
Genericity, extensibility and type-safety in the

V pattern

Bruno César dos Santos Oliveira

Wolfson College

Oxford University Computing Laboratory

Submitted for the degree of Doctor of Philosophy

Abstract

A software componentis, in a general sense, a piece of software that can besafely reusedand

flexibly adaptedby some other piece of software. The safety can be ensured by atype system that

guarantees the right usage of the component; the flexibilitystems from the fact that components

areparametrizableover different aspects affecting their behaviours.Component-oriented program-

ming(COP), a programming style where software would be built outof several independent com-

ponents, has for a long time eluded the software industry. Several reasons have been raised over

time, but one that is consistently pointed out is the inadequacy of existing programming languages

for the development of software components.

Generic Programming (GP) usually manifests itself as a kindof parametrization. By abstracting

from the differences of what would otherwise be separate but otherwise similar specific programs,

one can develop a single unified generic program. Instantiating the parameter in various ways

retrieves the various specific programs (and ideally some new ones too). Instances of GP include

the generics(parametrization bytypes) mechanism as found in recent versions Java and C# and

Datatype-Generic Programming (DGP) (parametrization byshape). Both mechanisms allow novel

ways to parametrize programs that can largely increase the flexibility of programs.

Software components and GP, and in particular DGP, are clearly related: GP and DGP provide

novel ways to parametrize software, while software components benefit from parametrization in

order to be flexible. However, DGP and COP have mostly been studied in isolation, with the

former being a research topic among some functional programming communities and the latter

being mostly studied within the object-oriented communities.

In this thesis we will argue for the importance of the parametrization mechanisms provided

by GP, and in particular DGP, in COP. We will defend that many design patterns can be captured

as software components when using such kinds of parametrization. As evidence for this we will,

using DGP techniques, develop a component library for the V pattern that is generic (i.e.

can be used on several concrete visitors); extensible (i.e.concrete visitors may be extended); and

i

Abstract ii

type-safe (i.e. its usage is statically type checked). A second aspect of this thesis concerns the

adaptation of functional DGP techniques to object-oriented languages. We argue that parametriza-

tion by datatypes should be replaced by parametrization by visitors, since visitors can be viewed as

encodings of datatypes and, through those encodings, the functional techniques naturally translate

into an OO setting.

ii

Acknowledgements

I would like to thank Jeremy Gibbons, my supervisor, for two different reasons. Firstly, for being

an excellent supervisor, for giving me a very interesting project to work on, for helping me dur-

ing my first stages of research (when I felt unconfident about my research and abilities), and for

always being willing to help me with technical (and bureaucratic) problems. Secondly, for giving

me the opportunity to study in Britain and in the beautiful and inspiring city of Oxford, which has

greatly helped me on the development of both my personal and professional skills. I cannot forget

José Nuno Oliveira for introducing me to the beauty of functional programming with his always

interesting lectures and for motivating me into coming to Oxford. Ralf Hinze provided great in-

spiration for my work and taught me a lot about generic programming. He and Andres Löh were

excellent hosts during my one month visit to Bonn, which proved very fruitful in terms of research.

My two examiners, Martin Odersky and Ralf Hinze, provided very useful feedback that helped

improving the presentation of this thesis substantially. Mike Spivey took me as his student during

Jeremy’s sabbatical and provided important feedback during my confirmation of status. Richard

Bird and Oege de Moor were very helpful in making me focus on a research direction during my

transfer examination. The Friday meetings of the Problem Solving Club provided a relaxed envi-

ronment to discuss research problems and to get feedback about my own research. The meetings

of the Datatype-Generic Programming project gave me the opportunity to present progress on my

research and to get feedback regularly, and also provided a constant flow of new ideas. The attic

crowd (which included, among others, Daniel Goodman, Christopher Aycock, Rui Zhang, Jolie

de Miranda, Edward Smith, and Zoltan Miklos) provided an entertaining working environment.

Wolfson College and the many friends I made there did an excellent job in my social integration at

Oxford. My girlfriend Warnchudee Chalitaporn, who I met at Wolfson, gave me a lot of support

and was very patient during my DPhil. Finally, my family, andespecially my mother, have always

motivated me and gave me the conditions to pursue higher education.

iii

Table of Contents

1 Introduction 1

1.1 Software Components and Reuse 2

1.2 Component-Oriented Programming 3

1.3 Design Patterns: A Sign of Weakness? 4

1.4 Datatype-Generic Programming 5

1.5 A case study on the V Pattern . 6

1.5.1 The V: A Valuable Abstraction . 7

1.5.2 The Scala Option . 8

1.6 Overview of the Thesis 10

1.7 Related Work .11

1.7.1 Encodings of Datatypes and the V Pattern 11

1.7.2 Design Patterns and Components 12

1.7.3 Design Patterns and Functional Programming 14

1.7.4 Functional DGP . 16

1.7.5 The Expression Problem .. 19

2 Preliminaries 22

2.1 The Scala Programming Language 22

2.1.1 Expressions and Definitions 23

2.1.2 Classes and Objects .. 25

2.1.3 Traits and Mixins .27

2.1.4 Generic Types and Methods .. 28

2.1.5 Abstract Types . 29

2.1.6 Implicit Parameters .. . 32

2.1.7 Higher-kinded Types .. 33

2.2 Scala as a DGP language .. . 34

2.2.1 Encoding Type-Constructor Polymorphism 34

2.2.2 A Little DGP Library .35

2.3 Vs and Cs . 36

2.3.1 The C Pattern . 36

iv

TABLE OF CONTENTS v

2.3.2 The V Pattern . 38

2.4 Functional Notation 42

3 Visitors as Encodings of Datatypes 44

3.1 Introduction .. . 44

3.2 Internal or External Vs: A Design Choice 47

3.3 Internal Visitors and the Church Encoding 48

3.3.1 Encoding Data Types in the Lambda Calculus 48

3.3.2 The Church Encoding in Scala .. . 49

3.4 External Visitors and the Parigot Encoding 50

3.4.1 Limitations of Church Encodings 50

3.4.2 Parigot Encodings in the Lambda Calculus 51

3.4.3 The Parigot Encoding in Scala 51

3.5 Generic Visitors: Two Dimensions of Parametrization 52

3.5.1 Abstracting over the shape 52

3.5.2 Abstracting over the decomposition strategy 54

3.6 The V Pattern as a Library . 56

3.6.1 Defining the Library .56

3.6.2 Using the Library .59

3.7 Syntactic Sugar for Vs in Scala . 61

3.7.1 Extending the Library .. 62

3.7.2 Using the Extended Library .. . 63

3.7.3 Comparison with Functional Programming 65

3.8 Expressiveness of the Visitor Library 66

3.8.1 Parametric Datatypes .. . 66

3.8.2 Mutually Recursive Datatypes 67

3.8.3 Existentially Quantified Datatypes 68

3.8.4 Paramorphic Visitors .. . 70

3.9 Discussion .. 72

4 Visitor-Generic Programming 74

4.1 Introduction .. . 74

4.2 Encoding Sums and Products in Scala 76

4.3 Generic Programming with Vs . 78

4.3.1 Generics for the Masses in Scala 78

4.3.2 Representations of Visitors 81

4.3.3 Representations of Scala’s Case Classes 83

4.3.4 Defining Generic Functions .. . 84

4.3.5 Reuse via Inheritance .. . 85

4.3.6 Local Redefinition .86

v

TABLE OF CONTENTS vi

4.4 GM and Indexed Vs . 87

4.4.1 Indexed Visitors .88

4.4.2 A Visitor Library for Indexed Visitors 89

4.4.3 GM as an Instance of the Visitor Library 90

4.5 A Visitor for a Family Based on Sums of Products 93

4.5.1 A V Based on Sums of Products . 93

4.5.2 Creating New Datatypes .. 95

4.5.3 Functorial Representations 97

4.5.4 Separating Recursion from Generic Programming 98

4.6 Example: Generic Serialization and Deserialization 100

4.6.1 Serialization .100

4.6.2 Deserialization .. 102

4.7 Discussion .. 103

5 Extensible Visitors and Generic Functions 106

5.1 Introduction .. . 106

5.2 Generic Functions and The Expression Problem 109

5.2.1 The Extensibility Problem of Visitors 110

5.3 Extensibility in Internal Visitors 111

5.3.1 Simple Extensible Visitors 111

5.3.2 Extending Generic Functions with Extra Cases 112

5.3.3 Extensible Representations 114

5.4 Example: An Extensible Generic Pretty Printer 115

5.4.1 A Generic Pretty Printer .. . 115

5.4.2 Pretty Printing Trees .. . 117

5.4.3 Pretty Printing Lists .. . 119

5.5 Extensibility on Visitors of any Kind 121

5.5.1 Extensibility on Generic Encodings 121

5.5.2 Supporting Lists .123

5.5.3 Supporting Meta-Information and Pretty Printing 123

5.5.4 Merging List and Constructor Support 124

5.5.5 Creating a New Module . 125

5.5.6 Supporting String Notation 126

5.6 Comparing the Two Approaches to Extensibility 128

5.7 Discussion .. 129

6 Conclusion 132

6.1 Summary and Contributions 132

6.1.1 Some Extra Insights .134

6.2 A Type-Theoretic Perspective on this Thesis 135

vi

TABLE OF CONTENTS vii

6.3 Haskell versus Scala 137

6.3.1 A Slightly Inaccurate Specification 139

6.4 Applications of our Work 140

6.5 Future Work .143

A Functional Specification of the V Library in Haskell 158

B Translation of Datatypes 160

C Paramorphic Visitors Specification 164

D Paramorphic Visitors 165

E Serialization Library 167

F Functional Specification for Indexed Vs 171

G Functional Specification for the Family of Sums of Products 173

H Extensible Visitors Using Abstract Types 175

I A Functional Specification in Omega 182

vii

List of Figures

2.1 The O pattern in Scala . 31

2.2 The Composite Design Pattern 37

2.3 The V design pattern . 39

2.4 A Functional V for Binary Trees . 41

3.1 A functional internal V for binary trees. 47

3.2 Parigot encodings of naturals and binary trees. 51

3.3 Church encoding of Peano numerals using products of functions 54

3.4 A simplified form of XML documents as visitors. 59

3.5 A printing function for XML documents 60

3.6 An equality function for XML documents using visitors. 61

3.7 Equality re-written with the new notation 64

3.8 Parametric lists using the visitor library 67

3.9 Adding elements in forests and trees of integers. 68

3.10 Visitors for the mutually-recursiveForestandTreetypes. 69

3.11 Defining heterogeneous list with the visitor library 70

3.12 Paramorphic visitors in Scala. 71

4.1 A visitor for sums. .. . 77

4.2 A visitor for products. 78

4.3 Thetrait Generic. 80

4.4 Representations for generic functions. 81

4.5 Isomorphism between parametric lists and sums of products. 82

4.6 Isomorphism between aList case class and sums of products. 83

4.7 Defining a generic function for counting values. 85

4.8 Tree with depth information. 86

4.9 A Visitor library with support for unnested GADTs 89

4.10 GM as a Visitor .. 92

4.11 Generic function using theGenericvisitor. 93

4.12 A visitor for sums of products data types. 95

4.13 Parametric lists using a sum of products visitor. 96

viii

LIST OF FIGURES ix

4.14 A representation for sums of products visitors in Scala. 97

5.1 An ad-hoc binary encoder 107

5.2 An internal version forGenericusing the visitor library. 112

5.3 A less ad-hoc dispatcher. 114

5.4 A Generic Prettier Printer 116

5.5 A V for binary trees . 118

5.6 Ad-hoc pretty printing for lists. 119

5.7 A parametrized module for generic functions 122

5.8 Merging Support for Constructor and Lists 125

5.9 Support the string notation with the Parigot encoding. 127

ix

Chapter 1

Introduction

The 1968 NATO Software Engineering Conference(Naur and Randell, 1969), is famous for the

wide recognition among the community at the time of the so-called software crisis. As Edsger

Dijkstra’s puts it in its seminal paper “The Humble Programmer”, presented at the1972 ACM

Turing Award Lecture, the major cause of the software crisis is:

that the machines have become several orders of magnitude more powerful! To put

it quite bluntly: as long as there were no machines, programming was no problem

at all; when we had a few weak computers, programming became amild problem,

and now we have gigantic computers, programming has become an equally gigantic

problem.(Dijkstra, 1972)

The causes of the software crisis were directly linked to theoverall complexity of the software

process and the relative immaturity of software engineering as a profession. The following manifes-

tations of the crisis were identified by the participants of the conference: projects ran over-budget;

projects ran over-time; software was of low quality; software often did not meet requirements;

projects were unmanageable and code was difficult to maintain.

Nearly 40 years later, is the software crisis a thing of the past? Clearly not! All the man-

ifestations of problems identified at the time are still verypertinent problems in today’s software

industry. Of course, such an answer begs for the question: does this mean that in 40 years there was

no progress at all? As we rightfully may hope, this has not been the case. Indeed, the development

of new methodologies; new programming language paradigms;the advent of stronger type sys-

tems; as well as the evolution of tools in general, are substantial improvements when we compare

1

1.1. Software Components and Reuse 2

the state of the art of programming at the time with today’s equivalent. Still, this is not enough to

cope with today’s needs. Dijkstra’s justification for this remains valid. The basic problem is that:

as the power of available machines grew ... society’s ambition to apply these machines

grew in proportion.(Dijkstra, 1972)

With the machine’s power growing several orders of magnitude in a small number of years,

software problems that were just a programmer’s dream before become feasible after a few years.

What was considered to be a big program in the 70’s is, by today’s standards a small one; and

while using today’s tools may be adequate to solve problems of such a size; these same tools have

difficulty scaling up to today’s big-sized (or even mid-sized) problems.

The way we have been coping with this problem (as well as many others), is by continuously

increasing the level of abstraction: from writing machine code directly to programming in current

high-level programming languages many abstractions were discovered, which provided us with

new ways to reuse software.

1.1 Software Components and Reuse

At the same conference, Douglas McIlroy addressed the audience with a paper entitled “Mass

Produced Software Components” (McIlroy, 1969). In this paper he set the vision that software

should be componentized, i.e. built from prefabricated components: in the same way that a complex

piece of electronics is built-up from a set of simpler, standardized smaller pieces, software should

be itself built from smaller software components that can beglued together to build more complex

programs. Using the analogy with industrial components he argued that the idea of interchangeable

parts corresponded to ‘modularity‘ in software engineering; and that the idea of machine tools has

an analogue in assembly programs and compilers. His expectations for what software components

should provide can be summarized in the following quote fromhis paper:

The most important characteristic of a software componentsindustry is that it will offer

families of routines for any given job. . . In other words, thepurchaser of a software

component from a family will choose one tailored to his exactneeds... He will be

confident that each routine in the family is of high quality – reliable and efficient. He

will expect the routine to be intelligible, doubtless expressed in a higher level language

2

1.2. Component-Oriented Programming 3

appropriate to the purpose of the component ... He will expect families of routines to

be constructed on rational principles so that families fit together as building blocks. In

short, he should be able safely to regard components as blackboxes.(McIlroy, 1969)

The first implementation of an infrastructure for this idea,due to McIlroy himself, Pinson and

Tague (McIlroyet al., 1978), is the inclusion of pipes and filters into the Unix operating system.

The ideas behind pipes and components set the Unix philosophy: “Write programs that do one

thing and do it well.”; “ Write programs to work together.”; “ Write programs to handle text streams,

because that is a universal interface.”. Out of these three premises only the last one is intrinsic to

Unix; the other two can be generally applied to other software problems.

1.2 Component-Oriented Programming

While McIlroy’s vision was warmly received by researchers and spawned a wave of enthusiasm that

seemed to indicate that component-oriented programming (COP) would soon become mainstream,

the truth is that to date that vision has not been fully accomplished. In fact, apart from Unix pipes

and a few other successes, component based software development is still the exception rather

than the rule. The reasons for this are not trivial to pinpoint. Some researchers argue that current

tools and programming languages are not adequate for COP, but it also probably does not help that

McIlroy’s informal description of a component does not translate into a widely accepted concrete

formal definition (Broyet al., 1998).

Object-oriented programming (OOP) has often been regardedas a promising platform for the

development of components (Cox, 1990). However, most existing technologies supporting compo-

nent development are not, in fact, object-based (not at least in the traditional sense). For example,

Microsoft COM (Brockschmidt, 1995) does not support subtyping or inheritance. Similarly, the

niche component market created around early versions of Microsoft’s Visual Basic involved no

object-oriented programming either: “Real objects, as OOP (object-oriented programming) ex-

perts rightly point out, rest on the tripod of inheritance, polymorphism, and encapsulation, while

VBXes stand only on the single leg of encapsulation” (Udell, 1994). Pfister and Szyperski argue

that objects are not enough and that while COP and OOP do have many things in common, there

are some subtle, but important, differences:

A programming language is called component-oriented if it provides polymorphism,

3

1.3. Design Patterns: A Sign of Weakness? 4

information hiding over several objects, late binding and late linking, and type safety...

This is in contrast to the typical interpretation of object-oriented programming, which

consists of polymorphism, information hiding over individual objects, late binding

only, and inheritance (or delegation).(Pfister and Szyperski, 1996)

The most noticeable absent ‘feature’ from the definition of acomponent-oriented language

(when compared to an object-oriented language) is inheritance (or delegation). The reason given

by the authors is that code inheritance/delegation mechanisms are not sufficiently controllable,

allowing us to effectively break encapsulation (for example with thefragile base class problem)

(Snyder, 1986; Weck and Szyperski, 1996). As Szyperski (2002) mentions a direct consequence of

breaking encapsulation is that object-oriented composition does not really work. This is, of course,

limiting, since components should be composable.

Perhaps more importantly component-oriented programmingrequires information hiding over

several objects, instead of individual ones. As argued by Pfister and Szyperski, the OOP focus on

individual objects is too narrow and often results in software which cannot be used as components.

According to their definition, a component is a collection ofcooperating objects; which typically

implies that the objects are tightly intertwined. They suggest that what is needed is a static and

higher-order module-like structuring construct.

1.3 Design Patterns: A Sign of Weakness?

Design patterns, introduced by the ‘Gang of Four’ (GoF) (Gammaet al., 1995), are frequently

used to abstract non-trivial designs that can be reused in different contexts. A design pattern is a

description or template for how to solve a problem that can beused in many different situations.

A typical description of a design pattern will have a name, motivation, examples, consequences,

implementation trade-offs, and so on. In some sense a design pattern allows us to copy a carefully

studied solution for a similar problem. This usually leads (with a correct interpretation of the

pattern) to a good implementation. Most design patterns, however, tend not to be captured in some

form of reusable software, which seems a step backwards froma software engineering perspective.

Design patterns, as understood by Gammaet al. (1995), cannot be considered as components

because they do not allow reuse of the patterns as a library, in fact: “The only reuse patterns pro-

vide is reuse of concepts” (Meyer and Arnout, 2006). A question that can be asked is whether

4

1.4. Datatype-Generic Programming 5

design patterns can be captured as a more general abstraction. Some authors believe that they can-

not and argue that different implementations of the patterns, although similar conceptually, are just

incompatible to each other to be captured by a single abstraction. Other authors, however, believe

that design patterns can be captured more abstractly, but the problem is thatcurrent programming

languages are just too weakto capture the those abstractions. Norvig (1996) argues that the flexi-

bility of dynamic languages like Lisp allow us to capture most (16 out of 23) of the design patterns

in Gammaet al. (1995) as reusable code. However, one problem with dynamic languages is that

they do not guarantee type-safety, which is considered a keyfeature of components.

1.4 Datatype-Generic Programming

Generic Programming (GP) usually manifests itself as a kindof parameterization – in particular, the

genericsmechanism (also known asparametric polymorphism) found in Java or C# is a particular

kind of GP where we haveparameterization by types. By abstracting from the differences in what

would otherwise be separate but similar specific programs, one can make a single unified generic

program. Instantiating the parameter in various ways retrieves the various specific programs and,

ideally, some new ones too (Gibbons, 2003).

Datatype-Generic Programming (DGP) is another instantiation of GP where programs can be

parameterized bydatatypes(or type functors). By a datatype here we mean a container type, which

is given a formal semantics via the categorical notion of afunctor. TheAlgebra of Programming

(AoP) movement (Backhouseet al., 1992; Bird and De Moor, 1997) inspires a particular instance

of DGP that has a strong formal foundation based on category theory. The work on AoP explored

patterns of recursion on different datatypes and showed that we can have a single (generic) program

that captures some pattern: as it was demonstrated, patterns of recursion follow the datatype defi-

nition. In other words, a generic program to capture one suchpattern needs to be parameterized by

the shape of the datatype.

It has been argued by Gibbons (2003) that DGP can also be used to capture the abstractions

behind many design patterns formally. This would entail several advantages: patterns would be

expressible directly as reusable library components; could be reasoned about; and type-checked. In

essence,the abstractions behind design patterns would become true software components. More

recently, Gibbons (2006) substantiated his argument by capturing four of the GoF patterns – con-

5

1.5. A case study on the V Pattern 6

cretely, the V, the C, the I and the B– as higher-order datatype generic

programs. The resulting (datatype-generic) programs are parameterized on three different dimen-

sions: “by theshapeof the computation, which is determined by the shape of the underlying data,

and represented by a type constructor (an operation on types); by theelement type(a type); and

by thebody of the computation, which is a higher-order argument (a value, typically a func-

tion).” (Gibbons, 2006).

However, there is a problem: while parametric polymorphism(i.e. parameterization by types)

and parameterization by functions is available in many languages (one way or another), parame-

terization by shape is not. Fortunately, in languages like Haskell (Gibbons, 2006; Hinze, 2004)

or Scala (Moorset al., 2006) we canalmostwrite fully datatype-generic programs (we still need

to manually write some boilerplate code, but given this we can define datatype-generic functions).

Research languages like PolyP (Jansson, 2000) and Generic Haskell (Löh, 2004) actually have

built-in support for some form of datatype-genericity.

1.5 A case study on the V Pattern

Despite McIlroy’s vision for a component-oriented software industry as a solution for the ‘software

crisis’ not being realised yet, recent developments in programming languages (in particular type

systems) show some promise that this could happen in the nearfuture. In this thesis we will make

the case that DGP can play an important role in COP by allowingmany useful abstractions to be

captured astruly reusable software components. In particular, we will arguethat, with type systems

supporting some form of DGP, many design patterns could be captured as software components.

Moreover, components developed in languages supporting DGP would be —as they should be—

extensible, flexibly adaptable and, above all, type checkable.

We will show evidence for this by presenting the foundationsof a library for the V pattern

— one of the most well-known (and also one of the most complex)design patterns in the GoF book.

This presentation will be made using the Scala programming language (Odersky, 2006a) and the

end result will be a compilable generic visitor library thatcan be parametrized by different aspects

(including shape) and with programs written using the library having properties that allow them to

be reasoned about (assuming a side-effect free setting). We will also show that using our library we

can write generic functions (that is, functions that work for any visitor). Furthermore, the library

6

1.5. A case study on the V Pattern 7

will allow us to extend visitors with new cases.

1.5.1 The V: A Valuable Abstraction

How can a thesis be written around a single design pattern? — one may wonder. TheChurch

numerals, introduced by Church (1936), can be defined in the untyped lambda calculus as:

zero= λf x → x

succ= λn f x→ f (n f x)

This code shall be explained elsewhere in this thesis, but for now it is sufficient to know that its

intent is to provide an encoding for the natural numbers as functions. The technique developed

by Church to encode numerals can be applied to other datatypes as well: although this code is

probably unfamiliar to most object-oriented programmers,it is (arguably) an instance of the V

pattern. The Church numerals played an important role to prove that any computable function can

be expressed and evaluated in the lambda calculus. It is interesting that Church’s work (which

is a very important foundational work in theoretical computer science) and the V pattern (a

highly practical tool available to the object-oriented programmer) are related. It is not clear if the

GoF authors knew of this connection, but many researchers have since realised it to an extent that

has become folklore knowledge among some communities. Recently Buchlovsky and Thielecke

(2005), in work directed to the type-theory community, formalized the relation between visitors

and encodings of datatypes precisely and showed the relation of the traditional imperative version

of the pattern with a more functional version that is basically a Church encoding. It was partly the

inspiration provided by these encodings that led to our development of a V library (that we

present in Chapter 3).

The question that we asked at the beginning of this section can be finally be answered by

emphasizing the dual goals of this thesis. The first goal is toexploit how the abstractions that arise

in DGP can be useful for COP. The V pattern is a good example to use because different

aspects of it (like extensibility, genericity, and type-safety) can be easily motivated and developed

using DGP-related abstractions. The second goal, which aims at exploring good ways to apply

DGP techniques in an object-oriented setting, is closely related to visitors. Our reasoning is that

since traditional functional DGP techniques are fundamentally connected to datatypes (just recall

that we define DGP as parametrization by datatypes) and the ‘natural’ way to encode datatypes in

7

1.5. A case study on the V Pattern 8

object-oriented languages is using visitors then the manifestation of DGP in OO languages should

beparameterization by visitors.

1.5.2 The Scala Option

Scala was chosen as the programming language used for the development of our visitor library

because:

1. TheV (and more generally, design patterns), which is the focus ofthis thesis, is tradi-

tionally associated with object-oriented languages.Scala is a statically-typed object-oriented

language that was designed to remain close to mainstream object-oriented languages. In par-

ticular, Scala compiles into the Java Virtual Machine (JVM)and interacts nicely with Java

(there has been some work on supporting the .Net platform as well).

2. Scala is a functional (DGP) language. Since almost all the previous work in DGP was de-

veloped using functional programming languages it was important to use a programming

language that supported similar abstractions. Scala supports first-class functions, parametric

polymorphism and abstract types, which can be used to encode‘ type constructor polymor-

phism’ (and DGP). These three forms of abstraction satisfy Gibbons’ requirements for a DGP

language (see Section 1.4).

3. Scala supports information hiding over several objects. Unlike traditional object-oriented

languages, which only allow information hiding over individual objects, Scala’s abstract

types together with inner classes allow us to hide information over a set of objects. As

discussed in Section 1.2, this is an essential feature of a component-oriented language. From

another perspective, it can be said that Scala nicely unifiesmodules and objects providing

what can be seen as a powerful module system.

4. Scala supports traits and mixin composition. Unlike current mainstream OO languages

which either support single inheritance (with its well-known limitations) or full-fledged mul-

tiple inheritance (with its complexity and safety problems), Scala’s support for traits and

mixins means that the language has a safe, simple and elegantbut yet powerful enough mech-

anism to combine multiple components.

8

1.5. A case study on the V Pattern 9

The option not to use a more mainstream OO language such as Java or C# was mainly due to

the lack of abstraction provided by the corresponding type systems. In particular, neither language

supports (or allows us to encode) fully type-safe forms of DGP. While this issue could possibly be

worked around by losing some type-safety, we feel that this would not be desirable because both

DGP and COP regard type-safety as a key feature. Moreover, those languages are based on single

inheritance and do not support information hiding over several objects, which severely limits their

use for COP.

Another option that could be considered would be to use a non object-oriented language that

satisfies the DGP criteria. Haskell (Jones, 2003) would be anobvious candidate here since it has

been the preferred platform for much of the DGP research in the past. However we feel that

the connection to the object-oriented paradigm is important and should be preserved. While it

is certainly possible to encode visitors in Haskell (arguably visitors are just typed encodings of

datatypes), the fact is that the V pattern (and many other design patterns) is somehow alien

to functional programming languages like Haskell: visitors play the same role as datatypes and

it would just be awkward to use visitors when a datatype mechanism is readily available. On the

other hand, because typical OO languages do not have datatypes, visitors can be useful to capture

abstractions where datatypes would make more sense than an OO design. Therefore, the V

pattern is a valuable abstraction for the OO programmer and not just an intellectual curiosity as

it is for the functional programmer. Also, Haskell’s weak module support means that information

hiding in the large is not well supported, which limits Haskell’s use for COP.

A word of honour should go to OCaml (Leroyet al., 2005) that, like Scala, is a functional

statically-typed OO language. The option to use Scala instead of OCaml was due to two facts.

Firstly, Scala unifies the module system with the object system while OCaml maintains two sep-

arate mechanisms. In the authors opinion Scala’s solution seems more elegant and easier to use

from a programmers perspective. Secondly, Scala remains closer to the traditional OO languages,

which makes it easier to argue about and develop design patterns: like Haskell, because OCaml

readily supports datatypes, it is somehow awkward to talk about visitors in OCaml; however, un-

like Haskell, OCaml has a powerful module system that allowsinformation hiding on modules.

Despite these two facts, it should be possible to do a similardevelopment to the one in this thesis

using OCaml instead of Scala.

9

1.6. Overview of the Thesis 10

Finally, it should be mentioned that, although we defend that Scala is the most adequate existing

programming language for COP and DGP in an OO setting, we believe that there is still a lot of

space for improvement. In fact, a secondary goal of this thesis is precisely to explore the strengths

and weaknesses of Scala for the development of DGP programs.In Chapter 6 we will discuss our

findings and make some suggestions that we hope will be of interest for both the programming

languages and COP communities.

1.6 Overview of the Thesis

In Chapter 2 we will introduce the concepts and notation thatare going to be used in this thesis.

In particular, we will introduce the Scala programming language, present the V and related

C design patterns and introduce the functional notation usedin this thesis to specify parts

of our visitor library.

In Chapter 3 we will show how the V design pattern is associated with different encodings

of algebraic datatypes (AlgDTs). In particular we explore the connection with Church and Parigot

encodings and we will show that, using some type-theoretic results, it is possible to define generic

visitor libraries for both encodings. These libraries are essentially parameterized by theshapeof

the concrete visitors. Furthermore, we will add an extra level of parameterization and show that

the different kinds of encodings can be themselves a parameter of an even more general library,

which is not only parameterized by shape but also by (what we shall call) adecomposition strategy.

Finally, we will talk about how we could improve the notationfor programmers and show how

some of that notation can already be implemented within Scala.

The relationship between visitors and AlgDTs leads naturally to a connection with the DGP

styles found in functional programming. In Chapter 4 we develop a DGP library for visitors inspired

by the ‘Generics for the Masses’ (GM) approach proposed by Hinze (2004). With this approach

we can define our own generic functions on visitors. We also show that GM is itself one instance

of the visitor pattern, but it cannot be implemented with thevisitor library presented in Chapter 3.

To solve the problem we propose a generalization of our visitor library, which allows us to encode

a larger family of visitors (including the one that arises from GM). With the insight that GM can be

implemented with visitors, we eliminate the need for a design choice that is present in GM. Finally,

we will see how to express a family of visitors based on sums ofproducts within our visitor library,

10

1.7. Related Work 11

which allows us to express a wider range of generic functions.

The fact that generic functions cannot be extended is a severe drawback, because often we

want to define some ad-hoc behaviour for new datatypes. This limitation precludes the design

of an extensible and modular generic programming library. In Chapter 5 we will talk about the

the expression problem(Wadler, 1998) and how it relates to the extensibility problem of generic

functions. We will then show how we can make our visitors (andgeneric functions) extensible. Two

different solutions will be presented. The first solution will allow only extensible Church encodings,

but it will be easier to use than the second solution, which inturn will allow any encoding. Finally,

we will discuss the different trade-offs of the two solutions.

In Chapter 6 we will start by summarizing our results and contributions and discussing some

extra insights that we found worth mentioning. We then briefly present the results of this thesis from

a type-theoretic perspective. After that, we compare Haskell and Scala for the implementation

of visitor and DGP libraries, discuss their trade-offs and show some important shortcomings of

Haskell. Finally, we discuss some applications of our work and propose some future work.

1.7 Related Work

1.7.1 Encodings of Datatypes and the V Pattern

An important foundation of this thesis regards the connection between encodings of datatypes (such

as Church encodings) and the V pattern. As mentioned earlier, many researchers have realised

this connection and the work by Buchlovsky and Thielecke (2005) establishes this relation more

formally by reconstructing the V pattern in Java (with support for generics) from a Church

encoding in a minor variant of SystemFω.

The Church numerals (along with encodings of other datatypes) were first presented by Church

(1936) in the untyped lambda calculus. Böhm and Berarducci(1985) demonstrated that in Sys-

tem F it is possible to give precise typings to those encodings. The name ‘Church encoding’ is

normally associated with Böhm and Beraducci’s System F encoding. There are well-known limi-

tations on the expressiveness of Church encodings (certainfunctions that are inherently inefficient

or even inexpressible). A less well-known encoding is theParigot encoding(Parigot, 1992), which

basically allows us to write anygenerally recursivedefinitions (in contrast to the Church encoding).

However this encoding requires System F to be extended with recursion. Jan Martin Jansen (2005)

11

1.7. Related Work 12

uses, perhaps unawaringly, what is essentially an untyped version of the Parigot encoding to show

how to translate datatypes and pattern-based function definitions systematically.

Buchlovsky and Thielecke exploit the relationship betweenVs and encodings of datatypes.

They define two different categorizations of visitors with two possible choices in each. The first cat-

egorization distinguishes who controls the traversal: a visitor is calledinternal when the visitable

classes define the traversal behaviour, andexternalwhen that role is performed by the visitor itself.

The second categorization is betweenfunctionaland imperativevisitors. The difference is that

thevisit methods of the former kind of visitor can be seen as pure functions (a result is returned)

whereas in the later they make use of internal state to store results (thus, no result is returned).

Their paper is focused mostly on internal visitors (since external visitors in their idealized System

Fω are not very useful due to the lack of built-in recursion) anddiscusses how we can derive both

functional and imperative versions of visitors.

The most common rendering of the V pattern is imperative (with both the internal and

external alternatives being common). In this thesis we discuss a functional model instead, with

both internal and external variations being covered. Buchlovsky and Thielecke’s work becomes

relevant for us because they formally show the equivalence between functional and imperative

visitors — albeit in a somewhat idealized setting. We use their work to partly justify our option of

using functional instead of imperative visitors: since some formal equivalence exists we are free to

use either option.

1.7.2 Design Patterns and Components

By capturing the knowledge and experience of software designers, design patterns prove to be a

valuable resource for software design. However, from a software engineering perspective, captur-

ing design patterns as prose instead of some reusable component seems a step backwards. Some

researchers think that the reason for this is that design patterns are simply not componentizable.

Other researchers, including us, disagree and point the finger to the lack of abstractions in current

programming languages.

Odersky and Zenger (2005b) point out that the Scala programming language is designed with

component development in mind. In their work they identifyabstract type members, self type

annotationsandmodular mixin compositionas abstractions that do not exist in mainstream OO

languages but prove to be important for component development. Using the first two features they

12

1.7. Related Work 13

provide an elegant software component that captures the O design pattern; all these features

are later used in the larger scale case study about the designof the Scala compiler.

Scala is probably the closest to a mainstream language that is developed with COP in mind,

but there are other research languages that share similar goals or have abstractions that could sup-

port COP. The CaesarJ programming language (Aracicet al., 2006) provides a single construct

that unifies aspects, classes and packages. This construct is powerful enough to solve different

problems from aspect-oriented and component-oriented programming. The GBeta programming

language (Ernst, 1999) has powerful constructs like virtual classes, a general block structure and

dynamic multiple inheritance, which proves to be useful forCOP.

Arnout (2004) reviewed all the 23 patterns described in Gamma et al. (1995) and evaluated

their componentizability in the Eiffel programming language (Meyer, 1997). The results showed

that about two thirds of the design patterns could be replaced by a corresponding component; a

quarter of the patterns had “Wizard or library support”; andthe remainder (2 out of 23 patterns)

were classified as non-componentizable. According to Arnout, Eiffel features likegenericity, tuples

andagentsplayed an essential role in the componentization of design patterns.

The V as a Component There have been several proposals forgeneric visitors(visitor

libraries that can be reused for developing software using the V pattern) in the past. Palsberg

and Jay (1998) presented a solution relying on the Java reflection mechanism, where a single Java

classWalkaboutcould support all visitors as subclasses. Refinements to theidea of using reflection

to capture generic visitors, mostly to improve performance, have been proposed since by Grothoff

(2003) and Foraxet al. (2005). One advantage of these approaches is that they are not invasive

— that is, the visitable class hierarchies do not need to haveacceptmethods, which adds some

flexibility and extensibility because there is no need to plan software with visitors in mind initially.

However, the heavy reliance of the approaches on reflection hinders type-safety; because of that,

those solutions should not be strictly classified as components (at least according to our definition

of a component).

Arnout, jointly with Meyer (Meyer and Arnout, 2006), showedhow to componentize the V-

 pattern. Like the previous proposals for generic visitors,they define a non-invasive version of

the V; however their visitor is less reliant in introspection mechanisms (although these are

still needed), which makes the approach more type-safe. Theproposed component consists of a

single genericVisitor class that can be reused by concrete visitors by parametrizing the class with

13

1.7. Related Work 14

the concrete visitable interface. In essence,Visitor is implemented as a collection ofvisit agents

(which are roughly analogous to delegates or closures) and provides avisit method that can be

called by the clients. Since theVisitor is parameterized by the visitable interface, only agents that

have as an argument a subtype of that interface can be added into the collection; if we try to add

an agent that does not satisfy this we will get a type error. When thevisit method is called, an

introspection mechanism is used to determine at run-time which agent should be called on thevisit

argument. Performance measurements indicate that using this component is only slightly slower

than traditional visitors, but has the big advantage of reuse.

1.7.3 Design Patterns and Functional Programming

Norvig (1996) was among the first to explore the relationshipbetween design patterns and func-

tional programming. In his study he used the Lisp and Dylan programming languages, both of

which are (functional) dynamically typed languages and support some kind of object system. In

his study he classified design patterns asinvisible(the programming language supports abstractions

that eliminate the need for the design pattern),informal (the design pattern can only be captured as

prose) andformal (it is possible to capture the design pattern formally in thelanguage). What his

study revealed was the flexibility of dynamic languages suchas Lisp or Dylan allowed 16 out of

23 of the design patterns in Gammaet al. (1995) to have qualitatively simpler implementations —

either because they were invisible or they could be formalised.

Kühne (1999) argues that“Design patterns inspired by functional programming can advance

object-oriented design”and develops several design patterns from that inspiration. From the op-

posite perspective, Läufer (2003) asks“What functional programmers can learn from the visitor

pattern” and argues that functions in functional programming languages are too inflexible since

they do not allow reuse by inheritance. Using the connectionbetween visitors and datatypes and

inspired by existing encodings of inheritance in functional languages, he proposes a simple tech-

nique, which can be used in functional languages, that allows programmers to encode reuse by

inheritance of functions. We believe that inspiration can be drawn from both sides and we hope to

be able to contribute some new insights to both functional and object-oriented programmers.

Gibbons (2003) argues that DGP can be used to capture the abstractions behind many design

patterns formally. There would be several advantages in doing so: patterns would be expressible di-

rectly as reusable library components; could be reasoned about; and type-checked. In essence, the

14

1.7. Related Work 15

abstractions behind design patterns would become true software components. He substantiates his

position in Gibbons (2006) by arguing that four of the designpatterns in GoF are effectively related

to recursion patterns that had been developed by the Algebraof Programming movement. Specifi-

cally, he argues that the V corresponds tofolds(or catamorphisms); the I corresponds

to maps; the B corresponds tounfolds(or anamorphisms); and Cs corresponds to

datatypes. However, as he notes, these comparisons are madeunder simplifying assumptions such

as taking a specific interpretation of the design pattern. For example, the I is related to maps

only when interpreted as I I and there is the assumption of no side effects. The later

simplification has been lifted by Gibbons and Oliveira (2006) where it is argued thatapplicative

functorscan be used to model side-effects that exist in imperative languages; and the corresponding

traverseoperation (aneffectfulform of map) models internal iteration with effects.

The Algebra of Programming In his work on the relation between DGP and design patterns,

Gibbons was inspired by the Algebra of Programming movement(Malcolm, 1990; Meijeret al.,

1991; Backhouse and Hoogendijk, 1993; Bird and De Moor, 1997). This movement works on

a branch of the mathematics of program construction that studies the relationship between the

structure of programs and the structure of the data that theymanipulate.

The practical results of this line of research are the so-called ‘recursion patterns’: functions

that capture common structures of programs using datatypes. The interesting thing about these

patterns is that they do not depend on specific datatypes; instead they can be parameterized on

the datatypes themselves. For example, the most well-knownof these is thefold function, which

basically captures definitions by structural recursion on the shape of datatype. Although the most

common instantiation offolds is with lists, similar operations still make sense with any tree-like

structures. Therefore, instead of providing separatefold functions for each datatype, we can provide

a singledatatype-genericdefinition.

On the theoretical side, this line of research is based on theformal foundations of category the-

ory, which provides a solid ground for reasoning about programs written using recursion patterns.

Using the categorical setting we can derive properties and programs using an equational style that

resembles secondary school algebra. One practical benefit (and a major motivation) is that efficient

programs can be derived from less efficient ones by just using equational reasoning. In particular,

fusionlaws play a crucial role in this optimization process by telling us how can we fuse programs

in such a way that they take a single traversal over the data.

15

1.7. Related Work 16

1.7.4 Functional DGP

There are two main streams of work on functional DGP (that is,DGP in the context of functional

programming languages). The first (and earlier) stream of work, which we shall refer to astra-

ditional DGP, involves the development of new languages or non-trivial language extensions that

allow native language support for DGP. The second (and more recent) stream of work, which we

shall refer to aslightweightDGP, usually builds on existing language features to provide some form

of library support for generic programming. There are some in-between forms of DGP that require

only a relatively mild modification on the programming language (Hinze and Peyton Jones (2000)

is one example). In this thesis we are particularly interested in lightweight DGP; in Chapter 4 we

develop the basis of a lightweight DGP library in Scala.

Traditional DGP

PolyP PolyP (Jansson, 2000) is a language extension to Haskell, that allows the definition of

generic functions over regular datatypes of kind∗ → ∗. Generic programming in PolyP is based

on the notion ofpattern functors. Each datatype is associated with a pattern functor that describes

the structure of the datatype. Isomorphisms between pattern functors and the actual datatype are

automatically generated by PolyP and can readily be used in programs. In order to define generic

functions a special constructpolytypic is used, which allows the function to exploit the shape of

the pattern functor in its definition. In PolyP, Algebra of Programming style recursion patterns like

foldscan be defined truly generically (i.e. requiring a single definition only and with no additional

boilerplate code). The original PolyP translated polytypic definitions to Haskell using a specializa-

tion approach. In the more recent PolyP2 (Norell and Jansson, 2004), type classes and functional

dependencies are used in order to perform the translation.

Generic Haskell Generic Haskell(GH) (Löh, 2004; Löhet al., 2005) is a generic programming

extension to Haskell. GH addresses some of the limitations of PolyP; in particular it allows the def-

inition of generic functions over a much wider range of datatypes (nearly all Haskell 98 datatypes

are within the range). This contrasts with PolyP, which imposes severe limitations: only kind

∗ → ∗, only regular (not nested) datatypes and also no mutually recursive datatypes. The key idea

is to exploit the fact that Haskell 98 datatypes are algebraic and, therefore, they can be perceived

as nested binary sums of products. The sums of products are toGH what pattern functors are to

16

1.7. Related Work 17

PolyP and, like PolyP, an isomorphism between datatypes andsums of products is automatically

generated. Generic functions are defined structurally on sums of products. Unlike PolyP, it is not

possible to define recursion patterns in GH, which is an important limitation. This limitation arises

from the fact that sums of products loose the information about recursion points. Some work has

been done by Holdermanset al. (2006) to alleviate this and some other related problems.

Type-indexed datatypes GH also supportstype-indexed datatypes, allowing us to encode ad-

vanced forms of generic programming; for example, a genericversion of the Zipper (Huet, 1997) is

implemented in Hinze and Jeuring (2001). Recent work by Chakravarty et al. (Chakravartyet al.,

2005b,a) proposes related extensions to Haskell. The idea is to extend type classes to support not

only ad-hoc overloading — or type-indexing — on functions but also ontypesanddatatypes. Some

applications include those of type-indexed datatypes, self-optimizing libraries that adapt their data

representations, and algorithms that work in a type directed manner.

Lightweight DGP

Type Classes Haskell’s type class system is an (ad-hoc polymorphism) mechanism that allows

the definition of type-overloaded definitions. A primitive generic programming mechanism exists

already in Haskell 98 using type classes. The so-called ‘deriving’ mechanism automatically derives

implementations of commonly overloaded functions such asequalityor pretty printing. However

this mechanism only works for a few, built-in, type classes,and extending it is not possible. Hinze

and Peyton Jones (2000) propose a simple extension to the type class mechanism that would address

the limitation of thederiving mechanism and thus allow support for generic programming directly

in Haskell. The key idea is to write default method definitions in a class declaration that exploit

a sum-of-products-like structure of datatypes. Like GH andPolyP, all the isomorphisms between

the sums of products and datatypes are automatically handled by the compiler. One limitation

of this mechanism is that it only works on types of kind∗. Clean’s generics system (Alimarine

and Plasmeijer, 2001) generalizes derivable type classes to allow generic type classes that can be

defined at arbitrary kinds rather than just∗. This is achieved by generating a (possibly) infinite set

of classes, one class per kind.

Scrap your boilerplate Lämmel and Peyton Jones (2003) presented ‘Scrap your Boilerplate’

(SyB): an approach to generic programming based on a simple type-safe cast operator, which makes

17

1.7. Related Work 18

it is possible to (dynamically) compare two types in order todetermine if they are (nominally) equal.

The generality available is thus created by extending polymorphic, uniform traversal functions

with type-specific behaviour using this cast operator. A library of traversal combinators that works

on anyTypeabledatatype was developed and is available in recent versions of the GHC Haskell

compiler. The traversal combinators include top-down and bottom-up traversals and queries. In

Lämmel and Peyton Jones (2004) introspection facilities were added to the library, which allowed

the development of generic functions that made use of meta-data such as constructor names or

their arity. In this work it was also shown how to encode generic zips (which seemed tricky to

achieve in their earlier work). In Lämmel and Peyton Jones (2005) the issue of extensibility of

generic functions was addressed by providing a completely new implementation of SyB that used

type classes instead of the type-safe cast operator to modeltype-specific behaviour — since the

type-safe cast operator implied that all type-specific cases needed to be provided at once.

Hinzeet al. (2006) presented one alternative implementation for a SyB-like library. The main

contribution of this implementation was the so-calledspine-view, which provided a way to access

the structure of datatypes (lacking in the previous SyB implementations). This contribution was

important in comparing the SyB approach to generic programming with other approaches. With

the insights gained it was shown that SyB could be applied to avery large class of data types that

included, for example, some GADTs (see below). In subsequent work, Hinze and Löh (2006) intro-

duced the so-calledtype-spine viewto allow the definition of consumer functions; and in Hinze and

Löh (2008) a detailed study, locating the SyB approach in the design space of generic programming,

was presented.

Bringert and Ranta (2006) present a line of work that seems tobe closely related to the SyB

approach and shows an alternative technique that can be usedto remove boilerplate code. Using

this technique, the programmer has to define once a generic part per each datatype (thecompos

function) and then he can use that function to define boilerplate operations over the values of the

datatype. Thecomposfunction, in its general form, takes two arguments that have, essentially,

the same types as the applicative functor McBride and Paterson (2007) operations. Due to this

connection we could use the laws of applicative functors to prove properties about functions written

with compos. Another interesting aspect of this work is that the technique can be used in languages

other than Haskell. For example, the authors show how by using parametrized visitors the pattern

could be used in Java.

18

1.7. Related Work 19

Encoding Type Representations Generalized algebraic data types(GADTs) (Peyton Joneset al.,

2006), also known as “guarded recursive data types” (Xi et al., 2003) or “first-class phantom types”

(Cheney and Hinze, 2003), are a generalisation of algebraicdatatypes supported by some recent

versions of functional languages. GADTs allow the programmer to define a form oftype-indexed

datatypesand can be used to enforce some typing constraints. Hinze (2003) shows how to use

phantom typesto define type representations which can then be used to definegeneric functions

over the represented types. In earlier work (Cheney and Hinze, 2002), type representations are

encoded making use of existential types and a type equality operator instead of having to rely on

the availability of GADTs.

Hinze (2004) GM approach shows how to encode generic functions within Haskell 98. Once

again, the idea is to provide a type representation, but typerepresentations are encoded with type

classes instead of datatypes. A generic function can be encoded as an instance of classGeneric.

Another class (theRepclass) defines a functionrep which can be used to construct the type repre-

sentations automatically. The generic library proposed byHinze comes in two different flavours,

which provide two slightly different interpretations of generic functions. The inspiration for these

two different flavours comes from encodings of datatypes (specifically, the Church and Parigot

encodings), which are greatly explored in this thesis (see Chapter 3).

One limitation of most approaches based on type representations is that generic functions are

not extensible, which severely hinders modularity. Oliveira et al. (2006) shows a variation of GM

that solves this problem by generalizing theRepclass. In Chapter 5 we will make use of this work

to show how we can achieve one extensible version of our V library. Weirich (2006) proposes

‘RepLib’, which is a generic programming library using typerepresentations encoded with GADTs

that is also extensible. The extensibility is achieved using type classes.

1.7.5 The Expression Problem

The term ‘expression problem’ was originally coined by Wadler (1998) (although the problem was

previously known). According to Wadler, a solution for the problem should allow the definition

of a datatype with the addition of both new variants and functions being possible. Furthermore,

a solution should not require recompilation of existing code, and it should be statically type safe:

applying a function to a variant for which that function is not defined for should result in a compile-

time error. Odersky and Zenger (2005a) add ‘independent extensibility’ (it should be possible to

19

1.7. Related Work 20

combine independent extensions) to the list of criteria of what constitutes a solution to the expres-

sion problem. The expression problem plays an important role in COP since“extensible systems

are in principle modular, have no final form or final integration phase, cannot be subjected to final

total analysis, cannot be exhaustively tested, and have to allow for mutual independence of exten-

sion providers”(Szyperski, 1996). In Chapter 5 we show that our visitor components can be made

extensible in both dimensions (functions and variants), therefore not suffering from the expression

problem.

Generics Wadler’s solution for the expression problem in Generic Java, showed how generics

could be used to solve the problem using an encoding of self types. Unfortunately, his solution was

later found to be unsound. Four different solutions using generics in Java and/or C# were presented

by Torgersen (2004). The first two solutions work in both Javaand C#, while the third solution

relies on Java wildcards and the fourth solution relies on dynamic reification of type parameters

that is only present in C#. Because of the dependency of the fourth solution on dynamic reification,

it does not totally satisfy the type-safety requirements ofa solution to the expression problem.

Torgersen also defined some terminology that is useful to compare different solutions.

Haskell There is a folklore solution to the expression problem in Haskell. The key idea consists

in lifing all the variants of the “open datatypes” to datatypes and then use type classes to define the

functions on that datatype. In this solution, the type classdefines a methodf which represents the

open function we want to define and each type class instance corresponds to a case (on a variant) of

f . However this approach has important limitations in the kinds of functions we can express: n-ary

functions (or methods); nested case analysis and mutually recursive definitions are all problematic

to express. Swierstra (2008) recently proposed an elegant approach combining folds and type-level

extensible sums. With this approach, open datatypes can be compositionally written and functions

over those datatypes can be elegantly defined using type classes. However, dispite the gain of

clarity and elegance, the same limitations as the folklore solution apply.

Polymorphic variants Garrigue (2000) shows howpolymorphic variantsin OCaml can be used

to solve the expression problem. With polymorphic variants, different datatypes can share the same

constructor. When a definition using pattern matching is written every usage of a polymorphic

variant will raise a type constraint, which ensures that only a datatypes containing all of those

20

1.7. Related Work 21

constraints will be used in the definition. A limitation of this approach is that only top-level pattern

matching is supported. In subsequent work, Garrigue (2004)addresses this problem and shows a

solution for typing pattern-matching in the presence of polymorphic variants. However his solution

has to make some compromises to achieve this. In particular the strategy used does not guarantee

that all polymorphic variant pattern-matching is complete, since enforcing this would require a

very restricted type. Therefore, Garrigue’s solution for the deep pattern-matching problem is not

type-safe in Wadler’s sense.

Extensible algebraic datatypes with defaults Zenger and Odersky (2001) proposeextensible

algebraic datatypes with defaultsas a possible solution for the expression problem. They observe

that the subtyping relationship between a datatype and its extension is inverted (the extension is

a supertype of the original datatype), which leads to the idea of adding a default variant to every

algebraic datatype. This has the effect of subsuming all variants defined in future extensions ofthe

type. Unlike traditional datatypes, in this alternative model the extension is a subtype of the original

datatype. This solution is, however, subject to single inheritance, which means that only linear

extensions are possible. Moreover, it assumes that sensible default cases exist for all functions,

which may not necessarily be the case.

Virtual Types Odersky and Zenger (2005a) present two solutions for the expression problem

using a combination of abstract types and nested classes. Inthe top-level classes, some opera-

tions and variants are initially added and the hard references that would preclude extensibility are

replaced with abstract types. In the subclasses, new operations and/or variants can be added by

suitably extending the top-level class and refining the abstract types. Their solution has, somehow,

the flavour ofvirtual classes, which provide a more direct way to solve the problem. A solution

for the expression problem using virtual classes is presented, for example, by Ernst (2004) in the

GBeta programming language. Ernst’s solution also benefitsfrom a special composition operation

that can compose two classes and all of its inner classes automatically. In Scala we have to perform

this operation manually. Nystromet al.(2004) present a solution in Jx that is very similar to Ernst’s

one, however instead of virtual classes they use a slightly different mechanism that does not suffer

from the unsoundness problems usually associated with virtual classes. Jx also supportsnested

inheritance, which is similar to the composition operation in GBeta allowing both the classes and

their inner (or nested) classes to be automatically composed.

21

Chapter 2

Preliminaries

In this chapter we will introduce some material in order to keep this thesis self-contained.

However we will assume familiarity with both functional andobject-oriented programming. In

Section 2.1 we will introduce the Scala programming language. In Section 2.2 we will show how

Scala can be used as a DGP language. In Section 2.3 we will present the V pattern and the

related C pattern. Finally, in Section 2.4 we will informally presentthe functional notation

that we will use throughout this thesis to specify some of ourcomponents and reason about them.

2.1 The Scala Programming Language

Scala is a strongly typed programming language, built on topof the JVM, that combines object-

oriented and functional programming features. Although strongly inspired by recent research, Scala

is not just a research language; it is also aimed at industrial usage: a key design goal of Scala is

that it should be very easy to interact with Java, making hugeamounts of Java libraries readily

available for programmers. The user base of Scala is alreadyquite significant, with the compiler

being actively developed and maintained. In this section wewill provide an introduction to Scala

concepts. For a more complete introduction/description of Scala, see Odersky (2006a, 2007a,b);

Schinz (2007).

22

2.1. The Scala Programming Language 23

2.1.1 Expressions and Definitions

Definitions In Scala, we can define functions using thedef keyword. For example, a function

that squares a double could be defined as:

def square(x : double) : double= x ∗ x

This declaration reads as follows: define a new functionsquarethat takes an argumentx of type

doubleand returns adoublecomputed byx ∗ x.

Values When we execute a definitiondef x = e, the expressione will not be evaluated untilx is

used. If we wish to evaluate the right-hand-sidee as part of the evaluation of the definition, Scala

offers a value definitionval x = ewhich provides this behaviour. One important difference between

values and definitions is that only definitions can take parameters (values are just constants).

Conditional Expressions Scala’s syntax for conditionals is similar to Java but, unlike Java, it can

be used not only between statements but also between expressions. This means that it serves as a

substitute for Java’s conditional expressions... ? ... : Here is one example:

def abs(x : double) : double= if (x > 0) x else− x

First-Class Functions In Scala functions are ‘first-class values’. Therefore, we can definehigher-

order functions. For example, here is how to define the functiontwice that, given a functionf ,

appliesf twice to its argumentx.

def twice (f : int ⇒ int, x : int) : int = f (f (x))

Scala supportsanonymous functions. For instance, to define a function that raises an integer to

the power four, we could use the functiontwice together with one anonymous function to achieve

that effect. Here is how:

def power4(x : int) : int = twice ((y : int)⇒ y ∗ y, x)

The first argument of the function twice is an anonymous function that takes an integery and

returns another integery ∗ y.

Scala also supportscurrying. To declare a curried function we can use two different pieces of

syntax. Here are two examples:

def twiceCurry(f : int ⇒ int) (x : int) : int = f (f (x))

23

2.1. The Scala Programming Language 24

def comp: (int ⇒ int)⇒ (int ⇒ int)⇒ int ⇒ int =
f ⇒ g⇒ x⇒ f (g (x))

The first example is just the curried version of the functiontwice, where the first and second

arguments are namedf andx. In the second example we present a composition operator on func-

tions that take integers and return integers. In this example the arguments are not named. Either

syntactic option can be used to define curried functions, andwe can even mix the two notations;

for example

def twiceCurry2(f : int⇒ int) : int ⇒ int = comp(f) (f)

would name the first argumentf but have an anonymous second argument — alternatively one may

think of twiceCurry2as a function that takes a function and returns a function.

Infix Operators In Scala aninfix operatorcan be any one argument operator. As a simple exam-

ple, consider the following class:

classNatInt (x : int) {
val value= x
def is (y : NatInt) : boolean= value.equals(y.value)
def isZero: boolean= this is zero
def + (x : NatInt) : NatInt=

new NatInt (this.value+ x.value)
}

In this class we have a couple of definitions that can be used asinfix operators. The+ definition,

for example, can be used to add two naturals by either writingn1 .+ (n2) or n1+ n2. We may be

tempted to think that this stems from the fact that+ is a symbolic and not an alphabetic identifier.

However this is not the reason why+ can be used as an operator. In fact, the definitionis can itself

be used as an operator because it takes one argument. So we caneither write the definition ofisZero

asthis.is (zero) or asthis is zero. The only difference between using an alphabetic and a symbolic

identifier is that Scala gives them different priorities when used as operators.

Lazy Arguments Arguments can be passed by name by prefixing the type with⇒. Lazy argu-

ments are specially useful when defining our own control structures. Scala’s parsing combinators

are a good example of the use of laziness. For example, the combinator &&& which applies a

parser and if that parser succeeds applies another parser isdeclared as:

24

2.1. The Scala Programming Language 25

def &&& (q:⇒ Parser) : Parser= . . .

In this example, the argumentq (the second parser) is lazy. This means that only ifq is needed it

will be evaluated.

2.1.2 Classes and Objects

Classes In Scala, classes with parameterless constructors are declared similarly to Java.

classTalker {
def talk (str : String) : Unit = System.out.println (str);
}

In this example theUnit type plays the same role asvoid in other languages.

When it comes to constructors with parameters, Scala differs from other mainstream languages.

Scala encourages a single constructor per class by using thefollowing syntax:

classTalkerPar(str : String) {
def talk () : Unit = System.out.println (str)
}

A class caninherit from another class using theextendskeyword. As an example, consider a

new classTwiceTalkerthat inherited fromTalker and added two new methods to it. We could do

this by:

classTwiceTalkerextendsTalker {
private def doTwice(f : String⇒ Unit, x : String) : Unit = {f (x); f (x)}

def talkTwice(str : String) : Unit = doTwice(talk, str)
}

Note that, like in Java or C#, we can have private members by using theprivate keyword. In

this example thedoTwicemethod is private.

Overriding methods in Scala requires the use of an explicitoverride keyword. The next exam-

ple overrides the methodtalkTwicefrom theTwiceTalkerclass:

classTwiceShouterextendsTwiceTalker{
override def talkTwice(str : String) : Unit =

super.talkTwice(str.toUpperCase());
}

The syntax for the creation of objects is fairly standard. Here are a couple of examples instan-

tiating and interacting with some of the classes that we havebeen defining:

25

2.1. The Scala Programming Language 26

scala> def u = new Talker ();
scala> u.talk ("Ola");
Ola
scala> def p = new TalkerPar("Hola");
scala> p.talk ();
Hola
scala> def t = new TwiceTalker();
scala> t.talkTwice("Hello");
Hello
Hello

Abstract Classes Like in other OO languages, we can haveabstract classes(that is, classes

where some methods may be undefined). To declare an abstract class we append theabstract

keyword to the class declaration:

abstract classAbstractTalker{
def talk (str : String) : Unit
}

In this case, the methodtalk is abstract. Unlike in other languages, noabstract keyword is needed

in method declarations.

Objects When a class has a single instance, we can avoid the creation of a new object each

time we want to use that class by using anobject. Object definitions follow the syntax of class

definitions; they can have optionalextendsclauses and a body. However, unlike classes, with

object definitions we cannot create other objects usingnew. Furthermore, object definitions do

not have constructor or type parameters. Here is an example of an object followed by a definition

which calls a method of that object.

object HowDoYouDoextendsTalkerPar("Hello!") {
override def talk () = {super.talk (); System.out.println (" How do you do?"); }
}

def greet= HowDoYouDo.talk ()

Case Classes Scala supports the notion ofcase classes, which provide some syntactic sugar and

allow the definition of functions by case analysis. With caseclasses we can emulate AlgDTs from

conventional functional languages. For example, we could define a simple hierarchy of classes for

defining the Peano numerals as follows:

abstract classNat
case classZeroextendsNat

26

2.1. The Scala Programming Language 27

case classSucc(n : Nat) extendsNat

The first class declares an abstract classNat, which is the supertype of the natural numbers. The

classZeroacts as the base case and the classSucccan be built provided a natural numbern. Note

that if we do not need to define any methods in a class, we could skip writing the empty body{}.

We can also define functions by case analysis on the naturals.For example,

def nat2int (n : Nat) : int = n match {
caseZero () ⇒ 0
caseSucc(m)⇒ 1+ nat2int (m)
}

defines a function that converts the natural number into a built-in integer.

Case classes also benefit from an automatically defined constructor function (with the same

name as the class), which allows us to write

def three= Succ(Succ(Succ(Zero)))

instead of the more longwinded version:

def threeLong= new Succ(new Succ(new Succ(new Zero ())))

2.1.3 Traits and Mixins

Traits Scala has a special kind of abstract classes calledtraits (Schärliet al., 2003). Like abstract

classes, traits can have abstract methods and defined methods. The difference is that traits cannot

have parameters but they can bemixed intogether. Withmixin compositiona kind of safemultiple

inheritanceis possible. The next example demonstrates the use of traitsin Scala:

trait Hello {
val hello= "Hello!"
}

trait HowAreU{
val howAreU= "How are you?"
}

trait WhatIsUrName{
val whatIsUrName= "What is your name?"
}

trait Shout{
def shout(str : String) : String
}

27

2.1. The Scala Programming Language 28

Mixin composition As we can see traits can be used much like abstract classes, allowing both

the declaration of both abstract and concrete methods. Mixin composition solves the problem

of multiple inheritance, while allowing similar expressive power, by ensuring that it is possible

to linearize the inheritance relationship. Next we show howwe could combine the traits of our

example using Scala’s mixin composition:

trait BasicsextendsHello with HowAreUwith WhatIsUrNamewith Shout{
val greet= hello+ " " + howAreU
def shout(str : String) = str.toUpperCase()
}

The traitBasicsinherits the methods fromHello, HowAreUandWhatIsUrName; implements

the methodshoutfrom Shout; and defines a new methodgreetthat uses the inherited methodshello

andhowAreU.

2.1.4 Generic Types and Methods

Parametric Polymorphism Like Haskell or ML (and more recently Java and .Net), Scala sup-

portsparametric polymorphism. For example, the functioncompthat we presented before could

be generalized in the following way:

def comp[a, b, c] : (b⇒ c)⇒ (a⇒ b)⇒ a⇒ c =
f ⇒ g⇒ x⇒ f (g (x))

Now, instead of only composing operations that take integers and return integers, the functioncomp

can compose any operation where the input type of the first operation is the same as the output type

of the second operation.

Like methods, classes can themselves be parametrically polymorphic. For instance, to define a

(homogeneous) list container, we could use a parametrized class to ensure that all elements are of

the same type.

abstract classList[A]
case classNil [A] extendsList[A]
case classCons[A] (x : A, xs: List[A]) extendsList[A]

def len[A] (l : List[A]) : int = l match {
caseNil () ⇒ 0
caseCons(x, xs)⇒ 1+ len (xs)
}

28

2.1. The Scala Programming Language 29

Bounded Polymorphism In Scala we can also have a form ofboundedpolymorphism by using

type parameter bounds. This kind of polymorphism is useful in situations where we want to pa-

rameterize a method or a class by some type but we need to assume some operations on that type.

A typical example where this kind of polymorphism is useful is when we want to define ordered

insertion on lists.

def insert[A<: Ordered[A]] (x : A, l : List[A]) : List[A] = l match {
caseNil () ⇒ Cons(x,Nil [A])
caseCons(y, ys)⇒ if (x 6 y) Cons(x,Cons(y, ys)) elseCons(y, insert (x, ys))
}

In this situation we need to assume that the elements of typeA contained in the list have the

operation<. This is ensured by bounding the typeA by Ordered[A].

Variance Annotations Scala’s generic types have, by default, non-variant subtyping. However,

it is possible to annotate the type parameter to change its variance: if we prefix a formal type

parameter with a ‘+’ we change the subtyping so that it becomes covariant; alternatively, if we

prefix a ‘−’ we change the subtyping so that it becomes contravariant.

Functions In Scala, functions are objects (since all values are objects). TheFunction1trait is

defined as follows.

trait Function1[−a,+b] {
def apply (x : a) : b
}

This trait defines the interface of a function with one input typea and an output typeb. Note that

the input type is contravariant, while the output type is covariant. BesidesFunction1, there are also

definitions for functions of many other arities: there is onedefinition for each possible number of

function parameters. The syntax (T1, ...,Tn)⇒ S is just a Scala abbreviation for the parameterized

typeFunctionn[T1, ...,Tn,S].

2.1.5 Abstract Types

Scala has the notion of abstract types, which provide a flexible way to abstract over concrete types

used inside a class/trait declaration. Abstract types are used to hide information about internals of a

component, in a way similar to their use in SML (Harper and Lillibridge, 1994) and OCaml (Leroy,

29

2.1. The Scala Programming Language 30

1994). When creating a new object from a class that has abstract types, we need, as with all other

members of a class, to initialize them with concrete types. Abstract types are considered by Oder-

sky and Zenger (2005b) as essential for the construction of reusable components and they allow

information hiding over several objects that, as argued in Section 1.2, is a key part of component-

oriented programming. We start by discussing abstract types using a simple example first and we

discuss a real-world example next, when we presentfamily polymorphism and self types.

Consider a toy classAbstractTypeand one object instancet:

abstract classAbstractType{
type A

val x : A
}

def t = new AbstractType{type A = int; val x = 0; }

One interesting feature of abstract types is that they can act existentially or universally. The

following definition, for example,

def func[a] (t : AbstractType) : a = t.x // type error

incurs on a type error becauset.x has typet.A, but t.A is not on scope (much like an existential

type). Alternatively, we could define

def func[a] (t : AbstractType{type A = a}) : a = t.x

which is a valid definition. The difference is that nowt.A is in scope and is unified witha. This

usage of abstract types is similar to parametric types. In fact, it is possible to model generics with

abstract types (Odersky, 2006a).

Family polymorphism and self types We shall now see how to use abstract types to model

families of types that vary together covariantly. This concept is known asfamily polymorphism. In

particular we shall see how to capture the O pattern as a library of code. This example is

taken from Odersky (2006a).

In the O pattern there are two kinds of participants:subjectsandobservers. The subjects

define the methodssubscribeandpublish, which are used, respectively, to register observers and to

notify all the observers. The notification of the observers is done by calling the methodnotifyon the

observer instances. A system that captures this design pattern is presented in Figure 2.1. The top-

level classSubjectObservercontains two nested classesSubjectandObserver, which correspond

30

2.1. The Scala Programming Language 31

abstract classSubjectObserver{
type S<: Subject
type O<: Observer

abstract classSubjectrequires S{
private var observers: List[O] = List ()

def subscribe(obs: O) =
observers= obs:: observers

def publish=
for (val obs← observers) obs.notify (this)

}

trait Observer{
def notify (sub: S) : unit
}

}

Figure 2.1: The O pattern in Scala

to the subject and observer participants of the pattern.

Note that theSubjectandObserverdo not refer directly to each other. Instead, the abstract

typesSandO are used to replace the “hard” references. It is this use of abstract types that allows

the system to be extended covariantly. The use ofrequires in

abstract classSubjectrequires S{. . .

expresses thatSubjectcan only be instantiated if its concrete class conforms toS. The typeS is

called aself-typeof Subject. The use of self-types means that the type ofthis inside the class is the

actual self-type (in the example, the type ofthis is S). The self-type annotation is needed in this

example to ensure that the callobj.notify (this) is type-correct.

Subclasses ofSubjectObservercan define application-specific subjects and observers. Theex-

ample we use next isSensorReaderthat takes sensors as subjects and displays as observers. Inthis

example, we instantiate the typesSandO to SensorandDisplay, which implement, respectively,

SubjectandObserver.

object SensorReaderextendsSubjectObserver{
type S= Sensor
type O = Display

abstract classSensorextendsSubject{
val label : String
var value: double= 0.0

31

2.1. The Scala Programming Language 32

def changeValue(v : double) = {
value= v
publish
}

}

classDisplayextendsObserver{
def println (s : String) = System.out.println (s)
def notify (sub: Sensor) =

println (sub.label+ " has value " + sub.value)
}

}

This combination of abstract types, self-types and nested classes allows us to have information

hiding over several objects, which is one of the premises of COP.

2.1.6 Implicit Parameters

Scala’simplicit parametersallow some parameters to be inferred implicitly by the compiler (the

inference process is guided by types) and can be used to emulate Haskell’s type classes (Hallet al.,

1996) as noted by Odersky (2006b).

We shall see how this works by looking at another example presented in Odersky (2006a).

Consider a definition of the concept of aMonoid in Scala. We could define an approximation

using:

trait Monoid[a] {
def unit : a
def add (x : a, y : a) : a
}

The Haskell reader should notice the similarity between themonoid trait and the standard type class

declaration for monoids. An example object would be a monoidon strings, with the unit being the

empty string and addition being the concatenation of strings.

implicit object stringMonoidextendsMonoid[String] {
def unit : String= ""
def add (x : String, y : String) : String= x.concat(y)
}

Again, the Haskell reader should note the connection between the implicitstringMonoidobject and

the instance declaration for string monoids in Haskell.

32

2.1. The Scala Programming Language 33

Ignoring theimplicit keyword for a moment, we could start defining operations thatare generic

in the monoid. For example:

def sum[a] (xs: List[a]) (implicit m : Monoid[a]) : a =
if (xs.isEmpty) m.unit
elsem.add (xs.head, sum(xs.tail) (m))

We can now usesumin the following way (as we would have done normally):

def test: String= sum(List ("a", "bc", "def")) (stringMonoid)

However, alternatively we could skip the second argument since the compiler has enough in-

formation to infer it automatically.

def test2: String= sum(List ("a", "bc", "def"))

This works because theimplicit keyword in the object informs the compiler thatstringMonoid

is the default value for the typeMonoid[String]. The implicit keyword in the definition ofsumin-

forms the compiler that the argumentm may be skipped if there exists one implicit object with

the type ofMonoid [a] in scope. When definingtest2 the compiler infers that the type ofm

should beMonoid[String] and since the programmer did not specifym it uses the implicit value

stringMonoid.The second use ofsum, with the implicit parameter inferred by the compiler, is sim-

ilar to ad-hoc overloaded functions in Haskell (by using type class constraints).

As we have seen, implicit parameters give us a way to emulate Haskell’stype classmechanism

is Scala but, in some sense, implicit parameters are more flexible than type classes because we can

choose to use something else other than the default value, which is not possible with Haskell’s type

classes.

2.1.7 Higher-kinded Types

Type constructor polymorphism and constructor (type) classes have proved themselves very useful

in Haskell, allowing the definition of concepts such as monads (Wadler, 1993), applicative func-

tors (McBride and Paterson, 2007) or many other container-like abstractions. This motivated the

recent addition of type constructor polymorphism to Scala (Moorset al., 2007), which allows sim-

ilar constructions to be defined. For example, the most recent incarnation of theIterableclass is

defined in Scala as:

33

2.2. Scala as a DGP language 34

trait Iterable[El,Container[]] {
def map[NewEl] (f : El⇒ NewEl) : Container[NewEl]
def flatMap[NewEl] (f : El⇒ Iterable[NewEl]) : Container[NewEl]
def filter (p : El Boolean) : Container[El]
}

The thing to note is that theIterable is parametrized byContainer[], which is a type that is

itself parametrized by another type. In other words,Containeris a type constructor. Because we

parametrize over the type constructorContainerwe can use it in the method definitions with any

other types. In particular, in the definition ofmap, we can see that the return type of that method will

beContainer[NewEl], whereNewElis a type parameter of the methodmap. With parametrization

by types only, it would not be possible to write this definition of Iterable and we would have to

content ourselves with something less expressive.

2.2 Scala as a DGP language

Recalling that the three kinds of parametrization for a programming language to support DGP

are parametrization by shape, type and computation, we can see that Scala readily supports the

latter two. Parametrization by type is ensured by the generics support; and parametrization by

computation is ensured by the support for higher-order functions. However, it is not so clear that

Scala supports parametrization by shape. Moorset al.(2006) show how to encodetype-constructor

polymorphismand with that encoding develop a simple datatype-generic programming library. In

this section we shall see how the type-constructor polymorphism encoding works and how it can

be used to develop generic programming libraries. Our implementation differs from Moorset al.,

but it is conceptually similar.

2.2.1 Encoding Type-Constructor Polymorphism

When we have atrait like:

trait TypeConstructor{
type A
}

we can refer to eitherTypeConstructor{type A = . . .} or to TypeConstructor. As discussed in

Section 2.1.5, the former acts universally on the typeA, while the latter acts existentially. Because

34

2.2. Scala as a DGP language 35

TypeConstructoris just a regular Scala type, we can abstract over type parameters of that kind.

When we do so, we essentially get type-constructor polymorphism. For example, the notion of a

functor, which defines an operationfmapon some type-constructorF, can be defined in Scala as:

trait Functor[F <: TypeConstructor] {
def fmap[a, b] : (a⇒ b)⇒ F {type A = a} ⇒ F {type A = b}
}

Note that the type parameter ofFunctor is bounded to the typeTypeConstructorand not to

TypeConstructor{type A = . . .}. If we could only useTypeConstructoruniversally we would be

forced to have something like

trait BadFunctor[a,F <: TypeConstructor{type A = a}] {
def fmap[a, b] : (a⇒ b)⇒ ?⇒ ?
}

which would not allow us to have the right types for the secondargument offmapand for its output

type. With the initial definition ofFunctor, however, we can abstract overF and still refine its type

parameterA in the definition offmap.

2.2.2 A Little DGP Library

Having shown how to encode type-constructor polymorphism and how to implement the notion of

Functor in Scala, we now turn into implementing a small DGP library based on the Haskell library

presented in Gibbons (2006).

The first step is to define a typeMu that is parametrized by a type constructorF. Mu may be seen

as a template for constructing datatypes (in technical terms it is a type-level fixpoint combinator).

The parameterF is theshapeof the datatype — different shapes will give rise to different datatypes.

trait Mu[F <: TypeConstructor] {
def In : F {type A = Mu[F] }
}

Defining Datatypes Lists are an example of a datatype that can be defined usingMu. First we

define the shape of lists by creating a type constructorListF. Then we define the two possible

shapes for lists (a list either is empty, or has an element andanother list) using the classesNilF and

ConsF. Finally, we define aFunctorobject that defines thefmapoperation for lists.

trait ListF extendsTypeConstructor
case classNilF [a] extendsListF {type A = a}

35

2.3. Vs and Cs 36

case classConsF[a] (x : Int, xs: a) extendsListF {type A = a}

implicit object FunctorListextendsFunctor[ListF] {
def fmap[a, b] : (a⇒ b)⇒ ListF {type A = a} ⇒ ListF {type A = b} =

f ⇒ {

caseNilF ()⇒ NilF ()
caseConsF(x, xs)⇒ ConsF(x, f (xs))
}

}

Having defined the shape, we can define the datatype simply by applyingMu to theListF.

type IntList = Mu[ListF]

The two constructors for lists can then be defined as follows.

def Nil : IntList = new IntList {def In = NilF [IntList] }
def Cons(x : Int, xs: IntList) : IntList = new IntList {def In = ConsF[IntList] (x, xs)}

Defining Generic Functions We can define operations that work for every instance ofMu (re-

gardless ofF). For example thecatamorphismrecursion pattern (Meijeret al., 1991) can be defined

once and for all as

def cata[F <: TypeConstructor, a] (f : F {type A = a} ⇒ a)
(implicit ft : Functor[F]) : Mu[F] ⇒ a =

comp(f) (comp(ft.fmap(cata[F, a] (f))) (.In))

and operations that follow those recursion patterns can be simply defined by instantiating the shape,

type and functional parameters of the recursion pattern accordingly.

def sumList: IntList⇒ Int =
cata[ListF, Int] {caseNilF ()⇒ 0;caseConsF(x, n)⇒ x+ n}

2.3 Vs and Cs

In this section we will show how the V and C patterns (Gammaet al., 1995) are

traditionally presented. The C pattern is closely related to the V since most imple-

mentations of visitors use it implicitly, which justifies a separate presentation.

2.3.1 The C Pattern

Unlike many functional programming languages, most objectoriented languages do not have a

built-in mechanism to define data types. Instead, the combination of composition and subclassing

36

2.3. Vs and Cs 37

children

Leaf

+operation():void

Component

+operation():void

+add(g:Component):void

+remove(g:Component):void

+getChild(i:int):Component

Composite

+operation():void

+add(g:Component):void

+remove(g:Component):void

+getChild(i:int):Component

void operation() {

foreach g in children {

g.operation();

}

}

0..*

Figure 2.2: The Composite Design Pattern

can be used to define hierarchical structures. The aim of the C design pattern is to infor-

mally describe how to design such structures. The pattern consists of two types of components:

• TheElement(or Component), usually represented as an interface, describes all the operations

that can be applied to such structure.

• Concrete Elementsare subtypes ofElementand they are analogous to a value constructor of

a datatype.

In Figure 2.3.1 we have a typical class diagram for the C showing how the components

interact. TheComponentspecifies all the operations allowed in an interface or abstract class. There

are two kinds of concrete elements:LeafsandComposites. The former has no children, while the

later can have children.

A difference between datatypes and Cs is that with Cs we need to define in

advance all the operations that can be used in the structure.This is not the case with data types,

where we can define functions at any point. In contrast, data types need to define all the variants at

once while Cs can be extended — by adding new subclasses ofElement— at any point.

The two forms of hierarchical structures (data types and Cs) can be used, most of the

time, for solving the same problems. However, there are situations where one approach is preferable

37

2.3. Vs and Cs 38

to the other. This fact creates a tension that the programmerneeds to solve: is it preferable to use

data types and be able to extend the set of functions at any point; or, is it better to use the object

oriented approach and be able to add variants at any point? There are even situations where it

would be desirable that the two forms of extensibility co-exist. Wadler (1998) identified this issue

and named it theexpression problem.

It is possible, in an object-oriented setting, to have hierarchical structures that have the same

form of extensibility as datatypes. The V design pattern, that we shall discuss in the next

section, explains how this can be achieved.

2.3.2 The V Pattern

The V design pattern is an alternative way to implement structures that separates the opera-

tions from the object structure, thus allowing us to add new operations without changing the object

structure. Moreover, the V keeps related aspects of a single operation together, by defin-

ing them in a single class. Figure 2.3 shows the UML class diagram for the design pattern. The

components collaborate as follows:

• theVisitor interface declares avisit method for eachConcreteElementtype;

• eachConcreteVisitorclass implements a single operation, defining thevisit method for each

ConcreteElement;

• theElementabstract superclass (which is not actually required to makethe implementation

work) declares theacceptmethod, taking aVisitor as argument;

• eachConcreteElementsubclass defines theacceptmethod to select the appropriatevisit

method from aVisitor.

The trade-off encapsulated by the V pattern is that while new operations are easy to add,

adding new variants is hard; this is the opposite of the standard object-oriented approach. There-

fore, the V is best applied to problems where the object structure rarely changes, which is

a perspective is more akin to the functional programming paradigm, and can be considered as a

functional idiom within an object-oriented paradigm. In particular, the V can be compared

with datatypesandpattern matchingin functional programming languages, where the hierarchical

38

2.3. Vs and Cs 39

0..*

Visitor

+visitConcreteElementA(e:ConcreteElementA):void

+visitConcreteElementB(e:ConcreteElementB):void

ConcreteVisitor1

+visitConcreteElementA(e:ConcreteElementA):void

+visitConcreteElementB(e:ConcreteElementB):void

ConcreteVisitor2

+visitConcreteElementA(e:ConcreteElementA):void

+visitConcreteElementB(e:ConcreteElementB):void

Element

+accept(v:Visitor):void

ConcreteElementA

+accept(v:Visitor):void

+operationA():void

ConcreteElementB

+accept(v:Visitor):void

+operationB():void

void accept (Visitor v) {

v.visitConcreteElementA(this);

}

void accept (Visitor v) {

v.visitConcreteElementB(this);

}

ObjectStructure

Client

Figure 2.3: The V design pattern

structure (normally a C) defined by theElementsuperclass andConcreteElementsub-

classes corresponds to the datatype, and the differentConcreteVisitorscorrespond to definitions via

pattern matching.

Imperative and Functional Vs

In the original presentation of the visitor pattern, thevisit andacceptmethods do not have a return

value (or, more accurately, they returnvoid). However, another possibility would be to have the

visit andacceptmethods to return a value corresponding to some computationperformed during

the traversal. We shall make that distinction, using some terminology borrowed from Buchlovsky

and Thielecke (2005):

Definition 1 (Imperative Visitor) An imperative visitorhasvisit andacceptmethods that return

void; all computations are executed through side-effects, accumulating results via mutable state.

�

39

2.3. Vs and Cs 40

Definition 2 (Functional Visitor) A functional visitoris immutable; all computations return their

results through the return values of thevisit andacceptmethods, which are pure. �

Imperative visitors have two advantages over functional visitors. Firstly, functional visitors

require some kind of generics, since visitors computing values of different types requirevisit and

acceptmethods with different return types. In contrast, imperative visitors have the same interface,

even when computing values of different types. Secondly, there is a minor performance penalty

to be paid with functional visitors, due to the overheads imposed by propagating results via return

values rather than directly via internal variables.

However, there are a few reasons why a functional presentation of the V may be prefer-

able. The first reason concerns composability: because theacceptmethod returns the result of the

computation, we can immediately feed that value to another method without having to extract the

state from the visitor class; that is, the result of the traversal can be obtained through an expression

rather than a statement. Perhaps more importantly, it is easier to reason about functional visitors

because computation is a visible effect and not an implicit side-effect of the methods: assuming no

other side-effects, theacceptmethods can be seen as pure mathematical functions.

Example: Binary Trees Figure 2.4 shows how to implement binary trees using a functional

V in Scala. The traitTreeand the classesEmptyandFork define a C whereTree

is theElementandEmptyandFork are twoConcrete Elements. The methodaccept, defined in

Treeand implemented in the two concrete elements, takes aTreeVisitorobject that has twovisit

methods (one for each concrete element). This whole system of classes defines an instance of

the V pattern. Unlike with the traditional presentation of the V the parameters of the

constructors are fed directly into thevisit methods instead of passing the whole constructor object.

Parametrizing thevisit methods in this way gives, as we shall see, a very functional programming

feel when programming with visitors.

In order to define new functions we need to createConcreteVisitorobjects. For example, a

function to compute thedepthof a binary tree could be defined as follows:

object DepthextendsTreeVisitor[int] {
def empty= 0
def fork (x : int, l : Tree, r : Tree) =

1+max(l.accept(this), r .accept(this))
}

40

2.3. Vs and Cs 41

trait Tree{//The Element
def accept[R] (v : TreeVisitor[R]) : R
}

case classEmptyextendsTree{
def accept[R] (v : TreeVisitor[R]) : R= v.empty
}

case classFork (x : int, l : Tree, r : Tree) extendsTree{
def accept[R] (v : TreeVisitor[R]) : R= v.fork (x, l, r)
}

trait TreeVisitor[R] {//The Visitor
def empty: R
def fork (x : int, l : Tree, r : Tree) : R
}

Figure 2.4: A Functional V for Binary Trees

When theTreeis Empty, then the case for empty trees (theemptymethod) returns 0. Otherwise,

the tree is a branch (handled by thefork method), and we return one more than the maximum of the

depth of the two subtrees. In order to compute the depth of thesubtrees, we need to call theaccept

method of those trees with theDepthvisitor — this is, in essence, a recursive call.

Defining values of typeTreebenefits from Scala’scase classsyntax, because there is no need

to have redundant uses of thenew keyword. To use aConcreteVisitor, we need to pass it as a

parameter to theacceptmethod of aTreevalue. As a simple example, here is how to define a

methodtestthat computes the depth of a small tree.

def atree= Fork (3,Fork (4,Empty,Empty),Empty)
def test= atree.accept(Depth)

Relationship with Functional Programming To conclude this section, we compare functional

visitors with datatypes and pattern matching in standard functional languages.

In functional programming, datatype declarations are commonly used to define structures. For

example, we could define our binary trees as:

data Treewhere
Empty:: Tree
Fork :: Int → Tree→ Tree→ Tree

Comparing this with functional visitors we can see that, despite the extra code required by

the visitor approach, there is a very close relationship between this datatype declaration and the

41

2.4. Functional Notation 42

Elementand ConcreteElementtypes. In particular, the constructors have the same parameters:

Emptytakes no parameters, so is a constant of typeTree, andFork takes an integer value together

with two subtrees and constructs aTree. This relationship would not be so obvious had we used

imperative visitors instead.

Functions can be defined bypattern matchingover those values of data types. Thedepthfunc-

tion could be defined as:

depth :: Tree→ Int
depth Empty = 0
depth(Fork x l r) = 1+max(depth l) (depth r)

This definition bears remarkable similarities to theDepthvisitor presented in the previous sub-

section. Thevisit methods correspond to the different cases of the definition by pattern matching,

and the recursive calls take the place of the subtree calls totheacceptmethod. Functional concrete

visitors can be regarded as a very close relative to functions defined by pattern matching.

2.4 Functional Notation

Throughout this thesis we will use a functional notation to specify parts of our Scala code. This

notation is, essentially, pretty printed Haskell code where Haskell’s specific technical details are

removed for clarity. This notation can also be interpreted as a fairly standard extension of System

F (sometimes we assume that primitive types likeInt exist or we assume that System F has built-in

recursion). We shall use identifiers started with capital letters denote types (or type variables) and

identifiers started with lower case to denote (value) variables. Function types are denoted asA⇒ B,

universal quantification is denoted∀A. type (wheretype is some valid type possibly defined using

A). New definitions can be introduced by specifying a name, a type, and an expression:

mydef∈ type
mydef≡ exp

Expressions consist of variables, applications and lambdaabstractions. The application of a

function f to an argumentx is defined asf x and lambda abstractions are of the following form

λvar ⇒ exp.

We also allow the introduction of new types using the syntaxmytype≡ type wheremytypeis

just a shorthand fortype. Extra syntactic sugar includes lambda expressions ranging over multiple

42

2.4. Functional Notation 43

variables (λvar1 var2 . . . varn ⇒ exp); and the declaration of variables on the left-side of the

definitionf x y≡ exp (syntactic sugar forf ≡ λx⇒ λy⇒ exp).

Whenever we feel the need we will provide the corresponding Haskell code in annexe.

43

Chapter 3

Visitors as Encodings of Datatypes

The V design pattern is related to algebraic data types, providing a functional program-

ming style in an object-oriented setting. In this chapter, we explore this association and argue that

variants of the pattern are related to known encodings of datatypes — in particular, Church and

Parigot encodings. We use this relationship to capture the V pattern as a generic library,

parametrized by the shape of the datatype and also by the decomposition strategy, while maintain-

ing type safety. We also show how to implement a functional notation for visitors that allows the

definition of functions (on those visitors) that resemble definitions by pattern matching in conven-

tional functional languages.

3.1 Introduction

Many functional programming languages provide built-in support for algebraic datatypes via datatype

declarations. As an example, consider a datatype declaration for peano naturals in a functional pro-

gramming style.

data Nat where
Zero:: Nat
Succ:: Nat→ Nat

The data declaration introduces a new type constructor and new valueconstructors. The type

constructorNat classifies values that are built with the corresponding value constructorsZeroand

44

3.1. Introduction 45

Succ.

An extra benefit of AlgDTs is that we getpattern matchingfor free, which allows us to exploit

the shape of the datatype in order to define functions. For example,

toInt :: Nat→ Int
toInt Zero = 0
toInt (Succ n) = 1+ toInt n

defines the function that converts a peano natural into a built-in integer.

Even though many functional programming languages have built-in support for AlgDTs, it

is possible to encode AlgDTs just using functions, thus not requiring special support. However,

those encodings tend to require quite sophisticated type features, which are not available in many

languages.

The best known encoding of datatypes is theChurch encoding(Böhm and Berarducci, 1985).

This encoding derives from System F, and allows us to writeiterative definitionsover the struc-

ture of the datatypes. However, there are certain functionsthat are inherently inefficient or even

inexpressible using iteration alone. A less well-known encoding is theParigot encoding(Parigot,

1992), which allowsgenerally recursivedefinitions, but requires System F itself to be extended

with recursion.

Object-oriented languages do not generally have native support for AlgDTs, and mostly rely

on class hierarchies and composition to define aggregate structures. The C design pat-

tern (Gammaet al., 1995) provides a good model for OO programmers wanting to define recursive

tree-structured aggregates. The V pattern (Gammaet al., 1995), allows the definition of oper-

ations on the elements of an object structure (typically defined using a C) without changing

the classes of those elements on which it operates. In this chapter, we will discuss two variants of

the V: internalvisitors, which control the traversal themselves, andexternalvisitors, in which

the traversal is controlled by the client.

Vs correspond, in a very close sense, to encodings of data types. In particular, internal

visitors are related to Church encodings and external visitors are related to Parigot encodings. We

do not claim credit for this observation; it seems to be folklore knowledge (one way or another)

among some communities. In fact, Buchlovsky and Thielecke (2005) present a type-theoretic for-

malization of the relation between encodings of datatypes and Vs.

Our main goal is to use the existing theory behind these encodings to present the V pattern

45

3.1. Introduction 46

as asoftware componentinstead of the traditional informal design pattern presentation. Essential

to this goal is the existence of programming languages like Scala, which provide standard OO

constructs but also have powerful type systems capable of capturing such abstractions.

We start by discussing a design choice that needs to be made before any implementation of the

V pattern in Section 3.2. The original contributions of the Chapter follow:

• Section 3.3 builds on Buchlovsky and Thielecke’s observation that one variant of the V

pattern corresponds to Church encodings, showing how to model the corresponding visitors

in Scala.

• Section 3.4 extends the observation, looking at Parigot encodings and describing how they

lead to a different variation of the V pattern, which again we capture in Scala.

• Section 3.5 presents two generalizations of the above encodings. The first,datatype-genericity,

is well-known in the domain of type theory; it allows parametrization by the shape of data

being traversed. The second, which we callstrategy-genericity, is novel as far as we know; it

allows parametrization by the decomposition strategy, with instantiations to (among others)

internal and external strategies for controlling the traversal.

• Section 3.6 uses these generalizations to build a highly generic library of visitors in Scala.

The library supports datatype-genericity and strategy-genericity, allowing the programmer

to avoid an early commitment in either of these dimensions. All this is achieved without

sacrificing type safety.

• Section 3.7 shows how we can have a more intuitive notation for visitors, implemented di-

rectly in Scala, that allows, for example, visitors to be treated as functions that take compos-

ites (datatypes) as parameters.

• Section 3.8 explores the expressiveness of the visitor library and shows that the library is

capable of expressingparametric, mutually-recursiveandexistentialvisitors. Furthermore,

using the connection between recursion patterns and the decomposition strategy, and inspired

by Meertens (1992) work onparamorphisms, we show how to encodeparamorphic visitors.

Finally, a discussion of the results and some related work ispresented in Section 3.9.

46

3.2. Internal or External V s: A Design Choice 47

trait Tree{//The Element
def accept[R] (v : TreeVisitor[R]) : R
}

case classEmptyextendsTree{
def accept[R] (v : TreeVisitor[R]) : R= v.empty
}

case classFork (x : int, l : Tree, r : Tree) extendsTree{
def accept[R] (v : TreeVisitor[R]) : R=

v.fork (x, l.accept(v), r .accept(v))
}

trait TreeVisitor[R] {//The Visitor
def empty: R
def fork (x : int, l : R, r : R) : R
}

Figure 3.1: A functional internal V for binary trees.

3.2 Internal or External V s: A Design Choice

In the GoF presentation of the design pattern, the question of who is responsible for traversing the

object structure is raised. In the example in Section 2.3.2 we decided that the responsibility should

belong to thevisit methods of the concrete visitors. However, alternatively,we could put that re-

sponsibility on theacceptmethods of the concrete elements. Figure 3.1 shows such alternative

implementation of a visitor. The difference between the two alternatives shows up for recursive

occurrences ofTree. The concrete elementFork has two recursive occurrences ofTree, and its

acceptmethod passes on itsVisitor parameter to each of these trees before calling thevisit method.

This contrasts with the approach taken in the Section 2.3.2,whereby the two subtrees were passed,

unchanged, as arguments to thevisit method. Consequently, thevisit method will have the occur-

rences of the typeTreereplaced byR. Following Buchlovsky and Thielecke (2005), we introduce

the following terminology.

Definition 3 (Internal Visitor) An internal visitor is an instance of the V pattern in which

the responsibility for traversing the hierarchical structure is assigned to theacceptmethods of the

concrete element classes. �

Definition 4 (External Visitor) An external visitoris an instance of the V pattern in which

the responsibility for traversing the hierarchical structure is assigned to thevisit methods of the

concrete visitor classes. �

47

3.3. Internal Visitors and the Church Encoding 48

There are trade-offs between the two options: internal visitors are simpler to use and have more

interesting algebraic properties, but the fixed pattern of computation makes them less expressive

than external visitors.

3.3 Internal Visitors and the Church Encoding

In this section, we look at the well-knownChurch encodingof datatypes in the lambda calcu-

lus (Böhm and Berarducci, 1985), and see that it is directlyrelated to internal visitors.

3.3.1 Encoding Data Types in the Lambda Calculus

In the pure lambda calculus, there is no native notion of datatype. Nonetheless, data types can be

encoded just using functions. Church himself observed thatnatural numbers can be encoded in the

untyped lambda calculus via what is now known as theChurch numerals, in which numbers are

encoded by repeated function composition: the number 0 is represented by ‘zero-fold composition’,

the number 1 by ‘one-fold composition’, the number 2 by ‘two-fold composition’, and so on.

zero≡ λf x⇒ x
succ≡ λn⇒ f x⇒ f (n f x)

The functionszeroandsucccan be used to construct numerals. For example, in order to repre-

sent 1 and 2 we would use:

one≡ succ zero
two≡ succ one

Standard mathematical operations like addition, multiplication and exponentiation can be de-

fined as:

m+ n ≡ λf x⇒ m f (n f x)
m× n ≡ λf x⇒ m (n f) x
m↑ n ≡ λf x⇒ n m f x

Numerals are not the only data structures that can be encodedusing this technique; the technique

generalizes to many other datatypes. For example, the constructors for the binary trees that we

presented in Figure 3.1 can be encoded in the untyped lambda calculus as follows:

empty≡ λe f ⇒ e
fork ≡ λx l⇒ r e f ⇒ f x (l e f) (r e f)

48

3.3. Internal Visitors and the Church Encoding 49

The Church encoding brings significant extra insights when we move from an untyped to a

typed lambda calculus such as System F as it reveals deep connections with (intuitionistic second

order) logic arising from theCurry-Howard correspondence(Howard, 1980). In a minor variant

of System F — with native support for integers — the Church numerals and our binary trees of

integers can be given the following types:

Nat ≡ ∀X. (X⇒ X)⇒ X⇒ X

Tree≡ ∀X. X⇒ (Int ⇒ X⇒ X⇒ X)⇒ X

3.3.2 The Church Encoding in Scala

Noting that classes are just record types and that records themselves can be thought of being tuples

of named components, we can transform the functional encodings that we have just presented into

their uncurried form and using two classes, we can encode those types. To demonstrate, consider

our type for natural numbersNat ≡ ∀X.(X ⇒ X) ⇒ X ⇒ X for which the isomorphic uncurried

type is to∀X.((X ⇒ X) × X) ⇒ X. By definingNatAlgebra X≡ (X ⇒ X) × X and encoding

NatAlgebraas a trait in Scala, we obtain:

trait NatAlgebra[X] {
def succ(n : X) : X
def zero: X
}

The typeNat ≡ ∀X.NatAlgebra X⇒ X can itself be encoded in Scala with the following trait:

trait Nat {
def accept[X] (alg : NatAlgebra[X]) : X
}

The universal quantification ofX appearing in the definition ofNat is translated into ageneric

methodover type variableX. Using V terminology, the traitNatAlgebra[X] is the Visitor

type of the element superclassNat.

Our V for peano numerals is internal, since the two constructors of Nat, which are the

concrete elements, are defined as:

case classZeroextendsNat {
def accept[X] (alg : NatAlgebra[X]) : X ≡ alg.zero
}

case classSucc(n : Nat) extendsNat {
def accept[X] (alg : NatAlgebra[X]) : X ≡ alg.succ(n.accept(alg))}

49

3.4. External Visitors and the Parigot Encoding 50

As we can see, it is the responsibility ofacceptto iterate through the recursive parts of the structure

by callingacceptrecursively in theSucccase.

A similar translation process could be applied to the example of binary trees, resulting in

the code already presented in Figure 3.1 (except that what would beTreeAlgebrahere is called

TreeVisitorthere).

3.4 External Visitors and the Parigot Encoding

In the previous section we related theChurch encodingof datatypes with an instance of the V

design pattern. In particular, this encoding leads tointernal visitors. In this section we will look at

another, less well-known, encoding of datatypes, and see how it leads toexternal visitors.

3.4.1 Limitations of Church Encodings

TheChurch encodingof datatypes is the most well-known encoding of datatypes; however, it has

some limitations. In particular, some definitions cannot bewritten efficiently (or written at all) in

this style. A well known example is the predecessor functionon naturals, which takes linear time

to compute with the Church encoding. Informally, the reasonfor the limitation is that the visitor

does not control the recursive calls; rather, they are automatically called in theacceptmethod. To

demonstrate this limitation consider a function that testswhether or not a tree is empty. Using an

internal visitor, we could define:

def isEmpty= new TreeVisitor[boolean] {
def empty= true
def fork (x : int, l : boolean, r : boolean) = false
}

While this function would work, it would take linear time to do so: the recursive calls are

automatically made in theacceptmethod, regardless of whether their results are used (at least,

without making use of lazy evaluation).

50

3.4. External Visitors and the Parigot Encoding 51

Nat ≡ ∀A.(Nat⇒ A)⇒ A⇒ A

zero ∈ Nat
zero ≡ λs z⇒ z

succ ∈ Nat⇒ Nat
succ n ≡ λs z⇒ s n

Tree ≡ ∀A.A⇒ (Int ⇒ Tree⇒ Tree⇒ A)⇒ A

empty ∈ Tree
empty ≡ λe f ⇒ e

fork ∈ Int ⇒ Tree⇒ Tree⇒ Tree
fork x l r ≡ λe f ⇒ f x l r

Figure 3.2: Parigot encodings of naturals and binary trees.

3.4.2 Parigot Encodings in the Lambda Calculus

TheParigot encoding(Parigot, 1992) is another way to encode datatypes. Parigotencodings require

a version of System F extended with recursion. This extension allows us to express recursive (as

opposed to iterative) definitions.

We show Parigot encodings of the naturals and our binary trees in Figure 3.2. Note that, unlike

with the Church encodings, the typesNat andTreeoccur recursively in their own definitions. Also,

the definitions of constructors with recursive occurrences(thesuccand thefork constructors) are

simpler than those in the Church encoding, because we can feed the recursive parameter directly

into the handling functionss andf .

3.4.3 The Parigot Encoding in Scala

When we translate the Parigot encoding of our binary trees using the same approach as we did for

the Church encoding, we obtain the code presented in Figure 2.4. With this visitor, we can define a

function that computes whether a tree is empty or not as follows:

def isEmpty= new TreeVisitor[boolean] {
def empty= true
def fork (x : int, l : Tree, r : Tree) = false
}

While this definition looks much like the function in Section3.4.2 (the only visible syntactical

differences are the types ofl and r), the resulting behaviour is significantly different: instead of

processing all the elements of theTreestructure and taking linear time, as the Church encoding

51

3.5. Generic Visitors: Two Dimensions of Parametrization 52

does, this version takes only constant time to compute, since l andr are not recursively processed.

3.5 Generic Visitors: Two Dimensions of Parametrization

We shall see in this section that the encodings presented previously can be generalized such that,

with a single construction, we have adatatype-genericform of the encoding. This allows us to

precisely capture the notions of internal and external visitors. Still, we are confronted with two

incompatible notions of visitors that force the programmerto a design choice along with its ad-

vantages and disadvantages. We will show that this need not be the case by introducing a second

dimension of genericity that we shall refer to asstrategy-genericity. With strategy-genericity the

choice between internal and external visitors is parametrizable, and a single common definition can

be provided. This will allow us to define, in Section 3.6, a highly generic library for Vs. The

Haskell code corresponding to the functional specificationpresented in this section can be found in

Appendix A.

3.5.1 Abstracting over the shape

Church encodings and, to a lesser extent, Parigot encodingshave been well studied in the domain

of type theory. A particularly relevant theoretical resultis the fact that those encodings can be

characterized generically. Each of these characterizations abstracts from the differences between

visitors for different shapes of data structure, allowing for definitions that are generic in this shape.

The generic template for defining datatype-generic versions of both Church and Parigot encodings

is of the form∀X. (F R⇒ X) ⇒ X, with Church encodings becomingChurch F≡ ∀X. (F X ⇒

X) ⇒ X and Parigot encodings becomingParigot F ≡ ∀X. (F (Parigot F) ⇒ X) ⇒ X. Normally,

F is required to be aFunctor (i.e. F allows a mapping operation) and it is common to use sums

and products functors to encode a variety of (polynomial) datatypes. Because those results are

well established, we shall not delve into details. For the interested reader, we refer to Böhm and

Berarducci (1985); Parigot (1992); Buchlovsky and Thielecke (2005).

Vs as Products of Functions

The traditional presentation of encodings of datatypes in System F (and common variants) is of the

form T ≡ ∀X. (F R⇒ X) ⇒ X. In this form a datatypeT can be defined by instantiatingF R to

52

3.5. Generic Visitors: Two Dimensions of Parametrization 53

some sum-of-product functor
∑

i

Fi R. Buchlovsky and Thielecke (2005) show that a variation of

these encodings, of the formT ≡ ∀X. (
∏

i

Fi R⇒ X)⇒ X, can be precisely related to the V

pattern. We can easily show that the two encodings are, in reality, isomorphic using the laws of

exponentials:

(
∏

i

Fi R⇒ X)⇒ X

⇔ exponential

(
∏

i

X Fi R)⇒ X

⇔ product o f exponentials
(X
∑

i Fi R)⇒ X
⇔ exponential

((
∑

i

Fi R)⇒ X)⇒ X

With Buchlovsky and Thielecke’s variation a new datatypeT can be defined by providing a

product of functionsV R X ≡
∏

i

Fi R ⇒ X (the visitor), where each functionFi R ⇒ X

corresponds to avisit method andFi R corresponds to the arguments of the constructor. It is easy

to see that whenV R X≡ F R⇒ X we would obtain the traditional form of encodings. Church

and Parigot encodings (corresponding, respectively, to internal and external visitors) follow from

two specific instantiations ofR.

Definition 5 (Generic Internal Visitors)

Let V R Xbe a product of functions of the form
∏

i

Fi R⇒ X. Then, forR ≡ X, we can define

generic internal visitorsas:

Internal V≡ ∀X.V X X⇒ X

�

Definition 6 (Generic External Visitors)

Let V R Xbe a product of functions of the form
∏

i

Fi R⇒ X. Then, forR≡ External V, we can

definegeneric external visitorsas:

External V≡ ∀X.V (External V) X⇒ X

�

The motivation for this generalization stems from the fact that the visitor components of the

V pattern are, in essence, products of functions — eachvisit method is a function and the

53

3.5. Generic Visitors: Two Dimensions of Parametrization 54

NatF r a≡ (a, r ⇒ a)

Nat ≡ Internal NatF

zero∈ Nat
zero≡ λ(z, s)⇒ z

succ∈ Nat⇒ Nat
succ n≡ λ(z, s)⇒ s (n (z, s))

Figure 3.3: Church encoding of Peano numerals using products of functions

whole class is, therefore, representing a product of functions. In the two definitions above,V

is a type parameter that is abstracting over concrete visitor components. It can be said thatV

is theshape parameterof the encodings (since different instantiations ofV will lead to different

datatypes).

3.5.2 Abstracting over the decomposition strategy

By using generic encodings based on products of functions itis possible to abstract from differences

in the shape of data and model different decomposition strategies — internal and external — of

visitors that are generic in the shape. Still, there is substantial duplication of code whenever we

want to have both strategies. However, this duplication is not necessary because, as we shall see,

we can model visitors that are generic in both the shape and the strategy.

The templateµ V ≡ ∀X. V R X ⇒ X can be used, as we have seen, to capture different

implementations of the V pattern. However,µ V cannot be captured linguistically becauseR

is unbound. Therefore, we need to replaceR with something that is linguistically valid if we want

to have a trulystrategygeneric visitor component (this is, a component that can be parametrized

by its implementation strategy). SinceR represents the type of recursive occurrences that appear in

the visit methods we can see that, if we want to capture both internal and external visitors,Rshould

depend on bothV andX. We can make this dependency explicit by makingR ≡ S V Xand bindS

universally.

µ V ≡ ∀S X. V (S V X) X⇒ X

We shall refer toSas thedecomposition strategy(or juststrategy).

Althoughµ V is linguistically capturable it is still not right. To see what the problem is, lets

first reformulate the Church peano numerals using products of functions, as in Figure 3.3. Now lets

see what happens when we try to useµ NatF instead ofInternal NatF:

54

3.5. Generic Visitors: Two Dimensions of Parametrization 55

Nat ≡ NatF

zero∈ Nat
zero≡ λ(z, s)⇒ z

succ∈ Nat⇒ Nat
succ n≡ λ(z, s)⇒ s ?

As we can see, we have no problems defining the contructorzero. However the story is different

for succ: it is impossible to provide a value of the right type forssinces requires an argument with

typeS V Xand we cannot create any values of that type becauseS is universally quantified. The

solution for this problem consists in adding some extra information aboutS in the definition ofµ.

µ V ≡ ∀X S. Decompose S⇒ V (S V X) X⇒ X

The extra information is given byDecompose S. In essenceDecompose Sis basically just

a type-overloaded (in the type-parameterS) method. In other words, the implementation of this

method can be determined solely from the typeS and, therefore, we can makeDecompose Sim-

plicit. Referring to the method inDecompose SasdecS we have that:

decS ∈ V (S V X) X⇒ µ V ⇒ S V X

The operationdecS solves the problem of producing a value of typeS V Xand allow us to

define the constructorsuccas:

succ∈ Nat⇒ Nat
succ n≡ λ(z, s)⇒ s (decS (z, s) n)

(Note that the parameterDecompose Sis implicitly passed). In order to define new strategies

we need to define some concrete typeS and the correspondingdecS operation. For example, to

make internal and external visitors two instances ofµ V we specializeS to InternalandExternal:

Internal V X ≡ X
External V X≡ µ V

(Here we reuse the identifiersInternal andExternal to refer to the associated decomposition

strategies.) The specific instantiations ofdecfor internal and external visitors are:

decInternal ∈ (V (Internal V X) X)⇒ µ V ⇒ Internal V X
decInternal v c ≡ c v

decExternal ∈ (V (External V X) X)⇒ µ V ⇒ External V X
decExternal v c≡ c

In the definition ofdecInternal the reader should (again) note that theDecompose Sparameter is

55

3.6. The V Pattern as a Library 56

implicitly passed and, therefore, the compositec just needs to take as an argument the visitorv.

With decExternal, we simply ignore the visitor parameter and return the composite itself. This will

then allow the programmer to use the composite directly in the definitions of thevisit methods.

3.6 The V Pattern as a Library

In the previous section, we used the Church and Parigot encodings of datatypes to motivate a notion

of visitors generic in two dimensions: in the shape of the data structure being visited, and in the

strategy for assigning the responsibility of traversal. Armed with this insight, we will now present

an implementation in Scala of a generic visitor library.

3.6.1 Defining the Library

The functional specification in the previous section can be translated into Scala without major issues

(although the typing of theVisitor component is slightly different in the Scala version). The type

µ that we defined previously corresponds to theComposite. We recall that definition (renaming

µ to Composite) and annotate it extra information identifying theacceptmethod and the visitor

component.

Composite V≡

accept method
︷ ︸︸ ︷

∀X S. Decompose S⇒ V (S V X) X
︸ ︷︷ ︸

Visitor

⇒ X

Visitors

The Visitor component in the library, which corresponds toV in the functional specification, is

parametrized by a strategySand a result typeX. TheVisitor also contains a typeR that corresponds

to the typeS V X(the first argument ofV, which specifies the type of recursive arguments).

trait Visitor {
type X
type S<: Strategy
type R[v<: Visitor] = S{type X = Visitor.this.X; type V = v}
}

Here the reader may wonder if the typeR could not have been typed as

type R= S{type X = Visitor.this.X; type V >: Visitor.this.type }

56

3.6. The V Pattern as a Library 57

The intention being thatVisitor.this.type would refer to the type of the concrete subclass of

Visitor in use. However there are issues with this solution as this type is not precise enough.

Although there would be other Scala solutions that would capture a type forVisitor that is similar

in expressiveness to the functional specification, we optedto parametrizeR with a visitor. This

solution gives us some extra flexibility over the functionalspecification while allowing us to give

precise typings to our visitor. This small inconsistency with the functional specification is discussed

in more detail in Section 6.3.1.

Composites

TheCompositetrait is parametrized by a visitorV and contains anacceptmethod that takes two

parameters. The first parameter is the visitor to apply; the second is the decomposition strategy to

use while visiting the structure.

trait Composite[−v<: Visitor] {
def accept[s<: Strategy, x] (vis : v {type X = x; type S= s})

(implicit decompose: Decompose[s]) : x
}

Strategies

The decomposition strategy is encoded in Scala with the following trait :

trait Strategy{
type V <: Visitor
type X
type Y

def get: Y
}

A Strategyis parametrized by a visitorV, typeX and a typeY that will be defined in terms ofV

andX. Subtypes of this trait will correspond to different possible decomposition strategies for the

visitors. In particular, the strategiesInternalandExternalare defined as:

trait Internal extendsStrategy{
type Y = X
}

trait ExternalextendsStrategy{
type Y = Composite[V]
}

57

3.6. The V Pattern as a Library 58

The methodget retrieves the result of the recursion (whose type is given byY).

The decomposition strategy parameter in theacceptmethod can be made implicit. This means

that we can call theacceptmethod passing just the first parameter, if there is in scope one decompo-

sition operation of the appropriateDecomposetype for the second argument. The traitDecompose

is parametrized by the decomposition strategyS and it encapsulates a single methoddec. This

method takes a visitor and a composite and returns the resultof recurring on that composite using

the decomposition strategy.

trait Decompose[s<: Strategy] {
def dec[v<: Visitor, x]

(vis : v {type X = x; type S= s}, comp: Composite[v]) : s {type V = v; type X = x}
}

Decomposition strategies for internal and externals visitors are provided by the library (note

that both strategies can be used implicitly):

implicit def internal : Decompose[Internal] = new Decompose[Internal] {
def dec[v<: Visitor, x]

(vis : v {type X = x; type S= Internal}, comp: Composite[v]) =
new Internal {type V = v; type X = x; def get= comp.accept(vis)}

}

implicit def external: Decompose[External] = new Decompose[External] {
def dec[v<: Visitor, x]

(vis : v {type X = x; type S= External}, comp: Composite[v]) =
new External{type V = v; type X = x; def get= comp}

}

The two implementations of the methoddeccorrespond, respectively, to the definitionsdecInternal

anddecExternal in the functional specification. The important thing here — effectively the piece of

code that we want to abstract from — is the definition ofget, which iscomp.accept(vis) for inter-

nal visitors and justcompfor external visitors. In other words, the decomposition strategy of the

internal visitors recurs on the compositecomp(since it calls theacceptmethod); and the decompo-

sition strategy for external visitors returns the composite untouched, which allows concrete visitors

to control recursion themselves.

58

3.6. The V Pattern as a Library 59

type Tag= String
type Attrs= List[Pair [String,String]]

trait XMLVisitor extendsVisitor {
type Rec= R[XMLVisitor]

def text (s : String) : X
def entity (x : Tag, l : Attrs, r : List[Rec]) : X
}

type XML = Composite[XMLVisitor]

case classText(x : String) extendsXML {
def accept[s<: Strategy, x] (vis : XMLVisitor {type X = x; type S= s})

(implicit decompose: Decompose[s]) : x =
vis.text (x)

}

case classEntity (x : Tag, l : Attrs, r : List[XML]) extendsXML {
def accept[s<: Strategy, x] (vis : XMLVisitor {type X = x; type S= s})

(implicit decompose: Decompose[s]) : x =
vis.entity (x, l,mapList((x : XML)⇒ decompose.dec[XMLVisitor, x] (vis, x), r))

}

Figure 3.4: A simplified form of XML documents as visitors.

3.6.2 Using the Library

We shall now show how to use this library to define visitors, and how the different kinds of visitors

can be used simply by parametrizing them accordingly. As a motivating example, we will define a

simplified form of XML documents, and provide functions to convert them into strings and to test

the documents for equality.

A Simple XML Module

Figure 3.4 shows the visitor and composite components for a form of simplified XML documents.

A document is either some text or an entity; an entity has a tag, a list of attributes and a list of XML

documents as children. The traitXML is the composite, with two case classesTextandEntitybeing

the two concrete elements of the composite; the traitXMLVisitor is the visitor.

Printing XML Documents

Figure 3.5 shows a functionprintXML that transforms an XML document into a string. The function

is defined using an internalXMLVisitor. The internal strategy is configured by setting the type

59

3.6. The V Pattern as a Library 60

def printXML (x : XML) : String=
x.accept[Internal,String] (new XMLVisitor {

type X = String
type S = Internal

def printAttrs (l : Attrs) : String=
l match {

caseNil ⇒ ""
casePair (s1, s2) :: xs⇒ " " + s1+ "=\"" + s2+ "\"" + printAttrs (xs)
}

def printListXML (x : List[Rec]) : String=
x match {

caseNil ⇒ ""
casey :: ys⇒ y.get+ "\n" + printListXML (ys)
}

def text (s : String) = s
def entity (x : Tag, l : Attrs, r : List[Rec]) =
"<" + x+ printAttrs (l) + ">\n" + printListXML (r) + "<" + x+ "/>"

})

Figure 3.5: A printing function for XML documents

parameterSand its associated value parameterdecaccordingly. The return typeX is set toString.

The function is then defined by implementing the two methodstext andentity in theXMLVisitor.

In the textcase, we simply return that text. In theentitycase, we produce the corresponding XML

symbols while printing the attributes (using an auxiliary functionprintAttrs whose definition we

omit) and the list of XML documents. Because we use an internal visitor, the elements of the

list passed to the methodprintListXML are the strings resulting from recursive processing of the

children; these subresults are combined by interspersing line breaks.

Comparing XML Documents

We now present an example of a binary method, checking whether two XML documents are equal.

Binary methods are notoriously difficult to define in a type-safe way in most object-oriented lan-

guages, but they are not a problem if we use external visitors. The basic idea, presented in Fig-

ure 3.6, is to use nested case analysis. We start by calling theacceptmethod for the first document

x, using an external visitor that returns a boolean. If the visitor discovers thatx is a text, it decom-

posesy with another external visitor that analyses its shape: ify is also a text it compares the two

strings, otherwise it returns false. Dually, whenx is an entity, another visitor is used to analysey;

60

3.7. Syntactic Sugar for Vs in Scala 61

def equalsXML(x : XML, y : XML) : boolean=
x.accept[External, boolean] (new XMLVisitor {
// Setting up the parametersof the visitor
type X = boolean
type S= External

// Defining the cases
def text (s1: String) = y.accept[External, boolean] (new XMLVisitor {

type X = boolean
type S = External

def text (s2: String) : boolean= s1.equals(s2)
def entity (x : Tag, l : Attrs, r : List[Rec]) : boolean= false
})

def entity (x1 : Tag, l1 : Attrs, r1 : List[Rec]) : boolean=
y.accept[External, boolean] (new XMLVisitor {

type X = boolean
type S = External

def equalsList[a] (f : a⇒ a⇒ boolean, x : List[a], y : List[a]) : boolean=
Pair (x, y) match {

case(Pair (Nil,Nil)) ⇒ true
case(Pair (x :: xs, y :: ys))⇒ f (x) (y) ∧ equalsList(f , xs, ys)
case(Pair (xs, ys)) ⇒ false
}

def text (s2: String) = false
def entity (x2 : Tag, l2 : Attrs, r2 : List[Rec]) : boolean=

x1.equals(x2) ∧ l1.equals(l2) ∧
equalsList((x : Rec)⇒ (y : Rec)⇒ equalsXML(x.get, y.get), r1, r2)

})

})

Figure 3.6: An equality function for XML documents using visitors.

this visitor returns false ify is a text and returns the result of comparing the tags, attributes and

children wheny is an entity. Note that because we use an external visitor, weneed to manually

applyequalsXMLrecursively to all the XML occurrences.

3.7 Syntactic Sugar for Vs in Scala

One criticism that may be made of our visitor library is that it is somewhat verbose to use. In this

section, we shall see how we can improve our notation for visitors using some advanced features of

the Scala programming language. With this notation, the useof our library becomes more intuitive

61

3.7. Syntactic Sugar for Vs in Scala 62

and less cumbersome.

3.7.1 Extending the Library

Functional notation

The invocationa.accept(f) wherea is a composite andf is a visitor can be interpreted as a form

of reverse applicationf (a), wheref plays the role of a function anda is the argument of that

function. This observation can be quite elegantly expressed in Scala by makingVisitors instances

of functions; this is possible in Scala becauseall functions are objects. TheFunction1class from

the Scala standard library is the class of all functions withone argument (Odersky, 2006a).

trait Function1[−S,+T] {def apply (x : S) : T }

We can make our visitors instances ofFunction1, but not directly, because we would need

to have the abstract type members ofVisitor in scope for defining the inheritance relation. The

(somewhat obscure) solution is to create a classVisitorFuncwhose subclasses are alsosubtypes

of Visitor. HoweverVisitorFunc(unlike Visitor) uses type arguments instead of the abstract type

members. This allows us to use those type parameters in the inheritance relation. We also need to

createVFunction1(a subclass ofFunction1) that has an extra field with a decomposition strategy.

The code is presented next:

abstract classVFunction1[s<: Strategy, a, b] (dec: Decompose[s])
extendsFunction1[a, b] {def decompose= dec}

abstract classVisitorFunc[v<: Visitor, s<: Strategy, x] (dec: Decompose[s])
requires (VFunction1[s,Composite[v], x] with v {type X = x; type S= s})
extendsVFunction1[s,Composite[v], x] (dec) {

type X = x
type S= s

def apply (c : Composite[v]) : x = c.accept[s, x] (this) (decompose)
}

The difficult thing is getting the inheritance relation right. In order for a visitor to become a function

it must be a subclass ofVFunction1and, therefore,VisitorFuncneeds to extend that class. Concrete

visitors v will then use mixin composition to combine themselves withVisitorFunc. The apply

method coming fromFunction1will take aCompositeas first argument, and that composite needs

to know which particular visitorv we need; although we know we are defining a visitor, we still

do not know which particular visitor is required by the composite. Fortunately, Scala’s self-types

62

3.7. Syntactic Sugar for Vs in Scala 63

allow us to require a type for the self-referencethis that can depend on information that will only

be known at a later stage. In our case this information concerns the parametrized concrete visitorv

that will be known when we define the subclasses ofVisitorFunc.

Shortcuts for VisitorFunc

If we want to make use of the functional notation, we additionally need to define a new class that

mixes in the concrete visitor withVisitorFunc. For example, for our XML example we could have:

abstract classVXML[s<: Strategy, b] (implicit decompose: Decompose[s])
extendsVisitorFunc[XMLVisitor, s, b] (decompose)
with XMLVisitor

This class also has the advantage of being more concise to usethan the visitor directly (because we

use generic parameters instead of abstract types).

Automatic coercions

Finally, for convenience, we provide automatic coercions between theStrategyobjects and the val-

ues that are contained in thegetfield — effectively, this means that thegetmethod is automatically

called whenever a value of that type is required.

implicit def internal2a[x] (x : Internal {type X = x}) : x = x.get
implicit def external2mu[v<: Visitor, x]

(x : External{type V = v; type X = x}) : Composite[v] = x.get

3.7.2 Using the Extended Library

It is now time to see how the notation helps defining functionsthat make use of visitors. We shall

demonstrate by re-writing the equality function presentedin Section 3.6 with the notation from this

section. Figure 3.7 shows theequalsXMLfunction with the new notation (note that we skip the

definition ofequalsList). In particular, we can see two of the three notational extensions: instead of

usingXMLVisitorwe now useVXML thus setting all the relevant parameters for the use of external

visitors with XML documents. The other thing to notice is theabsence ofget methods, since we

use automatic coercions to convert betweenRecandXML.

The functional notation becomes handy when we want to have named visitors instead of anony-

mous visitors. For example, suppose that we decided to implementprintXML with an external

visitor. Normally we would have something like

63

3.7. Syntactic Sugar for Vs in Scala 64

def equalsXML(x : XML, y : XML) : boolean=
x.accept[External, boolean] (new VXML[External, boolean] {

def text (s1: String) = y.accept[External, boolean] (new VXML[External, boolean] {
def text (s2: String) : boolean= s1.equals(s2)
def entity (x : Tag, l : Attrs, r : List[Rec]) = false
})

def entity (x1 : Tag, l1 : Attrs, r1 : List[Rec]) =
y.accept[External, boolean] (new VXML[External, boolean] {

def text (s2: String) = false
def entity (x2 : Tag, l2 : Attrs, r2 : List[Rec]) =

x1.equals(x2) ∧ l1.equals(l2) ∧
equalsList((x : Rec)⇒ (y : Rec)⇒ equalsXML(x, y), r1, r2)

})
})

Figure 3.7: Equality re-written with the new notation

def printXML : VXML[External,String] = new VXML[External,String] {
// code before omitted

def printListXML (x : List[Rec]) : String=
x match {

caseNil ⇒ ""
casey :: ys⇒ y.get.accept(this) + "\n" + printListXML (ys)
}

// code before omitted
}

and the use of the recursive call would have to refer to theacceptmethod. However, because

VXML is a subclass ofFunction1we can make use of the functional notation, with the resulting

code looking like:

def printXML : VXML[External,String] = new VXML[External,String] {
// code before omitted

def printListXML (x : List[Rec]) : String=
x match {

caseNil ⇒ ""
casey :: ys⇒ printXML (y) + "\n" + printListXML (ys)
}

// code after omitted
}

Another consequence of this notation is that the clients ofprintXML can just use the functional

notation in their calls. For example

64

3.7. Syntactic Sugar for Vs in Scala 65

def testPrint= printXML (Entity ("Name",Nil,Text("ola") :: Nil))

can be written without calling theacceptmethod on theXML document.

3.7.3 Comparison with Functional Programming

It is interesting to compare the Scala programs that we have developed in this and the previous sec-

tions with the equivalent program in a functional programming language. Using algebraic datatypes

we could have a definition like (here we use Haskell’s syntax):

data XML where
Text :: String→ XML
Entity :: Tag→ Attrs→ XML

This definition corresponds, roughly, to the code presentedin Figure 3.4. The definition ofXML

in Haskell is obviously much more elegant and intuitive thanthe corresponding Scala code. In

Scala, case classes come close to this elegance without the need for a special purpose datatype

declaration. One advantage of our visitors, however, is that they can be parametrized on their

decomposition strategy. In other words, usual definitions of datatypes always came with a fixed

decomposition strategy (which is normally equivalent to external visitors); with our visitors, we

can choose different strategies. In order to obtain the same effect of, for example, internal visitors

with conventional datatypes, we would need to write new functions (thefold combinators) for each

datatype capturing that kind of traversal.

The code corresponding to the definition ofequalXML(in Figure 3.7) could be written in the

following way in a functional language:

equalsXML:: XML→ XML→ boolean
equalsXML x y=

casex of
(Text s1) → casey of

(Text s2) → s1≡ s2
(Entity x l r) → False

(Entity x1 l1 r1)→ casey of
(Text s2) → False
(Entity x2 l2 r2)→ (x1≡ x2) ∧

(l1 ≡ l2) ∧ equalsList(λx y→ equalsXML x y) r1 r2

This definition, as we can see, is still more elegant than the one in Figure 3.7 using visitors.

However, the syntactical disparity is much less here than itwas with the datatype declaration. In

65

3.8. Expressiveness of the Visitor Library 66

fact, defining functions using our visitor library is fairlypractical even without any support from

the compiler. Therefore, our library can be used in practiceto define visitors and we do not have to

worry about design decisions involving the control of the traversal (since this is parametrizable).

Our visitor library could be used to provide the semantics for possible AlgDTs language exten-

sions. It would be interesting to explore a language extension that allowed us to explore strategy

parametrization.

3.8 Expressiveness of the Visitor Library

In this section we will explore the expressiveness of our visitor library and see how it can be used

to encode a large family of datatypes that includesparametric, mutually recursiveandexistential

datatypes. The translation of datatypes is detailed, more formally, in Appendix B. Furthermore,

using the connection between the decomposition strategy and recursion patterns, we will show that

the internal and external visitors are not the only two kindsof visitors that can be encoded with

our library. We will demonstrate this by presenting a visitor inspired byparamorphisms(Meertens,

1992).

3.8.1 Parametric Datatypes

Our visitor library can be used to encode parametric datatypes. In Figure 3.8 we show how para-

metric lists can be encoded in Scala using our visitor library. There are two constructorsNil and

Conswith their corresponding visit methods (nil andcons) in the visitor componentListVisitor[a].

Worth noting is thatListVisitor [a] is parametrized with a generic typea, which is the type of

the elements in the list. The composite component is defined using a parametrized type synonym

List [a] where, again, the typea represents the types of the elements of the list. The classVList

is provided as a convenience and allows us to use the functional notation provided byVisitorFunc.

Two examples of functions defined over lists follow:

def sizeList[a] = new VList[Internal, a, int] {
def nil = 0
def cons(x : a, xs: Rec) = 1+ xs
}

def addList= new VList[Internal, int, int] {
def nil = 0

66

3.8. Expressiveness of the Visitor Library 67

trait ListVisitor[a] extendsVisitor {
type Rec= R[ListVisitor[a]]

def nil : X
def cons(x : a, xs: Rec) : X
}

type List[a] = Composite[ListVisitor[a]]

def Nil [a] : List[a] = new List[a] {
def accept[s<: Strategy, x] (vis : ListVisitor[a] {type X = x; type S= s})

(implicit decompose: Decompose[s]) : x =
vis.nil

}

def Cons[a] (x : a, xs: List[a]) : List[a] = new List[a] {
def accept[s<: Strategy, x] (vis : ListVisitor[a] {type X = x; type S= s})

(implicit decompose: Decompose[s]) : x =
vis.cons(x, decompose.dec[ListVisitor[a], x] (vis, xs))

}

abstract classVList[s<: Strategy, a, b] (implicit decompose: Decompose[s])
extendsVisitorFunc[ListVisitor[a], s, b] (decompose)
with ListVisitor[a]

Figure 3.8: Parametric lists using the visitor library

def cons(x : int, xs: Rec) = x+ xs
}

The functionsizeList, which computes the size of a list, shows how we can define a parametri-

cally polymorphic function over our lists. The functionaddList, which computes the sum of all the

elements of an integer list, shows how we can define a functionover a list containing elements of a

particular type.

3.8.2 Mutually Recursive Datatypes

With our library it is possible to define mutually-recursivevisitors in a convenient way. The code in

Figure 3.10 shows how we can encode trees in terms of forests,and forests in terms of trees using

two mutually recursive visitors. Trees, whose type is givenby Tree[a], have one constructorFork

that builds a tree containing one element and a forest. The trait TreeVisitor[a] is the corresponding

visitor and has a visit methodsfork matching theFork constructor. Forests, whose type is given by

Forest[a], have two constructorsNil andConsthat construct, respectively, an empty forest and a

forest with one tree and another forest. The traitForestVisitor[a] is the visitor component and the

67

3.8. Expressiveness of the Visitor Library 68

def sumTree: VTree[Internal, int, int] = new VTree[Internal, int, int] {
def fv = sumForest

def fork (x : int, xs: R[ForestVisitor[int]]) = x+ xs
}

def sumForest: VForest[Internal, int, int] = new VForest[Internal, int, int] {
def tv = sumTree

def nil = 0
def cons(x : R[TreeVisitor[int]] , xs: R[ForestVisitor[int]]) = x+ xs
}

Figure 3.9: Adding elements in forests and trees of integers.

methodsnil andconsmatch theNil andConsconstructors. The fieldsfv andtv provide references

to TreeVisitor[a] andForestVisitor[a] that will be used when defining functions. For example, the

two functions presented in Figure 3.9 show how we can define functions that add all the elements

of a tree and a forest of integers. The definitions are mutually-recursive:sumTreeusessumForest

in its definition and vice versa, by setting thefv andtv fields in the visitors.

Note that this formulation of mutually-recursive visitorsis only possible becauseR is parametrized

by a visitor. With the current functional specification, we cannot define mutually-recursive visitors

in this way (although it is still possible to define them in different ways) becauseR is hard-wired

to the concrete visitor being defined. It is worthwhile to thereader to see the discussions in Sec-

tions 3.6 and 6.3.1 and take a look at Appendix I to see how we can use a different functional

specification setting that allowsR to be parametrized by a visitor.

3.8.3 Existentially Quantified Datatypes

We can also define existentially quantified visitors with ourlibrary. In Figure 3.11 we show how to

encode a form of heterogeneous lists (this is, lists that contain elements of different types) where the

elements have an associated printing operationf . Like parametric lists we have two constructors

Nil andCons[a] that construct values of typeHList and have corresponding visit methodsnil and

cons[a] in the traitHListVisitor. The existential types are achieved by universally quantifying the

element typea at the visit methods (in this case we do that at the methodcons). The traitVHList

provides the functional notation. The functionprintHList, which uses the printing operation to print

the values contained in the list, is defined as:

68

3.8. Expressiveness of the Visitor Library 69

trait TreeVisitor[a] extendsVisitor {
def fv : ForestVisitor[a] {type X = TreeVisitor.this.X; type S= TreeVisitor.this.S}

def fork (x : a, xs: R[ForestVisitor[a]]) : X
}

trait ForestVisitor[a] extendsVisitor {
def tv : TreeVisitor[a] {type X = ForestVisitor.this.X; type S= ForestVisitor.this.S}

def nil : X
def cons(x : R[TreeVisitor[a]] , xs: R[ForestVisitor[a]]) : X
}

abstract classVTree[s<: Strategy, a, b] (implicit decompose: Decompose[s])
extendsVisitorFunc[TreeVisitor[a], s, b] (decompose)
with TreeVisitor[a]

abstract classVForest[s<: Strategy, a, b] (implicit decompose: Decompose[s])
extendsVisitorFunc[ForestVisitor[a], s, b] (decompose)
with ForestVisitor[a]

type Tree[a] = Composite[TreeVisitor[a]]
type Forest[a] = Composite[ForestVisitor[a]]

def Nil [a] : Forest[a] = new Forest[a] {
def accept[s<: Strategy, x] (vis : ForestVisitor[a] {type X = x; type S= s})

(implicit decompose: Decompose[s]) : x =
vis.nil

}

def Fork[a] (x : a, xs: Forest[a]) : Tree[a] = new Tree[a] {
def accept[s<: Strategy, x] (vis : TreeVisitor[a] {type X = x; type S= s})

(implicit decompose: Decompose[s]) : x =
vis.fork (x, decompose.dec(vis.fv, xs))

}

def Cons[a] (x : Tree[a], xs: Forest[a]) : Forest[a] = new Forest[a] {
def accept[s<: Strategy, x] (vis : ForestVisitor[a] {type X = x; type S= s})

(implicit decompose: Decompose[s]) : x =
vis.cons(decompose.dec(vis.tv, x), decompose.dec(vis, xs))

}

Figure 3.10: Visitors for the mutually-recursiveForestandTreetypes.

69

3.8. Expressiveness of the Visitor Library 70

trait HListVisitor extendsVisitor {
type Rec= R[HListVisitor]

def nil : X
def cons[a] (x : a, f : a⇒ String, xs: Rec) : X
}

type HList = Composite[HListVisitor]

def Nil : HList = new HList {
def accept[s<: Strategy, x] (vis : HListVisitor {type X = x; type S= s})

(implicit decompose: Decompose[s]) : x =
vis.nil

}

def Cons[a] (x : a, f : a⇒ String, xs: HList) : HList = new HList {
def accept[s<: Strategy, x] (vis : HListVisitor {type X = x; type S= s})

(implicit decompose: Decompose[s]) : x =
vis.cons(x, f , decompose.dec[HListVisitor, x] (vis, xs))

}

abstract classVHList[s<: Strategy, b] (implicit decompose: Decompose[s])
extendsVisitorFunc[HListVisitor, s, b] (decompose)
with HListVisitor

Figure 3.11: Defining heterogeneous list with the visitor library

def printHList : HList⇒ String= new VHList[Internal,String] {
def nil = ""

def cons[a] (x : a, f : a⇒ String, xs: Rec) = "\n" + f (x) + xs.get}

3.8.4 Paramorphic Visitors

Internal and external visitors are not the only two possibledecomposition strategies for visitors.

Inspired by the connection between visitors and recursion patterns, we will now show how we

can specify what we shall callparamorphicvisitors — named after theparamorphismrecursion

pattern (Meertens, 1992). As mentioned in Section 3.5.2, the first thing we need to define is the

strategy parameter:

Para V X= (X,Mu V)

The paramorphic decomposition strategy consists of a pair where the first component is the result

of a recursive call and the second component is the substructure on which that call was made. It is

interesting to observe that we could have equivalently written

Para V X= (Internal V X,External V X)

70

3.8. Expressiveness of the Visitor Library 71

trait Para extendsStrategy{
type Y = Pair [X,Composite[V]]

}

implicit def external: Decompose[Para] = new Decompose[Para] {
def dec[v<: Visitor, x] (vis : v {type X = x; type S= Para}, comp: Composite[v]) =

new Para {
type V = v; type X = x; def get= Pair [x,Composite[v]] (comp.accept(vis), comp)}

}

implicit def para2pair[v<: Visitor, x]
(x : Para {type V >: v; type X = x}) : Pair [x,Composite[v]] = x.get

Figure 3.12: Paramorphic visitors in Scala.

so in a senseInternalandExternalare primitive entities andPara is not.

The operationdecPara is defined as:

decPara :: (V (Para V X) X)→ Mu V→ Para V X

decPara t u = (u t, u)

In Appendix C the full Haskell code for the functional specification along with some examples is

presented.

Paramorphic Visitors in Scala

In Scala, the necessary code for adding this new kind of visitor is presented in Figure 3.12. A new

decomposition strategy entails the definition of three things:

1. The first thing that we need is a new strategy. In this case, the traitParaprovides this strategy;

2. We also need to provide an Decompose object. For paramorphisms the operationparadefines

this;

3. Finally, for convenience, we provide one implicit coercion between instances ofParaand the

Pair provided by the fieldget. This coercion is given bypara2pair.

After the library writer adds a new kind of visitor to the library, users can start defining their own

functions. For example, the factorial function can be elegantly defined using paramorphic visitors

as:

71

3.9. Discussion 72

def fact : Nat⇒ Nat= new VNat[Para,Nat] {
def zero = Succ(Zero)
def succ(n : Rec) = mult (fst (n)) (Succ(snd(n)))
}

The benefit of using a paramorphic visitor for definingfact is that the definitionsucc(which

matches the successor of a natural number) has access to boththe result of the recursive callfact (n)

(the first component of the pair) andn (the second component of the pair), makingfact very easy

to define. The full code necessary to run this example is presented in Appendix D.

3.9 Discussion

Design patterns are often described as “elements of reusable object-oriented software” (Gamma

et al., 1995). It is, perhaps, an irony that what is meant by “reusable” here is an extra-linguistic reuse

in the form of “prose, pictures and prototypes” (Gibbons, 2003). This will necessarily manifest

itself in programs through copy, paste and adapt practices.That is not to say that design patterns

are a bad thing, but rather that they are not providing their maximum benefit. It would be better if

“reusable” here were to have its traditional meaning in computing: the solutions provided by design

patterns should be abstracted into modular pieces of software (or, in other words, components),

which can be instantiated and applied without further change. This cannot be achieved in the

mainstream languages of today such as Java and C#; but as we have shown, the more advanced

features provided by more recent languages such as Scala do suffice. As (Gibbons, 2006, 2003)

and others (Norvig, 1996; Arnout, 2004) have argued elsewhere, this issue of expressivity is “not

inherent in the patterns themselves, but evidence of a lack of expressivity in the languages of today”.

We have argued that the V pattern is related to well-known encodings of data types from

the type theory community. Building on the insights provided by this relation, we have shown that

it is possible to capture the V pattern as a modular software library, given a language witha

sufficiently powerful type system. In particular we have shown that this can be achieved,today,

in the Scala programming language. In addition to Scala’s combination of functional and object-

oriented features, the crucial feature that we need (and which is lacking in current mainstream

languages) is the ability to parametrize on type constructors (which is closely related todatatype-

genericity).

An interesting aspect of our library is that, not only does itallow us to capture a particular kind

72

3.9. Discussion 73

of visitor (such as internal, or external) datatype-generically, but it also allows us to parametrize

on the kind of the visitor itself. This increases even more the reusability of the pattern library, and

strengthens the argument that design patterns can be captured linguistically. Rather than having

to implement each variation separately, duplicating the common code, the alternatives arise as

instantiations of a common abstraction. We believe that this also brings something new in more

theoretical terms, since although it has been known that thetemplate (F U ⇒ A) ⇒ A is used

by both the Church and Parigot encodings, we are not aware of any work that studied the two

encodings as specializations of a more (linguistically capturable) general abstraction. In particular,

the extraction of the commonalities via thedecoperation seems to be novel.

Notions ofgeneric visitorhave been proposed in the past. Palsberg and Jay (1998) presented a

solution relying on a reflection mechanism, where a single Java classWalkaboutcould support all

visitors as subclasses. Refinements to the idea of using reflection to capture generic visitors, mostly

to improve performance, have been proposed since (Grothoff, 2003; Foraxet al., 2005). Our work

in this chapter differs from solutions based on reflection in two aspects. Firstly, one of the main

motivations of these reflection-based generic visitors wasto remove the need for anacceptmethod

in the hierarchical structure, since this is considered by many to be intrusive and against the object-

oriented model. We do not share this motivation, since we interpret the V as an encoding of

data types. Secondly, our solution is type-safe: we never get “message not understood”run-time

errors. This is not the case for reflection-based approaches.

Another interesting feature of our library is the fact that we can use afunctional notationfor our

visitors by interpreting theacceptmethod as a form of reverse application. A similar idea motivates

thePeripatonlanguage, which supports the so-called “visitor-oriented programming style” (Van-

Drunen and Palsberg, 2004). In Peripaton, everything is a visitor: the visitor object can be consid-

ered the top of the object hierarchy, playing the same role asObject in Java. By interpreting the

visit method as function application, we get a notion that lies in between functions and objects. We

believe that this analogy with functions is a useful one and it lends a more intuitive notation to visi-

tors. However, unlike VanDrunen and Palsberg, we do not force every object into a visitor/function

and we do not require a language with special support for visitors. Instead, our interpretation is that

visitors correspond to a subset of functions defined by (somekind of) pattern matching.

73

Chapter 4

Visitor-Generic Programming

In Chapter 3 we have seen that the V pattern can be interpreted as a generic encoding of

datatypes. This leads to a generic notion of a visitor that can be captured as a software library. With

this library we can easily define functions for specific visitors; however, the library offers little help

if we want to define functions that work forany visitors. Datatype generic programming (DGP)

aims to solve this problem by allowing us to definegenericfunctions that work for any shape (or

visitor). In this chapter we develop a DGP library for visitors inspired by Hinze’s GM approach.

With this approach we can define our own generic functions on visitors. We also show that the

GM implementation is itself an instance of the visitor pattern. However, it cannot be modelled

directly with the current library because the family of visitors that GM belongs to istype-indexed

(and the current library does not support that family). We show that it is possible to generalize our

original visitor library to supporttype-indexedvisitors. This insight allow us to eliminate the need

for a design choice that is present in GM. Finally, we will seehow to express a family of sums

of products within our visitor library. Using this family wecan express a wider range of generic

functions.

4.1 Introduction

Suppose that we have datatypes of lists and trees of integersand that we want to add up the integers

contained in values of those datatypes. Assuming that we defined visitors for those datatypes using

74

4.1. Introduction 75

our library, it is easy to write two functions that do the job.

def addList= new VList[Internal, int] {
def nil = 0
def cons(x : int, xs: Rec) = x+ xs
}

def addTree= new VTree[Internal, int] {
def empty = 0
def fork (x : int, l : Rec, r : Rec) = x+ l + r
}

Since our library automatically provides decomposition strategies, we can just choose the most

suitable strategy for solving our problem and define the two functions in a very simple way without

worrying about the recursive boilerplate. For example, in the definitions above, we opted to use

internal visitors to define the two addition functions for lists and trees, since the recursion pattern

that is involved in these functions is a simple kind of structural recursion.

While our library can be very helpful when defining functionsfor particular datatypes, it offers

little help if we want to define functions that work foranydatatypes. If we now introduce a new

kind of tree of integers and we wanted to add up all the integers of that tree, we would have to

define yet another function that suits that particular datatype. A better option would be to define a

generic function that worksonce and for allfor all visitors.

DGP aims precisely at solving this problem. In this chapter we will show that we can extend our

visitor library to support generic functions. In order to doso, we will translate the GM approach

to DGP (Hinze, 2004) to Scala and show how to define generic functions on visitors. This will

not require any modifications in our visitor library — although it will require that the users of the

library construct their visitors based on sums of products,or establish an isomorphism between

their visitor and sums of products.

GM is a particularly interesting lightweight approach thatshows how to use Haskell’s type

classes to model a generic programming library based on sumsof products. As it turns out, Hinze’s

own inspiration for GM (Hinze, 2006) comes from the same encodings of datatypes that we have

been using in this thesis: he used Church and Parigot encodings to encode representations of

datatypes in two different ways — this is no coincidence; the work presented in this thesis has

been initially inspired by Hinze’s work on lightweight approaches to DGP. These two alternative

representations of datatypes give rise to two alternative implementations of DGP, which have dif-

ferent trade-offs and force the same design choice that we have with the original presentation of the

75

4.2. Encoding Sums and Products in Scala 76

V pattern.

In Section 4.2 we show how to encode sums and products in Scala, providing us with the basic

machinery that we will need for supporting DGP. The contributions of this chapter follow:

• In Section 4.3 we provide a translation of GM into Scala, explain how we can define generic

functions in this setting, and show two forms of reuse of generic functions. The first form

of reuse, quite natural in an OO setting, is using inheritance. The second form of reuse is

the so-calledlocal redefinition(Löh, 2004), which can be used to override the behaviour of

generic functions for parametric datatypes.

• In Section 4.4 we argue that the implementation of GM is itself an instance of the V

pattern, but it cannot be encoded using our visitor library.The reason is that GM requires

an indexed visitor, which is out of reach in our initial library. We modify the visitor library

to support indexed visitors, and show how an alternative implementation of GM could be

constructed using this modified library. An immediate consequence of this alternative design

is that the design choice between two alternative implementations of GM is unnecessary.

• In Section 4.5 we show how to we can canviewanother family of visitors as a particular in-

stance of our visitor library and show that the GM approach readily supports a form ofviews

(Holdermanset al., 2006). In particular, we define a family of visitors based onsums of prod-

ucts. Furthermore, the use of this family will have some advantages in terms of performance,

usability, expressiveness of generic functions compared with products of functions.

• In Section 4.6 we will develop a simple serialization library — a common application of

generic programming. Moreover, we will show that, while thelibrary can be defined for

product-of-functions visitors, if we use the family of visitors defined in Section 4.5 we can

use generic functions that express recursion patterns directly.

Finally, a discussion of the results and some related work ispresented in Section 4.7.

4.2 Encoding Sums and Products in Scala

In this section we will show how to encode sums and products inScala. This will be the basis for

adding datatype-generic programming to our visitor library.

76

4.2. Encoding Sums and Products in Scala 77

trait Plus[A,B] {
def accept[t] (vis : PlusVisitor[A,B, t]) : t
}

case classInl [A,B] (value: A) extendsPlus[A,B] {
def accept[t] (vis : PlusVisitor[A,B, t]) = vis.inl (value)
}

case classInr [A,B] (value: B) extendsPlus[A,B] {
def accept[t] (vis : PlusVisitor[A,B, t]) = vis.inr (value)
}

trait PlusVisitor[A,B,T] {
def inl (x : A) : T
def inr (x : B) : T
}

Figure 4.1: A visitor for sums.

Sums Scala, like most object-oriented languages, does not contain a primitive notion of sums.

Most of the time, a hierarchical design such as the C is used whenever different types of

objects of a common kind are required. The V pattern that we have employed in the previous

chapters for implementing recursive data types can also encode sums. In fact, we could just use our

library to define sums (and products). However, we shall refrain from doing that here because sums

and products are non-recursive types; we opt for a more lightweight solution where we just apply

the design pattern directly, which has the advantage of clarity. In Figure 4.1, we see an encoding

of sums in Scala. The traitPlus has two type parametersA andB — which are respectively the

types of the values of the two choices in the sum — and the standard acceptmethod. There are

two instances (Inl and Inr) of Plus, which are the constructors for the injections into the sum.

Finally, the traitPlusVisitor is the visitor component and contains a method for handling each of

the injections.

Products Products are easier to model in object-oriented languages.To model a product we just

need a record with two fields and two type parameters (one fieldand one type parameter for each of

the components of the product). We can also make products visitable by adding anacceptmethod

and defining the corresponding visitor (the traitProdVisitor). The code for products as visitors is

shown in Figure 4.2.

77

4.3. Generic Programming with Vs 78

case classProd[A,B] (fst : A, snd: B) {
def accept[t] (vis : ProdVisitor[A,B, t]) : t = vis.prod (fst, snd)
}

trait ProdVisitor[A,B,T] {
def prod (x : A, y : B) : T
}

Figure 4.2: A visitor for products.

Empty Product The final piece of machinery is the empty product, which has a single value. In

other words, this is the neutral element of products and can be easily defined as:

trait One

Having defined the necessary machinery for sums of products,we can now move on to imple-

ment support for DGP.

4.3 Generic Programming with Vs

In the previous section we have shown how to encode sums and products in Scala. In this section,

we will show how to use sums of products to define generic functions in Scala. This is achieved by

applying the GM technique proposed by Hinze (2004) to Scala.We will also discuss two distinct

mechanisms that can be used in Scala to reuse generic functions: reuse by inheritanceand local

redefinition.

4.3.1 Generics for the Masses in Scala

The technique presented by Hinze in GM shows how to encode generic functions within Haskell 98.

In that proposal, a generic function can be encoded as an instance of a type classGeneric. Another

type class (theRepclass) defines a functionrep that can be used to construct type representations

automatically. As we shall see in Section 4.4, there is a relationship between Hinze’s GM encoding

and our work on the visitor pattern — the classGenericcan be seen as the visitor component and

the classRepas the composite component. GM comes in two different flavours, which provide

two slightly different interpretations of generic functions. The inspiration for these two different

flavours comes from encodings of datatypes (specifically, the Church and Parigot encodings), which

78

4.3. Generic Programming with Vs 79

were greatly explored in Chapter 3.

GM allows the definition of generic functions on datatypes that are isomorphic to sums of

products. However, these isomorphisms need to be explicitly defined, since Haskell does not do it

automatically.

Definition 7 (Isomorphism) An isomorphismbetween two data typesA and B consists of two

functionsf :: A→ B andg :: B→ A with the following properties:

f ◦ g = idB ∧ g ◦ f = idA

�

Isomorphisms are very useful in the context of generic programming, because they allow us to

convert between a small family of datatypes and another, much larger, family of datatypes. Implicit

coercions provided in Scala, can be used to define isomorphisms that are automatically applied by

the compiler. Alternatively we can encode an isomorphism as:

trait Iso[a, b] {
def from (x : a) : b
def to (x : b) : a
}

(Note, however, that the properties required by the isomorphism need to be verified manually

since Scala does not provide any facilities for automatic verification.) We shall use this alternative

definition in what follows since it allows us to relate more clearly our and Hinze’s work, and it

gives us an extra degree of flexibility in terms of which isomorphism to use.

Because GM is a based on type classes, it is not hard to translate Hinze’s work into Scala

— as we have seen in Section 2.1.6, there is a close connectionbetween Scala’s parametrized

traits/classes and Haskell’s type classes (Odersky, 2006a,b). Theonly apparent difficulty is that

Hinze’s approach relies on constructor classes (this is, type classes parametrized over a type con-

structor instead of a type). However, as we have already seen, this is also not a problem in Scala

because we can encode type constructors using abstract types.

We present the transliteration of the Church encoding version of Hinze’sGenericclass in Fig-

ure 4.3. The key idea is that instances of the traitGenericrepresent generic functions over sums of

products. A generic function is defined by different cases for sums, products, the unit type and also

a few built-in types such asint or char. For sums and products, which have type parameters, we

need extra arguments that define the generic functions for values of those type parameters.

79

4.3. Generic Programming with Vs 80

trait Generic{
type G<: TypeConstructor

def unit : G {type A = One}
def int : G {type A = int }
def char : G {type A = char}
def plus[a, b] (a : G {type A = a}, b : G {type A = b}) : G {type A = Plus[a, b] }
def prod[a, b] (a : G {type A = a}, b : G {type A = b}) : G {type A = Prod[a, b] }
def view[a, b] (iso : Iso[b, a], a:⇒ G {type A = a}) : G {type A = b}
}

Figure 4.3: Thetrait Generic.

The view case is used to adapt generic functions to existing datatypes that are not directly

defined as sums of products. To define aview case, we are required to provide an isomorphism

between the datatypeb and its corresponding sum of productsa. We are also required to provide

a valuea: ⇒ G{ type A = a}, which is just an instance of the generic function for the isomorphic

sum of products. Note that “⇒” before the parametera signals that values of that type arelazy.

This is needed because recursive types unfold infinitely.

In order to use generic functions defined with instances ofGeneric, we need to combine dif-

ferent cases that match the isomorphic sum of product of our datatype. For example, suppose that

we wanted to use a generic function on a pair consisting on an integer and a character. To get the

generic function at that type we would need:

def repP[g<: TypeConstructor] (implicit gen: Generic{type G = g}) =
gen.prod (gen.int, gen.char)

It can be quite tedious to define these so-calledtype representations; however, since they are

merely reflecting the structure of types, the compiler can automatically generate this code. In

Figure 4.4 we show how this can be achieved in Scala. Again, this is almost a transliteration of

Haskell’s type class version, except that instead of using type classes we now make use of Scala

implicit parameters to achieve the same effect; and we also need to mark the type parameterT

with a contravariance annotation. The traitRepdefines a methodrep, which takes an instance

of Generic(a generic function) and returns a representation that can be used on a typeT. We

define representations for basic types and sums of products by using the corresponding methods

in Generic. Parametrized representations, such asRPlusandRProdhave one argument for each

parameter that is itself a representation and can be implicitly passed.

80

4.3. Generic Programming with Vs 81

trait Rep[−T] {
def rep[g<: TypeConstructor] (implicit gen: Generic{type G = g}) : g {type A = T }
}

implicit def RUnit= new Rep[One] {
def rep[g<: TypeConstructor] (implicit gen: Generic{type G = g}) = gen.unit
}

implicit def RInt= new Rep[int] {
def rep[g<: TypeConstructor] (implicit gen: Generic{type G = g}) = gen.int
}

implicit def RChar= new Rep[char] {
def rep[g<: TypeConstructor] (implicit gen: Generic{type G = g}) = gen.char
}

implicit def RPlus[a, b] (implicit a : Rep[a], b : Rep[b]) = new Rep[Plus[a, b]] {
def rep[g<: TypeConstructor] (implicit gen: Generic{type G = g}) =

gen.plus(a.rep (gen), b.rep (gen))
}

implicit def RProd[a, b] (implicit a : Rep[a], b : Rep[b]) = new Rep[Prod[a, b]] {
def rep[g<: TypeConstructor] (implicit gen: Generic{type G = g}) =

gen.prod (a.rep (gen), b.rep (gen))
}

Figure 4.4: Representations for generic functions.

4.3.2 Representations of Visitors

We have seen how to set up the generic machinery in Scala. We now show how to use our visi-

tors/datatypes with the generic library.

Consider using generic functions over the parametric listsdefined in Section 3.8.1. We need to

create a representation of the list datatype as a sum of products. We can create the representation

using theview method ofGeneric. However, we first need to define the isomorphism between

parametric lists and sums of products. In Figure 4.5 we show how to define this isomorphism.

We define an auxiliary type synonymListF to represent the isomorphic sum of product type and

implement the two methodsfrom and to from the traitIso. The from method is defined by case

analysis using an external list visitor. Theto method uses the visitor for sums to convert between

the sum of products and lists.

Having defined the isomorphism, we can define a methodlistRepthat constructs a representa-

tion for lists. For parametric types, the representation function follows the arity of the parametric

datatype: if the datatype hasn type parameters, the function giving the representation for that

81

4.3. Generic Programming with Vs 82

def listIso[a] = new Iso[List[a],Plus[One,Prod[a, List[a]]]] {
type ListF = Plus[One,Prod[a, List[a]]]

def from (l : List[a]) = l.accept[External, ListF] (new VList[External, a, ListF] {
def nil : ListF = Inl (One)
def cons(x : a, xs: Rec) : ListF = Inr (Prod (x, xs.get))
})
def to (x : ListF) = x.accept(new PlusVisitor[One,Prod[a, List[a]] , List[a]] {

def inl (x : One) = Nil [a]
def inr (x : Prod[a, List[a]]) = Cons(x.fst, x.snd)
})

}

Figure 4.5: Isomorphism between parametric lists and sums of products.

datatype will haven representation arguments. Therefore, for lists, we need toprovide the repre-

sentation for the type parameter as an argument tolistRep. The method creates the representation

by using theviewcase inGenericand providing it withlistIso and the representation for the sum

of products.

def listRep[a, g<: TypeConstructor]
(a : g {type A = a}) (implicit gen: Generic{type G = g}) : g {type A = List[a] } =
gen.view (listIso, gen.plus(gen.unit, gen.prod (a, listRep[a, g] (a) (gen))))

In order to integrate this with our library we should also provide an instance forRep[List [a]],

which will implicitly pick a representation for lists provided that an implicit representation for the

type of the list parameter exists.

implicit def RList[a] (implicit a : Rep[a]) = new Rep[List[a]] {
def rep[g<: TypeConstructor] (implicit gen: Generic{type G = g}) =

listRep[a, g] (a.rep (gen)) (gen)
}

A similar amount of work needs to be repeated for a new datatype. However, this code is

mostly boilerplate and, with a smart enough compiler, it is possible to automatically generate it.

Mechanisms that generate code for data types for use with generic programming includeDerivable

Type Classes(Hinze and Peyton Jones, 2000),Scrap your Boilerplate(Lämmel and Peyton Jones,

2003, 2004) orGeneric Clean(Alimarine and Plasmeijer, 2001).

82

4.3. Generic Programming with Vs 83

sealed case classList[a]
case classNil [a] extendsList[a]
case classCons[a] (x : a, xs: List[a]) extendsList[a]

def listIso[a] = new Iso[List[a],Plus[One,Prod[a, List[a]]]] {
type ListF = Plus[One,Prod[a, List[a]]]

def from (l : List[a]) : ListF = l match {
caseNil () ⇒ Inl (One)
caseCons(x, xs)⇒ Inr (Prod (x, xs))
}

def to (x : ListF) = x.accept(new PlusVisitor[One,Prod[a, List[a]] , List[a]] {
def inl (x : One) = Nil [a]
def inr (x : Prod[a, List[a]]) = Cons(x.fst, x.snd)
})

}

Figure 4.6: Isomorphism between aList case class and sums of products.

4.3.3 Representations of Scala’s Case Classes

In the previous section we have shown how we can use our generic library on visitors by providing

representations for those visitors. However, our generic programming library has a wider applica-

bility and can be used with other kinds of hierarchies such as, for example, Scala’s case classes. We

will show again how we could represent lists, but this time around we will use case classes instead

of a visitor for the source datatype.

In Figure 4.6 we define a form of parametric lists using case classes. The classList [a] repre-

sents the datatype and the classesNil andConsplay the roles of the data constructors. The method

listIso, like the equivalent method in Section 4.3.2, establishes and isomorphism betweenList [a]

and the corresponding sum-of-product equivalent. This method is not very different from the one

used for visitors. The only difference is, basically, that instead of using theacceptmethod as a

means to perform case analysis infrom, with case classes we can use Scala’s existing case analysis

mechanism directly.

The equivalentlistRepandRListmethods for ourList case class have, essentially, equal defini-

tions to the visitor corresponding methods:

def listRep[a, g<: TypeConstructor] (a : g {type A = a})
(implicit gen: Generic{type G = g}) =

gen.view (listIso, gen.plus(gen.unit, gen.prod (a, listRep[a, g] (a) (gen))))

implicit def RList[a] (implicit a : Rep[a]) = new Rep[List[a]] {

83

4.3. Generic Programming with Vs 84

def rep[g<: TypeConstructor] (implicit gen: Generic{type G = g}) =
listRep[a, g] (a.rep[g] (gen)) (gen)

}

This demonstrates that the generic programming library canbe used with the visitor library,

but it is independent from it. In other words, there is nothing stoping us from using the generic

programming library with standard Scala’s class hierarchies like the ones defined by case classes.

4.3.4 Defining Generic Functions

Suppose we want to count the number of values contained in some structure. To do so we need cre-

ate an instance ofGenericand provide an abstract typeG that essentially defines the type signature

of the generic function in question. For our example we useG = Size:

trait SizeextendsTypeConstructor{
def size(x : A) : int
}

The traitSizedefines a methodsizethat takes a value with the type of the structure we want to

consume (A is the type parameter of the type constructor) and returns aninteger.

We present the definition for the generic function (a subtypeof Generic) in Figure 4.7. For

each case, we define a new instance ofSizespecifying the behaviour of the function for that case.

Although the function is supposed to count values of certaintypes, we want to make it generic

enough such that we can control which values we want to count.Because of this option, we count

0 for basic values such asunit, int or char (this can later be overridden). For containers with sums

and products we do the obvious thing, just callingsizeon each of the injections of the sum, and

adding up the results of counting the two components of the product. Finally, theviewcase uses

the isomorphism to provide the generic functionality over user-defined data types.

We defineMySizeas a trait instead of an object so that we can, in the future, extend a it. We

shall look into this with more detail in Sections 4.3.5 and 4.3.6 and see that this yields increased

reusability benefits. We may, however, be interested in having an object that simply inherits the

functionality defined inMySize. Furthermore, this object can be made implicit so that methods like

rep can automatically be fed with this instance ofGeneric. The objectmySizedoes this:

implicit object mySizeextendsMySize

84

4.3. Generic Programming with Vs 85

trait MySizeextendsGeneric{
type G = Size

def unit = new Size{type A = One; def size(x : A) = 0}
def int = new Size{type A = int; def size(x : A) = 0}
def char= new Size{type A = char; def size(x : A) = 0}
def plus[a, b] (a : G {type A = a}, b : G {type A = b}) = new Size{

type A = Plus[a, b]
def size(x : A) = x.accept(new PlusVisitor[a, b, int] {

def inl (y : a) = a.size(y)
def inr (z : b) = b.size(z)
})

}

def prod[a, b] (a : G {type A = a}, b : G {type A = b}) = new Size{
type A = Prod[a, b]
def size(x : A) = x.accept(new ProdVisitor[a, b, int] {

def prod (y : a, z : b) = a.size(y) + b.size(z)
})

}

def view[a, b] (iso : Iso[b, a], a:⇒ G {type A = a}) = new Size{
type A = b
def size(x : A) = a.size(iso.from (x))
}

}

Figure 4.7: Defining a generic function for counting values.

We can then create a methodgsizethat provides an easy-to-use interface for the generic func-

tion: gsizetakes some value of a typet (wheret is representable) and returns the number of elements

counted. However, as mentioned before, just usingmySizeas a parameter forrep will not give us

a very useful generic function because it will always return0 (since every base-type value will be

counted as 0).

def gsize[t] (x : t) (implicit r : Rep[t]) : int =
r .rep (mySize).size(x)

4.3.5 Reuse via Inheritance

The traitMySizedefines a template for functions that count values of a certain type; however if no

functionality is overridden (like in the objectmySize), the resulting generic function does not count

anything. The traitMySizebecomes more useful when some of its functionality is overridden.

In object-oriented languages the inheritance mechanism for defining new generic functions, by

85

4.3. Generic Programming with Vs 86

2

1

6 1

5

Figure 4.8: Tree with depth information.

overriding functionality of other generic functions. In languages without inheritance (like Haskell)

this kind of reuse is more difficult to achieve.

Suppose that we wanted to define a generic function that counts all the integers in some struc-

ture. Using inheritance, all we have to is to extendMySizeand override the case for integers so that

it counts 1 for each integer value it finds.

object mySize2extendsMySize{
override def int = new Size{type A = int; def size(x : A) = 1}
}

def countInt[t] (x : t) (implicit r : Rep[t]) : int =
r .rep (mySize2).size(x)

With mySize2we can define a methodcountInt, which counts all the integers for some repre-

sentable structure of typet.

Using generic functions is straightforward. The followingsnippet of code defines a list of

integerstestand a functioncountTestwhich appliescountIntto this list.

def test= Cons(3,Cons(4,Cons(5,Nil [int])))

def countTest= countInt(test)

Note that theimplicit parameter for the type representations is not needed, because it can be

inferred by the compiler (since we provided animplicit object RList).

4.3.6 Local Redefinition

Suppose that we have an instance of some parametric datatype(like lists) and that we want to

count how many values of the parametric type are in the some structure of that datatype. It is not

possible to provide an implementation ofGenericthat defines such a function directly, because

Genericcannot distinguish values of parametric types from other values that are just stored in the

structure. For example, we could have a parametric binary tree that has an auxiliary integer at

86

4.4. GM and Indexed Vs 87

each node that is used to store the depth of the tree at that node (this could be useful to keep the

tree balanced). In Figure 4.8 we show one example of such binary trees: the squares represent the

auxiliary integers and the circles represent the values that are contained in the tree. If the elements

of the tree are integers and we try to use ourcountIntmethod we would count all the elements plus

all the auxiliary integers, which may be unintended.

def testTree= Fork (2,Fork (1,Value(6),Value(1)),Value(5))

def five= countInt(testTree) // returns 5

To solve this problem we remind ourselves that for parametric types we need to account for the

representations of the type parameters. The methodlistRep, for example, needs to receive as an

argument a representation of typeg {type A = a} for its type parameter. A similar thing happens

with our binary trees. Assuming that the equivalent method is calledbtreeRep, we can provide a

special-purpose counter for our trees that counts only the values of the type parameter.

def countA[a] = new Size{ // counts one for each element
type A = a
def size(x : a) = 1
}

def countBTree[a] (x : BTree[a]) = btreeRep[a,Size] (countA[a]).size(x)

def three= countBTree(test) // returns 3

The basic idea here is that we replace the default (i.e. implicitly provided by the compiler)

functionality that we would use for the type parameter by a user-defined one given bycountA

(which just counts one per value it sees).

4.4 GM and Indexed Vs

In this section we observe that the GM implementation is an instance of the V pattern: the

trait Genericis the visitor and the traitRepis the composite. However, unlike other visitors that we

have seen so far, GM cannot be defined in terms of our visitor library. The reason for that is that the

GM implementation is based on anindexed visitor: the recursive occurrences of the datatype have

different types. We show how we could generalize our library to support a form of indexed visitors

(that supports GM) and, by doing that, we also show how to remove one design choice from the

original GM approach.

87

4.4. GM and Indexed Vs 88

4.4.1 Indexed Visitors

Our visitor library is capable of expressing a very large family of visitors (or datatypes). For

example we can use it to define mutually recursive types or many parametric container types (like

lists or trees). In essence the kind of parametric types thatcan be defined have the property that all

the self references in the definition of those types are equal. However, certain classes of parametric

datatypes do not have that property. An example of such a class of datatypes are the so-called

nested datatypes. The following datatype (written in Haskell’s syntax) shows one example of a

nested datatype:

data PTree awhere
PNil :: PTree a
PFork :: a→ PTree(a, a)→ PTree a

ThePFork case of aPTree adepends on a different instancePTree(a, a), which makesPTree

not expressible in our library.

With nested datatypes, all the result references (the last type on the signature of the constructor)

are the same as the datatype being defined; only references inargument positions can be different.

A more general class of datatypes is the so-calledgeneralised algebraic datatypes(GADTs) where

that restriction is dropped, and it is also possible to have existential type variables — we have

already seen, in Section 3.8.3, that our visitor library supports existential datatypes. The following

datatype is an example of a GADT:

data Rep twhere
RUnit :: Rep One
RInt :: Rep Int
RProd:: Rep a→ Rep b→ Rep(Prod a b)
RPlus :: Rep a→ Rep b→ Rep(Plus a b)

Note the similarity betweenRep tand the traitsGenericand Rep that we have defined in

Figures 4.3 and 4.4. This is not coincidental: the original GM implementation was inspired by

encodings of a datatype like this. Essentially the traitGenericis the visitor and the traitRepis the

composite. This datatype is not encodable using our visitorlibrary, because we have references to

Replike Rep Oneor Rep(Prod a b).

88

4.4. GM and Indexed Vs 89

trait TypeConstructor{type A}

trait Strategy{
type V <: Visitor
type X <: TypeConstructor
type T
type Y

def get: Y
}

trait Decompose[s<: Strategy] {
def dec[v<: Visitor, x<: TypeConstructor, t]

(vis : v {type X = x; type S= s}, comp: Composite[v, t]) :
s {type V = v; type X = x; type T = t }

}

. . .

trait Visitor {
type X <: TypeConstructor
type S<: Strategy
type R[v<: Visitor, t] = S{type X = Visitor.this.X; type T = t; type V = v}
}

trait Composite[−v<: Visitor, t] {
def accept[s<: Strategy, x<: TypeConstructor] (vis : v {type X = x; type S= s})

(implicit decompose: Decompose[s]) : x {type A = t }
}

trait Internal extendsStrategy{type Y = X {type A = T }}

trait ExternalextendsStrategy{type Y = Composite[V,T] }

Figure 4.9: A Visitor library with support for unnested GADTs

4.4.2 A Visitor Library for Indexed Visitors

We now show how to modify our library so that it supports a larger family of datatypes, namely

a form of indexed datatypes. We shall call this family of datatypes the (one parameter)unnested

GADTs. With this new library it will be possible to easily defineRepbut PTreeis problematic be-

cause of the complex recursion pattern involved (see Bird and Meertens (1998); Bird and Paterson

(1999); Martinet al. (2004) for more details). In other words, this family allowsus to refine the

return types of the constructors and to have existential variables in the contructors, but, while we

can define recursive references with refined type arguments (in the style of nested datatypes), it is

not trivial (or it may be impossible) to define the constructors for nested datatypes.

89

4.4. GM and Indexed Vs 90

The functional specification of the new version of our visitor library follows from the following

composite:

Composite V T≡

accept method
︷ ︸︸ ︷

∀X S. Decompose S⇒ V (S V X) X
︸ ︷︷ ︸

Visitor

⇒ X T

Compared to theCompositepresented in Section 3.6 the differences are that the newComposite

is now parametrized by a typeT and that the return type of theacceptmethod is refined toX T.

Also X is now a type constructor rather than just a type. In AppendixF the full Haskell code

corresponding to the functional specification is presented.

Figure 4.9 shows a modified version of our visitor library supporting unnested GADTs. Ba-

sically, the modifications consist of adding an extra type parameter (that appears in the code ast

or T) in a few places, and refining some types. This extra type parameter is the (type) index of

the datatype. More specifically, we can see thatStrategyhas now an extra abstract typeT and

X is refined into aTypeConstructor. The definition ofdec in Decomposeis modified to include

an extra type parametert and slightly refine its signature. In theVisitor, the typeX is refined to a

TypeConstructor, and the typeR(representing the type of recursive references) is now parametrized

by t. TheCompositehas an extra type argumentt, and theacceptmethod refines its return type.

Finally, InternalandExternalrefinesY with T.

4.4.3 GM as an Instance of the Visitor Library

It is now time to show how the essence of GM is itself an instance of the visitor pattern and how

we can use the indexed version of the visitor library to capture it. As we shall see,Genericis just

a visitor component andRep is the corresponding composite. To show thatGenericis a visitor

component we need to find a suitableV = Genericthat can be replaced in theCompositeequation

in Section 4.4.2 so thatRep Tbecomes an instance ofComposite Generic T. Such an instantiation

of V is given next:

Generic S X≡ X One× X Int× (∀A B. S A⇒ S B⇒ X (Pair A B)) × . . .

Rep T ≡ Composite Generic T
≡ ∀S X. Decompose S⇒ Generic(S Generic X) X⇒ X T

Genericconsists of a product of functions satisfying the visitor requirements. Each element of the

product represents a case of the generic function as explained before. For parametrized cases (that

90

4.4. GM and Indexed Vs 91

is, for cases involving type constructors), we have, like with the definition ofGenericin Figure 4.3,

one argument for each type parameter of the type constructor. However, the thing to note is that the

type of those arguments are more general than the ones in Figure 4.3. It is this extra generality that

allows us to parametrizeGenericby the decomposition strategy allowing us to obtain, for example,

the two implementations presented by Hinze (2004).

For (non-parametrized) types we can provide representations for some typeT by giving the

corresponding instance of a functionrepT ∈ Rep T. For example, forOneandInt we would have:

repOne ∈ Rep One
repOne (unit× int × prod× . . .) ≡ unit

repInt ∈ Rep Int
repInt (unit× int × prod× . . .) ≡ int

For parametrized types we need to provide representations for each of the constructors. If we

have a binary type constructorT, then the corresponding representation function has typerepT AB ∈

Rep A⇒ Rep B⇒ Rep(T A B). We exemplify with a representation for pairs:

repPairAB ∈ Rep A⇒ Rep B⇒ Rep(Pair A B)
repPairAB ra rb (unit× int × prod× . . .) ≡ prod (decS (unit× int × prod× . . .) ra)

(decS (unit× int × prod× . . .) rb)

More generaly, given some type constructorT with argumentsA1 . . . An then, we can create a

representation forT A1 . . . An as follows:

Generic S X≡ . . . × (∀A1 . . . An. S A1 ⇒ . . .⇒ S An ⇒ X (T A1 . . . An)) × . . .

repT A1...An
∈ Rep A1 ⇒ . . .⇒ Rep An ⇒ Rep(T A1 . . . An)

repT A1...An ra1 . . . ran (. . . × t × . . .) ≡ t (decS (. . . × t × . . .) ra1)
. . .

(decS (. . . × t × . . .) ran)

The rep function is, in Hinze (2004) words, “the mother of all generic functions” and, as

Hinze (2000) himself shows, “generic functions possess polykinded types”. Our general account of

generic representations, although not as general as the scheme shown by Hinze (because we do not

consider type parameters of higher kinds), follows the samebasic principles.

91

4.4. GM and Indexed Vs 92

trait GenericextendsVisitor {
type Rec[t] = R[Generic, t]

def unit : X {type A = One}
def int : X {type A = int }
def char : X {type A = char}
def plus[a, b] (a : Rec[a], b : Rec[b]) : X {type A = Plus[a, b] }
def prod[a, b] (a : Rec[a], b : Rec[b]) : X {type A = Prod[a, b] }
def view[a, b] (iso : Iso[b, a], a:⇒ Rec[a]) : X {type A = b}
}

type Rep[T] = Composite[Generic,T]

Figure 4.10: GM as a Visitor

In Scala Figure 4.10 shows how to defineGenericandRepusing the modified library. The new

version ofGenericis very similar to the one presented in Figure 4.3, except that G is now calledX

and the arguments of the constructors useR instead ofG (or X). Regarding the compositeRep, the

difference is that the methodrep is now calledaccept.

Defining generic functions proceeds almost in the same way asbefore. Figure 4.11 shows a

partial definition ofMySize. Compared to the version presented in Figure 4.3, we need to set the

extra abstract typeS (representing the strategy) toInternal, and use the methodget to extract the

values from the strategy. Both modifications would be unnecessary had we also reimplemented the

notational enhancements that we presented in Section 3.7.

The GM version defined using the modified visitor library strictly generalizes the one presented

in Section 4.3, because we can not only have internal visitors, but also use other kinds of visitors

(such as external or paramorphic visitors). Like with otherdatatypes, this fact can be a valuable

advantage because it does not force us to the design choice ofthe kind of visitor upfront; instead,

for each generic function that we define, we can decide which strategy (or kind of visitor) we want

to use. In contrast, in Hinze (2004) two alternative implementations ofGenericare presented (one

based on a Church encoding and another based on a Parigot encoding) forcing us into a design

choice.

92

4.5. A Visitor for a Family Based on Sums of Products 93

trait MySizeextendsGeneric{
type X = Size
type S= Internal

def int = new Size{type A = int; def size(x : A) = 0}

. . .

def prod[a, b] (a : R[a], b : R[b]) = new Size{
type A = Prod[a, b]
def size(x : A) = x.accept(new ProdVisitor[a, b, int] {

def prod (y : a, z : b) = a.get.size(y) + b.get.size(z)
})

}

def view[a, b] (iso : Iso[b, a], a:⇒ R[a]) = new Size{
type A = b
def size(x : A) = a.get.size(iso.from (x))
}

}

Figure 4.11: Generic function using theGenericvisitor.

4.5 A Visitor for a Family Based on Sums of Products

Our presentation (and the classical one) of the V pattern uses products of functions, where

each function corresponds to a case of a datatype. This nicely matches the familiar notion of pattern

matching in functional languages, which allows us to define functions intuitively. However, writing

generic functions for products of functions is difficult. The generic programming techniques that

we used in the previous sections allow us to write generic functions on sums of products, which

force us to do expensive conversions between products of functions and sums of products like the

ones in Figure 4.5. In this section we will propose a different family of visitors that can be defined

as a concrete visitor using our existing library giving us analternativeviewon datatypes. With this

new family we can define visitors in terms of sums of products directly.

4.5.1 A V Based on Sums of Products

Writing generic functions for products of functions is difficult. A solution is to first map our vis-

itors into sums of products and then apply well known DGP techniques that work for that family

of datatypes. This was the approach we have taken in the previous sections. However, there are

93

4.5. A Visitor for a Family Based on Sums of Products 94

inconveniences in doing it this way: firstly it hinders performance (because we need to map be-

tween the visitor and the sum of products); secondly, without compiler support, it involves some

boilerplate code for each visitor; finally, because the recursion pattern is not explicit, it is harder to

reason about those visitors.

A Functional Specification

We have already observed (in Section 3.5.1) that a family of datatypes based on sums of products

can be expressed using products of functions (since (F R ⇒ X) ⇒ X is just a particular case of

V R X⇒ X, whereV R X≡ F R⇒ X). Defining

SumProdF F R X≡ F R⇒ X

SumProd F ≡ Composite(SumProdF F)

we can capture the family of visitors based on sums of products as a concrete visitor of our library.

There are single (generic) constructor and deconstructor functions for this visitor given by

inF ∈ Functor F⇒ F (SumProd F)⇒ SumProd F
inF t ≡ λv⇒ v (fmap(dec v) t)

outF ∈ Functor F⇒ SumProd F⇒ F (SumProd F)
outF ≡ dec(fmap inF)

which form an isomorphism (that isinF ◦ outF ≡ id andoutF ◦ inF ≡ id). Here we assume

that F is a functor and thatFunctor F is implicitly passed (see Section 2.2.1 for a definition of

Functor). We refer to Gibbons (2006) for more details about this family of visitors. The code for

the functional specification in Haskell is presented in Annexe G.

Scala Implementation

Figure 4.12 shows a visitor for datatypes based on sums of products and implemented with our

generic library. The visitor component (the traitSumProdVisitor) consists of a single method that

takes as a first parameter a functorF (based on sums of products) and, as the second parameter an

(implicit) Functorobject that describes how to perform the functorial map overF. The composite

componentSumProdis just a type synonym toComposite[SumProdVisitor[F]]. Finally (and like

all other visitors)VSumProdcan be used as a shorthand to define visitors on sums of products with

a functional notation.

The single constructorin (that follows from the singlevisit method) can be defined generically

94

4.5. A Visitor for a Family Based on Sums of Products 95

trait SumProdVisitor[F <: TypeConstructor] extendsVisitor {
type Rec= R[SumProdVisitor[F]]

def visit (x : F {type A = Rec}) : X
}

type SumProd[f <: TypeConstructor] = Composite[SumProdVisitor[f]]

abstract classVSumProd[s<: Strategy, f <: TypeConstructor, b]
(implicit decompose: Decompose[s])
extendsVisitorFunc[SumProdVisitor[f], s, b] (decompose)
with SumProdVisitor[f]

Figure 4.12: A visitor for sums of products data types.

(on the sum of products functorf) using the functorial map that traverses the structure and applies

decto each recursive occurrence.

def in [f <: TypeConstructor] (x : f {type A = SumProd[f] })
(implicit funct: Functor[f]) : SumProd[f] = new SumProd[f] {

def accept[s<: Strategy, x] (vis : SumProdVisitor[f] {type X = x; type S= s})
(implicit decompose: Decompose[s]) : x =

vis.visit (funct.fmap((y : SumProd[f]) ⇒ decompose.dec(vis, y)) (x))
}

The deconstructorout, the inverse ofin, can also be encoded in Scala as follows:

def out[f <: TypeConstructor] (s : SumProd[f]) (implicit funct: Functor[f]) =
s.accept(new VSumProd[Internal, f , f {type A = SumProd[f] }] {

def visit (x : f {type A = R[SumProdVisitor[f]] }) =
funct.fmap((y : R[SumProdVisitor[f]]) ⇒ in (y.get) (funct)) (x)

})

4.5.2 Creating New Datatypes

In order to create a new data type with a sum of products visitor, we need to define the type

constructor based on sums of products that represents the datatype and the corresponding functor

instance. In Figure 4.13 we see a definition of lists. The trait ListF — or more precisely the

methodlistF in that trait — is used in Scala to define the sum of products based type constructor

representing the datatype. Having this, the new type for parametric lists can be defined in terms of

SumProd[ListF [a]]. Because our type constructor is based on sums of productsit defines a functor

— the methodlistFunctorprovides the instance ofFunctor for ListF. Finally, the list constructors

Nil andConscan be defined in terms ofin.

95

4.5. A Visitor for a Family Based on Sums of Products 96

trait ListF [a] extendsTypeConstructor{
def listF : Plus[One,Prod[a,A]]
}

type List[a] = SumProd[ListF [a]]

implicit def listFunctor[p] = new Functor[ListF [p]] {
def fmap[a, b] (f : a⇒ b) (x : ListF [p] {type A = a}) : ListF[p] {type A = b} = new ListF [p] {

type A = b
def listF = x.listF.accept(new PlusVisitor[One,Prod[p, a],Plus[One,Prod[p, b]]] {

def inl (y : One) = Inl [One,Prod[p, b]] (y)
def inr (z : Prod[p, a]) = Inr [One,Prod[p, b]] (Prod (z.fst, f (z.snd)))
})

}

}

def Nil [a] : List[a] = in [ListF [a]] (new ListF [a] {
type A = List[a];
def listF = Inl [One,Prod[a,A]] (One)
})

def Cons[a] (x : a, xs: List[a]) : List[a] = in [ListF [a]] (new ListF [a] {
type A = List[a];
def listF = Inr [One,Prod[a,A]] (Prod (x, xs))
})

Figure 4.13: Parametric lists using a sum of products visitor.

Comparing the sums of products with the product of functionsversion of lists in Section 3.8.1

we can see that we have to provide roughly the same amount of code. The differences consist

basically in the way that we deal with constructors in each approach. With products of functions,

each constructor defines the traversal code itself. With sums of products, we use the functor (which

we have to define) to perform the traversal.

While no big differences between the two versions exist for setting up the code for a new

datatype, some more substantial differences exists in the code necessary to enable generic pro-

gramming. Compare the following

def listFIso[p, a] = new Iso[ListF [p] {type A = a},Plus[One,Prod[p, a]]] {
def from (x : ListF [p] {type A = a}) : Plus[One,Prod[p, a]] = x.listF
def to (x : Plus[One,Prod[p, a]]) = new ListF [p] {type A = a; def listF = x}
}

with the code that we had to provide in Figure 4.5. Because we use sums of products directly to

define our lists the isomorphism is straightforward to define, which can be seen as a small advantage

96

4.5. A Visitor for a Family Based on Sums of Products 97

def RSumProd[f <: TypeConstructor] (implicit f : FRep[f], funct: Functor[f]) =
new Rep[SumProd[f]] {

def rep[g<: TypeConstructor] (implicit gen: Generic{type G = g}) =
gen.view (sumProdIso[f], f .frep[g,SumProd[f]] (rep[g] (gen)) (gen))

}

def sumProdIso[f <: TypeConstructor] (implicit funct: Functor[f]) =
new Iso[SumProd[f], f {type A = SumProd[f] }] {

def to (x : f {type A = SumProd[f] }) = in (x)
def from (x : SumProd[f]) = out[f] (x)
}

Figure 4.14: A representation for sums of products visitorsin Scala.

of this version. More importantly, since sums of products are used directly, we do not incur on any

major performance penalties derived from the embedding-projection pairs (fromandto).

4.5.3 Functorial Representations

Because sum of product visitors are based on functors, we need to have functor representations

(which differ from normal type representations). The traitFRepthat serves that purpose is defined

as:

trait FRep[f <: TypeConstructor] {
def frep[g<: TypeConstructor, a]

(a : g {type A = a}) (implicit gen: Generic{type G = g}) : g {type A = f {type A = a}}
}

The methodfrep takes a representation of the type argument of the functor and an (implicit)

instance ofGenericand returns the representation for the functor. Note thatfrep can be seen as a

generalization of the methodlistRepthat we presented in Section 4.3.2.

Given that we can represent functors, we can now define representations for our sum of prod-

ucts composites as shown in Figure 4.14. ThesumProdIsomethod defines the isomorphism that

converts between theSumProdcomposite and the actual sum of products element wrapped inside

it. The embedding-projection pairs are respectively givenby the in andout methods. Using this

isomorphism, we can then create aview that represents any sum of products visitor that has a

functorial representation.

Instances ofFRepprovide representations for the different functors. For example, with our lists

97

4.5. A Visitor for a Family Based on Sums of Products 98

based on sums of products, we need to provide an instance ofFRepfor ListF [p].

def listFRep[p] (implicit p : Rep[p]) = new FRep[ListF [p]] {
def frep[g<: TypeConstructor, a] (a : g {type A = a}) (implicit gen: Generic{type G = g}) =

gen.view[Plus[One,Prod[p, a]] , ListF [p] {type A = a}]
(listFIso, gen.plus (gen.unit, gen.prod (p.rep[g] (gen), a)))

}

As we shall see in the next section, by viewing a recursive datatype as a sum of products

functorial representation, we will be able to specify how a generic function behaves for the recursive

occurrences of a datatype, by using local redefinitions.

4.5.4 Separating Recursion from Generic Programming

Our sum-of-products based visitors allow us to define generic functions that separate the generic

parts (the boilerplate associated with sums of products) from the recursion points. This separation

gives us extra flexibility and makes reasoning about genericfunctions easier. As a simple example

consider a function that counts the number of recursive occurrences in some value from some

recursive datatype.

def mysize[f <: TypeConstructor] (x : SumProd[f]) (implicit fr : FRep[f]) =
x.accept[Internal, int] (new VSumProd[Internal, f , int] {

def sizea= new Size() {
type A = Rec

def size(x : Rec) : int = x+ 1
}

def visit (x : f {type A = Rec}) = fr .frep[Size,Rec] (sizea).size(x)
})

The methodmysize, given a valuex (which is an element of a sum-of-products datatype), is

defined using a sum-of-products visitor onx. The methodsizeais an example of a local redefi-

nition (presented in Section 4.3.6): this method becomes the argument offrep that specifies what

the function should do for recursive occurrences. Since thegoal of this function is to count the

number of recursive occurrences, the methodsizeais simply the successor function. We give a

brief example of the usage ofmysizenext:

val test= Cons(1,Cons(2,Cons(3,Nil [int])))

def sizeList[a] (x : List[a]) (implicit a : Rep[a]) = mysize(x) (listFRep)

The valuetestdefines a three element list. The methodsizeListtakes a list of values of typea

98

4.5. A Visitor for a Family Based on Sums of Products 99

and, provided that there exists a representation fora, returns the number of recursive occurrences

of that list. If we evaluatesizeList(test) we get 3 as the result.

UsingFRepwe can define a generic function that applies another genericfunction to the sum

of product boilerplate, but redefines the behaviour of that function for recursive occurrences. This

is not possible to do in general for visitors defined with our library; only the ones that are defined

using the sum-of-products visitor allow this functionality. Because we have access to the recursion

points, another thing we can do is capture well-known recursion patterns. We show how to capture

catamorphisms and anamorphisms (Meijeret al., 1991) next.

Catamorphisms (or folds) are possibly the most well-known recursion pattern, allowing us to

write iterative definitions. The functional specification of catamorphisms is given by

cata ∈ Functor F⇒ (F A⇒ A)⇒ SumProd F⇒ A
cata v m≡ m v

and the corresponding Scala implementation is:

def cata[f <: TypeConstructor, b]
(func: f {type A = b} ⇒ b) (comp: SumProd[f]) (implicit funct: Functor[f]) : b =

comp.accept[Internal, b] (new VSumProd[Internal, f , b] {
def visit (x : f {type A = Rec}) = func (funct.fmap[Rec, b] ((y : Rec)⇒ y.get) (x))})

Note that internal visitors (for example, the visitor used by mysizeabove) are essentially cata-

morphisms: the body of the catamorphism (i.e. the parameterfunc : f {type A = b} ⇒ b) cor-

responds to thevisit method. The only difference is that with catamorphisms, we do not need to

apply the coercion betweenRecandb, while using the internal visitor directly we do (even if this

is done implicitly).

Anamorphisms (or unfolds) are the dual (in a categorical interpretation) recursion pattern of

catamorphims and they capture a form of co-recursion. The functional specification of anamor-

phisms is given by

ana∈ Functor F⇒ (A⇒ F A)⇒ A⇒ SumProd F
ana c x≡ λv⇒ v (fmap(dec v. ana c) (c x))

and the corresponding Scala implementation is:

def ana[f <: TypeConstructor, b]
(func: b⇒ f {type A = b}) (x : b) (implicit funct: Functor[f]) : SumProd[f] =

new SumProd[f] {

99

4.6. Example: Generic Serialization and Deserialization 100

def accept[s<: Strategy, x] (vis : SumProdVisitor[f] {type X = x; type S= s})
(implicit decompose: Decompose[s]) : x =

vis.visit (funct.fmap((y : b)⇒
decompose.dec[SumProdVisitor[f], x] (vis, ana[f , b] (func) (y))) (func (x)))

}

4.6 Example: Generic Serialization and Deserialization

We are now in a position to develop a fully-fledged application using our library. In this section we

will develop a simple serialization library — a common application of generic programming. The

full code for this little library in presented in Annexe E.

For many applications we need to serialize information one way or another: it may be in some

binary format, XML or some other textual format. Because different applications use different data

structures, we usually need to define our own serialization/deserialization functions or hope that

the language we use has some built-in support for that particular task. An alternative, which we

will take in this section, is to write a generic function thatsupports a wide range of data structures.

In the next two subsections we will present, respectively, binary generic serializer and dese-

rializer functions. These functions are proof of concept only, since the serialization process does

not produce an actual binary stream but a string consisting of zeros and ones. Producing an actual

binary stream should not, however, be too difficult.

4.6.1 Serialization

In the implementation of our generic serializer function (see Annexe E), the traitSerialize, as

explained in Section 4.3.4, defines the type of the serialization function. The traitMySerialize(a

subtype ofGeneric) defines the body of our generic function. Finally the objectmySerialprovides

a default implementation.

The methods defined inMySerializedefine the different cases of the generic function. Aunit

value does not need any bit to be represented, so we can returnthe empty String as a result of en-

coding such values. For primitive types likeint andchar we just assume that there exist functions

encodeIntandencodeCharthat serialize those values. For sum types, we require one bit to repre-

sent the choice between the two alternatives: the values based oninl are appended with zero; and

the values based oninr are appended with one. With products the final result is givenby the con-

catenation of the serializations of the first and second components. Finally theviewcase converts

100

4.6. Example: Generic Serialization and Deserialization 101

the value into a sum of product and then invokes the serializer on the result.

We can provide a Scala methodserial that provides an easy to use interface for our generic

function. The method takes a representable valuex (i.e. a value whose typet has a representation

r of typeRep[t]) and calls therep method with the defaultmySerialfunction, thus allowing us to

call serializeonx.

def serial[t] (x : t) (implicit r : Rep[t]) : String= r .rep (mySerial).serialize(x)

Serializing Sum of Products Visitors

With serial all representable instances ofVisitor can be serialized. Alternatively we could also

have provided a serialization function that works just for sum-of-products visitors. It is interesting

to look at this other solution because, unlike the solution above, here the recursion pattern (which

is associated with the kind of visitor that is used) becomes explicit.

def serialSumProd[f <: TypeConstructor] (x : SumProd[f]) (implicit fr : FRep[f]) =
x.accept[Internal,String] (new VSumProd[Internal, f ,String] {

def seriala= new Serialize() {
type A = Rec

def serialize(x : A) : String= x
}

def visit (x : f {type A = Rec}) = fr .frep[Serialize,Rec] (seriala).serialize(x)})

In this case we can see that the recursion pattern that is usedis a catamorphism since we are

using an internal visitor — we could make the recursion pattern even more explicit by using the

catamethod presented in Section 4.5instead. While withserial we do not need to specify what to

do whenever a recursive occurrence appears, with this definition we do. The inner methodseriala

specifies that. Because we have an internal visitor, the recursive occurrences are replaced by the

result of the recursive call and, therefore, what we need to do is just to return that result.

To give and example, consider the following list:

def testVal= Cons(3,Cons(4,Nil [int]))

Invoking the two serialization functions for this value is achieved with:

def testSerial= serial (testVal)

def testSumProd= serialSumProd(testVal)

Both invocations would give a result like:

1000000000000000000000000000000111000000000000000000000000000001000

101

4.6. Example: Generic Serialization and Deserialization 102

This depends, of course, on how the primitive serializers are implemented. In this case we opted

(for readability), to encode integers using 16 bits.

4.6.2 Deserialization

In the implementation of our deserializer function (see Annexe E) the traitDeSerializeprovides

the type of our deserialization function; the traitMyDeSerializedefines the body of the generic

function usingDeSerializeas the return type of the generic functions; and the objectmyDeSerial

provides a default implementation based onMyDeSerialize.

Thedeserializemethod inDeSerializedecodes a segment of the input string and returns a piece

of data plus the remainder of the string yet to be decoded. Fortheunit case, we know that there is

nothing else to decode and thus we return the valueOneand an empty string. For primitive types

we use standard deserialization functions. For the sum caseof our generic function we need to

test if the first character of the string is a zero or a one. If itis a zero we know we need to create

an Inl value, otherwise we create anInr value. For products, we start by decoding the segment of

the string that corresponds to the first component of the product and then we decode the segment

corresponding to the second component. We then return the product of the two results plus the

remainder of the string. For theviewcase we deserialize the segment of the string corresponding

to the isomorphic sum of products value; convert the resulting sum of product into the value of the

data type and finally return that result plus the remainder ofthe string.

The methoddeSerialtaking a string and an implicit parameter with a representation of some

typet uses the default implementation of the generic functionmyDeserialto provide an easy-to-use

interface to deserialization.

def deSerial[t] (x : String) (implicit r : Rep[t]) : t = r .rep (myDeSerial).deSerialize(x).fst

Deserialization for Sum of Products Visitors

We can also have a deserialization function for sum of products visitors. However, because this

function produces a value of a data type instead of consumingdata (like with serialization), we

need to use a productive recursion pattern. We have introduced anamorphisms in Section 4.5, that

can be used here:

def deserialAux= new DeSerialize{
type A = String
def deSerialize(x : String) : Prod[A,String] = Prod (x, "")

102

4.7. Discussion 103

}

def deSerialSumProd[f <: TypeConstructor]
(x : String) (implicit fr : FRep[f], funct: Functor[f]) =

ana[f ,String] ((y : String)⇒
fr .frep[DeSerialize,String] (deserialAux).deSerialize(y).fst) (x)

The auxiliary methoddeserialAuxspecifies what to do when we find recursive occurrences.

The body of the methoddeSerialSumProdis an anamorphism, which consumes the stringx and for

each segmenty (representing sums of products) ofx applies the generic functionDeSerialize.

4.7 Discussion

This chapter explains how we can use DGP techniques with our visitor library. The DGP technique

that we use, inspired by GM, follows the current trend of lightweight approaches to generic pro-

gramming, where genericity can be captured as a software component that can be used to define

generic functions.

Generic functions are powerful software components on their own since they can be very flex-

ibly parametrized, which allows them to be adapted to several problem domains (via the datatypes

used in the solutions for those problems). Our example application is good example of generic

functions that can be applied to a wide range of problem domains. Most software applications re-

quire some form of persistence in order to store the state of some piece data being manipulated by

these same applications. A mechanism that serializes/deserializes data is almost a necessity since

providing special purpose functions for this task is error-prone and tedious. For many programming

languages the solution is to basically build in special support in the compiler for this task or to use

some form of pre-processor that generates serialization and deserialization functions automatically.

Alternatively, if the language supports some form of run-time introspection (for example, the re-

flection mechanism in Java), we can try to use that mechanism to define a form of generic functions

that accomplishes this task. However, neither solution is completely satisfactory: built-in support

tends to be too inflexible; and run-time introspection mechanisms are not type-safe and are penal-

izing in terms of performance. In contrast, the use of generic functions allows a lot of flexibility

(specially when support for extensibility, presented in Chapter 5, is added) while being type-safe

and having minor performance penalties.

In Haskell there has been a recent flurry of proposals for generic programming libraries (Ch-

eney and Hinze, 2002; Hinze, 2004; Lämmel and Peyton Jones,2005; Oliveiraet al., 2006; Hinze

103

4.7. Discussion 104

et al., 2006; Weirich, 2006; Hinze and Löh, 2007), all of which having interesting aspects but none

emerging as a clearly best option. Because of that, an international committee has been set up

with the goal of developing a standard generic programming library in Haskell. The first effort

from that committee was a thorough comparison of most of the generic programming libraries pro-

posed (Jeuringet al., 2007). The EMGM variation (Oliveiraet al., 2006) of GM, which is the

basis of parts of this thesis, was in the pool of approaches compared. The Scala library proposed

in this thesis has basically all the same advantages of that approach and a few extra ones. Firstly,

with our approach we can, very easily, reuse one existing generic function to define a new one

(this is demonstrated in Section 4.3.5). With the Haskell approaches, this kind of reuse is harder to

achieve. The only mechanism that we know of that comes close,in terms of simplicity, to this form

of reuse is Generic Haskell’sdefault cases(Löh, 2004). Secondly, we show in Section 4.5, how

we can use a different family of visitors within our generic programming framework. In essence

this family of visitors is the so-calledfixpoint viewin Generic Haskell (Holdermanset al., 2006).

Therefore our approach has support for other views, which contrasts with the evaluation of EMGM

which considered the approach as not having such support. However, this second advantage is not

particular to the Scala implementation and it could be adapted to the Haskell one.

In Section 4.4 we present a modified version of our visitor library that can be used to define

a class of type-indexed visitors. In particular, we show that the implementation of GM is itself

a visitor and can be encoded with this modified library. In theoriginal presentation of GM a

design choice between Church and Parigot encodings — or, using the visitor terminology, a choice

between internal and external visitors — has to be made. Since our visitors are naturally strategy

generic this design choice is unnecessary. We believe that this provides a novel and interesting

insight for the field of DGP since existing generic programming approaches always choose one

particular encoding and necessarily inherit the disadvantages of that encoding, which would not be

the case with our generic programming library. For example,in recent versions of GH, because a

Church encoding is used, mutually-recursive generic functions are hard to define. The ‘dependency

style’ of GH Löh (2004) is an elegant, but complex, solution for the problem of these (mutual)

dependencies and it does not solve other issues that stem from the Church encoding.

There are several other applications (apart from GM) for ourindexed variation of the library.

For instance, in Hinze (2003); Peyton Joneset al. (2006) many example applications for GADTs

have been proposed, with most of them being examples of unnested GADTs. We could use our

104

4.7. Discussion 105

library to define those examples and automatically benefit from recursion patterns (which can be

considered themselves a form of generic functions). In previous work (Oliveira and Gibbons, 2005)

we proposed a design pattern for type-indexed functions inspired by GM. There were three main

variations of the design pattern, and two of the variations had equivalent expressive power. In

essence we had the same variations as with the original GM or visitors in general. If we were

to present that work today, we could have done it as a softwarecomponent rather than a design

pattern.

105

Chapter 5

Extensible Visitors and Generic Functions

In Chapter 4 we developed a generic programming library in Scala based on the GM approach

and showed a possible implementation of this library as a visitor. With this library it is possible to

write generic functions that work over a large family of visitors. However, thegeneric functions(i.e.

the visitor components) have a single, non-extensible, definition. In contrast,ad-hoc polymorphic

functions require separate implementations for each datatype, but can be extended with new cases

at any time. The fact that generic functions cannot be extended is a severe drawback, because often

we want to define some ad-hoc behaviour for new datatypes. This limitation precludes the design

of an extensible and modular generic programming library. The problem of extensibility of generic

functions is one particular instance of the so-calledexpression problem. In this chapter, we show

that it is possible to develop extensible generic functions(and, more generally, extensible visitors)

using our visitor library. We show two solutions with different trade-offs.

5.1 Introduction

We have seen, in Chapter 4, that a generic function is a function defined over the structure of

types. With generic functions a single definition suffices to obtain a function that works for a

large family of visitors. By contrast, anad-hoc polymorphicfunction (Strachey, 1967) requires a

separate implementation for each data type. In Haskell, forexample, ad-hoc polymorphic functions

are implemented using type classes. In Scala, the same effect can be achieved with parametric traits

106

5.1. Introduction 107

trait Encode[t] {
def encode(x : t) : String
}

implicit def EncodeChar= new Encode[Char] {
def encode(x : Char) = encodeChar(x)
}

implicit def EncodeInt= new Encode[int] {
def encode(x : int) = encodeInt(x)
}

implicit def EncodeList[a] (implicit encA: Encode[a]) = new Encode[List[a]] {
def encode(x : List[a]) = x.accept(new VList[Internal, a,String] {

def nil = "0"
def cons(x : a, xs: Rec) = "1" + encA.encode(x) + xs
})

}

Figure 5.1: An ad-hoc binary encoder

and implicit parameters.

In Figure 5.1 we show how to implement an ad-hoc polymorphic function for binary encoding.

The trait Encode[t] defines a type-overloaded (on the type parametert) function encode. The

implicit definitions provide implementations ofEncode[t] for a number of specific typest. The

definitionEncodeList[a] provides an implementation forList[a], and is only defined if there exists

an implementation ofEncode[a] — in other words, we can only encode lists if we know how to

encode the elements. As with the generic serializer that we developed in Chapter 4, we assume

that primitive bit encoders for integers and characters aregiven, respectively, byencodeIntand

encodeChar. Lists are encoded by replacing an occurrence of the empty list Nil with the bit 0, and

occurrences of the list constructorConswith the bit 1 followed by the encoding of the head element

and the encoding of the remaining list. The functionencodethus works on characters, integers, and

lists. If we callencode, the compiler figures out the correct implementation to use,or, if no suitable

instance exists, it reports a type error, nicely mimicking the functionality of Haskell type classes.

The functionencodecan be extended at any time to work on additional datatypes. All we have

to do is write another instance of the traitEncode. However, each time we add a new datatype

whose values we want to encode, we need to supply another implementation ofencode.

In contrast, in the last chapter we have seen how generic functions allow a single definition that

works for a large family of datatypes. Comparing our ad-hoc definition with the generic function for

107

5.1. Introduction 108

binary encoding (the traitMySerializein Annexe E), we can see that the case for lists is subsumed,

in the generic definition, by three generic cases for unit, sum and product types. By viewing all

datatypes in a uniform way, these three cases are sufficient to call the encoder on lists, tuples, trees,

and several more complex data structures – a new implementation of encodeis not required!

Nonetheless, there are situations in which a specific case for a specific data type – called an

ad-hoc case– is desirable. For example, lists can be encoded more efficiently than shown above:

instead of encoding each constructor, we can encode the length of the list followed by encodings

of the elements. Or, suppose that sets are represented as trees; the same set can be represented by

multiple trees, so a generic equality function should not compare sets structurally, and therefore we

need an ad-hoc case for sets.

Defining ad-hoc cases for ad-hoc polymorphic functions is trivial: we just add a new instance of

Encodewith the desired implementation. For the generic version ofthe binary encoder, the addition

of a new case is, however, very difficult. This is one instance of the expression problem (Wadler,

1998): each case of the function definition implements a method of classGeneric, and adding a

new case later requires the modification of the class. We say that generic functions written in this

style are notextensible, and that the approach is notmodular, because non-extensibility precludes

writing a flexible generic programming library. In a sentence, generic functions are more concise,

but ad-hoc polymorphic functions are more flexible.

The specific contributions of this chapter are:

• In Section 5.2 we discuss the relationship between the expression problem and the extensi-

bility of generic functions. Because our generic functionsare implemented using visitors,

a solution that solves the problem of extensibility on visitors (and the expression problem)

will necessarily solve the problem of extensibility on generic functions. We believe that this

is an important insight, since it allows us to investigate the application of solutions to the

extensibility of visitors to generic functions and vice-versa.

• In Section 5.3, we give an encoding of extensible generic functions using internal visitors.

This encoding in based on our previous work (Oliveiraet al., 2006) and has the advantage of

being simple while allowing the addition of extensions. However, there are some issues with

mutually recursive generic functions that can preclude extensibility in a different way.

• In Section 5.4 we provide a extensible generic pretty printer as an example of an extensible

108

5.2. Generic Functions and The Expression Problem 109

generic function.

• In Section 5.5 we present a different solution for the extensibility problem of generic func-

tions, inspired by work on the extensibility of visitors by Odersky and Zenger (2005a). This

solution has the advantage that it works for any encoding andthat it can avoid the extensibil-

ity issues related to mutually-recursive generic functions. We demonstrate its application to

generic functions by revisiting the extensible pretty printer example.

• In Section 5.6 we compare the approaches from Sections 5.3 and 5.5. While the latter ap-

proach seems to be superior, at first glance, since it can be applied to any kind of visitor

and the problem of mutually-recursive functions is not so problematic, there are few subtle

advantages of the former approach. In particular, because the former approach has a single

family of types, extensions do not need to be closed and they are compatible with each other.

Finally, in Section 5.7, we discuss the results of this chapter.

5.2 Generic Functions and The Expression Problem

Wadler (1998) called the need for extensibility in two dimensions (adding new variantsand new

functions) the expression problem. According to him, a solution for the problem should allow the

definition of a datatype, and the addition of new variants to such a datatype as well as the addition

of new functions over that datatype. A solution should not require recompilation of existing code,

and it should be statically type safe: applying a function toa variant for which that function is not

defined should result in a compile-time error.

In traditional OO development, extensible datatypes are easy to implement, but we can usually

only have a fixed set of functions — the datatypes correspond to a hierarchical structure where all

classes satisfy an interface, which defines the type of the datatype and the (fixed) set of operations

that it allows. In contrast, when we use the V pattern, adding new functions is easy, but adding

new variants of the datatype is much harder because the visitor interface declares the (fixed) set of

variants and that is the only interface that is available to theacceptmethod in the composite.

The problem of extensible generic functions (with the GM approach) fundamentally reduces

to the extensibility problem in visitors. While there has been some work on extensible generic

functions (Hinze and Peyton Jones, 2000; Lämmel and PeytonJones, 2005) and even on the relation

109

5.2. Generic Functions and The Expression Problem 110

with the expression problem (Löh and Hinze, 2006), we are not aware of any work that explicitly

explores the relation with extensibility of visitors. By reducing the problem of extensibility of

generic functions to the problem of extensibility of visitors we can expect that solutions for one of

the problems can be applied to the other problem. This provides interesting insight; as we shall

see, two solutions presented in this chapter solve the extensibility problem, but while the first one

was originally developed in the context of extensibility ofgeneric functions, the second one was

inspired by a solution to the extensibility problem of visitors in Scala.

5.2.1 The Extensibility Problem of Visitors

In Section 4.4 we have seen that the implementation of GM corresponds to a visitor: the trait

Generic(which defines the body of our generic functions) is the visitor component and the trait

Repis the composite component. If we would like to add additional cases to our visitor, we would

naturally consider having subtypes ofGenericwith the additional cases. However, while intuitively

this is the right thing to do, there are a couple of problems tosolve first. Let’s look at the definition

of Genericin Figure 4.10 and recall the definition of theacceptmethod inRepto see where the

problems are.

def accept[s<: Strategy, x<: TypeConstructor]
(v : Generic{type X = x; type S= s}) (implicit decom: Decompose[s]) : x {type A = T }

Abstracting the visitor in the composite. The first problem (already noted) is that theaccept

method ofRep(the composite) refers to the specific visitorGeneric. Although we can use a subtype

of Genericas an argument toaccept, in the definition ofacceptwe can only (type-safely) call

methods that are known to theGenerictrait. A possible solution for this problem is to makeRep

also parametrizable by the visitor. Interestingly, this isalready possible to do using our visitor

library, since theCompositeis itself parametrizable by a visitor. So we could have used

type GRep[V <: Generic,T] = Composite[V,T]

instead ofRep[T], which would allow us to refine the visitor used by the acceptmethod with

subtypesof Generic.

Abstracting the visitor in the visit methods. The second problem that we have is that the

types of the recursive arguments inGenericalso depend on the visitor and we cannot just use

110

5.3. Extensibility in Internal Visitors 111

type Rec[t] = R [Generic, t] to type those arguments because this would again preclude the use

of information only available to subtypes ofGeneric. So, again we basically need to be able to

abstract over any subtypes ofGeneric. One way to accomplish this is by parametrizing thevisit

methods that have recursive occurrences with an extra visitor type argument. For example, theplus

method inGenericcould be defined as:

def plus[v<: Generic, a, b] (a : R[v, a], b : R[v, b]) : X {type A = Plus[a, b] }

The two problems identified here are essentially the problems that make the visitor pattern not

extensible. Although we have exemplified the problems with GM, other visitors would have the

similar problems. One of the reasons why this extensibilityof visitors is not solved in mainstream

languages is basically because those languages lack the proper (type) abstractions to encode possi-

ble solutions. In other settings (which include Scala) various solutions for the problem have been

proposed (Odersky and Zenger, 2005a; Ernst, 2004; Nystromet al., 2004). Our visitor library al-

ready supports extensible visitors (since bothCompositeandR are already visitor-parametrized);

however, we need to implement concrete visitors differently to account for this extra parametriza-

tion.

5.3 Extensibility in Internal Visitors

In the previous section we identified two problems that made the V pattern hard to extend.

One of the problems is that, in general, we need to abstract the visitor in thevisit methods because

recursive occurrences may depend on the concrete visitor. However, when we use internal visitors

this problem does not exist because recursive occurrences of internal visitors do not depend on the

concrete visitor. Making use of this observation we will, inthis section, show that it is possible

to develop internal visitors that can be made extensible in asimple way. This work is inspired by

previous work done by the author with Hinze and Löh (Oliveiraet al., 2006).

5.3.1 Simple Extensible Visitors

Our visitor library allows us to define visitors that are strategy-generic, however it is also possible

to define strategy-specific visitors. In Figure 5.2 we can seehow to encode an internal version of

the visitorGenericusing our visitor library. Here we opted to specialize the types of the recursive

111

5.3. Extensibility in Internal Visitors 112

trait GenericextendsVisitor {
type S= Internal

def unit : X {type A = One}
def int : X {type A = int }
def char : X {type A = char}
def plus[a, b] (a : X {type A = a}, b : X {type A = b}) : X {type A = Plus[a, b] }
def prod[a, b] (a : X {type A = a}, b : X {type A = b}) : X {type A = Prod[a, b] }
def view[a, b] (iso : Iso[b, a], a:⇒ X {type A = a}) : X {type A = b}
}

Figure 5.2: An internal version forGenericusing the visitor library.

references to the formX {type A = α} instead of usingR[v, α] directly, because if we had used the

latter form we would need to do some extra conversions, whichwould affect the readability of the

code. We can justify the use of the former form by observing that whenS = Internal the typeY

(which represents the type of recursive references in the trait Internal) is set toX {type A = α} and,

therefore, we can just use that type directly. Note that thisversion ofGenericis equivalent to the

one presented in Figure 4.3.

5.3.2 Extending Generic Functions with Extra Cases

Adding extra meta-information to generic functions The generic serializer/deserializer func-

tions in Chapter 4 are two examples of generic functions thatcould be defined just using the struc-

ture of visitors. However, for some other generic functionsadditional meta-information may be

required. For example, a pretty printer may want to display information such as the name of the

actual class associated with the object in the pretty printed string. While information such as this

one is often available through mechanisms like reflection, we do not need to rely on the existence of

these mechanisms (or we may just not want to rely on them). We can add that meta-information to a

generic function by extendingGenericwith an extra method wrapping up the desired information.

trait GenericConstrextendsGeneric{
def constr[a] (name: String, arity : int, g : X {type A = a}) : X {type A = a} = g
}

The methodconstradds the constructor name and its arity to a generic functionand is given

a default definition that basically ignores the extra meta-information, but can be overridden later.

Generic functions that require meta-information about constructors can be defined usingGenericConstr

112

5.3. Extensibility in Internal Visitors 113

instead ofGeneric. In Section 5.4 we will see an example of a generic function that uses the extra

meta-information in its definition.

Extending generic functions with ad-hoc cases The main motivation for extensibility of generic

functions comes from the fact that, sometimes, we want to override the generic functionality for

a particular datatype at a particular generic function. Forexample, suppose that we want to use

a different encoding of lists than the one derived generically: a list can be encoded by encoding

its length, followed by the encodings of all the list elements. For long lists, this encoding is more

efficient than to separate any two successive elements of the lists and to mark the end of the list.

The trait Generic is the base class of all generic functions, and its methods are limited. If

we want to design a generic programming library, it is mandatory that we constrain ourselves to a

limited set of frequently used types. Still, we might hope toadd an extra case by extendingGeneric:

trait GenericListextendsGenericConstr{
def list [a] (a : X {type A = a}) : X {type A = List[a] } =

view(listIso, plus(constr("Nil", 0, unit), constr("Cons", 2, prod (a, list [a] (a)))))
}

This declaration introduces a traitGenericListas a subclass ofGeneric. The subclass contains

a single methodlist. By default,list is defined in a similar way to the methodlistRep(from Sec-

tion 4.3.2) — except that here we already included extra meta-information. However, in contrast to

listRep, the default definition oflist can be overridden (in the instances ofGenericList), and conse-

quently we can change the default behaviour of a particular generic function for lists. For example,

here is how to define the more efficient length-prefixed encoding for lists:

trait EncodeListextendsGenericList{
override type X = Serialize

override def list [a] (a : X {type A = a}) =
new Serialize{

type A = List[a]

def serialize(x : List[a]) : String=
int.serialize(length(x)) + concatMap((y : a)⇒ a.serialize(y), x)

}

}

implicit object encodeListextendsMySerializewith EncodeList

The trait EncodeListextends theGenericListand overrides the case for lists in the generic

function. Using Scala’s mixin composition, we can now create an objectencodeList, by combining

113

5.3. Extensibility in Internal Visitors 114

implicit def RUnit= new GRep[Generic,One] {
def accept[s<: Strategy, x<: TypeConstructor]

(vis : Generic{type X = x; type S= s}) (implicit decompose: Decompose[s]) =
vis.unit

}

implicit def RInt= new GRep[Generic, int] {
def accept[s<: Strategy, x<: TypeConstructor]

(vis : Generic{type X = x; type S= s}) (implicit decompose: Decompose[s]) =
vis.int

}

implicit def RChar= new GRep[Generic, char] {
def accept[s<: Strategy, x<: TypeConstructor]

(vis : Generic{type X = x; type S= s}) (implicit decompose: Decompose[s]) =
vis.char

}

implicit def RPlus[v<: Generic, a, b] (a : GRep[v, a], b : GRep[v, b]) = new GRep[v,Plus[a, b]] {
def accept[s<: Strategy, x<: TypeConstructor]

(vis : v {type X = x; type S= s}) (implicit decompose: Decompose[s]) =
vis.plus (a.accept(vis), b.accept(vis))

}

implicit def RProd[v<: Generic, a, b] (a : GRep[v, a], b : GRep[v, b]) = new GRep[v,Prod[a, b]] {
def accept[s<: Strategy, x<: TypeConstructor]

(vis : v {type X = x; type S= s}) (implicit decompose: Decompose[s]) =
vis.prod (a.accept(vis), b.accept(vis))

}

Figure 5.3: A less ad-hoc dispatcher.

the generic serialization functionMySerializewith the ad-hoc caseEncodeList.

5.3.3 Extensible Representations

By using internal visitors instead of strategy generic visitors, we have the advantage that there is

no problem of abstracting visitors in thevisit methods (since there are no visitors to abstract from

in the first place), which was one of the problems that we identified as precluding extensibility of

visitors. We are then left with the problem of abstracting the visitors in the composites. But, as

we have argued in Section 5.2, this can be done if we useGRepinstead ofRep. In Figure 5.3 we

see how to useGRepto define extensible representations. The instances ofGRepare very similar

to the correspondingRepinstances, except that they are now parametrized by the visitor and, for

114

5.4. Example: An Extensible Generic Pretty Printer 115

recursive representations, we use theacceptmethod directly instead of going viadecompose. The

structural casesUnit, Plus andProd together with the base casesint andchar are all handled in

Generic, and therefore we only needGenericas the visitor type parameter. However, forLists the

visitor parameter must be constrained differently: we need to useGenericListinstead, since this is

where theList case is handled.

implicit def RList[v<: GenericList, a] (a : GRep[v, a]) = new GRep[v, List[a]] {
def accept[s<: Strategy, x<: TypeConstructor]

(vis : v {type X = x; type S= s}) (implicit decompose: Decompose[s]) =
vis.list (a.accept(vis))

}

Had we usedRepinstead ofGRep, we would have not been able to define a representation for

lists, since we could not refineGenericto GenericList.

We can define an extensible generic serialization function by specializing the argumentX in the

visitor to Serializeand usingGRepfor the representations:

def extSerial[v<: Generic, t] (x : t) (r : GRep[v, t]) (implicit vis : v {type X = Serialize}) =
r .accept(vis).serialize(x)

This approach is extensible, modular and type-safe and allows us to write a very flexible generic

programming library.

5.4 Example: An Extensible Generic Pretty Printer

In this section we present a practical example where extensibility plays a crucial role in the defini-

tion of a generic function. The generic function in questionis anextensible generic pretty printer:

an example based on the non-modular version presented in Hinze (2004) (which was itself inspired

by Wadler (2003)).

5.4.1 A Generic Pretty Printer

Mainstream object-oriented programming languages such asJava or C# define a methodtoString()

in the top-most class of their class hierarchy. The intention of this method is to provide a human-

readable string representation of the corresponding object. This can be useful for many purposes

and it is advisable that programmers implement this method in their classes. However, this can be

115

5.4. Example: An Extensible Generic Pretty Printer 116

trait PPrint extendsTypeConstructor{
def pprint (x : A) : Document
}

trait GenericPrintextendsGenericConstr{
type X = PPrint

def unit = new PPrint {type A = One; def pprint (x : A) = empty}
def int = new PPrint {type A = int; def pprint (x : A) = text (x.toString())}
def char= new PPrint {type A = char; def pprint (x : A) = text (x.toString())}
def plus[a, b] (a : X {type A = a}, b : X {type A = b}) = new PPrint {

type A = Plus[a, b]

def pprint (x : A) = x.accept(new PlusVisitor[a, b,Document] {
def inl (y : a) = a.pprint (y)
def inr (z : b) = b.pprint (z)
})}

def prod[a, b] (a : X {type A = a}, b : X {type A = b}) = new PPrint {
type A = Prod[a, b]

def pprint (x : A) = x.accept(new ProdVisitor[a, b,Document] {
def prod (y : a, z : b) = a.pprint (y) ⋄ break⋄ b.pprint (z)
})}

def view[a, b] (iso : Iso[b, a], a:⇒ X {type A = a}) = new PPrint {
type A = b
def pprint (x : A) = a.pprint (iso.from (x))}

def constr[a] (name: String, arity : int, a : X {type A = a}) = new PPrint {
type A = a

def s= text (name)
def pprint (x : A) = if (arity ≡ 0) s else

group (nest(1, (text ("(") ⋄ s⋄ break⋄ a.pprint (x) ⋄ text (")"))))}
}

Figure 5.4: A Generic Prettier Printer

tedious since much of the code required tends to be longwinded and repetitive. One alternative to

this “ad-hoc” way of writing a function is to define a generic function that can be reused by specific

instances, avoiding the tedious code.

Figure 5.4 presents an instance ofGeneric that defines a generic pretty printer. The pretty

printer makes use of Scala’sscala.textpackage, which contains pretty printing combinators. These

combinators generate a value of typeDocumentthat can be rendered into a string afterwards. For

the structural cases, theunit function returns an empty document;plusdecomposes the sum and

pretty prints the value in both cases; for products, we pretty print the first and second components

separated by a line. For base typeschar andint we return a basicDocumentbased on thetoString

116

5.4. Example: An Extensible Generic Pretty Printer 117

result for those types. Theview case uses the isomorphism to convert between the user-defined

type and its structural representation. Finally, since pretty printers require extra meta-information,

the functionconstradds that information to the resulting String.

Similarly to other generic functions, the methodprettyprovides an easy-to-use interface for the

generic function. To usepretty, we need a value of typet together with a representation oft and a

visitor whereX = PPrint. This last argument can be implicitly passed, but the representation oft is

not implicit just because Scala’s type system does not allowit (since their types are not contractive).

def pretty[v<: Generic, t] (x : t) (r : GRep[v, t]) (implicit vis : v {type X = PPrint}) = {
var writer = new OutputStreamWriter(System.out);
r .accept(vis).pprint (x).format (80,writer);
writer.flush();
}

The methodpprint (x) produces aDocument, which contains a methodformat taking the num-

ber of characters that we want to have per line and anOutputWriter(where we write out the result

produced by the pretty printer). We assume the standard 80 characters per line and write the result

to the standard output.

5.4.2 Pretty Printing Trees

As a first example for the pretty printer, let’s create an implementation of binary trees using our

visitor library. This implementation is shown in Figure 5.5. Furthermore, we assume that there is

already an isomorphismtreeIsobetween trees and sums of products.

To use generic functions on trees, we proceed in the same way as we did for lists, creating a

subtype ofGenericConstrand providing an instance ofGRep(that we omit here).

trait GenericTreeextendsGenericConstr{
def tree[a] (a : X {type A = a}) : X {type A = Tree[a] } =

view(treeIso, plus(constr("Empty", 0, unit),
constr("Fork", 3, prod (a, prod (tree[a] (a), tree[a] (a))))))}

Providing a pretty printer that supports ad-hoc cases forTreeamounts to declaring an object

that uses mixin composition to inherit from bothGenericPrintandGenericTree. However, in this

case we do not override the default behaviour of the generic pretty printer because, for trees, it will

already produce the desired result.

implicit object prettyTreeextendsGenericPrintwith GenericTree

117

5.4. Example: An Extensible Generic Pretty Printer 118

trait TreeVisitor[a] extendsVisitor {
type Rec= R[TreeVisitor[a]]

def empty: X
def fork (x : a, l : Rec, r : Rec) : X
}

type Tree[a] = Composite[TreeVisitor[a]]

def Empty[a] = new Tree[a] {
def accept[s<: Strategy, x]

(vis : TreeVisitor[a] {type X = x; type S= s}) (implicit decompose: Decompose[s]) : x =
vis.empty

}

def Fork[a] (x : a, l : Tree[a], r : Tree[a]) = new Tree[a] {
def accept[s<: Strategy, x]

(vis : TreeVisitor[a] {type X = x; type S= s}) (implicit decompose: Decompose[s]) : x =
vis.fork (x, decompose.dec(vis, l), decompose.dec(vis, r))

}

abstract classVTree[s<: Strategy, a, b] (implicit decompose: Decompose[s])
extendsVisitorFunc[TreeVisitor[a], s, b] (decompose) with TreeVisitor[a]

Figure 5.5: A V for binary trees

To see the pretty printer in action, let’s consider a small function that produces trees with some

integer value on top, the predecessor on the nodes below and so on, stopping when the last layer of

nodes has value 1 (for each node):

def genTree(x : int) : Tree[int] =
if (x ≡ 0) Empty[int] elseFork (x, genTree(x− 1), genTree(x− 1))

The callpretty (genTree(4)) (RTree(RInt)) would produce the following output:

(Fork
4
(Fork

3
(Fork 2 (Fork 1 Empty Empty) (Fork 1 Empty Empty))
(Fork 2 (Fork 1 Empty Empty) (Fork 1 Empty Empty)))

(Fork
3
(Fork 2 (Fork 1 Empty Empty) (Fork 1 Empty Empty))
(Fork 2 (Fork 1 Empty Empty) (Fork 1 Empty Empty))))

As we can see, the pretty printer breaks the result into multiple lines, since a single line would

118

5.4. Example: An Extensible Generic Pretty Printer 119

def printList[a] (x : List[a]) (g : PPrint {type A = a}) : Document=
x.accept[External,Document] (new VList[External, a,Document] {

def rest (l : List[a]) : Document=
l.accept[Internal,Document] (new VList[Internal, a,Document] {

def nil = text ("]")
def cons(y : a, ys: Rec) = text (",") ⋄ break⋄ g.pprint (y) ⋄ ys.get
})

def nil = text ("[]")
def cons(y : a, ys: Rec) = group(nest(1, text ("[") ⋄ g.pprint (y) ⋄ rest (ys.get)))
})

object prettyList2extendsGenericPrintwith GenericList{
override def list [a] (a : PPrint {type A = a}) = new PPrint {

type A = List[a]

def pprint (x : List[a]) : Document= printList (x) (a)
}

}

Figure 5.6: Ad-hoc pretty printing for lists.

take more than 80 characters. Each level of the tree is nicelyindented, and it is clear from the

layout how the tree is structured.

5.4.3 Pretty Printing Lists

For most user-defined types likeTree, our generic pretty printer works nicely. However, for some

types such as lists or sets, the default generic pretty printing algorithm may not be the most appro-

priate. The problem with lists is that we normally use a special mix-fix notation to represent them:

instead of writing “Cons (3,Cons (2,Nil))” we usually write something like “ [3, 2]”. If we just

use the default behaviour that is given byGenericList(see Section 5.3.2) we would get the more

longwinded notation for lists. In order to adapt our genericfunction in such a way that the short

notation is used we need to override the default functionality by providing an ad-hoc definition.

We show the code for pretty printing lists in Figure 5.6. The methodprintList is used by the

overridden definition oflist (in prettyList2) to provide the short notation. It is important to note

that this ad-hoc extension to the generic function is modular: we do not need to modify the module

where the main body of the generic function is.

119

5.4. Example: An Extensible Generic Pretty Printer 120

Pretty Printing Lists of Characters

In many programming languages, strings are represented as lists of characters. The notation for

strings differs from the conventional list notation: instead of “ [’H’, ’e’, ’l’, ’l’, ’o’]” we usu-

ally have “"Hello"”. As we shall see, it is possible to modify our pretty printerso that it also

supports this notation. However, this modification is not entirely modular. In order to handle

strings as lists of characters, not only do we need to treat lists in a special manner, but we also

need to handle lists of characters diferently from lists of any other element type. We thus have to

implement anested case analysis on types. In order to do this nested case analysis, we need to

anticipate this possibility and include a functionpprintList in the traitPPrint.

trait PPrint extendsTypeConstructor{
def pprint (x : A) : Document

def pprintList (x : List[A]) (g : PPrint {type A = PPrint.this.A}) : Document=
printList (x) (g)}

By default, pretty printing a list of values of some typeA will use the standard list notation.

However, whenA is the typecharwe override the definition ofpprintList in the body of the generic

function so that it handles lists of characters specially.

trait GenericPrintextendsGenericConstr{
. . .

def char= new PPrint {
type A = char;

def pprint (x : A) = text (x.toString())
override def pprintList (x : List[A]) (g : PPrint {type A = char}) =

text ("\"" + (x.accept[Internal,String] (new VList[Internal,Char,String] {
def nil = "\""
def cons(y : char, ys: Rec) = y.toString() + ys.get})))}

. . .}

The final touch is to modifyprettyList2so that it callspprintList, thus forwardingpprint to the

appropriate functionality.

object prettyList2extendsGenericPrintwith GenericList{
override def list [a] (a : PPrint {type A = a}) = new PPrint {

type A = List[a]

def pprint (x : List[a]) : Document= a.pprintList (x) (a)
}

}

120

5.5. Extensibility on Visitors of any Kind 121

In contrast to supporting just the list notation (but not thestring notation), this extension is not

modular since we need to modify both the traitsPPrint andGenericPrint. Still, it is interesting

to observe that such support is possible and, arguably, whenthere are a few exceptional cases like

strings this may be acceptable.

The problem with our implementation of the generic functionsupporting the string notation is

that, because we are basically using a Church encoding, we are restricted to a simple pattern of

recursion. Since nested case analysis does not fit this recursion scheme, we are forced to manually

built in support for it.

One immediate question that arises is wheather we can use other kinds of encodings to tackle

the same question modularly. For example, unlike Church encodings, Parigot encodings are very

liberal in the recursion scheme that can be used. However, for other encodings, recursive references

may depend on the visitor, which raises the problem of abstracting the visitor in thevisit methods

that the Church encoding does not have. In the next section wesee how to use a different technique

that allows extensibility for other encodings.

5.5 Extensibility on Visitors of any Kind

In the previous section we have a solution for extensibilityof internal visitors. In this section we

present a different solution for the extensibility problem of visitors that works for any encodings.

This solution is inspired by a technique originally introduced by Odersky and Zenger (2005a). We

demonstrate its application to generic functions by revisiting the extensible pretty printer example.

The full code for this section is presented in Appendix H.

5.5.1 Extensibility on Generic Encodings

Internal visitors do not have recursive occurrences in thevisit methods that depend on the visi-

tors themselves. However, other encodings may not have thisproperty and we need to solve this

problem if we want to achieve extensibility. One solution, mentioned in Section 5.2, would be to

parametrize on the type of concrete visitors in thevisit methods. Although this could be done, the

code would become cluttered with type parametrizations (both from thevisit methods and from the

Composite). Fortunately, using Scala abstract types and nested traits we can tackle this problem

in a different manner, with a minimum amount of noise. The idea is thatinstead of abstracting

121

5.5. Extensibility on Visitors of any Kind 122

trait ExtensibleGMVisitor{
type Gen<: Generic
type GenWith[x<: TypeConstructor, s<: Strategy] = Gen{type X = x; type S= s}

trait GenericextendsVisitor {
type Rec[t] = R[Gen, t]

def unit : X {type A = One}
def int : X {type A = int}
def char : X {type A = char}
def plus[a, b] (a : Rec[a], b : Rec[b]) : X {type A = Plus[a, b] }
def prod[a, b] (a : Rec[a], b : Rec[b]) : X {type A = Prod[a, b] }
def view[a, b] (iso : Iso[b, a], a:⇒ Rec[a]) : X {type A = b}
}

type Rep[T] = Composite[Gen,T]

implicit def RUnit= new Rep[One] {
def accept[s<: Strategy, x<: TypeConstructor]

(vis : Gen{type X = x; type S= s}) (implicit decompose: Decompose[s]) =
vis.unit

}

. . .

implicit def RProd[a, b] (implicit a : Rep[a], b : Rep[b]) = new Rep[Prod[a, b]] {
def accept[s<: Strategy, x<: TypeConstructor]

(vis : Gen{type X = x; type S= s}) (implicit decompose: Decompose[s]) =
vis.prod (decompose.dec(vis, a), decompose.dec(vis, b))

}

. . .

}

Figure 5.7: A parametrized module for generic functions

the concrete visitors in eachvisit method and in each composite element, we have a trait with an

abstract type over the concrete visitor in use. In Figure 5.7, we can see how to apply this solution

to theGenericvisitor.

The top-level traitExtensibleGMVisitorhas an abstract typeGen, which is a subtype of the

inner traitGeneric. The methodacceptin Repuses the abstract typeGen to define the type of

its argumentvis, instead of usingGenericdirectly. This fact means that it is up to the instances

of ExtensibleGMVisitorto define which specific kind ofGenericis going to be used. It may well

be that such an instance would instantiateGento Genericitself. In that case not much would be

gained. However, any subclass would also be a valid instantiation, and therefore we could make

use of any extra cases defined in such subtypes. In the next twosubsections we shall see how we

122

5.5. Extensibility on Visitors of any Kind 123

can independently create two extensions to generic functions.

5.5.2 Supporting Lists

The traitExtensibleGMList

trait ExtensibleGMListextendsExtensibleGMVisitor{
type Gen<: Generic

trait Genericextendssuper.Generic{
def list [a] (a : Rec[a]) : X {type A = List[a] }

}

implicit def RList[a] (implicit a : Rep[a]) : Rep[List[a]] = new Rep[List[a]] {
def accept[s<: Strategy, x<: TypeConstructor]

(vis : Gen{type X = x; type S= s}) (implicit decompose: Decompose[s]) =
vis.list [a] (decompose.dec(vis, a))

}

}

extendsExtensibleGMVisitorand defines a new traitGeneric, which is a subtype of the original.

Because this new version ofGenericis a subtype of the original one, we can refineGenby further

constraining it to be a subtype of this new version. This modification means that functions that

have arguments that are instances ofGencan now assume any new methods declared in the new

version ofGeneric. In particular, we have extended the original interface with a new methodlist for

handling the case for lists and we have defined a representation RListmaking use of that method.

5.5.3 Supporting Meta-Information and Pretty Printing

In Section 5.3.2 we presented an extension ofGenericthat supported constructor information. We

shall do the same now and use that added functionality to define a generic pretty printing function

using our new encoding. The traitExtensibleGMConstrdefines an extension ofExtensibleGMVisitor

supporting extra meta-information.

trait ExtensibleGMConstrextendsExtensibleGMVisitor{
type Gen<: Generic

trait Genericextendssuper.Generic{
def constr[a] (name: String, arity : int, g : Rec[a]) : X {type A = a}
}

def RConstr[a] (name: String, arity : int, a : Rep[a]) : Rep[a] = new Rep[a] {
def accept[s<: Strategy, x<: TypeConstructor]

(vis : Gen{type X = x; type S= s}) (implicit decompose: Decompose[s]) =

123

5.5. Extensibility on Visitors of any Kind 124

vis.constr(name, arity, decompose.dec(vis, a))
}

. . .

As in Section 5.5.2, we extend the inner traitGenericwith a new method (the methodconstr).

This method supports meta-information, and can be used to define generic functions that require

such support.

Also in ExtensibleGMConstr, we define a new generic function for pretty printing. The code

for this generic function can be found in Appendix H. The trait PPrint defines the signature of the

generic function; the traitGenericPrintdefines the main body of the generic function; and, finally,

the methodpretty provides a simple interface for pretty printing. A noticeable difference to the

solution using internal visitors in Section 5.4.1 is that, because the typeGenis abstract, we do not

know which concreteGenericvisitor is going to be used; therefore, we need to require that the self

type ofGenericPrintis GenWith[PPrint,External]. Another difference, is that, since we opted to

use an external visitor in the definition of the pretty printing functions, we need to explicitly make

recursive calls (by using theacceptmethod).

5.5.4 Merging List and Constructor Support

After defining extensions supporting lists and constructors we can now merge both functionali-

ties together. To do that we create a new trait that, using mixin composition, inherits from both

ExtensibleGMConstrandExtensibleGMList. For the inner traitGenericwe do something similar,

inheriting from the two traitsGenericin the top-level traits. We also define a new traitGenericPrint,

which inherits its functionality from the traitsGenericPrintin ParigotConstrand the newly defined

Generic, and overrides the default case for lists adding support to the mixfix bracket notation. The

code is shown in Figure 5.8.

As a remark we should note that certain programming languages supportdeep mixin composi-

tion (Aracicet al., 2006; Ernst, 1999), which could be used to remove some of theburden from the

programmer when mixing in related extensions. With deep mixin composition, we could automat-

ically mixin inner traits. In Scala we need to do this composition manually.

124

5.5. Extensibility on Visitors of any Kind 125

trait ExtensibleGMListConstrextendsExtensibleGMConstrwith ExtensibleGMList{
type Gen<: Generic

trait Genericextendssuper[ExtensibleGMConstr].Generic
with super[ExtensibleGMList].Generic

trait GenericPrintrequires GenWith[PPrint,External]
extendssuper.GenericPrintwith Generic{

override def list [a] (a : Rec[a]) : PPrint {type A = List[a] } = new PPrint {
type A = List[a]

def pprint (x : A) = pprintl (x) (a.get,GenericPrint.this)
}

}

def pprintl [a] (x : List[a]) (implicit a : Rep[a], v : GenWith[PPrint,External]) =
x.accept[E,Document] (new VList[E, a,Document] {

def rest (l : List[a]) : Document=
l.accept[I ,Document] (new VList[I , a,Document] {

def nil = text ("]")
def cons(y : a, ys: Rec) = text (",") :: break:: a.accept(v).pprint (y) :: ys.get
})

def nil = text ("[]")
def cons(y : a, ys: Rec) = group(nest(1, text ("[") :: a.accept(v).pprint (y) ::

rest (ys.get)))
})

}

Figure 5.8: Merging Support for Constructor and Lists

5.5.5 Creating a New Module

We can create a new object that wraps up all wanted functionality and closes the door to extensibil-

ity by fixing the abstract typeGen. In our example we inherit from the traitExtensibleGMListConstr

and set the abstract typeGen to the typeGenericfrom that trait. SinceExtensibleGMListConstr

already supports lists and meta-information in generic functions as well as a generic pretty printing

function, we can create a functionmyTestthat uses the pretty printing function to print a list using

a mix-fix notation. This new module could now be imported fromother Scala code and be used as

any other Scala library.

object testExtensibleGMListConstrextendsExtensibleGMListConstr{
type Gen= Generic

implicit object prettyPrintextendsGenericPrint

def listTest= Cons(’3’,Cons(’2’,Cons(’1’,Nil [char])))

def myTest= pretty (listTest) (RList (RChar), prettyPrint)}

125

5.5. Extensibility on Visitors of any Kind 126

5.5.6 Supporting String Notation

Finally, and to complete the pretty printer example using external visitors, we revisit the problem

of supporting the string notation. The solution presented here follows closely Hinze’s own solution

for the problem. However, in contrast to his solution, our solution is extensible and modular.

As a first step, we create a subtype ofGenericthat implements a common default functionality

for all cases of a generic function. This default functionality is provided by the methoddeflt, that

takes a representation of some typea and gives an instance of the generic function for that type.

This trait could be incorporated, for example, inExtensibleGMVisitor.

trait GenericDefaultextendsGeneric{
type S= External

def deflt[a] (a : Rep[a]) : X {type A = a}

def unit = deflt (RUnit)
def int = deflt (RInt)
def char= deflt (RChar)
def plus[a, b] (a : Rec[a], b : Rec[b]) : X {type A = Plus[a, b] } =

deflt (RPlus(a.get, b.get))
def prod[a, b] (a : Rec[a], b : Rec[b]) : X {type A = Prod[a, b] } =

deflt (RProd(a.get, b.get))
}

Figure 5.9 shows the code for supporting the string notation. UsingExtensibleGMListConstr

as a base for the traitExtensibleGMString, we define a generic function that handles pretty printing

of list values playing the same role aspprintList in PPrint did on the internal visitor solution. The

body of that function is defined on the traitGenericPrintList, which extendsGenericDefaultand

implementsdefltso that it calls the functionprettyDocthat is defined inExtensibleGMConstr. We

also overridechar in GenericPrintListso that it uses the string notation to print a list of characters.

Then, we define a methodprettyListDocthat provides a convenient way to call the generic function.

Finally, we update thelist method inGenericPrint, making it callpprintl.

To summarize, this solution corresponds, in essence, to thedefinition of two mutually recursive

(generic) functionsGenericPrintandGenericPrintList, in which the case for lists inGenericPrint

is handled byGenericPrintListthat, in turn, handles all the cases except characters by calling back

GenericPrint. Unfortunately, the code in Figure 5.9 did not compile in theversion of Scala that

we tried, although we believe it should. The problem is discussed briefly in Appendix H and a

126

5.5. Extensibility on Visitors of any Kind 127

trait ExtensibleGMStringextendsExtensibleGMListConstr{
trait PPrintList extendsTypeConstructor{def pprintList (x : List[A]) : Document}

implicit def defPrint: GenWith[PPrint,External]

trait GenericPrintListrequires (GenWith[PPrintList,External] with GenericDefault)
extendsGenericDefault{

type X = PPrintList
def deflt[a] (a : Rep[a]) = new PPrintList {type A = a;

def pprintList (x : List[A]) = prettyDoc(x) (RList (a), defPrint)}

override def char= new PPrintList {
type A = char

def pprintList (x : List[char]) =
text ("\"" + (x.accept[Internal,String] (new VList[Internal,Char,String] {

def nil = "\""

def cons(y : A, ys: Rec) = y.toString() + ys
})))

}

def view[a, b] (iso : Iso[b, a], a:⇒ Rep[a]) = new PPrintList {
type A = b
def pprintList (x : List[A]) : Document=

pprintl (
x.accept[Internal, List[a]] (new VList[Internal,A, List[a]] {

def nil = Nil [a]
def cons(x : A, xs: Rec) = Cons(iso.from (x), xs.get)

})) (a, defPrint)
}

def list [a] (a : Rep[a]) = deflt (RList (a))
}

def prettyListDoc[t] (x : List[t]) (implicit r : Rep[t], v : GenWith[PPrintList,External]) =
r .accept(v).pprintList (x)

trait GenericPrintrequires GenWith[PPrint,External] extendssuper.GenericPrint{
override def list [a] (a : Rec[a]) : PPrint {type A = List[a] } = new PPrint {

type A = List[a]
def pprint (x : A) = pprintl (x) (a.get,GenericPrint.this)}

override def constr[a] (name: String, arity : int, a : Rep[a]) = new PPrint {
type A = a
def s= text (name)
def pprint (x : A) = if (arity ≡ 0) s else

group(nest(1, (text ("(") :: s :: break::
a.rep (GenericPrint.this).pprint (x) :: text (")"))))}

}

}

Figure 5.9: Support the string notation with the Parigot encoding.

127

5.6. Comparing the Two Approaches to Extensibility 128

workaround is provided.

5.6 Comparing the Two Approaches to Extensibility

The two approaches to extensibility presented in this chapter have different advantages and disad-

vantages. While it may be tempting to think that the solutionpresented in Section 5.5 is superior

because it supports any kind of visitors and does not have issues with mutually recursive functions,

the fact is that the solution in Section 5.3 has some interesting (subtle) advantages worth remarking

upon:

• The first advantage is that there isno need to close extensionsto be able to use functionality.

With the solution in Section 5.5 we have to create an object that instantiates the abstract

types, so that we can actually use the functionality that is provided (the object defined in

Section 5.5.5 is an example of this). In contrast, the solution using internal visitors does not

need the creation of these objects, which makes the approachsimpler to use.

• The second advantage is thatthere is a single family of types. With the solution in Section 5.5,

differentclosedextensions are incompatible with each other, because each closed extension

has a different family of types associated with it. For example, suppose we had an object that

inherited from the traitExtensibleGMStringand closed the extension. Then that object would

define its own family of representation typesRUnit, RChar, RInt, and so on, incompatible

with those of some other closed extension. If we had several closed extensions in the same

project and we did not plan carefully their usage, it may be impossible to mix the functionality

of two closed extensions. In order to combine the two, we either have to modify existing

code, or if we cannot access the source, we may end up duplicating code and creating a third

(closed) extension. This does not happen with the solution with internal visitors, because

there is one common family of types.

• The third and final advantage is thatwe can easily have functions that work on different

type universes (or domains). Suppose that we want to use our generic programming library

with structures that contain functions. Not all generic functions can be sensibly applied to

functions, for example, it is not (trivially) possible to serialize and deserialize those values.

However, writing other generic functions for functional types may be possible and desirable.

128

5.7. Discussion 129

For example we could just print the string “<< f unction>>” for functions with our generic

pretty printer, and have all other values nicely printed as usual. Ideally, we would like to

have serialization/deserialization functions that cannot be applied to functional values (this

is, they would produce a type-error), but we would like our pretty printer to handle those

values. To achieve this with the solution in Section 5.5, we would need to define two differ-

ent closed extensions: one that supports functional valuesbut has no serialization support;

and one that does not support functional values but has serialization support. So, with this

solution, we need to carefully plan both the generic programming library and its closed ex-

tensions. With the solution using internal visitors this ismuch simpler: if we do not want

to support functional values for serialization we simple donot provide any objects of type

GenericFunc{type X = Serialize} (hereGenericFuncis a hypothetical subtype ofGeneric

supporting a case for functional values).

In summary, the approach presented in Section 5.5 is more powerful because it allows us to

use any kind of visitors without limitation; however, for maximum flexibility, careful planning is

needed. In particular, extensions should be very finely grained, separating each different aspect,

so that closed extensions can pick just the functionality they want. In contrast, the solution in

Section 5.3 requires much less planning due to the existenceof a single family of types, which

means that all extensions can remain open and compatible with each other.

5.7 Discussion

A lot of work (Bird et al., 1996; Jansson, 2000; Hinze, 2000; Löh, 2004) provides a very strong

basis for generic programming, but only considers non-extensible generic functions. It was realized

by several authors (Hinze and Peyton Jones, 2000; Hinze, 2004; Lämmel and Peyton Jones, 2005)

that this was a severe limitation. The problem of extensibility of generic functions is related to

the expression problem. In this chapter we have shown that, when we consider the GM approach,

we can reduce extensibility of generic functions to the problem of extensibility on visitors. This

relation means that solutions from both domains can (possibly) be applied interchangeably. The

two solutions presented here can both be applied to either domain, yet each was were initially

proposed as a solution for one particular domain.

The first solution that we have presented (in Section 5.3) works only for internal visitors. How-

129

5.7. Discussion 130

ever, this solution is relatively simple to use and easy to implement because, with internal visitors,

the visit methods do not have recursive arguments. Interestingly, webelieve this is the first time

that a solution for the extensibility of visitors using a (functional) internal variation of the pattern

is presented. Most solutions that we know of have mutually dependent visitor and composite inter-

faces, which are closer to external visitors and are harder to extend. Alexandrescu (2001) proposed

acyclic visitorsto avoid the problem of mutual dependencies and, at the same time, allow exten-

sibility. However, dynamic casts are required for this solution to work. Several other solutions

(Odersky and Zenger, 2005a; Ernst, 2004; Nystromet al., 2004) relax the problem of mutual de-

pendencies by parametrizing on the type of the concrete visitor, which allows extensions to refine

that same type. Our second solution, inspired by Odersky andZenger (2005a), works that way.

One problem with internal visitors is that, because the visitor has no control of the traversal, we

have a limited recursion scheme available. Because of this,mutually recursive definitions (which

can be used to implement nested case analysis and binary methods) are harder to implement in a

modular way: we need to encode the mutually recursive definitions using a single visitor, which

is normally implemented by tupling the definitions togetherin a class. However, this solution is

non-modular, because we need to modify previously existingcode. A possible way around this is

to use a mixed solution that combines the two solutions that we have presented. The idea is that we

modify the solution with internal visitors so that it abstracts over the hard references to the generic

function in use. For example, if we are defining a generic pretty printing function we may want to

abstract overPPrint — the trait with the type of the generic function, where we maytuple mutual

definitions together. Then, if we wanted to support the string notation in a later extension, we could

just refine the abstract type to a more concrete subtype ofPPrint (with the extra definitions).

By choosing a more liberal kind of visitor, the solution using abstract types can avoid the

issue with mutually-recursive visitors, meaning that nested case analysis or binary methods can

be implemented without endangering modularity. In the context of generic programming, this

approach provides a novel solution to the problem of extensibility of generic functions, since nearly

all approaches that we know of (Lämmel and Peyton Jones, 2005; Weirich, 2006; Oliveiraet al.,

2006) have issues with mutually recursive generic functions. The exception is a solution by Löh

and Hinze (2006) that avoids this issue at the cost of type-safety: a call to an undefined case on a

generic function causes a run-time error instead of a compile-time error. However, we believe our

solution is preferable, because we keep all the expressive power and we do not need to abandon

130

5.7. Discussion 131

type-safety.

131

Chapter 6

Conclusion

6.1 Summary and Contributions

In this dissertation we have argued that, with expressive type systems such as the one in Scala, we

can capture many design patterns as software components. Togive credibility to our thesis, we have

presented a Scala implementation of a generic library for the V pattern that is parametrizable

over several aspects (or alternative implementations) of the pattern. We have also shown that,

because visitors are, in essence, encodings of datatypes, we can naturally apply well-known DGP

techniques to our visitors. This means that we can write generic and type-safe functions that work

for a very large family of visitors and thus avoid repetitionof similar and tedious to write code for

each concrete visitor. Finally, we have looked into the problem of extensibility, and have shown

the connection between extensibility of generic functionsand extensibility of visitors, investigating

different solutions for both problems.

The specific contributions of this thesis are as follows:

• We have shown that an OO language supporting generics and abstract types can be used

to capture different aspects of the V pattern as a software component. In particular,

as well as DGP, we have shown that visitors can bestrategy-generic, avoiding the design

choice in the traditional presentation of the V pattern of who controls the traversal. In

other words, the control of the traversal (the strategy) is parametrizable and the programmer

only needs to commit to a particular traversal strategy whendefining a new function (using

visitors) instead of hard-wiring a particular strategy on the implementation of the visitor.

132

6.1. Summary and Contributions 133

• We have implemented a visitor notation, directly in Scala, that allows visitors to be treated

as functions that take composites as parameters. With this notation, functions defined using

visitors look like functions defined by (a simple form of) pattern matching, which is more

intuitive for programmers.

• We have adapted the GM approach to DGP to Scala and shown how itcan be used in combi-

nation with our visitor library to define generic functions over those visitors. Furthermore, we

have exploited inheritance in Scala to provide an easy way toreuse code from other generic

functions. This particular kind of reuse is valuable, but itis harder to implement in program-

ming languages like Haskell. Finally, we have also demonstrated that we can define views to

other families of visitors using GM. Specifically, we have shown how to define the so-called

fixpoint view.

• We have shown how to adapt our visitor library so that it supports the definition of a particular

class of indexed datatypes (which we called unnested GADTs). Although Johann and Ghani

(2007) have shown how to define a family of Church encodings for nested datatypes (which

are a form of indexed types not handled by our own family), we believe this is the first time

that a family of datatype encodings for a form of GADTs is given.

• We have established a relationship between visitors and generic functions by showing that

the essence of the GM approach is, itself, an instance of the V pattern.

• This relationship between GM and visitors means that the problem of extensibility of generic

functions can be reduced to the problem of extensibility of visitors. This provides new insight

and leads to new solutions for extensibility problems. In particular, we show a new solution

to both problems, using internal visitors, that has the advantage of simplicity. We also show

a new solution to the problem of extensibility of generic functions inspired by an existing

solution to the problem of extensibility of visitors. This solution has the main advantage that

it works for any encoding.

• Finally, we have also seen two practical applications of generic programming in an OO lan-

guage. The first application shows how to define a serialization (and deserialization) compo-

nent that works, generically, for a large family of visitors. The second application is a flexible

generic pretty printing component that can be adapted, if the generic behaviour of the pretty

133

6.1. Summary and Contributions 134

printer is not desirable, with an ad-hoc implementation. Weshould emphasize that current

solutions (in mainstream OO languages) for those problems tend to be inflexible, inelegant

and (sometimes) type-unsafe. We believe that DGP provides amuch better solution for these

problems.

6.1.1 Some Extra Insights

The aspect of “who is responsible for traversing the object structure” (Gammaet al., 1995) in

the V pattern, which (as far as we know) has always been presented as non-parametrizable,

can be precisely related with encodings of datatypes and with different recursion patterns. These

connections reveal interesting insights, that are worth mentioning:

• The connection with encodings of datatypes provides, for example, an alternative implemen-

tation for internal visitors where the visitor and the composite are not mutually dependent

(or cyclic). Most implementations of internal visitors (i.e. visitors where the visitor compo-

nent has no control over the traversal) on the literature usemutually dependent visitors and

composites, which makes extensibility harder to realise.

• The connection with recursion patterns provides insight into the expressive power of differ-

ent implementations of visitors. For instance, internal visitors are associated with iteration

offering a simple, but limited, pattern of recursion. Many of the problems often found in the

visitor pattern, such as the difficulty of doing binary methods, are related to the pattern of

recursion in use: it is hard to implement binary methods or nested case analysis with internal

visitors, but with some other kinds of visitors (for example, external visitors), these are not

problematic.

• Another insight gained from the connection with recursion patterns reveals alternative im-

plementations of the V pattern that have not been explored in the past. While internal

visitors are related to catamorphisms and external visitors correspond, basically, to case anal-

ysis, there are other recursion patterns that give rise to different implementations of visitors.

For example paramorphisms, which capture primitive recursion, have a corresponding visi-

tor implementation. The paramorphic visitors in Section 3.8.4 present an implementation of

visitors of that kind.

134

6.2. A Type-Theoretic Perspective on this Thesis 135

• Finally, recursion patterns arefirst-class: we can have a function that is parametrized by a

strategy, and different instantiations of that parameter will determine which recursion pattern

is going to be used. With the traditional, higher-order, presentation of recursion patterns, it is

not straightforward to have a function that abstracts from the recursion pattern in use, because

different recursion patterns have (slightly) different types which are difficult to abstract from.

Although this fact is interesting to observe, we have not yetexplored any possible uses.

6.2 A Type-Theoretic Perspective on this Thesis

The main focus of this dissertation was to show how it is possible to capture the V design

pattern as a software component. For doing so, we were inspired by type-theoretic results about

encodings of datatypes. However, the development of our visitor library lead to some generaliza-

tions of encodings of datatypes that seem to be interesting from a type-theoretic perspective. We

review our results here with that perspective in mind.

Background The traditional presentation of encodings of datatypes in System F (and common

variants) is of the formT ≡ ∀X. (F R ⇒ X) ⇒ X. In this form a datatypeT can be defined

by instantiatingF to some sum-of-product functor. Buchlovsky and Thielecke (2005) show that

an isomorphic variation of these encodings, of the formT ≡ ∀X. (
∏

i

Fi R ⇒ X) ⇒ X, can

be precisely related to the V pattern. With this variation a new datatypeT can be defined

by providing a product of functionsV R X ≡
∏

i

Fi R ⇒ X (the visitor), where each function

Fi R⇒ X corresponds to avisit method andFi R corresponds to the arguments of the constructor.

Church and Parigot encodings (corresponding, respectively, to internal and external visitors) follow

from two specific instantiations ofR (R≡ X andR≡ µParigot V):

µChurch V ≡ ∀X. V X X⇒ X
µParigot V ≡ ∀X. V (µParigot V) X⇒ X

Generic encodings of datatypes Although Church and Parigot encodings both follow from the

same template, we were not aware of any more general abstraction that could (linguistically) cap-

ture both encodings as a particular instance of that same abstraction. In this dissertation we show

that such an abstraction exists and that it can be used to define a generic encoding of datatypes:

135

6.2. A Type-Theoretic Perspective on this Thesis 136

µ V ≡

accept method
︷ ︸︸ ︷

∀X S. Decompose S⇒ V (S V X) X
︸ ︷︷ ︸

Visitor

⇒ X

The type parameterS (called the decomposition strategy) determines which encoding is used

when visiting a value of typeµ V. We can recover Church or Parigot encodings by instantiating S

with eitherChurchor Parigot, where

Church V X≡ X
Parigot V X≡ µ V

Decomposition function and recursion patterns The typeDecompose Sdefines a function

dec∈ V (S V X) X⇒ µ V ⇒ S V X

whose type is closely related to the types of well-known recursion patterns. For example, when we

instantiateV R X≡ F R⇒ X (whereF is some sum of products) andS≡ Churchwe obtain the

type (modulo isomorphisms):

cata∈ (F X⇒ X) ⇒ µ F ⇒ X

If we would have instantiatedS≡ Para instead, we would have obtained a function

paraDec∈ (F (µ F,X)⇒ X)⇒ µ F ⇒ (µ F,X)

which is a ‘cousin’ of the paramorphism recursion pattern. The connection betweendecand recur-

sion patterns reveals interesting properties. For example, the ‘free theorem’ (Wadler, 1989) ofcata

gives us a fusion law. The functiondec, being a generalization ofcata, has also a, more general,

free theorem that can be specialized to obtain the fusion laws forcataand other recursion patterns.

Encodings of indexed datatypes In this thesis we have also shown how to encode a form of

indexed types by slightly generalizing the typeµ V

µ V T ≡

accept method
︷ ︸︸ ︷

∀X S. Decompose S⇒ V (S V X) X
︸ ︷︷ ︸

Visitor

⇒ X T

so that it takes one extra parameterT, which is the index type. Capturing families of GADTs in

this way is, as far as we know, a novel result. Worth noting is the fact that, by using the variation

136

6.3. Haskell versus Scala 137

based on products of functions instead of one based on sums ofproducts (i.e. of the form (F U ⇒

X T) ⇒ X T), we can specify the return types of the constructors of our indexed datatypes. With

(a naive) sums of products approach it is not possible to express the dependencies between the sum

types and the return type, which means that (with such an approach) we cannot express indexed

types. Consequently, there is no isomorphism between sums of products and products of functions

for the two variations ofµ V T (that is, the variation with sums of products is less expressive than

the one with products of functions). A possible way to recover the isomorphism may be to use

something like (F U T ⇒ X T)⇒ X T, but we have not explored this path yet.

6.3 Haskell versus Scala

We specified most parts of our library using a functional notation that is, in essence, syntactic sugar

for Haskell. The option to use Haskell as a specification language had basically two motivations.

Firstly, Haskell is relatively close to System F, which giveus sufficient confidence that our construc-

tions are (semantically) well-defined. Secondly, Haskell is, by far, the most widely experimentation

platform for implementations of DGP.

Because Scala is significantly different from Haskell, we were curious to know if there would

be any advantages (or disadvantages) of using a language like Scala instead of Haskell for the

implementation of generic programming libraries. It is interesting to compare the Haskell imple-

mentation with the Scala one. We start by stating the advantages of the Haskell version:

• Purity - Our visitor library can strongly benefit from the theory developed around recursion

patterns. In particular, we would expect that the fusion laws associated with recursion pat-

terns could be used to optimize programs written with visitors. However, in the presence

of side-effects, those laws do not hold. Because Haskell is a pure language we have the

guarantee that no (hidden) side-effects exist, which makes this kind of optimization fairly

straightforward to apply. In contrast, in an impure language like Scala, we do not have the

same guarantees about side-effects, which makes this kind of optimizations much harder to

apply.

• Syntactical clarity- While Scala’s syntax is more elegant than Java’s or C#, we found, at

points, that too much syntactic verbosity was required in comparison with Haskell’s equiva-

lent. In particular, the declaration of types in Scala tendsto be quite long-winded. Abstract

137

6.3. Haskell versus Scala 138

types especially contribute to that since, to specify the type of an abstract type in a method

declaration, we need something liket{ type A = a} while in Haskell we can often achieve

the same result using type-constructor polymorphism with the syntaxt a. Scala has recently

been extended with support for type-constructor polymorphism (Moorset al., 2007), which

may help on the syntactical clarity issue. Also, due to the complexity of Scala’s type system,

we need many more type annotations than in Haskell, which again affects clarity.

We now state the advantages of Scala:

• Expressiveness of the type system- The combination of subtyping, abstract types, self types,

traits and mixins provides Scala with an impressively powerful type system. We found two

parts of our library that are typeable in Scala but are very hard (or even impossible) to type

in Haskell. The first part, not possible to type in Haskell (because it would require polymor-

phic kinds), is the precise type of theVisitor component. We discuss this in more detail in

Section 6.3.1. The second part of the library that we found very hard to type in Haskell con-

cerns the extensibility solutions. While the first solutionto extensibility was inspired by the

Haskell solution in EMGM, the fact is that the Haskell version feels like a workaround for

the absense of proper subtyping. Specifically, the GM (non-extensible) solution would have

a methodrep :: ∀g. Generic g⇒ g t and the EMGM version changes the quantification of

the typeg to the enclosing classRep, rather than the methodrep, to allow extensibility. The

Scala type forrep (written in a Haskell-like syntax) would berep :: ∀(g <: gen). g t, where

gen<: Genericwould be a type parameter of the enclosing class. The key difference to the

Haskell version is that the typeg remains universally quantified inrep and only the bound

genis quantified in the enclosing class. In Haskell it is possible to simulate abstraction over

type classes (Hughes, 1999; Lämmel and Peyton Jones, 2005), which would allow us to have

rep :: ∀g. gen g⇒ g t. Still, this would be unsatisfactory becausegencould be any type

class (and not just asubclassof Generic). Finally, Haskell lacks a mechanism that mimics

information hiding over several objects as given in Scala bythe combination of nested classes

and abstract types. As an analogy, to help the reader visualize a possible such mechanism

in Haskell, imagine an hypothetical extension with the ability to declare type classes inside

type classes combined with associated types (Chakravartyet al., 2005b) that allowed type re-

finements of these same associated types in subclasses. The lack of such a mechanism means

138

6.3. Haskell versus Scala 139

that there is no straightforward way to encode the second Scala solution to the extensibility

problem in Haskell.

• Inheritance- Another advantage of Scala is that we can easily reuse generic functions using

inheritance. In Haskell, although we can simulate this formof reuse in several ways, we can

not do it in a natural way.

In conclusion, the powerful type system makes Scala a very effective language for the construc-

tion of generic programming libraries — and software components in general (Odersky and Zenger,

2005b). However Scala’s syntax can be verbose at times and, because Scala is not a pure functional

language, reasoning about components may be hard. Haskell’s advantages are the elegant syntax

and the purity of the language. However, these advantages are outweighed by the limitations of the

type system — specially the absence of subtyping and a mechanism that allows information hiding

over several objects — which means that Haskell cannot capture (or at least not capture precisely

enough) certain aspects of complex components.

6.3.1 A Slightly Inaccurate Specification

In Section 3.6.1 we defined our visitor library based on a functional specification with

Composite V≡ ∀X S. Decompose S⇒ V (S V X) X
︸ ︷︷ ︸

Visitor

⇒ X

However, as we have discussed, the visitor component did notexactly follow the specification

since it should be of the formV (S V X) X and yet the traitVisitor was defined as

trait Visitor {
type X
type S<: Strategy
type R[v<: Visitor] = S{type X = Visitor.this.X; type V = v}
}

which implied a form like:

Composite V≡ µ (∀X S. Decompose S⇒ V S X
︸︷︷︸

Visitor

⇒ X)

139

6.4. Applications of our Work 140

This later form is more flexible and general because we can always recover all the instances

given by the former (in the Scala code, this is done by parametrizing the typeR with the concrete

visitor that we are defining). The extra generality allows us, for example, to handle mutually

recursive visitors in a more natural way (see Section 3.8.2 for details).

The reason why we did not useV S Xin the functional specification, in the first place, is because

our specification setting is too weak to “type” the kinds of those types. In essence, the visitorV

is a type-constructor parametrized by a strategyS, but S is also a type constructor that is, in turn,

parametrized by a visitor. This kind of mutual dependency between the two type constructors

means that their kinds cannot be monomorphic. Yet, our Haskell based specification setting only

allows monomorphic kinds. In order to specify our visitor library with this more general form of

visitors we need a setting that allowspolymorphic kinds.

In Appendix I we show a different specification setting, using the Omega language (Sheard,

2005), that supports polymorphic kinds and allows us to givea more precise specification to our

visitor component.

6.4 Applications of our Work

Programming with Visitors The obvious application of our work is to use the visitor library

to program with visitors. There are plenty of applications where visitors can be useful in object-

oriented languages. Any problem where adding functions occurs frequently and adding variants is

rare can benefit from the use of visitors. The main advantagesof using our visitor library instead

of just following the traditional design pattern approach are:

1. Elimination of design choice- As we have demonstrated in this thesis, the choice of who

controls the traversal is parametrizable. If we follow the traditional design pattern approach,

we need to choose a particular kind of traversal for our visitor thus loosing flexibility.

2. Extensibility- Our visitor library supports extensible visitors and can be used more generally

than the original design pattern. In particular, we can use our library on problems where we

have interest in adding both new functions and new variants.

3. Notation- Our visitor library supports a functional notation for visitors, avoiding the need to

useacceptmethods explicitly to express recursion calls. Definitionswritten in this style look

140

6.4. Applications of our Work 141

like definitions by pattern-matching in a functional programming language.

4. Easy support for DGP- Our visitor library includes DGP support based on GM. To useof

generic functions with some user-defined visitor, we just need to provide a few, boilerplate,

definitions. We can even avoid (most of) that boilerplate if we use a sum-of-product visitor

instead.

In Scala, the existence of case classes essentially subsumes the need for (traditional) visitors

and has the big advantage of having built-in support for definitions using this construct. Although

our notation is better than the traditional design pattern,it does not offer the same convenience as

case classes. However, case classes force a particular decomposition strategy (basically equivalent

to external visitors) and they do not enjoy of the same level of type-safety when programming with

extensible datatypes — if we do not provide a catch-all case,it is easy to get run-time errors.

Programming with Recursion Patterns The use of the functional notation with external visitors

allow us to have definitions that are, essentially, definitions by pattern matching. For example, if

we consider some kind of trees of integers, a possible function that sums all the integers could be

written as:

def addTree= new VTree[External, int] {
def empty = 0
def fork (x : int, l : Rec, r : Rec) = x+ addTree(l) + addTree(r)
}

This style of definition has the advantage of being somewhat intuitive (due to the pattern match-

ing style) but, because recursion is used directly, the recursive pattern in use is not immediately

apparent. It is often suggested, as a good programming practise, that recursion patterns should be

abstracted and used in definitions instead of this, more direct, style. Recursion patterns are tradi-

tionally captured using higher-order functions. For example, we can capture the recursion pattern

of addTreeas afold and defineaddTreein terms of that operation instead.

def foldTree[a] (k : a) (f : int ⇒ a⇒ a⇒ a) (t : Tree) : a =
t.accept[External, a] (new VTree[External, a] {

def empty = k
def fork (x : int, l : Rec, r : Rec) =

f (x) (foldTree(k) (f) (l)) (foldTree(k) (f) (r))})

def addTree(t : Tree) = foldTree(0) (x⇒ l ⇒ r ⇒ x+ l + r) (t)

141

6.4. Applications of our Work 142

Although this style is suggested as good practice, there aretwo problems with it. Firstly, if

the programmer has just defined a new datatype he also needs todefine the recursion patterns for

that datatype. Secondly, many programmers find the usage of higher-order functions likefoldTree

counter-intuitive and are much more comfortable with a direct-style definition by pattern matching.

With our library, however, the first problem is solved since recursion patterns are generic and

provided automatically with the definition of a new visitor.Furthermore, we also benefit from the

library for the second problem because, by using visitors, we get a pattern-matching-like notation

even with recursion patterns other than the one given byExternal. For example, using internal

visitors (which are equivalent tofolds) we can writeaddTreein the following way:

def addTree= new VTree[Internal, int] {
def empty = 0
def fork (x : int, l : Rec, r : Rec) = x+ l + r
}

We believe that, with this programming style, programmers will be more inclined to use recur-

sion patterns because they will not need any additional effort to use them and they will be able to

use an intuitive notation like pattern matching.

Less boilerplate and more reuse with DGP There has been a lot of work in functional pro-

gramming languages on DGP, but very little has been done in object-oriented languages. Still,

many uses of generic programming — such as comparing two values for equality, pattern matching

on occurrences of a particular string in a value of some datatype, serializing or deserializing values

or pretty-printing a value — would have important applications in OO languages. Visitors devel-

oped with our library can benefit from generic programming techniques, which leads to increased

reuse. Moreover, although the DGP component of our library fits nicely with visitors, it can also

be used with other hierarchical structures like case classes, as demonstrated in Section 4.3.3. In

essence all that needs to be done is to provide isomorphisms between those structures and the cor-

responding sum-of-product representation. Furthermore,because classes are essentially records (or

named products) these isomorphisms should be easy to define.

Semantics of datatypes Our library allows us to capture a family of visitors and provides the

basic notation and tools to define functions over these same visitors. Still, compared to datatypes

142

6.5. Future Work 143

found in functional programming languages, the notationaloverhead required by visitors is rel-

atively large, making them less convenient to use than datatypes. Since visitors are encodings

of datatypes, a potential application of our work is to give asemantics for datatypes (and pat-

tern matching) in a possible programming language extension, which would solve the notational

problem. Our family of visitors is sufficiently powerful to express (regular) parametric datatypes,

mutually recursive datatypes and even datatypes with existential components. This power means

that our family of visitors is capable to express most of ML and Haskell 98 algebraic datatypes

(the exception being nested datatypes and datatypes with contravariant recursive occurrences in

function spaces).

Compiler Optimizations ‘The Algebra of Programming’ provides a solid ground for reasoning

about programs written with recursion patterns. Because each kind of visitor is associated with

a recursion pattern, we may hope to use all the algebra aroundrecursion patterns to transform

inefficient programs into efficient ones, which is one of the major applications of AoP. Many times,

these kind of optimizations can be applied automatically, meaning that a compiler could do it.

However, as mentioned before, in the presence of side-effects, those laws do not hold. So in a

language like Scala we would need a static analyser that ensured the absence of side-effects before

trying to perform any optimizations, but in a language like Haskell this kind of analysis would not

be necessary.

6.5 Future Work

In this section we discuss possible future work.

A Purely Functional Object-Oriented Language In Section 6.3 we compared Haskell and

Scala and described the advantages (and disadvantages) of each language in the development of

visitor and generic programming components. This comparison is helpful to define what would be

an ideal language for such a development. As we have argued, although Scala is quite suitable for

the development of components, our library could benefit from the absence of side-effects, which

is not ensured by Scala. However, this could be easily changed by disallowing side-effects in the

first place, making the language pure. A promising starting point would be the work by Cremet

et al.(2006), which proposes a minimal core calculus that captures many of the Scala programming

143

6.5. Future Work 144

language constructs and does not have side-effects. Furthermore, it would also be interesting to add

datatypes as an extension, with a semantics inspired by our work on the visitor pattern, and explore

the parametrization by decomposition strategy and extensibility on datatypes.

We believe that apurely functional object-oriented programming languageis an overlooked

variation on programming languages — of course, by being purely functional, we could raise the

question of whether it remains object-oriented, since, formany people, a crucial point of object-

orientation is to have stateful objects. Although there arelanguages that are purely functional (such

as Haskell and Clean) and other languages that are (impure) functional object-oriented (such as

OCaml and Scala), there have been little attempts to define languages that are both purely functional

and object-oriented — one exception was the prototype language O’Haskell (Nordländer, 2000).

Our vision is a language where functions are pure and can be defined with a clean syntax like

Haskell; where datatypes can be strategy-parametrizable and extensible; and we have a Scala-like

object system (instead of type classes and a Haskell-like module system).

A Library for Design Patterns In the same way that we can have a library for Vs, we

believe that many other design patterns could be expressed as a library using more expressive type

systems like the one found in Scala. For example, one other pattern that we have been looking at

recently is the I. In Gibbons and Oliveira (2006) we showed that I I can

be nicely modelled using a kind of effectful traversal based on applicative functors (McBride and

Paterson, 2007). Furthermore, because applicative functors have a solid theoretical foundation in

terms of so-calledstrong lax monoidal functors, we expect to have a cleaner algebra for reasoning

about and optimizing programs using iterators — although again we need to assume the absence of

side-effects for the laws to hold. The I pattern can also benefit from generic programming

because it is possible to define the effectful traversal function generically (that is, using a generic

function). This would be an advantage since, currently, defining a new iterator for some structure

is quite ad-hoc.

Therefore, we would like to develop a library supporting theI pattern, as well as explor-

ing the library possibility for other design patterns. Moreover, it would be interesting to explore

this library of design patterns in a setting like the one we described before (a purely functional

object-oriented language) because we expect that our library components enjoy of many algebraic

properties that can only be exploited with the guarantee of absence of side-effects.

144

6.5. Future Work 145

Indexed Programming Programming languages are progressively allowing the programmer to

express more precise properties of their programs, in a way that compilers can exploit for safety

and for efficiency. In particular, developments likenested datatypes(Bird and Meertens, 1998),

indexed types(Xi and Pfenning, 1999), andGADTs(Peyton Joneset al., 2006), allow the program-

mer to specify interesting properties that can be verified atcompile-time. For example, we can

capture properties about theshape of data(such as the dimensions of a matrix, or the balancing of

a tree) and thestate of components(such as safety or security properties of an agent in a protocol)

statically. In other words, these language mechanisms allow us to lift properties of programs that

would otherwise be available only dynamically, if at all, and make them statically checkable and

analysable.

In this thesis we have explored a family of indexed types thatwe called the (one-parameter)

unnested GADTs (or, in other words, GADTs that are not nesteddatatypes), which has plenty of

applications but it is limited in two ways:

• Nested GADTs- Our library does not (readily) support nested GADTs, because recursion

patterns for nested datatypes are non-trivial to define (Bird and Meertens, 1998; Bird and

Paterson, 1999; Hinze, 1999; Martinet al., 2004) and yet our visitor library needs to support

different recursion patterns for the datatypes defined with it. However, Johann and Ghani

(2007) have recently shown that it is possible to define a generic Church encoding for nested

datatypes, which may be good starting point towards removing this limitation of our (in-

dexed) visitor library.

• Multiple type indexes- Our library is currently limited to one type index but, ideally, we

would like to allow any number of indexes. We know what the general template for multiple

arguments is:

Composite V T1 . . . Tn ≡

accept method
︷ ︸︸ ︷

∀Xn S. Decompose S⇒ V S Xn
︸ ︷︷ ︸

Visitor

⇒ Xn T1 . . . Tn

and we know how to define visitor libraries for particular values ofn. However, we have

not investigated yet how to translate from that template into a (usable and) linguistically

capturable arity-generic visitor library. We believe thatthere are two possible directions that

we can take. The first direction would be a dependently-typedapproach where the library

145

6.5. Future Work 146

would be parametrized by its arity. The problem that we see with this approach is that, in a

language like Scala, parametrization by arity is hard to accomplish and, even if we can do it,

the library is probably going to suffer on usability. The second direction would be to create a

hierarchy of visitor components where the component handling arityn+ 1 would refine the

component handling arityn. Basically, the type that we need to refine, at each component, is

Xn, making use of the fact thatXn+1 <: Xn <: X0 (here, we use the notationXn to indicate the

fact thatX is a type constructor withn arguments).

If both limitations are overcome, we would basically have a visitor library that is comparable in

expressive power to Haskell’s GADTsdata declarations, with the extra advantages of parametriza-

tion by decomposition strategy and extensibility. Furthermore, programs that make use of these,

so-called, indexed datatypes can be hard to grasp and they often involve additional boilerplate code

not present in the non-indexed versions (Gibbonset al., 2007). We believe that DGP and strategy

parametrization (itself a form of DGP) may be helpful here because the effort of stating properties

can be amortized over more programs.

Theoretical development In Section 6.2 we presented some results of our thesis from a type-

theoretic perspective. While we believe that these resultsare interesting, our presentation is not a

proper formal treatment. Such a formalization of our work — for example, using a type-theoretic or

categorical treatment — may bring further insights that could be helpful to further simplify and/or

increase the expressive power of our library.

146

BIBLIOGRAPHY 147

Bibliography

Alexandrescu, A. (2001).Modern C++ Design. C++ In-Depth Series. Addison-Wesley.

Alimarine, A. and Plasmeijer, M. J. (2001). A generic programming extension for Clean. In T. Arts

and M. Mohnen, editors,Implementation of Functional Languages, volume 2312 ofLecture

Notes in Computer Science, pages 168–185. Springer-Verlag.

Aracic, I., Gasiunas, V., Mezini, M., and Ostermann, K. (2006). An overview of CaesarJ. In

A. Rashid and M. Aksit, editors,T. Aspect-Oriented Software Development I, volume 3880 of

Lecture Notes in Computer Science, pages 135–173. Springer.

Arnout, K. (2004).Pattern Componentization. Ph.D. thesis, Swiss Institute of Technology.

Backhouse, R. C. and Hoogendijk, P. F. (1993). Elements of a relational theory of datatypes. In

Proceedings of the IFIP TC2/WG 2.1 State-of-the-Art Report on Formal Program Development,

Lecture Notes in Computer Science, pages 7–42, Berlin. Springer-Verlag.

Backhouse, R. C., de Bruin, P. J., Hoogendijk, P. F., Malcolm, G., Voermans, E., and van der

Woude, J. (1992). Polynomial relators (extended abstract). In AMAST ’91: Proceedings of

the Second International Conference on Methodology and Software Technology, pages 303–326,

London, UK. Springer-Verlag.

Bird, R. and Meertens, L. (1998). Nested datatypes. In J. Jeuring, editor,Proceedings 4th Int. Conf.

on Mathematics of Program Construction, MPC’98, Marstrand, Sweden, 15–17 June 1998, vol-

ume 1422 ofLecture Notes in Computer Science, pages 52–67. Springer-Verlag, Berlin.

Bird, R. and Paterson, R. (1999). Generalised folds for nested datatypes.Formal Aspects of Com-

puting, 11(2), 200–222.

Bird, R., de Moor, O., and Hoogendijk, P. (1996). Generic functional programming with types and

relations.Journal of Functional Programming, 6(1), 1–28.

Bird, R. S. and De Moor, O. (1997).Algebra of Programming, volume 100 ofInternational Series

in Computing Science. Prentice Hall.

Böhm, C. and Berarducci, A. (1985). Automatic synthesis oftyped lambda-programs on term

algebras.Theoretical Computer Science, 39(2-3), 135–153.

147

BIBLIOGRAPHY 148

Bringert, B. and Ranta, A. (2006). A pattern for almost compositional functions.SIGPLAN Not.,

41(9), 216–226.

Brockschmidt, K. (1995).Inside OLE (2nd ed.). Microsoft Press, Redmond, WA, USA.

Broy, M., Deimel, A., Henn, J., Koskimies, K., Plasil, F., Pomberger, G., Pree, W., Stal, M., and

Szyperski, C. (1998). What characterizes a software component. Software Concepts& Tools,

19(1), 49 – 56.

Buchlovsky, P. and Thielecke, H. (2005). A type-theoretic reconstruction of the Visitor pattern.

In 21st Conference on Mathematical Foundations of Programming Semantics (MFPS XXI), vol-

ume 4 ofElectronic Notes in Theoretical Computer Science (ENTCS).

Chakravarty, M. M. T., Keller, G., and Peyton Jones, S. (2005a). Associated type synonyms. In

ICFP ’05: Proceedings of the tenth ACM SIGPLAN International Conference on Functional

Programming, pages 241–253, New York, NY, USA. ACM Press.

Chakravarty, M. M. T., Keller, G., Jones, S. P., and Marlow, S. (2005b). Associated types with

class. InPOPL ’05: Proceedings of the 32nd ACM SIGPLAN-SIGACT Synposium on Principles

of Programming Languages, pages 1–13. ACM Press.

Cheney, J. and Hinze, R. (2002). A lightweight implementation of generics and dynamics. In

Haskell ’02: Proceedings of the 2002 ACM SIGPLAN workshop onHaskell, pages 90–104, New

York, NY, USA. ACM Press.

Cheney, J. and Hinze, R. (2003). First-class phantom types.Technical report, CUCIS TR2003-

1901, Cornell University.

Church, A. (1936). An unsolvable problem of elementary number theory. American Journal of

Mathematics, 58, 345–363.

Cox, B. J. (1990). Planning the software industrial revolution. IEEE Software magazine, 7(6),

25–33.

Cremet, V., Garillot, F., Lenglet, S., and Odersky, M. (2006). A core calculus for Scala type

checking. InProceddings of Mathmatical Foundations of Computer Science, Lecture Notes in

Computer Science. Springer-Verlag.

148

BIBLIOGRAPHY 149

Dijkstra, E. W. (1972). The Humble Programmer.Communications of the ACM, 15(10), 859–866.

Ernst, E. (1999).gbeta - a Language with Virtual Attributes, Block Structure, and Propagating,

Dynamic Inheritance. Ph.D. thesis, University of Arhus, Denmark.

Ernst, E. (2004). The expression problem, Scandinavian style. In P. Lahire and e. al., editors,

Proceedings of MASPEGHI 2004, ISRN I3S/RR-2004-15-FR, Oslo, Norway. Laboratoire I3S,

Sophia Antipolis.

Forax, R., Duris, E., and Roussel, G. (2005). Reflection-based implementation of Java extensions:

the double-dispatch use-case. InSAC ’05: Proceedings of the 2005 ACM Symposium on Applied

Computing, pages 1409–1413, New York, NY, USA. ACM Press.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995).Design Patterns: Elements of Reusable

Object-Oriented Software. Addison-Wesley.

Garrigue, J. (2000). Code reuse through polymorphic variants. In Workshop on Foundations of

Software Engineering, Sasaguri, Japan.

Garrigue, J. (2004). Typing deep pattern-matching in presence of polymorphic variants. InJSSST

Workshop on Programming and Programming Languages, Gamagori, Japan.

Gibbons, J. (2003). Patterns in datatype-generic programming. In J. Striegnitz, editor,Declarative

Programming in the Context of Object-Oriented Languages, Uppsala.

Gibbons, J. (2006). Design patterns as higher-order datatype-generic programs. InWGP ’06:

Proceedings of the 2006 ACM SIGPLAN Workshop on Generic Programming, pages 1–12, New

York, NY, USA. ACM Press.

Gibbons, J. and Oliveira, B. (2006). The essence of the Iterator pattern. In T. Uustalu and

C. McBride, editors,Mathematically-Structured Functional Programming, volume 4014 ofLec-

ture Notes in Computer Science. Springer-Verlag.

Gibbons, J., Wang, M., and Oliveira, B. (2007). Generic and indexed programming. In M. Morazan,

editor,Trends in Functional Programming.

Grothoff, C. (2003). Walkabout revisited: The Runabout. InECOOP 2003 - Object-Oriented

Programming, pages 103–125. Springer-Verlag.

149

BIBLIOGRAPHY 150

Hall, C. V., Hammond, K., Jones, S. L. P., and Wadler, P. L. (1996). Type classes in Haskell.ACM

Transactions on Programming Languages and Systems, 18(2), 109–138.

Harper, R. and Lillibridge, M. (1994). A type-theoretic approach to higher-order modules with

sharing. InConference record of POPL ’94: 21st ACM SIGPLAN-SIGACT Symposium on Prin-

ciples of Programming Languages, pages 123–137, Portland, OR.

Hinze, R. (1999). Polytypic functions over nested datatypes.Discrete Mathematics and Theoretical

Computer Science, 3(4), 193–214.

Hinze, R. (2000). Polytypic values possess polykinded types. In R. Backhouse and J. N. Oliveira,

editors,Proceedings of the Fifth International Conference on Mathematics of Program Con-

struction, July 3–5, 2000, volume 1837 ofLecture Notes in Computer Science, pages 2–27.

Springer-Verlag.

Hinze, R. (2003). Fun with phantom types. In J. Gibbons and O.de Moor, editors,The Fun

of Programming, pages 245–262. Palgrave Macmillan. ISBN 1-4039-0772-2 hardback, ISBN

0-333-99285-7 paperback.

Hinze, R. (2004). Generics for the masses. InICFP ’04: Proceedings of the ninth ACM SIGPLAN

international conference on Functional programming, pages 236–243, New York, NY, USA.

ACM Press.

Hinze, R. (2006). Generics for the masses.Journal of Functional Programming, 16(4-5), 451–483.

Hinze, R. and Jeuring, J. (2001). Functional pearl: Weavinga web. Journal of Functional Pro-

gramming, (11(6)), 681–689.

Hinze, R. and Löh, A. (2006). ”scrap your boilerplate” revolutions. volume 4014 ofLecture Notes

in Computer Science, pages 180–208.

Hinze, R. and Löh, A. (2007). Generic programming, now! In R. Backhouse, J. Gibbons, R. Hinze,

and J. Jeuring, editors,Datatype-Generic Programming, Advanced Lectures, volume 4719 of

Lecture Notes in Computer Science. Springer-Verlag.

Hinze, R. and Löh, A. (2008). Generic programming in 3d.

Hinze, R. and Peyton Jones, S. (2000). Derivable type classes. InHaskell Workshop.

150

BIBLIOGRAPHY 151

Hinze, R., Löh, A., and d. S. Oliveira, B. C. (2006). ‘Scrap your Boilerplate’ reloaded. InFunc-

tional and Logic Programming.

Holdermans, S., Jeuring, J., Löh, A., and Rodriguez, A. (2006). Generic views on data types.

In T. Uustalu, editor,Proceedings 8th International Conference on Mathematics of Program

Construction, MPC 2006, volume 4014 ofLecture Notes in Computer Science, pages 209–234.

Springer-Verlag, Berlin.

Howard, W. A. (1980). The formulas-as-types notion of construction. In J. P. Seldin and J. R. Hind-

ley, editors,To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus, and Formalism,

pages 479–490. Academic Press. Reprint of 1969 article.

Huet, G. (1997). The Zipper.Journal of Functional Programming, 7(5), 549–554.

Hughes, J. (1999). Restricted data types in Haskell. In E. Meijer, editor,Proceedings of the 1999

Haskell Workshop, number UU-CS-1999-28.

Jan Martin Jansen, Pieter Koopman, R. P. (2005). Data types and pattern matching by function

application.Proceedings Implementation and Application of FunctionalLanguages, 17th Inter-

national Workshop, IFL05.

Jansson, P. (2000).Functional Polytypic Programming. Ph.D. thesis, Computing Science,

Chalmers University of Technology and Göteborg University, Sweden.

Jeuring, J., Yakushev, A. R., Kiselyov, O., Gerdes, A., d. S.Oliveira, B. C., and Jansson, P. (2007).

Comparing libraries for generic programming in Haskell. Inpreparation.

Johann, P. and Ghani, N. (2007). Initial algebra semantics is enough! In S. R. D. Rocca, editor,

TLCA, volume 4583 ofLecture Notes in Computer Science, pages 207–222. Springer.

Jones, S. P., editor (2003).Haskell 98 Language and Libraries – The Revised Report. Cambridge

University Press, Cambridge, England.

Kühne, T. (1999).A Functional Pattern System for Object-Oriented Design. Verlag Dr. Kovač,

ISBN 3-86064-770-9, Hamburg, Germany.

151

BIBLIOGRAPHY 152

Lämmel, R. and Peyton Jones, S. (2003). Scrap your boilerplate: a practical design pattern for

generic programming.ACM SIGPLAN Notices, 38(3), 26–37. Proceedings of the ACM SIG-

PLAN Workshop on Types in Language Design and Implementation (TLDI 2003).

Lämmel, R. and Peyton Jones, S. (2004). Scrap more boilerplate: reflection, zips, and generalised

casts. InProceedings of the ACM SIGPLAN International Conference onFunctional Program-

ming (ICFP 2004), pages 244–255. ACM Press.

Lämmel, R. and Peyton Jones, S. (2005). Scrap your boilerplate with class: extensible generic

functions. InProceedings of the ACM SIGPLAN International Conference onFunctional Pro-

gramming (ICFP 2005), pages 204–215. ACM Press.

Läufer, K. (2003). What functional programmers can learn from the Visitor pattern. Technical

report, Loyola University Chicago.

Leroy, X. (1994). Manifest types, modules, and separate compilation. InProceedings 21st Annual

ACM Symposium on Principles of Programming Languages, pages 109–122.

Leroy, X., Doligez, D., Garrigue, J., Rémy, D., and Vouillon, J. (2005).The Objective Caml system.

Löh, A. (2004).Exploring Generic Haskell. Ph.D. thesis, Utrecht University.

Löh, A. and Hinze, R. (2006). Open data types and open functions. InPPDP ’06: Proceedings

of the 8th ACM SIGPLAN symposium on Principles and practice of declarative programming,

pages 133–144, New York, NY, USA. ACM Press.

Löh, A., Jeuring, J., and al. (2005). The Generic Haskell users’s guide. Technical Report UU-CS-

2005-004, Utrecht University.

Malcolm, G. (1990). Data structures and program transformation. Sci. Comput. Program., 14(2-3),

255–279.

Martin, C., Gibbons, J., and Bayley, I. (2004). Disciplined, efficient, generalised folds for nested

datatypes.Formal Aspects of Computing, 16(1), 19–35.

McBride, C. and Paterson, R. (2007). Applicative programming with effects.Journal of Functional

Programming.

152

BIBLIOGRAPHY 153

McIlroy, M. (1969). Mass Produced Software Components. InProceedings of NATO Conference

on Software Engineering, pages 88–98, New York. Petrocelli/Charter.

McIlroy, M. D., Pinson, E. N., and Tague, B. A. (1978). Unix time-sharing system forward. InThe

Bell System Technical Journal. Bell Laboratories., page 1902.

Meertens, L. (1992). Paramorphisms.Formal Aspects of Computing, 4(5), 413–425.

Meijer, E., Fokkinga, M., and Paterson, R. (1991). Functional programming with bananas, lenses,

envelopes and barbed wire. In J. Hughes, editor,Proceedings 5th ACM Conf. on Functional

Programming Languages and Computer Architecture, FPCA’91, Cambridge, MA, USA, 26–30

Aug 1991, volume 523 ofLecture Notes in Computer Science, pages 124–144. Springer-Verlag,

Berlin.

Meyer, B. (1997).Object-Oriented Software Construction. Upper Saddle River, N.J., Prentice Hall,

2nd edition.

Meyer, B. and Arnout, K. (2006). Componentization: The Visitor example. Computer, 39(7),

23–30.

Moors, A., Piessens, F., and Joosen, W. (2006). An object-oriented approach to datatype-generic

programming. InWGP ’06: Proceedings of the 2006 ACM SIGPLAN Workshop on Generic

Programming, pages 96–106, New York, NY, USA. ACM Press.

Moors, A., Piessens, F., and Odersky, M. (2007). Towards equal rights for higher-kinded types. In

6th International Workshop on Multiparadigm Programming with Object-Oriented Languages.

Naur, P. and Randell, B., editors (1969).Software Engineering: Report of a conference spon-

sored by the NATO Science Committee, Garmisch, Germany, 7-11 Oct. 1968, Brussels, Scientific

Affairs Division, NATO.

Nordländer, J. (2000). Polymorphic subtyping in O’Haskell. In APPSEM Workshop on Subtyping

and Dependent Types in Programming.

Norell, U. and Jansson, P. (2004). Polytypic programming inhaskell. InImplementation of Func-

tional Languages, volume 3145 ofLecture Notes in Computer Science.

Norvig, P. (1996). Design patterns in dynamic programming.In Object World 96, Boston, MA.

153

BIBLIOGRAPHY 154

Nystrom, N., Chong, S., and Myers, A. C. (2004). Scalable extensibility via nested inheritance. In

OOPSLA ’04: Proceedings of the 19th annual ACM SIGPLAN Conference on Object-Oriented

Programming, Systems, Languages, and Applications, pages 99–115, New York, NY, USA.

ACM Press.

Odersky, M. (2006a). An Overview of the Scala programming language (second edition). Technical

Report IC/2006/001, EPFL Lausanne, Switzerland.

Odersky, M. (2006b). Poor man’s type classes.http://lamp.epfl.ch/∼odersky/talks/wg2.

8-boston06.pdf.

Odersky, M. (2007a). Scala by example.http://scala.epfl.ch/docu/files/ScalaIntro.

pdf.

Odersky, M. (2007b). The Scala language specification version 2.4. http://scala.epfl.ch/

docu/files/ScalaReference.pdf.

Odersky, M. and Zenger, M. (2005a). Independently extensible solutions to the ex-

pression problem. InProceedings of Foundations of Object-Oriented Languages 12.

http://homepages.inf.ed.ac.uk/wadler/fool.

Odersky, M. and Zenger, M. (2005b). Scalable component abstractions. InOOPSLA ’05: Proceed-

ings of the 20th annual ACM SIGPLAN Conference on Object Oriented Programming, Systems,

Languages, and Applications, pages 41–57, New York, NY, USA. ACM Press.

Oliveira, B. and Gibbons, J. (2005). TypeCase: a design pattern for type-indexed functions. In

Haskell ’05: Proceedings of the 2005 ACM SIGPLAN Workshop onHaskell, pages 98–109, New

York, NY, USA. ACM Press.

Oliveira, B. C., Hinze, R., and Löh, A. (2006). Extensible and modular generics for the masses. In

Seventh Symposium on Trends in Functional Programming, pages 109–138.

Palsberg, J. and Jay, C. B. (1998). The essence of the Visitorpattern. InProc. 22nd IEEE Int.

Computer Software and Applications Conf., COMPSAC, pages 9–15.

Parigot, M. (1992). Recursive programming with proofs.Theoretical Computer Science, 94(2),

335–356.

154

BIBLIOGRAPHY 155

Peyton Jones, S., Vytiniotis, D., Weirich, S., and Washburn, G. (2006). Simple unification-based

type inference for gadts.SIGPLAN Not., 41(9), 50–61.

Pfister, C. and Szyperski, C. (1996). Why objects are not enough. In Proceedings, International

Component Users Conference, Munich, Germany. SIGS.

Schärli, N., Ducasse, S., Nierstrasz, O., and Black, A. (2003). Traits: Composable units of behav-

ior. In Proceedings of European Conference on Object-Oriented Programming (ECOOP’03),

volume 2743 ofLecture Notes in Computer Science, pages 248–274. Springer Verlag.

Schinz, M. (2007). A Scala tutorial for Java programmers.http://scala.epfl.ch/docu/

files/ScalaTutorial.pdf.

Sheard, T. (2005). Putting Curry-Howard to work. InHaskell ’05: Proceedings of the 2005 ACM

SIGPLAN workshop on Haskell, pages 74–85, New York, NY, USA. ACM Press.

Snyder, A. (1986). Encapsulation and inheritance in object-oriented programming languages. In

OOPLSA ’86: Conference proceedings on Object-Oriented Programming Systems, Languages

and Applications, pages 38–45, New York, NY, USA. ACM Press.

Strachey, C. (1967). Fundamental concepts in programming languages. Lecture Notes, Interna-

tional Summer School in Computer Programming, Copenhagen.Reprinted inHigher-Order and

Symbolic Computation, 13(1/2), pp. 1–49, 2000.

Swierstra, W. (2008). Data types à la carte. Accepted for publication in the Journal of Functional

Programming.

Szyperski, C. (1996). Independently extensible systems – software engineering potential and chal-

lenges. InProceedings of the 19th Australian Computer Science Conference, Melbourne, Aus-

tralia.

Szyperski, C. (2002). Universe of composition.

Torgersen, M. (2004). The expression problem revisited: Four new solutions using generics. In

M. Odersky, editor,ECOOP 2004—Object-Oriented Programming, 18th European Conference,

Oslo, Norway, Proceedings, volume 3086 ofLecture Notes in Computer Science, pages 123–143.

Udell, J. (1994). Componentware. InBYTE Magazine, pages 46 – 56.

155

BIBLIOGRAPHY 156

VanDrunen, T. and Palsberg, J. (2004). Visitor-oriented programming. InProceedings of FOOL-11,

the 11th ACM SIGPLAN International Workshop on Foundationsof Object-Oriented Languages,

New York, NY, USA. ACM Press.

Wadler, P. (1989). Theorems for free! InProceedings 4th International Conference on Functional

Programming Languages and Computer Architecture, FPCA’89, London, UK, 11–13 Sept 1989,

pages 347–359. ACM Press, New York.

Wadler, P. (1993). Monads for functional programming. In M.Broy, editor,Program Design

Calculi: Proceedings of the 1992 Marktoberdorf International Summer School. Springer-Verlag.

Wadler, P. (1998). The expression problem. Java GenericityMailing list.

Wadler, P. (2003). A prettier printer. In J. Gibbons and O. deMoor, editors,The Fun of Program-

ming, pages 223–244. Palgrave Macmillan. ISBN 1-4039-0772-2 hardback, ISBN 0-333-99285-

7 paperback.

Weck, W. and Szyperski, C. (1996). Do we need inheritance.

Weirich, S. (2006). RepLib: a library for derivable type classes. InHaskell ’06: Proceedings of the

2006 ACM SIGPLAN workshop on Haskell, pages 1–12, New York, NY, USA. ACM Press.

Xi, H. and Pfenning, F. (1999). Dependent types in practicalprogramming (extended abstract).

In A. Aiken, editor,Proceedings of the Symposium on Principles of Programming Languages,

pages 214–227, San Antonio, Texas.

Xi, H., Chen, C., and Chen, G. (2003). Guarded recursive datatype constructors. InProceedings of

the 30th ACM SIGPLAN-SIGACT symposium on Principles of Programming Languages, pages

224–235. ACM Press.

Zenger, M. and Odersky, M. (2001). Extensible algebraic datatypes with defaults. InICFP ’01:

Proceedings of the sixth ACM SIGPLAN International Conference on Functional Programming,

pages 241–252, New York, NY, USA. ACM Press.

156

Index

C, 37

O, 30

V, 46, 47

functional, 39

imperative, 39

internal, 109

abstract type, 34

Church numerals, 54

COP, 8, 30

deserialization, 100

DGP, 8

EMGM, 136

equality, 60, 63

existentially quantified datatype, 68, 86

expression problem, 107

extensibility, 101

fixpoint view, 99

functor, 92

GADT, 88

generic function, 110, 124

generic pretty print, 114

generic show, 111

generic size, 82, 89

GM, 77

implicit parameter, 78

isomorphism, 80, 115

local redefinition, 82

mutually recursive datatype, 67

mutually recursive function, 126

Omega, 68, 138

parametric datatype, 66, 80

paramorphic visitor, 70, 91, 132

paramorphism, 70

Parigot numerals, 51

pretty printing, 121

reuse, 102

serialization, 98

type class, 78

visitor library, 7

157

Appendix A

Functional Specification of the V

Library in Haskell

The typeµ is expressed in Haskell as:

newtypeMu v= Mu (∀a s. Decompose s⇒ v (s v a) a→ a)

In Haskell we can use type classes to implementDecompose sand make that argument implicit.

The classDecomposeand the operationdecare defined as:

classDecompose swhere
dec:: v (s v a) a→ Mu v→ s v a

InternalandExternalvisitors and the corresponding instances ofDecomposeare declared as:

newtype Internal (v :: ∗ → ∗ → ∗) a = F{get:: a}

newtypeExternal v a = C (Mu v)

instanceDecompose Internalwhere
dec t(Mu u) = F (u t)

instanceDecompose Externalwhere
dec = C

We show how to encode natural numbers using the library next

data NatF r a= NatF{z :: a, s :: r → a}

type Nat = Mu NatF

zero :: Nat
zero = Mu z

suc :: Nat→ Nat
suc n= Mu (λv→ s v (dec v n))

158

159

and give two examples: the first one, using a Church encoding (i.e. an internal visitor), converts

a natural to a built-in integer; the second one using a Parigot encoding (i.e. an external visitor)

defines the predecessor function, which is hard to define witha Church encoding.

toInt :: Nat→ Int
toInt (Mu n) = n visitor

where visitor :: NatF (Internal NatF Int) Int
visitor = NatF{z= 0, s= λ(F x)→ x+ 1}

predessessor:: Nat→ Nat
predessessor(Mu n) = n visitor

where visitor :: NatF (External NatF Nat) Nat
visitor = NatF{z= error "Ops!", s= λ(C x) → x}

159

Appendix B

Translation of Datatypes

In this appendix we sketch, more formally, how the translation between a datatype-like declaration

and visitors proceeds. In Section 3.8 we have examples of thetranslation scheme. Before we start

detailing the translation, we note that the extensively used overline notationE is just syntactic

sugar to avoid the proliferation of indexes. So, generally we have that:

E ≡ E1 . . . En

We start by considering a mutually-recursive set of datatype declarations of the form:

data T a = ∃ e. C t

As explained, the overline notation ranging over thedata declaration means that there areT1 . . . Tn

mutually-recursive datatypes. Each individual datatype has a set of type parametersa and a set of

constructorsC . Each constructorCi can have a number of existentially-quantified type arguments

e and has, itself, a set of parameterst .

We should note that when we mention that we have a set of mutually-recursive set of datatypes,

we mean it strictly. For example

data List a= Nil | Cons a(List a)

data Tree a= Empty| Fork a (Tree a) (Tree a)

are notmutually-recursive and the translation of the two datatypes proceeds by considering two

sets of declarations independently: the first set with{data List a} and the second set with

{data Tree a}. In contrast, the following two datatype declarations

data RoseTree a= Fork a (Forest a)

160

161

data Forest a= Nil | Cons(RoseTree a) (Forest a)

are mutually-recursive becauseRoseTreedepends onForestand vice-versa. So, in this case, the

translation proceeds by considering the set{data RoseTree a, data Forest a}.

The translation imposes some restrictions on the form of datatype declarations.

• The first restriction is that mutually-recursive datatypesT1 . . . Tn must all have the same

number of type argumentsa .

• The second restriction is that we cannot have nested datatypes. For example

data PTree a= PEmpty| PFork a (PTree(a, a))

is not allowed because the recursive ocurrence typePTreeis nested. This restriction is im-

posed by the fact that we consider generic encodings. If we consideredParigot encodings

only, this would not be problematic.

• The third restriction is that we cannot have recursive occurrences on negative positions of

functional arguments. For example:

data Value= Number Int| Func (Value→ Value)

is not allowed because a recursive occurrence ofValueappears at a contravariant position

in a function space. Again, the reason for this restriction has to do with the fact that we

are considering generic encodings. This would not be a problem if we consideredParigot

encodings only.

• Finally, the translation does not consider the existence ofdatatypeswith higher-ranked types.

For example:

data GTree g a= Fork a (g (GTree g a))

is not allowed because the type parameterg has a higher-ranked type.

For the set of datatypesT1 . . . Tn we generate a corresponding number of concrete visitors (that

is, traits that extendsVisitor) and composites (which are just type synonyms toComposite[TVisitori [a]]).

This step of the translation is shown next:

161

162

trait TVisitor[a] extendsVisitor {

def mrefD : TVisitorD [a] {type X = TVisitor.this.X; type S= TVisitor.this.S}

def c[e] genType(data T a , t C) : X
}

type T [a] = Composite[TVisitor[a]]

Each of the visitorsTVisitori [a]] hasn − 1 mrefD , which are the mutually-recursive references

to other visitors. For example, the typesList andTreeabove would have 0mref methods because

they do not have any mutually-recursive references. However, in the case ofRoseTreeandForest,

there would be one reference to theRoseTreeVisitorvisitor in ForestVisitorand one reference to

theForestVisitorin RoseTreeVisitor. For each constructorCi of the datatype we would also have a

corresponding methodci with its parameter body being computed bygenType, which we discuss

later.

For each constructorC j on a datatypeTi we need to generate a constructor definition. We

outline this translation next:

def C[e , a] (t C) : T [a] = new T [a] {
def accept[s<: Strategy, x] (vis : TVisitor[a] {type X = x; type S= s})

(implicit decompose: Decompose[s]) : x =

vis.c[e] genBody(vis, data T a , t C)

A constructorC j has a set of type arguments composed of the setse and a and its type signature

is just a syntactic variationt C of t properly adapted to Scala’s syntax. Theacceptmethod of

Compositeis implemented by invoking the corresponding methodcj on the visitor and the argu-

ments ofcj are computed bygenBodythat we discuss next.

The type and the bodies of the visit methodscj corresponding to a constructorC j are, respec-

tively, computed by the functionsgenTypeandgenBodydefined as follows:

genType(data T a , t) =
{v : casestatusOf(t′) of

Recursive→ R[TVisitor[a]]
MutualRec→ R[TVisitorD [a]]
NonRec → t′

| t′ ← t , v← fresh}

genBody(vis, data T a , t) =
{casestatusOf(t′) of

Recursive→ decompose.dec[TVisitor[a], x] (vis, v)
MutualRec→ decompose.dec[TVisitorD [a], x] (vis.mrefD, v)

162

163

NonRec → v
| t′ ← t , v← fresh}

Both functions take the set of mutually-recursive datatypes and the set of constructor arguments

t into account; and both functions are defined by checking whether each typet′ in t is either

recursive(a reference to the same datatype that is being defined); or a mutually-recursive reference

(a reference to one of the datatypes in the set of mutually-recursive definitions); or if it it just

non-recursive.

163

Appendix C

Paramorphic Visitors Specification

In this appendix, we present the functional specification for paramorphic visitors. We start by

defining a datatype for the decomposition strategy and the corresponding instance ofDecompose:

newtypePara v a= P (a,Mu v)

instanceDecompose Parawhere
dec t(Mu u) = P (u t,Mu u)

We then define the functionsplusandtimesthat will be used to define factorial.

plus:: Nat→ Nat→ Nat
plus (Mu n) m= n visitor

where visitor :: NatF (Internal NatF Nat) Nat
visitor = NatF{z= m, s= λ(F x)→ succ x}

times:: Nat→ Nat→ Nat
times(Mu n) m= n visitor

where visitor :: NatF (Internal NatF Nat) Nat
visitor = NatF{z= zero, s= λ(F x) → plus x m}

Finally, we define factorial as:

fact :: Nat→ Nat
fact (Mu n) = n visitor

where visitor :: NatF (Para NatF Nat) Nat
visitor = NatF{z= succ zero, s= λ(P (x, y))→ times x(succ y)}

164

Appendix D

Paramorphic Visitors

Here we present the full Scala code for Section 3.8.4. The paramorphic decomposition strategy is

defined with the following code:

trait Para extendsStrategy{
type Y = Pair [X,Composite[V]]

}

implicit def para : Decompose[Para] = new Decompose[Para] {
def dec[v<: Visitor, x] (vis : v {type X = x; type S= Para}, comp: Composite[v]) =

new Para {type V = v; type X = x;
def get= Pair [x,Composite[v]] (comp.accept(vis), comp)}

}

implicit def para2pair[v<: Visitor, x]
(x : Para {type V >: v; type X = x}) : Pair [x,Composite[v]] = x.get

A visitor for peano numerals, that is going to be used by our example, can be defined as follows:

trait NatVisitorextendsVisitor {
type Rec= R[NatVisitor]

def zero: X
def succ(n : Rec) : X
}

type Nat= Composite[NatVisitor]

case classZeroextendsNat {
def accept[s<: Strategy, x] (vis : NatVisitor{type X = x; type S= s})

(implicit decompose: Decompose[s]) : x =
vis.zero

}

case classSucc(n : Nat) extendsNat {
def accept[s<: Strategy, x] (vis : NatVisitor{type X = x; type S= s})

(implicit decompose: Decompose[s]) : x =

165

166

vis.succ(decompose.dec(vis, n))
}

abstract classVNat[s<: Strategy, b] (implicit decompose: Decompose[s])
extendsVisitorFunc[NatVisitor, s, b] (decompose)
with NatVisitor

Next we implement addition and multiplication on naturals;andfst andsndon pairs.

def plus (m : Nat) : Nat⇒ Nat = new VNat[Internal,Nat] {
def zero = m
def succ(n : Rec) = Succ(n)
}

def mult (m : Nat) = new VNat[Internal,Nat] {
def zero = Zero
def succ(n : Rec) = plus (n) (m)
}

def fst[a, b] (x : Pair [a, b]) : a = x match {casePair (f , s)⇒ f }
def snd[a, b] (x : Pair [a, b]) : b = x match {casePair (f , s)⇒ s}

Finally, we can define the factorial function as:

def fact : Nat⇒ Nat= new VNat[Para,Nat] {
def zero = Succ(Zero)
def succ(n : Rec) = mult (fst (n)) (Succ(snd(n)))
}

166

Appendix E

Serialization Library

This is the full code for the serialization library presented in Section 4.6.

object Serialization{

def repeat(c : char, times: int) : String= {
var sb: StringBuffer = new StringBuffer ()
var t = times

while (t > 0) {
sb.append(c);
t = t − 1;
}

return sb.toString();
}

def encodeIntegral(x : int, size: int) : String= {
def s= Integer.toBinaryString(x);
return (repeat(’0’, size− s.length()) + s)
}

def encodeInt(x : int) = encodeIntegral(x, 32)
def encodeChar(x : char) = encodeIntegral(x.asInstanceOf[int], 8)

def exp(x : int, y : int) : int = {
var i = 0;
var value= 1;

while (i < y) {
value= x ∗ value;

i = i + 1;
}

return value;
}

def decodeIntegral(x : String) : int = {
def sb: StringBuffer = new StringBuffer (x).reverse();
def len= x.length();

167

168

var value= 0;

var i : int = 0;
while (i < len) {

if (sb.charAt (i).equals(’1’)) value= exp(2, i) + value;
i = i + 1;
}

return value;
}

def decodeInt(x : String) : Prod[int,String] = {
def rest: String= x.substring(32)
def value= x.substring(0, 32)

return Prod (decodeIntegral(value), rest)
}

def decodeChar(x : String) : Prod[char,String] = {
def rest: String= x.substring(8)
def value= x.substring(0, 8)

return Prod (decodeIntegral(value).asInstanceOf[char], rest)
}

// A new generic function
trait SerializeextendsTypeConstructor{

def serialize(x : A) : String
}

trait MySerializeextendsGeneric{
type G = Serialize

def unit = new Serialize{type A = One; def serialize(x : A) = ""}
def int = new Serialize{type A = int; def serialize(x : A) = encodeInt(x)}
def char= new Serialize{type A = char; def serialize(x : A) = encodeChar(x)}
def plus[a, b] (a : G {type A = a}, b : G {type A = b}) = new Serialize{

type A = Plus[a, b]
def serialize(x : A) = x.accept(new PlusVisitor[a, b,String] {

def inl (y : a) = "0" + a.serialize(y)
def inr (z : b) = "1" + b.serialize(z)
})

}

def prod[a, b] (a : G {type A = a}, b : G {type A = b}) = new Serialize{
type A = Prod[a, b]
def serialize(x : A) = x.accept(new ProdVisitor[a, b,String] {

def prod (y : a, z : b) = a.serialize(y) + b.serialize(z)
})

}

def view[a, b] (iso : Iso[b, a], a:⇒ G {type A = a}) = new Serialize{
type A = b
def serialize(x : A) = a.serialize(iso.from (x))
}

}

168

169

def testVal= Cons(3,Cons(4,Nil [int]))

implicit object mySerialextendsMySerialize

def serial[t] (x : t) (implicit r : Rep[t]) : String=
r .rep (mySerial).serialize(x)

def serialSumProd[f <: TypeConstructor] (x : SumProd[f]) (implicit fr : FRep[f]) =
x.accept[Internal,String] (new VSumProd[Internal, f ,String] {

def seriala= new Serialize() {
type A = Rec

def serialize(x : A) : String= x
}

def visit (x : f {type A = Rec}) = fr .frep[Serialize,Rec] (seriala).serialize(x)
})

def testSer= serialSumProd(testVal) (listFRep)

trait DeSerializeextendsTypeConstructor{
def deSerialize(x : String) : Prod[A,String]
}

trait MyDeSerializeextendsGeneric{
type G = DeSerialize

def unit = new DeSerialize{
type A = One;
def deSerialize(x : String) = Prod[A,String] (One, "")
}

def int = new DeSerialize{
type A = int;
def deSerialize(x : String) = decodeInt(x)
}

def char= new DeSerialize{
type A = char;
def deSerialize(x : String) = decodeChar(x)
}

def plus[a, b] (a : G {type A = a}, b : G {type A = b}) = new DeSerialize{
type A = Plus[a, b]
def deSerialize(x : String) : Prod[Plus[a, b],String] =

if (x.substring(0, 1).equals("0")) {
def prod= a.deSerialize(x.substring(1))
return Prod (Inl (prod.fst), prod.snd)
} else {

def prod= b.deSerialize(x.substring(1))
return Prod (Inr (prod.fst), prod.snd)
}

}

def prod[a, b] (a : G {type A = a}, b : G {type A = b}) = new DeSerialize{
type A = Prod[a, b]
def deSerialize(x : String) : Prod[Prod[a, b],String] = {

def prod1= a.deSerialize(x)

169

170

def prod2= b.deSerialize(prod1.snd)
return Prod (Prod (prod1.fst, prod2.fst), prod2.snd)
}

}

def view[a, b] (iso : Iso[b, a], a:⇒ G {type A = a}) = new DeSerialize{
type A = b
def deSerialize(x : String) : Prod[b,String] = {

def prod= a.deSerialize(x)
return Prod (iso.to (prod.fst), prod.snd)
}

}

}

implicit object myDeSerialextendsMyDeSerialize

def deSerial[t] (x : String) (implicit r : Rep[t]) : t =
r .rep (myDeSerial).deSerialize(x).fst

def deserialAux= new DeSerialize{
type A = String
def deSerialize(x : String) : Prod[A,String] = Prod (x, "")
}

def deSerialSumProd[f <: TypeConstructor]
(x : String) (implicit fr : FRep[f], funct: Functor[f]) : SumProd[f] =

ana[f ,String] ((y : String)⇒
fr.frep[DeSerialize,String] (deserialAux).deSerialize(y).fst) (x)

}

170

Appendix F

Functional Specification for Indexed

Vs

Here we present the Haskell code for the functional specification of indexed visitors, starting with

the composite that captures our family of indexed visitors is given by:

newtypeMu v t= Mu (∀a s. Decompose s⇒ v (s v a) a→ a t)

As before, we have two strategies (one for internal and one for external visitors).

newtype Internal (f :: (∗ → ∗)→ (∗ → ∗)→ ∗) a t = F{get:: a t}

newtypeExternal f (a :: ∗ → ∗) t = C{getC:: Mu f t}

The classDecomposeand its two instance are defined as:

classDecompose swhere
dec:: v (s v a) a→ Mu v t→ s v a t

instanceDecompose Internalwhere
dec t(Mu u) = F (u t)

instanceDecompose Externalwhere
dec = C

Now we show one concrete example of an indexed visitor that can be captured with this new

version of the library:

data Generic r g= Generic{
unit :: g (),
int :: g Int,
prod :: ∀a b. r a→ r b→ g (a, b)
}

171

172

TheGenericrecord is a simplified version of the visitor used in GM. We canalso encodeRep

as follows:

classRep twhere
rep :: Decompose s⇒ Generic(s Generic g) g→ g t

instanceRep() where
rep= unit

instanceRep Intwhere
rep= int

instance(Rep a,Rep b)⇒ Rep(a, b) where
rep gen= prod gen(dec gen(Mu rep)) (dec gen(Mu rep))

Finally we show how to define a generic function that adds all the integers contained in a

structure using internal visitors and external visitors.

newtypeGCount t= GCount{count:: t → Int }

gcount:: Rep t⇒ t → Int
gcount= count(rep$ Generic{

unit = GCount(const0),
int = GCount id,
prod= λ(F ra) (F rb)→ GCount(λ(x, y)→ count ra x+ count rb y)})

gcount2:: Rep t⇒ t → Int
gcount2= count(rep func)

where func= Generic{
unit = GCount(const0),
int = GCount id,
prod= λ(C (Mu ra)) (C (Mu rb))→

GCount(λ(x, y) → count(ra func) x+ count(rb func) y)}

172

Appendix G

Functional Specification for the Family of

Sums of Products

The following code defines a visitor that can handle sums of products. We first define, as usual, a

concrete visitorSumProdFand a compositeSumProd.

newtypeSumProdF f r a= SumProd{visit :: f r → a}

type SumProd f = Mu (SumProdF f)

The constructorinF and the deconstructoroutF are given by:

inF :: Functor f⇒ f (SumProd f)→ SumProd f
inF t = Mu (λv→ visit v (fmap(dec v) t))

outF :: Functor f⇒ SumProd f→ f (SumProd f)
outF = get◦ dec(SumProd(fmap(inF ◦ get)))

We consider parametric lists as one example of a datatype that can be defined using our visitor

based on sums of products.

newtypeListF a r = ListF{ listF :: Either () (a, r)}

type List a= SumProd(ListF a)

instanceFunctor (ListF a) where
fmap f (ListF (Left ())) = ListF (Left ())
fmap f (ListF (Right (x, xs))) = ListF (Right (x, f xs))

nil :: List a
nil = inF (ListF (Left ()))

cons :: a→ List a→ List a
cons x xs= inF (ListF (Right (x, xs)))

173

174

Finally we show how we can define recursion patterns:

cata:: Functor f⇒ (f a→ a)→ SumProd f→ a
cata v(Mu m) = m (SumProd(v ◦ fmap get))

ana:: Functor f⇒ (a→ f a)→ a→ SumProd f
ana c x= Mu (λv→ visit v (fmap(dec v◦ ana c) (c x)))

174

Appendix H

Extensible Visitors Using Abstract Types

Here we present the code for Section 5.5. We start with the trait ExtensibleGMVisitor:

trait ExtensibleGMVisitor{
type Gen<: Generic
type GenWith[x<: TypeConstructor, s<: Strategy] = Gen{type X = x; type S= s}

trait GenericextendsVisitor {
type Rec[t] = R[Gen, t]

def unit : X {type A = One}
def int : X {type A = int}
def char : X {type A = char}
def plus[a, b] (a : Rec[a], b : Rec[b]) : X {type A = Plus[a, b] }
def prod[a, b] (a : Rec[a], b : Rec[b]) : X {type A = Prod[a, b] }
def view[a, b] (iso : Iso[b, a], a:⇒ Rec[a]) : X {type A = b}
}

type Rep[T] = Composite[Gen,T]

implicit def RUnit= new Rep[One] {
def accept[s<: Strategy, x<: TypeConstructor]

(vis : Gen{type X = x; type S= s}) (implicit decompose: Decompose[s])
: x {type A = One} = vis.unit

}

implicit def RInt= new Rep[int] {
def accept[s<: Strategy, x<: TypeConstructor]

(vis : Gen{type X = x; type S= s}) (implicit decompose: Decompose[s])
: x {type A = int} = vis.int

}

implicit def RChar= new Rep[char] {
def accept[s<: Strategy, x<: TypeConstructor]

(vis : Gen{type X = x; type S= s}) (implicit decompose: Decompose[s])
: x {type A = char} = vis.char

}

175

176

implicit def RPlus[a, b] (implicit a : Rep[a], b : Rep[b]) : Rep[Plus[a, b]] =
new Rep[Plus[a, b]] {

def accept[s<: Strategy, x<: TypeConstructor]
(vis : Gen{type X = x; type S= s}) (implicit decompose: Decompose[s])

: x {type A = Plus[a, b] } =
vis.plus (decompose.dec(vis, a), decompose.dec(vis, b))

}

implicit def RProd[a, b] (implicit a : Rep[a], b : Rep[b]) = new Rep[Prod[a, b]] {
def accept[s<: Strategy, x<: TypeConstructor]

(vis : Gen{type X = x; type S= s}) (implicit decompose: Decompose[s])
: x {type A = Prod[a, b] } =

vis.prod (decompose.dec(vis, a), decompose.dec(vis, b))
}

trait SizeextendsTypeConstructor{
def size(x : A) : int
}

trait MySizerequires GenWith[Size, Internal] extendsGeneric{
type X = Size
type S= Internal

def unit = new Size{type A = One; def size(x : A) = 0}
def int = new Size{type A = int; def size(x : A) = 0}
def char= new Size{type A = char; def size(x : A) = 0}
def plus[a, b] (a : Rec[a], b : Rec[b]) = new Size{

type A = Plus[a, b]
def size(x : A) = x.accept(new PlusVisitor[a, b, int] {

def inl (y : a) = a.get.size(y)
def inr (z : b) = b.get.size(z)
})

}

def prod[a, b] (a : Rec[a], b : Rec[b]) = new Size{
type A = Prod[a, b]
def size(x : A) = x.accept(new ProdVisitor[a, b, int] {

def prod (y : a, z : b) = a.get.size(y) + b.get.size(z)
})

}

def view[a, b] (iso : Iso[b, a], a:⇒ Rec[a]) = new Size{
type A = b
def size(x : A) = a.get.size(iso.from (x))
}

}

}

Next we present the code required to support lists:

trait ExtensibleGMListextendsExtensibleGMVisitor{
type Gen<: Generic

176

177

trait Genericextendssuper.Generic{
def list [a] (a : Rec[a]) : X {type A = List[a] }

}

implicit def RList[a] (implicit a : Rep[a]) : Rep[List[a]] = new Rep[List[a]] {
def accept[s<: Strategy, x<: TypeConstructor]

(vis : Gen{type X = x; type S= s}) (implicit decompose: Decompose[s])
: x {type A = List[a] } =

vis.list [a] (decompose.dec(vis, a))
}

}

The traitExtensibleGMConstradds support for meta-information.

trait ExtensibleGMConstrextendsExtensibleGMVisitor{
type Gen<: Generic

trait Genericextendssuper.Generic{
def constr[a] (name: String, arity : int, g : Rec[a]) : X {type A = a}
}

def RConstr[a] (name: String, arity : int, a : Rep[a]) : Rep[a] = new Rep[a] {
def accept[s<: Strategy, x<: TypeConstructor]

(vis : Gen{type X = x; type S= s}) (implicit decompose: Decompose[s])
: x {type A = a} =

vis.constr(name, arity, decompose.dec(vis, a))
}

trait PPrint extendsTypeConstructor{
def pprint (x : A) : Document
}

trait GenericPrintrequires GenWith[PPrint,External] extendsGeneric{
type X = PPrint
type S= External

def unit = new PPrint {type A = One; def pprint (x : A) = empty}
def int = new PPrint {type A = int; def pprint (x : A) = text (x.toString())}
def char= new PPrint {type A = char; def pprint (x : A) = text (x.toString())}
def plus[a, b] (a : Rec[a], b : Rec[b]) = new PPrint {

type A = Plus[a, b]

def pprint (x : A) = x.accept(new PlusVisitor[a, b,Document] {
def inl (y : a) = a.get.accept(GenericPrint.this).pprint (y)
def inr (z : b) = b.get.accept(GenericPrint.this).pprint (z)
})

}

def prod[a, b] (a : Rec[a], b : Rec[b]) = new PPrint {
type A = Prod[a, b]

def pprint (x : A) = x.accept(new ProdVisitor[a, b,Document] {
def prod (y : a, z : b) = a.get.accept(GenericPrint.this).pprint (y) :: break::

b.get.accept(GenericPrint.this).pprint (z)

177

178

})
}

def view[a, b] (iso : Iso[b, a], a:⇒ Rec[a]) = new PPrint {
type A = b
def pprint (x : A) = a.get.accept(GenericPrint.this).pprint (iso.from (x))
}

def constr[a] (name: String, arity : int, a : Rec[a]) = new PPrint {
type A = a

def s= text (name)
def pprint (x : A) = if (arity ≡ 0) s else

group(nest(1, (text ("(") :: s :: break::
a.get.accept(GenericPrint.this).pprint (x) :: text (")"))))

}

}

def pretty[t] (x : t) (implicit r : Rep[t], v : GenWith[PPrint,External]) = {
var writer = new OutputStreamWriter(System.out);
r .accept(v).pprint (x).format (80,writer);
writer.flush();
}

def prettyDoc[t] (x : t) (implicit r : Rep[t], v : GenWith[PPrint,External]) =
r .accept(v).pprint (x)

}

The traitExtensibleGMListConstruses mixin composition to merge meta-information and list

support.

trait ExtensibleGMListConstrextendsExtensibleGMConstrwith ExtensibleGMList{
type Gen<: Generic

trait Genericextendssuper[ExtensibleGMConstr].Generic
with super[ExtensibleGMList].Generic{
}

trait GenericPrintrequires GenWith[PPrint,External]
extendssuper.GenericPrintwith Generic{

override def list [a] (a : Rec[a]) : PPrint {type A = List[a] } = new PPrint {
type A = List[a]

def pprint (x : A) = pprintl (x) (a.get,GenericPrint.this)
}

}

def pprintl [a] (x : List[a]) (implicit a : Rep[a], v : GenWith[PPrint,External])
: Document= x.accept[E,Document] (new VList[E, a,Document] {

def rest (l : List[a]) : Document=
l.accept[I ,Document] (new VList[I , a,Document] {

def nil = text ("]")
def cons(y : a, ys: Rec) = text (",") :: break:: a.accept(v).pprint (y) :: ys.get

})

178

179

def nil = text ("[]")
def cons(y : a, ys: Rec) = group(nest(1, text ("[") :: a.accept(v).pprint (y) ::

rest (ys.get)))
})

}

Finally we show how to support the string notation. This codecorresponds to the workaround

that we had to use since the solution presented in Section 5.5fails with the following error:

name clash between defined and inherited member:

method list:[a](GenericPrint.this.Rec[a])

thesis.Chapter5.PPrint{type A =

thesis.Chapter3.VisitorLib.Composite[

thesis.Chapter4.Lists.ListVisitor[a]]} and

method list:[a](GenericPrint.this.Rec[a])

thesis.Chapter5.PPrint{type A =

thesis.Chapter3.VisitorLib.Composite[

thesis.Chapter4.Lists.ListVisitor[a]]}

in trait GenericPrint have same type after erasure:

(thesis.Chapter4.IndexedVisitorLib#External)thesis.Chapter5.PPrint

when trying to compile the traitGenericPrint.

trait GenericPrintrequires GenWith[PPrint,External] extendssuper.GenericPrint{
override def list [a] (a : Rec[a]) : PPrint {type A = List[a] } = new PPrint {

type A = List[a]

def pprint (x : A) = pprintl (x) (a.get,GenericPrint.this)
}

override def constr[a] (name: String, arity : int, a : Rep[a]) = new PPrint {
type A = a

def s= text (name)
def pprint (x : A) = if (arity ≡ 0) s else

group (nest(1, (text ("(") :: s :: break::
a.rep (GenericPrint.this).pprint (x) :: text (")"))))

}

}

We are unsure of what the problem is here and the error messageis not very helpful since the

reported signatures for the methods are the same! Nonetheless, the workaround consists of adding

string support at the same time we merge meta-information and list support.

179

180

trait ExtensibleGMStringHackextendsExtensibleGMConstrwith ExtensibleGMList{
type Gen<: Generic

trait Genericextendssuper[ExtensibleGMConstr].Generic
with super[ExtensibleGMList].Generic

def pprintl [a] (x : List[a]) (implicit a : Rep[a], v : GenWith[PPrint,External])
: Document= x.accept[E,Document] (new VList[E, a,Document] {

def rest (l : List[a]) : Document=
l.accept[I ,Document] (new VList[I , a,Document] {

def nil = text ("]")
def cons(y : a, ys: Rec) = text (",") :: break:: a.accept(v).pprint (y) :: ys.get
})

def nil = text ("[]")
def cons(y : a, ys: Rec) = group(nest(1, text ("[") :: a.accept(v).pprint (y) ::

rest (ys.get)))
})

trait PPrintList extendsTypeConstructor{
def pprintList (x : List[A]) : Document

}

implicit def defPrint: GenWith[PPrint,External]

// A generic functionwith default
trait GenericDefaultextendsGeneric{

type S= External

def deflt[a] (a : Rep[a]) : X {type A = a}

def unit = deflt (RUnit)
def int = deflt (RInt)
def char= deflt (RChar)
def plus[a, b] (a : Rec[a], b : Rec[b]) : X {type A = Plus[a, b] } =

deflt (RPlus(a.get, b.get))
def prod[a, b] (a : Rec[a], b : Rec[b]) : X {type A = Prod[a, b] } =

deflt (RProd(a.get, b.get))
def constr[a] (name: String, arity : int, a : Rec[a]) : X {type A = a} =

deflt (a.get)
override def list [a] (a : Rec[a]) : X {type A = List[a] } = deflt (RList (a.get))
}

trait GenericPrintListrequires (GenWith[PPrintList,External] with GenericDefault)
extendsGenericDefault{

type X = PPrintList

def deflt[a] (a : Rep[a]) = new PPrintList {
type A = a;
def pprintList (x : List[A]) = prettyDoc(x) (RList (a), defPrint)
}

override def char= new PPrintList {
type A = char

def pprintList (x : List[char]) =

180

181

text ("\"" + (x.accept[I ,String] (new VList[I ,Char,String] {
def nil = "\""

def cons(y : A, ys: Rec) = y.toString() + ys
})))

}

def view[a, b] (iso : Iso[b, a], a:⇒ Rec[a]) = new PPrintList {
type A = b
def pprintList (x : List[A]) =

pprintl (
x.accept[I , List[a]] (new VList[I ,A, List[a]] {

def nil = Nil [a]
def cons(x : A, xs: Rec) = Cons(iso.from (x), xs.get)

})) (a.get, defPrint)
}

}

// object printList
implicit def defPrintList: GenWith[PPrintList,External]

def prettyListDoc[t] (x : List[t]) (implicit r : Rep[t], v : GenWith[PPrintList,External]) =
r .accept(v).pprintList (x)

trait GenericPrintrequires GenWith[PPrint,External]
extendsGenericwith super.GenericPrint{

override def list [a] (a : Rec[a]) : X {type A = List[a] } = new PPrint {
type A = List[a]

def pprint (x : A) = prettyListDoc(x) (a.get, defPrintList)
}

}

}

181

Appendix I

A Functional Specification in Omega

The Omega programming language has a syntax inspired by Haskell. The code that we will

show in this appendix should, therefore, be fairly familiarto a Haskell programmer, expect that we

use GADT-style, instead of traditional Haskell, datatype declarations. Also, due to the stratified

kind system that omega has,∗0 denotes the type of types (the conventional∗ in Haskell) and∗1

denotes the type of kinds (more generally,∗(n+ 1) denotes the type of “kinds” at the inferior level

∗n).

The typeMu, which models the composite component, is expressed in Omega as:

data Mu :: ∀(k :: ∗1). k{ ∗0 where
In :: (∀x s. (∀v a. v s a→ Mu v→Wrap s v a)→ v s x→ x) → Mu v

Note that the first argument forMu is kind polymorphic, taking a type constructor of any kind

as an argument and we use the type∀v a.v s a→ Mu v → Wrap s v adirectly instead of the

type-synonymDecompose s. Also, due to what it seems a bug in the type checker, the typeWrap

(which is basically the identity) is needed to convince the type checker thatMu is well-typed.

data Wrap:: ∀(k1 :: ∗1) (k2 :: ∗1). k1{ k2{ ∗0{ ∗0 where
W :: s v a→Wrap s v a

unwrap:: Wrap s v a→ s v a
unwrap(W w) = w

The Internal andExternalstrategies are the two corresponding decompositions values are de-

clared as:

data Internal :: ∀(k :: ∗1). k{ ∗0{ ∗0 where
F :: a→ Internal v a

data External:: ∀(k :: ∗1). k{ ∗0{ ∗0 where

182

183

C :: Mu v→ External v a

external:: v External a→ Mu v→Wrap External v a
external v mu=W (C mu)

internal :: v Internal a→ Mu v→Wrap Internal v a
internal v (In m) =W (F (m internal v))

Again, note the usage of polymorphic kinds to type the first argument (the visitor) ofInternal

andExternal.

We show how to encode natural numbers using the library next.

data NatF :: ∀(k :: ∗1). k{ ∗0{ ∗0 where
NatF :: a→ (s NatF a→ a)→ NatF s a

type Natural= Mu NatF

zero:: Natural
zero= In (λdec(NatF z s)→ z)

succ:: Natural→ Natural
succ n= In (λdec(NatF z s)→ s (unwrap(dec(NatF z s) n)))

and give two examples: the first one, using a Church encoding/visitor, converts a natural to a built-

in integer; the second one using a Parigot encoding defines the predecessor function (hard to define

with Church encodings).

toInt :: Natural→ Int
toInt (In n) = n internal visitor

where visitor :: NatF Internal Int
visitor = NatF 0 (λ(F x)→ x+ 1)

pred :: Natural→ Natural
pred (In n) = n external visitor

where visitor :: NatF External Natural
visitor = NatF (zero) (λ(C x)→ x)

183

