subsequently behave
chaotically. Furthermore, high-level operations such as conjunction and quo-
tient are not defined. Note that CCS (Milner, 1980) merely has a syntactic
distinction of inputs from outputs, so we give it no further attention.

Logic LTSs. These are labelled transition system (LTS) models, without I/O
distinction, augmented by an inconsistency predicate on states (Liittgen and
Vogler, 2007). A number of compositional operators are considered (parallel
composition, conjunction, disjunction, external choice, and hiding (Liittgen
and Vogler, 2010)), and refinement is given by ready-simulation, a branch-
ing time relation that requires the refining component not to introduce any
new inconsistency and equality of offered actions at each state in the simula-
tion chain. This formulation of refinement differs from our intuition behind
substitutivity, meaning that their operations, such as conjunction, are in-
comparable to ours. Taking inspiration from Liittgen and Vogler (2007), in
Section 4 we formulate an operational model of components that are 1/O
automata augmented by an inconsistency predicate for indicating commu-
nication mismatches (and, consequently, non-enabled inputs), making our
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formalism achieve similar goals as interface automata, but with notation and
semantics derived from I/O automata and Logic LTSs.

Circuit trace structures. Dill (1988) presents a trace-based theory for mod-
elling circuits, with 1/O distinction, which conceptually uses the same basic
semantic model as in our framework. A circuit can be characterised by prefix
closed sets of traces, which corresponds exactly with our component model
in Section 2. Dill’s conformance is also similar to our substitutive refinement,
except that we generalise this to allow non-identical (static) interfaces, but
his liveness extension is based on infinite traces, rather than finite traces and
quiescence. Further, compared to Dill (1988), we formulate a richer collection
of compositional operators.

Receptive process theory. Josephs et al. (1989) formulate an I/O extension
of CSP (Hoare, 1985) for modelling asynchronous circuits. The work differs
from ours in that processes must communicate through unbounded buffers,
which eliminates the possibility of communication errors arising through non-
enabledness of inputs. Avoiding this, Josephs (1992) formulates a theory of
receptive processes, where components must communicate directly with one
another. This has connections to our liveness framework, since a receptive
process is modelled by means of its failures (communication mismatches and
divergences) and quiescent traces (violations of liveness). Consequently, the
refinement relation is similar to our progress-sensitive refinement, except that
we give an explicit treatment of divergence. Josephs’ work does not consider
conjunction and quotient (the latter is defined on the restricted class of delay-
insensitive networks (Josephs and Kapoor, 2007), where it is referred to as
factorisation; however, this does not match our setting).

Modal interfaces. A modal specification characterises sequences of (non 1/0)
interactions between a component and its environment, along with modalities
on the interactions, indicating whether an interaction may or must be possi-
ble. Raclet et al. (2009a,b, 2011) introduce a specification theory for modal
specifications that considers a substitutive refinement relation, along with
the operations of parallel composition, conjunction and quotient (Raclet,
2008). Their notion of liveness and progress is based on must-modalities,
and thus differs from our trace-based formulation. The theory is extended
in Raclet et al. (2009b, 2011) to modal interfaces (modal specifications with
[/O distinction), where a mapping is given from deterministic interface au-
tomata without hidden actions to modal interfaces. This is similar to the



theory of Larsen et al. (2007), except that: a number of technical issues are
resolved, relating to compatibility and parallel composition; refinement is
based on trace-containment, rather than being game-based; and additional
compositional operators are defined.

A weakness of Raclet et al. (2009b, 2011) is that the compositionality
results for the different operators must be given with respect to either strong
or weak refinement relations (the former for parallel and quotient, the lat-
ter for conjunction) when the components to be composed have dissimilar
alphabets. This has repercussions for parallel composition, which is an asyn-
chronous operator on interface automata, but is treated synchronously on
modal interfaces by a lifting on alphabets. This lifting is essentially equiva-
lent to requiring that a refining component is enabled in every state on each
input that is not in the interface of the original component. Consequently,
there are also differences between the quotient operators of the two frame-
works, since they should be the adjoint of their respective parallel operations.

loco-testing theory. Our work is related to the ioco theory for model based
testing (Tretmans, 2011), which only considers the operators of parallel com-
position, hiding and choice. Aarts and Vaandrager (2010) show the similar-
ities between interface automata and the ioco theory. A key result of that
paper relates quiescence-extended alternating simulation refinement on in-
terface automata with the ioco relation, under determinism of models. In
comparison with our framework, this implies that the ioco relation coincides
with our progress-sensitive refinement for components free of divergence.

1.2. Outline

Section 2 begins by introducing a trace-based theory of interface au-
tomata, and defines substitutive refinement, along with the collection of
compositional operators. In Section 3, we extend the trace-based theory
by formulating a refinement preorder guaranteeing substitutivity along with
preservation of progress, for which we generalise the compositional operators.
An operational theory of components is presented in Section 4, for both the
substitutive and progress-sensitive frameworks. A detailed comparison of our
work with interface automata is given in Section 5, while Section 6 concludes.
Proofs for our claims can be found in the appendix.



2. A Trace-Based Theory of Substitutable Components

In this section, we introduce a trace-based representation for components
modelled as interface automata. The formulation captures the essential in-
formation relating to whether a component can work in an arbitrary en-
vironment without introducing communication mismatches, which is vital
for checking substitutability of components. Based on this representation,
we introduce a weakest refinement relation preserving safe substitutivity of
components and provide definitions of compositional operators for our theory.

Definition 1 (Component). A component P is a tuple (AL, AQ, Tp, Fp)
in which AL and A9 are disjoint sets referred to as the inputs and outputs
respectively (the union of which is denoted by Ap), Tp C A3 is a set of
observable traces, and Fp C A} is a set of inconsistent traces. The trace
sets must satisfy the constraints:

1. Fp CTp
2. Tp is prefix closed
3. Ift € Tp and t' € (AL)*, then tt' € Tp
4. Ift € Fp and t' € A}, then tt' € Fp.
If e & Tp, we say that P is unrealisable, and is realisable contrariwise.

The sets AL and .AS make up the interface of P, i.e., the interaction prim-
itives that the component is willing to observe, while the trace sets encode the
possible interaction sequences over the component’s interface. T consists of
all observable traces of interactions that can arise between the component
and the environment. As inputs are controlled by the environment, any trace
in Tp is extendable by a sequence of inputs, since the component cannot pre-
vent these inputs from being issued. Traces contained in Fp are deemed to
be inconsistent, which can encode, e.g., run-time errors and communication
mismatches. As interface automata are not required to be input receptive,
we use Fp to record the traces in Tp that involve non-enabled inputs. Un-
der this treatment of inputs, we say that our theory is not input enabled,
even though T’ is closed under input extensions. Once an inconsistency has
arisen, the resulting behaviour is unspecified, so we assume that subsequent
observations of the component are chaotic.
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Figure 1: Multi-function Device.

Example 1. Throughout this article, we use the following running example
to demonstrate the suitability of our framework for component-based design.
A multi-function device capable of printing and scanning is modelled as a
component Device in Figure 1. The device can be placed in print_mode or
scan_mode, can receive job_details, and can print and scan. From the per-
spective of the device, actions print and scan should be treated as outputs
(indicated by '), while all other actions are inputs (indicated by ?).

Concerning the diagrammatic representation, the interface of a compo-
nent is given by the actions labelling transitions in the figure (note that, in
general, the interface may contain actions that do not occur in a component’s
behaviour). For compactness, we avoid giving an explicit representation for
input transitions immediately leading to an inconsistent state, since they can
be inferred due to the requirement of components being receptive.

From hereon let P, Q and R be components with signatures (A%, Ag, Tp,
Fp), (AL A9, To, Fo) and (AL, AR Tr, Fr) respectively.

Notation. Let A and B be sets of actions. For a trace t, write t | A for the
projection of t onto A. Now for T" C A*, write T' [ B for {t | B :t € T},
THBfor{teB* :t| AeT}and T 1 B for T(B\ A)(AUB)*.

2.1. Refinement

The refinement relation on components should support safe substitutivity,
meaning that, for Q to be used in place of P, we require that Q exists safely
in every environment that is safe for P. Whether an environment is safe
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or not for a component depends on the interaction sequences between the
two. The affirmative holds if the environment can prevent the component
from performing an inconsistent trace. As outputs are controlled by the
component, it follows that a safe environment must refuse to issue an input
on any trace from which there is a sequence of output actions that allow the
trace to become inconsistent.

Given a component P, we can formulate the most general safe component
E(P), containing all of P’s observable and inconsistent traces, but satisfying
the additional property: if ¢ € Tp and there exists ' € (AY)* such that tt’ €
Fp, thent € Fgp). This has the effect of making the component immediately
inconsistent whenever it has the potential to become inconsistent under its
own control. If the environment respects this safe component, by not issuing
any input that results in an inconsistent trace, then the component can
never encounter an inconsistent trace. Note that if € € Fg(py then there is
no environment that can prevent P from performing an inconsistent trace.
However, for uniformity we still refer to £(P) as the safe component of P.

Definition 2. The safe component for P is defined as E(P) = (AL, AS, TpU
Fg(p),Fg(p)>, where Fg(p) = {t eTp:3dt € (Ag)* -t € Fp} . .A;;

Based on safe components, we can now give the formal definition of sub-
stitutive refinement.

Definition 3 (Refinement). Q is said to be a refinement of P, written

Q Cipp P, iff:
11. A, € A
12. AZ C AP
13. ALNAZ =10
1. Teo) C Teepy U (Teepy T AQ)
I5. Feg) € Fepy U (Terp) T Ag)-

For O to be a refinement of P, the interface of Q must be substitutable
for the interface of P, meaning that Q must be willing to accept all of P’s
inputs, while it must produce only a subset of P’s outputs, as witnessed by I1
and I2. Condition I3 ensures that P and Q are compatible, that is, they are
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not allowed to mix action types. In Chen et al. (2012) we did not impose
this constraint, as it is not necessary to guarantee substitutivity. However,
in this article we choose to include the constraint for three reasons: (i) it is
not necessarily meaningful to convert outputs into inputs during refinement;
(ii) compositionality of hiding does not hold without this constraint; and (iii)
mixing of action types is problematic for assume-guarantee reasoning, which
deals with the behaviour of the environment.

Condition 14 ensures that the observable behaviour of Q is contained
within the behaviour of P, except for when an input in A§ \ AL is encoun-
tered. The lifting Tep) T AIQ represents the extension of P’s interface to
include all inputs in Aj \ AJ. As these inputs are not accepted by P, they
are treated as bad inputs, hence the suffix closure with arbitrary (chaotic) be-
haviour. Finally, condition I5 ensures that Q cannot introduce any new errors
that are not in P’s behaviour. Note that checking Fg C Fp U (Tep) T Ab)
would be too strong to use for the last clause, as we are only interested in
trace containment up to the point where an environment can issue a bad
input, from which the component can become inconsistent autonomously.

Definition 4. P and Q are said to be equivalent, written P =,,,, Q, iff
P Eimp Q and Q Eimp 7)

Lemma 1. Refinement is reflexive, and is transitive subject to preservation
of action types: R Cimp Q, Q Cipp P and AL N .Ag = 0 implies R Ty P.

We are now in a position to define the compositional operators of our
theory. In general, the compositional operators are only partially defined,
specifically on components that are said to be composable. This is a syntactic
check on the interfaces of the components to be composed, which ensures that
their composition is meaningful. For each operator, we state the required
composability constraints.

2.2. Parallel Composition

The parallel composition of two components yields a component repre-
senting the combined effect of its operands running asynchronously. The
composition is obtained by synchronising on common actions and inter-
leaving on independent actions. This makes sense even in the presence of
non-blocking outputs, because communication mismatches arising through
non-enabledness of inputs automatically appear as inconsistent traces in the
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composition, on account of our component formulation. To support broad-
casting, we make the assumption that inputs and outputs synchronise to
produce outputs. As the outputs of a component are controlled locally, we
also assume that the output actions of the components to be composed are
disjoint, in which case we say that the components are composable. In prac-
tice, components that are not composable can be made so by employing
renaming.

Definition 5. Let P and Q be composable for parallel, i.c., A3 N A = 0.
Then P || Q is the component <AI{DHQ,A7O)HQ,T’PHQ,F’PHQ), where:

o ALio = (AL UAL)\ (AU A9)
° TPHQ = [(TP ﬂ APHQ) N (TQ TT APHQ)] U FPHQ

e Fpio = [(Tp ft Apjjo) N (Fo 1 Apjj0)] A% o U
[(Fp 1 Apjio) N (To 1 Apjjo) A% o-

In words, the observable traces of the composition are simply those traces
that are inconsistent, plus any trace whose projection onto Ap is a trace of
P and whose projection onto Ag is a trace of Q. A trace is inconsistent if it
has a prefix whose projection onto the alphabet of one of the components is
inconsistent and the projection onto the alphabet of the other component is
an observable trace of that component.

The definition of parallel composition for interface automata (de Alfaro
and Henzinger, 2001) also includes backward propagation of inconsistencies.
In our framework, this is not necessary, since backward propagation of in-
consistencies is implicitly performed in our definition of refinement.

Lemma 2. Parallel composition is associative and commutative.

The following result shows that parallel composition is monotonic on re-
finement, subject to restrictions on the interfaces to be composed and com-
posability. A corollary of this result is that mutual refinement is a congruence
for parallel, subject (only) to composability.

Theorem 1. Let P, @, P’ and Q' be components such that P and Q are
composable, Apr N Ag N Apjjg € Ap N Ag and A7O’|IQ N AI,HQ, = 0. If
P/ Eimp 7) (md Q/ Eimp Q; then 73/ || Q/ Eimp P || Q
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Note that, in Raclet et al. (2011), parallel composition is claimed to
be monotonic for modal interfaces without any conditions on the interfaces
(except for composability). This is due to the fact that they use strong
refinement, based on a strong lifting, which is more restrictive than C,,,,.

Example 2. The most liberal User that can interact with the Device (shown
in Figure 1) is a component obtained from Device by interchanging inputs
and outputs (given that we do not explicitly represent traces making the com-
ponent receptive). The definition of parallel composition quarantees that the
composition of the Device along with the resultant User is free of inconsisten-
cies (i.e., communication mismatches), and is a transition system equal to
that of the Device and the User, but with all actions converted to outputs.

Note that, if a user wished to perform the trace print_mode! scan_mode!,
then this would also be a trace in the parallel composition, since print_mode?
scan_mode? is a trace of Device, albeit an inconsistent one, which is why it is
not explicitly represented in Figure 1. Consequently, the trace would also be
inconsistent in the parallel composition.

2.3. Congunction

The conjunction operator on components can be thought of as supporting
independent development, in the sense that it yields the coarsest component
that will work in any environment safe for at least one of its operands. Con-
sequently, the conjunction of components is the coarsest component that is
a refinement of its operands (i.e. is the meet operator), which is why it is
frequently referred to as the shared refinement operator (Doyen et al., 2008;
Raclet et al., 2009b).

In a number of frameworks, including (Liittgen and Vogler, 2007), con-
junction represents synchronous parallel composition, formed as the intersec-
tion of the good behaviours of the components to be composed. In contrast,
our conjunction is a substitutive refinement of each component. Therefore,
an input must be accepted in the conjunction if at least one of the com-
ponents accepts it, while an input should be accepted in the synchronous
parallel only if all of the appropriately alphabetised components accept it.

Conjunction is only defined on composable components, where P and Q
are composable for conjunction if the sets AL UAL and AZUAG are disjoint.

Definition 6. Let P and Q be components composable for conjunction, i.e.,
such that the sets .A{; U AIQ and Ag U Ag are disjoint. Then P N Q 1is the
component (Ap o, AZra, Trra, Frpag), where:
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o Ao = ALU AL

. A2, o = A2 AS

o Tpro = (Tp U(Tp T AQ)) N (To U (To T Ap))
o Fpro = (FpU(Tp T AL)) N (FoU(To T Ap)).

The T and F sets are defined such that any trace in the conjunction is a
trace of both P and Q, unless if there is an input along the trace that does not
belong in the alphabet of one of the components (say Q). On encountering
such an input, the remainder of the trace would be in Tg 1 AL, which has
the effect of leaving the behaviour of P unconstrained.

Lemma 3. Conjunction is associative, commutative and idempotent.

The following theorem demonstrates that conjunction really does cor-
respond to the meet operator, and that it is monotonic under refinement,
subject to composability.

Theorem 2. Let P and Q, and P’ and Q', be components composable for
conjunction. Then:

(4 P/\ngmpp andP/\QElmp Q
® R Cimp P and R Gy, Q implies R 5y P A Q

o P' Cipp P and Q' Ty, Q implies P! N Q' Ty P A Q.

Example 3. To demonstrate conjunction, we consider a device that is capa-
ble of printing and faxing documents. The behaviour of this device is shown
in Figure 2. Note how this device is capable of printing multiple documents
after having received job_details (indicated by the self-loop labelled with print).

The conjunction of the original multi-function device (capable of printing
and scanning, shown in Figure 1) along with this new printing/fazing device
1s shown in Figure 3. The resulting device is responsive to the inputs that can
be issued for each of the separate devices, but is only willing to perform func-
tions that can be executed by both. Therefore, the resulting device is unable
to scan or fax documents, even though it can be placed in these modes. More-
over, the device is only able to print a single document after having received
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print! print!

job_details? ~ print!

i job_details?
print_mode?

print_mode? fax_mode?

fax_mode? print_mode?

fax_mode?

job_details?

job_details? ~  fax!

fax!

Figure 2: A printing and faxing device.

job_details. Such behaviour may seem unnecessarily restrictive and undesir-
able; however, the resulting device is the most general that can be used safely
in place of the original printing/scanning device and the printing/fazing de-
vice. Consequently, the resulting device can only introduce communication
mismatches that both of the original devices can introduce.

One reason why the conjunction in Figure 3 is so restrictive is that it can-
not perform any output action that is not in the interface of both conjuncts.
If we tmprove on this situation by extending the set of actions of the device
in Figure 1 with fax_-mode and fax, and extending the set of actions of the
device in Figure 2 with scan_mode and scan, so that the components to be
conjoined have identical interfaces, then the conjunction is a component as
shown in Figure 4. This device is capable of scanning and faxing documents,
but cannot be placed in scan_mode after it has been placed in fax_mode and
vice versa, although it can still be switched into print_mode and back.

We remark that if, instead, we used conjunction defined as the intersec-
tion of behaviours (i.e. synchronous parallel, as in e.g. Littgen and Vogler
(2007)), this would yield a device that cannot be used safely in place of ei-
ther. The problem is that the behaviour would be unspecified when the device
18 placed in either scan_mode or fax_mode, which means it will not work in
any environment compatible with the printing/scanning device, nor the print-
ing/faxing device.
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job_details?

~ scan_mode?
/

scan_mode?
scan_mode?

job_details?

print_mode? ~ job_details? ~
N N

fax_mode? fax_mode?

) J
job_details? fax_mode?

Figure 3: The conjunction of the printing/scanning and printing/faxing devices.

2.4. Disjunction

Disjunction is the dual of conjunction, so corresponds to the join opera-
tor on the refinement preorder. Therefore, the disjunction of a collection of
components is the finest component that they each refine, meaning that the
disjunction will work in environments safe for both of its operands. Compos-
ability of components under disjunction is the same as for conjunction.

Definition 7. Let P and Q be components composable for disjunction, i.e.,
such that the sets AL U .A]Q and .A7O> U .Ag are disjoint. Then PV Q is the
component (Ap, g, Agvg: Tpvo, Fpvo), where:

e Ab,o = AL AL

o AZ, o = AZ U AY

e Tpyg = (TprUTg) N Ap o
e Fpyo = (FpUFo) N Apo.

Essentially, as the disjunction should be refined by its arguments, the
behaviours of P and Q should be contained within the behaviour of P VvV Q.
Similarly, if a trace is inconsistent in one of P or Q, then it must also be
inconsistent within the disjunction.
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rint! fax_mode?
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job_details? print! .‘
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Figure 4: The conjunction of the printing/scanning and printing/faxing devices when the
components have identical interfaces incorporating all actions.
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job_details?

print_mode? ~ job_details? ~ print!
=0 ) )
print! print!

Figure 5: The disjunction of the printing/scanning and printing/faxing devices.

Lemma 4. Disjunction is associative, commutative and idempotent.

As for conjunction, disjunction has an analogous set of algebraic proper-
ties, obtained by reversing the direction of refinement.

Theorem 3. Let P and Q, and P’ and Q', be components composable for
disjunction. Then:

o P EzmvaQ andggzmppvg
e Pl R and Q 5, R tmplies PV Q iy R
o P' Cimp P and Q' Ty Q implies PV Q' Ty PV Q.

Example 4. A user wishing to use a multi-function device is non-deterministically
allocated the printing/scanning device (Figure 1) or the printing/faxing de-

vice (Figure 2). The most general behaviour allowed by the user (such that
communication mismatches are not introduced) is obtained by inverting the
inputs and outputs on the disjunction of the two devices. The disjunction is
shown wn Figure 5.

2.5. Hiding

We introduce hiding to support abstraction for hierarchical development.
Hiding is a unary operator on components that has the effect of contracting
the interface by removing an action. Taking intuition from a simple analogy
in which inputs correspond to buttons and outputs correspond to lights, the
resulting behaviour of a component under hiding of action b is as follows:

e If b is an input, then the b-button will never be pressed. This means
that no behaviour is observable beyond a b on a trace, so all traces
should be pruned on encountering a b.
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e If b is an output, then hiding suppresses the visibility of the b-light.
The component should thus silently skip over b, which corresponds to
projecting out b from all traces.

From this, we give the formal definition, which is dependent on the type
of action to be hidden.

Definition 8. Let P be a component and let b be an action. The hiding of
b in P is a component P/b = (Aé/b,Ag/b,Tp/b,Fp/b), where:

o AL, = Ab\ {b)
¢ -’4709/1; = A3\ {b}

T Ty f Ap/b ifb c Ag
[ ] =
P/ Tpr N .A;;/b otherwise

r o f .Ap/b ifb c Ag
[ ] prnd
Prb FprnN A;S/b otherwise.

The soundness of this definition requires careful consideration when b is
an output. For a trace tb € Tp and input a € AL, observe that ta is a safe
trace of P/b (i.e., ta € Tpp \ Fpp) iff both ta and tba are safe traces of P.
Taking intuition from b being a hidden light, this behaviour is correct since
it cannot be known precisely when the light will illuminate, so it is only safe
for the environment to issue the input a after ¢ if the component is willing
to accept a both before and after the light has been silently illuminated.

Theorem 4. Let P and Q be components and let b an action. If Q T,y P,
then Q/b Ty P/b.

Example 5. Disaster strikes and the Device becomes broken such that it will
no longer scan documents (depicted as BrokenDevice in Figure 6). As a result,
the BrokenDevice should not be placed in scan_mode. The updated behaviour
of the device is given by BrokenDevice / scan_mode, as shown in Figure 7.
The resulting component model contracts the interface of the BrokenDevice
by being indifferent to scan_mode requests.
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print!

job_details? print!

()
. = job_details?
print_mode?

scan_mode? scan_mode?

scan_mode?

job_details?

Figure 6: BrokenDevice without the ability to scan.

print!

print_mode? ~ job_details? ~ print!
=0 ) )

job_details?

Figure 7: BrokenDevice after hiding the scan_mode functionality.

2.6. Quotient

The final operation that we consider is that of quotient, which provides
functionality to synthesise components from a global specification and partial
implementation. Given a component representing a system R, together with
an implementation of one component P in the system R, the quotient yields
the coarsest component for the remaining part of R to be implemented. Thus,
the parallel composition of the quotient with P should be a refinement of R.
Therefore, quotient can be thought of as the adjoint of parallel composition.

A necessary condition for the existence of the quotient is that AQ C AZ,
otherwise refinement will fail on the alphabet containment checks.

Definition 9. Let P and R be components such that A3 C AS. The quo-
tient of P from R is the component R /P with signature <A§z/7>’ A%/P, Tr/p,
Fr/p), where:

¢ A%/P = AR\ Ap
¢ -’4702/73 = Az \ Ap
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o Tryp = X | Agyp, where X is the largest prefix closed set satisfying
X(Ag \ Agyp)* C {t € Ay :Vt' a prefiz of t - L(t') and
vt" € (Ar \ AR p)" - L(tt")}

o FR/p:{tEA%S(t [ Ap € Tp — tEFg(R)) and
Vt' a prefic of t - L(t')} | Arp

o L(t)y=(t | Ap € Fp = tEFg(R))and(t [ Ap € Tp — t €
Te(r))-

Explaining the intuition behind the definition, whenever R is inconsistent,
the parallel composition of P and the quotient can be inconsistent, so the
quotient itself can be inconsistent. Similarly, if a trace is not in P, then it
will not be encountered in the composition P || R/P, hence it should be
inconsistent in the quotient (so that we obtain the least refined solution).
These two conditions correlate with ¢t | Ap € Tp == t € Fgr) in the
definition of Frrp. If P is inconsistent on a trace ¢t when R is not inconsistent,
then the parallel composition of P and the quotient would be inconsistent if
t is in the quotient. This is problematic, as then the composition of P and
the quotient would not be a refinement of R. Consequently, the quotient
must suppress the last output on its behaviour of this trace, so that the
composition can never encounter the inconsistency that P will introduce. In
our definition, this correlates with L(t) not holding.

Although R/P is always defined when AQ C A%, it may not be a re-
alisable component, even if both R and P are realisable. Unfortunately,
there is no syntactic check on the interfaces of R and P that can determine
whether R/P is realisable or not. This can only be inferred by examining

the behaviours of R and P.

Theorem 5. Let P, Q and R be components. Then there exists Q such that

o R/P is defined (i.e., AQ C AQ)

o AIQ = -’47[2/79 implies Q Ty R/P.
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This definition of quotient generalises that supplied in Chen et al. (2012)
and Bhaduri and Ramesh (2008), both of which require that the interface
of R/P synchronises with all actions of P. Although in this article we take
A% yp = AR \ Ap, our definition works for any set such that Az \ Ap C
.A% p C Ax, with the results of Theorem 5 continuing to hold. In other
words, the quotient operation can be parameterised on the set Aa’z /P of input

actions of R/P. For any such choice of A712 /P the construction of T and
Frp for this extended set of inputs remains unchanged from Definition 9
(having redefined A% sp)- Consequently, we can take AL p = AL U AS,
which allows the interface of the quotient to observe all actions of P and
hence capture more specific behaviours. In general, it is not possible to start
with the original quotient R/P (having inputs AL \ AL) and refine it to a
component Q over the extended set of inputs such that P || Q Cimp R can be
inferred, since parallel composition has interface restrictions for monotonicity
to hold (cf Theorem 1).

The next theorem shows that quotient is well-behaved with respect to
refinement.

Theorem 6. Let P, Q and R be components such that Q T, P.
o If Q/R is defined and AL, N AP =0, then Q/R Cinp P/R.
e If R/P is defined and (A5 \ Ap) N Ag =0, then R/Q Jimp R/P.

Example 6. To demonstrate quotient, we assume that the action job_details
can encode two types of behaviour, depending on the mode of the device.
When Device is in print_mode, the job_details should encode information per-
taining to printing, such as the document to be printed. Conversely, when
Device is in scan_mode, the job_details should contain information indicative
of scanning functionality, such as the resolution at which scanning must be
performed. This essentially means that, after the job_details have been sent
to Device, the device mode may not be changed until the current job has been
printed or scanned. This constraint is represented by the component Con-
straint in Figure 8. The Constraint component is an observer that generates
errors when bad sequences of actions are seen, which is why all actions are
treated as inputs. The behaviour of the constrained device is given by Device
|| Constraint.

The most general behaviour of a user that interacts with the constrained
device is given by the quotient User2 = ErrorFree/(Device || Constraint) (as
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Figure 8: Constraint on job_details.
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job_details!
job_details!
/
print_mode!

print_mode!

scan_mode!
scan_mode!

()

job_details!

job_details!

Figure 9: Component representing User2.

depicted in Figure 9). ErrorFree is the component having a single state with a
self-loop for each action (treated as an output). As ErrorFree does not possess
any inconsistent states, the quotient operation guarantees that User2 || Device
|| Constraint is free of inconsistencies, hence User2 || Device conforms to the
behaviour of Constraint.

An application of quotient to mediator synthesis was demonstrated by In-
verardi and Tivoli (2013).

2.7. Full Abstraction

In this section, we demonstrate that our refinement relation precisely
characterises safe substitutivity of components, by means of a testing frame-
work that places components in parallel with an arbitrary environment and
checks for inconsistency. Based on this testing scenario, we show that =;,,,
is fully abstract for the full collection of operators in the specification theory.

Definition 10. Let P and Q be components. Then Q 1is inconsistency sub-
stitutable for P, denoted by Q CE P, iff e € Feoy implies € € Fg(py.

—=imp
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From this definition, we can show that C,,,, is the weakest preorder rep-
resenting safe-substitutivity.

Theorem 7. Let P and Q be components such that A%, C AL, AS - A%
and AL NAG =0. Then:

Q Cimp P iff VR - AR = AL and A = A = Q|| RC],, PR

The conditions on the interfaces of P and Q are required for Theorem 7
to hold, since Q || R Ty P || R does not imply that A, C AL, AG C A
and AL N AZ = 0.

From this characterisation of &;,,,, we obtain a full abstraction result for
=;mp ON the specification theory, with respect to checking of inconsistency
equivalence =f  (i.e., Cf N 3f ). Our definition of full abstraction is
taken from van Glabbeek (1994) (Definition 16), which means that =, is
the coarsest congruence for the operators of our specification theory with
respect to simple inconsistency equivalence.

Corollary 1. Substitutive equivalence =, 1s fully abstract for parallel com-
position, conjunction, disjunction, hiding and quotient with respect to obser-
vational equivalence of inconsistency.

We do not obtain full abstraction for C,,,,, since the compositional op-
erators do not form a pre-congruence under C;,,,, due to the compatibility
constraints. The constraints are, however, automatically satisfied for =;,,,,,.

3. Extending the Component Theory: Preservation of Progress

A perceived shortcoming of interface automata (and hence our theory in
Section 2) is that the principle of substitutivity requires a refining component
to be no more expressive on the output it can produce, in comparison to the
behaviour of the original. In fact, the most refined component will have
an interface that is unwilling to produce any external stimuli whatsoever.
Refinement resulting in absence of external behaviour is frequently seen in
the literature, one such example being the trace semantics of CSP (Hoare,
1985), in which every process can be refined by the deadlocked process STOP.
Such refinements preserve safety, but they do not require any meaningful
computation to be performed. To resolve this issue, the refinement relation
should be adapted by instilling a notion of liveness/progress.
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In this section, we adapt the substitutive refinement relation of Section 2.1
by forcing a refining component to make progress whenever the original can.
Our choice of progress is based on the notion of quiescence; a trace is said to
be quiescent just if it cannot be extended by an output. Quiescence differs
from deadlock in that a deadlocked component is unwilling to accept any
input (or produce any output), whereas a quiescent component may be able
to accept input. The updated refinement relation requires substitutability,
as in Section 2.1, but also that any non-quiescent trace of the original com-
ponent is non-quiescent in the refining component. Our choice of quiescence,
in place of fairness sets (Segala, 1997; Romijn and Vaandrager, 1996), is mo-
tivated by the desire to utilise only finite-length traces, as in Section 2. In
addition to quiescence, a component should not be allowed to make progress
by performing an unbounded amount of internal computation. As a result,
our refinement relation must also take into account the divergence of a com-
ponent. Note that, in contrast to CSP (Hoare, 1985), we do not require
divergent traces to be extension closed.

The remainder of this section presents an updated component formula-
tion, together with the formal definition of the substitutive and progress-
sensitive refinement relation. Revised definitions for the compositional oper-
ators are presented, and the algebraic results are re-established.

Definition 11. A progress-sensitive component P (henceforth referred to as
a component) is a tuple (AL, AR, Tp, Fp, Dp, Kp) in which (AL, AQ, Tp, Fp)
1s a component as in Definition 3, and:

e Dp is a set of extended divergent traces such that Fp C Dp C Tp

o Kp is a set of extended quiescent traces such that
{tETpCﬂOGAg'tOETp}UngKpgTP.

The set Dp consists of all divergent and inconsistent traces of P, while
Kp also contains the quiescent traces of P. Note that, due to the possibility
of internal computation (which introduces non-deterministic behaviour), the
quiescent traces of a component are not completely determined by Tp and
Fp. In our framework, a separate treatment of divergence is given in order
to guarantee that a refining component makes observable progress. This is in
contrast to, e.g., the receptive process theory (Josephs, 1992) and the work
of Jonsson (1991).
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We now redefine P, Q@ and R to be components with signatures (A%,
Aga TPa FPa DP; K’P>a <AI 7A07 TQ7 FQ7 DQ7 KQ) and <A{27 -’47027 TR) F’Ra DR?
Kg) respectively.

3.1. Refinement

As in Section 2.1, refinement of component Q by component P needs
to talk about the most general safe representations £(P) and £(Q). This
carries across to the new setting effortlessly, by taking Dgpy = Dp U Fe(p)
and Kgpy = Kp U Fg(p). Based on this, we give the formal definition of
refinement.

Definition 12. Q is said to be a progress-sensitive refinement of P, written
Q Ll P iff Q Cimp P, Deo) € Dery U (Tery T Ag) and Keg) ©
Kewpy U (Te(p) T AQ)-

By Q Ty P we mean refinement as in Definition 3 after having projected
out Dp, Kp, Dg and K¢ from P and Q; this condition guarantees that Q is
substitutable for P. The additional constraints Dg(g) C DepyU(Tepy T AG)
and Kg(g) € Kepy U (Tepy T Ab) ensure that Q is only allowed to diverge
when P can diverge, and can only be quiescent when P is quiescent. It
is these final clauses that force a refining component to make observable
progress whenever the original can.

Equivalence of components, indicated using Eém}” can easily be defined
by means of mutual refinement, i.e., is equal to T}, N(EL, )~
Lemma 5. Progress-sensitive refinement is reflexive, and transitive subject
to preservation of action types.

3.2. Parallel Composition

As parallel composition is not related to refinement, the definition remains
largely unchanged, excepting the sets of extended divergent and quiescent
traces. To compute these sets, it is straightforward to observe that a trace
is divergent in the parallel composition if its projection onto the alphabet of
at least one of the components is a divergent trace, and is quiescent if its
projections onto the alphabets of both components are quiescent.

Definition 13. Let P and Q be composable for parallel. Then P ||, Q is the
component <A{)||Q,A7O;,HQ,TPHQ7F']DHQ,D’])HQ,KPHQ), where:
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e Dpjjo = [(Dp 1+ Apjio) N (To I+ Apjjo)] U
(T 1 Apjjo) N (Do 1 Apji)] U Fpjo

e Kpjo = [(Kp 1t Apjio) N (Ko 1t Apjjo)] U Dpjje-

Given the effect of divergence and quiescence on parallel composition, it
is not surprising that the monotonicity result is unchanged.

Theorem 8. Let P, P, Q and Q' be components such that P and Q are
composable, Apr N Ag N Apjjg € Ap N Ag and Ag”IIQ’ N ‘A7O’||Q =0. If
P CL, Pand QC. O, then P ||, Q CL. Pl Q.

—imp —imp —imp

3.8. Conjunction

As conjunction corresponds to the meet operator on the refinement pre-
order, its definition in the progress-sensitive setting is substantially altered.
In particular, we require that a trace in the conjunction can only be quiescent
if it is permitted to be quiescent in both of the components to be conjoined.
For substitutability, it is necessary to synchronise on outputs, which means
that the conjunction can introduce new undesirable quiescence. Hence, it is
necessary to perform a backward pruning, which removes an output at an
earlier stage to avoid violating the constraints on quiescence later on. Of
course, removing outputs at an earlier stage can introduce more quiescence,
so a fixed point pruning must be applied.

Definition 14. Let P and Q be composable for conjunction. Then P N\, Q
is the component (AL, o, AgAQ, Tpro \ Err, Fppg \ Err, Dppg \ Err, Kppg \
Err), where:

e Dpro = (Dp U (Tp T AL)) N (Do U (To T Ab))
e Kppo = (KpU(Tp 1 AL)) N (Ko U (To 1 AL))

e Err is the smallest set containing {t € Tprg : ' € (Abpo)* -
tt' & Kprg and Vo € A, o - tt'o & Tppg \ Err}.

Err captures the quiescent traces in P A Q that are not quiescent in both
P and Q. These traces correspond to a clash of requirements between safety
and progress, so are subsequently removed from the behaviour of P A; Q. In
removing these traces, we can introduce further quiescence, which is why Err
is defined as a least fixed point. Note that, unlike in the original definition,
the conjunction of two realisable components may not be realisable.
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Theorem 9. Let P and Q, and P’ and Q' be components composable for
conjunction. Then:

e PNQELL,Pand PN QL Q

e RC! P and R C!

—imp —imp

e P'CI,, P and Q T, Q implies P' N\ Q Tl P A Q.

Q implies R E.,,, P N\ Q

3.4. Disjunction

Recall that the definition of conjunction is complicated by the fact that,
after a common trace, one of the components may be quiescent while the
other is not. It is this behaviour that forces us to prune the traces contained
in Err, which are subject to the conflicts of requirements between progress
and safety. Being the dual of conjunction, the disjunctive operator does
not share a similar fate, since the disjunction can always avoid conflicts by
including the undesirable behaviours of the components to be composed.

Definition 15. Let P and Q be composable for disjunction. Then PV, Q is
the component <A{;VQ,A7ODVQ,TPVQ, Fpyo, Dpvo, Kpyvo), where:

L4 Dp\/Q = (Dp U DQ) N A;;VQ

L4 Kp\/Q = (KP U KQ) N A%VQ'

Under progress-sensitive refinement, the algebraic properties of disjunc-
tion continue to hold.

Theorem 10. Let P and Q, and P’ and Q' be components composable for
disjunction. Then:

e PCL PV,Q and QL

—=imp

PV, Q

—zmp

o PL! R implies PV, QCL R

—imp

e P'CL,, Pand Q C,  Q implies P'V, Q C

—imp

R and Q C!

—imp

PV, Q.

—zmp

27



3.5. Hiding

The removal of inputs from a component’s interface can have no effect
on the quiescence or divergence of traces. This is not true for outputs in our
setting, although there are a number of ways to handle quiescence. Therefore,
the reasoning needs careful attention, once we have considered the definition.

Definition 16. Let P be a component and let b be an action. The hiding of
b in P is a component P /; b= (Aé/b,Ag/b,Tp/b, Fp o, Dp iy, Kpjy), where:

o AL, = Ab\ {b)
¢ ‘A703/b = Ap\ {b}

5 Dp | AppUdiv ifb e AQ
) pr—
ik DpnN A;‘j/b otherwise

% Kp [Ap/bUdiV ZbeAg
o =
Pro KpnN A;;/b otherwise

o dIV:{t r.Ap/bitETp andeeNtb"ETp}

According to our definition, in the case that b is an output, divergence
can be introduced after a trace ¢ under two circumstances. The first is when
there is a sequence of b actions leading to a divergent trace, while the second
corresponds to the introduction of divergence outright, whereby ¢ can be
extended by an arbitrary number of b actions. This makes sense, and is
common to a number of formulations of hiding (e.g., CSP (Hoare, 1985)).

In the case of quiescence, a trace t is quiescent if ¢ can diverge, or if there
is a sequence of b actions leading to a quiescent state. This means that, if
a component can only produce the single output b and cannot diverge after
the trace t, then it is not necessarily the case that the component becomes
quiescent on t after hiding b. This formulation of quiescence is justified since,
immediately after the trace ¢, the component can perform internal compu-
tation, which can affect the subsequently offered outputs. This can be seen
clearly in the operational setting (see Section 4.5), and corresponds to the
notion that quiescence should only be considered in stable states. Moreover,
this interpretation ensures that hiding is compositional under refinement.

Theorem 11. Let P and Q be components and let b be an action. If Q T,y
P, then Q /l b Eimp P /l b.
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3.6. Quotient

The definition of quotient remains largely unchanged from the substitu-
tive case, except for the need to remove two types of trace:

QC1. Quiescent (resp. divergent) traces in the parallel composition of P and
R/P that are non-quiescent (resp. non-divergent) in R. As we are
unable to alter the traces of P, it is necessary to prune all behaviour
from (and including) the last available output in A9 /pon the projection
of these traces onto Ag/p, in order to avoid reaching such conflicts.

QC2. Traces of R/P that introduce new quiescence conflicts, after having
repeatedly removed traces satisfying this or the previous condition.

Definition 17. Let P and R be components such that A3 C AQ. The quo-
tient of P from R is the component R /, P with signature <‘A§Q/P7 A%/P, Tr/p\
Err, Frp \ Err, Dgsp \ Err, Kgp \ Err), where:

e Drsp = [Tr/p N (X | Agyp)] U Fr p, where X is the largest subset of
{e} U A%An/p such that X (Ag \ .AR/p)* NTgr) € Der)

o KR/’P = {t € T’R/’P . 390 € A%/p -to € T’R/p \ ETT} U F’R/P

e Err =Y | Agyp, where Y is the smallest set containing
{t € AR : 3" € (AR \ AR p)" - tt' € De(ry N (Dp 1 Ar) or
(tt/ € Kg(R) N (Kp M .AR) and 390 € ‘A7O€/P ‘tt'o € (T’R/p T AR) \Y)}

From Dz p we see that the quotient is only divergent when R becomes
divergent on a trace ending with an action of Ag/p, otherwise the quotient
would become divergent prematurely. On the other hand, K'z/p captures the
traces of the quotient that are certainly quiescent. Err records all traces of
the quotient violating conditions QC1 and QC2. Accordingly, the first line
of the set contained in Y captures violations of divergence in QC1, while
the second line captures quiescence violations in QC1 and the propagation
condition QC2.

As for conjunction, the quotient of two realisable components may not
be realisable, and this can only be determined by examining the behaviours
of P and R. However, the quotient is always defined when A9 C A%.

Theorem 12. Let P, Q and R be components. Then P ||, Q £l R iff:
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e R/, P is defined (i.e., AS C AR)
e Pl (R/P)E

—imp

R
o AL = .A;Z/P implies QCL R /; P.

—imp
Theorem 13. Let P, Q and R be components such that Q Eﬁmp P.

o If Q /i R is defined and AN AS =0, then Q /i RCL, P /I R.

—imp

e IfR /i P is defined and (AG\Ap)NAg =0, then R /; Q@ 2%,,, R /i P.
Example 7. To demonstrate quotient in the quiescent framework, suppose
that a user wishes to interact with BrokenDevice (Figure 6), but without ever
reaching a deadlocked (quiescent) state, i.e., a point from which the sys-
tem as a whole is blocked waiting for input. Note that User2 (as shown in
Figure 9) is not a suitable candidate, since, after placing BrokenDevice in
scan_mode and sending job_details, the system becomes blocked due to Brok-
enDevice never offering to scan. We generate a satisfying user as User3 =
ErrorFree /, BrokenDevice, the result of which is shown in Figure 10. ErrorFree
15 the previously mentioned component having chaotic behaviour over all ac-
tions, which we treat as outputs. As ErrorFree does not have inconsistencies,
and moreover is non-quiescent, it follows that User3 ||, BrokenDevice is both
inconsistency free and does not deadlock.

The quotient is computed in two phases: first the computation of the T, I,
D and G sets is performed, after which traces in Err are removed. The first
phase generates a component equal to User2. In the second phase, we see that
the trace scan_mode job_details becomes quiescent in User2 ||, BrokenDevice,
which we consider to be problematic, since this is a non-quiescent trace of
ErrorFree. We therefore remove the trace scan_mode job_details from the T,
F, D and K sets. But now the trace scan_mode becomes quiescent, so we must
also remowve this trace. The empty trace € is not quiescent, since print_mode
can be performed. Consequently, the behaviour of User3 is obtained from
User2 by never placing the device in scan_mode, since any trace exhibiting
scan_mode s contained within Err.

30



print?

print_model! ~ job_details! ~ print?
=0 ) )

job_details!

Figure 10: Component representing User3.

4. Operational Theory of Components

In this section, we outline an operational representation for components,
and demonstrate the relationship between these operational models and the
trace-based models of Sections 2 and 3. From this, we supply operational
definitions for the compositional operators of our theory.

Definition 18. An operational component P is a tuple (AL, A9, Sp, —p,
s%, Lp), where:

e AL is a finite set of input actions

e AS is a finite set of output actions, disjoint from A%

Sp 1s a finite set of states

—pC Sp X (Ap U {T}) X Sp is the transition relation

sp € Sp is the designated initial state

e |p € Sp is the designated inconsistent state.

The transition relation satisfies the properties that: (i) Lp ——p Lp for
each a € Ap U {t}; and (ii) for each s € Sp and a € AL there euists
s € Sp such that s ——p s'. These conditions ensure that all states are
input-receptive, and that the inconsistent state is chaotic.

It is important that the set of states Sp is finite, so that divergence of a
state can be determined in finite time. This allows us to decide which inputs
are safe, and which outputs may eventually be issued, for a particular state.
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Notation. For a compositional operator @, and sets A and B, we write A® B
for the set {a ©b:a € A and b € B}. A relation ——=pC Sp x Sp is defined
by p ==p p' iff p(——=p)*p’. Generalising ==p for visible actions a € A, we
obtain p ==J|p p' iff there exists p, such that p ==p p, —p P, and p ==p p’
iff there exists p, such that p ==|p p, =>p p’. The extension to words
w=ay...ayis defined in the natural way by p ==p p' iff p =p ... =p 1.

Henceforth, let P, Q and R be operational components with signatures
< |I:., Ag, Sp, —p, SIOD, J_p>, <.A(IQ, .AO, SQ, —Q, S%, J_Q> and < é, .Ag, SR, —R,
s%, Lr) respectively.

4.1. Refinement

We now give semantic mappings from operational models to trace-based
models that preserve both substitutive and progress-sensitive behaviour.

Definition 19. Let P be an operational component. Then [P] is the trace-
based component (Ah, A8, Tipy, Fpy), where Tipp = {t : sp %p} and Fipy =
{t : Sg :t>p Lp}

The trace-based representation of an operational model simply records
the component’s interface, and its sets of observable and inconsistent traces.

Definition 20. Let P be an operational component. Then [P]' is the progress-
sensitive trace-based component (Ab, AS, Tipy, Fipy, Dipy, Kippt), where:

e Dipp = {t:35 - sp b ' and §' can diverge}

o Kppp = {t:3s - sp ——p s and Poe AQU {7} ¢ —Sp} U Dipy .

The progress-sensitive trace-based representation of an operational model
includes the constituents of a standard trace-based component, together with
a set of extended divergent traces and a set of extended quiescent traces. The
inclusion of inconsistent traces within the divergent and quiescent trace sets
is a condition of being a progress-sensitive component (cf Definition 11).
Note that Dpppe includes all inconsistent traces, since Lp is divergent. More-
over, only stable states (without outgoing 7 transitions) are able to be quies-
cent (although the extended quiescent trace set includes divergences). This
has similarities with the stable-failures and failures-divergences models of
CSP (Hoare, 1985).

Based on these mappings to trace-based models, we can formulate defi-
nitions of refinement on operational models.
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Definition 21. Let P and Q be operational components. Then Q is a sub-
stitutable refinement of P, written Q T,, P, iff [Q Cinp [P]. Stmilarly, Q
is a substitutable and progress-sensitive refinement of P, written Q Ef)p P, iff

[Ql .., [PT"-

Justification of these mappings is presented in Section 4.7. But first, we
present operational definitions for all of the operators considered in the trace-
based section with respect to both the substitutive and progress-sensitive
refinement preorders. For each operator, we make explicit the relationship
with the trace-based definition. This allows the compositionality results from
the trace-based sections to carry across to this operational setting.

4.2. Parallel Composition

We give a single operational definition of parallel composition applicable
to both the substitutive and progress-sensitive refinements.

Definition 22. Let P and Q be components composable for parallel. Then
the parallel composition of P and Q is the component P || Q = P ||, Q =
(AL, A9 S — . 50, L), where:

o Al = (ALU AR\ (A2 UAQ)

o A9 = AQ U AG

e S=25| 5

e — is the smallest relation satisfying the following rules:

Pl Ifp—Sp p/ witha € Ap\ AQU {7}, thenp |l ¢ —=p || ¢
P2. If ¢ —>q ¢ witha € Aqg\ Ap U {7}, thenp|lq—p|| ¢
P3. Ifp —Sp p and q —23q ¢’ witha € ApNAqg, thenp || ¢ = p' || ¢'.

° s0=5p || 54

o {1} = |[{La}) U {Ler} [l Sq)-
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Conditions P1 to P3 ensure that the parallel composition of components
interleaves on independent actions and synchronises on common actions. For
P3, given the parallel composability constraint, synchronisation can take
place between an output and an input, or two inputs.

The following theorem shows the relationship between parallel composi-
tion on operational and trace-based components. Consequently, the mono-
tonicity results from the trace-based sections are applicable here.

Theorem 14. Let P and Q be components composable for parallel composi-

tion. Then [P || Q) = [P] || [Q] and [P ||, Q]* = [P ||, [Q]"

4.3. Congunction

We now formulate an operational definition of conjunction. As this opera-
tor corresponds to the meet of the refinement preorder, its definition depends
on the refinement type we are considering. For substitutive refinement, we
have a straightforward definition that considers the enabled actions in any
pair of states. When considering the progress-sensitive refinement, we first
apply the substitutive definition, but then have to prune bad states that
violate progress. These bad states are defined inductively.

Definition 23. Let P and Q be components composable for conjunction.
Then the substitutive conjunction of P and Q is a component P A Q =
(AL U AL, A9 N AY, S, —, 80, L), where:

e S =5pASq
e — is the smallest relation satisfying the following rules:

Cl. Ifa € ApNAq, p ==p ' and q ==lq ¢, then pAq —= p' N ¢
C2. Ifae AL\ AL andp =={p p/, then p Aq —= p' A Lq
C3. Ifae Af\ A} and g =={q ¢, then p A q —— Lp A ¢
C4. If p does not diverge and p —=p p/, then pAq — p' A g
C5. If q does not diverge and ¢ —q ¢, then pAq —=>pA ¢
C6. If p diverges and q diverges, then p A q — p A q.
o sozsg/\s%

e |l =1pAlqg.
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In contrast to the definition in Chen et al. (2012), here we give a more
elaborate handling of 7 transitions in order to use the same base definition
for conjunction under substitutivity and progress. The original definition
permitted 7 transitions to proceed independently, which allows the conjunc-
tion to diverge if at least one of the components can diverge. However, this
is not acceptable under our progress-sensitive refinement preorder. Instead,
we must only allow the conjunction to diverge on occasions when both com-
ponents are willing to diverge. This is achieved by condition C6 and the fact
that the remaining conditions work on the 7-closure of the components.

We now inductively define the pruned conjunction of two components,
which is used for defining conjunction under the progress-sensitive preorder.

Definition 24. Let P and Q be components composable for conjunction. The
progress-sensitive conjunction of P and Q, denoted P N\, Q, is obtained from
P A Q by pruning all states in F', the smallest set defined inductively by:

e Ifp is stable, p —p for some o € A9, and fla € AQAQp/\q N Y4
withp' N¢ € F, thenpNq € F

e If q is stable, ¢ —q for some o € AQ, and Pa € AL.q-pANg ——> ' N¢
withp' Nq¢ € F, thenpNq € F

o [fp/\q#p’/\q’foraéA{;AQ implies p A¢' € F, thenpNq € F.

Note that P A; Q may prune the initial state in P A Q, in which case we
say that P A; Q is unrealisable. As for parallel, there is a correspondence
between conjunction at the operational and trace-based levels.

Theorem 15. Let P and Q be operational components composable for con-
junction. Then [P AQ] = [P] A [Q] and [P A Q] = [P]' A [Q]".

4.4. Disjunction

As the trace-based definition of disjunction does not need to prune error
traces, the operational definition of disjunction is applicable to both the
substitutive and progress-sensitive refinements.

Definition 25. Let P and Q be components composable for disjunction. Then
the disjunction of P and Q is the component PVQ = PVv,Q = (ALNAL, ASU
AQ. S, — 50, L), where:
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e S = {SO}USPUSQ, fOT So €SP,SQ

e — 1is the smallest relation containing —p and —q restricted to
Apvq, and the transitions so — s} and so — s

o {L}={Llp Lo}

A correspondence can be shown between the two forms of operational
disjunction and the trace-based versions.

Theorem 16. Let P and Q be components composable for disjunction. Then

[PvQ]=[P]VIQ] and [P Vv, Q] = [P] v; [Q]".

4.5. Hiding
Since hiding is not concerned with the refinement preorder, it has a com-
mon definition for both the substitutive and progress frameworks.

Definition 26. Let P be a component and let b be an action. The hiding of b
from P is the component P/b=P /; b= (AL\{b}, A\ {b}, Sp, —, 58, Lp),

where:
Hi. Ifp —5pp and a # b, then p — p'
H2. Ifp LA P and b€ AS, then p — p'.

As for all of the previously considered operators, there is a natural cor-
respondence between hiding on operational and trace-based models.

Theorem 17. Let P be a component, and let b be an arbitrary action. Then

[P/0] = [P]/b and [P /1 b]" = [P] /1 b.

4.6. Quotient

The operational definition of quotient needs to consider all resolutions
of non-determinism in the components to be composed. For simplicity, we
therefore restrict to deterministic components without 7-transitions. We be-
gin by giving an operational definition of quotient for which we must prune
a number of states that violate inconsistency containment on the substitu-
tive refinement preorder. We then extend the pruning so that it removes
violations of the quiescence containment on the progress-sensitive refinement
relation. To improve the clarity of our definition, we further assume that the
quotient can observe all of R’s actions.
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Definition 27. Let P and R be deterministic components such that AS C
AS. Then the quotient is the component R/P = <A§/P,A§/P,SR/p, —, S0,
Lr/p), where:

o A{{/P = AL U A9
o AQp = AQ\ AP
e Srp = (Sk/Sp) \ F
e — is the smallest relation satisfying the following rules:
QL Ifae€ Arp \ Ap and r sk, thenr/p -5 1" /p
Q2. Ifa € Agjp N Ap, 1 =g 1" and p ——p p', thenr/p == r'/p/
Q3. Ifa € Arjp N Ap and p A, then r/p == Lrsp
s% /5% both s% and s% are defined
s0 =14 Lgrsp s% undefined
undefined s% undefined and s% defined
{Lrp} ={Lew}/Sp
F C Sr/Sp is the smallest set satisfying:

F1. Ifr# lgr and p= Lp, thenr/p € F
F2. Ifae AN AQ, r /g and p —p, thenr/p € F
F3. Ifr/p 7"/p, a € AR\A(R)/P andr'/p) € F, thenr/p € F.

These F'-states must be removed from the quotient (and the transition
relation must consequently be pruned), so that P || (R/P) C,, R.

Conditions Q1 and Q2 essentially correspond to the parallel composition
of P and R, whereby the two components synchronise on common actions, and
interleave on the independent actions of R. Independent actions of P must be
inputs, so they are irrelevant to the quotient, since an environment safe for
R will never issue them. Condition Q3 states that the quotient can become
inconsistent on an input that is never issued by P (meaning the action is an
output of P). Conditions F1 and F2 capture situations where substitutivity
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would be violated, while F3 propagates the violation backwards to a point
where the quotient can avoid it, by not producing an output from which the
environment can, under its own control, reach the violation.

As quotient is the adjoint of parallel composition under the refinement re-
lation, we must give an alternative characterisation for the progress-sensitive
framework. We do this by removing states that introduce quiescence errors
in the definition above.

Definition 28. Let P and R be deterministic components such that AS C
AS. Then the progress-sensitive quotient is the component R /; P obtained
from R/P by removing states contained within the smallest F-set defined by:

e IfFoc A -+ —Zog, Pa € A9 -p —“5p and Pb € A%P r/p —b>R/p ' /p
with ' /p' € F, thenr/p € F

o Ifr/p -1 /p, ac AR\AS/P and r'/p' € F, thenr/p € F.

As usual, the operational definitions are closely related to the trace-based
definitions.

Theorem 18. Let P and R be deterministic components such that AS C AS.
Then [R/P] = [R]/[P] and [R /: P]' = [R]" /i [P]".

4.7. Full Abstraction

The close correspondence between the operational and trace-based models
allows us to present a full abstraction result for the operational framework.
This relies on showing that operational refinement C,, given in terms of trace
containment can be equated with contextual checking of inconsistency in the
operational models.

Definition 29. Let P and Q be operational components. Then Q is said to
be inconsistency substitutable for P, denoted by Q Eﬁ; P, iff Lq s reachable
from s% by hidden and output actions implies Lp is reachable from s% by
hidden and output actions.

From this, Q C,, P can be characterised by Qf:; when considering the
environments that Q and P can interact with. This shows that C,, is the

weakest preorder preserving substitutivity.
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Theorem 19. Let P and Q be operational components such that AL C AL,
AZ C AR and AGN AR =0. Then:

QL. P iff VR- AR = AL and Ak = A3 = Q||RCL PR
Based on this result, it is straightforward to show full abstraction.

Corollary 2. Operational equivalence =, is fully abstract for parallel com-
position, conjunction, disjunction, hiding and quotient with respect to obser-
vational equivalence of inconsistency.

5. On the Relationship with Interface Automata

In this section, we relate our operational theory of components to the
interface automata of de Alfaro and Henzinger (2001). We show that the
theory of interface automata can be embedded within our framework, and
demonstrate that the alternating refinement relation is stronger than our
substitutive preorder.

5.1. Interface Automata

We recall a general definition of interface automata (de Alfaro and Hen-
zinger, 2001), which, unlike the restrictions imposed in (de Alfaro and Hen-
zinger, 2005), permits hidden transitions and does not insist on determinism
of inputs. Thus, an interface automaton can be thought of as a finite-state
machine with transitions labelled by input, output or 7, and does not require
input enabledness in each state.

Definition 30. An interface automaton P is a tuple (Sp, AL, AS, —p, s3),
where:

e Sp is a finite set of states

o AL is a finite set of input actions

o AQ is a finite set of output actions, disjoint from AL
o —pC Sp X (Ap U{7}) X Sp is the transition relation

o 53 € Sp is the designated initial state.
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Substitutive refinement of interface automata is given by means of al-
ternating simulation, with a covariant inclusion on inputs and contravariant
inclusion on outputs. Again, we reproduce the general definition from (de Al-
faro and Henzinger, 2001), which is free of unnecessary restrictions. First,
we introduce two shorthands for simplifying the definition:

o Acth(p) £ {a € AL : p==-p p/ implies p' ~3p}
o ActS(p) £ {a € AS : p ==p—"3p}.

The set ActL(p) denotes the input actions that may safely be issued when
P is in state p. Any action in Acth(p) must therefore be enabled in any
state reachable from p by hidden transitions. On the other hand, Act§(p)
represents the output actions of P that the environment must be willing
to accept. Thus, this set is the collection of outputs enabled in any state
reachable from p by hidden transitions. We now give the formal definition of
alternating refinement.

Definition 31. Interface automaton Q is said to be an alternating refine-
ment of P, written Q Cra P, just if AL C AL, Ag C A9, and s§ R sp, where
R C Sq x Sp s an alternating simulation satisfying the property: if ¢ R p,
then:

AS1. Acth(p) C Actg(q)
AS2. Act§(q) C ActS(p)

AS3. For each a € Acth(p) U Act§(q) and for each ¢ ==|q ¢/, there exists
p ==lp p' such that ¢ Rp'.

Conditions AS1 and AS2 require that ¢ can safely accept any input that
p is willing to accept, while ¢ will only produce a subset of outputs that p
can produce. Condition AS3 propagates this constraint on to the common
successor states.

5.1.1. Relation with Operational Components

We now indicate how to map interface automata to the operational com-
ponents as defined in Section 4. The mapping must add additional transitions
for the non-enabled inputs to the special inconsistent state L.
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Figure 11: Interface automata distinguishing alternating simulation and T;yy,p,.

Definition 32. Let P be an interface automaton. Then the corresponding
operational component is [P]*4 = (Sp U{ L}, AL, A, —, 5%, L), where:
— = —pU{(s,a,1):5€Sp,ac AL and Bs' - s —p 5'}
U{(L,a,l):ae{r}UAp}.

Given this definition, it should be straightforward to see that interface
automata are a subclass of our operational components, in particular, the
components that can only become inconsistent by seeing a bad input, and
that are not permitted to be inconsistent up front.

The following theorem shows the relationship between alternating refine-
ment and the substitutive preorder of our modelling framework.

Theorem 20. Let P and Q be interface automata. Then Q Tra P implies
[Q]"* Eop [P]"4.

Being a branching-time relation, alternating refinement is too strong for
substitutivity. This is demonstrated by the interface automata in Figure 11.
The automaton on the left is an alternating refinement of the one on the right,
but not vice-versa, whereas the component representations of the automata
are substitutively equivalent in our framework under =,,. Consequently, it
is not the case in Theorem 20 that [Q]'4 C,, [P]4 implies Q Cr4 P.

The existence of a matching transition in condition AS3 is the cause of
this asymmetry in the expressive power of alternating refinement and our
substitutive preorder. If we restrict to deterministic interface automata, the
choice of successor is determined, and so the two refinements coincide.

Theorem 21. Let P and Q be deterministic interface automata. Then Q Cjy

P iff [QI' oy [P

It is worth pointing out that the definition of alternating refinement
by de Alfaro and Henzinger (2005), which applies only to input-deterministic
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interface automata, is also too strong for substitutivity, since the original defi-
nition of alternating refinement relates more input-deterministic models than
the later definition.

5.1.2. Compositional Operators

In this section, we briefly remark on the relation between the composition
operators for interface automata and our operational framework.

Parallel composition of interface automata P and Q can be defined as
[PT* || [Q]*4, after propagating inconsistencies backwards over output and
T transitions, and removing the resultant inconsistent states. The obtained
model is an interface automaton only if the initial state remains. This also
provides a characterisation of compatibility for interface automata: P and
Q are compatible only if, after performing the parallel composition as just
defined, the initial state remains.

Conjunction is more problematic to define, because of the discrepancies
between alternating simulation and our substitutive refinement. If we con-
sider only deterministic interface automata, for which the refinements coin-
cide, conjunction of interface automata P and Q can be defined as [P]4 A
[Q]*4, after having pruned all inconsistent states. Disjunction can be defined
similarly.

Hiding is also straightforward, in that removal of b from interface automa-
ton P is given by [P]?“/b, once all inconsistent states have been removed.

As quotient for interface automata is only defined on deterministic mod-
els (Bhaduri and Ramesh, 2008), alternating refinement and our substitutive
refinement coincide. Therefore, the quotient of interface automaton P from
R is given by the removal of inconsistent states from [R]?4/[P]*4, but is only
defined when [R]?4/[P]’4 is realisable, the latter meaning that an initial
state exists.

6. Conclusion and Future Work

We have developed a compositional specification theory for components
that may be modelled operationally, closely mirroring actual implementa-
tions, or in an abstract manner by means of trace structures. Both frame-
works admit linear-time refinement relations, defined in terms of traces,
which correspond to substitutivity and progress-sensitive substitutivity re-
spectively. We define the operations of parallel composition, conjunction,
disjunction, hiding and quotient, and prove that the induced equivalence is
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a congruence for these operations, allowing us to provide full abstraction
results. The simplicity of our formalism facilitates compositional reasoning
about the temporal ordering of interactions needed for assume-guarantee in-
ference, both for safety (Chilton et al., 2013) and (progress-sensitive) liveness
properties.
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Appendix A. Proofs of Results

Proof of Lemma 1

Reflexivity is trivial. Transitivity follows by transitivity of subset inclu-
SiOH, given Tg(p) T AIQ - Tg(’p) T "4{37 and Tg(Q) T A{a - Tg(p) T A{a

Proof of Lemma 2

Follows immediately from the associativity and commutativity of the set
and lifting operations.

Proof of Theorem 1

It is easy to show that the conditions on alphabets are satisfied. To show
t € Fepryjoy implies t € Fepio) U (Tep)0) T Aé'ng')’ proceed by induction
on the length of the trace t.

e For t = ¢, there exists ¢’ € (Ag,H o)* such that, without loss of gener-
ality, ' [ Apr € Fprand t' | Ag € Tor. Note that t' [ Ap =t | Ap:
and t' [ Ag = t' | Ag. To see this, first suppose there is an action
on t' in Ap/ \ Ap. Then this action is in A%, N Ag,, implying it is
also in AL, N AY, by the constraints on parallel composition, which
is contradictory. It is also contradictory if the action is in Ap \ Ap,
since it must also be in ‘Ag’ll o~ By refinement on the individual com-
ponents, it thus holds that ¢ | Ap € Fepy U (Tepy 1T Ah) and
] Ag € Teo) U (Tg(g) T .AIQ/) But, in fact, ¢’ [ Ap € Fep) and
t' [ Ag € Tggy since t' [ Ap =t/ [ Apr and ' | Ag =t' | Agr. Hence,
te Fg(pHQ), implying € € Fg(pHQ).
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e For t = t'a with a € "4703’||Q’ N A%, it is known that ¢ € Fgpr o), S0
by the induction hypothesis it follows that t' € Fgpjo) U (Tep)0) T
A{;/HQ,). Asa € 'A7O’IIQ’ we thus have t'a € Fe(pjo)U (Tepo) T A{,/HQ,)
as required.

e Fort =t'a witha € A7I”IIQ’ N.AZL,, it holds by the induction hypothesis
that ' € Tep o) U (Tep)0) T Aé,HQ,). Suppose for a contradiction that
t'a & Fepo) U (Tg(pHQ) T A7ID'\|Q/)' Then it follows that t'a € Tp|o- It
can now be shown that t'a € Fg(p|g) by using the same reasoning as
when t = e.

Now proceed by induction on the length of the trace ¢t to show that
t e Tg(p/HQ/) implies t € Tg(pHQ) U (Tg(p”g) T -A;jIHQ/).

e For ¢ = ¢, note that € € T¢(p/| o) implies € € Tp and € € Ty, which by
refinement on components gives € € Tp N T, meaning € € Tg(p|g)-

e For t = t'a with a € Ag’HQ’ N A%, note that in the difficult case
t'a € Tpyo and t' € Tpg. Consequently, t' [ Ap =t [ Ap and
' Ag = t' | Ao by the alphabet constraints. Therefore, as t'a |
Ap: € Tps it holds by refinement that t'a | Ap € Tp. Similarly, as
t'a | Ag € To it follows by the alphabet constraints that a € Af iff
a € AIQ,, hence t'a [ Ag € To. Thus, t'a € Tp)|g as required.

e For t =t'a with a € Ag”IIQ” the result holds trivially by the induction
hypothesis and input receptiveness of observable traces.

Proof of Lemma 3
Obvious, given the algebraic properties of the set operations.

Proof of Theorem 2

For the first claim, we consider just inconsistent trace containment (the
proof for observable traces being similar). Let ¢t € Fe(png), then there exists
t" a prefix of ¢ and t” € (AZ,o)* such that t't” € Fp,g. By the definition of
conjunction, we have t't” € Feipy U (Tepy T AL) and ¢'t” € Feg) U (Te(o) T
AL). By the properties of lifting, we see that t't” € Fepy U (Tep) 1T (AL U
AL)) and 't" € Feg) U (Teg) T (Ap U AL)). The result then follows from
noting that A5 UIAI = AL, o, t" € (AZ N Alg)*, and extension closure of
Fepy U (Teep) T Appo) and Feo) U (Tero) T Appo)-
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For the second claim, we again show the containment on inconsistent
traces, as the proof for the observable traces is near identical. Let t € Fg(g).
Then from R Ty, P and R Ly Q we obtain ¢t € Fepy U (Tepy T A{z) and
t e Fg(Q)U(Tg(Q) T Agz) Thust € FepyNFggyort € Fg(p)ﬂ(Tg(Q) T A%) or
t € Feo)N(Tep) 1 AR) ort € (Teep) T AR)N (Te(o) T AR). The first implies
t € Fepyre(g), while the remaining three imply ¢ € Fepyaeo) U (Tepyre(o) T
AL). Hence t € Feppg) U (Tepag) T AL) as required.

Finally, for the third claim, note that composability of P and Q, and P’
and Q' implies AZL, /\Q,ﬂAg ro = 0. Hence the interfaces work out. So suppose
t € Fe(prag). Then there exists a prefix ¢/ of ¢ and t” € (AP, o)* such that
t't" € Fpipng. Consequently, t't" € (Fp U (Tp 1+ AL)) N (For U (T T AL))).
From P’ G, P and Q' Gy Q, it follows that ¢t € Fepy U (Tepy T
AL) U (Tepy T AS) U (Tepy T Ap) 1 AL) and t't" € Fegy U (Teg) 1
AS) U (Tego) T AL) U (Teo) T AL) T Apy). Rearranging, and distributing
U over N we obtain ¢'t” € (Fg(p) U (Tg(p) T .AIQ/)) N (Fg(g) U (Tg(Q) T A*{)/))
or t't" € (Fg(p) U (Tg(p) T .AIQ/)) N ((Tg(g) 1T AIQ/) U ((Tg(g) T AIQ/) T A{;/))
or t't" € (Fgio) U(Te(q) T Apr)) N ((Tepy T Ap) U (Tepy T Apr) T AG))) or
" € (Teery T Ap) U (Tery T Ap) T AG)) N (Teo) T AG) U (Teo) T
AL) 1 AL)). The first of these implies t't" € Fepyneoy U (Teminco) T
AL, ao), While the remaining three imply ¢'t” € Tgpyre(o) T AL, aor- There-
fore, t't" € Fempyne(o) U (Tepyneo) T A{;,AQ,), which is equivalent to hav-
ing t't" € Feppoy U (Tepag) T Abing), from which it easily follows that
t € Feproy U (Tepro) T AL ror) as required. Observable trace containment
is similar.

Proof of Lemma 4
Evident from the definition.

Proof of Theorem 3

For the first claim, suppose ¢ € Fgp). Then there exists a prefix ¢’ of
t and a trace t” € (A2)* such that ¢'t” € Fp. Now either ¢'t” € Ao,
implying t't" € Fpyg and so t € Fg(pyg), or there exists a prefix ¢4 of ¢’ with
ty € Apyo and i € AL \AIQ Consequently, t; € Tpyg and t1i € Tpyg T AL.
Hence t € Tpyo 1 AL as required. For observable trace containment, suppose
t € Tp Then either t € Tp N Ap,g or t € (Tp N Ay, g) T Ap. This means
that t € Tpyg U (Tpyo 1 A%) as required. Hence P Ty, PV Q. Showing
Q Limp PV Q is similar.
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For the second claim, suppose ¢ € Fepyo). Then there exists t' a prefix
of t and ¢ € (AD,)* such that 't” € Fpyg. Consequently, without loss of
generality, t't" € Fp N A}, o. From P C;,,, R, it follows that t't" € (Fgr) U
(Tery T AL)) N Apyo. Hence t't” € Fery U (Ter) T Apyg), meaning t' €
FeryU(Ter) 1 A{;vg) and so t € FeryU(Tery T A{;VQ). For the observable
trace t € Tpyg, it holds without loss of generality that ¢ € Tp N A%, o.
From P Ty R it follows that t € (Tery U (Tery T Ap)) N Apyo, and so
teTeryU Temr) T A{DVQ) as required.

For the third claim, suppose ¢ € Fepryg). Then there exists ¢’ a prefix
of t and t" € (AZ,qo)* such that ¢'t” € Fpyg. Thus, without loss of
generality, t't" € Fp N Apyo. From P' C;,, P, it follows that t't” €
(Fepy U (Tepy T AR)) N Ao IE U € Ay o, then it follows that ¢'t” €
Fepyve(g)- Consequently, t't" € Fgpyg), from which it can easily be shown
that t € Fgipvg). Instead, if t't” ¢ A}, o, then there exists a prefix ¢,a of ¢/
such that t; € Ao and a € AL, o \ Apyo. By the induction hypothesis,
ty € Tgpvo), and so tia € Terpyg) T A{,,VQ,. From this, it can be seen
that ¢ € Tepyg) T A{,,VQ,. For the observable trace containment, suppose
t € Tpryo. Then without loss of generality, we have t € Tpr N A;;,VQ,. From
’Pl Eimp 7), it follows that ¢t € (Tg(p) U (Tg(p) T A{;/)) N .A* Q! Ift e A%\/Q’
then t € Tgpyve(), giving t € Te(pyo) as required. Instead, if ¢t & Ap, o, then
there exists a prefix ¢1a of ¢ such that t; € Ao and a € AL, o \ Apyo. By
the induction hypothesis we obtain ¢; € Tg(pyg) from which we can deduce
tia € Tg(p\/Q) T A{j/vg/, itself implying t € Tg('p\/g) T A{?’VQ"

Proof of Theorem 4

First consider the case when b € Af. Let t € Tgp. Then t € To N A*Q/b.
By the refinement relation, we have t € (TpU(Tp 1 .AG)) NAG sp- This means
te (TpmA;;/b)u(TpmA;;/b)(Afg/b)(Ap/buAfQ/b)*, implying t € Tp,U(Tp/p T
AIQ /b). The inconsistent trace containment can be shown similarly. Note that
this case also applies when b ¢ Ap U Ag.

For the case when b € Ag, first show t € Fe(gyp) implies t € Feppy U
(Tepmy T AIQ/b). For t = ¢, note that € € Fg(g) implies € € Fg(g), which
by Q Ejnp P means € € Fgp), and so € € Fgipyy) as required. The case
of t = t'o with o € Ag holds by the induction hypothesis and upwards
closure of inconsistent traces, given it must hold that ¢ € Fg(qy). For t = t'i
with i € AL, there exists ¢ € (Ag/b)* such that t'it" € Fgs,. Therefore,
there exists t” € Af such that t'it” = t" | Agp with ¢ € Fg. Now
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define ¢; such that ¢;¢” = ¢". Then t; € Fg(g), which by Q L, P implies
t1 € FepyU(Tep) T AL). Consequently /i € Fepn) U (Tepp) T .AIQ/b), given
t'i = tl r AQ/b-

Now to show that ¢ € Te(g/p) implies ¢ € Tep,p) U (Tg(p/b) T .AIQ/b), it is
necessary to just consider ¢t € Tgy,. If t = ¢, then € € Tgy, implies € € Tqg,
which by Q Ty, P gives € € Tp, and so € € Ty as required. For ¢t = t'i with
i € AL, by the induction hypothesis we have t' € Tep /) U (Tepm T .AIQ /b),
which by receptiveness of inputs yields t'i € Tep/my U (Tepp) T AIQ /b). For
t = t'o with 0 € AQ, in the difficult case we have o € Tg/,. Consequently,
there exists "o € A§ such that t'o = t"o | Ag and t"0 € Tg. From
Q Cimp P it follows that t"o € Tepy U (Tepy T AIQ/b). If t"0 € Te(p), then
t"o € (Ap N Ag)*, meaning t"o [ Agp = t"o | App. Thus t'o € Teepyp,
yielding t'o € Tgp ). Instead, if t"0 € Tgpy T .AIQ/b, then a prefix ¢; can be
considered up to the first symbol in .AIQ /b \ AL, such that ¢; € Tgpy. It then
follows that t1 [ Ap/, € Tepsp). As the next action is contained in AIQ /b\AI ,
we have that t'o € Tep/p) T .AIQ/b.

Proof of Theorem 5

For the first claim, if P || Q C;,,, R, then ‘AgIIQ C A9. As A7O’||Q = AZU
AZ, it follows that AP C A i.e., the quotient is defined. Instead, if R/P is
defined, then A9 C AZ. Taking Q = (AL, 0,0,0) gives P || Q Cipp R

For the second claim, show that a trace t € Fe(p)|(r/p)) implies t € Fgr)U
(Tery T A{;H(R/P)) by induction on the length of the trace t.

e t = ¢. Then there exists t’ € (Ag”(R/P))* = (AQ)*, such that t' | Ap €
Fpand t' | Agyp € Tryp, or t' | Ap € Tp and t' | Ag/p € Fr/p.
For the former, by definition of T’z /p, it follows that L(t') holds, hence
t' € Fgr), implying € € Fggy. For the latter, by definition of Fr p it
follows that ¢ € Fe(r), hence € € Fg(r).

ot = towith o € A7O>H(R py-  Follows immediately by the induction
hypothesis, given that ¢ € Feep|r/p))-

o t =i with i € ALy p) N AR Tt follows that there exists ¢ € (AR)*
such that t'it" [ Ap € Fp and t'it" | Agp € Tr/p, or t'it" | Ap € Tp
and t'it" | Ag/p € Fryp. In the case of the former, by the definition
of Tr/p, it follows that L(t'it") holds, so t'it" € Fgr), itself implying
t'i € Fg(r). For the latter case, by the definition of Frp it follows that
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t'it" € Fg(r), hence t'i € Fgry. When i € A%H(R/P) \ AL it must be
the case that i € AL. We therefore obtain by the induction hypothesis

For the second claim, we must also show that ¢t € Tp)r/p) implies t €
Ter) U (Tg(R) 0 A7ID||(R/7;)) by induction on the length of the trace t.

o t =c. Then € € Tp and € € Tr;p. By the definition of T p, it follows
that L(e) holds, and so € € Tg(r) as required.

o t =towith o € Agu(n/?)- Then t'o € Tp|r/p) implies t'o [ Ap € Tp
and t'o | Ar/p € Tr/p. By the induction hypothesis in the difficult
case, we have t' € Tg, and so t'o € (A%)*. Consequently, from o |
Arp € Tr,p, it follows that L(t'0). Now, as t'o | Ap € Tp, we obtain
t'o € Te(r) as required.

o t =t'iwithie A{)H(R sp)- Then by the induction hypothesis on t' and
receptiveness of R the result holds trivially.

For the third claim, we show that ¢ € Fgo) implies t € Fgr/p) by
induction on the length of the trace t.

e ¢ =e. Then there exists ¢’ € (A)* such that ¢’ € Fg. Consequently,
either € € Tp, or t' | Ap € Tp implying € € Fg(p|g). For the former,
we obtain € € Fr/p as required, while for the latter it must hold that
€ € Fg(r) (since P || Q@ Cinp R), which also yields € € Fr/p.

e t =t'o with o € AZ. It follows by the induction hypothesis on ¢’ that
t' € Ferypy. Hence t'o € Fgir/py as required.

ot = t'i with i € AIQ. It follows by the induction hypothesis in the
difficult case that t'i € T /p, but t'i ¢ Fr,p. Consequently, there exists
t"i € Ay such that t"i [ Ag,p = t'i, for which L(t"7) holds (according
to the definition of Tx,p), while t"i [ Ap € Tp and t"i & Fg(g) (since
t'i & Fryp). Consequently, t"i € Fg(pjg), but this contradicts P ||
Q Limp R, since t"i € Fer).

For the third claim we also show that ¢ € Tg implies t € Tgr/p) by
induction on the length of the trace t.
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ot =c Then if € € Tp, we have € € Tr/p by default. Instead, if
€ € Tp and € € Ter/p), then we know € € Tr/p, so there exists
"€ (Ar \ Aryp)* and t” € (Ag \ AZ p)* such that (i) #t" [ Ap € Fp
and t't" € Fery, or (ii) t't" | Ap € Tp and t't" & Tery. Note that
' Ag € (AL)* and t” | Ag € (AL)*. Hence t't" | Ag € Tg, given
e € Tg. If (i) holds, then we have t't" € Fpjo, but t't" & Fgr)
which contradicts P || Q@ Cinp R (given t't” € A%). Instead, if (ii)
holds, we have t't" € Tp| g, but t't" € Te(r), which again contradicts

e t =tj0 with o € AZ. Suppose t10 € Tr/p. By the induction hypothesis
it holds that ¢; € Tr/p. Take a trace ty0 € Aj such that teo [ Ag/p =
t10, and traces t' € (Ar \ Ag/p)" and t" | (Ag \ AR/P)* such that
L(to0t't") does not hold. By the fact that Aj = AL /p» we know that
tro | Ag =tio. As t't" | Ag € (AL)*, by the same reasoning as in the
previous case we derive P || Q Z;n, R when tio & Tr/p.

ot =1t'i withi e AIQ. The result holds trivially by the induction hy-
pothesis on ' and receptiveness of components.

Proof of Theorem 6

For the first property, note that definedness of Q/R implies definedness of
P/R. Consequently, R || (Q/R) Cimp Q Cimp P. The constraint AL NAS =
() ensures that transitivity holds, from which we derive R || (Q/R) Cimp P.
Hence Q/R C;,p P/R by Theorem 5.

For the second property, definedness of R /P implies definedness of R/Q.
From Q T, P, we obtain Q || (R/P) Cimp P || (R/P) by Theorem 1 (the
conditions of which are satisfied by (A5 \ A%5) N Ag = 0). By Theorem 5
we know P || (R/P) Cimp R, and so we obtain Q || (R/P) Cimp R by
transitivity (Lemma 1), given that (A§ \ AL) N Ag = 0 ensures that action
types are not mixed. Finally, by Theorem 5, it follows that R/Q is the
minimal solution to Q || X C;,, R, and so R/P Ciypy R/ Q.

Proof of Theorem 7

First suppose Q C,;,,, P. Then, from the constraint on the interface for
R, we have that Q || R Ty, P || R by Theorem 1, since the constraints for
that Theorem are satisfied. Hence Q || R Cf P || R as required.
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For the other direction, suppose that Q Z;,, P. Then there exists a
smallest ¢ such that ¢t € Feo) and t € Fepy U (Tepy T AIQ), ort € Tg(o) and
t & Teepy U (Teep) T Ag)-

In the case of the former, it follows (by the minimality of ¢) that t € Fg.
By the constraints on the alphabets, it follows that there is a maximal prefix
t" of t such that t' € A}, and, moreover, this is the same maximal prefix
such that ¢ € A%. If ' is a strict prefix of ¢, then by minimality of ¢ we
have t' € Tg(py and t € Tep) T AL, since the next action after ¢ must be in
AL\ Ap, but this is contradictory. Therefore, ¢ = ¢, which means we can
construct an R such that Fr = () and T is the smallest set containing ¢ that
makes R a component. Now ¢ € T implies t € Fgr, and so € € Fgg|r)
given t € (AgHR)*. However, as t € Fg(py, it follows that ¢t € Fg(p|r), hence
€ & Fep|r), which means Q || R Z[,, P || R as required.

In the case of the latter, it is sufficient to consider ¢t € Ty. Again, there
is a maximal prefix ¢’ of ¢ such that ' € A%, and, moreover, this is the
same maximal prefix contained in A%. If ¢’ is a strict prefix, then the next
symbol after ¢’ is an element of A{ \ Ap. Hence, by minimality of ¢, it
follows that ¢ € Tgpy T AIQ, but this is contradictory. Therefore, we know
t' = t, so we construct an R such that Fr = {t" € A} : tis a prefix of t"}
and T is the least set making R a component. Therefore ¢ € Fg|r, which
yields € € Fgr) given t € (.AgHR)*. However, as t € Tg(p), it follows
that t € Tepr), hence € € Tepr). From this we obtain € € Feipjr), so
Q|| R¥Zf,, Pl R as required.

Proof of Corollary 1

Note that, under =;,,,,,, none of the alphabet constraints (other than those
for composability) are required for the compositionality results to hold in
Theorems 1, 2, 3, 4 and 6. Consequently, =;,,, is a congruence for all of the
compositional operators. Taking this along with Theorem 7 shows that =,
is the coarsest such equivalence with respect to observational equivalence of
inconsistency.

Proof of Lemma 5

Follows by the exact same reasoning as in Lemma 1.

Proof of Theorem 8

By Theorem 1, we know that the 7" and F-set containments hold. In
the difficult case, suppose t € Dpo \ Feprjoy- Then, without loss of
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generality, we know t [ Ap, € Dpr and t | Ag € To. By the alphabet
constraints (as elaborated in Theorem 1) it follows that ¢t [ Ap =t | Ap
andt [ Agr =t [ Ag. Hence, from P’ Eﬁ-mp P and Q' Eﬁmp Q, it follows that
t [ Ap € Dgpy and t | Ag € Tg(g), yielding t € Dgpjo) as required. The
quiescent trace containment is similar.

Proof of Theorem 9

For the first claim, we just need to show divergent and quiescent trace
containment, which is a straightforward modification to Theorem 2. The
proof for observable and inconsistent trace containment remains unchanged.

For the second claim, under the assumption that Tgg) N Err = (), the
observable and inconsistent trace containments remain as in Theorem 2, and
the divergent and inconsistent trace containments are a straightforward ex-
tension. We therefore need to show that Tgry N Err = (), by proving
that Tery N X; = 0 for each ¢ € N, where X; is the i-th approxima-
tion of Err defined as a fixed point. Clearly the result holds for ¢+ = 0
(since Xy = (), so show that it holds for ¢ = k + 1 given that it holds
for ¢ = k. Suppose t € Tgr) N Xj41. Then by Theorem 2 we know
t € Tepag) N Xpq1 (since Err C A%,o), which means that there exists
' c (A;;/\Q)* such that ¢t/ ¢ Kg(p/\Q) and Yo € Ag/\g “tt'o g Tg(p/\Q) \Xk
From ' € Tepao) N Kepag), we know that tt' € Tery N Kgry. Thus, there
exists o' € AQ such that tt'o’ € T, £(r), which means that tt'0" € Tepao).
Hence tt'0o’ € X, but this implies t#'0o’ € T¢(g), which is contradictory.

For the third claim, under the assumption that (Tgpiag) \ Errpiag) N
Errparg = 0, the observable and inconsistent trace containments follow as
before in Theorem 2, and the divergent and quiescent containments can
be shown similarly. To show that (Tepiagy \ Errpag) N Errpag = 0,
Errpag can be approximated as for the previous claim. The proof is then a
straightforward modification, having noted that ¢ € Tg(pipngr) \ Errpag and
t e (‘A’{?/\Q)* implies tt' e Tg(p//\Ql) \ Errpipor.

Proof of Theorem 10
A straightforward extension of Theorem 3.

Proof of Theorem 11

The divergent and quiescent trace containments follow by the same rea-
soning as in Theorem 4 when b € .AIQ or b ¢ Ap U Ag, and the observable
and inconsistent containments are entirely unchanged.
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When b € A, suppose that t € Dg ;. Then there exists ¢’ € Tg such that
t' | Agp =t and t’ € Dg or Vi € N-t'b" € Tg. In the case of the former, it
follows that ¢’ € Dgpy U (Tepy T AG). Hence t € Depy U (Tepm T AG) as
required. In the case of the latter, ¢’ € Tg implies t' € Tgpy U (Tepy T AS).
The difficult case is when t' € Tg(py, from which we can deduce t'd’ € Tg(p
for each 7 € N. Hence t € Dg(p/p). Quiescent trace containment is similar.

Proof of Theorem 12

The reasoning for the first claim is identical to that in Theorem 5. For the
second claim, inconsistent trace and observable trace containment follows by
Theorem 5, having replaced Fr/p with Fr/p\ Err and T p with T /p\ Err.
For the divergent traces, let ¢ € Dp) r/p). Then either ¢ | Ap € Dp and
t ] Aryp € Tryp\Err,ort | Ap € Tpandt [ Agp € Dryp\Err. Supposing
the former, if ¢ ¢ A%, then there is a prefix of ¢ contained within Tgr) T Ab,
which is extension closed. Instead, if ¢ € A%, then t [ Ag,p ¢ Err implies
t ¢ Y. Consequently, t € Dgy N (Dp 1+ Ag), which implies ¢t € Dy as
required. Now, for the latter case, suppose t [ Ag;p € Dg/p \ Err, then by
the definition of Dy /p it follows that if t € A%, then t € Dgg) as required. If
t & A%, then it follows t € Tg(g) T AL. To show quiescent trace containment,
suppose t € KPHL(R/lP)' Then t | Ap € Kp and t | AR/p S KR/p \ Err.
In the difficult case, suppose t | Ag/p & Fr/p, then t | Ag,p € Tr/p and
fo € A%/p -to € Tryp \ Err. Consequently, as ¢t [ Ag/p & Err, it follows
that t € Y. Hence it must be the case that t € Kgg) as required when
t e Ay It t & Ay, then it is easy to show ¢ € Tgr) T Ab.

For the third claim, under the assumption that Teg) N Err = ), incon-
sistent and observable trace containment is as presented in Theorem 5, while
divergent and quiescent trace containment is very similar. To show that
Teoy N Err = 0, we show Tgg) N (Y; | Agyp) = 0 for each i € N, where
Y; is the i-th iteration of finding the fixed point defining Y. When i = 0,
Y; = 0, so the result trivially holds. Now suppose i = k + 1, and assume
that the result holds for ¢ = k. If t € Teg) N (Y1 [ Agryp), then we know
t e Tg(R/p) N (Yk+1 I An/p), since t € Yiiq i .AR/p implies t € A;Q/P and
Teo) € TerypyUTer/p) T AIQ. Consequently, there exists ¢’ € A%, such that
(i)t' | Agryp =tandt" € (AR\A%/P)* such that t't” € DeryN(Dp 1+ Ar), or
(ii) ¢'t" € KeryN(Kp 1t Ag) such that fo € A%/P~t’t”o € (Tryp 1 Ar) \ Ya.
Note that t't" [ Ag = t't" | Arp € Teo). If (i) holds, then it follows
t't" € Dg(p||,0), hence P ||, Q ., R, which is contradictory. If instead (ii)

mp
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holds, then, from knowing t't” € Tg(g) and P ||, Q &I, R, it follows that
t't" ¢ Kgg). Hence, there exists o' € .Ag such that t't"o" € Te(oy, which
implies t't"0" € Tg(r/p). It therefore follows that ¢'t"0" € Y}, so that t't"0"
Tr/p \ Yy holds. But by the induction hypothesis, this allows us to conclude
that t't"0 & Te(g), which is contradictory. Thus Tgg) N (Vi1 | Agyp) = 0
and so Tgg) N Err = 0.

Proof of Theorem 13

The proof is the same as in Theorem 6 when using Theorems 8 and 12 in
place of Theorems 1 and 5, and Lemma 5 in place of Lemma 1.

Proof of Theorem 14

Trivial, as the trace-based definition of parallel composition interleaves on
independent actions and synchronises on common actions. This is precisely
captured by the operational definition.

Proof of Theorem 15
Showing [P AQ] = [P] A [Q] is trivial, since if ¢ € Tjpaq], then sp A

sQ —Lpq PAG If 8O ==p p, then t € Tipy, while if 5§ Ao p, then
teTpp Aé. Similarly for Q. Either way, ¢ € Tjpjr[q)- The other direction
is similar, as is the inconsistent trace containment.

To show that [P A; Q' = [P]* Ay [Q]Y, it is sufficient to prove that t €
Tipaqp implies: t € Err iff sp A s —prq P A ¢ implies p A g € F. This can
be demonstrated in a straightforward manner using an inductive argument
by approximating Err and F', which are both obtained as fixed points.

Proof of Theorem 16

Obvious given the definition of disjunction in both the substitutive and
progress-sensitive trace-based frameworks.

Proof of Theorem 17

Trivial given the trace-based definition of hiding.
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Proof of Theorem 18

First show that ¢t € T[[R/p]] <~ t e T[[R]]/[[p]] and t € F[[R/p]] — t e
Fry/py by induction on the length of the trace t.

Case t = €. Suppose that € € Flrp/p;- Then by Definition 9, € € Fg(ry) or
e & Tipy. If the former holds, then sf = Lgr), hence sk/sp = Lg/p, meaning
€ € Firpp. If instead € ¢ Tpy, then sp is not defined, so sg/P = Lgyp,
meaning € € F[r/p|.

Now suppose that € € Fr/pj. Then sg/P = Lgr/p, so P is unrealisable or
sR = Lgr). If the former holds, then e & Tjpy, hence € € Fgj/qpy. If instead
SR = J_g , then € € Fg (IR > hence € € FUR]]/[[PH

Suppose that € € Tiry/py- Then for all t' € (Ag \ AR/P)*, L(t') holds. So

S%/P is defined and S(I]?/P éR/P sr/sp implies sg/sp & F. Hence € € Tir/py.

Now suppose that € € Tjr/pp. Then for allt’ € (.AR\.AR/P) ,if s% /58 éR/p
sr/sp, then sg/sp & F. Hence t' [ Ap & Fipy or t' € Fe(r) since sg/sp & F,
and moreover, t' € Ter) as sy ;m sr. Hence L(t') holds. If s&/sp %R/p,

then it follows that s2 tyi—éﬁp sp, since if s} gﬁp sp and s} #R sg then it
must be because P makes an output move that R cannot match. But then
the previous composite state would be in F', which is contradictory. Hence

¢ € Tiry/1P1-
Case t = t'o with o € A%P. Suppose that t'o € Firy/gp). Then t' € Firy/gpr:
so by the induction hypothesis we derive ¢’ € Fir/pj. Therefore, 5% P £/>R /P
LR/p and so S%/P t:oR/p LR/p. Thus, t'o e F[[R/p]].

Now suppose that t'o € Fjr/pj. Then s%/P t:oR/p Lgr/p. By the definition

of Lr/p (defined in terms of J_g(R)), it follows that s%/P t:,R/p Lgrsp, and so
t' € Firspp- By the induction hypothesis, it follows that ¢’ € Firy ;. Hence,
t'o € Fry/ppy-

Now suppose that t'o € Tgy/jp;- Then by the induction hypothesis we
know that ' € Tjr/p). Moreover, for all t” € (Agr \ ARp)* it follows that

L(t'ot") holds. So, if s%/s% %R/p sr/sp, then certalnly sr/sp € F. Fur-

thermore, s%/sp :>R/p Sk/sp for some si/sp, since sp L sp for some s

aSOQ.ApOI“OGAI
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Finally, suppose that t'o € Tjr/pj. Then by the induction hypothesis, we
know that t' € Tiry/[p]. As S/ sp 2>R/p sr/sp for some state sg/sp, it follows

that sg/sp € F. Therefore, for any state si/sp such that sj/sp tl:Ot;R/p Sr/Sp
with ¢ € (Ag \ AS/P)* we know that si/sp & F. Consequently, if t'ot” |
Ap € Fp then t'ot” € Fgr), and if t'ot” | Ap € Tp, then t'ot” € Tg(r). This
means that L(#ot") holds, and so we derive t'o € Tiry/[py-

Case t = t'i with i € A{{/P. Suppose that t'i € Figypy. Then t'i [ Ap & Tp
or t'i € Fg(ry. By the induction hypothesis we know that ¢’ € Tjr/p), which
by input receptiveness of components, implies that t'i € Tir/p;. Now, if
t'i | Ap & Tp, then ¢’ | Ap ¢ Tp when a ¢ AF. Hence ¢’ € Flgy/qp), which
by the induction hypothesis gives ' € Fir/py, and so t'i € Fir/pp. When
a € AY, condition Q3 ensures that t'i € Firypy. If instead t'i € Fe(r), then as
t't € Tyrypp, we know s /sp %R/p sr/sp. But t'i € Fgry implies sg = Lg(r),
hence sg/sp = Lr/p, meaning t'i € Fir/py.

Now suppose that t'i € Fig/pj. By the induction hypothesis and input
receptiveness of components it follows that t'i € Tjry/p). As t'i € Firypp, it
follows that s%/s2 %R/p Lrp. But Lgp = Lgry/sp for some sp. Hence,
t'i e Fg(R), which implies t'i € F[[R]]/[[p]].

Showing that t'i € Tiry ey iff t'i € Tjr/pp follows by the induction hypoth-
esis and input receptiveness of components.

For the liveness equivalence, it is sufficient to show that t € Errry ey iff
t € Frp. This can be demonstrated in a straightforward manner using an
inductive argument on the approximations of Errry/pp and Fr/p. Note that
the definition of Errpgr)/p can be greatly simplified, as we assume Ar = Ag/p
along with determinism, the latter of which implies divergence freedom.

Proof of Theorem 19
A straightforward modification to Theorem 7.

Proof of Corollary 2
Same reasoning as in Corollary 1 (with updated references).

Proof of Theorem 20

Begin by supposing Q C;4 P and let ¢t be the smallest trace such that
t e Fg([[Q]]IA) and t Q Fg([[p]]IA) U (Tg([[p]]IA) T A(IQ) By definition of interface
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automata, it follows that t € Fiqua and ¢ ¢ Flppra U (Tppza T .Ag) as the
automata can only be inconsistent on seeing a bad input. Moreover, as
the automata cannot be inconsistent up front, it follows that ¢ = t'a with
a € AL. By minimality of ¢, we know t' € Tippra \ Fippra and also that

t" € Tyqpra \ Flqpra. Consequently, for each state ¢’ such that sg éQ q, it

follows that there exists p’ such that sp ép p’, where at each intermediate
state AS1 and AS2 hold, and ¢’ R p’ for an alternating simulation R. For
at least one of these ¢, it follows that ¢ ==q/>q (given t'a € Fjqpa).
However, as t'a € Typpra \ Flppra it follows that Act}(p') holds. Hence AS1
is violated, meaning ¢’ R p', which is contradictory. Therefore, Fiqia C
F[[p]]IA U (T[[p]]IA T A(IQ) as required.

Now suppose that Q C;4 P and let ¢ be the smallest trace such that
t € Tiqpra \ Flqpra and t & Typpra U (Tjppra T Ag). Tt therefore follows that
t =tawitha € AY, and t € (ApN.Aq)*. Consequently, for each state ¢’ such

that sQ ém ¢, it follows that there exists p’ such that s b p’, where
at each intermediate state AS1 and AS2 hold, and ¢’ R p’ for an alternating
simulation R. For at least one of these ¢/, it follows that ¢ =>q—q, hence
a € Act3(q'). However, as t'a & Tipyra it follows that a & Actg (p) for any p/
reachable under . Hence AS2 is violated, meaning ¢’ R p/, which again is
contradictory. As a result, Tjqra € Tpppra U (Typpra 1.AQ).

Proof of Theorem 21

Based on Theorem 20, alternating simulation implies our trace-based re-
finement. So suppose Q Z;4 P. Then there exists a smallest trace ¢ such
that s§ 4 ¢, but no state p’ such that s2 ==p p’ and ¢ R p’. Note
that by determinism ¢’ is uniquely defined, as is p’ if it exists. If p’ exists,
then ¢’ R p’ meaning either AS1 or AS2 is violated. If AS1 is violated, then
q /q while p’ —sp for some a € AL. Hence ta € Fqpra while ta € Fippra,
which implies [Q]'4 Z,, [P]*4. Instead, if AS2 is violated, then ¢ —q
while p’ £~p for some a € Ag. Hence ta € T, [qp4 while ta & Typpra, which
also implies [Q]4 [Z,, [P]**. The final possibility is that p’ does not exist,
in which case t = t'a, and s ép while s #p. As Q 4 P, it follows that

a € A8, but there is no matching transition in P. Consequently, ¢ € Tiqpa,
but ¢ & Typpra, which yields [Q]'4 Z,, [P]'* as required.
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