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Abstract
As sensor network technologies become more mature,

they are increasingly being applied to a wide variety of appli-
cations, ranging from agricultural sensing to cattle, oceanic
and volcanic monitoring. Significant efforts have been made
in deploying and testing sensor networks resulting in un-
precedented sensing capabilities. A key challenge has be-
come how to make these emerging wireless sensor networks
more sustainable and easier to maintain over increasingly
prolonged deployments.

In this paper, we report the findings from a one year de-
ployment of an automated wildlife monitoring system for an-
alyzing the social co-location patterns of European badgers
(Meles meles) residing in a dense woodland environment.

We describe the stages of its evolution cycle, from imple-
mentation, deployment and testing, to various iterations of
software optimization, followed by hardware enhancements,
which in turn triggered the need for further software opti-
mization. We report preliminary descriptive analyses of a
subset of the data collected, demonstrating the significant
potential our system has to generate new insights into bad-
ger behavior. The main lessons learned were: the need to
factor in the maintenance costs while designing the system;
to look carefully at software and hardware interactions; the
importance of a rapid initial prototype deployment (this was
key to our success); and the need for continuous interac-
tion with domain scientists which allows for unexpected op-
timizations.

Categories and Subject Descriptors
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1 Introduction
The deployment of sensor networks in a variety of real-

world applications is gradually turning from scientific vi-
sion to reality. A multitude of systems have already been
deployed, ranging from glacier monitoring [4] to real time
environmental and wildlife tracking [30] [20]. Such sys-
tems have enabled the collection of spatio-temporal data
at unprecedented granularities, and have revolutionized the
way in which scientists perform field experiments. At the
same time, with the outset of new sensor deployments,
the need has come to maintain sensor networks over pro-
longed deployment periods. Low effort maintenance and
self-reconfiguration have in fact been the idealistic selling
points of wireless sensor networks. Network maintenance
may involve a number of tasks, such as changing batter-
ies, replacing faulty nodes and collecting data from special-
purpose storage or gateway nodes. When the maintenance
costs exceed user expectations and budget, there is a need
to develop the system and make it sustainable. In this pa-
per, we describe one such system and present our experi-
ence in building and developing a sustainable wireless sensor
network. Our system consists of a distributed wireless sen-
sor network designed to monitor wildlife and environmen-
tal conditions in a dense woodland environment, in Wytham
Woods, Oxfordshire, UK. The system is made up of three
components. The first consists of active RFID transmitters
that are attached directly to European badgers (Meles meles)
as wearable collars. They are monitored by a second compo-
nent consisting of a collection of fixed detection nodes that
are distributed throughout the woods at key locations close
to known badger setts and latrines. The third component fur-
ther complements the assembly by providing a bed of fixed
sensor nodes that are deployed within badger foraging ar-
eas to monitor micro-climatic conditions and their effect on
species migration and mobility patterns.

We first describe the initial ‘exploratory’ field-deployable
prototype designed to understand the domain requirements



and the usage patterns. We then describe gradual alterations
to initial design based on feedback from the zoologists. In
particular, we evaluate each iteration in terms of maintenance
cost and find that the initial commercial off-the-shelf based
design resulted in ten-fold improvement in maintenance
costs, while enabling zoologists to collect unprecedented
amount of high resolution data on wildlife badger behavior.

In the first phase, we optimize the system at the soft-
ware level. We propose a novel sampling approach for the
power hungry animal detection nodes, based on reinforce-
ment learning. The idea is to exploit the behavior patterns of
observed animals in order to more efficiently control energy
consumption. We also propose a novel storage management
scheme that takes into account data urgency and sink mobil-
ity to allocate sensor data to carefully selected storage nodes.
We observed that these proposed software optimizations had
a noticeable effect on the maintenance costs, but the network
still required long hours of hands-on human intervention.

In the second phase, we proceeded to enhance the hard-
ware of the most power-hungry nodes to reduce their energy
consumption. Here we provide details of the new platform,
and how it drastically reduced the need for labor-intensive
field trips to replace depleting batteries. This optimization
led to a dramatic improvement in terms of maintenance costs.
At the same time it triggered another round of software op-
timizations - we revisited sampling and in-network storage
in the light of the new hardware capabilities. We validate
the hypothesis that evolving hardware significantly impacted
the performance of algorithms running on the nodes. This
prompted us to introduce a more energy-efficient sampling
algorithm for detecting badgers, which was not applicable in
the old platform. It furthermore impacted the performance of
our storage management scheme by altering the patterns of
sink mobility. The running costs of the resulting system were
reduced to such extent that it made it realistic for zoologists
to envision network expansion. The data collected through-
out our deployment have the potential to offer zoologists a
deep insight into the social life of badgers and on the cor-
relation of their activities with weather and micro-climatic
variations.

The lessons learned in this paper highlight the impact of
maintenance costs on system design and the evolution, as
well as the interplay between hardware and software opti-
mizations. They also point out the need to take into account
domain knowledge and application requirements to enable
successful long-term deployments. The remainder of this
paper is organized as follows: Section 2 introduces the char-
acteristics and requirements of the badger monitoring appli-
cation. Section 3 presents the architecture, design and de-
ployment of our initial monitoring system. Sections 4 and 5
present the two stages of network evolution. Section 6 illus-
trates the costs incurred by our various stages and existing
monitoring techniques. Section 7 analyzes the data collected
and presents our main observations of badger behavior. We
discuss related work in Section 8 while Section 9 summa-
rizes our findings and concludes the paper.

2 Wildlife Monitoring Application
In this section we describe the challenges and require-

ments of our badger monitoring application. Badgers are
nocturnal mammals, spending their days in subterranean
multi-entranced burrow systems (so called ‘setts’), and
foraging at night. In the UK, their habitat is typically mixed
wood and farmland landscapes. Their active nocturnal
period commences when they emerge above ground around
dusk. These emergence times thus vary seasonally, therefore
correlating with temperature and day length. During their
active period, badgers visit specific places, such as ‘latrines’,
which are thought to have an important role in their social
behavior (see [22] for an introduction to badgers biology).

After foraging, they return to their setts, usually around
dawn. Separate, spatially distinct, setts are arranged into so-
cial groups. It is thought that badgers move readily between
setts within a social group: typically, they would return to
their setts of origin each night. Zoologists’ understanding of
the social bonds between the individuals in a social group re-
mains incomplete. Badgers are apparently territorial, but to
what extent they actively or passively establish a home-range
is poorly understood. Movements are difficult to observe
on a fine temporal scale, but systematic trapping up to four
times per year has indicated that movement between social
groups, at the population level, appears to be minimal [17].

Zoologists would like to know more about the movements
and social interactions of these animals: where and for how
long they may meet is especially important. Since GPS re-
ceivers function poorly in densely wooded areas, such in-
formation is usually gathered by on-site, night time obser-
vation, VHF radio telemetry, and more recently by remote
video surveillance. All these methods are labor intensive
and expensive. E.g. VHF tracking requires at least two peo-
ple to get accurate location information on the animal, and
it is not often practical to track multiple animals simulta-
neously. Despite intensive study of these animals, answers
to fundamental questions regarding socio-spatial dynamics,
and foraging-patch use remain elusive. The degree of social-
group interaction is only superficially known using current
technologies. Given the role badgers are considered to play
in the epidemiology of bovine tuberculosis, and the full eco-
nomic implications of this disease, understanding the tempo-
ral distribution of potential disease-carrying contacts, at key
resource focal points, such as burrows and food patches (es-
pecially where these are shared with domestic animals) [18],
is critical. Badgers are also a protected species, vulnerable
to persecution, and emblematic of various conservation or-
ganisations. These types of conservation issues are typical
for many species, and these risk factors are equally hard to
monitor.

Given these requirements we have devised an integrated
system for badger monitoring that could further help zool-
ogists understand the social and behavioral implications of
badger movements. Fig. 1 shows the heterogeneous nodes
and devices comprising our system. In this wildlife tracking
installation we monitor badgers equipped with active RFID
tags embedded within a small light-weight collar designed
to have minimal impact on badger behavior. RFID receivers,
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Figure 1. Heterogeneous network consisting of bad-
gers (equipped with RFID collars), detection nodes (fixed
RFID receivers), environmental sensor nodes, zoologists
(mobile sinks) and a fixed gateway.

referred to as detection nodes, were placed in key locations
throughout the woods. In addition, we deployed a number
of sensor nodes to monitor temperature and humidity in the
same area. Sensor nodes and detection nodes were all con-
nected through the same network. Our network also included
a single solar powered gateway with cellular connectivity,
which was located conveniently for 3G coverage and for its
own maintenance. As it had cellular connectivity, it could
relay data instantaneously to the end users.

Zoologists also contribute an element of the system as they
perform regular trips to the study site to carry out routine
observations and equipment maintenance. Thus, they can
act as mobile sinks and assist in the task of data collection,
relieving the network from part of its communication load.

The data generated by our network fall into three cate-
gories: 1) RFID readings that reflect badger observations and
are captured by detection nodes, 2) environmental (humidity
and temperature) data monitored at regular intervals by fixed
sensor nodes; and 3) network health data indicating battery
levels, memory usage and any sensor errors.

Zoologists and network engineers can assign priorities to
different data types; a priority value reflects the tolerable de-
lay between generating sensor data and delivering them to
the user. For example, the detection of badgers dispersing
from their natal burrows may be considered very important
as it represents potential fission and fusion within badger so-
ciety, while also generating the potential for the transmission
of social, genetic, and disease ‘information’. Zoologists re-
quire prompt notification of these dispersal events as soon
as they happen, whereas they are able to wait days for sum-
maries of badger activity data, and weeks for raw badger ob-
servations and environmental data.

3 Initial System Design
This section discusses the initial design of our animal

monitoring system, whose focus was on strong modularity
and portability.

3.1 Sensing
Environmental monitoring: To investigate the potential
impact of microclimate on individual badger behavior, we
equipped Tmote Sky nodes with two external SHT-71 digi-
tal temperature and humidity sensors. One of the sensors was
buried 30 cm underground (where it only measured tempera-
ture), and the other was mounted at a 1 m height. Ten of these

Figure 2. The badger detection node (left) and the ac-
tive RFID tag, potted in epoxy and mounted on a collar
(right).

nodes were deployed in the woods and made a measurement
every five minutes. Suitable sensor housing was developed
by trial and error to protect the sensor and also to allow it
to record accurate humidity measurements. Our early pack-
aging resulted in the saturation of the humidity sensor due
to local condensation within the enclosure. We found seal-
ing the digital sensor within hot-melt glue and shaping heat-
shrink to act as a shield to restrict wind chill resulted in the
best solution. These devices were configured to either act as
standalone data-loggers (which have very low average cur-
rent consumption - approximately 30 µA) or as normal net-
work nodes.
Badger Monitoring: The wildlife tracking presents unique
challenges, requiring animal borne tags to be simultaneously
small, very reliable, and inexpensive. This influenced a num-
ber of design decisions including the use of a commercial
433 MHz Active RFID tag [1] over the alternative of design-
ing a custom miniature mote platform. The selected tags sat-
isfied most design requirements including much lower cost,
miniature size and long lifetime. The small size of the tags
was crucial as it allows tracking of much smaller animals.
Overall, the selection of commercial low cost tags also al-
lowed the team to capitalize on the advantages of the tested
component and focus on ground sensor network design, mea-
surements, data collection and analysis. The tag measured
40x20x3mm in size (without a 56mm external whip an-
tenna), and was powered by an on-board 3V CR2450 coin
cell battery with an expected minimum lifespan of 2 years
at 0.4s transmit interval. Each RFID tag was hermetically
sealed (‘potted’) in waterproof epoxy resin to protect the tag
from environmental and mechanical damage (e.g. chewing
by an animal). The collars with potted tags (see Fig. 2)
were attached to badgers during routine trapping sessions,
approved by institutional ethical review [16] (UK Home Of-
fice Licence 30/2138; Natural England Licence 200001537).
After full recovery from sedation badgers were released at
their point of capture.

The presence of tagged animals was registered by 26
RFID detection nodes placed at setts and latrines, covering
all main setts in the core study area (see Fig. 3). The detec-
tion range of a tagged animal was 0-30m, with the selected
433 MHz frequency providing longer communication range
and lower obstacle fading through dense vegetation.

Each detection node consisted of an active RFID reader,
a Tmote Sky mote and a custom designed mote extension



Figure 3. Map of the study area showing RFID detection
nodes: square = setts; circle = latrines.

board. For each detected tag the reader provided the follow-
ing information: tag ID, reader ID, serial counter number,
received signal strength (RSSI) and a checksum. The serial
counter number facilitated an estimation of the tag age and
could be used for localization purposes, when the tag was
simultaneously registered by several readers. The extension
board allowed the interconnection of the mote, RFID reader
and peripheral devices to an RS232-TTL converter, MOS-
FET switches and the voltage regulators. The output voltage
ranged from 6V to 12V and was configurable either through
potentiometers and switches on board or from the mote via
a standard I2C interface. The power management software
on the mote duty cycled the peripheral devices including the
reader, and monitored both mote and reader voltages to shut
down the system should the voltage become low.

It should be noted that the tracking and ground commu-
nication currently have different requirements in terms of
communication range and antenna configuration, so decou-
pling the two communication systems is desirable. In par-
ticular, ground communication requires extended communi-
cation range with preferably high bandwidth, whereas de-
tection requires a biologically meaningful communication
range, with a high degree of consistency, which requires con-
sistent antenna orientation and receiver sensitivity of all de-
tection nodes.

3.2 Data Collection
In our initial system design, we distinguish between two

types of data - high-volume data, which consisted of raw
badger observations, and low-volume data, which consisted
of environmental readings, summaries of badger visits and
network status reports.
Compression and local storage: As a result of the large
data volumes generated by the network (typically in excess
of 400 000 observations per week) , we implemented a sim-
ple delta based compression technique to allow more data
to be stored in the 1Mbyte flash memory of the Tmote Sky.
This approach, which is application-specific and compu-
tationally lightweight, achieves a 25% higher compression
factor than standard compression methods, like gzip. This
technique takes advantage of the large degree of similarity
between successive RFID readings from the same RFID
tag. In essence, we simply encode the difference between a
base RFID observation and subsequent readings. Each raw
reading, which consists of a timestamp, tag age and received

signal strength occupies 10 bytes in its uncompressed form.
The difference between an observation and the base record
can be stored using only 3 bytes of information. Using
this simple scheme, raw data is typically compressed by an
average factor of 2.7x. This compares favorably with the
resource hungry gzip (LZ77) algorithm which only achieves
a compression factor of 2.0x on the same dataset. Thus,
by reducing the volumes of data that need to be buffered
within the network, we were able to extend the memory
lifetime of the reader node almost threefold. This data could
be compressed further using dictionary type compression
algorithms such as S-LWZ [24], but the gains would only be
marginal and would require additional node resources.
Routing: Low-volume data (such as network status mes-
sages) are forwarded to the fixed 3G gateway node using a
proactive shortest path routing algorithm. Every node main-
tains a routing table containing its distance to the gateway
node. Initially the gateway advertises beacons with distance
0 to itself, and with increasing sequence (freshness) num-
bers. The distance from a node to the gateway is evaluated
taking into account the link qualities along the route. Each
node maintains a neighborhood table that shows statistics of
outgoing traffic. The expected transmissions etx per mes-
sage from the current node to a neighbor node N is computed
as follows etx(N) = attempted tx(N)/success f ul tx(N). The
distance to the gateway node is defined as the sum of ex-
pected transmissions on all links along the route. Note that
if all the links along a route have an etx = 1, the distance is
equal to the number of hops along the route.

Every node broadcasts its distance to the gateway every
30 minutes. Upon receiving an advertisement from a neigh-
bor N, a node compares the advertised distance (advDist) to
the distance in its local routing table (rtDist). If advDist +
etx(N) < rtDist then it sets rtDist := advDist + etx(N) and
sets neighbor N as its next hop. If the route quality deteri-
orates significantly, a node will simply select the next best
available route.

Once routes have been identified, data are transmitted us-
ing the uIP (micro-IP) IPv6 networking stack [8], which in
turn uses the X-MAC protocol [6], both being distributed
with Contiki OS.
uIP: The choice of using Contiki’s uIP networking stack was
strongly influenced by the positive findings of Hui et al. [12].
The added flexibility of using the IPv6 standard will allow
us to adapt the network to other tasks easily during further
network deployment, for example accessing and maintain-
ing individual nodes or allowing near real-time data stream-
ing from specific nodes within the network. Although the
overhead incurred in terms of code size is considerable for
the T-Mote Sky platform (approximately 16KBytes of addi-
tional flash usage for our implementation), the added modu-
larity and flexibility of the IPv6 network allowed us to easily
maintain and extend the network with new functions. We
made minor revisions to the original code in order to accom-
modate the low-power needs of our network.

Data are disseminated towards storage nodes on a local
hop-by-hop basis, instead of an end-to-end basis. The usual
end-to-end connection used in IPv6 networks is TCP/IP
which requires an additional overhead for establishing a con-



nection and requires the end nodes to negotiate retransmis-
sions. To avoid this overhead we use UDP connections to
transmit data along each hop towards the storage node. Upon
receiving a packet from a child node, the parent node re-
turns a UDP ACK message to confirm reliable data trans-
fer. Messages are stored in onboard flash and they are only
marked for deletion once an ACK message is received from
the parent indicating successful custody transfer. A back-
ground garbage collection routine periodically cleans up the
flash memory, formatting pages where all messages have
been successfully uploaded. In addition, we reduced the fre-
quency of neighbor advertisement and solicitation messages
such that they had a validity of 24 hours. This helped us to
dramatically reduce network overhead.
MAC layer: We decided to use X-MAC [6] at the MAC
layer, a preamble based protocol in which senders indicate
their intent to send data by frequently transmitting short
wake up messages. Nodes periodically wakeup, and if they
hear a preamble which indicates a packet is addressed to
them, respond with an acknowledgement. This terminates
the wakeup phase and the packet is sent. Nodes are config-
ured to wake up every 500 ms and listen for 5.8 ms. This
results in effective basic duty cycle of 1.1%.

4 Evolution Stage 1: Improving Sensing and
Data Collection

In this section we discuss how we started evolving our ini-
tial system design by introducing algorithmic improvements.
The main weaknesses of our initial design were the high en-
ergy consumption of the badger detection nodes (RFID read-
ers), and the heavy communication load around the fixed
gateway. As shown in Sec. 6, about a visit a week was nec-
essary to change batteries and keep the system running.

4.1 Adaptive Sensing
RFID readers are the major source of power consump-

tion on detection nodes. Despite being powered by a 12V
18Ah battery, without a duty cycling they only last for one
week. Increasing the lifetime of readers is therefore critical
for large-scale long-lived deployments.

An obvious way to save energy is to duty cycle the RFID
reader by periodically turning it on for a fixed duration of Ton
seconds every Tinterval seconds. Nevertheless, setting optimal
parameters is not straightforward: a high frequency sampling
may be too wasteful, whereas low frequency sampling may
lose important contacts. Tuning also requires knowledge of
badger activity, which may not be known in advance.

We thus devised an adaptive duty cycling approach, that
dynamically adapts the parameters Ton and Tinterval taking
into account the badger activity. We formulate the problem
in terms of reinforcement learning [14], and suggest a control
strategy that adjusts node duty cycles based on animal arrival
patterns [9]. The initial values of Ton and Tinterval are set to re-
flect the target duty cycle and the hardware capabilities of the
detection nodes. For example, to achieve a target duty cycle
of about 9%, Ton is set to 30s and the initial value of Tinterval
is 330s. For efficiency reasons, Ton is chosen to be signifi-
cantly longer than reader boot time Tboot , which was 10s.

The approach is composed of two main components: the

short-term adaptation component and the long-term adapta-
tion component. Short-term adaptation extends the awake
time Ton of the reader by a fixed short period of Text seconds
each time badger activity is detected (i.e., a tag is in range).
The short-term adaptation exploits the temporal burstiness
of badger arrivals, as detection of a beacon is usually a good
predictor of activity. The drawback of the periodic sampling
technique, even in the presence of short-term adaptation, is
that it assumes uniform badger activity throughout the day.
However, it is rare that animals or humans remain contin-
uously active throughout a day but rather follow a 24-hour
circadian rhythm, which may vary depending on the envi-
ronmental conditions [2]. Badgers, for instance, are noctur-
nal animals who are inactive during the day, which means
that sampling during the day may be wasteful.

The long-term adaptation component learns daily patterns
of badger activity and adapts the interval Tinterval accord-
ingly. We define a target daily budget B as the amount of
seconds that a badger detection node should spend in active
state per day. Each day is divided in N equal time slots.
Then, each node computes the expected number of sightings
E(d, t) during a day d for timeslot t and assigns a budget
B(d, t), proportional to E(d, t), to each timeslot:

B(d, t) = B
E(d, t)

∑
N
i=1 E(d, i)

. (1)

This is the equivalent of ‘bidding’ more resources in what
has been a productive timeslot in previous days. We con-
strain B(d, t) in the range [Bmin,Bmax] in order to still explore
all timeslots, even if they have not recently experienced any
sighting, and to constrain the maximum number of times the
node wakes up within a given time slot. Since in a timeslot
of length T the reader is to be active only for B(d, t) seconds,
we have that B(d, t)/T = Ton/Tinterval and the node can ad-
just the duty cycle in each timeslot by setting the interval
Tinterval = T Ton

B(d,t) between successive wake ups. On the first
day, the budget is spread uniformly throughout all N times-
lots, since there is no information about sightings. Then, the
expected number of sightings E(d, t) in timeslot t of a par-
ticular day d is evaluated as follows:

E(d, t) = α×O(d−1, t)+(1−α)×E(d−1, t) (2)

where O(d−1, t) is the actual number of sightings that were
observed in the same timeslot on the previous day and α is
a weight in the range [0,1] which controls how rapidly new
information is incorporated into the filter. Small values of α

will give more weight to past history, but will make the adap-
tation process slow and unable to capture sudden changes,
whereas large values will make it very reactive to short term
changes and less able to capture long term patterns.

Simulation-based evaluation: The evaluation of the
adaptive duty cycling technique has been performed both
through simulation and real deployment. Throughout our
evaluation, we used N = 24 1-hour timeslots, that is T =
3600s. Within each timeslot, the detection node turns the
reader on and off to achieve the target duty cycle using
Eq. 1. The on-time Ton was selected to be 30s, the ini-
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Figure 4. Simulation results. Comparison of detected en-
counters and encounters per effective duty cycle for a)
always-on b) fixed c) adaptive algorithms

tial interval Tinterval = 330s (which corresponded to a bud-
get B = 7854s and a duty cycle of about 9%), and the ex-
tension time Text = 300s. The [Bmin,Bmax] range was set to
[B/120,B/24] ≈ [65,327]. We used a fixed duty cycling al-
gorithm, where a node wakes up and goes to sleep at fixed
intervals of time, as a baseline. The algorithms have been
implemented in Tossim 2.0.2 simulator and evaluated by re-
playing the real data recorded by always-on node. We run 10
simulation runs for each algorithm with random node offsets.

Fig. 4 shows the performance of always-on, fixed duty
cycling and adaptive algorithms respectively. The always-on
node detects all 76707 encounters at 100% duty cycle. The
fixed duty cycling node detected 7773 encounters at 9% duty
cycle. The adaptive node detected 46214 (60%) encounters
at 5% duty cycle, resulting in much higher encounters per
duty cycle than always-on and fixed nodes.

Deployment-based evaluation: In order to evaluate our
duty cycling technique in a real deployment, we placed two
detection nodes with the same hardware and antenna orien-
tation next to each other. One of the nodes was always on,
whereas the other executed our adaptive duty cycling tech-
nique. In addition, we processed data from the always-on
node to simulate a fixed schedule. The adaptive node was
configured to work at 9% duty cycle.

The evaluation was based on 833 hours of summer
(July) deployment data from both nodes. The data were
periodically retrieved from both nodes by a zoologist. The
results are summarised in Fig. 5. The fixed duty cycling
node captured 7201 sightings while using 10% of the power
of the always-on node. The adaptive duty cycled node
detected 54568 (73%) of all sightings, while consuming
approximately 8.2% of the energy.

4.2 Delay-tolerant data collection
The initial design of the data collection algorithm was

based on the principle that raw RFID data which are high-
volume and low-priority data, are stored locally at sensor
nodes. The remaining data had higher priority and were for-
warded to the 3G gateway using a tree-based routing algo-
rithm. This initial approach is similar to related work on pri-
oritizing data traffic and taking into account routing costs to
determine whether to discard data, store it locally, or forward
it to the gateway [29].

Here we add a further step and propose a delay-tolerant
data collection approach, which leverages the movement of
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Figure 5. Deployment results. Comparison of detected
sightings, effective duty cycle and the sightings per effec-
tive duty cycle for a) always-on b) fixed c) adaptive nodes.

zoologists and other environmental scientists to efficiently
collect sensor data. Not only do we prioritize data based on
their urgency, but we also prioritize nodes based on the fre-
quency in which mobile sinks visit them. In this way, we for-
ward data to carefully selected storage nodes, purely based
on data and node priorities.

Data priorities: When data were generated, they were
assigned a data priority class that represents the latency al-
lowed until they had to be delivered to the end-user. Our
network generated observations of tagged badgers captured
by the detection nodes, and environmental sensor data (tem-
perature and humidity). Nodes also created heartbeat mes-
sages that reflected their current operational status. This in-
cluded information such as remaining battery level, memory
usage and network statistics. The motivation behind our de-
lay tolerant networking approach is the fact that the majority
of the generated data do not have strict latency constraints.
It was imperative however, that all data are eventually col-
lected. In order to maximize the battery lifetime of nodes
in the network, we use a distributed storage and delivery
method, where messages are directed to different destina-
tions based on their tolerable delay. In our system, we have
three offered priority classes, but this can be extended to an
arbitrary number. The three priority classes are as follows:

Priority class 1 represents data with urgent latency
requirements (maximum of a few hours delay). This data
are forwarded to the 3G-router node for direct access by
the researchers. Data of this class could either represent
an unusual event or a network status report to ensure the
network can function correctly throughout the deployment.

Priority class 2 represents data with medium latency
requirements (maximum of a few days delay). This data
are forwarded to frequently visited storage nodes for oppor-
tunistic collection. Data of this class could be summaries of
badger visits.

Priority class 3 represents data with no latency constraints
(delays of weeks are acceptable). All that is required is that
it is eventually collected. Data of this class, such as raw
sensor data, will remain in memory until collected through
a direct download.

Priorities can be assigned not only to raw sensor data, but
also to composite events or aggregated data. For example,
raw badger information may have priority 3, but when un-
usually high activity is observed around a certain setts this
composite event can be assigned priority 1, and will be for-



Figure 6. Example routing trees as found in our deploy-
ment: (left) Routing tree for priority 1 data, (right) Rout-
ing trees for priority 2 data.

warded to the fixed gateway for immediate delivery. Data
priorities can either be fixed or dynamic, for example, they
could vary depending on the zoologists’ needs and the data
collected from the sensor network.

Node priorities: Our priority based in-network storage
management approach is very simple and effective. Initially,
each node is assigned a priority class PN based on the fre-
quency it is expected to be visited by mobile sinks for data
collection. Some nodes (such as those close to roads and
paths) are regularly in contact with a mobile sink and thus
contribute a small delay. Other nodes that are placed in rarely
visited remote locations will be subject to a large delay.

The more frequently visited a node is, the lower the ex-
pected data delivery time, and the lower the assigned node
priority class. In our system, the 3G gateway is assigned a
priority class 1 as it can offer the lowest data delivery la-
tency. Nodes that are visited at least every three days by
mobile sinks act as temporary data storage nodes of priority
class 2. The remaining nodes in the network have priority
class 3.

In our storage management scheme, a data item of priority
PD is stored at the closest node with priority PN , where
PN ≤ PD. Messages with the data priority class of 1 are
directed towards the 3G enabled gateway, which allows
users to access them with little delay. Data of priority class 2
is stored at the closest node that has priority 1 or 2. Data of
priority class 3 is stored locally at the node where it is gen-
erated. Note that node priorities can change dynamically in
response to changes in sink mobility. If a node becomes vis-
ited less often, some of the messages that it used to store may
need to migrate to another node depending on their priorities.

By asking domain experts to classify data into priority
groups, we can map data to suitable storage nodes, and in
this way we can ensure that they are delivered on time and
with the lowest communication cost. As a data item remains
stored at a node, it gradually ages, and its remaining tolera-
ble delay decreases. As a result, it can dynamically change
priority and be forwarded to another suitable storage node

Priority- and mobility-aware routing: Once data are as-
signed a priority and are compressed, they are forwarded to
the appropriate destination node, namely 3G gateway nodes
of priority 1 or storage nodes of priority 2. Every node main-
tains a routing table containing the following information for
each of the available priority classes:

priority next hop seq. no. dest. node distance
1 NA 30 NE 3
2 NB 34 NF 1

The next hop simply represents the neighbor to which the
data of a certain priority will be forwarded. The sequence
number (seq. no.) and destination node (dest. node) fields
are used to deal with loops occurring in the network. The
sequence number is issued by the destination node and rep-
resents the freshness of routing information concerning that
node, as in DSDV [23].

We evaluated the distance to a destination node, taking
into account the link qualities along the route, in exactly
the same way as we evaluated distance to the gateway in
Sec. 3.2. Every node periodically broadcasts its routing
table information for each priority class. In our network, we
set this broadcast period to 30 minutes. Note that a single
advertisement contains routing information for all priority
classes. The size of advertisements does not increase with
the number of destination nodes, but only in proportion
to the number of priority classes. Therefore, the routing
overhead of building multiple trees, instead of one, was
negligible. Fig. 6 shows the routing trees that were formed
in our real deployment for priority 1 and 2 data.

Evaluation: In this section we present results from a 20
day network deployment period with a total of 24 RFID read-
ers. For half of the time, data was collected using the pre-
viously described distributed storage approach, and for the
other half using a centralised storage approach, as in the ini-
tial design. The centralised approach simply forwarded all
data to the 3G node; the distributed approach used three addi-
tional priority-2 storage nodes at which data was temporarily
stored for opportunistic pickup.

In order to have comparable results we utilised a fixed
data generation rate for the network evaluation period. Pri-
ority 1 data consists of network status messages generated
at each node every 30 minutes, which had to be delivered
to the end user within two hours. Priority 2 data consists of
badger activity summaries generated at each node every 15
minutes with a delivery latency of three days. In the cen-
tralised approach this data is forwarded to the fixed 3G gate-
way, whereas in the distributed approach, it is delivered to
the nearest storage node that satisfies latency constraints 1.

In both centralised and distributed approaches, a very high
delivery ratio was achieved (99.9% of the data was correctly
transferred to the appropriate storage or 3G nodes). Further-
more, this was achieved with an average latency of 14.1 sec-
onds per hop – thus data can be sent over five hops in under
75 seconds on average.

The network status messages, which contain the radio on-
time at each node, allowed us to derive the average radio duty
cycle of each node over the test period. Fig. 7 shows the dis-
tribution of radio duty cycles across the different nodes in the
network, with the two storage management schemes. The
centralised approach exhibits 46% higher duty cycle than
the proposed distributed approach in the average case, and
57% in the worst case at routing hotspots. This shows that

1In our regular network operation, nodes also generate raw bad-
ger readings of priority 3, which are stored locally for both ap-
proaches, and thus do not incur any network overhead.
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Figure 7. Results from the network test: (a) Box plot showing the distribution of radio duty cycles for the centralised
(left) and distributed storage (right) approaches. (b) Distribution of node duty cycles for the centralised storage ap-
proach. (c) Distribution of nodes duty cycles for the distributed storage approach.

Table 1. Comparison between the two RFID reader ver-
sions

Version 1 Reader Version 2 Reader
Node Tmote Sky Zigbit Amp
Processor MSP430 AVR atmega1281V
Node RAM 10 kbyte 8 kbyte
Node Flash 48 kbyte 128 kbyte
External Flash 1 Mbyte Up to 2 Gb SD
RFID reader power 900 mW 96 mW
Reader turn on time 10 s 0.1 s
Radio range 50 m 1 km
Cost per unit $590 $320
Mote battery 3 AA none
Reader battery 18 Ah SLA 18 Ah SLA

by carefully forwarding data of different priorities to suit-
able storage nodes, we not only reduce the average energy
consumption, but also balance the load more evenly in the
network. Our benefits would be much more pronounced if
we had forwarded priority-3 data to the gateway in the cen-
tralised approach.

5 Evolution Stage 2: Hardware Improve-
ments

Although the algorithms proposed in Sec. 4 improved the
usability of our initial design, our approach was limited by
hardware - i.e. the RFID detection node. Experience dictates
that field deployment and data gathering are imperative to
a system’s successful deployment. The detection node was
built using off-the-shelf components enabling quick deploy-
ment, however these components turned out too general for
our specific needs.

5.1 Design of the new node
We incorporated feedback from the users of the system

(i.e. the zoologists) in order to make the system more useful.
A summary of the major design changes made is shown in
Table 1, and a photograph of the new node can be seen in
Fig. 8

Although the ubiquitous Tmote Sky had enabled us to de-
ploy a prototype system rapidly, its limitations in terms of
radio range and usable memory were major constraints. We
did not want to design a new custom node from scratch how-
ever, rather we wanted to incorporate a more modern and
flexible module into the design. The salient criteria were
that it should be low cost, power efficient and preferably

hand solderable. The cost and power requirements ruled out
an advanced node such as the Imote2. Instead, we investi-
gated small, wireless enabled modules that could act as the
heart of a generic sensing platform. There were two mod-
ules that were a good fit to the application requirements: the
Jennic JN5148 and the Meshnetics (now Atmel) Zigbit AMP
(ATZB-A24-UFLR). Both of these modules were low power,
inexpensive (less than $35 in single quantity) and had an ex-
ternal power amplifier which increased transmission power
by +20dBm. They also came in small form-factor packages
with numerous peripheral pins that could be used to inter-
face with additional components. Although the Jennic mod-
ule had a number of advantages, such as a low power 32 bit
processor as opposed to the 8 bit Atmega1281V in the Zigbit
AMP, we used the latter as it had better community support,
especially in Contiki. This allowed us to port our existing
code rapidly from the Tmote SKY platform to the AVR plat-
form, with minor modifications to the existing RF230 radio
driver. The radio range of the new modules was improved to
be in excess of 1 km in woodland at maximum power, a great
improvement that increases the span of the network consid-
erably (note that this is the transmission range of the radio,
and not the detection range of the RFID reader, which is un-
changed). The drawback of transmitting at the highest power
level is that this increases the current consumption from 17
mA to 50 mA.

As the Zigbit AMP is essentially a microcontroller with an
embedded radio, we needed to add additional components in
order to satisfy application requirements. Firstly, we added
external memory to the board in order to remove the con-
straints present in the initial system. The board is equipped
with a 4Mbyte serial dataflash chip and also a removable
mini-SD memory card. At present, this allows the addition
of up to 2 Gbytes of SD based flash, but larger capacities
could be supported with modifications to the SD driver soft-
ware, allowing high capacity cards to be used. We also added
an RTC with battery backup to allow nodes to maintain their
time when batteries were changed. Currently, nodes are un-
synchronized – this is an issue that will be addressed in sub-
sequent firmware iterations. One problem with the Tmote
Sky is that the onboard sensors are not removable. This is
not a problem in an indoors laboratory setting, but in a real
deployment, sensors must be placed externally to the protec-



Figure 8. The second version of the node.

tive housing. Thus, we incorporated light and temperature
sensors, which could be detached from the main board.

A major change in this version was the switch from the
RS-485 version of the RFID reader to an OEM board. The
RS-485 version was a suitable choice for the initial deploy-
ment, as it allowed us great flexibility in daisy chaining mul-
tiple readers together and had a simple serial interface. How-
ever, the power consumption and slow turn-on time were is-
sues. These high power requirements necessitated the use
of a separate reader and mote batteries, so that the mote
would remain powered even if the reader exhausted its sup-
ply. Switching to the OEM version of the RFID reader
negated these problems. It has a simple synchronous serial
TTL interface and a pin that could be used to trigger an in-
terrupt on the microcontroller when a tag was read. This al-
lowed us to power down the microcontroller while the reader
was active, whereas in the previous version, we had to main-
tain the clock for the UART. Furthermore, in the Tmote Sky,
the radio and the UART were multiplexed, which led to a lot
of problems with hardware locking to prevent concurrent ac-
cess to the peripherals. In the new version, the RFID reader
has its own dedicated pins. The turn-on time for the OEM
reader is under 100ms, and it uses 96 mW when active.

Lastly, we used a simpler power distribution system, with
3V as a common rail. A small charge pump was used to gen-
erate the 5V required for the OEM RFID board. The nodes
can be powered either from a 3V battery or from a 12V bat-
tery using a switching regulator. We also included a small
prototyping area on the board, as our prior experience had
shown us that there were often instances where we would
want to connect an additional device (such as a moisture sen-
sor) to a node.

In summary, the new version of the detection node has
dropped the power consumption by nearly an order of mag-
nitude. The storage space has been increased to such an ex-
tent that it allows for 40 years of storage at the current gen-
eration rates, as opposed to one week. This will allow us
to gather more information and sample environmental sen-
sors at a much higher resolution. The communication range
has also been increased greatly, which allows the network
to cover a much larger area with fewer devices. However it
must be stated that it was our experience garnered from the
prototype deployment that allowed us to design a well opti-
mized successor.

5.2 Duty Cycling Revisited
Given that the RFID reader on the new node can be pow-

ered up in 0.1 s, as opposed to the 10s for the prior version,
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Figure 9. Simulation results. Comparison of detected en-
counters and encounters per effective duty cycle for a)
always-on b) fixed c) adaptive algorithms.
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Figure 10. Deployment results with new hardware. Com-
parison of detected encounters and encounters per effec-
tive duty cycle for a) always-on b) fixed c) adaptive algo-
rithms.

the parameters for the learning algorithm presented in Sec.
4.1 could be modified. The original Tinterval was set to 330s,
with a duty cycle of 9%. Although this saved a large amount
of power, allowing the node to operate for longer, it had the
drawback of not being able to react to the presence of ani-
mals outside of the normal predicted times, as the off time
could be quite long (up to an hour). In order to address this,
we modified Ton to be 1s, with Tinterval to be 11s. This still
resulted in a 9% duty cycle, but the short term adaptivity
could react to the presence of unusual events, for example a
badger emerging during the day. The longest time for which
the reader was off was reduced to less than a minute, which
increased the chances of detecting animals, while still ac-
counting for their nocturnal behavior.

Fig 9 shows the simulation results for the same set of data
as in Section 4.1, with new parameters. The shorter wake up
interval resulted in both higher encounters and higher effi-
ciency. The adaptive algorithm detected 89% of all encoun-
ters while working at 5% duty cycle. The deployment results
conducted with the same parameters are shown in Fig 10.

5.3 Data Collection Revisited
The hardware improvements introduced in Stage 2 had a

dual effect on the data collection process.
Change in sink mobility patterns: Recall that mobile sinks

are domain scientists that roam through the woods and op-
portunistically collect data from storage nodes. Some of
them are zoologists visiting the network for maintenance
purposes, whereas others are from other disciplines visit-
ing the woods for their own purposes unrelated to our sen-
sor network. The visits of the former were reduced because
hardware optimizations made the change of batteries less fre-
quent. With fewer mobile sink visits, one would expect an



increase in the data propagated over multiple hops through
the fixed network, and thus an increase in the average and
worst-case communication cost.

Change in communication range: the effect of reduced
sink mobility was, however, offset by the significant increase
in the communication range of fixed nodes. Recall that the
hardware optimizations introduced in the second stage dra-
matically increased the communication range of sensor and
badger detection nodes from 50m to 1km. As a result, all
nodes now have one-hop connectivity to the fixed 3G gate-
way, and no longer need to make use of mobile sinks.

Hence, in the second evolution stage, the hierarchy of
nodes (based on priorities) collapsed and the use of mobile
sinks to collect data efficiently and relieve the fixed net-
work, became less relevant. This shows that the benefits
of software-level optimizations, such as the priority-based
delay-tolerant data collection, are tightly dependent on the
hardware used. The priority-based delay-tolerant scheme
proposed in Section 4.2 yielded significant benefits in the
first version of the system, but proved of little use to the sec-
ond one. However, we expect it to become relevant again in
the near future, when we proceed to the third evolution stage
of the system. Our short-term plan is to scale-up the network
to cover a larger area. The extended network of badger and
environmental sensor nodes will again become a multi-hop
network, and the data collection scheme will be reinstated.

6 Network Maintenance Costs
In this section, we will describe the evolution of our sys-

tem in terms of the costs involved. As a baseline, we will
also show the approximate cost of conventional VHF track-
ing [15]. This involves tagging animals with VHF tags that
emit periodic radio signals. VHF tags are analogue devices
achieving individual identification by frequency separation,
and limiting the number of IDs available. On the other hand,
our active RFIDs are digitally encoded allowing more IDs in
a given band without the need for a receiver to scan multi-
ple channels. The VHF tags can be picked up by receivers
carried by field-workers at a range of tens to thousands of
meters depending on environmental conditions. Using tri-
angulation (requiring at least two people on the ground), the
approximate location of the animal can be found. Our RFIDs
transmit at much lower power than VHF tags increasing bat-
tery life, while limiting range (30m), so giving a more pre-
cise location estimate for tagged animals. VHF tracking has
been a popular method since the late 1960s because it was,
and still is in many circumstances, the only way of tracking
wild animals.

Note, although we are comparing the costs between VHF
and our system, the data collected by the two methods are
rather different - although they collect the same information
(i.e. the location of a specific animal), our system logs an an-
imal about twice a second when it is nearby a detection node,
while this is not the case for VHF tracking. The more ani-
mals tracked by VHF, the more human trackers are required
on the ground up to the point where the number of track-
ers disturbs the animals being tracked. Our system instead
offers continuous automatic detection (presence/absence) of
the animals at specific locations with minimal interference.

From previously tracking studies of badgers, using VHF,
we know that at least one person is needed to work for about
10 hours a night to track one animal. If we assume we have
enough people to work for 28 days, this would result in 280
hours per person, costing 2,030 USD using a 7.25 USD/h
wage. It is easy to see how this is not feasible in the long
run, especially, because one person can only track one ani-
mal at a time. It is also not possible to provide continuous
tracking (i.e. 24/7) without considerable costs and man-hour
overhead, not to mention the fact that the more people there
are in the woods, the more the animals are disturbed.

Importantly, there are several other methods of animal
tracking, such as the GPS and ARGOS satellite-based sys-
tems that we do not include in the direct comparison. They
are inappropriate because of inferior spatial resolution (AR-
GOS) and reliability (GPS performs poorly in woodland).
Furthermore, ARGOS tags can cost over 1500 USD each and
a badger-sized GPS tag lasts for only a few months, whereas
our RFID tags cost in the order of 60 USD each and last for
ca. 2 years. Our RFID readers and sensor motes also con-
tribute to the total cost of our system, however the price of
each detection node is around 300 USD, thus still less than
a comparable ARGOS system. We deployed 74 RFID tags
and 26 detection nodes, summing to 4440 + 7800 = 12 240
USD, while buying 74 ARGOS tags would have cost us ap-
proximately 111 000 USD.

Table 2 shows the summary of the costs involved in main-
taining our system. We consider the number of man-hours
needed, as well as the battery costs for each stage. The total
cost includes the price of monthly up-keep of the system. We
also include how many animal detections we had recorded in
a month and how much each of these recordings cost. In our
deployment we had only two main sources of costs, main-
tenance visits to the woods by the zoologists and the costs
involved in battery consumption and charging. Developing
the new software and hardware for each stage also adds to
the total cost, however this was excluded from our evalua-
tion. There were two PhD students and two post-doctoral
researchers working on the project for 3 years, however it is
difficult to estimate accurately the amount of working hours
spent developing the system.

Stage 1 is our initial hardware node deployed. We have
logs of how much money we spent on batteries and how
much time we spent in the woods. Each detection node is
made up of an RFID reader and a Tmote Sky. The Tmotes
are powered by AA batteries, while the readers are pow-
ered by an 18Ah 12V batteries. We spent about 147 USD
on AA batteries and about 8.9 USD (4 times a month, us-
ing 0.4 kWh for 20c/kWh) for recharging the reader batter-
ies on all 26 detection nodes. From the logs, we also see that
about 30 hours per month were spent in the woods, summing
to 372 USD (again, using 7.25 USD hourly wage). From
our database, we collated the total number of active tags per
month during the deployment, as well as the number of de-
tections per month; thus on average, one animal generated
56,107 records per month, giving a single detection cost of
around 0.6 cents.

At this point, the bottleneck becomes the 1 MB storage on
the detection node - without compression, this fills up (de-



Table 2. Breakdown of the average cost incurred to maintain each stage of the system for 4 weeks. Costs are normalized
with respect to the number of animals being monitored.

Visits (man-hours) Battery cost [USD] Total cost [USD] detection per animal Cost per detection per animal
Stage 1 (HW only) 29.7 156.76 372.5 56107 0.006
Stage 1 (HW & SW) 10.8 52.9 131.4 40958 0.002
Stage 2 (HW only) 2.7 1.04 20.615 56107 0.0003
Stage 2 (HW & SW) 1.3 0.56 10.3 56107 0.0001

pending on activity) within a week, however, using our data
compression technique, we were able to extend this to dou-
ble the lifetime of the nodes, requiring only two field visit
per month, totalling 10 hours. The adaptive duty cycling ap-
proach allowed the battery costs to be reduced to about 53
USD, or 131 USD per month. Slightly fewer records were
generated, but a single record still cost less than in the previ-
ous stage i.e. 0.2 cent.

In stage 2 we introduced new hardware that radically in-
creased the lifetime of the detection node, while yielding the
same number of sightings as in stage 1. In our first stage
2 deployment, we put the hardware out for testing, without
any software enhancement (such as duty cycling either the
radio or the reader). The node lasted for 2 months on the
same battery, and due to its extensive memory capacity, did
not require data download. Since our new hardware used one
large, rechargeable, car battery, this negated the need to buy
AA batteries for the motes. The charging costs of the car bat-
teries amounted to 0.2 c/kWh x 0.4 kWh x 26 x 0.5 (once in
two months) = 1.04 USD per month. On average, one visit
lasted for about 5.4 hours, so one visit for two months re-
sulted in 2.7 hours per month. Since we needed to visit the
nodes once in 2 months, our monthly cost was 2.7 hr x 7.25
USD + 1.04 = 20.615 USD. The cost of a single detection
was reduced to 0.03 cent. It is worth noting, however, that
at this point, the cost of getting to the woods or tagging the
animals is actually higher than the maintenance cost.

The introduction of the enhanced software in Stage 2 (de-
scribed in Section 5) further extended the lifetime of our new
hardware. We obtained a 2-fold increase in the lifetime of the
node, hence only one visit in every 4 months became neces-
sary. This resulted in a maintenance cost of 10.3 USD per
month, and the cost of a single detection thus became negli-
gible.

7 Data Analysis
We collected over 29 million records since the system be-

came fully operational in March 2009. This section analy-
ses a subsection of these data (from 14 March 2009 to 19
September 2009) for illustration only, to demonstrate the
utility of the system in generating biologically useful data. In
doing so it is important to note that we do not attempt to in-
fer biological significance from any of our observations, in-
stead our analyses are purely descriptive. The full dataset, in-
cluding microclimatic correlates gathered from sensor nodes,
will be subject to zoological analysis elsewhere.

7.1 Data Gathered
Badgers are trapped up to four times a year for a con-

comitant research project [16]. This provides an opportu-
nity to put RFID tags on the animals. There have been 9
trapping sessions since June 2008, during which 74 animals

were tagged.
Animals were able to remove 12 tags of these tags (col-

lars), which were found on the ground. More tags were sim-
ilarly lost, but not found. Whenever possible, these animals
were retagged. Over the year, a lot of attention was given to
keeping the system running uninterrupted, i.e., always re-
placing the batteries and downloading the data before the
nodes stopped functioning. We set up a database where all
the sightings were uploaded: as of June, 2010, we have about
28 million valid detections.

7.2 A Window into Badger Movement Pat-
terns

One of the advantages of our automatic monitoring system
has been that we were able to capture data with high temporal
resolution from our fixed detector sites. This allowed us to
produce records of daily badger activity for future zoological
analyses.

A density plot of badger ‘sightings’ is shown in Fig. 11(a).
The horizontal axis shows the time in 24-hour format. The
vertical axis shows the day of year. The intensity of each
dot represents the average amount of time that badgers were
observed at the detection nodes.

Fig. 11(b) and Fig. 11(c) show badger detections at sett
and latrine located detection nodes, respectively.

In the evening, badgers exit their setts (indicated by the
strong dark line at dusk in Fig. 11(b)). They then visit the
latrine nodes probably foraging for food in between. At the
end of the night, they return to their setts, producing a high
density of activity on the right side of Fig. 11(b).

Regarding seasonal trends, and as expected, it can be seen
that the length of time that badgers are out of their setts de-
creases, reaching a minimum around day 170 (corresponding
to June 18). From this point on, the average trip time starts
to increase again, with decreasing day-length.

7.3 Badger Co-location
We extracted pairwise co-locations between badgers from

the detection node records: our assumption was that two an-
imals were within 0-60m of each other if they were recorded
contemporaneously by the same detection node. Because we
do not have any indication of the type, if any, of social in-
teraction between the animals, we must be cautious in any
assumptions we infer.

Since setts and latrines have different social functions for
badgers, co-locations are divided into three datasets: (a) setts
and latrines together; (b) setts only; (c) latrines only. To in-
vestigate the broad social structure we create a weighted so-
cial graph for each co-locations dataset where nodes repre-
sent badgers and the weight of each link is proportional to the
amount of time for which the two animals were co-located.

Fig. 12 illustrates the resulting graphs for each dataset,



12 14 16 18 20 22 0 2 4 6 8 10

Time (24 hour)

80

100

120

140

160

180

200

220

240

260

D
a
y
 n

u
m

b
e
r

(a)

12 14 16 18 20 22 0 2 4 6 8 10

Time (24 hour)

80

100

120

140

160

180

200

220

240

260

D
a
y
 n

u
m

b
e
r

(b)

12 14 16 18 20 22 0 2 4 6 8 10

Time (24 hour)

80

100

120

140

160

180

200

220

240

260

D
a
y
 n

u
m

b
e
r

(c)

Figure 11. Badger activity captured at detection nodes. Horizontal axis is time of day and vertical axis is day of year. (a)
Badgers detected at any detection node. (b) Badgers detected at nodes placed near setts. (c) Badgers detected at nodes
placed near latrines.

(a) (b) (c)

Figure 12. Badger social networks: The shade of a node
(node = badger) represents the social community it be-
longs to while its shape denotes the sett it lives in. Differ-
ent networks are created by using (a) all co-locations be-
tween animals at setts and latrines, (b) only co-locations
at setts, and (c) only co-locations at latrines.

where communities have been detected using the algorithm
described in [5]. The network defined by all co-locations in
Fig. 12(a) depicts 5 discrete ‘communities’, but each inter-
linked with one-another. This is not as evident for the net-
work defined from sett co-locations (Fig. 12(b)) where the 5
similar communities are more discrete with fewer links be-
tween them, giving greater separation. Conversely, for the
network defined from latrine co-locations (Fig. 12(c)), only
two communities were in evidence.

8 Related Work
Wildlife and Environmental Monitoring A number of
other wildlife monitoring deployments also exist like Ze-
branet [30], DuckIsland [27] and TurtleNet[11]. Sikka et
al. [26] discuss the deployment of a hybrid network consist-
ing of mobile sensors mounted on farm animals and fixed
sensors measuring soil moisture and weight of food and wa-
ter consumed by animals. Selavo et al.[25] describe the de-
ployment of wireless sensor network for measuring complex
light environment in thickets and also use delay tolerant net-
working, fault-tolerant distributed storage and custom hard-
ware. A number of modified Mica2 motes were deployed
by Gilman et al.[28] to monitor the microclimatic conditions
and solar radiation in a redwood tree for 44 days. With re-
spect to these we have developed a very integrated hetero-
geneous deployment which enabled us to gather very large
volumes of data. Moreover, the system is able to customise
the distribution of the data depending on the urgency of the
delivery required.
Duty cycling: [19] propose a machine learning based ap-

proach for adaptive resource allocation for sensor networks.
The sensors are modelled as self-interested agents that at-
tempt to maximise their profit and a simulation based evalu-
ation is presented. An adaptive sampling technique has been
used to adjust the sampling rate depending on the predictabil-
ity of the phenomena [7]. The incoming data is modelled
using time series models and the data rate depends on the
residual error between the predicted model and the actual
measurements. Our work is different because we use adap-
tive sampling for exploiting temporal correlations for node
discovery in mobile environments.
Data collection: The MRME algorithm [10] schedules mo-
bile sinks to visit static nodes before data delays expire.
When data is close to expiration, multi-hop routing is used
to guarantee timely data delivery. Unlike our approach, the
MRME algorithm assumes control over sink mobility and as-
sumes homogeneous data latency requirements for all data.
The SensorScope project [3] describes the deployment of a
low duty-cycle sensor network in which a central base sta-
tion gathers data. SensorScope uses a non-standardised net-
working stack that is designed for remote areas that cannot
be frequently accessed. Hui et al. [12] demonstrated the us-
ability of the IPv6 standard for sensor networks as a flexible
networking layer whilst maintaining a very low duty cycle.
Our choice of network stack was strongly influenced by their
findings.

In Lance [29], each data unit has an associated value, as
well as a cost for multi-hop data delivery to a single bases-
tation. Values and costs are taken into account to determine
download scores, i.e. the priorities of data units for data de-
livery. Unlike Lance, we not only use priorities to rank data
units, but also to rank storage nodes. In addition, we send
data of different priorities to different storage nodes immedi-
ately, instead of delaying their delivery to a single node (the
basestation). Jiang et al. [13], propose EMA, an energy man-
agement architecture that enables prioritized enforcement of
policy directives. If, for example, there are sufficient en-
ergy resources in the network, a sample-and-send directive is
used, whereas the system gracefully degrades to sample-and-
store when energy resources become scarce. Their frame-
work could be combined with ours to offer a greater variety
of policies. For example, a directive could suggest that when
energy resources are scarce, a class of data must be demoted
to a lower priority. As a result, this data will be delivered to a
closer but less frequently visited storage node, and will incur



a lower energy cost. Unlike existing systems, in which pri-
oritization results in a binary decision (store vs. download),
our system uses data priorities to select among a wide variety
of data delivery options.
Evolution: With any design, it is very difficult ‘to get it
right’ for the first time, despite a lot of planning and effort.
We have shown how our systems developed over time, and
how we have managed to reduce the maintenance cost to
a tenth of the initial costs, while still collecting substantial
amounts of data.

The authors of the ZebraNet project describe in [30] the
different stages of hardware upgrade they went through in
their deployment. They deployed 3 different sensors, each
improving on the capability of their previous ones. The im-
provements included solar panels, changing the radio to a
more energy efficient one and increasing the on-board mem-
ory. The Glacsweb Project [21] aimed at monitoring glacial
dynamics through the use of WSN. They have had yearly de-
ployments from 2001 to 2008 in different regions and coun-
tries (including Norway and Iceland). Their deployments re-
lied on a number of ‘probes’ embedded in the ice, and a base
station, relaying data back from the sensors to the scientists.
The base staion turned out to be their single point of fail-
ure, they redesigned it from deployment to deployment to
improve on reliability and robustness.

Although we detail similar evolutions to the aforemen-
tioned projects, our overall aims are different. Here we not
only focus on the long-term maintainability of our system
and generally improving its reliability, but we also reconcile
the inherent relationships between the necessity for specific
software and hardware evolutions and highlight the resulting
cost savings and benefits from such actions.

9 Conclusions and Lessons Learned
Although there is currently a lot of work on building real

sensor systems, very few attempts have been made to deploy
them in the field and then maintain and develop them. In
this paper, we provide details of the first distributed active
RFID-WSN hybrid system for wildlife tracking. We under-
took an iterative process of software and hardware designs
and developments, while still maintaining backwards com-
patibility.
Maintenance Costs We gained invaluable experience from
our deployment. System maintenance is a key to a long-
term deployment, and the costs associated with it should be
factored in from the initial design stages. Though our first
stage was very successful in collecting large quantities of
high quality data, maintaining it turned out to be more ex-
pensive than expected. For a wildlife monitoring applica-
tion, continuous operation is essential therefore maintenance
is unavoidable.
Software and Hardware Interaction With software enhance-
ments, we were able to increase the lifetime of the system,
and thus decrease the necessary maintenance, however this
resulted in the hardware becoming our limiting factor, hence
our second lesson: to achieve maximum power efficiency,
application-specific hardware is often necessary. With our
second stage, we were able to decrease the maintenance costs
to a fraction of what they were before, while collecting the

same amount of data. Optimizations that work on some hard-
ware, however, might not perform as well on a different sys-
tem, i.e. software optimizations need to take into account
the capabilities and the characteristics of the hardware. The
introduction of the new hardware resulted in fewer visits to
the woods by the zoologists, which affected the in-network-
storage. Moreover, once the new hardware was in place the
detection node duty cycling could be improved with finer
grain parameters which would not have been possible on the
earlier version of the hardware.
Rapid Initial Prototyping and Deployment One of the most
pertinent results from our deployment was the realization
that no initial deployment will be perfect. This suggests that
the best approach for long term monitoring systems is to de-
sign a prototype that can be rapidly deployed using commer-
cial off-the-shelf technology. This is especially important in
applications like ours, where no prior data had been collected
on a similar scale in the same environment. Although our
initial prototype suffered from a lot of practical issues, it was
easy to get the system working in the field and this allowed
us to collect suitable data to understand how things could
be improved. These observations then guided the evolution
of the system, allowing us to dramatically reduce the cost
of system maintenance by increasing the runtime of devices.
In addition, no amount of simulation or laboratory testing is
equivalent to issues faced in the real deployment. Failures
are common, and some failures, such as animals interfering
with equipment are unquantifiable until the system is actu-
ally deployed. Thus we suggest that researchers deploy an
initial version (even if it is a datalogger) as soon as possible,
so that knowledge can be gained about practical problems.
Gradual versus step-change improvements In the evolution
of a system, a choice has to be made whether to improve it
gradually or to switch over to a new system entirely. The
choices made here were influenced by the needs of the ap-
plication. In our case, we had to slowly incorporate new im-
provements, testing them over a period of months in the field,
so as to gather a continuous record of data. This was because
any gaps in the data could significantly reduce their biologi-
cal significance. Other applications can tolerate interruptions
that allow for all effort to be concentrated on designing and
deploying a new and improved version. This leads naturally
to step-changes in capability and functionality, with all com-
ponents of the system being upgraded simultaneously. This
is an important lesson, as it dictates the type of evolutionary
strategy that can be adopted.
Continuous interaction with domain scientists Our system
was built as an experimental tool, as opposed to a proof
of concept. The design of smart protocols and algorithms
to reduce message overhead or energy consumption is only
useful if it complies with the requirements of the eventual
users of the system. Such interactions are not only useful
to make sure the system works as expected, but also to pro-
vide interesting ideas for optimizations. One such key obser-
vation made when discussing system requirements with the
domain scientists was that not all data had real-time require-
ments. In response, we formulated a priority based rout-
ing approach that reduced traffic load, particularly around
network hotspots, by forming multiple routing trees. Data



were opportunistically picked up by zoologists working in
the woods, another application specific factor we took ad-
vantage of. To reduce data volumes, a simple lossless com-
pression algorithm was devised. Analysis of collected data
resulted in interesting findings about badger social behavior
and correlations with weather conditions. By understanding
the needs of the users, we were able to tailor our system de-
sign, extending the lifetime of devices in the network, whilst
still satisfying application requirements.

In summary, we learned a number of interesting lessons.
First, network maintenance should not be an afterthought,
but a key consideration in the original design of the system.
Otherwise, maintaining a sensor network ends up being far
more expensive than building it. Second, before delving into
algorithmic improvements and strenuous testing of new soft-
ware, it is important to carefully consider hardware limita-
tions. Sometimes it is more cost-efficient to replace the hard-
ware platform than to design and test new software for an
existing platform. Third, the benefits of software optimiza-
tion (e.g. improving sampling, storage and data collection
algorithms) largely depend on the hardware. An algorithmic
improvement that yields significant benefits on one platform
may be less efficient or even inapplicable to another. Fourth,
engineering sustainable sensor networks is an iterative pro-
cess that alternates between hardware and software changes.
Last, these changes must be performed in a controlled man-
ner so that they do not disrupt the data collection process.

Finally, we believe the results and findings in this paper
will provide an important insight into the workings of a long-
lived outdoor sensor deployment.
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