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Abstract—Routing  in  highly  mobile,  energy  constrained 
wireless  networks  remains  an  open  research  area.   The 
majority  of  energy  aware  protocols  are  designed  for 
stationary  networks,  and  conversely,  mobile  ad  hoc 
protocols  rarely  incorporate  information  about  node 
energy.   Obtaining  global  information  about  energy 
distribution  across  the  network  is  wasteful  of  scarce 
resources,  so  we  introduce  a  ranking  system  based  on 
social  dominance  hierarchies  found  in  nature.   The 
Adaptive  Social  Hierarchy  (ASH)  is  a  simple  means  of 
assessing node rank, utilizing only local information.  Both 
single-copy  and  multi-copy  routing  protocols  using  our 
ranking  system  are  presented.   As  an  application,  we 
consider  equipping  a  wide  variety  of  wild  animals  with 
wireless collars.  We also show how a simple cross-layer 
protocol  can  be  constructed  which  further  conserves 
energy of low level nodes. 
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I.  INTRODUCTION

A  major  problem  in  mobile  wireless  sensor  networks  
(i.e.  designed for data-gathering rather than for peer-to-peer 
sharing) is assessing the 'best' path that a message should take 
for eventual delivery to a base-station or exit point from the 
network.   In  sparse  networks,  this  problem  becomes  even 
more  apparent,  when  there  may  never  be  an  end-to-end 
network route rendering 'traditional' protocols such as AODV 
[1]  and  DSR [2]  useless.  Thus  delivery  is  undertaken  in  a 
store-and-forward manner, with nodes exchanging packets on 
contact with one another, to form a Delay-Tolerant-Network 
(DTN)  [3].  If  the  mobility  patterns  of  nodes  are  highly 
dynamic  and  essentially  unpredictable,  determining  the 
optimal  path  is  impossible.   Flooding  strategies  (such  as 
Epidemic  Routing  [4])  can achieve  the  optimal  solution  by 
sending  the  message  down  all possible  paths,  but  at  an 
unacceptably  high  overhead  in  terms  of  network  resources 
(memory and energy usage).  Scalability is poor, as network 
usage rises as the square of the number of nodes, leading to a 
critical limit on the number of network nodes.  Refinements to 
the  Epidemic  protocol  control  the  flooding  by  limiting 
message  replication.   However,  few  protocols  take  into 
account the heterogeneity across nodes in terms of  intrinsic 
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node  parameters  (such  as  energy)  and  extrinsic  parameters 
(such  as  connectivity),  simply  treating  all  nodes  as  being 
identical in all respects and controlling the flood in a stateless 
fashion [5],  [6].   Protocols  which do take these differences 
into  account  assume  global  knowledge of  node  parameters, 
which scales poorly and involves a large network overhead in 
sharing these parameters [7].  We present here an elaboration 
of  our previous work based on a biologically inspired self-
ranking system [8].  

As an application of our cross-layer  routing protocol we 
consider  a  wireless  sensor  network  designed  for  wildlife 
monitoring. Animals are equipped with collars which collect 
data (such as GPS positions or activity profiles) and relay it in 
a multi-hop fashion using low power wireless links.  Energy is 
severely constrained and the collars must operate for as long 
as possible.  Furthermore, the memory and computation power 
of the microcontroller in the collars is limited, precluding the 
use of intensive algorithms.  However, the size of the batteries 
in each collar can be made to vary according to the weight of 
the host animal, leading to a widely diverse network.

This paper is  organized as follows.   First,  a background 
review is presented of similar routing protocols, followed by 
an examination of social dominance hierarchies which occur 
in Nature.  We then formulate a similar social hierarchy, and 
show how this ranking system can be used for the purposes of 
both  routing  and  medium  access.   Simulation  results  are 
presented for the application of wildlife tracking.  Finally, we 
discuss  future  directions  for  this  research  and  draw 
conclusions.

II.  RELATED WORK

Epidemic routing is based on mimicking the spread of a 
disease  through  a  population  and  is  essentially  a  flooding 
mechanism  for  disconnected  networks,  but  leads  to  high 
network  resource  usage  [4].   To  control  network  usage, 
variants have been presented in the literature, such as Spray 
and Wait [6] and Oracle based schemes [3]. However, none 
have considered the problem of heterogeneity with respect to 
energy and assume nodes are equal in all respects.

 ZebraNet provided the first comprehensive examination of 
the use of wireless sensor networks for animal tracking  [9], 
[10]. GPS equipped collars were fitted on zebras and exchange 
information in an epidemic fashion.  Their routing algorithm is 
very simple and leads to buffer overflow as every node in the 
network stores information from every other node.  They only 
considered fitting the collars on a single type of animal.  The 



Shared  Wireless  Infostation  Model  (SWIM)  is  a  routing 
protocol  that  addresses  some  of  the  issues  faced  by  the 
Epidemic routing protocol  [5].  Their main contribution is in 
the form of 'anti-packets' – messages that prevent nodes from 
buffering  data  that  has  already  been  delivered  to  the  base-
station.   However,  like  ZebraNet,  they  concern  themselves 
with  instrumenting  a  single  species  –  whales.   Sikka  et  al. 
present  a  wireless  sensor  network  designed  to  monitor  a 
typical  farm  environment  [11].  They  also  do  not  consider 
using the capabilities of different animals to lead to a better 
performing network. 

III.  THE NEED FOR A RANKING SYSTEM

A.  Naturally Occurring Social Hierarchies

Social hierarchies naturally occur in a number of species 
and  are  typically  motivated  by  differences  in  physical 
attributes  such  as  size  or  weight.  Some  individuals  can  be 
regarded  as  being  'fitter'  than  others  based  upon  a  set  of 
measurable  characteristics.   Anemones  for  example,  form a 
hierarchy based upon size, in which larger anemones are more 
aggressive towards smaller anemones  [12].  Crayfish form a 
social  dominance  structure  based  on  length,  in  which  the 
shorter crayfish defer to the largest, super-dominant individual 
[13].  Social  hierarchies  can  also  be  found  in  fish  (Malawi 
Cichlids  [14] and salmon [15]); insects (ants [16], bees [17] 
and  wasps  [18])  and  mammals  (baboons  [19]  and  coyotes 
[20]).   Thus  it  can  be  seen  that  social  hierarchies  are  a 
common  organizational  structure  in  a  wide  variety  of 
organisms.

A linear social dominance hierarchy is characterized by a 
group that is led by the largest or fittest member – the super-
dominant or alpha individual.  All other members of the group 
submit  to  this  animal.   The  next  in  the  hierarchy,  the  beta 
member is superior to all other members barring the alpha and 
so on.  Thus, the weakest (omega) member in the pack will be 
subordinate to all other members. However, it must be noted 
that  this  is  not  a  static  structure,  and  the  hierarchy  adapts 
rapidly to changes.  Animals alter their role in the hierarchy 
through  a  series  of  encounters  or  tournaments  with  other 
animals.   When a  new animal  is  inserted  into  a  group,  the 
social hierarchy will undergo a rapid flux until it reorganizes 
into a stable structure.  

Social  dominance  hierarchies  are  used  in  the  Animal 
Kingdom to control access to scarce resources.  For example, 
in  the  whiptail  wallaby (macropodus  parryi),  the  individual 
animal's  rank  within  the  social  hierarchy  determines  their 
access to estrous females [21].

Using these biological lessons, it can be seen how diversity 
in terms of fitness leads to a unified, self-organizing structure. 
By  applying  these  principles  to  the  structure  of  a  wireless 
network that  is  diverse over  some attributes,  a  similar  self-
organizing hierarchy can be formed.  Tournaments are enacted 
upon  pairwise  encounters  of  nodes,  the  outcome  of  which 
determine the rank of nodes.  The rank of each node controls 
its  access  to  scarce  network  resources,  with  highly  ranked 

nodes assuming a more active role in the network.

B.  The Adaptive Social Hierarchy 

Based on the commonly occurring social hierarchies found 
in nature, an analogous structure is constructed in a group of 
nodes based on a measurable attribute.   Essentially, this maps 
an arbitrary set of node parameters into an ordered list, where 
the rank of a node corresponds to its position in the list.  From 
this,  nodes can determine how 'fit'  they are  with  respect  to 
their  peers,  without  requiring  global  knowledge  of  the 
ordering of the network wide nodal parameters.

Each  node  is  able  to  measure  certain  metrics  on  an 
absolute  scale,  such  as  battery  energy  or  percentage 
connectivity.   It  forms a belief  about its  ranking within the 
network.  Thus associated with each measured parameter αi is 
a perceived rank Ri. A node with a ranking of 1 is at the top of 
the  social  hierarchy  (corresponding  to  an  alpha  individual), 
whereas  the  lowest  rank  node  will  have  a  rank  of  0 
(corresponding to an omega individual).

When  two  nodes  meet,  they  can  assess  whether  these 
rankings are in concordance or disagreement with the relative 
ordering of the measured parameters.  If  the ordering of the 
parameters agrees with the ordering of the rankings, then they 
are reinforced. This is equivalent to an animal reinforcing its 
position in the social hierarchy.  However, if the ordering of 
the parameters contradicts the rankings, then the nodes switch 
ranks.  This is roughly analogous to an animal rapidly falling 
in  ranking  as  the  result  of  a  failed  aggressive  encounter. 
Through  these  two  actions,  a  form  of  local  feedback  is 
effected ensuring that the rankings will over time agree with 
the ordering of the measured parameters.

The tournament rules are shown in Fig. 1.  Four simple 
rules  are  used  in  total.   If  the  relative  ranking of  a  node j 
agrees with the relative ordering of the parameter i, then this is 
reinforced either in a positive direction

R j
i =1−R j

i   (1)

or a negative direction

R j
i =1−R j

i  (2)

The innovation parameter, 0 < δ < 1, controls the speed at 
which the rankings adjust to new information.  A large value 
of  δ results rankings rapidly changing, leading to an unstable 
hierarchy.   A  very  small  value  of  δ  leads  to  a  long 
convergence time to the equilibrium position. 

However, if the relative order of the parameter i is opposite 
to  the  relative  order  of  the  rankings,  then  nodes  j  and  k 
simultaneously exchange their ranks:

R j
i  Rk

i  (3)

This 'switching' action has the effect of rapidly correcting a 
node's  rank.  This  mechanism  results  in  much  faster 



convergence  times  than  if  the  learning  procedure  was  only 
used.

To demonstrate  the  performance  of  the  ranking  system, 
four nodes are initialized with random rankings between 0 and 
1. The measured parameter,  α, is such that node 4 is superior 
to node 3 is superior to node 2 and so forth. At each point in 
the  simulation,  two  nodes  are  picked  at  random  and  the 
tournament rules run.  After 50 iterations, the node parameters 
are altered such that the order is opposite to the initial order of 
the parameters.  The rankings of the nodes are shown in Fig. 2. 
This demonstrates that the nodes rapidly switch their ranks in 
the beginning, followed by a slow convergence towards the 
equilibrium point.  When the order of the parameters alters, 
the nodes change their rankings within 5 iterations to regain 
the correct ordering.  Thus it can be seen that the combination 
of the switching and reinforcement leads to nodes assuming 
their  correct  rank and adapting  to  changes  in  the  measured 
parameter.

The overhead of the ranking algorithm is small and scales 
to any number of nodes without an increase in memory usage 
or computation time.  This is because each node estimates its 
own rank, rather than attempting to track every other node's 
parameters in the network.  Furthermore, without exchanging 
explicit  global  parameter  information,  nodes  are  able  to 
achieve correct ranking using only local information.

IV.  ROUTING PROTOCOLS

The  process  of  routing  in  a  sparse  mobile  network 
devolves to deciding whether to transfer a message when two 
nodes are within radio contact of one another.  If the message 
is  transferred,  then the originating node can either  keep the 
message for future possible transmission or discard it to make 
room for new messages.  The decision to transfer can be made 
at random or can be based upon some metric of how much 
better the other node will  be at delivering the message to a 
base-station.   By suitable  choice  of  α  parameters,  a  node's 
ranking can represent its suitability in transferring messages. 
For  example,  if  the  measured  parameter  is  the  energy  of  a 
node, then transferring messages to a higher ranked node is 
equivalent  to sending messages up an energy gradient.  The 

ranking of a base-station is fixed to 1, such that it will be a top 
ranked node in the network and thus the end point.  Hence, 
nodes can find base-stations without knowing their addresses.

A node's overall rank within the network can be calculated 
as a function of the individual ranks.  This function could be a 
weighted  sum,  or  a  weighted  product,  depending  on  the 
application.   More complex  functions  can also be used,  for 
example that prevent nodes being active in the task of routing 
if  their  energy  has  a  very  low rank,  even  if  their  network 
connectivity is very good.

A naïve routing protocol would be to send messages to any 
node  with  a  greater  rank.  However,  this  is  equivalent  to 
sending messages to any node with greater energy.  Thus, it 
would appear as though calculating the rank is unnecessary. 
However,  if  the rank is  discretized to  L levels  (where L is 
much smaller than the number of nodes in the network, N), 
then  the  power  of  the  ranking  system becomes  apparent  if 
nodes only send messages to nodes with a greater level. This 
is because the traffic density per node is independent of N, and 
only  depends on the number  of  levels  in  the hierarchy [8]. 
The traffic density of a level k node is given by

Dk=
 L

L−k1  (4)

where  λ is the average node traffic density in messages per 
unit time.  This equation shows that if L = N as in the case of a 
network without a ranking system,  the traffic density grows 
with N, leading to rapid node exhaustion. Thus using a social 
hierarchy leads to a highly scalable network as buffer usage 
does not increase with increasing number of nodes.

A.  Adaptive Social Hierarchy Routing (ASH)

In this  strategy,  if  a  node encounters  another node with 
higher level, it transfers its message to the new host and then 
deletes the message from its buffer.  This is a simple routing 

Figure  1:  Tournament  outcomes  based  on  node  energy  (E)  and  perceived 
rankings (R).  Arrows indicate how the ranking of each node changes.  If a 
node's  perception  of rank is  correct,  then its  rank is  reinforced  either  in  a 
positive or negative direction.  If a node's energy relative to its competitor 
contradicts its perception of rank, then it  switches its rank with that of the 
competitor.

Figure  2: Rank trajectories with meeting in a four-node four-level network 
(δ = 0.1). At 50 iterations, the rank orders of the nodes are reversed.



method, and leads to low network overhead as each message 
will  be  routed  a  maximum of  L  times  (if  the  rankings  are 
stable).  However, if a node fails for any reason, the messages 
it is carrying will be removed from the network.  In addition, 
the latency of this protocol is high.

B.  Redundant Adaptive Social Hierarchy (rASH)

To reduce the probability of a message being lost through 
host failure and also to reduce the latency, messages can be 
replicated.   Thus,  when a message is  delivered,  a  node can 
keep  its  copy for  possible  future  delivery  to  another  node. 
This strategy increases traffic density and buffer requirements. 
Thus  there  is  a  trade-off  between  redundancy  and resource 
use. The ranking of nodes lends itself well to a natural choice 
of the degree of redundancy required.  Clearly, duplicating a 
message across low level nodes does not achieve any useful 
redundancy,  as  these  nodes  are  not  active  in  disseminating 
information and are likely to be severely resource constrained 
compared  to  their  higher  ranked  peers.  Thus,  messages  are 
replicated  with  a  probability  that  increases  with  increasing 
level.  Hence, delivery amongst low level nodes will resemble 
direct routing (with low traffic overhead, but high latency) and 
delivery  between  high  level  nodes  will  resemble  epidemic 
routing (with high traffic overhead and low latency).    The 
probability of a level k node sending a message to a level j 
node is given by

P Transmissionk j={ 1  jk
T  j=k 
0  jk

 (5)

 where ρT is the horizontal (i.e. across the same levels in 
the hierarchy) transmission probability. Once the message has 
been sent to a higher level node, the node can either keep the 
message or delete it. The probability of a level k node keeping 
a sent message for future replication is given by

P Replication=R
N −k1  (6)

where  ρR is  the replication constant.   The probability of 
replication  increases  with  k,  resulting  in  epidemic  delivery 
between high level nodes.

C.  Cross Layer Medium Access 

As the routing protocols only transfer information to nodes 
with  a  greater  level,  information  does  not  flow  down  the 
hierarchy.  Hence, a level 1 node will never receive messages

from a higher level node.  Thus, access to the communication 
medium can also be controlled preferentially based on node 
rank.  An example of a MAC schedule is shown in Fig. 3 for a 
five level network.  It can be seen that the lowest level node 
spends the majority of its time in a low power sleep mode, 
only waking if necessary to transmit a message.  During its 
transmission slot, all the higher level nodes will be listening 
for transmissions.  Thus, a low level node does not need to 
contend with a high level node for access to the medium, and 
spends the majority of its time asleep, conserving energy. The 
Inter Epoch Sleep (IES) gap is a period when all nodes enter 
the low power sleep mode. As levels in the hierarchy are not 
statically assigned, if a node assumes a role that depletes its 
energy  rapidly  relative  to  its  peers,  its  relative  fitness  will 
decrease and it will descend the hierarchy, resulting in lower 
energy usage.

V.  APPLICATION: WILDLIFE ANIMAL TELEMETRY

 Wildlife tracking collars are used to acquire GPS fixes, 
accelerometer  data  indicating  activity  and host  temperature. 
This data is typically stored on-board for eventual  retrieval, 
though some versions incorporate a low power UHF radio for 
download  to  a  hand-held  logger.   One  problem  with  the 
existing radio collars is that substantial disturbance needs to be 
made  to  the  animal's  environment  to   download  the  data, 
biasing the results. 

As an application of a highly mobile, energy constrained, 
sparse wireless sensor network, we consider the example of 
animals fitted with collars which comprise two-way wireless 
units and a microcontroller.  Data is transferred in a multihop 
fashion when nodes are within range of each other.   In this 
way, collars collect data from other collars (typically with a 
lower rank) to send to a base-station.  This way, the motion of 
the  animals  is  used  to  automatically  collect  the  data,  as 
opposed to a researcher having to enter the field and locate the 
animals for manual data download.

Animals  vary  widely  in  terms  of  their  bodyweight.   A 
standard 'rule' in the wildlife tracking community is that the 
weight of a device placed on an animal may not exceed 5% of 

Figure 3: Cross layer slotted access scheme.  Slots are assigned based on node 
level.   Low  level  nodes  spend  the  majority  of  their  time  sleeping  which 
conserves their energy.

Epoch N Epoch N + 1
Slot 1 Slot 2 Slot 3 Slot 4 IES Slot 1 Slot 2 Key

Level 5 Transmit
Level 4 Receive
Level 3 Sleep
Level 2
Level 1

Figure 4: Application scenario: Animal borne collars route network data in a 
store-and-forward fashion. Collars carry different sized batteries according to 
the  weight  of  the  host.   An  adaptive  hierarchy  is  formed  from  these 
differences, leading to a longer lived network.

Basestation



the animal bodyweight [22].  Take for example the weight of a 
bull African Elephant  which, when fully grown, can weigh 6 
000  kg.   In  comparison,  a  small  animal  such  as  a  Vervet 
monkey only weighs a few kilograms.  Thus,  for  this  rather 
restrictive  example,  there  is  a  three  order  of  magnitude 
difference in weight and correspondingly for the tag weight 
that  each  animal  can  carry.  We  argue  that  this  difference 
should  be  exploited  to  the  benefit  of  the  operation  of  the 
network.  In  this  way,  the  lightweight  animals  can  use  the 
capabilities  of  the heavyweight  animals  to  result  in  a  more 
efficient  and  longer  lived  network.  This  enforced  diversity 
differs from existing research which treats all animal collars as 
being equal, leading to unfair loading on low energy collars. 
This is shown in Fig. 4.

VI.  RESULTS

The performance of this scheme is assessed with respect to 
epidemic  routing,  with  handover  probability  ρe  [4].   The 
simulation environment is a square of side 10 km, radio range 
is  circular  of  900 m and 100 nodes move according to  the 
random waypoint  mobility model with a non-zero minimum 
speed  (after  [23])  and  maximum  speed  of  6  m/s.   Nodes 
randomly generate information with a Poisson rate of 1 packet 
every 100 seconds.  We assume that transmission of a single 
packet  consumes  1  unit  of  energy,  and  the  overhead  of 
communicating  rank and energy  for  our  protocol  uses  0.05 
units of energy. Nodes are assigned energies in proportion to 
the traffic densities calculated using Eq. (4) - the lowest level 
nodes have an energy of 200 units and the highest level nodes 
have an energy of 2 000 units. We use a 10 level network in 
this simulation, and the rank is a measure of the energy of a 
node.

The  results  from  the  simulation  are  shown  in  Fig.  5 
demonstrating  the  mean  time  to  first  node  expiry.   As 
expected,  epidemic  routing  performs  the  worst,  exhausting 
nodes rapidly through excessive traffic usage.  Even when the 
flooding is limited, using a smaller value of  ρe, traffic is still 
high.  Furthermore,  as  epidemic  routing  does  not  take  into 
account  the relative  energies  of nodes,  all  nodes participate 

equally  in  the  task  of  routing.   Two results  are  shown for 
rASH, one with horizontal transmission (ρT  = 0.9 ρR = 0.9) and 
one  without   (ρT  =  0.9 ρR  =  0.0).   When  horizontal 
transmission  is  enabled,  nodes  share  messages  with  other 
nodes of the same rank, leading to good traffic delivery, but 
also  to  higher  loading  than  the  case  without  horizontal 
transmission.  For the latter case, messages are not duplicated 
across the same level, but multiple copies can be sent to higher 
level nodes (as they will  not be deleted).   The time to first 
failure  of  nodes  using  the  rASH  protocol  is  substantially 
greater than those using the epidemic protocol, as nodes with 
small amounts of energy essentially act as leaf nodes, routing 
no traffic.   The ASH protocol preserves the lifetime of low 
energy nodes, but it should be noted that this is a single copy-
routing  strategy,  thus  there  only  is  ever  one  instance  of  a 
message in the network, with the implication that redundancy 
is poor.

A second simulation was conducted to compare the time 
that a message takes to reach the base-station using the various 
routing algorithms.  Node energy was unlimited in this case, 
and 100 messages were generated at random nodes at the start 
of the simulation.  The results are shown in Fig.  6, showing 
that  the  epidemic  routing  algorithm  with  a  handover 
probability of 0.7 routes 90% of the packets to the base-station 
within 1700 iterations.  The redundant ASH (rASH) routing 
protocol delivers 90% of packets to the base-station within 2 
600 iterations.  The single copy routing ASH routing strategy 
suffers from excessive delays, taking over 18 000 iterations to 
route 90% of the packets to the base-station.  

Thus, it  can be seen that the rASH routing protocol can 
conserve  the  lifetime  of  low  ranked  nodes,  whilst  still 
achieving latencies  comparable  to  epidemic routing.  This is 
due to the combination of direct delivery for low rank nodes 
and a flooding protocol for high ranked nodes.

VII.  FUTURE DIRECTIONS

The concept of forming a social hierarchy shows a great 

Figure 5: Mean time to first node expiry for the various protocols Figure 6: Latency for delivery of 100 messages to base-station for Epidemic 
(ρe = 0.7), ASH and rASH (ρT = 0.9 ;ρR =0.9)



deal  of  promise  for  effectively  routing  information  in  an 
energy constrained wireless network.  The simulation results 
presented  here  only  considered  ranking  nodes  by  energy. 
However, nodes attached to wild animals will show manifestly 
different connectivity patterns and clustering.   For example, 
many  animals  travel  in  herds  -  these  are  regions  of  good 
connectivity.   Similarly,  most  wild  animals  need  to  visit 
certain resources, such as watering holes, relatively frequently. 
By  exploiting  these  connectivity  patterns,  well  connected 
nodes can assume a high rank with regards to being useful for 
delivering information timeously.

An area for future research is the formulation of a realistic 
mobility model that encapsulates salient parameters of animal 
behaviour, such as herding and fleeing from predation.  This 
will then be used to investigate multiple hierarchies, such as 
connectivity,  energy  and  delivery  probability.   A  decision 
algorithm will be used to choose at each point in time the path 
that a message should take, that is likely to bring it closer to its 
destination.

VIII.  CONCLUSION

This research takes a very common (and hence successful) 
structure  in  the Animal  Kingdom,  the social  hierarchy,  and 
adapts  it  to  a  wireless  sensor  network designed for  diverse 
animal  monitoring  and  tracking.   The  social  hierarchy  is 
thought to reduce conflict in animal groups, and here it is used 
to reduce energy use for low ranked nodes. Based on a simple 
routing  rule,  and  a  means  of  dynamically  assessing  global 
energy  distribution  through  locally  acquired  information, 
nodes  adaptively choose  an  activity level  that  dictates  their 
role within the hierarchy.   Each node chooses its role itself, 
with no centralized control, resulting in a system that scales 
well to large numbers of nodes. 

A controllable degree of redundancy is incorporated, that 
floods messages amongst high level nodes to improve delivery 
time, whilst  conserving the energy of low level nodes. This 
work is a novel application of a common ethological structure 
that results in a powerful routing algorithm which is simple to 
implement on low power microcontrollers.
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