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Abstract

We consider the setting of component-based design for real-time systems with critical timing
constraints. Based on our earlier work, we propose a compositional specification theory for
timed automata with I/O distinction, which supports substitutive refinement. Our theory
provides the operations of parallel composition for composing components at run-time, logical
conjunction/disjunction for independent development, and quotient for incremental synthesis.
The key novelty of our timed theory lies in a weakest congruence preserving safety as well
as bounded liveness properties. We show that the congruence can be characterised by two
linear-time semantics, timed-traces and timed-strategies, the latter of which is derived from a
game-based interpretation of timed interaction.

1 Introduction

Component-based design methodologies can be encapsulated in the form of compositional specifi-
cation theories, which allow the mixing of specifications and implementations, admit substitutive
refinement to facilitate reuse, and provide a rich collection of operators. Several such theories have
been introduced in the literature, but none simultaneously address the following requirements:
support for the asynchronous communication model, as opposed to handshake communication;
linear-time refinement preorder, so as to interface with automata and learning techniques; substi-
tutivity of refinement, to allow for component reuse at runtime without introducing errors; and
strong algebraic and compositionality properties, to enable reasoning at runtime as well as offline.
Previously [1], we developed a linear-time specification theory for reasoning about untimed compo-
nents that interact by synchronisation of input and output (I/O) actions. Models can be specified
operationally by means of transition systems augmented by an inconsistency predicate on states, or
declaratively using traces. The theory admits non-determinism, a substitutive refinement preorder
based on traces, and the operations of parallel composition, conjunction and quotient. The re-
finement is strictly weaker than alternating simulation and is actually the weakest pre-congruence
preserving inconsistent states.

In this paper we target component-based development for real-time systems with critical tim-
ing constraints, such as embedded systems components, the middleware layer and asynchronous
hardware. Amongst notable works in the literature, we surveyed the theory of timed interfaces [2]
and the theory of timed specifications [3]. Though both support I/O distinctions, their refinement
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relations are not linear time: in [2] refinement (compatibility) is based on timed games, and in [3] it
is a timed version of the alternating simulation originally defined for interface automata [4]. Con-
sequently, it is too strong for determining when a component can be safely substituted for another.
As an example, consider the transition systems P and Q in Figure 3: these should be equiva-
lent in the sense of substitutivity under any environment, and are equivalent in our formulation
(Definition 5), but they are not so according to timed alternating simulation.

Contributions. We formulate an elegant timed, asynchronous specification theory based on finite
traces which supports substitutive refinement, as a timed extension of the linear-time specification
theory of [1]. We allow for both operational descriptions of components, as well as declarative
specifications based on traces. Our operational models are a variant of timed automata with I/O
distinction (although we do not insist on input-enabledness, cf [5]), augmented by two special
states: ⊥ is the inconsistent state, used to represent safety and bounded-liveness errors, and >
is the timestop state, a novel addition representing either unrealisable output (if the component
is not willing to produce that output) or unrealisable time-delay (if the delay would violate the
invariant on that state).

Timestop models the ability to stop the clock and has been used before [6, 7] in embedded
system and circuit design. It is notationally convenient, accounting for simpler definitions and a
cleaner formalism. By also enhancing the automata with the notion of co-invariant, we can, for the
first time, distinguish the roles of input/output guards and invariant/co-invariants as specifying,
respectively, safety and bounded-liveness timed assumptions/guarantees. We emphasise that this
is achieved with finite traces only; note that in the untimed case it would be necessary to extend to
infinite traces to model liveness. In addition to timed-trace semantics, we present timed-strategy se-
mantics, which coincides with the former but relates our work closer to the timed-game frameworks
used by [3] and [2], and could in future serve as a guide to implementation of the theory. Finally,
the substitutive refinement of our framework gives rise to the weakest congruence preserving ⊥,
which is not the case in the formalism of [3].

Our work could be seen as an alternative to the timed theories of [2, 3]. Being linear-time in
spirit, it is also a generalisation of [8], an untimed theory inspired by asynchronous circuits, and
Dill’s trace theory [9]. For more detailed comparison with related works see Section 5.

Outline. In Section 2 we introduce timed I/O automata, their semantic mapping to timed I/O
transition systems, and supply the operational definitions for the operations of parallel composition,
conjunction, disjunction and quotient. In Section 3 we use the timed-game framework to introduce
timed-strategy semantics, which we relate to the operational framework. Similarly in Section 4, we
present timed-trace semantics and relate these to the operational definitions. Section 5 discusses
related work, and finally Section 6 concludes.

2 Formal Framework

In this section we introduce timed I/O automata, timed I/O transition systems and a semantic
mapping from the former to the latter. Timed I/O automata are compact representations of timed
I/O transition systems. Our theory will be developed using timed I/O transition systems, which
are endowed with a richer repertoire of semantic machinery.
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2.1 Timed I/O Automata

Clock constraints. Given a set X of real-valued clock variables, a clock constraint over X ,
cc : CC (X ), is a boolean combination of atomic constraints of the form x ./ d and x − y ./ d
where x , y ∈ X , ./∈ {≤, <,=, >,≥}, and d ∈ N.

A clock valuation over X is a map t that assigns to each clock variable x in X a real value from
R≥0. We say t satisfies cc, written t ∈ cc, if cc evaluates to true under valuation t . t + d denotes
the valuation derived from t by increasing the assigned value on each clock variable by d ∈ R≥0

time units. t [rs 7→ 0] denotes the valuation obtained from t by resetting the clock variables in rs
to 0. Sometimes we use 0 for the clock valuation that maps all clock variables to 0.

Definition 1. A timed I/O automaton (TIOA) is a tuple (C , I ,O ,L, l0,AT , Inv , coInv), where:

• C ⊆ X is a finite set of clock variables

• A (= I ∪O) is a finite alphabet, where I and O are disjoint sets of input actions and output
actions respectively

• L is a finite set of locations

• l0 ∈ L is the initial location

• AT ⊆ L × CC (C ) × A × 2C × L is a set of action transitions

• Inv : L → CC (C ) and coInv : L → CC (C ) assign invariants and co-invariants to states,
each of which is a downward-closed clock constraint.

We use l , l ′, li to range over L and use l
g,a,rs−−−−→ l ′ as a shorthand for (l , g , a, rs, l ′) ∈ AT .

g : CC (C ) is the enabling guard of the transition, a ∈ A the action, and rs the subset of clock
variables to be reset.

Our TIOAs are timed automata which distinguish input from output and invariant from co-
invariant. They are similar to existing variants of timed automata with input/output distinction,
except for the introduction of co-invariants and non-insistence on input-enabledness. While invari-
ants specify the bounds beyond which time may not progress, co-invariants specify the bounds be-
yond which the system will time-out and enter error states. It is designed for the assume/guarantee
specification of timed components, i.e. specifying both the assumptions made by the component
on the inputs and the guarantees provided by the component on the outputs.

Such assumptions and guarantees can be time constrained. Guards on output transitions express
safety timing guarantees while guards on input transitions express safety timing assumptions. On
the other hand, invariants (urgency) express liveness timing guarantees on the outputs at the
locations they decorate while co-invariants (time-out) express liveness timing assumptions on the
inputs at those locations.

When two components are composed, the parallel composition automatically checks whether the
guarantees provided by one component meet the assumptions required by the other. For instance,
the arrival of an input at a location and time of a component when it is not expected (i.e. the
input is disabled at the location and time) leads to a safety error in the parallel composition. Or
the non-arrival of an expected input at a location before its time-out (specified by the co-invariant)
leads to a bounded-liveness error in the parallel composition.
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Figure 1: Job scheduler and printer controller.

Example. Figure 1 depicts TIOAs representing a job scheduler together with a printer controller.
The invariant at location A of the scheduler forces a bounded-liveness guarantee on outputs in that
location. As time must be allowed to progress beyond t = 100, the start action must be fired
within the range 0 ≤ t ≤ 100. After start has been fired, the clock x is reset to 0 and the scheduler
waits (possibly indefinitely) for the job to finish. If the job does finish, the scheduler is only willing
for this to take place between 5 ≤ t ≤ 8 after the job started (safety assumption), otherwise an
unexpected input error will be thrown.

The controller waits for the job to start , after which it will wait exactly 1 time unit before
issuing print (forced by the invariant y ≤ 1 on state 2 and the guard y = 1). The controller
now requires the printer to indicate the job is printed within 10 time units of being sent to the
printer, otherwise a time-out error on inputs will occur (co-invariant y ≤ 10 in state 3 as liveness
assumption). After the job has finished printing, the controller must indicate to the scheduler that
the job has finished within 5 time units.

2.2 Timed Actions and Words

In this section we introduce some notation relating to timed actions and timed words that will be
of use to us in later sections.

Timed actions. For a set of input actions I and a set of output actions O , define tA = I]O]R>0

to be the set of timed actions, tI = I ]R>0 to be the set of timed inputs, and tO = O ]R>0 to be
the set of timed outputs. We use symbols like α, β, etc. to range over tA.

Timed words. A timed word (ranged over by w ,w ′,wi etc.) is a finite mixed sequence of positive
real numbers (R>0) and visible actions such that no two numbers are adjacent to one another. For
instance, 〈0.33, a, 1.41, b, c, 3.1415〉 is a timed word denoting the observation that action a occurs
at 0.33 time units, then another 1.41 time units lapse before the simultaneous occurrence of b and
c, which is followed by 3.1415 time units of no event occurrence. The empty word is denoted by ε.

Operations on timed words. Concatenation of timed words w and w ′ is obtained by append-
ing w ′ onto the end of w and coalescing adjacent reals (summing them). For instance, 〈a, 1.41〉
a〈0.33, b, 3.1415〉 = 〈a, (1.41 + 0.33), b, 3.1415〉 = 〈a, 1.74, b, 3.1415〉. Prefix/extension are defined
as usual by concatenation, and we use ≤ for the prefix partial order. We write w � tA0 for the
projection of w onto timed alphabet tA0, which is defined by removing from w all actions not inside
tA0 and coalescing adjacent reals.
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2.3 Semantics as Timed I/O Transition Systems

The semantics of TIOAs are given as timed I/O transition systems, which are a special class of
infinite labelled transition systems.

Definition 2. A timed I/O transition system (TIOTS) is a tuple P = 〈I ,O ,S , s0,→〉, where I
and O are the input and output actions respectively, S = (L × RC ) ] {⊥,>} is a set of states,
s0 ∈ S is the designated initial state, and →⊆ S × I ]O ]R>0 × S is the action and time-labelled
transition relation.

The states of the TIOTS (for a TIOA) capture the configurations of the TIOA, i.e. its location
and clock valuation. Therefore, each state of the TIOTS is a pair drawn from L × RC , which we
refer to as the set of plain states. In addition, we introduce two special states ⊥ and >, which are
required for the semantic mapping of disabled inputs/outputs, invariants and co-invariants. In the
rest of the paper we use p, p′, pi to range over P = L× RC while s, s ′, si range over S .
⊥ is the so-called inconsistent state, representing the erroneous state generated by the as-

sumption/guarantee mismatch (i.e. both safety and bounded-liveness errors). > is the so-called
timestop state, representing the magic moment from which time stops elapsing (and thus removes
the subsequent possibility of errors). We assume that > refines plain states, which in turn refine
⊥.

On TIOTSs, a disabled input in a state p is equated to an input transition from p to ⊥, while
a disabled output/delay in p is equated to an output/delay from p to >. The intuition here comes
from the input/output game perspective. The component controls output and delay while the
environment controls input. ⊥ is the losing state for the environment. So an input transition from
p to ⊥ is a transition that the environment controls and tries to avoid at all cost (unless there is
no choice at all). > is the losing state for the component. So an output/delay transition from p to
> is a transition that the component controls and tries to avoid at all cost. Thus we can have two
semantics-preserving transformations on TIOTSs.

The ⊥-completion of a TIOTS P, denoted P⊥, adds an a-labelled transition from p to ⊥ for
every p ∈ P (= L × RC ) and a ∈ I s.t. a is not enabled at p.1 The >-completion, denoted P>,
adds an α-labelled transition from p to > for every p ∈ P and α ∈ tO s.t. α is not enabled at p.

Furthermore, for technical convenience (e.g. ease of defining time additivity and trace seman-
tics), the definition of TIOTSs requires that > and ⊥ are a chaotic state, i.e. a state in which the
set of outgoing transitions are all self-loops, one for each α ∈ tA.

The transition relation → of the TIOTS is derived from the execution semantics of the TIOA.

Definition 3. Let P be a TIOA. The execution semantics of P is a TIOTS 〈I ,O ,S , s0,→〉, where:

• S = (L× RC ) ] {⊥,>}

• s0 = > providing 0 /∈ Inv(l0), s0 = ⊥ providing 0 ∈ Inv(l0) ∧ ¬coInv(l0) and s0 = (l0, 0)
providing 0 ∈ Inv(l0) ∧ coInv(l0),

• → is the smallest relation satisfying:

1. If l
g,a,rs−−−−→ l ′, t ′ = t [rs 7→ 0], t ∈ Inv(l) ∧ coInv(l) ∧ g, then:

(a) plain action: (l , t)
a−→ (l ′, t ′) providing t ′ ∈ Inv(l ′) ∧ coInv(l ′)

1⊥-completion will make a TIOTS input-receptive, i.e. input-enabled at all states.
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(b) error action: (l , t)
a−→ ⊥ providing t ′ ∈ Inv(l ′) ∧ ¬coInv(l ′)

(c) magic action: (l , t)
a−→ > providing t ′ ∈ ¬Inv(l ′) and a ∈ I .

2. plain delay: (l , t)
d−→ (l , t + d) if t , t + d ∈ Inv(l) ∧ coInv(l)

3. time-out delay: (l , t)
d−→ ⊥ if t ∈ Inv(l) ∧ coInv(l), t + d /∈ coInv(l) and ∃ 0 < δ ≤ d :

t + δ ∈ Inv(l) ∧ ¬coInv(l).

Note that our semantics tries to minimise the use of transitions leading to >/⊥ states. Thus
there are no delay or output transitions leading to >. However, there are implicit timestops, which
we capture using the concept of semi-timestop (i.e. semi->). We say a plain state p is a semi-> iff
1) all output transitions enabled in p or any of its time-passing successors lead to the > state, and

2) there exists d ∈ R>0 s.t. p
d−→ > or d is not enabled in p. Thus a semi-> is a state in which it is

impossible for the component to avoid the timestop without suitable inputs from the environment.

TIOTS terminology. We say a TIOTS is deterministic iff s
α−→ s ′ ∧ s

α−→ s ′′ implies s ′ = s ′′,

and is time additive providing p
d1+d2−−−−→ s ′ iff p

d1−→ s and s
d2−→ s ′ for some s. In the sequel, we

only consider time-additive TIOTSs.
Given a TIOTS P, a timed word can be derived from a finite execution of P by extracting

the labels in each transition and coalescing adjacent reals. The timed words derived from such

executions are called traces of P. We use tt , tt ′, tti to range over the set of traces and write s0 tt
=⇒ s

to denote a finite execution that produces trace tt and leads to s.

Remark on timestop. An unconventional aspect of our semantics is the introduction of timestop
(>). Timestop (and semi-timestop) can be introduced explicitly into a specification to model the
operation of stopping the system clock. It is well known that parallel composition of components
will not introduce new timestop (or semi-timestop).

Certain real-world systems have an inherent ability to stop the clock, e.g. [6, 7], related to
embedded systems and circuit design. For systems where the suspension of clocks is not meaningful,
a theory that can remove timestops to keep only the so-called realisable behaviours will be developed
as future work. Note that even for timestop-free systems, timestop can play an important role as an
imaginary state exploited at the intermediate steps of theory development in order to significantly
simplify operations (e.g. quotient and conjunction).

2.4 Operational Specification Theory

In this section we develop a compositional specification theory for TIOTSs based on the operations
of parallel composition ‖, conjunction ∧, disjunction ∨ and quotient %. The operators are defined
via transition rules that are a variant on synchronised product.

Parallel composition yields a TIOTS that represents the combined effect of its operands inter-
acting with one another. The remaining operations must be explained with respect to a refinement
relation, which corresponds to safe-substitutivity in our theory. A TIOTS is a refinement of an-
other if it will work in any environment that the original worked in without introducing safety
or bounded-liveness errors. Conjunction yields the coarsest TIOTS that is a refinement of its
operands, while disjunction yields the finest TIOTS that is refined by both of its operands. The
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Table 1: State representations under composition operators.
‖ > p0 ⊥
> > > >
p1 > p0×p1 ⊥
⊥ > ⊥ ⊥

∧ > p0 ⊥
> > > >
p1 > p0×p1 p1

⊥ > p0 ⊥

∨ > p0 ⊥
> > p0 ⊥
p1 p1 p0×p1 ⊥
⊥ ⊥ ⊥ ⊥

% > p0 ⊥
> ⊥ ⊥ ⊥
p1 > p0×p1 ⊥
⊥ > > ⊥

operators are thus equivalent to the join and meet operations on TIOTSs2. Quotient is the adjoint
of parallel composition, meaning that P0%P1 is the coarsest TIOTS such that (P0%P1)‖P1 is a
refinement of P0.

Let Pi = 〈Ii ,Oi ,Si , s
0
i ,→i〉 for i ∈ {0, 1} be two TIOTSs that are both ⊥ and >-completed,

satisfying (wlog) S0 ∩ S1 = {⊥,>}. The composition of P0 and P1 under the operation ⊗ ∈ {‖
,∧,∨,%}, written P0 ⊗P1, is only defined when certain composability restrictions are imposed on
the alphabets of the TIOTSs. P0 ‖ P1 is only defined when the output sets of P0 and P1 are
disjoint, because an output should be controlled by at most one component. Conjunction and
disjunction are only defined when the TIOTSs have identical alphabets (i.e. O0 = O1 and I0 = I1).
This restriction can be relaxed at the expense of more cumbersome notation, which is why we focus
on the simpler case in this paper. For the quotient, we require that the alphabet of P0 dominates
that of P1 (i.e. A1 ⊆ A0 and O1 ⊆ O0), in addition to P1 being a deterministic TIOTS. As quotient
is a synthesis operator, it is difficult to give a definition using just state-local transition rules, since
quotient needs global information about the transition systems. This is why we insist on P1 being
deterministic3.

Definition 4. Let P0 and P1 be TIOTSs composable under ⊗ ∈ {‖,∧,∨,%}. Then P0 ⊗ P1 =
〈I ,O ,S , s0,→〉 is the TIOTS where:

• If ⊗ =‖, then I = (I0 ∪ I1) \O and O = O0 ∪O1

• If ⊗ ∈ {∧,∨}, then I = I0 = I1 and O = O0 = O1

• If ⊗ = %, then I = I0 ∪O1 and O = O0 \O1

• S = (P0 × P1) ] P0 ] P1 ] {>,⊥}

• s0 = s0
0 ⊗ s0

1

• → is the smallest relation containing →0 ∪ →1, and satisfying the rules:

p0

α−→0s ′0 p1

α−→1s ′1

p0⊗p1

α−→s ′0⊗s ′1

p0

a−→0s ′0 a /∈A1

p0⊗p1

a−→s ′0⊗p1

p1

a−→0s ′1 a /∈A0

p0⊗p1

a−→p0⊗s ′1

We adopt the notation of s0⊗s1 for states, where the associated interpretation is supplied in Table 1.
Furthermore, given two plain states pi = (li , ti) for i ∈ {0, 1}, we define p0 × p1 = ((l0, l1), t0 ] t1).

2As we write A v B to mean A is refined by B , our operators ∧ and ∨ are reversed in comparison to the standard
symbols for meet and join.

3Technically speaking, the problem lies in that state quotient operator is right-distributive but not left-distributive
over state disjunction (cf Table 1).
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Table 1 tells us how states should be combined under the composition operators. For parallel,
a state is magic if one component state is magic, and a state is error if one component is error
while the other is not magic. For conjunction, encountering error in one component implies the
component can be discarded and the rest of the composition behaves like the other component. The
conjunction table follows the intuition of the join operation on the refinement preorder. Similarly
for disjunction. Quotient is the adjoint of parallel composition. If the second component state
does not refine the first, the quotient will try to rescue the refinement by producing > (so that its
composition with the second will refine the first). If the second component state does refine the
first, the quotient will produce the least refined value so that its composition with the second will
not break the refinement.

An environment for a TIOTS P is any TIOTS Q such that the alphabet of Q is complementary
to that of P, meaning IP = OQ and OP = IQ. Refinement in our framework corresponds to
contextual substitutability, in which the context is an arbitrary environment.

Definition 5. Let Pimp and Pspec be TIOTSs with identical alphabets. Pimp refines Pspec, denoted
Pspec v Pimp, iff for all environments Q, Pspec ‖ Q is ⊥-free implies Pimp ‖ Q is ⊥-free. We say
Pimp and Pspec are substitutively equivalent, i.e. Pspec ' Pimp, iff Pimp v Pspec and Pspec v Pimp.

It is obvious that ' induces an equivalance on TIOTSs and no equivalence that preserves the ⊥
state can be weaker than '. In the sequel we will give two concrete characterisations of ' and show
that ' is also a congruence w.r.t. the parallel composition, conjunction, disjunction and quotient
operators.

The operational definition of quotient requires that P1 is deterministic, which can be accom-
plished by a semantics-preserving determinisation procedure. We define the determinisation PD

of P as a modified subset construction procedure on (P⊥)>: given a subset S0 of states reachable
by a given trace, we only keep those which are minimal w.r.t. the state refinement relation. So if
the current state subset S0 contains ⊥, the procedure reduces S0 to ⊥; if ⊥ /∈ S0 6= {>}, it reduces
S0 by removing any potential > in S0.4

Proposition 1. Any TIOTS P is substitutively equivalent to the deterministic TIOTS PD .

Equipped with determinisation, quotient is a fully defined operator on any pair of TIOTSs.
Furthermore, we can give an alternative (although substitutively equivalent) formulation of quotient
as the derived operator (P¬0 ‖ P1)¬, where ¬ is a mirroring operation that first determinises its
argument, then interchanges the input and output sets, as well as the > and ⊥ states.

Example. Figure 2 shows the parallel composition of the job scheduler with the printer controller.
In the transition from B4 to A1, the guard combines the effects of the constraints on the clocks x
and y . As finish is an output of the controller, it can be fired at a time when the scheduler is not
expecting it, meaning that a safety error will occur. This is indicated by the transition to ⊥ when
the guard constraint 5 ≤ x ≤ 8 is not satisfied.

4For a more detailed definition of transforming non-deterministic systems into substitutivity-equivalent deter-
ministic systems, we refer readers to the Definition 4.2 in [8]. That is for the untimed case.
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y==1
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Co:  true

Scheduler || Printer_controller

not (5 <= x <= 8)
and y<=5

finish!

Figure 2: Parallel composition of the job scheduler and printer controller.

3 Timed I/O Game

Our specification theory can be understood from a game-theoretical point of view. It is an input-
output game between a component and an environment that uses a coin to break ties. The
specification of a component (in the form of a TIOA or TIOTS) is built to encode the set of
strategies possible for the component in the game (just like an NFA encodes a set of words).

• Given two TIOTSs P and Q with identical alphabets, we say P is a partial unfolding [10] of
Q if there exists a function f from SP to SQ s.t. 1) f maps > to >, ⊥ to ⊥, and plain states

to plain states, 2) f (s0
P) = s0

Q, and 3) p
α−→P s ⇒ f (p)

α−→Q f (s).

• We say an acyclic TIOTS is a tree if 1) there does not exist a pair of transitions in the form of

p
a−→ p′′ and p′

d−→ p′′, 2) p
a−→ p′′∧p′

b−→ p′′ implies p = p′ and a = b and 3) p
d−→ p′′∧p′

d−→ p′′

implies p = p′.

• We say an acyclic TIOTS is a simple path if 1) p
a−→ s ′ ∧ p

α−→ s ′′ implies s ′ = s ′′ and a = α

and 2) p
d−→ s ′ ∧ p

d−→ s ′′ implies s ′ = s ′′.

• We say a simple path L is a run of P if L is a partial unfolding of P.

Strategies. A strategy G is a deterministic tree TIOTS s.t. each plain state in G is ready to
accept all possible inputs by the environment, but allows a single move (delay or output) by the
component, i.e. ebG(p) = I ]mvG(p) s.t. mvG(p) = {a} for some a ∈ O or mvG(p) ⊆ R>0, where
ebG(p) denotes the set of enabled timed actions in state p of LTS G, and mvG(p) denotes the unique
component move allowed by G at p.

A TIOTS P contains a strategy G if G is a partial unfolding of (P⊥)>. The set of strategies5

contained in P is denoted stg(P). Since it makes little sense to distinguish strategies that are
isomorphic, we will freely use strategies to refer to their isomorphism classes and write G = G′ to
mean G and G′ are isomorphic.

Let us give some examples in Figure 3. For the sake of simplicity we use two untimed transition
systems P and Q, which have identical alphabets I = {e, f } and O = {a, b, c}, to illustrate the idea

5In this paper we use a set of strategies (say Π) to mean a set of strategies with identical alphabets.
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Figure 3: Strategy example.

of strategies. The transition systems use solid lines while strategies use dotted lines. Plain states
are unmarked while the > and ⊥ states are marked by > and ⊥ resp.6 We show four strategies of
P and two strategies of Q on the right hand side of P and Q resp. in Figure 3. (They are not the
complete sets of strategies for P and Q.) Note that the strategies 3 and 4 owe their existence to
the > completion.

Comparing strategies. When the game is played, the component tries to avoid reaching > while
the environment tries to avoid reaching ⊥. Different strategies in stg(P) vary in their effectiveness
to achieve the objective. Such effectiveness can be compared if two strategies closely resemble each

other: we say G and G′ are affine if s0
G

tt
=⇒ p and s0

G′
tt
=⇒ p′ implies mvG(p) = mvG′(p′). Intuitively,

it means G and G′ propose the same move at the ‘same’ states. For instance, the strategies 1, 3
and A in Figure 3 are pairwise affine and so are the strategies 2, 4 and B .

Given two affine strategies G and G′, we say G is more aggressive than G′, denoted G � G′, if

1) s0
G′

tt
=⇒ ⊥ implies there is a prefix tt0 of tt s.t. s0

G
tt0=⇒ ⊥ and 2) s0

G
tt
=⇒ > implies there is a prefix

tt0 of tt s.t. s0
G′

tt0=⇒ >. Intuitively, it means G can reach ⊥ faster but > slower than G′. � forms
a partial order over stg(P), or more generally, over any set of strategies with identical alphabets.
For instance, strategy A is more aggressive than 1 and 3, while strategy B is more aggressive than
2 and 4.

When the game is played, the component P prefers to use the maximally aggressive strategies
in stg(P)7. Thus two components that differ only in non-maximally aggressive strategies should
be equated. We define the strategy semantics of component P to be [P]s = {G′ | ∃ G ∈ stg(P) :
G � G′}, i.e. the upward-closure of stg(P) w.r.t. �.

Game rules. When a component strategy G is played against an environment strategy G′, at
each game state (i.e. a product state pG × pG′) G and G′ each propose a move (i.e. mvG(pG) and
mvG′(pG′)). If one of them is a delay and the other is an action, the action will prevail. If both

6To simplify drawing, multiple copies of > and ⊥ are allowed but the self-loops on them are omitted.
7This is because our semantics is designed to preserve ⊥ rather than >.
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propose delay moves (i.e. mvG(pG),mvG′(pG′) ⊆ R≥0), the smaller one (w.r.t. set containment)
will prevail.8

Since a delay move proposed at a strategy state is the maximal set of possible delays enabled
at that state, the next move proposed at the new state after firing the set must be an action move
(due to time additivity). Thus a play cannot have two consecutive delay moves.

If, however, both propose action moves, there will be a tie, which will be resolved by tossing
the coin. For uniformity’s sake, the coin can be treated as a special component. A strategy of the
coin is a function h from tA∗ to {0, 1}. We denote the set of all possible coin strategies as H .

A play of the game can be formalised as a composition of three strategies, one each from the
component, environment and coin, denoted GP ‖h GQ. At a current game state pP × pQ, if the

prevailing action is α and we have pP
α−→ s ′P and pQ

α−→ s ′Q, then the next game state is sP ‖ sQ.
The play will stop when it reaches either > or ⊥. The composition will produce a simple path L
that is a run of P ‖ Q. Since P ‖ Q gives rise to a closed system (i.e. the input alphabet is empty),
a run of P ‖ Q is a strategy of P ‖ Q.

This is crucial since it reveals that strategy composition of P and Q is closely related to their
parallel composition: stg(P ‖ Q) = {GP ‖h GQ | GP ∈ stg(P),GQ ∈ stg(Q) and h ∈ H }.

Parallel composition. Strategy composition, like component (parallel) composition, can be
generalised to any pair of components P and Q with composable alphabets. That is, OP ∩OQ = {}.
For such P and Q, GP ‖h GQ gives rise to a tree rather than a simple path TIOTS. That is, at each
game state pP × pQ, besides firing the prevailing α ∈ tOP ∪ tOQ, we need also to fire 1) all the

synchronised inputs, i.e. e ∈ IP ∩ IQ, and reach the new game state sP ‖ sQ (assuming pP
e−→ sP

and pQ
e−→ sQ) and 2) all the independent inputs, i.e. e ∈ (IP ∪ IQ) \ (AP ∩ AQ), and reach the

new game state sP × pQ or pP × sQ. It is easy to verify that GP ‖h GQ is a strategy of P ‖ Q.

Conjunction/disjunction. Besides strategy composition, strategy conjunction (&) and strategy
disjunction (+) are also definable. They are binary operators defined only on pairs of affine
strategies. We define G&G′ = G ∧ G′ and G + G′ = G ∨ G′. Note that, if G and G′ are not affine,
G∧G′ and G∨G′ do not necessarily produce a strategy. For instance the disjunction of the strategies
1 and 2 in Figure 3 will produce a transition system that stops to output after the a transition.

Refinement. Strategy semantics induces an equivalence on TIOTSs. That is, P and Q are
strategy equivalent iff [P]s = [Q]s . However, strategy equivalence is too fine for the purpose of
substitutive refinement (cf Definition 5). For instance, transition systems P and Q in Figure 3 are
substitutively equivalent, but are not strategy equivalent, because 1, 2, 3 and 4 are strategies of Q
(due to upward-closure w.r.t. �), and A and B are not strategies of P.

However, we demonstrate that substitutive equivalence is reducible to strategy equivalence pro-
viding we perform disjunction closure on strategies.

Lemma 1. Given a pair of affine component strategies G0 and G1, G0 ‖h G and G1 ‖h G are ⊥-free
for a pair of environment and coin strategies G and h iff G0 + G1 ‖h G is ⊥-free.

8Note that all invariants and co-invariants are downward-closed. Thus a delay move can be respresented as a
time interval from 0 to some d ∈ R≥0.
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We say Π+ is a disjunction closure of Π iff it is the least superset of Π s.t. G + G′ ∈ Π+ for all
pairs of affine strategies G,G′ ∈ Π+. It is easy to see the disjunction closure operation preserves
the upward-closedness of strategy sets.

Proposition 2. Disjunction closure is determinisation: [PD ]s = [PD ]+s = [P]+s .

Lemma 2. For any TIOTS P, [P¬]+s = {GP¬ | ∀ GP ∈ [P]+s , h ∈ H : GP¬ ‖h GP is ⊥-free}.

Theorem 1. Given TIOTSs P and Q, P v Q iff [Q]+s ⊆ [P]+s .

For instance, the disjunction of strategies 1 and 3 produces A, while the disjunction of strategies
2 and 4 produces B . Thus [P]+s = [Q]+s .

Relating operational composition to strategies. The operations of parallel composition,
conjunction and disjunction defined on the operational models of TIOTSs (Section 2.4) can be
characterised by simple operations on strategies in the game-based setting.

Lemma 3. For ‖-composable TIOTSs P and Q, [P ‖ Q]+s = {GP‖Q | ∃ GP ∈ [P]+s ,GQ ∈ [Q]+s , h ∈
H : GP ‖h GQ � GP‖Q}.

Lemma 4. For ∨-composable TIOTSs P and Q, [P ∨Q]+s = ([P]+s ∪ [Q]+s )+.

Lemma 5. For ∧-composable TIOTSs P and Q, [P ∧Q]+s = [P]+s ∩ [Q]+s .

Lemma 6. For %-composable TIOTSs P and Q, [P%Q]+s = {GP%Q | ∀ GQ ∈ [Q]+s , h ∈ H :
GP%Q ‖h GQ ∈ [P]+s }.

Thus conjunction and disjunction are the join and meet operations and quotient produces the
coarsest TIOTS s.t. (P0%P1)‖P1 is a refinement of P0.

Theorem 2. ' is a congruence w.r.t. ‖, ∨, ∧ and % subject to composability.

Summary. Strategy semantics has given us a weakest ⊥-preserving congruence (i.e. [P]+s ) for
timed specification theories based on operators for (parallel) composition, conjunction, disjunc-
tion and quotient. Strategy semantics captures nicely the game-theoretical nature as well as the
operational intuition of the specification theories. However, in a more declarative manner, the
equivalence can also be characterised by timed traces, as we see in the next section.

4 Declarative Specification Theory

In this section, we develop a compositional specification theory based on timed traces. We in-
troduce the concept of a timed-trace structure, which is an abstract representation for a timed
component. The timed-trace structure contains essential information about the component, for
checking whether it can be substituted with another in a safety and liveness preserving manner.

Given any TIOTS P = 〈I ,O ,S , s0,→〉, we can extract three sets of traces from (P⊥)>: TP
(plain traces) is a set of timed traces leading to plain states, TE (error traces) a set of timed
traces leading to ⊥ and TM (magic traces) a set of timed traces leading to >. TE and TM are
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extension-closed9 while TP is prefix-closed. It is easy to verify TE ∪ TP ∪ TM gives rise to the
full set of timed traces tA∗.10 Thus TP and TE suffice to capture all the information.

However, TP and TE contain more information than necessary for our substitutive refinement,
which is designed to preserve ⊥ rather than >. For instance, adding any trace tt ∈ TE to TP
should not change the semantics of the component. Based on a slight abstraction of the two sets
we can define a dual-trace structure as the semantics of P.

Definition 6 (Dual-trace structure). T T (P) := (I ,O ,TR,TE ), where TR := TE ∪TP the set of
realisable traces. Obviously, TR is prefix-closed.

From hereon let P0 and P1 be two TIOTSs with dual-trace structures T T (Pi) := (Ii ,Oi ,TRi ,TEi)
for i ∈ {0, 1}. Define ī = 1− i .

The substitutive refinement relation v in Section 2.4 can equally be characterised by means of
trace containment. Consequently, T T (P0) can be regarded as providing an alternative encoding
of the set [P0]+s of strategies.

Theorem 3. P0 v P1 iff TR1 ⊆ TR0 and TE1 ⊆ TE0.

We are now ready to define the timed-trace structure semantics for the operators of our spec-
ification theory. Intuitively, the timed-trace semantics mimics the synchronised product of the
operational definitions in Section 2.4. An important fact utilised in formulating these operations
on traces is that, for any trace tt ∈ tA∗ and TIOTS P, either tt is a trace of P or there is some
prefix tt0 of tt s.t. tt0 is an error or magic trace of P.

Parallel composition. The idea behind parallel composition is that the projection of any trace
in the composition onto the alphabet of one of the components should be a trace of that component.

Proposition 3. If P0 and P1 are ‖-composable, then T T (P0 ‖ P1) = (I ,O ,TR, TE ) where I =
(I0 ∪ I1) \O, O = O0 ∪O1 and the trace sets are given by:

• TE = {tt | tt � tAi ∈ TEi ∧ tt � tAī ∈ TRī} · tA∗

• TR = TE ] {tt | tt � tAi ∈ (TRi \ TEi) ∧ tt � tAī ∈ (TRī \ TEī)}

The above says tt is an error trace if the projection of tt on one component is an error trace
while the projection of tt on the other component is a realisable trace. tt is a realisable trace if tt
is either an error trace or a (strictly) plain trace. tt is a (strictly) plain trace if the projection of tt
on both components are (strictly) plain traces.

Disjunction. From any composite state in the disjunction of two components, the composition
should only be willing to accept inputs that are accepted by both components, but should accept
the union of outputs. After witnessing an output enabled by only one of the components, the
disjunction should behave like that component. Because of the way that ⊥ and > work in Table 1,
this loosely corresponds to taking the union of the traces from the respective components.

Proposition 4. If P0 and P1 are ∨-composable, then T T (P0 ∨ P1) = (I ,O , TR0 ∪ TR1,TE0 ∪
TE1), where I = I0 = I1 and O = O0 = O1.

9This is due to the fact that > and ⊥ are modelled as chaotic states.
10This is due to >/⊥-completion.
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Conjunction. Similarly to disjunction, from any composite state in the conjunction of two com-
ponents, the composition should only be willing to accept outputs that are accepted by both
components, and should accept the union of inputs, until a stage when one of the component’s
input assumptions has been violated, after which it should behave like the other component. Be-
cause of the way that both ⊥ and > work in Table 1, this essentially corresponds to taking the
intersection of the traces from the respective components.

Proposition 5. If P0 and P1 are ∧-composable, then T T (P0 ∧ P1) = (I ,O , TR0 ∩ TR1,TE0 ∩
TE1), where I = I0 = I1 and O = O0 = O1.

Quotient. Quotient ensures its composition with the second component is a refinement of the
first. Given the synchronised running of P0 and P1, if P0 is in a more refined state than P1, the
quotient will try to rescue the refinement by taking > as its state (so that its composition with
P1’s state will refine P0’s). If P0 is in a less or equally refined state than P1’s, the quotient will
take the worst possible state without breaking the refinement.

Proposition 6. If P0 dominates P1, then T T (P0%P1) = (I ,O ,TR,TE ), where I = I0 ∪ O1,
O = O0 \O1, and the trace sets satisfy:

• TE = TE0 ∪ {tt | tt � tA1 6∈ TR1} · tA∗

• TR = TE ] {tt | tt ∈ (TR0 \ TE0) ∧ tt � tA1 ∈ (TR1 \ TE1)}.

The above says tt is an error trace if either 1) tt is an error trace in P0, or 2) the projection of
tt on P1 is not a realisable trace.

Mirroring of dual-trace structures is straightforward: T T (P0)
¬

= (O0, I0, tA∗\TE0, tA
∗\TR0).

Consequently, quotient can also be defined as the derived operator (T T (P0)
¬ ‖ T T (P1))¬.

5 Comparison with Related Works

Our framework can be seen as a linear-time alternative to the timed specification theories of [2]
and [3], albeit with significant differences. The specification theory in [3] also introduces parallel,
conjunction and quotient, but uses timed alternating simulation as refinement, which does not
admit the weakest precongruence. An advantage of [3] is the algorithmic efficiency of branching-
time simulation checking and implementation reported in [11].

The work of [2] on timed games also bears conceptual similarities, although they do not define
conjunction and quotient. We adopt most of the game rules in [2], except that, due to our require-
ment that proposed delay moves are maximal delays allowed by a strategy, a play cannot have
consecutive delay moves. This enables us to avoid the complexity of time-blocking strategies and
blame assignment, but does not ensure non-Zenoness11. Secondly, we do not use timestop/semi-
timestop to model time errors (i.e. bounded-liveness errors). Rather, we introduce the explicit
inconsistent state ⊥ to model both time and immediate (i.e. safety) errors. This enables us to
avoid the complexity of having two transition relations and well-formedness of timed interfaces.

Based on linear time, our timed theory owes much to the pioneering work of trace theories in
asynchronous circuit verification, such as Dill’s trace theory [9]. Our mirror operator is essentially

11Zeno behaviours (infinite action moves within finite time) in a play are not regarded as abnormal behaviours in
our semantics.
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a timed extension of the mirror operator from asynchronous circuit verification [12]. The defini-
tion of quotient based on mirroring (for the untimed case) was first presented by Verhoeff as his
Factorisation Theorem [13].

In comparison with our untimed theory [1], our timed extension requires new techniques (e.g.
those related to timestop) to handle delay transitions since time can be modelled neither as in-
put nor as output. In the timed theory the set of realisable traces (TR) is not required to be
input-enabled, which is necessary for the set of untimed traces in [1]. Thus, the domain of trace
structures are significantly enlarged. Furthermore, the timed theory supports the modelling of live-
ness assumption/guarantee. It can further reduce such checking of liveness (assumption/guarantee)
mismatches to the ⊥-reachability. Therefore, finite traces suffice to model and verify liveness prop-
erties. In contrast, the untimed theory must employ infinite traces to treat liveness in a proper
way.

We briefly mention other related works, which include timed modal transition systems [14, 15],
the timed I/O model [5, 16] and embedded systems [17, 18].

6 Conclusions

We have formulated a rich compositional specification theory for components with real-time con-
straints based on a linear-time notion of substitutive refinement. The operators of hiding and
renaming can also be defined, based on our previous work [8]. We believe that our theory can be
reformulated as a timed extension of Dill’s trace theory [9]. Future work will include an investiga-
tion of realisability and assume-guarantee reasoning.

Acknowledgments. The authors are supported by EU FP7 project CONNECT, ERC Advanced
Grant VERIWARE and EPSRC project EP/F001096.
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A The proofs

Proposition 1. Any TIOTS P is substitutively equivalent to the deterministic TIOTS PD .

Proof. If P can run a trace tt and reach ⊥, then the subset S0 of states reachable by tt in P will
be reduced to ⊥ by the modified subset constrcution. Thus a run of tt on PD will lead to ⊥.

If PD can run a trace tt and reach ⊥, then the subset S0 of states reachable by tt in P contains
⊥. Thus there exists a run of tt on P which leads to ⊥.

Lemma 1. Given a pair of affine component strategies G0 and G1, G0 ‖h G and G1 ‖h G are ⊥-free
for a pair of environment and coin strategies G and h iff G0 + G1 ‖h G is ⊥-free.
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Proof. From G0 + G1 ‖h G to G0 ‖h G and G1 ‖h G: obvious since G0 + G1 is more aggressive than
both G0 and G1.

From G0 ‖h G and G1 ‖h G to G0 + G1 ‖h G: If G0 + G1 ‖h G gives rise to a simple path ending
in ⊥, it is impossible that G0 ‖h G and G1 ‖h G both give rise to a ⊥-free simple path since state ‖
operation distributes over state ∨ operation.

Proposition 2. Disjunction closure is determinisation: [PD ]s = [PD ]+s = [P]+s .

Proof. Follows from Lemma 1.

Lemma 2. For any TIOTS P, [P¬]+s = {GP¬ | ∀ GP ∈ [P]+s , h ∈ H : GP¬ ‖h GP is ⊥-free}.

Proof. Since P¬ is deterministic, [P¬]+s = [P¬]s . If there exists G /∈ [P¬]s s.t. for all GP ∈
[PD ]s , h ∈ H we have G ‖h GP is ⊥-free, then G is �-incomparable to all strategies in stg(P¬).
Thus there exists a trace tt s.t. the state s reached after tt in P¬ strictly refines the state s ′ reached
after tt in G. If s = > and s ′ 6= >, then the state s ′′ reached after tt in PD is ⊥ and s ′ ‖ s ′′ = ⊥.
Contradition! If s = p and s ′ = ⊥, then the state s ′′ reached after tt in PD is p′ and s ′ ‖ s ′′ = ⊥.
Contradition!

Theorem 1. Given TIOTSs P and Q, P v Q iff [Q]+s ⊆ [P]+s .

Proof. Due to propositions 1 and 2, the proof is reduced to prove PD v QD iff [QD ]s ⊆ [PD ]s .
From [QD ]s ⊆ [PD ]s to PD v QD : If PD v QD is not true, there exists an environment

strategy GE s.t. GE ‖ PD is ⊥-free but GE ‖ QD is not. Then there exists G ∈ stg(QD) and h ∈ H
s.t. G ‖h GE is not ⊥-free. Obviously G /∈ [PD ]s . Contradiction!

From PD v QD to [QD ]s ⊆ [PD ]s : If [QD ]s \ [PD ]s is non-empty, then there exists G ∈
stg(QD) \ [PD ]s . Obviously G ‖ (PD)¬ is not ⊥-free. Thus QD ‖ (PD)¬ is not ⊥-free but
PD ‖ (PD)¬ is. Contradiction!

Lemma 3. For ‖-composable TIOTSs P and Q, [P ‖ Q]+s = {GP‖Q | ∃ GP ∈ [P]+s ,GQ ∈ [Q]+s , h ∈
H : GP ‖h GQ � GP‖Q}.

Proof. Due to the distributivity of state ‖ operation over state ∨ operation, (P ‖ Q)D and PD ‖ QD

are isomorphic. Thus [P ‖ Q]+s = [(P ‖ Q)D ]s = [PD ‖ QD ]s = (stg(PD ‖ QD))↑ = ({GPD ‖h
GQD | GP ∈ stg(PD),GQ ∈ stg(QD), and h ∈ H })↑ = {GP‖Q | ∃ GP ∈ [P]+s ,GQ ∈ [Q]+s , h ∈ H :

GP ‖h GQ � GP‖Q}, where Π↑ is the �-upward closure operation.

Lemma 4. For ∨-composable TIOTSs P and Q, [P ∨Q]+s = ([P]+s ∪ [Q]+s )+.

Proof. Since (P ∨Q)D and PD ∨QD are isomorphic, [P ∨Q]+s = [(P ∨Q)D ]s = [PD ∨QD ]s .
[PD ∨QD ]s ⊆ ([PD ]s ∪ [QD ]s)+: If G ∈ stg(PD ∨QD), G can be decomposed into G0 ∈ stg(PD)

and G1 ∈ stg(QD) s.t. G = G0 + G1. Starting from the initial state of G and in a breadth-first
manner, decompose (product) states s of G into (component) states of G0 and G1. If s = (p0, p1),

then p0 for G0 and p1 for G1. If ((p0, p1)
α−→) s = p′i for i ∈ {0, 1} then p′i for Gi and > for Gī .

If ((p0, p1)
α−→) s = >, then > for both G0 and G1. If ((p0, p1)

α−→) s = ⊥, then ⊥ for G0 or G1

depending on f0(p0)
α−→PD ⊥ or f1(p1)

α−→PD ⊥. The other component that is not mapped to ⊥
can, from that point on, unfold PD or QD in arbitrary manner it likes.

The other direction: It is obvious [PD ]s ⊆ [PD ∨ QD ]s and [QD ]s ⊆ [PD ∨ QD ]s . If G ∈
([PD ]s ∪ [QD ]s)+ \ ([PD ]s ∪ [QD ]s), then there exists G0 ∈ [PD ]s and G1 ∈ [QD ]s s.t. G = G0 + G1.
Then G ∈ [PD ∨QD ]s .

17



Lemma 5. For ∧-composable TIOTSs P and Q, [P ∧Q]+s = [P]+s ∩ [Q]+s .

Proof. Due to the distributivity of state ∧ operation over state ∨ operation, (P∧Q)D and PD∧QD

are isomorphic. The proof is reduced to [PD ∧QD ]s = [PD ]s ∩ [QD ]s .
[PD ∧QD ]s ⊆ [PD ]s ∩ [QD ]s : obvious since [PD ∧QD ]s ⊆ [PD ]s and [PD ∧QD ]s ⊆ [QD ]s .
[PD ]s ∩ [QD ]s ⊆ [PD ∧ QD ]s : If G ∈ [PD ]s ∩ [QD ]s , then there exists G0 ∈ stg(PD) and

G1 ∈ stg(QD) s.t. G0 � G and G1 � G. Then G0&G1 � G and G ∈ [PD ∧ QD ]s since G0&G1 =
G0 ∧ G1 ∈ [PD ∧QD ]s .

Lemma 6. For %-composable TIOTSs P and Q, [P%Q]+s = {GP%Q | ∀ GQ ∈ [Q]+s , h ∈ H :
GP%Q ‖h GQ ∈ [P]+s }.

Proof. Since P%Q is defined to be P%QD and state % operation is left-distributive over state
∨ operation, (P%Q)D is isomorphic to PD%QD , which in turn is isomorphic to (P¬ ‖ QD)¬.
Thus [P%Q]+s = [PD%QD ]s and we only need to prove G ∈ stg(PD%QD) ⇒ PD v G ‖ QD and
PD v G ‖ QD ⇒ G ∈ [PD%QD ]s .
G ∈ stg(PD%QD) ⇒ PD v G ‖ QD : If G ∈ stg(PD%QD), then G ‖ P¬ ‖ QD is ⊥-free, which

implies PD v G ‖ QD .
PD v G ‖ QD ⇒ G ∈ [PD%QD ]s : PD v G ‖ QD implies P¬ ‖ G ‖ QD is ⊥-free. Thus

G ∈ [(P¬ ‖ QD)¬]s = [PD%QD ]s .

Theorem 2. ' is a congruence w.r.t. ‖, ∨, ∧ and % subject to composability.

Proof. Use the lemma 3-6.

Theorem 3. P0 v P1 iff TR1 ⊆ TR0 and TE1 ⊆ TE0.

Proof. Begin by supposing P0 v P1. Let t be a smallest trace such that t ∈ TR1 \ TR0. Now
construct a component Q containing the single inconsistent trace t . We see that t is an inconsistent
trace in P1‖Q, while t is not a trace of P0‖Q. This contradicts P0 v P1. Instead let t be a smallest
trace such that t ∈ TE1 \TE0. Construct a component Q containing the trace t leading to a plain
state. Then t is an inconsistent trace of P1‖Q, while t is either not a trace or is a consistent trace
of P0‖Q. Again, this contradicts P0 v P1.

For the other direction, let TR1 ⊆ TR0 and TE1 ⊆ TE0. Now suppose for a contradiction that
P0 6v P1. Then there is a component Q such that P0‖Q is ⊥-free, while P1‖Q is not ⊥-free. Then
there exists a trace t in P1‖Q leading to ⊥, such that there is no trace in P0‖Q leading to ⊥. This
means that either (i) t is an inconsistent trace of Q, t is not a trace of P0 while t is a trace of P1; or
(ii) t is a consistent trace of Q, a consistent or non-existent trace of P0 and an inconsistent trace of
P1. However, both of these cases contradict the opening assumption TR1 ⊆ TR0 and TE1 ⊆ TE0.
Hence P0 v P1.

Proposition 3. If P0 and P1 are ‖-composable, then T T (P0 ‖ P1) = (I ,O ,TR, TE ) where I =
(I0 ∪ I1) \O, O = O0 ∪O1 and the trace sets are given by:

• TE = {tt | tt � tAi ∈ TEi ∧ tt � tAī ∈ TRī} · tA∗

• TR = TE ] {tt | tt � tAi ∈ (TRi \ TEi) ∧ tt � tAī ∈ (TRī \ TEī)}
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Proof. Suppose t ∈ TE . Then there is a prefix t ′ such that wlog t ′ � A0 ∈ TE0, while t ′ � A1 ∈ TR1.

Therefore, s0
0

t′�A0
=⇒ ⊥, while s0

1
t′�A1
=⇒ s1, for s1 being a plain state or ⊥. By Definition 4 and Table

1 we derive s0
0‖s0

1
t′

=⇒ ⊥, hence s0
0‖s0

1
t

=⇒ ⊥ as required. Now suppose t ∈ TR \ TE . Then

t � A0 ∈ TR0 \TE0 and t � A1 ∈ TR1 \TE1. Consequently, s0
0

t�A0
=⇒ s0 and s0

1
t�A1
=⇒ s1, where s0 and

s1 are plain states. Therefore s0
0‖s0

1
t

=⇒ s0‖s1, where s0‖s1 is a plain state. The other direction is
similar.

Proposition 4. If P0 and P1 are ∨-composable, then T T (P0 ∨ P1) = (I ,O , TR0 ∪ TR1,TE0 ∪
TE1), where I = I0 = I1 and O = O0 = O1.

Proof. Let t ∈ TE0 ∪ TE1. Then wlog t ∈ TE0. Hence s0
0

t
=⇒ ⊥. If there exists a prefix t ′ of t

such that s0
1

t′
=⇒ ⊥, then by Table 1, we see s0

0 ∨ s0
1

t′
=⇒ ⊥, implying s0

0 ∨ s0
1

t
=⇒ ⊥. Instead, if

there exists a prefix t ′ of t such that s0
1

t′
=⇒ >, then by Table 1 we see s0

0 ∨ s0
1

t′
=⇒ s0 for some

state s0, such that if t ≡ t ′t ′′, then s0
t′′

=⇒ ⊥. Consequently, s0
0 ∨ s0

1
t

=⇒ ⊥ as required. The case
of t ∈ (TR0 ∪ TR1) \ (TE0 ∪ TE1) is just as straightforward, as is the other direction.

Proposition 5. If P0 and P1 are ∧-composable, then T T (P0 ∧ P1) = (I ,O , TR0 ∩ TR1,TE0 ∩
TE1), where I = I0 = I1 and O = O0 = O1.

Proof. Dual to disjunction.

Proposition 6. If P0 dominates P1, then T T (P0%P1) = (I ,O ,TR,TE ), where I = I0 ∪ O1,
O = O0 \O1, and the trace sets satisfy:

• TE = TE0 ∪ {tt | tt � tA1 6∈ TR1} · tA∗

• TR = TE ] {tt | tt ∈ (TR0 \ TE0) ∧ tt � tA1 ∈ (TR1 \ TE1)}.

Proof. Let t ∈ TE . If t ∈ TE0, then by Definition 4 and Table 1 we see s0
0 %s0

1
t

=⇒ ⊥ as required.

Instead, if t � tA1 6∈ TR1, then by Table 1 we see s0
0 %s0

1
t

=⇒ ⊥. Instead suppose t ∈ TR \ TE .

Then t ∈ TR0 \ TE0 and t ∈ TR1 \ TE1. Consequently, s0
0

t
=⇒ s0 for some plain state s0, and

s0
1

t�tA1
=⇒ s1 for some plain state s1. Thus s0

0 %s0
1

t
=⇒ s0%s1, where by Table 1 s0%s1 is a plain state.

Now suppose s0
0 %s0

1
t

=⇒ ⊥. Then there is a shortest prefix t ′ of t such that t ′ is a trace to ⊥.

Then by Table 1, we see s0
0

t′
=⇒ ⊥ or s0

1
t′�tA1
=⇒ >. In the case of the former, this means t ′ ∈ TE0,

while for the latter we see t ′ ∈ TT1. Now as P1 is deterministic, it follows t ′ ∈ TT1 \ TR1. Thus

t ′ ∈ TE , which means t ∈ TE as required. Instead suppose s0
0 %s0

1
t

=⇒ s0%s1 and s0
0 %s0

1 6
t

=⇒ ⊥.

Then s0
0

t
=⇒ s0 and s0

1
t�tA1
=⇒ s1, where s0 6= ⊥ and s1 6= ⊥. Hence t ∈ TR0 \ TE0 and t � tA1 ∈

TR1 \ TE1, and so t ∈ TR \ TE as required.
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