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Abstract — Recent developments in sensor network technology have enabled the
instrumentation of the physical world with smart devices for monitoring purposes. A
large variety of applications could benefit from the pervasive deployment of inexpen-
sive wireless sensor nodes, ranging from environmental monitoring to emergency de-
tection and response. A significant challenge is to prolong the monitoring operation
of sensor nodes by efficiently using their limited energy, bandwidth and computation
resources. In this paper, we survey approximate data management techniques for
sensor networks that exploit the tolerance of most applications to small inaccuracies
in the reported data in order to extend the network lifetime.

1 Introduction

Sensor networks are targeted to a large spectrum of applications, including habitat and en-
vironmental monitoring, health monitoring, traffic monitoring, security and surveillance,
emergency scenarios and military applications. They consist of a large number of nodes
deployed in extended areas over long periods of time. Each node in a sensor network is
a small, radio-equipped, battery-powered computer with a number of sensors attached to
it, which monitor the ambient environment. A database abstraction of sensor networks
has recently gained interest in the sensor network community [1, 2]. Each node can be
viewed as a mini-repository of sensor data acquired and stored locally in its memory. The
network can therefore be treated as a distributed sensor data management system. Sensor
networks differ from traditional distributed databases in that they are limited by stringent
processing, bandwidth and, most importantly, energy constraints.

Two ideas that are often used to address the issue of limited resources are aggregation
and approximation. In-network aggregation reduces the load of data propagated in the
network, by pushing part of the query computation to the sensor nodes. Data streams
no longer consist of raw sensor readings, but of partial query results that are progres-
sively merged at intermediate nodes in their way to the base station [3, 1, 2]. Note that
in-network aggregation does not compromise the accuracy of query results, but simply
distributes query computation to multiple sensor nodes.

In-network lossy compression exploits the fact that a large number of applications can
tolerate approximate query results. In large sensor networks, it is not realistic to expect
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that query results will accurately reflect the current state of the network. Faults naturally
occur in a number of places, for instance during measurement acquisition by sensor de-
vices or in data propagation due to node and link failures. In the light of such uncertainty,
users are generally prepared to tolerate various levels of precision for different queries.
In this paper, we overview approximate data management techniques for sensor networks
that exploit relaxed precision requirements, in order to reduce the communication and
sensing load in the network.

1.1 Assumptions and Design Considerations

We start by discussing several assumptions and design aspects that will form the basis for
comparing existing techniques:
Data requirements: The techniques developed for approximate data management largely
depend on the data requirements presented by the users of the sensor network. We will
review techniques that aim at approximating results for different types of approximate
queries, including aggregate and non-aggregate queries (e.g. time-series, range queries).
We further distinguish approximate queries based on whether they require deterministic or
probabilistic error guarantees. In the case of deterministic error guarantees, the estimated
query answer must be an �-approximation of the accurate answer with probability 100%.
In the case of probabilistic error guarantees, we introduce a certain degree of confidence
in the error of the estimated query answer, i.e. the estimated value of a query answer is
within � of the real value with probability �.
Mode of communication: We distinguish three modes of communication, namely pure
push, pure pull and hybrid push-pull. In the push mode, nodes are programmed to proac-
tively forward their readings to the base station. In the pull mode, users inject short-lived
queries at the base station, and these queries are propagated to the sensor nodes in order
to pull data on-demand. In the hybrid push-pull model, sensors push data proactively
towards the base station. In case this data is not accurate enough to answer all posed
queries, additional information is pulled from the network in an on-demand fashion.
Mode of processing: We distinguish between flat (2-tier) and hierarchical (multi-tier)
network models. In the 2-tier model, processing can occur either at the source sensor
nodes (first tier), or at the base station (second tier). To make this model more general,
we also include scenarios where the network is divided into clusters and data is either
processed at the cluster heads (first tier) or at the base station (second tier). In the hierar-
chical model, readings from different sensors can be accumulated and partially processed
at intermediate nodes, as they are forwarded towards the base station. A typical example
is tree-based in-network aggregation of COUNT, SUM, AVG, MIN and MAX queries.
Use of data correlations: Whereas some of the techniques reviewed in this paper make
no assumption about the model of the observed physical process, others try to exploit
the strong correlations between observed values in order to reduce the sensing and com-
munication overhead. We review techniques that focus on temporal and spatio-temporal
correlations concerning one or more sensor attributes (e.g. correlations between humidity
and temperature readings of nearby nodes over a time period).
Adaptive distribution of error bounds: The experts of an application domain define
carefully the degree of precision (also referred to as error bound) that they are willing to
tolerate for their queries. Some of the techniques reviewed in this paper consider the prob-
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lem of distributing the input error bound to the individual nodes of the sensor network,
whereas others ignore this problem (as irrelevant or out of scope).
Node selection: In many cases, it is possible to answer a query at a required degree
of precision by tasking different subsets of sensor nodes. In this paper we compare ap-
proximate data management techniques based on whether they are designed to consider
alternative query execution plans that activate different sets of sensors. We will review
competing approaches to selecting the most efficient plan that minimizes the sensing and
communication overhead.

1.2 Paper Organization

We are now in a position to present an overview of recent work on approximate data
management for sensor networks, which we organize in three major groups. In the first
two groups, we consider related work from a query processing viewpoint and distinguish
existing approaches based on whether they target aggregate queries or not. In the last
group, we study approximate techniques from a storage management viewpoint.

1. Approximate Processing of Aggregate Queries (Section 2): The popularity of aggre-
gate queries in sensor network applications has motivated a lot of recent work on
approximate aggregation techniques. These techniques typically use a hierarchical
mode of processing. A few of them try to adaptively distribute the error interval
among the source sensor nodes in order to reduce communication. They also vary
depending on whether they offer deterministic or probabilistic error guarantees.

2. Approximate Processing of Non-Aggregate Queries (Section 3): In many cases, the
users are interested in approximations of individual readings of sensor nodes, rather
than in aggregated data. For example, habitat monitoring applications are interested
in approximate animal tracks, traffic monitoring applications are interested in ap-
proximate time-series data measuring the flow of cars in a roundabout etc. Discov-
ering and exploiting the data model behind a physical process has proven extremely
beneficial in processing such queries. We discuss compression mechanisms that ex-
ploit data correlations and report query answers with deterministic or probabilistic
error guarantees.

3. Approximate Storage Management (Section 4): Whereas most existing techniques
are either pull-based or push-based, we consider separately the interesting features
of a handful of hybrid push-pull approaches in Section 3. Most of them are general-
purpose, i.e. they are not limited to a specific class of queries. They determine
where to store (cache) sensor data in the network and at which level of precision,
hence directly influencing the storage management strategy of the sensor network.

2 Approximate Processing of Aggregate Queries

This section focuses on techniques for processing approximate aggregate queries in sensor
networks. An aggregate query may use a standard aggregate operator (such as AVG,
SUM, MEDIAN, MIN, MAX, COUNT) or a user-defined function. Aggregate operators
are characterized according to a set of properties like idempotence, commutativity and
distributed computation. An operator allows for distributed computation if, instead of
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applying the operator to an entire collection of input values, we can obtain the same
result by applying it to separate segments of the input collection and merging the resulting
partial results. For instance, MIN, MAX, AVG and COUNT are suitable for distributed
computation, whereas MEDIAN is not. In this section we only consider operators that
allow distributed computation.

Before considering approximate aggregates, we introduce the main mechanism for pro-
cessing accurate aggregate queries, referred to as tree-based partial aggregation [3, 1,
2]. In an initial network set-up phase, a tree is constructed using simple flooding al-
gorithms [1], data-centric reinforcement strategies [3] or energy-aware route selection
schemes [4, 5]. After a tree is constructed, sensor nodes forward their readings along the
paths of the tree, evaluating partial query results at intermediate nodes. Additional com-
munication savings can be achieved by combining the processing of multiple aggregate
queries over a fixed communication tree [6].

In certain applications, users may wish to tolerate different degrees of precision for ag-
gregate query results. Instead of letting the network configure the allocation of its limited
resources to the current queries in an arbitrary manner, it makes sense to let users control
these knobs according to their needs. We present two different approaches to expressing
uncertainty in aggregate queries. In the first approach, users define the maximum devia-
tion of the returned aggregate value from the correct answer. If the maximum deviation
defined in the query is � and the answer to the query is the scalar value ��, then the real
value of the aggregate result must lie in the interval ��� ��� �� ��� with probability 1. In
the second approach users determine accuracy requirements in probabilistic terms. They
enforce a certain degree of accuracy in the estimated result, by defining that the estimated
query result �� should be within � distance from the real value with probability greater
than a threshold �.

2.1 Aggregation with Deterministic Error Guaranties

Deligiannakis et al. [7] present an algorithm for processing continuous aggregate queries,
which is designed for the aggregation tree model. Each node � in the aggregation tree
maintains a filtering interval, depicting the range of likely aggregate values at the node.
The intervals are set so that the total error at the root is within the desired error budget. If
the latest aggregate value at a node lies within its filter, then there is no need to update the
parent of the aggregate value, thus reducing communication and conserving energy. Since
filters are installed on all network nodes except for the root, the algorithm exploits cases
where fluctuations in the values of different sensors cancel each other out at a higher
level in the hierarchy, thus avoiding further propagation of updates to the root. Error
thresholds are continuously adjusted based on local traffic statistics; the parent evaluates
the potential communication savings of increasing the error bounds of its children, and
distributes error budgets to maximize the total expected benefit. Additionally, volatile
sensor nodes are identified and ignored so that they do not use up most of the available
error budget.

Yu et al. [8] present a similar hierarchical model for processing approximate aggregate
queries with bounded quality constraints. The proposed Adaptive Approximate Aggre-
gation Protocol ���� is built upon an aggregation tree, whose leaves represent source
sensor nodes and intermediate tree nodes represent clusterheads residing on sensor nodes.
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Each source node reports its value to its parent and the parent subsequently aggregates all
values and reports to the higher level. The parent keeps track of his children’s previous
values and calculates a default value and error bound for each child. As in [7], a child
is allowed to communicate only in the case that its value violates the error bound. The
algorithms used to adaptively adjust the default values and error bounds of each node are
slightly different in the two papers [7, 8].

Cormode et al. [9] use quantile summaries to continuously track the full distribution of
values in a highly distributed environment comprised of multiple data streams in remote
sites. Their algorithms address large-scale monitoring applications in their generality
and are applicable, albeit not specific to, sensor networks. The processing of quantiles
differs from previous approaches ([7],[10]) in that it requires monitoring of the entire data
distribution. The base station is responsible for answering user queries on the frequency
distribution of the union of all streams. The allowed error tolerance is split into two parts
�� � � � ��; each remote site monitors the local stream and if its deviations exceed the
threshold defined by �, the site sends to the base station an updated approximate quantile
summary error-bounded by �. In order to minimize the frequency of communication, the
proposed scheme uses prediction models piggy-backed to the local quantile summaries.
Cormode et al. extended their initial work on flat (2-layer) quantile processing to exploit
the merging (cancelling out) of quantile updates in a hierarchical setting. The authors
prove that the proposed scheme provides strong ��approximation guarantees for quantile
queries.

2.2 Aggregation with Probabilistic Error Guaranties

Considine et al. [11] and Nath et al. [12] have indepedently developed techniques for ap-
proximate aggregation in the presence of packet loss and node failures. When a spanning
tree approach is used for aggregation, a single node or link failure results in the loss of an
entire subtree of values. Multipath routing has been proposed as an inexpensive solution
to address this problem. For duplicate-sensitive aggregates (e.g., SUM and COUNT),
however, multipath routing may lead to incorrect calculations. Both [11] and [12] extend
the theory of sketches to handle certain duplicate-sensitive aggregates, including SUM
and COUNT.

For example, Nath et al. [12] utilize order and duplicate-insensitive (ODI) synopses:
these are small summaries of partial results that count each sensor’s value only once,
regardless of how many times or in which order they arrive at a node. The proposed
mechanism of synopsis diffusion is based on three basic functions which have different
implementations for each query type: Synopsis Generation (SG), which outputs a synop-
sis given a sensor reading, Synopsis Fusion (SF), which combines two synopses into one
and Synopsis Evaluation (SE), used on the querying node to translate synopses back to an
answer. Continuous queries are assumed and a ring topology is used in order to illustrate
the advantages of multipath routing. The proposed techniques in [11] and [12] enable the
routing of partial aggregates through multiple paths, and provide fault-tolerant evaluation
of approximate aggregates with probabilistic error guarantees.

Hartl et al. [13] further reduce energy consumption in the network by activating a sub-
set of the nodes and use their values to infer the values for the sleeping nodes through
Bayesian inference. They specifically focus on the problem of obtaining the average
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reading in the monitored field. Bayesian inference uses posterior predictive distributions
to arrive to conclusions about data that has not been observed, given the existing obser-
vations. The algorithm developed is called infer and consists of two phases: during the
first phase, a distributed algorithm decides which nodes are going to be active or asleep
for the next epoch, which contains several sensing rounds. Both node energy level and
the values of sensed data are considered while making this decision, in order to achieve
load balancing while making sure that important data will always be available to the sink.
The second phase of infer concerns only the sink: it utilizes Bayesian inference in order
to predict the average sensor reading of the network, based on the available incomplete
dataset. The Bayesian inference approach has the potential of being applied to process a
large spectrum of queries beyond aggregates.

3 Approximate Processing of Non-Aggregate Queries

Sensor networks offer new opportunities to monitor the real world at an unprecedented
scale, since they have the potential of covering extended areas for large periods of time.
From a research viewpoint, this becomes a real challenge when the application requires
fine data granularity instead of data summaries. In this section, we study techniques
that aim at processing non-aggregate queries in an energy-efficient manner. They rely
on temporal and spatio-temporal correlations in the observed data to significantly reduce
communication and increase network lifetime. In Section 3.1, we discuss techniques
aimed at minimizing communication from a single sensor, and in Section 3.2, we extend
our discussion to minimizing communication from multiple sensors.

3.1 Approximate Processing of One Sensor Stream

In [14], Lazaridis et al. present techniques for compressing time series values produced
by sensor nodes. Their approach focuses on capturing the complete history of a time
series, arguing that knowledge of the way the quantity being monitored evolves is essential
for a variety of scientific applications. They assume a network of multiple sensors, the
producers and a central database, the archiver. The goal is to capture an approximate
version of the time series on the archiver, with quality guarantees for each individual
value, and to predict future values of the series based on this approximation. The authors
utilizes a piecewise constant approximation (PCA) algorithm. PCA is a lossy compression
scheme that represents a time series as a sequence of value-interval pairs called segments
�	�� 
��, i.e. a constant value 	� during 
� epochs. They use Poor Man’s Compression
(PMC), an online version of PCA that computes PCA segments as each value arrives.
For example, PCA-Mean samples values and computes their mean, until the mean differs
from the minimum and maximum by more than a given threshold. The time required
to compute a segment at the producer and send it to the archiver may be long if the time
series consists of similar values. To address this problem, the authors consider embedding
a prediction model to answer queries concerning current and future values that have not
yet been covered by a segment. The model’s precision interval can be adjusted using
techniques similar to the ones described in [10].

Earlier work on processing distributed data streams proposed the caching of data inter-
vals at the source and the base station, and suggested that the source should refrain from
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propagating its values as long as they fall within the cached interval [10]. Jain et al. [15]
identified shortcomings in the approach of caching static data to reduce communication
between the source and the base station. They propose the use of Kalman filters, and
instead of caching data intervals they cache filter parameters that help predict the data.
A Kalman filter is a recursive algorithm that predicts the future internal state of a system
based on current state information and observations of its external behaviour. The recur-
sive procedure is based on two mechanisms: Prediction, which estimates the system state
at time � � � and Correction, which adapts the filter according to the actual values ob-
served at time ���, making the filter a truly online adaptive model. The authors propose
the Dual Kalman Filter Model, an architecture similar to the one described in [9]. Contin-
uous queries are directed to a central server, accompanied by a precision constraint. For
a query concerning node �, a Kalman filter �
� is installed on the server and a mirror
of this filter is initiated on source �, simulating �
�’s operation. The server uses the
predictions of the Kalman filter to provide answers about � in the future. Updated values
from sensor � are propagated to the server only when the mirror filter (and therefore �
�

as well) is found to be incapable of predicting �’s values within the specified constraint.
The Kalman filter is able to model various processes, including non-linear and noisy ones,
making it feasible to apply the same framework to a variety of scenarios.

In recent work, Deligiannakis et al. [16] present a new technique designed for histor-
ical data compression in sensor networks. They assume that each source node produces
multiple streams of data, one for each type of sensor, and pushes them to a base station.
They first construct a base signal from the node’s time series and subsequently use it to
approximate time series using regression. The authors’ intention is to exploit correlations
between different time series on a node. The algorithm presented is called Self-Based
Regression (SBR): it is given a bandwidth constraint (maximum packet size) and the size
of the base signal as inputs and tries to provide an optimal approximation to a node’s time
series with respect to these constraints. The base signal is initially constructed; SBR splits
the locally-stored part of the time series into intervals of various sizes and for each one of
them computes the benefit of approximating the rest. The interval that incurs the highest
benefit is chosen as a part of the base signal and the process is repeated until the desired
base signal size has been reached. The next step is to approximate the series data using
the base signal; the algorithm concatenates data from all time series in a node, breaks the
resulting stream into intervals and tries to approximate them using equal-sized base signal
intervals. The error metric used is the sum squared error and it can be modified to any
other appropriate metric. The algorithm was shown to outperform several approximation
techniques, including Wavelets, Histograms and Discrete Cosine Transform (DCT), using
various real-world datasets.

3.2 Approximate Processing of Multiple Spatially-Distributed Sensor Streams

In this section we present recent techniques for processing multiple sensor streams in an
energy efficient manner. These techniques make use of both spatio-temporal correlations
to perform data reduction.

Guestrin et al. [17] propose an algorithm that manages spatio-temporal data in a dis-
tributed fashion. The network is assumed to contain multiple overlapping regions and
in each region significant spatial correlations are expected to be observed. The authors
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introduce the usage of kernel functions; a region’s kernel function maps a point � to a
number, depending on the position of � in the region. Basis functions are chosen for each
region and the kernel functions are used to weigh these basis functions accordingly during
the regression process. Kernel regression is based upon a distributed version of Gaussian
elimination which computes the weights for each basis function resulting in the kernel
regression estimate that minimizes the mean square error for all the data in a region. A
query specifies a set of kernels (regions) and a set of basis functions (e.g. polynomial with
maximum degree 3) for each kernel, the parameters of which are computed and returned
by the system. Neighbouring nodes need to exchange messages containing basis function
coefficients in order to optimize the regression estimate. Regression was observed to
perform better as the number of basis functions is increased, especially at times when
values change dramatically.

Deshpande et al. [18] propose the use of statistical models of real world processes to
reduce the cost of sensing and communication in sensor networks. The prototype built,
BBQ, consists of a declarative query processor and an underlying probabilistic model and
planner, based on time-varying multivariate Gaussians. A multivariate Gaussian is the
�-dimensional extension of the simple probability density function (pdf ), represented by
means and covariances. The initial representation of the pdf is constructed during a train-
ing phase, with the use of historical data. The model runs at the base station, where users
submit SQL-like queries that include error intervals and confidence bounds. Multiple
one-shot queries are considered rather that continuous ones. The pdf is used to determine
whether the model is able to answer a query within the target error and confidence bounds
without requiring updated values from the network. If not, the query processor has to pick
the best set of attributes to observe (called an observation plan) in order to bring the con-
fidence up to the required threshold, while minimizing the sensing and communication
cost. BBQ uses a greedy incremental heuristic to identify good observation plans in order
to answer range, value and aggregate queries.

Chu et al. [19] tackle the SELECT * problem for sensor networks. They propose a
framework for selecting approximate data with bounded-loss guarantees, while minimiz-
ing communication costs throughout the network. The prototype built, Ken, utilizes a pair
of dynamic probabilistic models, one running at the base station (sink) and the other one
at each node in the network. Ken bears several similarities to BBQ proposed by Desh-
pande et al. [18] as it evaluates a probability density function and exploits both spatial
and temporal correlations between sensors. Their key difference lies in the fact that BBQ
is pull-based, i.e. the base station acquires data from the network only when necessary in
order to satisfy queries, while Ken is push-based: source nodes monitor their data contin-
uously and only route values towards the sink upon detecting that the sink’s model needs
to be synchronized with the local ones. In effect, Ken addresses outlier detection, the
basic weakness of BBQ. In order to utilize spatial correlations, Ken partitions the sources
into clusters, called cliques, and inference is done on one node per clique, the clique root.
Finding an optimal partitioning scheme for the network is an NP-hard problem so the
authors provide a greedy heuristic that runs locally at the sensor nodes.
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4 Approximate Storage Management

The techniques discussed in Sections 2 and 3 are either push-based or pull-based. In
the push mode, data is proactively forwarded from the sensor nodes to the base station,
whereas in the pull mode, data is acquired on-demand only when users inject queries into
the network. The push mode is suitable for classes of applications that require continu-
ous monitoring at a constant level of precision. Results are forwarded to the base station
periodically or when an interesting event occurs. The pull mode is suitable for classes of
applications where monitoring is not needed continuously and throughtout the network
area; users require data infrequently each time with a potentially different precision con-
straint. For a variety of applications that lie between the two extremes, neither the push
nor the pull mode allow for energy-efficient data dissemination.

In this section, we discuss hybrid push-pull data management techniques that rely on
the storage capabilities of sensor nodes. They allow the distributed caching of sensor
data within the network at different levels of precision, and raise a number of interesting
research problems: i) adaptive precision setting of sensor data, and ii) efficient aging of
sensor data and iii) energy-efficient search and access of stored data.

In [10], Olston et al. focus on the first problem of adaptively adjusting the precision of
cached approximations to achieve optimal performance in a dynamic environment. They
assume that an accurate data representation (e.g. an integer value) is stored locally at the
source sensor node, and an approximate data representation (e.g. an interval) is forwarded
and stored at one or more cache nodes where queries are injected. If the source detects
that its value has drifted outside the interval, it initiates a transmission to update the cache,
as in [7] and [8]. However, unlike [7] and [8], the approximate data stored in the cache is
not always accurate enough to answer all of the injected queries. If a query’s precision is
higher that that offered by the cache, the query pulls the exact value from the source node.
To avoid source-initiated refreshes, interval widths have to be increased so that the values
remain within them. On the other hand, to avoid query-initiated refreshes interval widths
have to be decreased, so that adequate precision is offered for most queries. Olston et al.
propose an algorithm to search for the interval width that minimizes the probability of a
refresh happening, and compare it with competing approaches like Divergence Caching
[20].

In [21], Ganesan et al. focus on the problems of graceful aging and multi-resolution
storage and search in sensor networks. They use wavelet compression to summarize the
data in various resolutions and store the summaries in a hierarchical manner along a quad
tree. At higher levels (near the root) summaries are highly compressed but correspond to
a larger set of the network data. Querying is performed using a technique that is common
in data-mining, called drill-down querying; each query is injected at the highest level,
where only coarse summaries exist. Queries that ask for low-precision data are processed
locally and the remaining ones are forwarded further to nodes that carry the relevant data
at higher resolutions. In order to cope with limited storage, a parametric progressive
data aging strategy is proposed, which determines how long each node must maintain
summaries at various resolutions before discarding them. If training data is available, the
aging function is tuned to maximize query quality, otherwise the authors propose the use
of a greedy aging strategy.
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In their recent work, Wu et al. [22] consider a push-pull approach to executing various
types of one-shot approximate queries with bounded quality. They propose a two-tier data
storage scheme, in which the base station stores an imprecise version of sensor data, and
the sensor nodes retain their high-quality readings in local memory. Similarly to [7] and
[8], sensor nodes initiate communication with their parents in the routing tree only when
their values drift outside an approximation interval, defined by a specific error margin.
The values are propagated all the way to the base node, which stores them together with
their approximation intervals. When a query is administered at the base station, it is an-
swered at no cost if its error tolerance exceeds that of the centrally stored data. Otherwise,
the base station carefully selects which nodes to query in order to answer the query with
minimum effort. Wu et al. present node selection (refresh) strategies for different types
of queries, including top-k, range queries, id queries and aggregates. For example, for
aggregate queries, the proposed algorithm aims at reducing the load of hot-spot nodes
near the base station by favouring nodes in the same subtree. In addition, the algorithm
prefers nodes with high energy levels and small hop distances from the base station.

5 Conclusions

Research in approximate data management for sensor networks is motivated by the fact
that most applications do not require accurate reports of sensor data - as long as the data
comes with deterministic or probabilistic error guarantees. The flurry of research in this
area shows that there exists a great potential in trading the accuracy of query answers for
energy savings and increased network lifetime. The techniques discussed in this paper
make different assumptions about the mode of communication (flat vs. hierarchical) and
computation (pure push, pure pull, or hybrid push-pull); they target a variety of query
types, and focus on different research challenges (like adaptive adjustment of error bounds
and node selection). They typically exploit correlations between the sensor values, in
order to reduce the sensing and communication cost in the network. The different aspects
of recent research efforts are summarized in Table 1.

In the near future, sensor networks are expected to be incorporated in a variety of do-
mains, which will raise new application-specific challenges for approximate data man-
agement. As the number of competing techniques increases, an issue that we will need to
address is how to identify the candidate that best fits the requirements and constraints of
a specific sensor deployment.
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