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Abstract

The goal of obfuscation is to transform a program, without affecting its func-
tionality, so that some secret information within the program can be hidden for as
long as possible from an adversary armed with reverse engineering tools. Slicing
is a form of reverse engineering which aims to abstract away a subset of program
code based on a particular program point and is considered to be a potent program
comprehension technique. Thus, slicing could be used as a way of attacking obfus-
cated programs. It is challenging to manufacture obfuscating transforms that are
provably resilient to slicing attacks.

We show in this paper how we can utilise the information gained from slicing
a program to aid us in designing obfuscations that are more resistant to slicing.
We extend a previously proposed technique and provide proofs of correctness for
our transforms. Finally, we illustrate our approach with a number of obfuscating
transforms and provide empirical results.

Keywords: Obfuscation, Static Slicing, Program Transformation, Software
Security

1 Introduction

The goal of software protection through code obfuscation is to transform the source
code of an application to the point that it becomes unintelligible to automated program
comprehension tools or becomes unanalysable to a human adversary interpreting the
output of program analyses run on the obfuscated application [31]. The motivation for
protecting software through obfuscation arises from the problem of software piracy, which
can be summarised as a reverse engineering process [10] undertaken by a software pirate
when stealing intellectual artefacts (such as a patented algorithm) from commercially
valuable software to make derivative software or tampering DRM routines in order to
bypass license authentication checks. The 2005 annual Global Software Piracy Report [1]
from Business Software Alliance (BSA) stated that “35% percent of the packaged software
installed on personal computers (PC) worldwide in 2005 was illegal, amounting to $34



billion in global losses due to software piracy”. This is one of the primary reasons why
commercially popular software such as the Skype internet telephony client [9], the SDC
Java DRM [37], and most license-control systems rely, at least in part, on obfuscation
for their security.

Collberg et al. [11, 12] were the first to formally define obfuscation in terms of a
semantic-preserving transformation function O which maps a program P to a program
O(P) such that if P fails to terminate or terminates with an error, then O(P) may or
may not terminate. Otherwise, O(P) must terminate and produce the same output as P.
Barak et al. [3] strengthened the formalism by defining an obfuscator, O, in terms of a
compiler that takes a program, P, as input and produces an obfuscated program, O(P),
as output such that O(P) is functionally equivalent to P, the running time of O(P)
is at most polynomially larger than that of P, and O(P) simulates a virtual black-boz.
Thinking in terms of a virtual black-box, an obfuscation function is a failure if there exists
at least one program that cannot be completely obfuscated by this function, that is, if an
adversary could learn something from an examination of the obfuscated version of this
program that cannot be learnt (in roughly the same amount of time) by merely executing
this program repeatedly. This negative result established that every obfuscator will fail
to completely obfuscate some programs. Drape in [15] observed that the virtual black-box
property is too strong. Obfuscators will be of practical use even if they do not provide
perfect black boxes. Therefore, the focus has now shifted to designing obfuscations that
are difficult (but not necessarily impossible) for an adversary to reverse engineer.

In the domain of software engineering, program slicing is widely used for program
comprehension. Program comprehension forms the basis of reverse engineering since its
primary goal is to identify relevant/interesting parts of the code and create representa-
tions of the program at a higher level of abstraction. Indeed, this is what a software
pirate also intends to do when he/she attempts to steal or change some relevant part (of
her/his interest) of the code with the intention of reusing it in illegal derivative software
or invalidating the code licensing routine. It would seem obvious that a natural way to
deter such code comprehension attacks is to intertwine the relevant code routine with
other irrelevant sections so that the attacker fails to recognise the portions of interest by
analysing the code. Drape and Majumdar in [17] made the first attempt to intertwine
code in a way so that static slicing attacks could be made difficult (if not impossible). In
this contribution, we extend their along many directions — first, we show a way to prove
correctness of our proposed slicing obfuscations using program refinement techniques
[14]. Secondly, we empirically evaluate our obfuscating transforms using a popular static
program slicer, CodeSurfer [2], and show that the results, in fact, corroborate with the
claims in [17]. In the process of evaluating our transforms, we also propose our own
metrics (derived from the original slicing metrics) and interpret our results in terms of
the derived metrics.

1.1 Structure of the paper

We provide a brief overview of slicing and its role in program comprehension in Section
2. In Section 3 we give details of the framework that we will use to specify and prove
the correctness of our obfuscations. To build our framework we adapted work from [15]



which used functional programs by modelling statements as functions on the state. We
then show how we can specify data obfuscations for a simple imperative language and
how to construct proofs of correctness. In Section 4 we use the specification framework
to construct and prove the correctness of various data obfuscations from [11] including
array transformations. In Section 5 we give details of how we set up our experiments. In
particular, we will discuss the use of slicing for designing obfuscating transforms and what
quantities we will measure in our experiments. In Sections 6 and 7 we show the results of
our experiments. Firstly, in Section 6, we give a detailed account of some of the different
slicing obfuscations that can be applied to a particular example. Then, in Section 7, we
give a brief overview of some more experiments that we performed on different programs.
We give some of the choices that can be made when applying obfuscating transforms in
Section 8 and we give a summary of our work in Section 9.

2 Background

Before describing our proof framework for slicing obfuscations, we provide a general
overview of program slicing and its use in code comprehension. We conclude this section
by highlighting the salient features of previous work done on defeating slicing attacks.

2.1 Program Slicing

Program slicing as a software engineering technique was first introduced by Weiser [41]
in 1980. Since then several research papers have been published on program slicing.
Researchers have tried to improve on Weiser’s precision and extensibility. Moreover, work
has also been done to add functionality to basic slicing algorithms. We discuss in this
subsection, a few of the features available in different slicing tools and algorithms. Details
can be found in extensive surveys and evaluation reports published in [5, 8, 22, 38, 42].

A program slice consists of the parts of a program that potentially affect the values
computed at some point of interest (called a slicing criterion) [38]. According to Weiser’s
original definition, a slicing criterion C' consists of a pair (line-number, variable) and
parts of a program which have a direct or indirect (computed through data and control-
flow analyses) influence on the values computed C are called the program slice with
respect to C'. The notion of slicing comes from Weiser’s observation that abstracting
away parts of program corresponds to the mental abstractions that people make when
they are debugging a program. In his original proposal, Weiser defined a program slice
S as an executable subset of a program obtained from deleting statements such that S
replicates part of the behaviour of the program. In subsequent research, the executability
feature was waived and slices were just defined to be subset of statements and conditional
predicates of the program which directly or indirectly affect the value computed at the
criterion C. Weiser’s slices were also backwards, which means the statements in S are
calculated by a backward traversal of the program starting from C'. This gives the
statements which affect the value of variables in C' right before the statement defining C'
is executed. The notion of forward slicing was first defined in [4]. A forward slice gives
the statements and conditional predicates that depend on the values of variables defined



at the slicing criterion C. Tip in [38] observed that both forward and backward slices are
computed in a similar way. Unless otherwise stated, slicing in our context would mean
backward slicing.

Slicing techniques can be categorised based on their capability to slice statically or
dynamically. Weiser’s slicing technique mentioned in the previous paragraph is a static
one since the underlying slicing algorithm finds a program statement subset by solving
(approximately) a set of static program analyses problems. The program that is be-
ing sliced is not executed. The concept of dynamic slicing was proposed by Korel and
Laski in [28] and is considered to be an instance of flowback analysis [38]. In flowback
analysis, the user interactively traverses the graph that represents data as well as control-
flow information and traces the information path that leads to a particular value of a
variable in the program. Unlike flowback analysis, however, dynamic program slicing is
non-interactive and only the dependencies that occur in a particular run (execution) of
a program are taken into account. A dynamic slicing criterion is a triple (input, occur-
rence of a statement, variable). Dynamic slicing assumes a fixed input for the program,
whereas static slicing does not make assumptions regarding the input. A dynamic slicing
algorithm, therefore, is thought to give a more precise and smaller slice compared to
its static counterpart. Again in our experiments, unless otherwise stated, slicing would
mean static slicing. Variations of static and dynamic slicing (such as amorphous and
quasi-static slicing) can be found in the survey articles.

Static slicing techniques can be categorised based on their intermediate representa-
tion of dependency information. Weiser’s algorithm is most primitive and it uses dataflow
equations to represent data and control-flow dependencies. The slice is obtained by an it-
erative solution of the dataflow equations. The slicing criterion in Weiser’s case maps to a
particular node in the Control-Flow Graph (CFG) of the program. A slice is “statement-
minimal” if no other slice exists with fewer statements for the same criterion and it has
been shown to be undecidable [41]. Ottenstein and Ottenstein, in [34], first proposed slic-
ing as a graph reachability problem on Program Dependency Graphs (PDG) [18]. PDGs
were extended to System Dependence Graphs (SDG) to accommodate inter-procedural
slicing by Horwitz et al. in [24]. The statements and expressions of a program constitute
the vertices of an SDG and the edges correspond to data and control dependencies be-
tween statements. The partial ordering of the vertices induced by the dependence edges
must be preserved in order to guarantee semantic correctness of the program. Several
extensions and approximation algorithms were proposed over these approaches to facil-
itate features such as alias calculation and unstructured program flow. Details can be
found in the survey literature. Slicing using SDGs has been evaluated to be the most
precise and complete slicing method currently available [8, 22, 38].

2.2 Slicing in program comprehension

Frank Tip [38] and Binkley et al. [8] outline a number of interesting uses of program
slicing. Some of the notable uses of static program slicing are outlined here. Lyle in
his PhD thesis [29] outline the use of program slicing to localise a bug. He called the
concept program dicing, a method for combining the information obtained from different
slices to assist in locating the bug. An interesting consequence of this idea was another
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method to eliminate dead code within the program [4]. Horwitz introduced the concept
of program differencing using static slicing [23] based on her algorithm of static program
slicing presented in [24]. Program differencing is a technique for finding out parts of
the new program which has changed from its previous/older counterpart. In [20], the
notion of decomposition slice was introduced, where a decomposition slice with respect
to a variable v is defined as the union of slices with respect to v at the statements that
output v and the last statement of the program. The intended use of decomposition slice
is in the program of software maintenance where it is suggested that the complement
of decomposition constitutes the set of independent statements which may be modified
without having any side effects to the variable v. In their seminal paper [21], Gupta,
Harrold and Soffa proposed the idea of regression testing where only the parts affected
by the modification of a previously tested program are re-tested using program slicing
while maintaining the coverage of the original test suite. Another important use of slicing
is clone detection where non-contiguous, reordered, and intertwined clones are detected
using isomorphic PDG subgraph matching [27].

Program slicing has been found to facilitate program comprehension and it is this
specific use that we are particularly interested in. Binkley and Harman, in their survey [8],
reported several research efforts undertaken to link slicing with program comprehension
factors. Mark Weiser stated in [41] that programmers, while debugging, mentally traverse
backwards from the location of bug (variable and location as slicing criterion) to find the
program slice and thus related human comprehension of program to slicing. Lyle in
his PhD thesis [29] similarly conjectured that programmers using dicing (intersection of
two or more slices) have been observed to find faults faster than their counterparts using
traditional methods. Francel and Rugaber in [19] compared the level of comprehension of
programmers who used slicing to those who do not and hypothesised that the former had a
better understanding of code for debugging than the latter. Ott and Thuss used program
slicing based metrics to estimate cohesion among program modules [33]. This estimation,
in turn, helped in maintaining program modularity. They created slice profiles to aid in
visualisation of relationships among different slices generated by a program module and
extended Weiser’s slicing metrics to build a quantitative approach towards measuring
module cohesion (compared to previous qualitative approaches).

Among the newer endeavours, Rilling and Klemola, in [36], proposed an approach
to identify comprehension bottlenecks by combining slicing with cognitive complexity
metrics. They observed that comprehension aids in digging program artefacts and their
relationships using reverse engineering — something an adversary would attempt on an
obfuscated program. Their approach to measure cognitive complexity of source code
involved defining three types of identifier densities and using these densities as slicing
criteria to aid in comprehension. David Brinkley and Mark Harman did extensive research
on the subject of slicing and its use in comprehension. In [7], they performed a large
scale empirical study on a million lines of C code to understand context sensitivity for
calling methods. They collected more than two million slices to understand how the size
of slices were affected by taking the calling contexts into account (and vice-versa). They
observed that taking into account the calling context, backward slices included about 28%
of the program and forward slices about 26% of the program. However, ignoring calling
contexts led to an overall increase of 50% on the slice sizes. In another empirical study



[6], Binkley and Harman investigated the interdependencies among program components
affected by predicates in the program. Using slicing they came to the conclusion that
predicates in a program rarely depend on all the formal parameters and global variables.
Their results also show the differences between formal parameter dependence and global
variable dependence. Lastly, Meyers and Binkley, in [32], devised slicing based program
cohesion metrics to aid in software intervention. Intervention in their context refers to the
task of identifying modules within a program that require reconstruction. They followed
up on the work of Ott and Thuss [33] to devise slice-based cohesion metrics that quantify
the overall quality of source code and could be used to measure software intervention
efforts. For these cohesion metrics, they suggested base-line values which could, in turn,
be used to identity degraded program modules.

2.3 Previous work on slicing obfuscations

Ivanov and Zakharov first proposed the idea of designing obfuscations with the intent
of obstructing static analysis attacks on code [25]. They reported that for obfuscations
manufactured from intractable complexity problem instances, the principal drawback
is that none has a formal basis for substantiating claims about code comprehension
resilience. In their framework of study, a program static analysis tool A computes a
mapping of the form: A : U — W, where U is the set of unobfuscated programs under
consideration and W is the set of possible outcomes of static analysis. The set W of
all possible outcomes forms a lattice which has the minimal element 1. This element
can be interpreted as a lack of any useful/significant information about the program
semantics as may be analyses using A. The defined an obfuscation O to be impervious
to a program static analyser A if A(O) = L holds for any program P. With this goal
in mind, a particular static analysis tool can be made unsuitable for deobfuscation if the
program P is obfuscated using O.

Using this definition of imperviousness, they set out to design slicing resistant obfus-
cations. They defined the efficiency of a slicing algorithm Ag by the ratio

A
| St |

| S |

where (S é) SV>) is the set of program points in the slice with respect to the criterion (p, V'),

and (ng{})) is the minimal set of program points that are necessary to be maintained in
order to correctly compute the values of variables V' at program point p. The authors
noted that an obfuscation could be made impervious to a slicing algorithm if it is forced
to give the worst possible slice, i.e., the set of all program points that precede p in the
SDG.

There are a couple of problems with the imperviousness property. The first one
concerns its absoluteness. While it may seem trivial to incorporate dependencies to link
up every program point to the slicing criterion, our practical experience would suggest
otherwise. An all-or-nothing model lends a cryptographic flavour to the obfuscation
problem whereby an adversary managing to obtain a slice with one program point less
than the worse possible slice would be considered a winner. Also, a bogus obfuscation will



add spurious amount of dummy code which could then be made to depend on the slicing
criterion — this is not really a correct measure of the success of obfuscation. How do we
relax the imperviousness goal of obfuscation and how do we design obfuscations that link
up the statements that are not included in the slice with respect to a particular slicing
criterion? The remainder of this contribution addresses these issues. Secondly, Ivanov
and Zakharov’s technique is not evaluated empirically. It is easier to introduce false
obfuscation dependencies in pseudo-code and claim it as being impervious to any slicing
algorithm. However, in practice, engineering dependencies within program code and
controlling side effects of analyses can be quite challenging and therefore it is important
to validate how the theoretical claims corroborate when reduced to practice.

3 Proof Framework

Before we present our specific slicing obfuscations, we show how we can specify and prove
the correctness of imperative data obfuscations.

In [15] a framework for proving the correctness of obfuscations for abstract data-types,
defined in a functional language, using functional refinement [14] was given. Suppose that
a data-type D is obfuscated using an obfuscation O to produce a data-type F. Under
this framework, an abstraction function af :: E — D and a data-type invariant dt: are
needed such that, for x :: D and y :: F:

r~y = (z=af(y)) Adti(y) (1)

The term x ~ y is read as “x is obfuscated by y”.
For a function f:: D — D, an obfuscated function O(f) is correct with respect to f
if it satisfies:

(Vo Dy E) x~y = f(z)~ O(f)(y)
Using Equation (1) we can rewrite this as

f-af =af-O(f) (2)

If we have a conversion function cf :: D — FE that satisfies af - ¢f = id then we can
rewrite Equation (2) to obtain:

f=af-O(f)-cf

and we can use this equation to prove the correctness of O(f).
In this contribution we will concentrate on imperative program constructs — can we
still use this framework to prove the correctness of imperative obfuscations?

3.1 Modelling statements as functions

We model statements to be functions on states and so a statement has the following
type: statement :: state — state where a state is defined to be a set of mappings from
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variables to values (or expressions computing values). We assume that the variables are
integer valued and all expressions consist of arbitrary-precision arithmetic operators. We
concentrate on code fragments with no methods, exceptions or pointers.

Suppose that we have a set of states §. For some initial state o5 € S and some
statement 7', the effect of statement T on o is to produce a new state o; € S such that
o1 = T(0p). Suppose that we have a sequential composition (;) of statements, which we
will call a block, B = T1;T5;...;T,. If the initial state is o then the final state o, is
given by

Op = B(Uo) = Tn ( . .T2 (T1 (0’0)) .. )

For our simple language, we consider the following statement types: skip, assignments
(var = expr), conditionals (if pred then stats else stats) and loops (while pred do stats).

The statement skip does not change the state and so if S = skip then S(og) = oy.
For an assignment A of the form A = x = e, if the initial state oy contains the mapping
x — 1 then the state after the assignment can be written as

A(oo) = 00 ® {z — e[zo, ]} (3)

using functional overriding (@) and substitution (/).
Now suppose we have conditional statement C' which has the form

C =if pthen T else £

where p is a predicate with type p:: state — B and T and F are blocks. Then for some
initial state oy we have that

Cloy) = { T(a9) if p(oo) (4)

E(oy) otherwise

A loop statement L has the form L = while p do S where p is a predicate and S is a
block. Then for some initial state oy we have that

L(og) = S*(0¢) where i = min{n :: N | p (S™(00)) = False} (5)

Note that this minimum does not exist if the loop fails to terminate.

3.2 Using the refinement framework

We suppose that a data obfuscation acts on a state o to produce a new state O(o) and so
we can consider the set of states S to be obfuscated to produce a new set of states O(S).
To specify a data obfuscation O we will supply two functions, an abstraction function

af :: state — state
such that

af(y) =67 OS)NIeS



and a conversion function
cf :: state — state

which is a pre sequential inverse for af, i.e.

cf;af = skip. (6)

As well as these functions, for refinement, we require an invariant I on the obfuscated
state such that for states o :: S and O(o) :: O(S)

0~ 0(0) & (0 =af(O(0))) N (O(0))

The expression “o ~ O(c)” means that the state o is obfuscated (refined) by O(o).
Using the conversion function we have that

cf(o) =0(0) = 0~ O(0)

Note that for most of our transformations unless otherwise stated I = True. The type of
the abstraction and conversion functions are the same as the type of a statement and so
we can consider af and cf to be statements (usually assignments) as well as functions.
Since our statements are functions on the state, we can produce correctness equations
similar to those for functional programs.

Suppose that we have a block B and we want to obfuscate it using data refinement
to obtain a block O(B). We say that O(B) is correct (with respect to B) if it satisfies

(Vo ::85;0(0) :: O(S)) ® 0~ O(0) = B(o) ~ O(B)(0(0)) (7)

We can draw the commuting diagram [14] in Figure 1 representing our obfuscation and
we obtain the following equation:

af; B=O(B);af (8)

this corresponds with Equation (2). By writing the abstraction function as a statement
we can construct two blocks af; B and O(B);af and proving the equivalence of these
blocks establishes that O(B) is correct. Using the conversion function we can obtain
another correctness equation:

B=cf; O(B); af (9)
We can extend the refinement notation ~» to statements and blocks. The expression
B ~> O(B) for some af (and cf)

says that B is obfuscated by O(B) and that Equation (7) holds.



Figure 1: A commuting diagram for data obfuscation

3.3 Obfuscating Statements

Suppose that we have a data obfuscation that changes a variable z using an abstraction
function af and a conversion function cf satisfying cf; af = skip. This means that af
and cf are statements of the form

af =x=G(x) cf =x=F(x)

for some functions F' and G. For refinement we need cf; af = skip, i.e.
{r =F(x); v =G(z)} = skip

and so we need

G-F=id (10)

3.3.1 Composition

Suppose that s; and sy, are two statements and let us consider how to obfuscate the
sequential composition of these two statements. By Equation (8),

af; s1=0(s1); af and af; so = O(sq); af
We propose that
O(s1; 82) = O(s1); O(s2)
Proof. Consider
O(s1); O(s2); af
{Equation (8) for so}
O(s1); af; s2
{Equation (8) for s;}
af; s1; sa
{Equation (8) for sy; s}
O(sy1; s9); af
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and thus
O(s1; 82) = O(s1); O(s2)
O

So when applying a data obfuscation to a sequence of statements (blocks) we can
obfuscate each statement (block) individually and compose the results.

3.3.2 Assignments

Suppose we have an obfuscation for z (with af and cf defined as above) then let us
consider the statement P, = x = FE where E is an expression that may contain an
occurrence of x. It can be obfuscated as follows:

O(x = F) =x = F(FE') where E' = E|G(x) /] (11)

For example, the expression z = 2 + 1 would be transformed to x = F(G(z) + 1). Note
that the expression E[G(z), z] denotes how a use of x is obfuscated.
Consider the following set of assignments:

r=G(z); x = E; x = F(z)
= 2= E[G(x)/1]; v = F(x)
= 2= F(E[G(z),/z])

and so as an alternative to Equation (11) we can write

Olx=F)= af,x=FE;cf (12)

3.3.3 Conditionals

Now let us suppose that P, = if p then T else E for some predicate p and blocks T" and
E. We propose that

O(R,) =if p|[G(x),/x] then {af;T;cf} else {af; E;cf} (13)
with af as above. Let us now prove that this is correct

Proof. From Equation (9) consider

(cf; O(Ry); af)(oo)

for some initial state og. Suppose that oy contains the mapping = — zy. By Equation
(3) and the definition of ¢f:

cf(o0) = 00 ® {z — F(x0)}
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and so the conditional test is equivalent to:

plG(x),/z](00 ® {z — F(z0)})

=  {put the substitution into the mapping}
ploo @ {2 — G(F(x0))})

= {map p across G}

ploo) ® p({z — G(F(x0))})
{Equation (10)}
p(oo) & p({z — z0})
= {x + x¢ is the original mapping from o}

p(Uo)

So the conditional test for cf; O(F2); af is the same as the test for P,. If the test is
True then we have a block of statements of the form cf; af; T; cf; af and by Equation
(6) this is equivalent to T'. Similarly if the test is Flalse then we find that the block of
statements is equivalent to . So we have shown that cf; O(Fs); af = Ps. O

3.3.4 Loops
Suppose that P; = while p(z) do S then, with af as above, we propose that

O(Ps) = while p[G(x) /] do {af;S;cf} (14)
and we can use Equation (9) to prove that this is correct.

Proof. Consider

(cf; O(Rs); af)(o0)

for some initial state oy which contains the mapping = — xy. By Equation (5), the final
state is given by

(cfs (afs S5 cf)'s af)(oo)
for some integer i. By Equation (6) this simplifies to S%(og).

We now need to find the value of ¢ which by Equation (5) (and remembering that cf
is executed before the loop) is:

min{n N | plG(2),/2] ((af; S; cf)"(00 @ {x — F(xo)})) = False}
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Consider
plG(x)/x] ((af; S5 cf)" (00 © { — F(x0)}))
{Equation (6)}
plG(x)/x] ((af; S5 cf)(o0 @ {z — F(x0)}))
{apply af where af =z = G(x)}
plG(x)/ =] ((S™; ¢f)(o0 & {x — G(F(x0))}))
{Equation (10)}
plG(x) /] (5™ cf)(o0 @ {x = x0}))
{z — x is the original mapping from o}
p[G(z) /=] ((5™; f)(00))
{state after S™ and cf with z — z, € (S")(0¢)}
plG(x),/ )] ((5")(00) & {2 — F(zn)}

{similar argument to the conditional proof above}

p(5"(00))

So i = min{n :: N | p(S"(09)) = False}. Thus
Py=cf; O(B3); af

and so our definition of O(P3) was correct O

3.4 Simultaneous Equations

Suppose that we obfuscate S to obtain O(S) with abstraction and conversion functions
af and cf for the obfuscation. We can use Equation (9) to prove that O(S) is a correct
obfuscation of S by showing that the sequence of statements cf; O(S); af is equivalent
to S. Suppose that we have an obfuscation that transforms a variable z (say) then this
proof could take the form:

r=f(z); zr=u(z); z=g(x)

where f, g and u are functions. To simplify this expression we can substitute values of
x in sequential order by rewriting the sequence of statements as a set of simultaneous
equations. Each definition of a variable has a different name which is usually the name
of the variable with a subscript (e.g. x2) and we use the convention that the initial value
of a variable has a subscript 0. All the uses of a variable are renamed to correspond to
the appropriate assignment.

The sequence above can be rewritten as the following set of equations:

z1 = f(zo); @2 =u(z1); z3=g(z2)

By substituting the values for x; and x5 we obtain the following:
x1 = f(zo); w2 =u(f(x0)); 23 = g(u(f(20)))
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We can remove the assignments for x; and x5 as they are now redundant. So now we
have x3 = g(u(f(x¢)) which corresponds to the statement = = g(u(f(x))).

This conversion from assignments to simultaneous equations is similar to converting
code to SSA (Static Single Assignment) form which is often used in conjunction with
compiler optimisations (for example, [13] gives details about how to compute SSA form).
In SSA form, each definition of a variable is given a different name and each use is
renamed according to the appropriate definition. When there are different control flow
paths, a special statement called a ¢ (phi) function is added. However, as we are only
aiming to simplify a set of simultaneous equations, we will not use the SSA form directly.
In particular, our proofs will not need to use phi functions as we will use the results of
Section 3.3 to enable us to deal with if and while separately and we can obfuscate a
sequence of statements by obfuscating the individual statements. We will only use the
SSA form as a guide to help us to specify a set of simultaneous equations which we can
manipulate and simplify.

3.5 Steps in a proof

There are four main steps in constructing our proofs of correctness.

Simultaneous Equations The first step is to convert a sequential program into a set
of simultaneous equations using the SSA form as a guide. This means that each new
definition of a variable has a unique subscript and each use of a variable should refer to
the previous instance of the variable.

Substitution Once we have converted our sequential code to a set of simultaneous
equations then the next phase is to reduce the set of equations by performing substitu-
tions. However, sometimes problems can arise.

Suppose that we have the following set of simultaneous equations:

nm=x0+1 Ti=x0+2; ya=y1—1
Substituting the value for vy, gives
m=x0+1;, T1=x0+2; y2=1o

We can see that the “last” definition for x is at z; but the expression for y, uses an earlier
definition of z. Whenever this type of situation occurs then we cannot immediately
convert such sets of equations back to sequential code. The last step discusses possible
solutions for this problem.

Redundant Definitions The next step after substitution is to remove redundant defi-
nitions. A definition z; = e is redundant in a set of simultaneous equations if no equation
uses z; and there exists some definition z; = ¢’ where j > i. This latter condition ensures
that we do not remove the “last” definition of a variable (and since we convert using a
form of SSA we know that the last definition of a variable will have the largest subscript).
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Converting back Once the set of simultaneous equations has been reduced they need
to be converted to sequential code. As mentioned earlier, sometimes we cannot imme-
diately convert the set of equations back to sequential code. For example, suppose that
after substitution and refinement we are left with the following pair of simultaneous
equations:

Ty =0+ 2; y2=1Tg
This cannot be converted to:
r=x+2; y==x

as the final value of y in this sequence is equivalent to x; not xy as required. One solution
is to introduce a new variable which holds the value of zq:

th=z0; T1=a0+2; Yy2="1
So this can be converted to:
t=x;, x=x+2; y=t
As an alternative, we could convert the simultaneous equations to:
r=x+2; y=x-—2

However this kind of rewriting is not always possible in general.

4 Variable Transformations

In this section we give some examples of data transformations that can be used to obfus-
cate variables. We will use our refinement framework to specify these obfuscations and
give some proofs of correctness.

4.1 Encoding

In [11] an obfuscation for variables called encoding is given. A simple example of an
encoding for some variable x is:

r~ axx+ [

where « and 3 are constants. In [16] variable encoding was generalised as follows. For
a variable encoding, (which in [16] was called a variable transformation), we require two
functions f and g such that g - f = id. The function f is the function that performs the
transformation and g is its left inverse, so for the example above

f=Xaxi+ 0
g=AXi.(i = f)/a
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To perform the transformation using f and g, the right hand side of any assignment to
x has the function f applied to it and any uses of = should use g(x) instead. So the
statements

r=e and y = u(x)
should be transformed to

r=f(e) and y=u(g(z))

respectively.
For the transformation z ~» a * x + [ we can write the conversion and abstraction
functions as follows:

cf=r=axx+

af =z =(r—-0)/a
and, as before, we can define the conversion and abstraction functions for general variable
encodings as follows:

of =z = f(x)

af =z = g(z)
We need that cf;af = skip so

cfiaf = z=f(r); z=g(x)

= z=yg(f(x))
Since skip = x = x then cf;af = skip < ¢ - f = id which is the condition mentioned
earlier.
The conversion and abstraction functions are of the form of the functions used in

Section 3.3 and so we can use the equations given in that section for transforming state-
ments.

4.1.1 An example
In [16], the following example was discussed:
P={i=1; s=0; while (i <15)do {s=s+1i; i=1i+1}}

This example was then converted using the mapping i ~ 2 % i to give the following
program:

O(P)={i=2; s=0; while (i <30)do {s=s+(i/2); i =i+ 2}}

This transformation was given without a proof of correctness.
The refinement functions for this obfuscation are:

cf =i1=2xi af =i=1/2
To prove that O(P) is correct we use Equation (8) to show that:
of; P = O(P); af

This proof is given in Figure 2.
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af; P = {Equations (14) and (8)}

= {definitions} i =2; s=0; while ((/2) < 15) do
af;i1=1;5=0; {af; s=s+i;i=i+1; cf}; af
while (i < 15) do = {Equation (11)}
(s=s+ii=i+1} i =2; s =0; while ((i/2) < 15)do
= {cf;af = skip} {s=s+(i/2); i =2x*((i/2) + 1)};
af;i=1;s=0;cf;af; af
while (i < 15) do = {exact arithmetic}
{s=s+i;i=i+1} i =2; s =0; while ( < 30) do
= {Equation (11)} {s=s+i/2; i=1+2}; af
1=2;5=0; af; = {definitions}
while (i < 15) do O(P); af

{s=s+i;i=i+1}
Figure 2: Proof of correctness for a while loop
For an obfuscation which transforms a variable x to a * z + 3 % y, we have three rewrite rules:
o (use of x) U(x) ~ U(x%f*y)

. (defOfﬂf)ﬂf:EM:ﬂ=O¢*E’+ﬁ*yWhereE’:E[l“*f*y/g;]

t=x—fBx*y;
o (defofy) y= f(z)~ Jy=f(t/a);
r=t+Bx*y;

Figure 3: Rewrite rules for a variable encoding

4.2 A more complicated transformation

Suppose that we want to transform a variable x as follows
cf=r=axx+(x*y

where v and (3 are constants and y is a program variable. The abstraction function for
this obfuscation is

Note that, as with the earlier variable transformation, this obfuscation is not suitable if
multiplication may overflow and division is not exact.

For this transformation we have three rewrite rules which are summarised in Figure
3. First, we transform a use of x, say U(z), to U(“”%f*y) Next, using Equation (11) an
assignment to x is transformed as follows:

x— [Py

r=F~x=axE + (3xy where £/ = F|
a

/]
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cf; O(B);af = {sub 1, t; and x5}

= {definitions} T1 = axTo + B * Yo;
T=axx+ Bxy; t1 = a * xp;
t=z—Bx*y; y1 = f(zo);
y = f(t/a); Ty = axxo+ [ *y1;
r=1t+ Fx*y; T3 = Zo;
x=(r—LFxy)/a = {remove z1, t; and z9}
= {sim eqns} y1 = f(zo); 3= 20;
T1 = a*x9 + B * yo; = {sequential code}
t1 = x1 — B *yo; y=f(z); z=u
v = f(t1/a); = {z =2z = skip}
x9 =11 + B*y1; y = f(z);
x3 = (29 — B*xy1)/a; = {definition}
B

Figure 4: Proof of correctness for a variable encoding

For example

r4++ ~ z=ax*x((zr—0Fx*y)/a)+ 1)+ Gxy
= x=x—0*xy+a+pxy
= rv=x+«

Finally, our obfuscated value for x depends on y; thus whenever we have a definition
of y then we will also need a definition of = as well. Suppose that we want to transform
the statement B =y = f(z) where f is a function (which could depend on other variables
including y). We propose that a suitable transformation is

t=x—[(x*y;
O(B) = v = f(t/o);
r=t+ B *y;

where t is a fresh variable. In Figure 4, Equation (9) is used to show that:
cf;O(B);af =B

We do not always need to use a new variable when y is defined. For example, for our
variable encoding, the block

r=x+1; y=y+1
can be transformed to

y=y+1;, r=x+a+p
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4.3 Variable Splitting

Another variable transformation mentioned in [11] is the concept of variable splitting.
This is where a variable v (say) is represented by two or more new variables so that the
information contained in v is “split” across these new variables.

Suppose that we split an integer variable v into two variables a and b. Using [15], we
can write the relationship between v and the split components as

v~ (a,b)

We need three functions ¢ (the abstraction function), f; and fs (the conversion functions)
such that

a=f0) b= v=gab)

which satisfy v = ¢g(f1(v), f2(v)) and is subject to the invariant I(a,b).
A use of v, U(v), is replaced by U(g(a,b)). An assignment to v needs to be replaced
by two assignments:

v=FE~{a= fi(E); b= fo(FE)} where E' = E|[g(a,b), V] (15)

These transformations need to be applied exhaustively to the whole method (or at the
very least to the whole scope of v).

As an example, let us split v into two other integers — one containing the least
significant digit and the other containing the rest of the digits. So we can define v ~»
(v/10, v % 10) and let @ = v/10 and b = v % 10 — we have that 0 < b < 9 which we take
to be our invariant. From above, fi = Ai. i /10, fo = Xi. i % 10 and g = Ai, 5. 10 i + j.
We can easily show that af;cf = skip.

So, by Equation (15) the assignment v ++ would be transformed to:

a=(10xa+b+1)/10; b=(b+1)%10

Note that ((10*a)+b+1) %10 = (b+ 1) % 10.
However an equivalent version of O(S) is:

if (b==9)then{a=a+1;, b=0}else {b=0+1}

and in Figure 5 we show this is correct by proving S = c¢f; O(S5); af. This transformation
is more efficient as it does not need to use % or /.

4.4 Array Transformations

Various array transformations are mentioned in [11]:

e Splitting An array is transformed into two or more arrays (this is covered in more
detail in Section 4.4.2).

e Merging Two or more arrays are combined into one array.
e Folding A 1-D array is transformed into an n-D array.

e Flattening An n-D array is changed into a 1-D array.
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cf;O(S);af
= {af;cf = skip}

cf;if (b==9) then{af; cf;a=a+1;b=0; af; cf}

else {af;cf;b=0+1;af;cf}; af

= {Equation (13)}

cf; OGf ((v%10) ==9) then {c¢f; a=a+1; b=0; af} else {cf;b=b+1;af}); af
= {definitions and Equation (9)}

if (v%10) ==9) then {a =v/10; b=0v%10; a=a+1; b=0; v=10%a+ b}

else {a=v/10; b=v%10; b=>b+1; nc=10%a + b}

= {simultaneous equations in branches}

if ((vo%10) ==9)

then {a1 = 00/10; by = Uo%lo; aso=a1+1; by =0; v1 =10x*ay —i—bg}

else {a3 =vy/10; b3 = v % 10; by = b3+ 1; vy = 10 x az + by}
= {substitutions}

if ((vo %10) ==9) then {v; = 10 * (vo/10) + 10}

else {vg =10 (vg/10) 4 (vo % 10) + 1}

= {modular arithmetic and convert back to assignments}

if (v%10)==09) then {v=v+1}else {v=0v+1}
= {identical branches}

v=v+1

Figure 5: Proof of correctness for a transformation using the variable split

4.4.1 Reordering array indices

Let us consider how to specify array transformations which change the array indices and
so suppose that we want to permute the array indices. For a permutation we need an
bijective function

p::[0.n) — [0..n)

where n is the size of the array. This function ensures that we do not have any array
index clashes and the size of the array is not changed. Here is example permutation given
in [15]:

p=Ai.(axi+b (modn)) where ged(a,n) =1

Folding and flattening can also be considered to be transformations that change an
array index. For example, suppose that we have an array A of size n and an array R of
size p X ¢ (where p x ¢ =n). One way to convert between A and R is

Ali] = R[i div ¢, mod ¢]
and the inverse of this transformation is:

R[j, k] = Alj * ¢ + K]
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How can we write a conversion function for these kinds of transformation? We need
to consider how A[0], A[1],..., A[n — 1] are all transformed. So we could give a set of
n transformations (one for each element of the array) but in a program the index for
an array is usually a variable (or an expression). So we need to write an expression for
Alj], where j € [0..n), which shows how the array is transformed. Note that this is not
a variable transformation of j as j is merely a dummy variable acting as a placeholder.
When using such an expression at a particular point we need to instantiate j; with an
expression for the array index.

If we want to transform the array A into the array R using an index change function
f then the conversion function would be:

cf = R[f(j)] = Al]
and the abstraction function is:
af = Alj] = R[f(j)]
Suppose that we want to transform the statement
Alil = Ali — 1]+ 1
Using Equation (12) then we have:

Aljl = R[f(5)};
All] = Ali — 1] + 1,
R[f ()] = Al

When converting to a set of simultaneous equation, we use the normal subscripts to
denote new assignments on A, R and 7 but not on the dummy variable j. Note that an

expression of the form A[i] = ... is an assignment of A and not i.
From this program we have the following set of simultaneous equation:
Aulj] = Ro[f(4)];
By[f(5)] = Aslj]

When substituting the expression for A; we instantiate j with the expression ig — 1 to
obtain:

Avlj] = Rol[f(9)];
Aglio] = Rolf(io — 1)] + 1;
Ri[f(5)] = Aqlj]

When substituting A, we replace j with g to get:

Ailj] = Rolf(4)];

Aslio] = Rolf(io — )] + 1;

Ri[f(i0)] = Ro[f(io — 1)] + 1
Now removing the redundant assignments to A; and A, and converting back to sequential
code we have:

R[f())] = R[f(i = 1] +1
Note that since 7 is unchanged by this transformation then we could just use ¢ instead of
1o in the proof above.
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4.4.2 Array splitting

An array split aims to split an array A (of size n) into two new arrays P (of size m,) and
Q) (of size m,). This idea was generalised in [15] as follows. For an array split which uses
two new arrays, we need three functions ch (called the choice function), f, and f, (these
functions determine the positions of the elements in each of the arrays). The types of
the functions are as follows:

ch::[0.n) - B
fp 2 [0..n) — [0..my,)
fq 2 [0..n) — [0..m,)
The relationship between A and P and @ is given by the following rule:

.| Plfp(3)] if ch(i)
Ali] = {Q[fq(z)] otherwise

Note that we can only apply this transformation to statements that use A with an index.
For example, we could not easily transform statements which pass the array A to other
methods — we would also have to transform the method which “receives” the array A.

In [11], an example array split was given in which one of the new arrays contained
the elements of A, in order, which had an even index and the other array contained the
rest of the elements. For this split, we can define

ch = (M\.i%2==0)
fp = fq = ()‘22/2)

In [15], an example program for producing Fibonacci numbers using arrays was ob-
fuscated using the example array split from [11]. For this obfuscation, the statement

B=Afil =Ali — 1]+ Afi — 2] (16)
was transformed to:

if (1%2 == 0) then P[i/2] = Q[(i — 1)/2] + P[(i — 2)/2] )
else Qli/2] = P[(i - 1)/2] + Ql(i - 2)/2)

Is this transformation correct? Let us derive a correct obfuscation for the statement (16)
using the generalised array split.
We can write a conversion function for the generalised array split as follows

cf =if (ch(j)) then P[f,(4)] = A[j] else Q[f,(j)] = Al]
and so the abstraction function can be written as
af =if (ch(j)) then A[j] = P[f,(j)] else A[j] = Q[f,())]

Note that when we use these functions we will have to instantiate the index j to a
particular value (or expression). As B (in Equation (16)) is an assignment we can use
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af; Bicf
{definitions}
if (ch(j)) then A[j] = P[f,(j)] else A[j] = Q[f,(j)];
Alil = Ali — 1] + Ali — 2J;
if (ch(j)) then P[f,(j)] = A[j] else Q[f,(j)] = Alj]
{convert to simultaneous equations}
if (ch(j)) then Ay[j] = Fo[f,(5)] else Ai[j] = Qolfy(4)];
AQ[Z] = Al[Z — 1] + Al[Z — 2];
if (ch(j)) then Py[f,(5)] = Az[j] else Qi[f,(5)] = A2lj]
{substitute value for A; with j =i — 1}
if (ch(j)) then Ay[j] = Fo[f,(5)] else Ai[j] = Qolfy(4)];
if (ch(i —1)) then As[i] = Py[fp(i — 1)] + A1t — 2]
else Asfi] = Qolfq(i — 1)] + A1]i — 2J;
if (ch(j)) then Py[f,(5)] = Aalj] else Q1[f,(5)] = Az[J]
{substitute value for A; with j =i — 2}
if (ch(j)) then Ay[j] = Polf,(j)] else Ai[j] = Qolfq(5)];
if (ch(i —1)) then { if (ch(i —2))
then As[i] = Bo[fp(i — 1)] + Rolf,(i — 2)]
else A;[i] = Polfp(i — 1)] + Qolfq(i — 2)]}
else { if (ch(i—2)) ...}
if (ch(j)) then Py[f,(5)] = Asj] else Qi[f,(5)] = A2lj]
{substitute values in P; and ¢y with ¢ = j}
if (ch(i)) then{if (ch(i — 1)) then
{§F (ch(i — 2)) then P{[f,(i)] = Polf,(i — 1)] + Polfy(i — 2)]
else ...} else{...}
else{if (ch(i — 1)) then
[if (ch(i — 2)) then Q1[£,(1)] = Polfy(i — 1)) + Polfy(i — 2)
else ... } else{ ...}
{sequential code (removing redundant assignments)}

if (ch(i)) then {if (ch(i — 1))

then {if (ch(i — 2)) then P[f,(i)] = P{f,(i —1)] + P[f,(i — 2)]
else Plf,(0)] = Plf,(i — 1)] + QUfyli — 2]}

else {if (ch(i —2)) then P[f,(i)] = QUf,(i — 1)] + P[f(i — 2)]
else PLf,(i)] = QUy(i — )] + QUfy (i — 2]}

then {if (ch(i —2)) then Q[f, ()] = P[f,(i — 1)] + P[f,(i — 2)
else QUf,(1)] = Plfy(i — 1)] + QLfy (i — 2)]}

else {if (ch(i —2)) thenQ[f, ()] = QUf,(i — 1)] + PLf,(i — 2)
else QUf,(1)] = QUi — 1)] + QLfy (i — 2)]}}

Figure 6: A derivation for an array split
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Equation (12) to derive a correct obfuscation for B by computing af; B; cf — a sketch
of the derivation can be seen in Figure 6

From this proof we have a general form for O(B) and so let us consider the example
array split from [11]. We can simplify the expression for O(B) for this particular split
by removing infeasible paths. For example, when we have a statement of the form:

if (ch(i)) then {if (ch(i — 1)) then X else Y}

then X cannot be reached since ch = (Mi.i % 2 == 0) when ch(i) is True then ch(i — 1)
must be False.
By removing all the infeasible paths, we obtain the following definition for O(B).

if (ch(i)) then P[f,(1)] = Q[f,(i — V] + P[f,(i — 2)]
else QU (i)] = Plf,(i — 1)] + Qlfy(i - 2)]

Now putting in the functions ch, f, and f, we obtain

if (i%2 == 0) then P[i/2] =Q[(i — 1)/2] + P[(i — 2)/2]
else Q[i/2] =P[(i —1)/2]+Q[(i —2)/2]

This matches up to the statement in Equation (17) and so the transformation given in
[15] was correct.

5 Experimental Design

Now that we have set up the refinement framework and outlined some potential obfus-
cating transforms, we can describe our the background to our experiments in which we
use slicing to design obfuscations. The motivation of our experiments is derived from the
difficulty of empirically evaluating the obfuscatory strength of seemingly resilient obfus-
cating transforms. Majumdar et al. [30] (and separately by Udupa et al. [39]) observed
that in order to evaluate resilience of obfuscating transforms, we need to be able to an-
swer the following question — “What kinds of tools and program analyses are suitable
for evaluating a particular obfuscating transform?” They showed that it is impossible to
come up with one general purpose reverse engineering tool for deobfuscating all possible
obfuscating transforms (thinking from an adversary’s perspective, an adversary will have
to use different techniques to deobfuscate a program obfuscated with different kinds of
transforms). As an immediate consequence of this observation, we can argue that it is
also ambitious to design an obfuscating transform that will withstand all possible reverse
engineering attacks.

We use CodeSurfer, a static program slicer for code written in C [2], to evaluate our
obfuscations which are designed to resist slicing. It runs algorithms on system dependence
graphs (SDGs), an intermediate structure for representing programs [24]. CodeSurfer is
capable of backward slicing, forward slicing, and chopping. Backward and forward slicing
have been explained in a previous section. A chop includes all program points that are
affected between a source program point and a sink program point. For our experiments,
we restrict ourselves to backward slices on output statements of programs.
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It has been claimed in the existing literature [12] that obfuscating transforms which
are not derived from hard complexity problems are easy to undo. We set ourselves to
substantiate this rather suppositional claim in this contribution. Moreover, since we do
not know how to arbitrarily generate hard problem instances, we limit ourselves to man-
ufacturing resilient obfuscating transforms using simple program constructs. Therefore,
we choose the language C and restrict our obfuscations on a subclass of program con-
structs (assignments, output statements, conditionals and loops) that is common for all
imperative languages.

Mobile code (such as Java byte code or Microsoft’s MSIL) is considered more vul-
nerable to reverse engineering attacks than binary executables. Nevertheless, we have
designed our experiments using the constructs of the C language because it was difficult
to find a full-fledged working slicer for a language other than C. Experience with using
third-party tools for experimentation suggests that most of the tools built as part of
academic projects are in their prototypical phase and not well maintained [30]. The only
well-known static slicer for Java programs is Indus [26]; again, it is an academic project
and is yet to be empirically evaluated for correctness and performance. CodeSurfer is
an exception — it has been widely used since the release of the prototype Wisconsin
Program-Slicing Project in 1996 (based on the slicing algorithm by Horwitz et al. [24])
and has been extensively evaluated in published literature [6, 7, 32].

For each program (method) M in our experiments we will concentrate on variables
which are output (for instance, as part of a printf statement) and so we will have a set
of output variables V. Our slicing criterion will be the last output statement for each
output variable. For each v; € Vi the backwards slice for v; is denoted by SL;, SL;,; is
defined to be (), SL; (i.e. the intersection of all the slices) and |...| denotes the size.

Suppose that we apply an obfuscation O to the program P to obtain O(P), what
happens to the slicing criterion? Since we will use data refinement techniques [14] to
define our obfuscations we have a mapping between the variables in P and O(P) and so
we can write O(Vp) to denote the set of output variables in O(P). For the slicing point,
we again use the last output statement for each variable.

5.1 Metrics

We would like to be able to obfuscate programs so that it makes slicing less effective
as a tool for program comprehension. Meyers and Binkley [32] studied some slice-based
metrics which were proposed as measures of the quality of software. Two of the metrics
(Tightness and Coverage) were originally presented by Weiser [41] and the other two
(MinCoverage and MaxCoverage) were proposed by Ott and Thuss [33]. Here are the
definitions taken from [32] for the four slice-based metrics that we will use.

Tightness Tightness measures the number of statements in every slice.

(M) o
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Minimum Coverage Minimum coverage is the ratio of the smallest slice in a method
to the method’s length.

MinC(M) = m1n|SL |

1
[M]
Coverage Coverage compares the length of slices to the length of the entire method.

Vol

1 |SL;|
Cov(M
|Vo Z | M|

Maximum Coverage Maximum coverage is the ratio of the largest slice in a method
to the method’s length.

MaxC(M) = ﬁmax|SL,~|

In Section 7 we will use these metrics to evaluate how our obfuscations affect the
effectiveness of slicing. Our aim when performing slicing obfuscations is to increase some
(and ideally all) of the slicing metrics. We use CodeSurfer to compute the backward slice
for each output variable. To compute the metrics for each slice we need to measure the
size of the method and well as the size of the slices in a consistent manner. CodeSurfer
has a feature which allows the user to compute sets of program points (i.e. nodes in the
SDG) using a set calculator. We can use this calculator to compute measurements for
slices as well as for methods and we can perform operations on the sets.

For a particular method M, the size |M]| is obtained by computing the number of
program points contained within the method itself (and not any that are contained in
calls to other methods). The set of program points for a backwards slice from a point in
M may contain points from other methods, such as method calls, and so the size of a slice
may actually be bigger than |M]|. Since we are only concentrating on a single method
M, when computing the size of the slice we will only consider the part of the slice that
is contained in M. (Using the CodeSurfer calculator we can compute the intersection of
the slice and the points from M.)

5.2 Orphans and Residues

As mentioned earlier, slicing is often used to aid program comprehension. As obfuscation
is used to make programs harder to understand we should aim to create obfuscations that
make slicing less useful — such obfuscations will be called slicing obfuscations. What do
we mean by “less useful”? One definition could be that an obfuscation simply creates
larger slices. We can arbitrarily increase the size of a method and its slices by creating an
obfuscation that adds bogus statements that are contained in the slice. Unfortunately,
such simple obfuscations will not affect any of the program points left out of the original
slice. A more suitable obfuscation would try to increase the size of the slice by including
more of the program points that are left behind. We call the points that are left behind
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after slicing as the orphaned points. For each v; € V (the set of output variables) we
define:

residue(M,v;) = M\SL;

So the residue of a slice is defined to be the set of points that are orphaned. Using this
concept, we can define a slicing obfuscation as follows:

Definition 1 (Definition). An obfuscation O is a slicing obfuscation for a program P
and a variable V; if it decreases the number of orphaned points (the size of the residue),
i.€e.

|residue(P,v;)| > |residue(O(P), O(v;))]

Using inspiration from the Tightness, MinCoverage, Coverage and MaxCoverage met-
rics given in [33], we can define four residue metrics for a method M. We denote RES,,
to be the union of all the residues, i.e.

Vol
RES,, = U residue(M,v;)

i=1

In fact, RESu, = M\SLiy.

MinDensity The minimum density is the ratio of the smallest residue in a method to
the method length.

1
Min(M) = ] miin |residue( M, v;)|

Density Density compares the average residue size to the method size.

1 f:l |residue( M, v;)|

PAD = w7 ]

i=1

MaxDensity The maximum density is the ratio of the largest residue in a method to
the method’s length.

1
Max(M) = il mlax\residue(M, v;)|

Compactness Compactness measures the total number of orphaned points in relation
to the size of the method.

_ |RES,,|

C(M) o
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original() {
int c,nl =0,nw = 0,nc =0,in;

in =TI,
while ((c¢ = getchar())! = EOF) {
ne +-+;
if (c==""|c=="\n'|c=="\t) in=F;
else if (in==F) {in=T; nw++;}
if (c=="\n') nl ++; }

out(nl,nw,nc); }

Figure 7: Method to calculate the number of lines, words and characters in a piece of
text (the backwards slice for nl in indicated by underlined points).

Comparing our metrics to those in [33], we find that

Min(M) = 1— MaxCoverage(M)
D(M) = 1—- Coverage(M)

Max(M) = 1— MinCoverage(M)
C(M) = 1-—Tightness(M)

and by the definitions, we see that
Min(M) < D(M) < Mazx(M) < C(M) (18)

Our aim when obfuscating will be to make these metrics as low as possible (i.e. to have
as few orphaned points as possible). In Table 1 we use our residue metrics to evaluate
the effectiveness of some obfuscating transforms.

6 Applying Transformations to an Example

In this section, we will discuss some program transformations that are suitable as slicing
obfuscations. We will use some of the data transformations given in Section 4 and also
give some control-flow transformations. To help us to explain how these transformations
operate we will use a running example.

6.1 Word Count Example

Our running example will be the Word Count program which takes in a block of text
and outputs the number of lines (nl), words (nw) and characters (nc) and so, for this
example, Vo = {nl,nw,nc}. The method can be seen in Figure 7. Note that we write
out(nl,nw,nc) as a shorthand for the three printf statements contained in the actual
method.

Our slicing criteria will be the output statement and one of the three output variables.
In Figure 7 the underlined points denote the backwards slice from nl given by CodeSurfer.
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Me]t;()d M| | |Vol ane;f“enscmeU Min(M)| D(M) | Maz(M)| C(M)
original | 32 | 3 | 21| 14 | 22 | 26 | 43.8% | 59.4% | 68.8% | 81.3%
bogus | 38 | 3 | 8| 8 | 8] 9 | 21.1% |21.1% | 21.1% | 23.7%
encodel | 35 3 124 17| 7 129 200% | 45.7% | 68.6% | 82.9%
encode3 | 42 | 3 | 8 | 8 |10 ] 11| 19.0% | 20.6% | 23.8% | 26.2%
loop | 36 | 3 | 7| 7 | 718 194% | 194% | 194% | 22.2%
split | 44 | 3 | 91 9 | 9]10] 205% | 205% | 205% | 22.7%
array | 28 | 3 | 7| 7 | 7|8 | 25.0% |25.0% | 25.0% | 28.6%

Table 1: Table of results for the residues of our Word Count examples

We can see that the residue for nl contains program points for both nc and nw. The aim
of our obfuscations will be to create dependencies between the three output variables and
so decrease the sizes of the residues.

We discuss several techniques to decrease the size of the residues for the output
variables and thus decrease the effectiveness of slicing. In Table 1 we summarise the
results of our different transformations of the Word Count example. Each row of the
table contains the results for a particular experiment where we record the size of the
method, the size of each residue (calculated using CodeSurfer by subtracting the slice
size from the method size), the size of the union and the results for our four residue
metrics from Section 5.2. The top row of the table displays the measurements for the
original Word Count method.

The result of Table 1 is represented pictorially by the bar chart of Figure 8. A
distinctive pattern of decreasing residue percentages in the figure indicates better slicing
obfuscations.

6.2 Adding a bogus predicate

Suppose that the residue for a variable y contains an assignment for another variable z.
To include a statement x = G in a slice for y we can transform it to

=G if (pF) y=H(z);

where pf is a false predicate and H is an expression depending on z. As we appear
to have set up that the definition of y depends on x then the statement x = G will be
included in the slice for y. Another possibility is the following transformation:

r=G; S, ~ x=G;if (¢")S; else y = H(z); (19)

where S is a statement and ¢’ is a true predicate. To prove that this is a correct
transformation, we can go back to our statement models from Section 3.1. We can see
that with an initial state of oy and an initial value x( for x the final state for both blocks
in Equation (19) is:

S(o0 ® {z — Glzo,/2]})
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Figure 8: Bar Chart showing the residue metrics for our Word Count examples

For Word Count, we added this simple bogus predicate
if (nl > nc) nw = nc+ nl; else {if (nw > nc) nc =nw — nl; }

at the end of the while loop. This predicate adds dependencies between the three vari-
ables and so the slice for each variable contains the definitions for the other variables.
Since nc is incremented for every character and nw and nl are only incremented for
certain characters we have the following invariant:

nc > nw Anc > nl (20)

In Figure 9 we can see this method with the backwards slice from nc.
In Table 1 we can see for the bogus method that we increase the method size by 19%
but we significantly decrease the size of the residues and thus the slice sizes are increased.

6.3 Variable Encoding

In Section 4.2 we gave an encoding in which a variable x is transformed so that it seems
to depend on a variable y:

T~ axx+ Fxy
For Word Count, we will perform the following encoding:

ne ~» nc + nl — nw
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bogus() {
int c,nl =0,nw = 0,nc =0,in;

in =TI

while ((c = getchar())! = EOF) {
ne ++;
if (c==""|c=="\n[c=="\t) in=F;
else if (in==F) {in=T; nw++;}

if (c=="\n') nl ++;

if (nl > nc) nw = nc+ nl;

else {if (nw > nc) nc=nw — nl;} }
out(nl,nw,nc); }

Figure 9: Addition of a bogus predicate (with the backwards slice for nc).

encodel() {
int c,nl =0,nw = 0,nc =0,in;
in =TI
while ((c¢ = getchar())! = EOF) {
ne ++;
if (c==""|c=="\n|[c=="\t) in=F;
else if (in==F) {in=T; nw++; nc——;}

if (c=="\n') {nl++;nc++;} }
nc =nc — nl + nw;
out(nl, nw, nc); }

Figure 10: Simple variable encoding (with the backwards slice for nc).

By the rewrite rules in Section 4.2, we can prove that, for example,
nc++ ~ nc++
nw++ ~ {nw++; nc——;}

Before nc is output, we need to include the statement
nc = nc — nl + nw;

which is, of course, af for this transformation.

The full method for this transformation can be seen in Figure 10 with the backwards
slice for nc indicated. We can see that we have successfully reduced the residue size for
nc from 22 to 7 but we fail to do so for the other two outputs variables and, in fact, we
increase the size of the residues. This highlights the importance of adding obfuscations
for all of the output variables.

To create dependencies for all the variables, we can perform these three encodings:

ne ~ ne — nw nw ~ nw — nl nl ~ nl + nc
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encode3() {
int c,nl =0,nw = 0,nc =0,in;

in =TI
while ((c¢ = getchar())! = EOF) {
nc++; nl ++;
if (c==""|c=="\n'|c=="\t) in=F;
else if (in==F) {in=T; nw++; nc——; nl ——;}
if (cm ++; nw ——; } }

int £ = nl — nc;
nc=nc—+nw —t;

nl =t + nc;

nw = nw + nl — nc;
nl = nl — nc;

out(nl, nw,nc); }

Figure 11: Three variable encodings (with the backwards slice for nw).

We apply these transformations in order starting with the one for nc. We use the rewrite
rules given earlier and before the output statement we include the abstraction function
for each transformation.

After performing these encodings, in order, we obtain the method given in Figure 11.
Note that we have had to use a temporary variable ¢ (which is included in the slices)
and, from Table 1, we can see that for encode3 the size has increased by 31%. However,
we have reduced the sizes of the three residues and so the metrics values have decreased.

6.4 Adding to the guard of a while loop

Since we have a while loop we can add predicates to the guard to create dependencies.
We have two choices:

while (¢) S ~ while (¢ Ap) S
while (¢) S ~ while (¢ Vq) S
Under what conditions are these transformations valid?
If we add p as a conjunction then when c is false then ¢ A p will also be false. When
c is true then we also want ¢ A p to be true, i.e.
c=CAD
{distribution of =}
(c=c)N(c=Dp)
{idempotence of =}
true A (¢ = p)
{unit of A}
cC=Dp
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loop() {
int c,nl =0,nw=0,nc=0,in,j =0;

n = F;

while (((c = getchar())! = EOF) && (j >=10)) {
ne +-+;
if (c==""|c=="\n[c=="\t) in=F;
else if (in==F) {in=T; nw++;}
if (c=="\n') nl ++;
Jj =nc+ nl — nw; }

out(nl,nw,nc); }

Figure 12: Adding a new loop variable (with backwards slice from nw)

Let us consider the conditions for adding the predicate ¢ as a disjunction. When c is
true then cV q is also true but when c is false we want ¢V q to be false as well, i.e.

—c= =(cVq)
{de Morgan’s Law}
—c = (me A —q)
{distribution of =}
(mc = —¢) A (me = —q)
{idempotence of =}
true A\ (—c = —q)
{unit of A}
—-C = ¢

{contrapositive}
q=c

For Word Count, we add a new, fresh variable j to the loop with which we can create
dependencies on the three output variables. Let us suppose that we add the statement
j = nc+ nl — nw into the loop. Before the loop, we initialise j by adding the statement
int j = 0. By our invariant, Equation (20), we can see that the value of j is always
non-negative in the loop and so we change the loop header to

while (((¢ = getchar())! = EOF) && (j >=0))

We then add our assignment for j into the loop. The full method can be seen in Figure
12. From Table 1, for loop we have only added 4 extra points to the method but the size
of the residues are all decreased (for example, a 68% decrease for nc).

The addition of the guard does not change the while loop (as j is always non-negative)
and the extra statement for j does not change the values of nl, nw or nc. Thus the
transformation is correct.
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split(){
intc,nl =0,nw=0,a=0,b=0,in;
n = F;
while ((c¢ = getchar())! = EOF) {
if (b==9){a++;b=0;}else {b++;}
if (c==""|c=="\n|[c=="\t)in=F;
else if (in==F) {
if (b<10) {in=T; nw++;}
else {nw =nw+nl; b=>b+nw;} }
if (c=="\n') {nl++; if (in==T) {nl=a+nl;}}
out(nl,nw,10 xa +b); }

Figure 13: Variable Split (with the backwards slice for 10 % a + b).

6.5 Using a Variable Split

In Section 4.3 we gave details of how to perform a variable split. So for Word Count, we
will split ne into two other integers by using nc ~» (nc/ 10, nc % 10) and let a = nc /10
and b = nc% 10 — we have that 0 < b < 9 which we take to be our invariant. We take
fi=Xi.i/10, fo =Xi. i%10 and g = Ai, j. 10 %7 + j.

The first step is apply the transformation to nc. The statement nc = 0 becomes
a = 0; b = 0; and the output for nc is now out(10 * a + b). To measure the size of the
slice (and the residue) we will take backwards slice of 10%a+ b and in Table 1 the values
for nc represents the values for the slice of a and b.

In Figure 13 we can see the method after this transformation. In the method, we have
added two bogus predicates as the variable split in isolation does not produce a very good
slicing obfuscation. The first predicate uses our invariant on b to add in dependencies for
nw and b. The other comes after the increment for nl where we add in a dependency on
nl. From Table 1 we can see that for split we have reduced the residue sizes for the three
output variables but we increased the method size by 38%. This size increase is due to
the extra assignments and predicates needed for this transformation.

6.6 Arrays

So far we have consider only simple variables but what would happen to the slicing (and
the obfuscations) if we use arrays? Suppose that we had an expression of the form:

z = f(al0])

for some variable z and array a. If we perform a backwards slice for x from this point
then the slice for « will contain assignments for other array indices and not just for a[0].
For Word Count, we can perform this transformation:

nl ~ al0] nw ~ a[l] ne ~ al2]

34



array() {

int a[3] = {0,0,0};

n = F;

while ((c¢ = getchar())! = EOF) {
al2] ++;

if (c==""|c=="\n'|[c=="\t) in=F;

else if (in==F) {in=T; a[l] ++;}

if (c=="\n') a[0] ++; }
out(a[0], a[l], a[2]); }

Figure 14: Transformation to arrays (with the backwards slice for a[0]).

This transformation actually is just a variable renaming. If we ensure that the array a is
indexed by using only 0, 1 and 2 then the transformation is correct. In Figure 14 we can
the result of taking backwards slice for a[0] (i.e. nl). The results for array can be seen
in Table 1 where the results for nl, nw and nc represent a[0], a[1] and a[2] respectively.
The size of the new method is actually smaller than the original method — this is due
to the initialisation of the variables. This simple transformation results in significantly
decreasing the residues for all three of the output variables.

Once we use arrays we can employ many different array transformations. However,
array restructuring transformations such as splitting and folding [11], which are often used
as array obfuscations, are not very suitable for creating dependencies on other variables.
Instead we should concentrate on transforming the array index to create dependencies.

7 Further Examples

In the previous section we gave details of how to produce slicing obfuscations for the
Word Count program but can we use these techniques to produce slicing obfuscations
for other programs? We now use some of some of the data and control-flow obfuscations
given in Section 6 to transform four more C programs. In the rest of this section we
briefly describe each of the programs, the obfuscations that we performed and the slice
sizes we obtained using CodeSurfer. In the final section (Section 7.5) we summarise the
results of our experiments which can be seen in Table 2. Each row of the table contains
the results for a particular method: we have recorded the size of the method, the size
of each slice with respect to a particular variable and the size of the intersection of each
of the slices (all of these values were computed using the set calculator of CodeSurfer).
Finally we have computed the values for the four slicing metrics (mentioned in Section
5.1) as percentages.
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| Method M | [M] | [Vo] | For each v;, the slice size [SL;| |[SLi| | T(M) | MinC(M) | Cov(M) | MaxC(M) |

ps 21 2 |prod| 12 | sum | 12 7 33.3% 57.1% 57.1% 57.1%
psObf1 22 2 |prod| 16 | sum | 13 11 | 50.0% 59.1% 65.9% 72.7%
psObf2 26 2 | prod| 19 | sum | 19 17 | 65.4% 73.1% 73.1% 73.1%
search 107 | 2 n 9 | secs | 11 2 1.9% 8.4% 9.3% 10.3%

searchObf1 | 120 | 2 n 45 | secs | 11 10 8.3% 9.2% 23.3% 37.5%
searchObf2 | 127 2 n 49 | secs | 48 46 36.2% 37.8% 38.2% 38.6%
oV 124 2 fuel | 23 | dist | 46 19 15.3% 18.5% 27.8% 37.1%
rovObf1 129 2 fuel | 60 | dist | 46 45 34.9% 35.7% 41.1% 46.5%
rovObf2 132 2 fuel | 62 | dist | 60 59 44.7% 45.5% 46.2% 47.0%
rovObf2np | 94 2 | fuel | 62 | dist | 60 59 | 62.8% 63.8% 64.9% 66.0%

scatter 143 | 3 si | 116 | ru | 111 9 8 5.6% 6.3% 55.0% 81.1%
scatterObf1 | 148 | 3 si | 132 ru | 132 132 | 131 | 88.5% 89.2% 89.2% 89.2%
scatterObf2 | 150 | 3 si | 139 ru | 139 139 | 138 | 92.0% 92.7% 92.7% 92.7%

Table 2: Table showing the slicing metrics values for four example programs




7.1 Product and Sum

The classic slicing example of a method calculating the product (prod) and sum (sum)
of the first n positive integers was considered first. Our program contained a while loop
using a variable ¢ which counts up from 0 to n.

We first created a dependency for prod on sum by adding the condition of Vsum < 0 in
the guard of the while loop. Then we added a bogus predicate p? around the statement
prod = prod x i. The metrics values for three methods can be seen in Table 2. The
method ps relates to the original obfuscated method, in psObf1 the loop dependency
was created and finally we created the bogus predicate in psObf2. Details of some more
slicing obfuscations for the product and sum program can be found in [17].

7.2 Search Sort

The search sort program (obtained from [40]) takes an argument n from the user, performs
different sorts and searches on n elements and then displays the time taken to do each one.
So the two output variables at each stage are the number of elements n and the number of
seconds secs. This program is different from those considered so far as it contains various
methods which the main method calls. However the results for all of these methods are
discarded and only the time taken to perform each method is computed. Thus slices for
both n and secs only contain statements from the main method. So for our experiments
we only consider changing statements in the main method. (Obviously when obfuscating
we should aim to obfuscate the other methods in the program but this is beyond the
scope of this contribution.) The metric results for the main method search can be found
in Table 2.

As n is constant throughout the program (it is inputted by the user) we attempt to
make n vary by adding a variable encoding. We would like to create a dependency for n
on sec but n is declared as an integer and secs is a float. So we declare a new integer
variable k which we define as k = (int) 10 % secs and we perform the transformation
n ~» n + k. By the replacement rules for variable encoding we need to redefine k every
time that secs is redefined and so we can use a different declaration for k. Note that this
kind of transformation could make the value of n overflow and so we should put in checks
to ensure that this does not happen. The results for this obfuscation can be found in
Table 2 for the method searchObf1 and we can see that we have significantly increased
the slice size for ¢ but the size for secs is unchanged.

To create some dependencies for secs we place two bogus predicates near the end of
the method. The value of secs is obtained in the following way:

cl = clock();
search_method();
c2 = clock();

secs = c2 — cl;
So, for example, we can change the first assignment to:

if (secs >=0) cl = clock(); else c1 = bogus(n);
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The results after the addition of these predicates can be found in Table 2 for the method
searchObf2 and we can see that we have increased the slice size for secs.

7.3 Rover

The rover program checks whether a plan for manoeuvring a vehicle around an obstacle
to a given target, with a limited amount of fuel, satisfies certain constraints. It simulates
a land rover vehicle which needs to be driven around a rock on the Martian surface by
giving it coordinates as input [40]. However, the vehicle goes off-track from the specified
target and it has limited amount of fuel. The challenge is to bring the vehicle within
5km of the target by inputting a sequence of coordinates which will also not exhaust the
fuel before it reaches the target. Here we consider two output variables fuel and dist.
The results for the original method can be seen in the rov row of Table 2.

So that fuel depends on dist we perform the following variable encoding fuel ~»
fuel + dist. Note that we have to add an extra temporary variable ¢ to perform the
encoding. The values for this obfuscation can be found in the rovObf1 row of Table 2.

The value of dist is computed as follows

dist = \/dx? + dy?

where dx and dy are two other variables. To create a dependency for dist we changed an
assignment to dx as follows:

dx = E; ~ if (fuel >= dist) de = E; else dx = bogus;

By the variable encoding above we know that since dist > 0 then fuel > dist. The row
rovObf2 in Table 2 contains the values for this obfuscation.

The rover example contains many printf statements which cannot be contained in
any slice. So to find out a more accurate evaluation of our obfuscation we removed all but
the final printf statements and the result for this method can be found in the rovObf2np
in Table 2.

7.4 Scattering

The scattering program is a typical physics problem dealing with the famous Rutherford’s
scattering experiment for finding the size of the nucleus of an atom (from Tao Pang’s
book “An Introduction to Computational Physics” [35]). The original program contained
several procedures for performing integration using Simpson’s rule, finding roots using
the Secant method, and finding the first and second order derivatives with the three-point
formula. We flattened the procedures by inlining them in the main() procedure (which
we call scatter) and we consider three output variables si, ru and i.

We observe in the program source code that the statement b = b0 + ¢ * db; maintains
the invariant ¢ > b A b0 < b. Our first obfuscation consists of performing the following
transformations by introducing bogus predicates:

si = log(sigli]); ~ if (i+1>0b) si = log(sigli]); else si = bogus;

ru = log(ruth); ~» if (b0 <=0b) ru = log(ruth); else ru = bogus;
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in the code. The row scatterObf1 in Table 2 contains the values for this obfuscation.
Interestingly, with the addition of 5 more SDG nodes, the slice sizes for variables s,
ru and ¢ increases from 116 nodes, 111 nodes and 9 nodes respectively to 132 nodes.
In an attempt to provide maximum code coverage, we introduce another similar bogus
predicate to include an additional 7 nodes in each of the slices of si, ru, and 7. The
row scatterObf2 in Table 2 indicates the changes brought about by this obfuscating
transform.

7.5 Results

We can easily see that, for each obfuscation, we have increased the values of all the slicing
metrics and we can also see that we do not significantly increase the size of the methods
(the worst is a 24% increase for ps but the size of the slices increase by 58%). The metric
values for the search sort obfuscations are generally much lower than those for the other
programs. This is because the search sort program uses different searching and sorting
algorithms contained within other methods and we have only considered intra-procedural
slices. We decided to flatten the scattering program before obfuscating and so we were
able to obfuscate the program more successfully.

In Table 2 we gave the results for our experiments using the slicing metrics mentioned
in Section 5.1. Using these results we can compute the values for our residue metrics
(given in Section 5.2) and these values can be seen in Table 3. We can see that we have
managed to reduce the residue metrics values which was our stated aim. One aspect that
is key to decreasing the residue metrics values is to ensure that we decrease |RES,, |
(i.e. the union of all the residues). Decreasing the size of the union of the residues means
that we decrease the value of the compactness metrics and, by Equation (18), we are
likely to decrease the values of the other residue metrics. To reduce the union of the
residues (which is equivalent to increasing the intersection of the slices), we need to add
dependencies between all of the variable in Vp.

The result of Table 3 is represented graphically using a bar chart in Figure 15. This
figure groups the residue metrics for each of our example programs (12 programs grouped
in 4 categories). We can see from Figure 15, a better slicing obfuscation reduces the
percentage of the resides that are left behind after slicing.

8 Applying the transformations

In a previous section we outlined a number of transformations that are suitable for
producing slicing obfuscations. We discuss some of the choices that we can make when
applying our obfuscations.

8.1 Placing the transforms

When determining where to place our obfuscating transforms we used the backwards
slices of the program to help us to decide — in particular, we generally concentrated
on orphaned points in the residues of the output variables. For transformations such as
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| Method M | [M] | [Vo] | For each v;, the size of the residue | [RES,,| | Min(M) | D(M) | Max(M) | C(M) |

ps 21 2 |prod| 9 |sum| 9 14 42.9% | 42.9% | 42.9% | 66.7%
psObf1 22 2 |prod| 6 |sum| 9 11 27.3% | 34.1% | 40.9% | 50.0%
psObf2 26 2 |prod| 7 |sum| 7 9 26.9% | 26.9% | 26.9% | 34.6%
search 107 | 2 n 98 | secs | 96 105 89.7% | 90.7% | 91.6% | 98.1%

searchObf1 | 120 2 n 75 | secs | 109 110 62.5% 76.7% 90.8% 91.7%
searchObf2 | 127 2 n 78 | secs | 79 81 61.4% 61.8% 62.2% 63.8%
rov 124 2 fuel | 101 | dist | 78 105 62.9% 72.2% 81.5% 84.7%
rovObf1 129 2 fuel | 69 | dist | 83 84 53.5% 58.9% 64.3% 65.1%
rovObLf2 132 | 2 | fuel | 70 | dist | 72 73 53.0% | 53.8% | 54.5% | 55.3%
rovObf2np | 94 2 | fuel | 32 | dist | 34 35 34.0% | 35.1% | 36.2% | 37.2%

scatter 143 | 3 si | 27 | ru | 32 134 135 18.9% | 45.0% | 93.7% | 94.4%
scatterObf1 | 148 | 3 si | 16 | ru | 16 16 17 10.8% | 10.8% | 10.8% | 11.5%
scatterObf2 | 150 | 3 si | 11 | ru | 11 11 12 7.3% 7.3% 7.3% 8.0%

Table 3: Table of residue metrics values for four example C programs
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Figure 15: Bar Chart showing residue metric values for all our example programs

encodings and splits we need to apply them to the whole of the method (or, at least, to
the scope of the variable). With other transformations, such as placing bogus predicates,
we have a choice in where to place our obfuscations.

If, when slicing for a particular variable, y say, we have an assignment x = G in the
residue of y then we can add a dependency for y by using the transformation in Equation
(19). If we have a number of assignments for x then, as we consider backwards slices, we
pick the last assignment for x.

Suppose we have the following code fragment:

r=F;, S, x=F;

where S is a block of statements in which x is used but not defined and F'is an expression
which does not depend (directly or indirectly) on z. This means that the assignment
x = F Kkills the previous definition of x and the backwards slice for £ may not contain
the earlier definition for z. We can perform the following example transformation:

r=1F; ~ if (p')r=F; elsex ++;

Now the backwards slice for x should include the previous assignment to x.

Many of the transformations that we have given relied on the use of predicates which
were a simple kind of opaque predicate [12]. A predicate p is defined to be opaque at
a certain program point if its value is known to the obfuscator but it is difficult for an
adversary to deduce statically. The predicates in our examples used invariants that we,
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as the creator of a method, knew to be true. We should aim, where possible, to use
predicates that are hard for an attacker to determine, or, at the very least, require some
calculations to compute this value. When deciding where to place a bogus predicate, we
should, therefore, determine what invariants we could use and pick a place that has an
invariant which seems hard to determine.

Our loop transformation in Section 6.4 was effective in reducing the sizes of the
residues with only a small increase in the method size — but obviously this transformation
is only applicable if our method contains a loop. If we can “fake” a while loop then we
can apply the loop transformations. Suppose that we have a block of code B and the
state before B is 0. Then we need to find a predicate p such that p(o) is true but p(B(0))
is false. Armed with such a predicate we can perform the following transformation:

B ~~ while (p) {B}

Thus we can now apply our loop transformations.

8.2 Program Blocks

As we saw in Section 3.3 if we have a piece of code
P = Bl; BQ

(where B; and B, are blocks of code) and an obfuscation O with conversion function
cf and abstraction function af then we have two ways to obfuscate P. Either we can
obfuscate By and B, separately and compose the results, i.e.

O(P) ={af; Bi; cf}; {af; By cf}
or we can obfuscate both blocks together i.e
O(P)=af; Bi; By cf

The two obfuscations that we obtain are equivalent but they may look different. In
particular the second derivation may reduce the number of assignments.
For example, suppose that:

P={x=x+1; B; v =3x*ux}

where B is a block of code in which x does not occur and cf =r=x+2and af =z =
x — 2. If we obfuscate the two assignments separately then we have that

OP)={x=x+1; B; vt =3xx—4}
However computing af; P; cf will give us the following set of simultaneous equations:
r1=20—2; xo=x1+1; B, x3=3%x9; x4 =23+ 2
Reducing this set of equations (and remembering that x does not occur in B) gives us:

B; x4 =3%(xg—1)+2
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Thus O(P) ={B; v =3z — 1}.

The two derivations produce equivalent programs but the second program only has
one assignment to x. From an obfuscation point of view, the first program would appear
to better as it has more assignments to x and so it is (slightly) harder to work out the
value of x at the end of O(P).

Instead of completely reducing a set of simultaneous equations we can partially reduce
them. For instance in the example above, we can substitute z; and z3 and so we would
obtain:

OP)={x=x—-1;, B; v =3xx+2}

We can partially reduce a set of simultaneous equations in different ways. Thus we have
some flexibility when deriving obfuscation for a sequence of statements using a particular
conversion function.

8.3 Localising the transformations

The variable obfuscations proposed in [11] and [16] are applied to an entire program or at
the very least the entire scope of a variable. If we apply a data obfuscation to the whole
program then we need to convert any input to an obfuscated variable using a conversion
function. Any outputs of obfuscated variables need to have the appropriate abstraction
function applied to them.

When using conversion functions we can localise an obfuscation to a particular code
block. Suppose we have an obfuscation (with functions c¢f and af) of a variable x and a
piece of code with three blocks A; B; C' which all define or use x. Then we can obfuscate
B separately to obtain O(B) and so our code becomes:

A; cf; O(B); af; C

Note that since cf; O(B); af = B then we must ensure that we do not “reduce” this code
sequence otherwise we will “deobfuscate” O(B).

If we had three different data obfuscations (say O4, Op and O¢ with appropriate
conversion functions) then we can obfuscate the blocks A, B and C' separately and
sequentially compose the results:

cf a3 Oa(A); af a5 cf gy O(B); afp; cfc; Oc(C); afe

This means that we can have regions in the program in which we can apply different
obfuscations to the same variable and so we can create a “scope” for an obfuscation. To
help disguise the conversions we should try to combine the expressions for af 4; cf 5 and

afp; cfc.

8.4 Combining transformations

Since we are considering our obfuscations as functions we may naturally want to compose
obfuscations. For some variable x, suppose that we have two obfuscations O; and Os.
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For these obfuscations, the conversion functions are c¢f; =z = fi(x) and cfy = x = fo(x)
(with corresponding abstraction functions af; = x = gi(x) and afs = x = gs(x)). To
obfuscate a statement S by applying O, followed by Oy we have:

02(01(5)) =afy; afy; S; cfi; cfq

This is equivalent to having a single obfuscation O;,, with conversion function cf1,, =
x = (fo- f1)(z) and abstraction function afi.o =« = (g1-g92)(x). We define Oy, = Os-O;.

For example, we can apply a variable transformation to array elements. So using the
function A\z.(2 % x 4+ 1) we could have the following array conversion between the arrays

A and B:
cf =Bli]=2xA[i] +1

Since 7 acts as a dummy variable we can write transformations which depend on 7:
cf = B[i] = Ali] +1i

We can combine a variable transformation with one of our array obfuscations given
in Section 4.4.1. For instance if we had the functions f :: Z — Z and p :: [0..n) — [0..n)
(with appropriate inverses) then here is a possible conversion function

cf = Ali] = f(Alp(2)])

in which f acts as a variable transformation and p is an array index permutation.

Another way to combine obfuscations is to overlap their scope. For instance suppose
we have the following blocks of code: A; B; C' and we have two data obfuscations O
applied to A; B and Oy applied to B; C. Then we have:

O1(A); 012(B); 02(C)

For our example we considered three output variables and so sometimes it was neces-
sary to add more than obfuscation. For example, for encode3 (from Section 6.3) we use
three different encodings (one for each output variable). This means that, in effect, we
have create a composite obfuscation. Further work is needed study the effects of compos-
ing obfuscations together and, in particular, does the order in which we add obfuscations
(and the order in which we consider the output variables) matter?

9 Conclusions

In this contribution, we have conducted experiments in which we considered adding
obfuscations that were targetted to be more resistant to slicing. We have proposed a
new measurement for slicing obfuscations called a residue which consists of points which
are orphaned (i.e. left behind) by slicing. Our goal has been to reduce the number of
orphaned points. In Table 1 and Table 3 we saw that, according to our residue metrics,
we have successfully created transformations to reduce the size of residues. Since our
metrics are related to the slicing based metrics from [33], our obfuscations appear to
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make slicing less useful. The results for the single variable encoding encodel for the
Word Count example highlight the importance of ensuring that when obfuscating we
consider the slices for all variables. We have only conducted relatively small experiments
but it has shown us how to use obfuscations to decrease the effectiveness of slicing.

In our experiments we only used simple obfuscations to illustrate the techniques used
to create slicing obfuscations. Even with these simple transformations we have still
managed to decrease the effectiveness of slicing which was our stated goal. When faced
with an attacker who is armed with more than just a slicer we will obviously have to
design more complicated transformations. This will involve creating predicates that are
harder for an attacker to understand, using different program constructs such as pointers
and dealing with inter-procedural constructs.

We have modelled our statements as state functions and data obfuscations as refine-
ments and as a consequence we have been able to easily prove the correctness of our
data obfuscations. For our obfuscations we have given rewrite rules detailing how code
fragments are transformed. These rules ensure that we apply our obfuscating transforms
precisely and so we can be sure that our obfuscations are correct.

Our obfuscations were created manually and in Section 8 we indicated how we used
slicing to determine where we should place our obfuscating transforms. So an area for
future work is to consider automating the process of applying obfuscating transforms.
One particular concern for automation is the development of heuristics to decide where
to place slicing obfuscations in order to maximise the effects of the transforms.
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