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Abstract. Classification is a fundamental reasoning task in ontology
design, and there is currently a wide range of reasoners highly optimised
for classification of SROZQ ontologies. Existing reasoners, however, do
not exploit the fact that most of the axioms in many realistic SROZQ
ontologies are expressed in some lightweight DL, such as E£7F. In this
paper, we propose a novel reasoning technique that allows us to com-
pletely classify a large subset of the signature of a SROZQ ontology
by relying only on a reasoner for a given lightweight DL. We also show
how this information can then be exploited by the fully-fledged SROZQ
reasoner HermiT to complete the classification of the ontology.

1 Introduction

Classification —the problem of identifying the subsumption relationships be-
tween all pairs of atomic concepts occurring in the input ontology— is a fun-
damental reasoning task in ontology design. The decision problems associated
to classification, however, have a very high worst-case complexity for expressive
DLs; in particular, subsumption w.r.t. an ontology is 2NEXPTIME-complete for
SROZQ [14] —the DL underlying the standard ontology language OWL 2 [5].

Despite these discouraging complexity results, considerable effort has been
devoted to making classification feasible in practice. As a result, many reasoning
algorithms and optimisation techniques have been developed, and there is cur-
rently a wide range of highly-optimised reasoners, such as Pellet [19], FaCT++
[20], RacerPro [9] and HermiT [6], that support classification of ontologies writ-
ten in expressive description logics.

Since individual subsumption tests performed during classification can be
computationally very expensive, most DL reasoners implement variants of the
well-known Enhanced Traversal Algorithm [2], which reduces the number of
required subsumption tests. Sophisticated optimisation techniques are also im-
plemented on top of these algorithms to further reduce the number of potentially
expensive subsumption tests [10].

A widely implemented technique is the told subsumptions optimisation [10],
which provides an inexpensive way of computing subsumption relationships that
hold in the input ontology. In typical ontologies, however, most candidate sub-
sumption relationships between atomic concepts will not hold; hence, efficiently
identifying and exploiting such non-subsumption relationships becomes critical



in practice, and several optimisation techniques have been developed with this
goal in mind. In particular, the completely defined concepts optimisation [21]
identifies a fragment of the ontology for which told subsumption provides com-
plete information; furthermore model-merging and other related techniques ex-
ploit the computations performed during individual concept satisfiability tests
to detect non-subsumptions [10, 8, 6]. However, although these techniques have
proved effective in practice, the classification of very large ontologies can still
require a large number of expensive subsumption tests.

In recent years, there has been a growing interest in so-called lightweight
DILs. The description logic ££ [1], for example, can capture several promi-
nent ontologies, and allows classification to be performed in polynomial time.
Reasoners specifically designed for ££%7, such as CEL [3] and ELK [15], can
classify ontologies as large as SNOMED CT in a few seconds.

Unfortunately, many ontologies fall outside the E£71 fragment, and so can-
not be classified using ££7 reasoners. In many cases, however, such ontologies
contain only a relatively small number of non E£1 axioms. For example, out of
the 219,224 axioms in the latest version of NCI, only 65 are non E£ . Being able
to use an ELTT reasoner to efficiently compute most of the subsumptions and
non-subsumptions required to classify these ontologies could lead to significant
improvements in both performance and scalability.

In this paper, we propose a technique where a reasoner for some DL L is
used as “black box” by a reasoner for a more expressive logic £. We focus on
the case where £’ is SROZQ, and we present a classification algorithm that,
given a SROZQ ontology O, proceeds as follows:

1. It computes a signature ¥* C Sig(©) and a fragment M* C O written
in £ such that the concepts in X* can be completely classified using only
the axioms in M¥%; more precisely, ¢ and M¥* will be such that, for each
atomic concept A € X* and each B € Sig(O)U{T, L}, wehave O = AC B
iff MX = AC B.

2. It classifies M* using an L-reasoner and feeds (in a compact way) the ob-
tained (non-)subsumptions to a SROZ Q-reasoner, such as HermiT, that can
effectively exploit this information [6].

Step 1 involves two important technical challenges. First, X* should be as large
as possible; in particular, for ontologies with only a few non-£ axioms, it is
reasonable to expect X* to contain most of the ontology’s signature. Second,
M¥ must be complete for 2*. Although techniques such as the completely
defined concepts optimisation can be used to identify a complete fragment, these
techniques are very restricted; thus, we exploit module extraction techniques [4,
7], which, in addition to giving completeness guarantees, are more generally
applicable, more flexible, and more robust.

We believe that our results are interesting from both a theoretical and a
practical point of view. We show that given a SROZQ ontology O that is not
captured by any known polynomial fragment of SROZQ, it is often possible
to identify a large subset X of Sig(Q) such that all subsumers of concepts in X
w.r.t. O can be computed using a polynomial time classification algorithm. From



a practical point of view, our first experiments with a prototype implementation
suggest the potential of this approach for optimising classification.

This paper is supplemented by an Appendix containing additional technical
details.

2 Preliminaries

We adopt standard DL notation, as well as standard notions of signature, in-
terpretations, entailment, satisfiability and subsumption. We also assume basic
familiarity with the description logics SROZQ [11] and ELTT [1]. When talking
about ontologies and azioms we will implicitly refer to SROZ Q-ontologies and
SROT Q-axioms, respectively.

We denote with Sig(O) (respectively, Sig(a)) the signature of an ontology
O (respectively, of an axiom «). Furthermore, given an ontology O and a DL
L C SROZQ, we denote with O the subset of L-axioms in O.

2.1 Module Extraction

Intuitively, a module M for an ontology O w.r.t. a signature X is an ontology
M C O such that M entails the same axioms over X' as O.

This intuition is typically formalised using different notions of a conservative
extension [16,4]. In this paper, we define modules in terms of a model-theoretic
notion of conservative extension.

Definition 1 (Model Conservative Extension). Let O be an ontology and
let X C Sig(O). We say that O is a model conservative extension of M C O
w.r.t. X if, for every model T = (A%, 1) of M, there exists a model J = (A7 ,-7)
of O such that AT = A9 and X = X7 for every symbol X € X.

Definition 2 (Module). Let O be an ontology and let X be a signature. We
say that M C O is a module in O w.r.t. X if O is a model conservative extension
of M w.r.t. X.

In particular, if M is a module in O w.r.t. X2, then the following condition
holds: for each axiom « with Sig(«) C X, we have M = « iff O | «a.

The problem of checking whether M is a module in O w.r.t. X, however, is
already undecidable for E£1T [17], so approximations are typically needed in
practice. The following sufficient condition for model conservativity is known to
work well in practice [4].

Definition 3 ((-locality). Let X' be a signature and let O be an ontology. An
interpretation I is O-local for X if for every atomic concept A € X and every
atomic role R & X, we have AT = RT = (). An aziom « is (-local for ¥ if T = «
for each I that is O-local for X. An ontology O is B-local for X if every axiom
in O is D-local for 3.



Checking (-locality for SROZQ axioms is, however, a PSPACE-complete
problem [4]. Since our goal is to optimise classification, checking (-locality might
still be too costly. Instead, we will use |-locality — a well-known sufficient syn-
tactic condition for (-locality which has been successfully used for both ontology
reuse and reasoning problems [4,12, 18, 7].

The precise grammar defining | -locality for SROZQ is given for reference in
the Appendix, and can also be found in the literature [7, 4]. It suffices to consider
that, for each O and X, L-locality implies (-locality and it can be checked in
polynomial time. Furthermore, the following property holds [7, 4]:

Proposition 1. If an axiom « is 1 -local w.r.t. a signature X, then a is 1 -local
w.r.t. X for any X' C X.

We can use L -locality to define the notion of a L-module. The aforementioned
properties of | -locality ensure that, if M is a L-module w.r.t. X in O as defined
next, then it is also a module w.r.t. X in O.

Definition 4 (L-module). An ontology M C O is a L-module in O w.r.t. ¥
if O\ M is L-local for X U Sig(M).

Clearly, there is a unique smallest | -module for a given O and X (the smallest
subset M C O s.t. O\ M is L-local for X'USig(M)). In what follows, we refer to
such smallest module as the L-module in O w.r.t. 2’ and we denote it Mo 5.

In addition to being modules as in Definition 2, |-modules also enjoy an ad-
ditional property that makes them especially well-suited for optimising ontology
classification [7].

Proposition 2. Let O be an ontology, let A, B be concepts in Sig(O)U{T, L},
let X C Sig(O) with A € ¥, and let M C O be a L-module in O w.r.t. X. Then
OFACBif MEALCB.

2.2 Ontology Classification in HermiT

The reasoner HermiT implements a classification algorithm [6] that differs sig-
nificantly from the standard Enhanced Traversal Algorithm [2] implemented in
most other DL reasoners. The key feature of HermiT’s classification algorithm
that makes it especially well-suited for our purposes is that it exploits sets K
and P of pairs (A, B) of atomic concepts representing known subsumptions and
possible subsumptions, respectively. These sets are used to reduce the number of
required tests during classification. Information about non-subsumptions is im-
plicitly stored in these sets (as it would be too costly to store it explicitly), i.e.,
if A ={(A,B) | A, B are atomic concept names in Sig(O)}, then A\ (KUP) is
the set of known non-subsumptions.

The algorithm works in two clearly distinct phases. In the initialisation phase,
sets K and P are given initial values using information obtained from satisfi-
ability tests performed on atomic concepts. In the classification phase, K is



augmented with pairs from P until K contains all the entailed subsumptions
and P is empty.

Additional technical details about HermiT’s classification algorithm are pro-
vided in the Appendix.

3 Modular Classification of Ontologies

Given a SROZQ ontology O and a description logic £ C SROZQ, our first goal
is to identify a signature £* C Sig(©) such that Mo, 521 € Or. We call any
such subset of Sig(Q) an L-signature for O. Section 3.1 addresses the problem
of identifying as large an L-signature as possible.

We can then use an L-reasoner to compute from M| 5z complete classifica-
tion information about the atomic concepts in X —by Proposition 2, given any
A€ X* and B € Sig(O) U{T, L} we have O = AC B iff Mo 5c) = AC B.

HermiT’s classification algorithm needs to be slightly modified in order to
exploit the information computed by the L-reasoner. In section 3.2 we show
how to adapt the initialisation phase to efficiently encode this information into
K and P. Additional technical information about our modification of HermiT’s
algorithm (including a proof of correctness) is given in the Appendix.

3.1 Computing an L-signature

The definition of 1-module immediately suggests a simple “guess and check”
algorithm for computing a (maximal) L-signature for O: consider all subsets
X' C Sig(O) in decreasing size order and, for each of them, check whether Mo 5,
is an L-ontology.

Our goal in practice, however, is to optimise classification; hence, we propose
a more practical algorithm. Although our algorithm is not guaranteed to compute
a maximal L£-signature, it can be implemented very efficiently and, as shown in
the evaluation section, it typically computes large L-signatures, provided that
O is a large enough fragment of O.

We will exploit the fact that every L-signature X must satisfy the following
property (x). If () does not hold, then Mo s} will contain some non £-axiom.

Property (x): O\ O is L-local w.r.t. X*
Ezxample 1. Consider £ = £L and the following ontology
0*={AC B,3R.CC D,ECVS.A,3R.D C -B}

Note that the set of L-axioms in O is O% = {A C B,3R.C C D}. Further-
more, the signature of O%, namely ¥y = {4, B,C, D, R}, is not an L-signature
for 0% indeed, the non L-axiom 3R.D C =B is not l-local w.r.t X.

In contrast, we have that O\ O¥ = {E C VS.A,3R.D C =B} is L-local
w.r.t. Xy = (Sig(O%) \ Sig(0F)) = {C}. Furthermore, M e 5,1 = 0); hence, Xy
is an L-signature for 0% and we can ensure that O = C' C X for each atomic
concept X € Sig(O%) different from C. O



Although Example 1 might suggest that property (%) is also a sufficient
condition for X* to be an L-signature in @, this is unfortunately not the case.

Example 2. Consider X3 = {A,C, D, R, S}; clearly, O\ O% is L-local w.r.t X3
and hence (x) holds for X5. However, X5 is not an L-signature for O%.

By Definition 4, each axiom in O®\ M|pex 5, must be L-local w.r.t. signature
X3 U Sig(M[oe,53,)) (and not just w.r.t Ys). Axiom v = A C B is not L-local
w.r.t. X3, so we have a € M|pe 5,]. But then, we have B € Sig(M|pe x,)) and
hence the non L-axiom § = 3R.D C —B is not L-local w.r.t. Z3USig(M|pe 5,])-

We can address this problem by reducing X3 to Xy = X3\ {A4}. The corre-
sponding L-module for Xy then becomes Mpe 5,1 = {3R.C' C D}, which is an
L-ontology; thus, Y, is an L-signature for O*. &

Example 2 suggests an algorithm for computing an £-signature for O, which
can be intuitively described as follows.

1. Reduce Xy = Sig(O) to a subset X of Xy such that Sop = O\ O is L-local
w.r.t. X (thus satisfying (x)).

2. Compute the axioms &1 in M|, 5] containing symbols not in Y.

3. Reduce X, to a subset X5 of X; such that Sy is L-local w.r.t. Xs.

4. Repeat Steps [2-4] until the set of axioms computed in Step 2 is empty.

Note that there can be many ways to perform the signature reduction required in
Steps 1 and 4. For instance, X5 and X3 in Examples 1 and 2 are both possible re-
ductions of Sig(O%) in Step 1. These acceptable reductions can be characterised
using a function

localise : P(Sig(O)) x P(O) — P(Sig(O))

such that, given X € P(Sig(0)) and S € P(O) not L-local w.r.t. X, localise(X, S)

returns

- YifS=0.

— a subset X' C X such that every axiom in S is L-local w.r.t. X/ if S # 0
and X’ exists.

— () otherwise.

Given a particular localise function, Algorithm 1 accepts a SROZQ ontology
O and returns either the pair (false, §)) or a pair (true, ¥*) with ¢ C Sig(O)
an L-signature for O%. Termination and correctness are granted by Theorem 1.

Theorem 1. Let S;, X; (i > 0) be defined by the following construction:
(i = O) 20 = SIg(O) So =0 \ OL
(i>1): X =localise(¥;_1,S5;-1) Si={ae Mo x5,

Sig(a) € Xi}
Let XF :=\.wn Zi. Then, the following properties hold:
>0

1. There exists k < |Sig(O)| such that either X =0 or S, = 0.
2. Either XX =0 or Mio,s2) € Or.



Algorithm 1 L-signature(O)
Input: a SROZQ ontology O
1: X := Sig(O)
:§:=0 \ Og
: canlLocalise = true
: while S # ) and canLocalise do
XY :=localise(X, S)
if X = then
canlocalise := false
else
S ={a € Mp x5 |Sigla) £ X}

0: return (canlLocalise, X)

e G ISR Al Al

Proof. We first show Claim 1. Suppose X; # () for each i > 0. A straightforward
inductive argument would show that X; C X; for each j > 4 > 0. Furthermore,
Xy = Sig(0), so it cannot be the case that X; C X; for each 0 < i < j < |Sig(O)].
Therefore, there must be some k < |Sig(O)| such that Xy11 = X%; by the
definition of localise, this implies that Sy = ().

We finally show Claim 2. Suppose X* # (). It is enough to prove that each
a€ O\ O, is L-local wr.t. £ U Sig(Mo sz1).

First, we are going to see that Sig(Mp xz)) C X£. According to Claim 1,
there exists k < |Sig(OQ)]| such that Sy = 0. This implies that, for each axiom
a € Mo, 5,], we have Sig(a) C Y. It is easy to see that S = () also implies that
Y; = X, for each j > k. Together with the fact that X; C X; for each j >4 > 0,
this implies X = Ni>o ¥i = k. But then for each a € Mo 5c) = Mo, 5,] we
have Sig(a) € Xy = X*, and so Sig(M[p sz)) C -

Now we can just prove that each o € O\ O is L-local w.r.t. £*. Because
YL =50 Xi # 0, in particular it must be the case that Xy # 0. By definition of
localise, either O\ O = () —in which case it is immediate that Mo sc) € Or—
or every axiom in So = O\ O, is L-local w.r.t. Xy = localise(Xy, Sp). Then, by
Proposition 1, each o € O\ O is L-local w.r.t. rLcxy. a

In practice, it is more convenient to use the L-reasoner to classify O, instead
of Mo, s¢). Once X% has been computed, the following proposition shows that
O, provides as much information as M|p se; about the classification of O.
Furthermore, in general Mo 52) C O so additional subsumption relationships
might be obtained by classifying O .

Proposition 3. Let ¥* be an L-signature for an ontology ©. Then for each
atomic concept A € X* and each B € Sig(O) U{T, L} we have

OEACBIiffO, =ACB

Proof. Consider an atomic concept A € X* and B € Sig(O) U {T, L}. By
monotonicity, because O, C O, we know that

O AC Bimplies Oz - AC B



Algorithm 2 £-ModularClassification(O)

Input: a SROZQ ontology O

1: Or :={a € O | ais an L-axiom}

2: XX .= L-signature(O) > See Algorithm 1
3: Hp, = L-classification(O,)

4: H := HermiTclassification(Or, Ho,, X*) > See Section 3.2 and Appendix
5: return H

By monotonicity, because Mo, x2) € O (by Theorem 1), it is the case that
Mo xc) F A C B implies Oy = A C B. Now Mo 5z is a L-module in O
w.r.t. XX, so by Proposition 2, O = A C B implies Mo, se) E AE B, and

OF=ACBimplies Oz =FALCB

Therefore, for each atomic concept A € ¥* and B € Sig(O) U {T, L} we have
OE AC Bif and only if Oy = A C B, as required. O

3.2 Adapting HermiT’s Initialisation Phase

As mentioned in Section 2.2, HermiT’s classification algorithm works with (dis-
joint) sets K and P of known and possible subsumptions, respectively. We next
discuss how we can use the information extracted from O, by the L-reasoner in
the initialisation of K and P.

Let K' = {(A, B) € Sig(O) x (Sig(O)U{T,L}) | Oz = A C B} be the
positive subsumptions extracted from O, by the L-reasoner. We can clearly
complement the initialisation of K by simply adding K’ to K.

To improve the initialisation of P, we can simply make sure that no pair
(A, B) € X* xSig(0O) is ever added to P. Indeed, by Proposition 3,if O = A C B
then (A, B) must already be in K'; otherwise, we must have O £ A C B and
there is no need to consider the pair (A, B) as a possible subsumption.

We include in the Appendix a slightly modified version of the intialisation
algorithm in HermiT that is capable of exploiting the information extracted from
O, by the L-reasoner in the way just explained.

Algorithm 2 describes, at an abstract level, how the entire classification pro-
cess can be performed with our modular technique for a particular £ C SROZQ
and a particular function localise.

4 Implementation and Experiments

We have implemented our algorithms in Java using the OWL APIL! Our im-
plementation of the localise function is based on the locality module extractor
described in [12], which is publicly available.?

! nttp: //owlapi.sourceforge.net/
2 http : //www.cs.ox.ac.uk/isg/tools/ModuleExtractor



Table 1. Test ontologies.

Number of axioms Signature
Ontology Total | ELTT Size |Concepts
SNOMED" 582,364| 582,362 |291,207| 291,145
NCI 219,224| 219,159 | 91,497| 91,225
FMA-SNOMED|385,146| 385,142 [159,415| 159,328

Table 2. L-signature and classification times for £ = L.

XE Classification time(s)
Ontology Size Concepts|Time (s)|HermiT| Modular
SNOMED" 280,985 (96%)| 280,923 15.3 |2,016.5 189.9
NCI 85,411 (93%)| 85,139 7.6 74.9 32.0
FMA-SNOMED| 33,124 (21%)| 33,046 14.3 876.5 790.6

In the implementation of localise, symbols required to make a set of axioms
L -local are selected greedily axiom by axiom. When selecting symbols, we rely on
heuristics that try to keep as many roles as possible within . This is because
ontologies contain many more concepts than roles, and each role typically occurs
in a large number of axioms; thus, having a role outside X is likely to cause
many other symbols to be left outside X°.

In our experiments, we have used the ontologies given in Table 1:

— SNOMED" is a modification of the well-known SNOMED ontology (v. Jan-
uary 2010), where two axioms containing disjunction have been added (using
feedback obtained from SNOMED’s developers).

— NCI is the latest version of the National Cancer Institute Thesaurus. This
ontology contains 65 non ££71 axioms.

— FMA-SNOMED is the ontology obtained from the integration of (a frag-
ment of) the Foundational Model of Anatomy (FMA) and (a fragment of)
SNOMED using ontology mappings [13]. In this case, all the non ££7
axioms come from FMA.

Our results are summarised in Table 2. The first two columns in the table
provide the total size and number of concepts in the ££ " -signature. The third
column indicates the time required to compute the ££7t-signature using the
algorithm described in Section 3.1. Finally, the last two columns provide the total
classification time using (the latest version of) HermiT, and the classification
time required to complete the classification of O, as described in Section 3.2.
For convenience of implementation, we have also classified O, using HermiT
(and this time has not been included in the table); however, the reasoner ELK
can classify O in all cases in just a few seconds (e.g., ELK can classify SNOMED
using concurrent classification techniques in about 5 seconds [15]).

We can observe that 96% of the symbols in SNOMED" (and 93% of the sym-
bols in NCI) are included in the ££T T-signature; thus, all subsumers of concepts



in this signature can be completely determined using an ££%*-reasoner. Note,
however, that the size of the ££7 T -signature for FMA-SNOMED is compara-
tively much smaller. This is due to the structure of FMA, which contains several
non £L£71 axioms about roles that are widely used in the ontology. For example,
the domain of the role hasMass is defined as a disjunction of very general con-
cepts, such as Material Thing; since role hasMass is outside the ££ 7 "-signature, so
will be MaterialThing (and, as a consequence, also the many concepts subsumed
by Material Thing).

Finally, concerning classification times, our results suggest the potential of
our techniques. Improvements are especially substantial for both SNOMED"
and NCI, where the ££t-signature is very large.

5 Conclusion and Future Work

In this paper, we have proposed a technique for classifying a SROZQ ontology
O by exploiting a reasoner for a fragment £ of SROZQ. Our technique allows
us to show that the subsumers of many concepts in @ can be completely de-
termined using only the L-reasoner. Although our implementation is still at a
very prototypical stage, our preliminary experiments show the potential of our
approach in practice.

Our work is only very preliminary, and there are many interesting possibilities
for future work.

— Our heuristics for computing an L-signature X* are rather naive and there is
plenty of room for improvement. For example, it might be possible to explore
modular decomposition techniques to compute larger £-signatures [22].

— HermiT’s initialisation phase could be further improved to make better use
of the information obtained from the L-reasoner.

— We are using | -modules, which provide very strong preservation guarantees
(they preserve even models). It would be interesting to devise novel tech-
niques for extracting modules that are more “permissive”, in the sense that
they only provide preservation guarantees for atomic subsumptions.

— Our technique could also be applied to a different notion of locality, as long
as it satisfied a result analogous to Proposition 2.

— It would be interesting to explore ontology rewriting techniques that comple-
ment module extraction. For example, we could rewrite O into an L-ontology
O’ such that O’ = O, in which case the classification of @’ would provide
an “upper bound” to the classification of O.
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A Definition of L-locality for SROZ QO

Definition 5 (L-locality for SROZQ). Let X be a signature and consider the
sets Bot(X) and Top(X) syntactically defined as follows:

Bot(Y) := At | -CT |¢c+nc|cnct |3RY.C | 3R.CL |
> nSt.C > nS.C+ | 35+ Self

Top(X) :=T |-C*+|C/ ncC,) |>0R.C

With n > 1, A+ an atomic concept outside X, R an atomic role outisde
X or the inverse of such an atomic role, ST a simple atomic role outside X
or the inverse of such an atomic role, C+ € Bot(X), CT,C],Cy € Top(X),
C* € Bot(Y), and C, R, S any concept, role and simple role, respectively.

An aziom o is L-local w.r.t. X if it has one of the following forms: C*+ C C,
C C C7, Dis(S,8%), Dis(S*+,8) or wt C R, with wh being a chain R, ... R,
of roles such that some R; is an atomic role not in X or the inverse of such a
role.

B Modified Initialisation Algorithm for K and P

We have added some modifications to the initialisation algorithm presented in
[6] to encode the subsumption information computed from O by the L-reasoner
into K and P. The result is Algorithm 3. There are two additional arguments to
the function that the algorithm computes, namely an L-signature, X%, and the
set K’ of all pairs (A, B) € Sig(O) x (Sig(O) U{T, L}) such that O, = AC B.
There are also modifications in lines 4, 12 and 16. We refer the reader to [6] for
definitions of the auxiliary functions used in the algorithm.

Proposition 4 grants correctness of the general classification algorithm given
in [6] if Algorithm 3 is used to initialise K and P. Let ~>k be the reflexive and
transitive closure of the relation induced by the set of pairs K.

Proposition 4. When applied to a satisfiable ontology O, a set of atomic con-
cepts S C Sig(O), an L-signature £* and the set

K’ = {(A, B) € Sig(0) x (Sig(O) U{T, L}) | O = AC B}

Algorithm 3 terminates. Let K and P be the relations produced by the algorithm;
then, for all atomic concepts A, B € S, the following properties hold:

1. A~k B implies O = AC B

2. If A is unsatisfiable then A ~~g L.

3. If A is satisfiable and O |= A C B then either A ~~x B or a class A’ exists
such that A ~x A', (A',B) € P and O = A' C B.

Proof. This proof follows closely and refers to the proof for the analogous Propo-
sition in [6].



Algorithm 3 InitialiseRelations(0, S, %, K')
Input: an ontology O, a set S of classes to be classified, an £-signature £° and the
set K’ of all subsumption relationships entailed by O,

1: K := K’ U explicit(O)

2: (V, H, p) := hierarchy(S,K, L, T)

3:P:=0

4: ToTest := {C | (1,C) € H}\X*

5: while ToTest # 0 do o

6: choose and remove C' from ToTest

7 if Plc =0 and (C, 1) ¢ K

8: A := buildPreModel(C(so), 0, O) // so is fresh

9: if unsatisfiable € A then // C is unsatisfiable

10: for all D such that D ~»y C and (D, 1) ¢ K do

11: add (D, 1) to K and remove D from ToTest

12: for all (D, E) € H with (E, 1) ¢ K and E ¢ ¥* do

13: add E to ToTest

14: else

15: add (C, D) to K for each D € knownSubsumers(S, so, A}

16: for all s in A, all D € L4(s), and all E¢ X* such that D ~z E do
17: if P|g =0 then

18: P:=PU{(E,F) | F € possibleSubsumers(S, O, E, s, A, K)}
19: else

20: P =P\ {(E,F) | F ¢ possibleSubsumers(S, 0, E, s, A,K)}

21: remove each (E1, E3) from P such that F1 ~~k E»
22: return(K, P)

The argument for termination in the original proof still holds. The same
happens for Claim 1.

To prove Claims 2 and 3 we use the same auxiliary result 4 used in [6] and a
variation of &: let H be the hierarchy constructed in line 2 and A an arbitrary
concept name occurring in H; then the following properties hold at the beginning
of each iteration of the while-loop.

— (#) If A is satisfiable and P|4 # 0, then, for each concept B € S such that
O AL B, we have B € P|4.

— (%) IfPjy =0, A /g L and A ¢ Y, then there exists some atomic
concept F' € ToTest such that F %k L, F ~g A and P|g = 0 for each
atomic concept G such that F ~y G and G ~~g A.

with P|4 = {B | (4,B) € P} for each A € S.

The argument used to prove () in [6] works here as well.

We are going to apply induction on the iterations of the while-loop to show
that any atomic concept A occurring in H satisfies (é).

Base Case: At the beginning of the first iteration, ToTest contains all atomic
concepts of H ‘above’ L; hence, for an arbitrary atomic concept F' € ToTest, we
have F 5 L. Therefore, if P|4 =0, A >y 1L and A ¢ Y%, then property (&)
is satisfied for F' = A.



Induction Step: Assume that property (&) holds for A at the beginning of
iteration i. We show that (&) also holds for A at the end of iteration ¢ + 1. The
claim is nontrivial only if P|a = 0, A x L and A ¢ X*. Since A satisfies
the induction hypothesis, there is some atomic concept F' € ToTest such that
F 4k 1, F~py Aand Plg = 0 for each atomic concept G such that F' ~g G
and G ~pg A. Let C be an arbitrary concept chosen in line 6. If C' does not
satisfy the condition in line 7, then P|c # ) or C ~k L, so C # F and thus F
satisfies property (&) for A at the end of the iteration. If C' satisfies the condition
in line 7, we have two possibilities.

First, assume that C is satisfiable, and let .4 be the premodel obtained in line
8. For an arbitrary atomic concept D, if P|p = () at the beginning but not at
the end of the loop, then by the condition in line 16 we have Pg # () at the end
of the loop for each concept E such that D ~g E and E ¢ $*. Consequently,
if P|g # 0 at the end of the loop for some atomic concept G such that F ~g G
and G~y A, then P[4 # () at the end of the loop as well (since A ¢ %),
so property (&) is satisfied for A at the end of the iteration. Otherwise, since
lines 14-20 never add a pair of the form (F, L) to K, concept F satisfies satisfies
property (&) for A at the end of the iteration.

Second, assume that C' is unsatisfiable; then, property (&) can be affected
only if F' ~~g C. To summarise, we have F' ~~y C and F ~g A, where H is a
directed acyclic relation; but then a ‘highest’ atomic concept D in H exists that
occurs on the path from F' to C' and on the path from F' to A. More formally,
there exists D such that

F M H D,

— D~y A,

— D~y C, and

for each concept D’ different from D such that D ~~gy D’ and D' ~g A, we
have D' 4y C.

Furthermore, since F' v g L, we also have D ¥k L. Class D will clearly even-
tually be considered in line 10. If D = A, then (A, 1) is added to K in line 11,
so A trivially satisfies property () at the end of the iteration. If D # A, a class
E exists such that (D, E) € H and E ~»p A; since A vk L, for each such E
we have E s~k L; furthermore, by property (&), we have P|g = @ for each class
G such that E ~~g G and G ~g A. By definition of the hierarchy and explicit
functions (see [6]), it is immediate that E ~»y A implies O = E T A. Now
suppose E' € X, then we would have Mo se; E EF C A and thus necessarily
A € Sig(Mp,xz1) C X£ (Theorem 1); but A ¢ X* by hypothesis, so it must
be E ¢ Y*. At least one such F is added to ToTest in line 13, so E satisfies
property (&) for A at the end of the iteration.

This completes the proof of property (&) and we next prove Claims 2 and 3.

(Claim 2) Consider an arbitrary unsatisfiable atomic concept A € S. By
definition of the hierarchy function, an atomic concept A’ occurring in H exists
such that A € p(A"). If A occurs in K, then we clearly have A ~»g A’ and
A’ ~g A. If A does not occur in K, then, since A is unsatisfiable and T and L



are the only two elements that can occur in H but not in K, we have A = |;
but then A’ = A, and so we have A ~x A’ and A’ ~»k A in this case too
(each atomic concept is reachable from itself). Class A’ satisfies property (é);
furthermore, we have ToTest = () upon termination, so by the contrapositive of
property (&) either A’ ~vx 1, or Plas # () or A € X*. Note, however, that
unsatisfiable atomic concepts never appear in premodels, so the algorithm never
adds a pair of the form (A’,C) to P. Thus either A’ ~g L or A € X*. If
A"~k L, then consequently A ~»k L as well. If A € ¥ then, by Proposition
2,if OF AC L also Oz E AC L and we must already have (A, 1) € K’ C K,
so A~k L.

(Claim 3) Consider an arbitrary satisfiable atomic concept A € S and an
arbitrary atomic concept B € S such that O = A C B. As before, whether A
occurs in K or not, there is some atomic concept A’ occurring in H such that
A~y A’ A~y A and either Py # 0, or A’ ~wg | or A € ¥*. By Claim 1
and the fact that A is satisfiable, it cannot be the case that A’ ~»k L. Therefore
either P|4 # () or A € XX, If P| 4 # 0 then, by property (#) we have B € P/
at the end of the while-loop and Claim 3 holds at this point; pair (A’, B) can be
removed from P in line 21, but then A’ ~k B, and so we have A ~»g B and
Claim 3 holds after line 21 too. If A € X%, then, by Proposition 2,if O = AC L
also O, = A C B and we must already have (4, B) e K’ C K, so A ~k B.



