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ONTOLOGICAL QUERY ANSWERING

Key reasoning task for DL and rule-based applications

Answering CQs over DLs high computational complexity
Materialisation-based paradigm: chase ABox using TBox
and evaluate Q in the computed ABox
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EXISTENTIAL RULES

Positive, function-free, FOL implications with existentially
quantified variables in the head

Existential rules fundamental for several KR formalisms:

1 Schema constraints in databases

2 Data transformation rules in data exchange

3 Foundation for Datalog± family of KR languages

4 Ubiquitous in Description Logics

Chase termination is undecidable for existential rules

CQ answering is undecidable for existential rules
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TACKLING UNDECIDABILITY

1 Identify groups of rules for which query answering is
decidable

Guarded rules, sticky rules, bounded treewidth sets
2 Acyclicity conditions: weak acyclicity [Kolaitis et al., ICDT,

2002], super-weak acyclicity [Marnette, PODS, 2009], joint
acyclicity [Krötzsch and Rudolph, IJCAI, 2011],. . .

Acyclic set of rules

Guarantees chase termination

Yields finite materialisation

Plus

I No restriction on the shape of
rules (unlike guarded rules)

II Materialised ABoxes can be
stored as databases

Minus

I Only sets of rules with models
of bounded size

II Acyclicity conditions might be
too restrictive
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MATERIALISATION-BASED REASONING

Answering CQs over expressive DLs is expensive, e.g.
EXPTIME-complete for Horn-SHOIQ [Ortiz, Rudolph and
Simkus, 2011]

For Horn ontologies, consequences can be precomputed,
stored and used for query evaluation, e.g. by the RDF
repositories Sesame, Jena, OWLIM, DLE-Jena,. . .

Approaches taken:
1 Saturate only non-existential rules (OWL 2 RL)

2 Apply existential rules in a restricted way

Suggestion: materialise ABoxes only over acyclic TBoxes
Always complete 3
Provably terminating 3
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RESULTS OVERVIEW

1 More general acyclicity conditions: MSA and MFA

2 Complexity analysis for checking MSA and MFA

Horn-SHIQ bounded arity no restriction
MSA PTime-complete coNP-complete ExpTime-complete
MFA PSpace-complete 2ExpTime-complete 2ExpTime-complete

3 DL query answering under acyclicity conditions
Horn-SRI T in WA: T ∪ A |= F is ExpTime-hard
Horn-SHIQ T in MFA: T ∪ A |= Q is PSpace-complete

4 Experimental evaluation on DL ontologies
83% ontologies found acyclic (78% JA)
materialised ABoxes not too large  × 5 bigger on average
for ontologies with depth < 5 (= most ontologies)

Materialisation-based reasoning beyond OWL 2 RL
might be practically feasible

6
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EXISTING ACYCLICITY CONDITIONS

EXAMPLE

r1 : A(u)→ ∃y1.R(u, y1) ∧ B(y1)

r2 : B(v)→ ∃y2.R(v, y2) ∧ C(y2)

r3 : R(w, z) ∧ B(z)→ A(w)

A ≡ ∃R.B
B v ∃R.C

A,B,C

B C

C

∗

f (∗) g(∗)

g(f (∗))

R R

R

R

f (u)

not in JA

PosB(u) = {A|1} ⊆

Move(f (u)) = {R|2, B|1

, R|1, A|1}

Joint acyclicity
1 Tracks value generation and propagation to detect cyclic

creation of terms
2 Polynomial time to check

May overestimate rule applicability
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MODEL-FAITHFUL ACYCLICITY

Track rule applications more ‘faithfully’

EXAMPLE

A(u)→ R(u, f (u)) ∧ B(f (u))

∧ S(u, f (u)) ∧ Ff (f (u))

B(v)→ R(v, g(v)) ∧ C(g(v))

∧ S(v, g(v)) ∧ Fg(g(v))

R(w, z) ∧ B(z)→ A(w)

S(x, y)→ D(x, y)

D(x, y) ∧ S(y, z)→ D(x, z)

Ff (x) ∧ D(x, y) ∧ Ff (y)→ Cycle

Fg(x) ∧ D(x, y) ∧ Fg(y)→ Cycle

A,B,C
R

B,Ff C,Fg

C,Fg

∗

f (∗) g(∗)

g(f (∗))

R, S,D

R, S,D

R, S,D

D

For Σ a set of rules, Σ is MFA if I∗Σ ∪MFA(Σ) 6|= Cycle
Set of rules that correspond to DL subsumptions
{A ≡ ∃R.B,B v ∃R.C} is MFA
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COST OF CHECKING MFA
Testing model-faithful acyclicity for a set of rules Σ

1 Rules of the form ϕ(~x,~z)→ ∃~y.ψ(~x,~y) (no restriction)

 2EXPTIME-complete (tree with branching factor |~x| and
height the total number of function symbols )

2 Rules of the form ϕ(~x,~z)→ ∃~y.ψ(~x,~y) with predicates of
bounded arity

 2EXPTIME-complete

3 Rules from Horn-SRI

 EXPTIME-hard

4 Rules from Horn-SHIQ

 PSPACE-complete

Existing acyclicity conditions can be checked in PTIME
Isn’t computational complexity too high?
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MODEL-SUMMARISING ACYCLICITY

Track rule applications just ‘faithfully’ enough

EXAMPLE

A(u)→ R(u, ) ∧ B()

∧ S(u, c1) ∧ Fc1(c1)

B(v)→ R(v, ) ∧ C()

∧ S(v, c2) ∧ Fc2(c2)

R(w, z) ∧ B(z)→ A(w)

S(x, y)→ D(x, y)

D(x, y) ∧ S(y, z)→ D(x, z)

Fc1(x) ∧ D(x, y) ∧ Fc1(y)→ Cycle

Fc2(x) ∧ D(x, y) ∧ Fc2(y)→ Cycle

d

A,B,C
R

B,Fc1 C,Fc2

∗

c1 c2

R, S,D R, S,D

R, S,D

For Σ a set of rules, Σ is MSA if I∗Σ ∪MSA(Σ) 6|= Cycle
Set of rules that correspond to DL subsumptions
{A ≡ ∃R.B,B v ∃R.C} is still MSA
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COST OF CHECKING MSA

Testing model-faithful acyclicity for a set of rules Σ

1 Rules of the form ϕ(~x,~z)→ ∃~y.ψ(~x,~y) (no restriction)

 EXPTIME-complete

2 Rules of the form ϕ(~x,~z)→ ∃~y.ψ(~x,~y) with predicates of
bounded arity

 coNP-complete

3 Rules from Horn-SHIQ

 PTIME-complete

Horn-SHIQ TBoxes can be checked in PTIME for MSA
before potential materialisation-based query answering
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ACYCLICITY CONDITIONS (PARTIAL) TAXONOMY

Our contributions:

1 MSA strictly subsumes SWA

2 MFA strictly subsumes MSA

JA ( SWA MSA MFA

EXAMPLE

A(x)→ ∃y.R(x, y) ∧ B(y)

B(x)→ ∃y.S(x, y) ∧ T(y, x)

A(z) ∧ S(z, x)→ C(x)

C(z) ∧ T(z, x)→ A(x) MFA but not MSA

MSA and MFA coincide in experimental evaluation of DL
ontologies

13
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OUTLINE

1 MOTIVATION

2 MFA AND MSA

3 QUERYING ACYCLIC DL ONTOLOGIES

4 EXPERIMENTAL RESULTS
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TRANSLATING DLS INTO RULES

Axioms of normalised Horn-SRIQ ontologies can be
converted to (existential) rules

A v ∃R.B A(x) → ∃y.R(x, y) ∧ B(y)
A v ≤ 1 R.B A(z) ∧ R(z, x1) ∧ B(x1) ∧ R(z, x2)

∧ B(x2) → x1≈x2
A u B v C A(x) ∧ B(x) → C(x)

A v ∀R.B A(z) ∧ R(z, x) → B(x)
R v S R(x1, x2) → S(x1, x2)

R ◦ S v T R(x1, z) ∧ S(z, x2) → T(x1, x2)

Equality is handled with a modification of the singularisation
[Marnette, PODS, 2009] technique
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DL QUERY ANSWERING UNDER ACYCLICITY

Answering conjunctive queries for the DL Horn-SHIQ is
EXPTIME-complete [Eiter et al., 2008]

Does acyclicity affect complexity for DL Query Answering?

1 Horn-SHIQ TBox T and ABox A
T is MFA
Q Boolean conjunctive query

 Deciding T ∪ A |= Q is PSPACE-complete
2 Horn-SRI TBox T and ABox A
T is weakly acyclic
F set of facts

 Deciding T ∪ A |= F is EXPTIME-hard
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OUTLINE
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2 MFA AND MSA
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ACYCLICITY TESTS

Checked 149 DL ontologies for WA, JA, MSA, MFA

Existential rules Total MSA JA WA
< 100 70 64 64 64

100–1K 33 30 30 23
1K–5K 20 14 14 12

5K–12K 14 11 6 6
12K–160K 12 5 3 3
All sizes 149 124 117 108

MSA and MFA coincide w.r.t. the test ontologies

83% were found MSA

7 large and expressive OBO ontologies MSA but not JA
(only two of them were ELHr and DL-Lite)
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MATERIALISATION TESTS

Computed materialisation of acyclic TBoxes

Depth # generated size materialisation size
max avg max avg

< 5 82 27 2 35 5
5–9 13 37 11 41 13

10–80 14 281 51 283 53

Depth = length of function symbol nesting

generated size =
# facts generated by existential rules

# facts in initial ABox

materialisation size =
# facts in materialisation

# facts in initial ABox

For ontologies with small depths materialisation seems
practically feasible
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SUMMARY OF THE RESULTS

1 More general acyclicity conditions: MSA and MFA
2 Complexity analysis for checking MSA and MFA

Horn-SHIQ bounded arity no restriction
MSA PTime-complete coNP-complete ExpTime-complete
MFA PSpace-complete 2ExpTime-complete 2ExpTime-complete

3 DL query answering under acyclicity conditions
Horn-SRI T in WA: T ∪ A |= F is ExpTime-hard
Horn-SHIQ T in MFA: T ∪ A |= Q is PSpace-complete

4 Experimental evaluation on DL ontologies
83% ontologies found acyclic (78% JA)
materialised ABoxes not too large  × 5 bigger on average
for ontologies with depth < 5 (= most ontologies)

Materialisation-based reasoning beyond OWL 2 RL
might be practically feasible

Thank you! Questions?!?
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