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Foreword

It is my great pleasure to welcome you to the Oxford University Computing Lab-
oratory Student Conference, 2009. These proceedings contain the abstracts of the
conference, held on Friday 20 November, 2009, at Keble College.

Traditionally, the Computing Laboratory has held this event once every two
years. However, the healthy growth in graduate intake, together with the success
of the conference last year, has motivated us to depart from tradition by holding
the conference for a second year running.

In response to the call for papers, the Programme Committee received an
encouraging number of submissions on a broad range of subjects. The abstracts
contained in these proceedings are a reflection of the diversity of interests and
research goals of those working in the Computing Laboratory. For some of the
authors, this is their first conference submission; for others, this is the first public
presentation of new work. The conference thus provides a forum for students to
gain experience of presenting their research at conference, and to receive feedback
on that research. Moreover, those students participating in the conference as
Programme or Conference Committee members have had a taste of the rigours of
conference preparation and of the refereeing process.

Each of the following 14 abstracts has been peer-reviewed by three members
of the Computing Laboratory. The peer-review groups were all comprised of a
mixture of DPhil students and established academic staff. The programme Com-
mittee selected the papers based on the comments of the reviews after extensive
discussion.

There are many people to whom the Programme and Conference Committees
would like to extend grateful thanks. We would like to warmly thank the reviewers
who gave freely of their time and energy to participate in the refereeing process.
We are grateful to Jeremy Gibbons for agreeing to deliver the conference keynote
speech, and to Marta Kwiatkowska and Shamal Faily for offering advice on the
practicalities of running a conference. Thanks are also extended to the Computing
Laboratory for its support and sponsorship, without which the conference could
not have taken place, and to Keble College for kindly hosting us. Finally, but by no
means least, we thank the presenters for their hard work and for their contribution
to such a varied and stimulating programme.

Nicolas Wu : Programme Co-Chair

2



Organisation

Programme Committee

Christopher Broadbent, Lu Feng, Ronald Kainda, John Lyle, Afifah Waseem,
Nicolas Wu

Conference Committee

Christopher Broadbent, Sara-Jane Dunn, Jun Ho Huh, Daniel James, Jim White-
head

Steering Committee

Marta Kwiatkowska (Honorary Chair), Shamal Faily (Past Chair)

Referees

Christopher Broadbent, Ramón Casero Cañas, Alastair Donaldson, Stephen Drape,
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The Use of Image Partition Forests for Automatic
Spine Identification in Abdominal CT Slices

Stuart Golodetz, Irina Voiculescu and Stephen Cameron

Oxford University Computing Laboratory

Fig. 1. Example results of our spine identification method: single red borders indicate ‘outer’ bor-
ders of the identified spine; double borders indicate ‘inner’ ones. Result MC-2-137 is an example of
a failure case due to small pieces of spine which are disconnected from the primary feature.

From 3D visualization, to volume estimation, to automatic landmark-based registration,
there is a plethora of medical imaging applications which rely on initially knowing where
key features (e.g. organs and tumours) are to be found in medical images (CT, MRI, etc.)
The process of identifying these features is difficult to automate, however, for a number of
reasons:

– The boundaries in the image between adjacent features can be indistinct
– It is difficult to encode positive shape constraints for features which may differ signifi-

cantly from slice to slice
– The greyscale (Hounsfield Unit, in the case of CT) distributions for distinct features

often overlap, making it difficult to distinguish features by values alone

Radiologists, who are expert at reading medical scans, do not rely merely on greyscale
values to tell features apart, but make use of their knowledge of anatomy to decipher an
image. This anatomical knowledge can take many forms, but one of the most straightforward
is localization information, i.e. knowing which features they expect to see in certain places
in the image. Computer programs can equally make good use of this information to narrow
down their search for a feature to a particular region of the image, or to validate the
candidate features suggested by other algorithms.

To incorporate localization information into a computer program, it needs to be supplied
in an image-independent way, i.e. relative to a fixed frame of reference. It makes sense to
search for (say) kidneys in regions specified relative to a fixed point such as the spine; it
makes far less sense to search for them in regions specified purely in image coordinates, which
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have little anatomical relevance. In order to define a frame of reference, however, features
such as the spine and ribs need to be automatically extracted from the image. The work
we describe here focuses on automatically identifying the spine. Existing spine identification
methods, e.g. [1, 2], achieve good results, but are unnecessarily complex for localization
purposes, since we are only interested in using the spine to establish a coordinate system
(e.g. [2] fits a four-part model to the spine, which is more than we need). By contrast, our
approach is well-suited to the specific application of localization because it produces good
results whilst remaining simple to understand and easy to implement.

The approach works by performing a novel multi-level region flooding algorithm on an
intermediate data structure (constructed from an image) called an image partition forest
(IPF). This is essentially a hierarchical sequence of partitions of the original image into
regions which we hope are of semantic interest. The IPF construction process is based
on the watershed and waterfall algorithms from mathematical morphology: the watershed
algorithm is first used to construct the finest partition of the image (the lowest layer in
the partition forest), and the waterfall is then used to construct a sequence of ever-coarser
partitions of the image (via an iterative process of region merging) until some termination
criterion is satisfied.

We needed some way to refer to the selection of a set of regions from multiple layers of
the forest: this is an important part of the spine identification algorithm which follows. Our
approach was to recognise that the selection of a parent node in the forest is equivalent to
the selection of all of its children (because a parent node is the union of its children): this
allowed us to develop novel algorithms to handle multi-layer selection, based on a minimal
node representation of the selected regions, which we will present.

Having developed a concept of multi-layer selection, our region flooding algorithm then
works in three stages, as follows:

1. Seed Finding. Traverse the forest to find regions which satisfy a user-specified seed
criterion.

2. Region Flooding. Determine a preliminary feature (represented as a multi-layer selec-
tion) by region flooding from the various seeds.

3. Post-Processing. Remove any regions which were undesirably added by the flooding
process (the regions to be removed are selected using a user-specified removal criterion).

We tested this approach on seven series of images, with good results for 87.3% of the
slices tested. (Each result was visually examined and given a quality rating on the scale
A = perfect, B = almost perfect, C = adequate for localization, F = failure. The percentage
refers to slices which were rated A/B. The system as a whole was developed in collaboration
with a radiologist.) Our method thus seems quite robust. It is worth noting that since the
result is presented visually to the user (e.g. a radiologist) as a multi-layer selection, it is
very easy for them to verify the output and make alterations where desired.

Our work to define a robust frame of reference for localization purposes is ongoing, but
we believe our results for the intermediate step of spine identification are very promising.
We will present results of our method on a number of different CT slices (e.g. Figure 1),
courtesy of the Churchill Hospital, Oxford, which will show the results of automatically
identifying the spine using the technique described.

References

1. Neculai Archip, Pierre-Jean Erard, Michael Egmont-Petersen, Jean-Marie Haefliger, and Jean-
Francois Germond. A Knowledge-Based Approach to Automatic Detection of the Spinal Cord
in CT Images. IEEE Transactions on Medical Imaging, 21(12), December 2002.

2. Jianhua Yao, Stacy D O’Connor, and Ronald M Summers. Automated Spinal Column Extraction
and Partitioning. In 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro,
pages 390–393, 2006.
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A simpler approach to waterfall

Chris Nicholls, Irina Voiculescu and Stuart Golodetz

Oxford University Computing Laboratory

This project is motivated by the need to segment greyscale images originating from
computerised tomography (CT) scanners. That is, we would like to fit contours around
organ tissue featured in each image. A pair of algorithms called the watershed and waterfall
algorithms have been shown to be effective for this purpose [1], although other approaches
exist. This paper presents a new, simplified, implementation of the waterfall algorithm.

The watershed algorithm, introduced by Beucher and Lantuejoul [2], produces a seg-
mentation of an image, grouping together regions of pixels deemed to be similar. Usually,
‘similar’ refers to similarity in the greyscale values, though other approaches are possible.
A typical problem of the watershed algorithm is that it over-segments images significantly,
leading to far more regions than can be handled sensibly, as illustrated in Figure 1.

Fig. 1. Example of over-segmentation, output by applying the watershed algorithm to an axial slice
of a CT volume. The individual regions are small and do not correspond to any anatomic features.

The waterfall algorithm [3, 4] is an iterative process which can extract further structure
from an initial watershed segmentation. The waterfall yields a partition forest hierarchy,
which is a comprehensive data structure which can subsequently be used for feature iden-
tification. Figure 2 illustrates the various layers that result from applying the waterfall
algorithm to the segmentation shown in Figure 1. Each iteration of the algorithm yields a
higher-level grouping of the regions in the previous layer.

Fig. 2. Hierarchy of segmentations produced by applying the waterfall algorithm to the output of
the watershed illustrated in Figure 1, showing regions merging successively (left to right).
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Both the watershed and the waterfall algorithms are based on a geographical metaphor.
The image is regarded as a landscape, with each grey value at representing the height of the
terrain at given (x, y) coordinates. The valleys are in the darker areas, whereas the lighter
areas are regarded as peaks.

The waterfall algorithm can then be imagined as a flooding process. The water falls into
(low) catchment basins and gradually fills them up to the nearest boundaries, sometimes
spilling into adjacent regions. This process continues until the whole image becomes a single
basin. The intermediate stages of the process can be regarded as intermediate segmentations
of the image, with each basin representing a region.

An implementation of this algorithm, proposed by Marcotegui and Beucher [4], involves
the construction of a Minimum Spanning Tree (MST) and the gradual elision of some of its
edges. Its nodes are initially the regions of the watershed output and its edges are the lowest
pass points on the boundaries between these regions; the nodes and edges in subsequent
layers are derived from these initial ones through a merging process.

A regional minimum edge of a graph G is part of a connected subgraph of G whose
edges have the same weight as each other, and whose adjacent edges in G have strictly
higher weights. The waterfall algorithm relies heavily on finding these regional minimum
edges, eliding them and rebuilding the MST – a process which not only requires careful
implementation of the MST but, crucially, is relatively complex and hard to implement.

In this paper we present a new data structure for the waterfall algorithm that simpli-
fies the process and improves efficiency compared to current implementations. It is based
on a recursive-tree data structure and a recursive relation on the nodes rather than the
conventional iterative transformations.

The main advantage of our approach to the waterfall problem is that the algorithm uses
a single loop to walk the MST and is therefore simpler to implement. For each iteration, it
walks the MST bottom-up in a single pass and merges regions that belong together. The
waterfall algorithm, thus improved, produces the same layers of segmented images, combined
in a hierarchical structure that can be processed for feature identification.

A further advantage of our approach is that the algorithm can can be written in pure
functional style. In particular, we have implemented it in Haskell. For this reason, the
memory requirements are not directly comparable to existing imperative implementations,
but we are about to integrate this new approach into an existing C++ code base.

We are also in the process of constructing a formal proof of correctness, which we hope
to present at a later date. We have tested both algorithms on a number of small, measurable
test cases and found that they produce the same output. Empirical tests indicate that this
is also true of larger test cases, such as axial slices of CT volumes.

Production of partition forests in this manner is independent of this application and has
many applications outside of the field of medical imaging.

References
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Mapping Spatial Language to Sensor Models

an analysis of spatial cognition and its modelling in probability
theory?

Jamie Frost

Oxford University Computing Laboratory
Wolfson Building, Parks Road, Oxford, OX1 3QD, UK

Spatial cognition concerns the means by which humans realise some aspect or inter-
pretation of objects in the spatial dimensions, whether to describe an object’s motion, or
the interpretation of ‘locative expressions’ to ascertain the identity of locations (or objects)
by analysis of the environment augmented with other contextual factors. Space occupies a
privileged place in language and our cognitive systems, given the necessity to conceptualise
various semantic domains [1], and thus such pervasiveness is naturally imperative in the core
framework of intelligent systems that aims to model such cognition. The EUROPA project
(European Robotic Pedestrian Assistant) aims to produce a robot capable of solving spatial
tasks assigned by pedestrians within an urban environment. Such tasks include conversing
with the user to establish the identity of an object or location, escorting the user to said
destinations, providing directions or semantic descriptions of locations, and responding to
imperative instructions such as “take the first left”. Behind the scenes, the robot will grad-
ually accumulate spatial and semantic data with regards to its surroundings via a number
of sources. The system will employ a spoken dialogue system to provide the most natural
possible interface to the user.

The particular area that we focus on in the scope of this paper is that of attempting to
estimate both the location and shape of an object given locative expressions concerning it,
for example “The car is just across the road, by the Computing Lab and between the two
professors on the lawn.” In particular, we employ a method from robotics theory known as
‘Occupancy Grid Mapping’, which decomposes space into a grid of cells, each of which has
some probability associated with it being occupied. This incorporates a ‘sensor model’; for
a robot this embodies the sensing of its environment via physical sensors. For our linguistic
context, there is an analogous interpretation.

The problem can be decomposed into two parts. One is to produce probabilistic models
for a variety of spatial relations such as ‘between’, ‘by’ and ‘near’, which govern the prob-
ability that some observer would consider the relation to be true for some point in space
given the contextual information (such as the reference objects involved, e.g. ‘B’ in “A is
right by B”, and metric properties supplied). There has been much research in this area. [3]
for example proposes a notion of ‘Spatial Templates’, where space is partitioned into regions
of ‘good’, ‘acceptable’ and ‘bad’ according to their satisfaction of the spatial relation. But
quantitative models previously produced (such as in [4, 5, 2]) have been largely simplistic,
neglecting the topological shape of objects involved, and producing relative measures of ap-
plicability which fail to scale to multiple observations. We conducted an online experiment
in which participants were presented with a number of scenes, and asked to assert the valid-
ity of a number of different locative expressions with respect to objects in the scene. These
results were in turn used to generate the probabilistic models.

The second part of the problem is to use these models to generate the Occupancy Grid
Map, and in turn, compute the approximate shape of the object. By making the (psycholin-
? The full paper can be found at http://www.jamiefrost.co.uk/research/papers/

ICRA MappingSpatialLanguageToSensorModels-JamieFrost.pdf
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guistically justified) assumption that locative expressions map to a single point within the
confines of the object, the occupancy probability can be computed by considering all possi-
ble poses of the object in which this point occurs. Via the use of the level set and convex hull
(i.e. the minimal polygon which encloses a set of points) operations, the estimated shape
based on the available evidence can be inferred.

As discussed, the spatial models can be used for a number of other uses, including the
autonomous description of objects. Such a task requires a second type of spatial function,
encapsulating relevance rather than validity alone. “The Eiffel Tower is west of China”
is valid for example, but an irrelevant locative expression. Other future work will include
expanding the functional models to encapsulate the broad spectrum of spatial language,
including interpretation of parts (e.g. “The corner of the park”) and groups of objects (e.g.
“The cluster of trees”). There will also be extensive exploration into dialogue theory to
facilitate interaction with the user.

Fig. 1. The estimated shape of ‘Robotics Lab’ (the labelled grey outline) after the 3 observations:
“The Robotics Lab is between Tree1 and Tree3, right of Elmcroft Drive, and 60 metres in front of
you”. The colours have been modified so that the background probability is grey, the maximum
probability is black, and probabilities less than the background are whitish, indicating ‘negative
inference’ in which regions ruled out by the observation are excluded. The observer is the white
triangle to the bottom-left of the image.
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Subtyping for Model Checking Recursion Schemes

C.-H. L. Ong and S. J. Ramsay

Oxford University Computing Laboratory
Wolfson Building, Parks Road, Oxford, OX1 3QD, UK

We present a new type system for proving intersection-type judgements about purely-
applicative terms generated from a set of constants. The system is novel in that it contains a
restricted form of the usual subtyping rule for intersection types, which leads to an efficient
type checking algorithm. In spite of this restriction, the system is adequate for use as the
core of a sound and complete model checking algorithm for Kobayashi’s resource-usage
verification problem [3]. The key to the result is the relatively limited setting of the simply-
typed, applicative terms of higher-order recursion schemes.

A (deterministic) higher-order recursion scheme is a definitional device for a finite or
infinite tree labelled by symbols from some ranked alphabet. The tree can be seen to be
generated by a process of (infinitary) rewriting using a system of simply-typed, higher-order
grammar rules. Starting from some initial, non-terminal symbol, the rules are unfolded ad
infinitum, thus determining some infinite tree. For example, we can specify a recursion
scheme by giving the two grammar rules: S → F c and Fx → ax (F (bx)) and noting that
the alphabet of terminal symbols is exactly a, b and c, of arities 2, 1 and 0 respectively.
Rewriting from initial non-terminal symbol S produces the {a, b, c}-labelled, infinite tree
depicted below:

a

c a

b

c

a

b

b

c

a

b
...

. . .

The L-model checking problem for recursion schemes is, given a formula ϕ of the tree-
logic L and a tree JGK defined by a recursion scheme G: is JGK a model of ϕ? In a 2006 LICS
paper [5], Ong performed a careful analysis of the µ-calculus model checking problem for
recursion schemes, from which he determined an effective procedure to decide it. Since the
µ-calculus is regarded as a kind of ‘gold standard’ among such logics, Ong’s result opened
the door to serious application of recursion schemes in computer-aided verification, where
they seem to have a great deal of potential. Not only are recursion schemes a particularly
expressive device for defining infinite trees (which can be employed to abstractly model the
computation trees of programs) but their higher-order grammar rules are already a close-fit
to the declarative structure of higher-order functional programs.

Kobayashi has been successfully pursuing this direction with respect to the resource-
usage verification problem for an extension of the simply-typed λ-calculus. In his 2009 POPL
paper [3], he showed how the resource-usage verification problem in this setting can be
reduced to the model checking problem for recursion schemes and the class of deterministic,
trivial tree-automata (which take the place of the logic). In the same paper, Kobayashi
gave a novel decision procedure for this model checking problem, reducing its solution to a
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type inference problem in an intersection type system. The model checking problem has a
positive solution if and only if the recursion scheme is typable in an intersection type system
determined by the automaton. The procedure searches for types in order to provide a witness
to the claim, employing type checking to assess the correctness of candidate solutions.

Later in the same year Kobayashi presented a refinement of this algorithm that was
highly optimised in order to make it practically efficient [2]. This work was borne out by
a tool, TRecS, that implemented the algorithm and was used to verify a variety of ex-
ample recursion schemes, derived both from verification literature and OCaml source code.
Kobayashi noted that, in order to scale effectively at higher orders, it was necessary to
leverage the natural subtype ordering on the intersection types so that the search space for
inference could be pruned wherever possible. Our work elaborates upon this note, present-
ing a new intersection type system that allows reasoning about subtype inequalities whilst
retaining an efficient type checking algorithm.

Intersection type systems extend the vocabulary of simple type systems by introducing
an additional connective ‘∧’ to denote the intersection of two types. Hindley gives a good
introduction to the subject in [1]. Roughly speaking, an inhabitant of a type σ ∧ τ can be
seen to inhabit both σ and τ . This interpretation gives an obvious subtype ordering with, for
example, σ ∧ τ ≤ σ, σ ∧ τ ≤ τ and σ → τ ≤ σ′ → τ ′ just if σ′ ≤ σ and τ ≤ τ ′. Although in
the literature there have been many formulations of intersection type systems which appeal
to the subtype ordering in order to construct derivations, the emphasis is rarely on defining
systems that admit efficient type checking. By considering only subtyping with respect to
the purely applicative terms (which is made possible in the setting of recursion schemes) we
were able to design a somewhat more restricted type system than those previously reported
– allowing instances of subtyping only in arguments at application – but which retains the
properties desirable for model checking.

Our goal was to restrict the form of typing derivations so that they became amenable to
proof search. In fact, the system has a strong form of the subformula property, which gives
rise to a short, recursive algorithm for type checking. When the time to decide the subtype
relation is bounded above by a constant, the procedure’s worst case time complexity is linear
in the product of the size of the type to be checked and the size of the typing environment.
Furthermore, a type-checking algorithm for Kobayashi’s original system (without subtyping)
can be seen as an instance of the same scheme when subtyping is replaced by ‘subsetting’.

We hope to integrate the type checking algorithm into our own implementation of
Kobayashi’s algorithm, due to Nistor [4], which is to serve as a test-bed for a number
of other experimental extensions we have planned for the future.
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Homer: a Higher-order Observational equivalence
Model checkER

David Hopkins

Oxford University Computing Laboratory
Wolfson Building, Parks Road, Oxford, OX1 3QD, UK

1 Introduction

We present Homer, [4], an observational equivalence checker for higher-order programs.
Observational equivalence is a compelling notion of program equivalence. Two programs are
considered equivalent just if, in every program context, substituting one term for the other
does not result in any observable difference in the computational outcome. Our language
of study is Idealized Algol (IA), [8], a prototypical programming language combining both
functional and imperative features. IA can be thought of as a call-by-name variant of core
ML. In particular we consider the third-order fragment of IA, including iteration. Perhaps
surprisingly, observational equivalence of this fragment is decidable, [5]. (However, at fourth-
order observational equivalence becomes undecidable, [6].)

Example 1 Consider the programs P1 ≡ new x := 0 in {p (x := 1); if !x = 1 then Ω else skip}
and P2 ≡ p Ω. Here Ω is the immediately diverging program and p is some function (to
be defined by the context) which takes a command as an argument and returns another
command. In both P1 and P2, if p ever runs its argument, then the computation as a whole
will diverge. However, if p terminates without evaluating its argument then the computation
terminates. Hence, the two programs are observationally equivalent. This shows that there
is no program which can evaluate its argument and then undo all of its side effects.

Example 2 Consider the programs

M1 ≡ fun F : (exp→ exp)→ exp .

new x in {F (fun y : exp . if !x = 0 then x := y else x := y − 1; !x)}
M2 ≡ fun F : (exp→ exp)→ exp .

F (fun y : exp . new x in {if !x = 0 then x := y else x := y − 1; !x)}
M3 ≡ fun F : (exp→ exp)→ exp . F (fun y : exp . y)

In M1 the value of x will be maintained if F calls its argument multiple times. However, in
M2 its value will be reset to 0 each time. So in M2 the guard is always true and so the inner
function acts as the identity. Hence M1 � M2

∼= M3. This shows that scope extrusion fails
in IA.

2 Homer

Homer takes two IA programs and checks if they are observationally equivalent. It works
by compiling programs into Visibly Pushdown Automata (VPA), [2], which are a precise
representation of the program’s fully abstract game semantics, [1]. The tool then passes the
resulting automata to a VPA toolkit which we have implemented to test for their equivalence.
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Thanks to the fully abstract semantics, it is known that observational equivalence reduces
to the VPA Equivalence Problem. Our checker is thus sound and complete; because it
model checks open terms, our approach is compositional. Further, if the two terms are not
equivalent, Homer will produce both a game-semantic and an operational-semantic counter-
example, in the form of a play and a separating context respectively. It can also model check
regular properties (such as those describable by LTL formulas) by checking if the language
of the VPA-translate of the program is included in that of the formula, provided as a regular
expression. To our knowledge, Homer is the first implementation of a model checker for
3rd-order programs.

3 Extensions

Homer works very well on small examples but runs into the state space explosion problem
on larger programs. One approach to overcoming this, which worked well for a similar tool,
Mage, [3], is to use laziness. This is particularly effective when trying to solve reachabil-
ity problems rather than equivalence as we may be able to get away with only partially
constructing the model. Directly using the techniques from Mage is not possible, since it
only deals with finite automata whereas Homer works with VPA. The presence of a stack
significantly increases the difficulty of a lazy compilation, as it is not obvious whether a
particular pop-transition can ever be taken when you are only presented with local informa-
tion. However, by carefully analysing the compilation and the shape of the resulting VPA,
we have come up with a lazy algorithm which significantly speeds up Homer’s reachability
testing.

Finally an interesting challenge is switching to call-by-value in order to get a language
closer to standard ML. Call-by-value IA, known as RML, is rather trickier to reason about
than the call-by-name version. For example, in normal IA, every time a new variable is
declared it has a definite scope. However, just by converting to call-by-value allows us
to pass variable locations out of the scope they are declared in. This complication leads
to undecidability with much smaller language fragments than in IA. Even at order two,
observational equivalence is undecidable, [7]. For a small fragment of second-order RML, it
is known that the problem can be reduced to that of equivalence of regular expressions. We
believe we can utilise the power of VPA (and possibly DPDA, [9]) to extend this result and
hope to integrate the results into Homer.
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SAT-Solving∗

Hristina Palikareva∗∗

Oxford University Computing Laboratory, Oxford, UK

1 Introduction

Model checking techniques can be partitioned into those which are symbolic, based on ab-
stract representation of sets of states, and those which are based on explicit examination
of individual states. The former generally represent sets of states as Boolean formulae and
use techniques such as SAT-solving and BDD manipulation to check properties. The lat-
ter can be enhanced by techniques such as partial-order reductions, CEGAR, hierarchical
state-space compression, etc. The main obstacle when applying both approaches in practice
is the state-space explosion problem by which the number of states in a concurrent system
grows exponentially with the number of its parallel components.

The general problem we investigate is refinement checking in the process algebraic set-
tings and, more specifically, in the context of CSP [Hoa85,Ros98]. Unlike in conventional
model checking, where specifications are generally defined as formulae in some kind of tem-
poral logic, in process algebras both specifications and implementations are modelled as pro-
cesses. Refinement checking reduces then to checking for reverse containment of behaviours
and, therefore, to reverse language inclusion.

FDR [Ros94,G+05] is a well-established tool for refinement checking of CSP. When decid-
ing whether an implementation process Impl refines a normalised specification process Spec,
FDR traverses the Cartesian product of the state spaces of Spec and Impl in a BFS manner,
checking for compatibility of mutually reachable states. Hence, until now, FDR has followed
the explicit model checking approach. There has been, however, some work on symbolic
model checking of CSP [PY96,SLDS08], based on compositional encoding of CSP processes.

2 Bounded Refinement Checking

Bounded model checking (BMC) [BCCZ99] is a flourishing symbolic model checking tech-
nique that focuses on searching for counterexamples of bounded length only. The underlying
idea is to fix a bound k and unwind the model for k steps, thus considering behaviours and
counterexamples of length at most k. In practice, BMC is conducted iteratively by progres-
sively increasing k until a counterexample is detected, k reaches a precomputed completeness
threshold indicating that the model satisfies the specification, or the problem becomes in-
tractable. At each step, the corresponding part of the model is encoded into a SAT instance
and counterexamples, if any, are generated using SAT-solving techniques. Note that with-
out knowing the completeness threshold, the BMC algorithm is incomplete. Hence, BMC is
mostly suitable to detecting bugs, not to full verification (proving absence of bugs).

We address the problem of applying BMC to concurrent systems involving the interaction
of multiple processes running in parallel. We adapt the BMC framework to the context
of CSP and FDR, yielding bounded refinement checking. Therefore, we exploit the SAT-
solver to decide bounded language inclusion as opposed to bounded reachability of error
states, as in most existing model checkers. Within the scope of this talk, we only consider
the translation of trace refinement to SAT checking. We propose a Boolean encoding of
CSP processes resting on FDR’s hybrid two-level approach for calculating the operational
semantics using supercombinators. Since the original syntactic translation of BMC to SAT
cannot be applied directly to the context of CSP, we present a semantic translation algorithm
based on watchdog transformations [RGM+03].

∗Based on a paper presented at AVoCS’09, see
http://web.comlab.ox.ac.uk/people/Hristina.Palikareva/publications/avocs 09.pdf

∗∗Joint work with Joel Ouaknine and Bill Roscoe
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(a) Peg Solitaire (b) The Hanoi Towers — comparing against other
BMC tools

Fig. 1. Experimental Results

3 Experimental Results

We have developed a prototype tool SymFDR which, when combined with state-of-the-
art SAT-solvers such as MiniSAT [ES03], sometimes outperforms FDR by a significant
margin when finding counterexamples. We compare the performance of SymFDR with that
of FDR, FDR used in a bounded DFS mode, PAT [SLD08] and, in some cases, NuSMV,
Alloy Analyzer and straight SAT encodings. On some test cases, such as peg solitaire and the
chess knight tour, SymFDR’s performance is very encouraging, coping with problems that
are beyond FDR’s capabilities. In general, though, FDR outperforms SymFDR, particularly
when a counterexample does not exist. We conclude that SymFDR is likely to outperform
FDR in large combinatorial problems for which a solution exists, the length of the longest
solution is relatively short (growing at most polynomially) and is predictable in advance.
The search space of those problems can be characterised as very wide (with respect to
BFS), but relatively shallow. We suspect that problems with multiple solutions also induce
good SAT performance. Experiments with the towers of Hanoi suggest that SAT-solving
techniques offer advantages up to a certain threshold and weaken afterwards.

4 Future Work

We envision several directions for future work. We intend to implement McMillan’s algo-
rithm combining SAT and interpolation techniques to yield complete unbounded refinement
checking [McM03]. This method has proven to be more efficient for positive BMC instances
(instances with no counterexamples) than other SAT approaches. Other avenues for further
enhancing FDR’s performance include partial-order reductions and CEGAR.
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Intoduction

The ubiquitousness of computer systems in our everyday life means that we rely more
and more on their functional correctness. In particular in application areas such as air or
road traffic, we cannot accept faulty systems as they can cause fatal consequences when
taking responsibilities for the life and health of humans. Model checking [1] is a verification
technology that came up in the last 25 years and has successfully been used to verify systems
on an industrial scale. Its biggest advantage in comparison to other technologies is that it
provides a way to automatically prove the absence of errors in computer systems. In order
to model check a system, one constructs a conservative abstraction of it and provides the
property to be verified in some specification language. Such a property could for example be
that there is no trace in the system that reaches a bad state starting from an inital state. A
model checker can be used to algorithmically prove or disprove a property on the abstract
model. In case the property does not hold, the model checker provides a counter example
that shows an erroneous behavior of the system.

Traditionally, an abstracted system consists of a finite number of states and configura-
tions and allows for checking specifications regarding the relative order in which events in
the original system occur. Although this abstraction is sufficient for checking most safety
properties, it is too coarse when one is interested in verifying quantitative properties of a
system. To overcome this drawback, extensions of finite state systems with timing infor-
mation, weights or probabilities have been proposed and successfully applied in real-world
applications. The main challenge in verifying these extended systems is that their set of
possible configurations often becomes infinite, which makes it impossible to algorithmically
prove properties by naively exploring all possible configurations.

In this paper we are going to give a short account on some recent work on the com-
putational complexity of deciding reachability in parametric one-counter automata. Such
automata extend classical non-deterministic finite state automata with one counter over the
natural numbers. When taking a transition, the counter can be tested for zero, or incre-
mented or decremented by some integer or parametric value. The reachability problem asks,
whether there exists a valuation of the parameters such that a final configuration is reach-
able from an initial configuration. One-counter automata can be used to model systems that
consume goods, e.g. energy or dollars, and whose concrete behaviour depends on parameters
provided by the environment. Determining a reachability problem can then be seen as an
answer to the question whether there exists an environment that allows for reaching some
good or bad configuration in the system.

The interested reader is refered to [2] for the full version of this paper.

Parametric One-Counter Automata

A parametric one-counter automaton A is a tuple A = 〈Q,∆, P 〉, where Q is the finite set
of states and P is a finite set of parameters. The transition relation is ∆ ⊆ Q× COp×Q,
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Fig. 1. An example of a one-counter automaton. Instantiating a with 4 and b with 1 would allow
for reaching the configuration (s5, 0) starting from the configuration (s1, 0).

where COp := {add(z) : z ∈ Z} ∪ {add(p) : p ∈ P} ∪ {add(−p) : p ∈ P} ∪ {zero} is the set
of counter operations. The add operations can add some integer or parametric value to the
counter and the zero operation can test the counter value for zero.

A valuation v : P → Z assigns to each parameter some integer value. Given a one-counter
automaton A and a valuation v, a run from q1 ∈ Q to qn ∈ Q is a sequence of configurations
(q1, 0) → (q2, c2) → · · · → (qn, 0) such that every ci is greater or equal to zero and for
each pair (qi, ci), (qi+1, ci+1) there is some (qi, cop, qi+1) ∈ ∆ such that ci+1 = ci + z if
cop = add(z), z ∈ Z; ci+1 = ci + v(p) if cop = add(p), ci+1 = ci − v(p) if cop = add(−p),
p ∈ P ; and ci = ci+1 = 0 if cop = zero for 1 ≤ i < n. As an example, consider the one-
counter automaton shown in Figure 1. Setting v(a) := 4 and v(b) := 1 would allow for the
following run: (s1, 0) → (s2, 5) → (s3, 1) → (s1, 2) → (s2, 7) → (s4, 0) → (s5, 0).

Given two states qi, qf ∈ Q, the reachability problem is to determine whether there exists
a valuation of the parameters such that there exists a run starting in (qi, 0) and ending in
(qf , 0). Observe that there is no a priori bound on the values the parameters can take, which
makes it hard to decide when to “stop looking for possible values.” Nevertheless, it follows
from [2] that the problem is decidable, even with a relatively low complexity:

Theorem 1. The reachability problem for parametric one-counter automata is NP-complete.

An explanation of this result would go beyond the scope of this short article. Roughly speak-
ing, one can find a general pattern in every run of any one-counter automaton that allows
for translating the reachability problem into a formula of polynomial size in the existential
fragment of Presburger arithmetic [3]. Satisfiability in this fragment is NP-complete, which
gives the upper bound. The lower bound follows from a reduction from the SubsetSum
problem, when numbers are encoded in binary and even if there are no parameters involved.

Regarding future work, we would like to investigate the decidability and complexity of
model checking specifications written in temporal logics such as CTL against parametric
one-counter automata.
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Relational databases [2] that support querying systems such as SQL have become com-
monplace in managing large amounts of data in nearly every context where the storage and
retrieval of information is required. The design of these databases typically involves the use
of diagramatic representations of the database, and relationship-entity diagrams are often
used to capture the way in which data is related within the database. Although good at
capturing this aspect of a database specification, these approaches do little to assist in the
expression of constraints that may exist within the system, and the automatic verification
of constraint satisfaction is, at best, an afterthought in these frameworks.

Our research is concerned with the accurate representation of integrity constraints as
predicates in a notation that supports the reasoning of those constraints. Capturing integrity
constraints is in itself useful, but doing so in a formal language that allows the mechanical
analysis and manipulation of those conditions has the potential to provide assurance of
certain properties of the database at the design stage, rather than through consistency checks
before transactions commit. To this end, the Z notation [8, 9] is a respectable candidate as a
means of working with constraints, since Z schemas have been shown to effectively capture
these constraints and verify that they are sound, and both have their roots in predicate
calculus and set theory. Indeed, several authors have made use of this connection in an
educational context [5, 3], by leveraging not only the logical and philosophical common
ground of the two notations, but also the structural similarities that they share.

The common form of a database schema described in Z might be as in the following
example, where the schema BOOK serves as a constrained description of a particular book
instance, and Book represents a relational schema with constraints on the primary key:

BOOK =̂ [bookid : N; title : TITLE ; author : NAME ;
copies : N; missing : N | copies > missing ]

Book =̂ [books : PBOOK | ∀ b1, b2 : books • b1.bookid = b2.bookid ⇒ b1 = b2]

Since the design of the relational model of data finds its roots in predicate logic and set
theory—foundations that are shared with the formal specification notation Z—it is of little
surprise that the two make such a good pairing. Indeed, significant research in this area has
already been undertaken by several authors [6, 4].

Despite the formality of the models presented in the literature, one problem remains
with this approach: the specification at the meta-model level of the schemas above cannot
be formalised in Z in a way that preserves the syntactic similarity between the database
schemas and the representation in Z, since this would require a higher-order logic [7]. The
problem with our solution is that our first try at a description has indicated a means of
producing database specifications in Z, and we have done so by providing an instance of a
set of schemas to describe the overall methodology. Although this instance is formal, and
descriptive enough for a human to understand and apply in other contexts, there has been
no formal description of the general shape of schemas that that should be used for arbitrary
relations and databases. Our formal description is too ambiguous for an automated system
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to generate relation schemas from some parameterised environment. This is a limitation
that all other presentations of database design using Z suffer from. To solve this problem,
we suggest the use of a templating system in order to generalise our description through
extensive parameterisation.

The Formal Template Language [1], captures the form of sentence fragments in a formal
way that allows general instantiation, and supports proofs. Templates allow parametric-
ity without requiring a whole new framework of semantics to be imposed on Z itself. We
illustrate the use of the FTL through its application to database design, where the gen-
eral description of the relation, like the one we had above, can captured by the following
templates:

<RELATION> =̂ [[<attribute> : <ATTRIBUTE>] | <constraint>]

<Relation> =̂ [<relation>s : P<RELATION>
| ∀ r1, r2 : <relation>s • r1.<key> = r2.<key>⇒ r1 = r2]

Here, placeholders are delineated by special brackets, written < and >, which indicate
identifiers that are to be replaced by fragments of text as indicated in an instantiation
environment. Lists of placeholders, written between [ and ], allow the repetition of tem-
plate fragments with different mappings for particular placeholders. This has allowed us to
explicitly indicate the parts of the schema that are to be specialised for a solution.

As we have already mentioned, a full database specification would include many more
schemas than just the relational intention and extension: further schemas are required to
instantiate state, and provide operations. By using a carefully constructed set of templates,
much overhead can be avoided since schemas with essentially the same structure can be
instantiated automatically. Further tedium can be avoided since the FTL can also be used
in conjunction with its instantiation calculus to generalise proof obligations with templates.
This application of the FTL is novel, and significantly helps in the design of database models
in a framework that encourages the use of constraints by design.
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Checking Model Consistency using Data-Flow Testing
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An information system is a computing system for the collection and provision of data.
Such systems typically hold large amounts of business data. The meaning of these stored
data are given through subtle relationships with other data and sophisticated business rules.
It is critical that this meaning is properly maintained as the stored data are updated and
transformed. If there is a loss of this kind of semantic integrity, then the value of the
information and the system itself may be sharply diminished.

To facilitate the development process essential design decisions, including entity asso-
ciations and semantic integrity constraints, may be usefully captured in a model. We may
evaluate the current research from the aspect of how the model is synchronised with its im-
plementation. One approach is model-based development, where the synchronisation is done
manually upon changes in either the model or the implementation. Contractual models—
invariant, pre-, and post-conditions—are documented to express developers’ intents, and the
corresponding implementation (in, e.g. Java [1] or C# [2]) should be constructed in such a
way that the system behaviour satisfies the contracts. However, in order to verify formally
that the implementation conforms to the model, a large number of proof obligations are
required to be discharged by a theorem prover. An alternative approach is model-driven
development [3], where the synchronisation is automatic. Model operations are specified as
simple data transformations instead of complicated algorithms. Changes are only made to
the model as requirements evolve, and a conforming implementation can always be auto-
matically generated through a series of model transformations, based upon assumptions and
pre-defined rules about the specific problem domain.

However, if the various structural and integrity constraints expressed in the model are
inconsistent, then either the model will admit no implementation, or the implementation
produced will not behave according to the intended requirements. In this paper, we are
concerned about this issue of model consistency. It is not practical to conduct an exhaus-
tive exploration of the model state space, nor to consider all possible interactions between
operations. Instead, we concentrate on inter-method usage patterns of attributes, captured
in a set of method call sequences.

We will build upon existing work on Booster [4], a language and compiler based upon
B [5] and Z [6], for the automatic generation of object data stores. In Booster, the model
interface is object-oriented with features of classes, attributes, and associations. We use
first-order predicates to capture business requirements as class invariants, and to describe
intended model operations, i.e. methods, as relational constraints between the pre- and post-
execution values of attributes. A Booster method may also build upon the intents of other
methods by referencing their names.

Our approach consists of two steps. First, we identify for each attribute att call se-
quences representing att’s various inter-method usage patterns, by applying the data-flow
testing technique to all methods defined in a given Booster model. Second, we derive a test
suite from these call sequences. Each test case is represented as a Boolean constraint, en-
suring that invoking the call sequence both demonstrates an inter-method usage of att and
maintains the system integrity. We then rely upon the developers to inspect this test suite
of constraints. More precisely, they can examine whether each test case constraint is either
too weak, too strong, or consistent, with respect to their original understandings about the
requirements. They may then take actions accordingly to fix methods or invariants.
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As an example, say the value of an attribute att is defined in a method m1

m1 {x > 0 => att’ = x + 1}

and its value is used in another method m2

m2 {y > 0 => z’ = z - att}

then we can derive a test case x > 0 & y > 0 & z > att for the inter-method usage pattern
of att, where the first two conjuncts ensure that the def and use patterns are covered by
the execution path, and the last one is to ensure, say, that the invariant z > 0.

The first contribution of our approach is that our data-flow analysis handles, but is not
limited to, dependencies (i.e. caller-callee relationships) between methods. More precisely,
we aim for testing every pair of method m1 that defines the value of an attribute att
and method m2 that uses att’s value. In our approach, it is not necessarily the case that
m1 refers to m2 as part of its definition, or vice versa. On the other hand, in the context
of procedural or object-oriented programming code, the data-flow analysis is completely
based upon tracking, for every method, merely within the range of methods upon which it
depends. Consequently, existing approaches are incapable of picking up m1 and m2—with no
in-between dependency—as a test case of inter-method usage pattern for att.

The second contribution of our approach is that for each inter-method usage, captured
in the form of a method call sequence, we calculate a precise Boolean constraint, ensuring
both the demonstration of the inter-method usage pattern and the maintenance of invari-
ants. This is distinguished from what we traditionally expect from data-flow testing, where
each test case merely consists of a pair of line numbers that locates a data usage pattern from
the program texts. Our generated test suite reflects the consequences of developers’ initial
design, for calling those method sequences. Therefore, by examining this test suite, develop-
ers may reassess the contractual model and take actions accordingly to fix it. Although this
examination, unavoidably, has to be manual, since the requirements are described in some
natural language, our approach still has its value of helping developers concentrate on the
data-flow aspect.
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Understanding and employing concurrency correctly is a difficult endeavour for any pro-
grammer familiar solely with sequential programs. This paper outlines the CoJava imple-
mentation of the Active Object Design Pattern [4] which tackles the challenges of complexity,
communication, and correctness in parallel code. Race conditions and deadlock are prevented
statically at compile time, while runtime correctness is achieved through rigorous testing
based on runtime specification checking.

CoJava [3] is a core subset of the Java [2] language that uses a form of the JML [5]
language to define type specifications. Using type or class annotations, a threaded type is
defined which presents a concurrent thread of execution as an object. A call to a threaded
object’s method is translated into a message sent to that object’s message queue, which
is processed concurrently by a separate thread or process. Any result value produced is
returned to the caller, thus method invocation and execution is decoupled.

For example, given a CoJava type called Counter with methods inc() and add(int), the
following demonstrates a threaded instance c of the type. Note that the first invocation
will not wait for the method to execute, thus the second can be invoked immediately. The
effect of these calls is to send two messages to c which will be processed in the order
received, while the caller need not wait for any response. Thus CoJava characterizes threads
as objects and communication as asynchronous method calls, concepts already familiar to
the programmer. Data races and deadlock are not prevented by this approach, therefore
additional mechanisms must be applied to enforce concurrent correctness properties.

/*@ threaded @*/ Counter c = new /*@ threaded @*/ Counter (10);

c.inc(); c.add (5);

Race Conditions and Deadlock
Race conditions occur when mutable data shared by multiple threads is concurrently

accessed and mutated. CoJava’s solution is to disallow the sharing of mutable data using
a type-based approach, similar to other active object definitions [1, 7]. An admissible type
is a primitive type, a threaded type, an immutable object type, or a type implementing
the interface StringSerializable. Sharing values of these types between thread contexts
is safe since they are, respectively: copied bitwise, have their own context, never change
state, or can be copied by automatically serializing to strings and then deserializing. Only
methods whose arguments and return values have admissible type may be called on threaded
receivers.

Deadlock occurs when multiple threads wait indefinitely for an event to occur, which can-
not due to this waiting. For example, if threaded object a calls a method of threaded object
b and then waits for a response, a cannot respond if b were to call any of its methods. Both
objects are now waiting indefinitely for each other, and so will any other object attempting
to communicate with them. Deadlock is a symptom of circular aliasing relationships.

CoJava tackles the problem by not allowing a client to wait indefinitely for a response.
When a method of a threaded receiver is called, the return value is always an instance of
Result which, like promise objects [6], is a receptacle for the method’s actual return value.
Consider the example of calling get() on object c:
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Result r = c.get (); int i = r.intResult (1000);

The argument to intResult(int) defines a finite time period, in milliseconds, which
the method may wait for the result from the method call to arrive. If it does not arrive
in this time frame, r indicates a timeout event has occurred. A client therefore cannot
wait indefinitely for responses from threaded objects, thus deadlock is translated into a
recoverable error.

Specification
JML specifications are composed of predicate expressions (contracts) which define cor-

rectness properties for types and methods. Contract expressions must have no side-effects in
any thread when evaluated, thus they may only use side-effect free methods. When check-
ing contracts at runtime, the Result type cannot be used in contracts since its important
methods are not side-effect free. Special code must be generated to allow the use of threaded
objects in contracts to provide ostensible side-effect-freeness. Unlike in method bodies, this
allows the calling of threaded object methods directly without Result.

If a contract evaluates to false, the fact is reported as an exception in the threaded
object being checked, rather than the caller. This makes blame assignment more complex,
and differs from the sequential case where the caller will be able to catch the exception. The
CoJava solution requires the subsystem to catch the exception, report the fact to the error
output, and then attempt to continue processing messages for the offending object. There
is no good way to cause the exception to be thrown in the calling thread, since the error
may occur long after the initial invocation and so would be out of context.

Conclusion
This paper has briefly outlined the CoJava threaded object model of concurrency. CoJava

statically guarantees a data race and dynamic deadlock free environment which is compatible
with object-oriented specification. The CoJava tool is available at the project website:
http://devel.softeng.ox.ac.uk/cojava.
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On The Feasibility of Platform Attestation
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One of the miracles of the Internet is that it has been successful despite being built
with, and still using, software that was never designed to work in a hostile environment.
Over the last decade, however, we have been paying for this initial good fortune. Cyber
crime has become lucrative and therefore prevalent, as more valuable data are being stored
and processed online. Criminals have become more organized, ingenious and, as a result,
wealthy[1]. The Heartland Payment System[2] is an alarming example. Over 250 thousand
businesses used it to process 100 million credit card transactions every month. Malicious
software was installed on the payments system, which then stole potentially tens of millions
of card details. Similar incidents at RBS Worldpay and Hannaford Bros., also involved
malicious software[2], demonstrating the computer security industry’s failure to keep up
with the rapid growth and evolution of the Internet.

The ability to assess and evaluate a remote computer would go a long way to avoiding
some of these catastrophes. Users would be able to make informed decisions before allowing
their data to go online, and companies would be able to use internet services with greater
confidence in the results. As well as mitigating existing problems, it would also allow other
industries, such as healthcare and pharmaceuticals, to exploit the cost-saving benefits of
online services. In response to this need, the Trusted Computing Group (TCG) have in-
troduced technology for establishing trust in a remote platform, based on the concept of
integrity reporting.

The idea behind integrity reporting is straightforward: a platform can only be trusted if
it reports the identity of every piece of software it has run. In the TCG approach, programs
are uniquely identified through a cryptographic hash of their executable. A computer’s
configuration refers to the complete list of hashes containing every program that has been
run since it was booted. Of course, we cannot trust a platform to report its own configuration
honestly, and so a special piece of hardware, a Trusted Platform Module (TPM), is required.
The TPM is a chip connected to the CPU, providing a protected memory space so that
hashes can be stored immutably. When a TPM-enabled platform boots, each application
is hashed and stored before it is allowed to execute, so that even a malicious program will
be measured and recorded. The final configuration list can then be signed by a key held
in the TPM and reported to the interested party. This process is called remote attestation.
To ensure that a genuine TPM was used to create the signed list, the key is certified by
a trusted authority. In this way, a computer can prove to a challenging party the identity
of all software it is running. The challenger can then decide how to proceed based on this
information.

However, there are many problems with attestation. Privacy is a consideration, as the
challenger must identify every piece of software executed on the attesting platform. This
might allow them to discriminate based on their own criteria[3, 4], requiring software from
only one vendor, for example. Reporting the exact hash values could also make an attacker’s
job easier[5], as he or she will be able to quickly identify which known flaws exist. Another
issue is that attestation only reports a platform’s execution state rather than its security
state[4], which many consider to be the ultimate goal. If it is not clear that one software
configuration is necessarily more trustworthy than another, why report it? Perhaps the only
way of bridging this gap in semantics is through testing or verification of software, both
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time consuming processes. A related issue is that integrity measurement can only assert the
identity of software at load time, and says nothing about its runtime state[6, 7]. In-memory
attacks (such as exploiting a buffer overflow) will not be reported in an attestation, but will
alter the expected behaviour of the machine. Finally, the complexity of managing a whitelist
of trustworthy configurations has frequently been cited as a problem. England[7] claims that
the 4 million windows drivers (growing at 4000 per day) makes even identifying the software
running on a platform a challenge. Other researchers have made similar points[3, 8], citing
the frequency of software updates as a major practical problem.

Although the problem of maintaining a whitelist is commonly referred to, few have made
any effort to put numbers to it. This is essential, as the more program hashes, the more
significant the problem. And if it is significant, it has an impact on the feasibility of all
trusted computing research. However, the number of hashes will depend on the type and
purpose of the platform, and so a context must be chosen for any experiments. It seems
likely that the enormous diversity of software on home computers limits the application of
attestation there, but an individual web server may be more reasonable. This is a similar
scenario to that of the Heartland Payment System incident, and we decided to investigate
how feasible it is to interpret the results of an attestation from a web service.

We set up a web service platform and counted the number of hash measurements in its
boot process, taking into account two-and-a-half years of software updates and patches. We
found that a total of 1414 measurements were required, at a rate of around 35 per month.
From our results and observations, we suggest that the use of integrity reporting will be best
suited for checking patch levels and simple properties, such as whether an administrator has
logged into the machine or not. Although we have only looked at one scenario, we believe
that researchers can be much more positive about the use of trusted computing. However, at
present it is not suitable for assessing the trustworthiness of a remote service, as the software
is a rapidly moving target. If this is the overall aim, then more needs to be done to improve
on standard trusted computing processes. We have identified new and existing methods for
reducing the burden on trusting parties, such as reducing the amount of running software,
and using improved isolation mechanisms for separating the trusted computing base of a
platform from any untrusted components.
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Towards Architectural Trust Properties

Establishing Architectural Elements and Dependencies

Cornelius Namiluko
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Trusted computing enables the secure reporting of a platform’s integrity through a pro-
cess called attestation, in which one entity (human, machine or process) can determine
whether a given platform is in an acceptable configuration. Suppose an entity was presented
with two trustable platforms with identical configurations, how would they choose one that
will provide a greater guarantee of confidentiality and integrity? This question becomes even
more challenging when you start considering complex systems such as grid or cloud com-
puting that may use a collection of cooperating platforms for a single task, e.g. executing
a job. To answer this question, we need to identify the attributes that can differentiate
two systems, we call these trust properties and define them as structural, environmental or
operational attributes of a system that enhance the degree to which the system can behave
consistent to its specifications and further allows other entities to reason about the overall
security state of a system. We identify the source of the attributes to be a system’s archi-
tecture combined with attributes of its runtime environment. We are therefore interested
in understanding the trust properties of an architecture and how these properties influence
trustworthiness of systems based on that architecture.

Fielding [3] defines a system’s architecture as an abstraction of a its runtime behaviour
while Leavens and Sitarama [2] point out that a system’s architecture plays an important role
in the trustworthiness of the system. Furthermore, an architecture determines the placement
of elements and their interaction and defines the constraints on how the elements interact
and how they can be combined [3, 5]. Therefore, identifying and understanding the properties
of architectural elements is crutial in predicting properties of the resulting architecture. It is
for this reason that we approach the challenge of identifying an architectures trust properties
by first identifying the building blocks of trusted systems and the relationships among them.

In our earlier work [4], we identified key architectural elements for trusted grid archi-
tecture. In this work, we identify a different level of abstraction in order to capture general
purpose elements - not just those restricted to grid or service-oriented architectures. These
elements exist in an architecture as components (processing units), connector (communicat-
ing unit) or data (input/output to components) [1] and are summarised in Table 1.

We analysed several trusted system architectures to discover their use of the identified
elements and to deduce the dependencies that exist among the elements. Some of the ele-
ments operate independently, while others depend implicitly or explicitly on other elements.
We identified three types of dependencies as follows:
Functional dependency - represents a relationship where one element uses another to
achieve its functional goals. For example, an element that uses random numbers functionally
depends on an element that generates random numbers. This relationship has an implica-
tion that sound trustworthiness verification for a particular requirement must consider all
the elements that are depended upon to satisfy the requirement. In addition, a dependent
element can only satisfy its functional goals if all elements it depends on are present.
Operational dependency - exists where one element either provides initialisation data
essential for the operation of another element or ensures that another continue operating in
the expected manner. For example, if an element requires a configuration switch to indicate
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Element Description

Hardware-based TPM A trusted platform module implemented as a hardware chip

Software-based TPM A software component that meets the TPM specification

Access Control A component that makes decisions on access to a given object

Integrity Measurement Service A component that generates integrity measurements for the platform

Whitelist A data element containing known-good configuration values

Configuration Token A data element representing the state of a platform

Attestation Token A credential containing identity information and a TPM key

Isolation Service Provides compartment for different guests running on the same host

Attestation Service Enables the secure reporting and verification of platform integrity

Reporting Service Reports non-security-sensitive system attributes

Policy Decision Point (PDP) Uses algorithms to determine what policy to enforce

Policy Enforcement Engine Responsible for enforcing policy decisions made by the PDP

Storage Service Provides non-volatile storage facilities

Cryptographic System Provides software based cryptographic functions

Trusted Path An interface to human that guarantees integrity and confidentiality

Trusted Channel A connector that guarantees integrity and confidentiality

Table 1. Description of Trusted Architecture Elements

whether to encrypt data or not, then an element operationally depends on another element
to provide that switch. Operational dependency differs from functional dependency in that
the dependent may or may not be aware about the existence of the elements depended on.
Trustworthiness dependency - occurs between elements that may exist independently,
but where one element’s existence improves the overall trustworthiness of the operation
of another element. To identify this relationship, each element was examined for possible
threats, and any element that is not explicitly invoked but helps to mitigate or reduce the
risk creates a trustworthiness dependency with the element being examined.

The identification of elements and their relationships will serve as a foundation for de-
ducing properties of an architecture because it is the properties of constituent elements and
the constraints on their interaction that determine the overall properties of an architecture.
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The Complexity of Divide and Conquer

Dmitri Akatov and Georg Gottlob
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1 Introduction

A hypergraph is a generalization of a graph, allowing (hyper)-edges to contain any positive
number of vertices, rather than exactly two for the case of graphs. Hypergraphs are a useful
abstraction tool in database theory and data exchange, in particular for query containment
testing and core computations. Many such problems are NP-hard in general, however become
tractable, if the underlying hypergraph of the query is acyclic [4]. Unfortunately, acyclic
hypergraphs comprise only a small subclass of all hypergraphs.

Hypergraph decompositions usually transform a hypergraph into an acyclic structure
(usually a tree) with individual nodes of this structure in turn labelled by smaller structures
which do not have to be acyclic. As long as we can restrict the size or “cyclicity” (usually
termed width) of these smaller structures to a fixed number, most NP-hard problems in-
volving queries with the decomposed hypergraph as their underlying hypergraph become
tractable.

Gottlob et al. [3] give a good overview of various decomposition methods and their
relationships to each other. In particular they consider tree decompositions and hypertree
decompositions. The former is a well-known decomposition method for graphs originally
studied in conjunction with graph minors [7], but also applicable to hypergraphs, with the
associated notion of tree width. The latter is a strict generalization of the former, with
the associated notion of hypertree width, and was specifically introduced for hypergraphs.
A particularly nice property of queries with bounded hypertree width is that the Boolean
Conjunctive Query problem is not only tractable, but also complete for the complexity class
LOGCFL [5]. Also, the problem of recognizing hypergraphs of bounded hypertree width is
in LOGCFL. This complexity class lies very low within the NC hierarchy (and hence within
P) inbetween NC1 and AC1 and hence is highly parallelizable.

2 A new type of hypergraph decomposition

The trees associated with tree and hypertree decompositions generally do not possess any
special structure and in the worst case have depth linear in the size of the hypergraph and a
branching factor of 1. This, however, has negative effects on the parallelization of the BCQ
problem. In fact, parallelization works best if a problem splits into smaller subproblems
of approximately the same size, in the style of many well-known divide-and-conquer type
algorithms. For hypergraph decompositions this corresponds to the underlying trees being
approximately balanced.

We define a new type of decomposition, which possesses the above property, called a
balanced cut decomposition. The Boolean Conjunctive Query (BCQ) problem for the class of
queries of bounded balanced cut width (BCW) is hard for LOGCFL. The smallest complexity
class containing the BCQ problem for queries of bounded BCW, which we could find in the
literature, is the class NTiSp(poly, log2), the space-bounded subclass of NP only allowing
square-logarithmic usage of the worktape [6]. Since the latter class is suspected not to be
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contained in P unless P=NP, the existance of a polynomial-time algorithm for this problem
remains an open question. However, we present a quasi-polynomial algorithm (running in
time O(nlog n), which moreover can be easily parallelized.

3 A new complexity class

We could not establish a hardness proof for NTiSp(poly,log2), and the way the non-deterministic
algorithm works (the tape is accessed in a very specific manner), strongly suggests that the
above problem properly lies inbetween LOGCFL and NTiSp(poly,log2).

We define a new computational model: (Non)deterministic Auxiliary Transparent Push-
down Automata. As the name suggests, this is a direct generalization of (Non)deterministic
Auxiliary Pushdown Automata: In our model the auxiliary stack is transparent. This means
that any element of the stack can be read at any time, however only the top-most element
can be popped or pushed onto. We show that the BCQ problem for queries of bounded
BCW is complete for the class of NAuxTPDAs running in polynomial time, using space
O(log n) and maximal stack height O(log2 n). We give this class the codename CAESAR,
suggesting the type of algorithms it can run. Finally, we show that recognizing hypergraphs
of bounded BCW is also feasible in CAESAR.

4 Future Work

Future work includes a better analysis of relations between (N)AuxTPDAs and other mod-
els of computation, in particular (N)AuxPDAs, Alternating and (Non)deterministic Turing
Machines and various resource bounded variations of these. This would allow for a better
placement of CAESAR within the complexity hierarchy relating it to the various classes
presented in [8], [2] and [1]. Another direction of work is to establish whether the problem
of recognizing hypergraphs of bounded BCW is complete for CAESAR or whether it be-
longs to a lower complexity class. Finally, an important aspect of future work is the creation
and testing of computer programs implementing the (parallel) algorithms presented in this
paper.
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Instance-Based Hyper-Tableaux

for Coherent Logic

Evgenij Thorstensen

Oxford University Computing Laboratory

Automated theorem proving (ATP) is a sub�eld of logic in computer science that deals
with the problem of e�ciently deciding the validity or satis�ability of formulae in some
logical language. In our case, the logical language is coherent or geometric logic.

Coherent logic (CL) [5,3] is a syntactic subset of a �rst-order logic without function
symbols where every formula has the form

∀~x.(A1 ∧ · · · ∧An → ∃ ~u1.B1 ∨ · · · ∨ ∃ ~uj .Bm)

where the Ai are atoms, while the Bi are conjunctions of atoms. (The notation ~x refers to a
�nite list of variables.) In other words, we consider universally quanti�ed implications from
conjunctions of atoms to existentially quanti�ed disjunctions of conjunctions of atoms.

CL is of interest because, while having the expressive power of full �rst-order logic [5,6],
it is possible to do e�cient proof search in it without skolemization. This makes CL useful in
proof assistants, as skolemization of larger problems can signi�cantly alter their structure.
This makes it di�cult to apply the intuitions you might have about the problem to the
skolemized version your proof assistant is working on. Another advantage we gain from the
lack of skolemization is that the proof produced for the problem translated to CL can easily
be translated to a proof for the original problem. A typical example is the induction step
of Newman's Lemma, where a CL formalization gives a very short proof (see [4] for details,
and [5] for the translation from �rst-order logic to CL).

Instance-based methods (IMs) [2] are a family of �rst-order methods for ATP that work
by generating instances of formulae to be checked, instead of combining existing formulae
to produce new ones (as done in e.g. resolution). These methods work well on a fragment
of �rst-order logic called the Bernays-Schön�nkel fragment. As satis�ability of CL theories,
i.e. sets of CL formulae, falls under this fragment, it makes sense to adapt IMs to CL in a
way that avoids skolemization.

Our research [7] presents an instance-based calculus for coherent logic based on the Next-
Generation Hyper-Tableau calculus (NG) [1]. The NG calculus has two rules, Ext and Link.
The Ext rule is used to extend the tableau with clauses from the set of working clauses,
while the Link rule is used to add instances of clauses already on the tableau to this set.
The clauses generated by Link can in turn give rise to new applications of Ext.

The presented calculus modi�es NG to work on clauses with two types of free variables,
corresponding to universally and existentially quanti�ed variables in CL formulae. To deal
with such clauses, both rules have to be modi�ed. The Ext rule is modi�ed so that existential
variables are replaced by fresh constants, making them invariant under later substitutions.

The Link rule must be modi�ed more severely. Instead of generating instances of clauses
on the tableau, Link must generate instances in the set of working clauses, taking care
not to instantiate existential variables. The move from instantiating clauses on the tableau
to instantiating clauses in the clause set is necessary to preserve soundness, as the fresh
constants introduced by the Ext rule must be fresh for every instance. Consider a simple
example: from the formula ∀x∃yPxy, which in our clausal form becomes Pxẏ, it is sound to
generate the clause Pat, as t is a fresh constant � so if the formula is true, then it is true
when x is instantiated to a, and we can interpret t as the object that makes it true in this
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case. However, we may not generate the above and Pbt, as now we must interpret t as the
same element both for a and for b � but the two clauses might not be true for the same
element in both cases. The sound inference would have been Pbt′ with t′ fresh. To avoid
this problem, our calculus will use the Link rule to generate Pbẏ (as clauses in the set we
are working on never change in their existential variables), and when it is time to put this
clause on the tableau, the Ext rule will replace ẏ by a fresh constant.

These modi�cations su�ce for soundness and completeness, but the changes to the Link
rule mean that we no longer use the tableau as a guide for �nding new Link rule applications.
As the set of working clauses is usually much larger than the set of clauses on the tableau,
this may destroy any bene�t we gain by using CL in the �rst place.

We address this by proving that if an Ext rule application fails in a certain way, a Link
rule application can be performed instead, with clauses that were previously used in an Ext
application (something we keep track of while constructing the tableau). We then prove
that the calculus stays complete if no other applications of Link are allowed, trading a little
space for a lot of time.

To summarize, we show that CL admits an instance-based calculus that, while keeping
the usual bene�ts of using one, removes the need for skolemization.
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