Genericity, extensibility and type-safety in the

VisiTor pattern

Bruno César dos Santos Oliveira

Wolfson College

ﬂﬂk M
SufiromMMINA
g NVS TIO
3= ILLV MEA
oﬂ

o*

Oxford University Computing Laboratory

Submitted for the degree of Doctor of Philosophy

Abstract

A software componeris, in a general sense, a piece of software that cagsabely reusedand
flexibly adaptedy some other piece of software. The safety can be ensuredypeaystem that
guarantees the right usage of the component; the flexilstégyns from the fact that components
areparametrizablever diferent aspectsiecting their behaviour€Component-oriented program-
ming (COP), a programming style where software would be builtafgeveral independent com-
ponents, has for a long time eluded the software industryer@éreasons have been raised over
time, but one that is consistently pointed out is the inadegwf existing programming languages
for the development of software components.

Generic Programming (GP) usually manifests itself as a &fqdirametrization. By abstracting
from the diferences of what would otherwise be separate but otherwisasspecific programs,
one can develop a single unified generic program. Instamgidhe parameter in various ways
retrieves the various specific programs (and ideally somearees too). Instances of GP include
the generics(parametrization byyped mechanism as found in recent versions Java and C# and
Datatype-Generic Programming (DGP) (parametrizatioslapg. Both mechanisms allow novel
ways to parametrize programs that can largely increaseekibifity of programs.

Software components and GP, and in particular DGP, arelgledated: GP and DGP provide
novel ways to parametrize software, while software comptsbenefit from parametrization in
order to be flexible. However, DGP and COP have mostly beetliestun isolation, with the
former being a research topic among some functional prograg communities and the latter
being mostly studied within the object-oriented commsiti

In this thesis we will argue for the importance of the parammation mechanisms provided
by GP, and in particular DGP, in COP. We will defend that maagign patterns can be captured
as software components when using such kinds of param@trizaAs evidence for this we will,
using DGP techniques, develop a component library for thlyerdk pattern that is generic (i.e.

can be used on several concrete visitors); extensibleqoecrete visitors may be extended); and

Abstract i

type-safe (i.e. its usage is statically type checked). Aosdaspect of this thesis concerns the
adaptation of functional DGP techniques to object-orietdmguages. We argue that parametriza-
tion by datatypes should be replaced by parametrizationdipxs, since visitors can be viewed as
encodings of datatypes and, through those encodings, tisidnal techniques naturally translate

into an OO setting.

Acknowledgements

I would like to thank Jeremy Gibbons, my supervisor, for twiietent reasons. Firstly, for being
an excellent supervisor, for giving me a very interestingjget to work on, for helping me dur-
ing my first stages of research (when | felt unconfident aboutesearch and abilities), and for
always being willing to help me with technical (and bureaitic) problems. Secondly, for giving
me the opportunity to study in Britain and in the beautifullamspiring city of Oxford, which has
greatly helped me on the development of both my personal esfdgsional skills. | cannot forget
José Nuno Oliveira for introducing me to the beauty of fiorwdl programming with his always
interesting lectures and for motivating me into coming td@det. Ralf Hinze provided great in-
spiration for my work and taught me a lot about generic pnognéng. He and Andres Loh were
excellent hosts during my one month visit to Bonn, which pabvery fruitful in terms of research.
My two examiners, Martin Odersky and Ralf Hinze, providedyvaeseful feedback that helped
improving the presentation of this thesis substantialljkévVSpivey took me as his student during
Jeremy'’s sabbatical and provided important feedback durg confirmation of status. Richard
Bird and Oege de Moor were very helpful in making me focus oessarch direction during my
transfer examination. The Friday meetings of the Probleiaisyp Club provided a relaxed envi-
ronment to discuss research problems and to get feedback miyoown research. The meetings
of the Datatype-Generic Programming project gave me therppity to present progress on my
research and to get feedback regularly, and also providesstant flow of new ideas. The attic
crowd (which included, among others, Daniel Goodman, @piser Aycock, Rui Zhang, Jolie
de Miranda, Edward Smith, and Zoltan Miklos) provided arediaining working environment.
Wolfson College and the many friends | made there did an &xgbb in my social integration at
Oxford. My girlfriend Warnchudee Chalitaporn, who | met abNgon, gave me a lot of support
and was very patient during my DPhil. Finally, my family, aegpecially my mother, have always

motivated me and gave me the conditions to pursue higheraédac

Table of Contents

1

Introduction 1
1.1 Software ComponentsandReuse 2
1.2 Component-Oriented Programming v iiiien oo 3
1.3 Design Patterns: A Sign of Weakness? 4
1.4 Datatype-Generic Programming e e 5
1.5 AcasestudyontheMror Pattern., 6
1.5.1 The \sitor: A Valuable Abstraction 7
1.5.2 TheScalaOption e 8
1.6 OverviewoftheThesis 10
1.7 RelatedWork e 11
1.7.1 Encodings of Datatypes and thewor Pattern 11
1.7.2 Design Patterns and Components 12
1.7.3 Design Patterns and Functional Programming 14
1.7.4 FunctionalDGP e 16
1.7.5 The ExpressionProblem 19
Preliminaries 22
2.1 The Scala Programming Language aua.. 22
2.1.1 Expressions and Definitions L L0 23
212 ClassesandObjects. 25
213 Traitsand Mixins 27
2.1.4 GenericTypesandMethods 28
2.1.5 Abstract Types 9 2
2.1.6 ImplicitParameters e 32
2.1.7 Higher-kinded Types 33
2.2 ScalaasaDGPlanguage 34
2.2.1 Encoding Type-Constructor Polymorphism 34
222 AlittleDGP Library 35
2.3 MViSITORS @nNd OMPOSITES« v v o o i e e e e e e e e e e e 36
2.3.1 TheGwmrositEPattern 36

TABLE OF CONTENTS %
2.3.2 TheVNsmror Pattern L 38
2.4 FunctionalNotation e 42
3 \Visitors as Encodings of Datatypes 44
3.1 Introduction e e 44
3.2 Internal or External Mitors: A Design Choice 47
3.3 Internal Visitors and the Church Encoding 48
3.3.1 Encoding Data Typesinthe LambdaCalculus 48
3.3.2 TheChurchEncodinginScala 49
3.4 External Visitors and the Parigot Encoding 50
3.4.1 Limitations of Church Encodings 50
3.4.2 Parigot Encodings inthe Lambda Calculus 51
3.4.3 TheParigotEncodinginScala 51
3.5 Generic Visitors: Two Dimensions of Parametrization..... 52
3.5.1 Abstractingovertheshape 52
3.5.2 Abstracting over the decompositionstrategy 54
3.6 TheMsiror Patternasalibrary 56
3.6.1 DefiningthelLibrary, 56
3.6.2 UsingthelLibrary 59
3.7 Syntactic Sugar fordirorsinScala L o oL 61
3.7.1 ExtendingthelLibrary, 62
3.7.2 Usingthe Extended Library 63
3.7.3 Comparison with Functional Programming 65
3.8 Expressiveness of the Visitor Library L. 66
3.8.1 ParametricDatatypes e 66
3.8.2 Mutually Recursive Datatypes 67
3.8.3 Existentially Quantified Datatypes 68
3.8.4 ParamorphicVisitors e 70
3.9 DISCUSSION o 72
4 Visitor-Generic Programming 74
4.1 Introduction e e 74
4.2 Encoding Sums and ProductsinScala 76
4.3 Generic Programming withiMrors Lo 78
4.3.1 Genericsforthe MassesinScala 78
4.3.2 RepresentationsofVisitors L Lo a . 81
4.3.3 Representations of ScalasCaseClasses 83
4.3.4 Defining Generic Functions 84
4.3.5 Reusevialnheritance L oo 85
4.3.6 Local Redefinition 86

TABLE OF CONTENTS Vi
44 GMandIndexed MITORS 87
441 Indexed VisitOors e 88
4.4.2 A \Visitor Library for Indexed Visitors 89
4.4.3 GM as an Instance of the VisitorLibrary 90
4.5 A Visitor for a Family Based on Sumsof Products 93
4.5.1 A Visitor Based on Sumsof Products oL 93
452 CreatingNewDatatypes i 95
4.5.3 Functorial Representations 97
4.5.4 Separating Recursion from Generic Programming 98
4.6 Example: Generic Serialization and Deserialization..... 100
4.6.1 Serialization 100
4.6.2 Deserialization 102
4.7 DISCUSSION o e 103
5 Extensible Visitors and Generic Functions 106
5.1 Introduction 106
5.2 Generic Functions and The Expression Problem 109
5.2.1 The Extensibility Problem of Visitors 110
5.3 Extensibilityin Internal Visitors o 111
5.3.1 Simple Extensible Visitors o oL 111
5.3.2 Extending Generic Functions with Extra Cases 112
5.3.3 Extensible Representations, 114
5.4 Example: An Extensible Generic Pretty Printer 115
541 AGenericPretty Printer 115
5.4.2 PrettyPrintingTrees e 117
5.4.3 Pretty PrintingLists 119
5.5 Extensibility on Visitorsofany Kind 121
5.5.1 Extensibility on Generic Encodings 121
5.5.2 SupportingLists 123
5.5.3 Supporting Meta-Information and Pretty Printing 123
5.5.4 Merging List and Constructor Support 124
55,5 CreatingaNewModule 251
5.5.6 Supporting String Notation, 126
5.6 Comparing the Two Approaches to Extensibility 128
5.7 DISCUSSION o 129
6 Conclusion 132
6.1 Summary and Contributions 132
6.1.1 SomeExtralnsights 134
6.2 A Type-Theoretic PerspectiveonthisThesis 135

Vi

TABLE OF CONTENTS Vi

6.3 HaskellversusScala 137
6.3.1 A Slightly Inaccurate Specification 139
6.4 ApplicationsofourWork L e 140
6.5 FutureWork 143

A Functional Specification of the Msitor Library in Haskell 158
B Translation of Datatypes 160
C Paramorphic Visitors Specification 164
D Paramorphic Visitors 165
E Serialization Library 167
F Functional Specification for Indexed MsiTors 171
G Functional Specification for the Family of Sums of Products 173
H Extensible Visitors Using Abstract Types 175
I A Functional Specification in Omega 182

Vii

List of Figures

2.1
2.2
2.3
2.4

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13

The @server patterninScala o 31
The Composite Design Pattern aa.. 37
The Msiror design pattern L 39
A Functional \sitor for Binary Trees oo 41
A functional internal Yiror for binary trees. L L. 47
Parigot encodings of naturals and binary trees. 51
Church encoding of Peano numerals using products ofiimmsc 54
A simplified form of XML documents asvisitors. 59

A printing function for XML documents L. 60
An equality function for XML documents using visitors. 61
Equality re-written with the new notation 64
Parametric lists using the visitor library 67
Adding elements in forests and trees of integers. 68
Visitors for the mutually-recursiorestandTreetypes. 69
Defining heterogeneous list with the visitor library 70
ParamorphicvisitorsinScala., 71
Avisitorforsums. e 77
Avisitorforproducts. L L e 78
Thetrait Generic. e 80
Representations for generic functions. 81
Isomorphism between parametric lists and sums of pteduc. 82
Isomorphism betweenlast case class and sums of products. 83
Defining a generic function for countingvalues. 85
Tree with depth information. 86

A Visitor library with support for unnested GADTs 89
GMasaVisitor 92
Generic function using ti@enericvisitor. oL 93
A visitor for sums of products datatypes. 95
Parametric lists using a sum of products visitor. 96

viii

LIST OF FIGURES iX

4.14 A representation for sums of products visitorsinScala 97
5.1 Anad-hochinaryencoder. e 107
5.2 Aninternal version foGenericusing the visitor library. 112
5.3 Alessad-hocdispatcher. 114
5.4 AGenericPrettierPrinter e e 116
55 AVisitor forbinarytrees 118
5.6 Ad-hoc pretty printingforlists. 119
5.7 A parametrized module for generic functions 122
5.8 Merging Support for Constructorand Lists 125
5.9 Support the string notation with the Parigot encoding.... 127

Chapter 1

Introduction

The 1968 NATO Software Engineering Confereribiaur and Randell, 1969), is famous for the
wide recognition among the community at the time of the dtedasoftware crisis As Edsger
Dijkstra’s puts it in its seminal papeThe Humble Programmér presented at thd972 ACM

Turing Award Lecturethe major cause of the software crisis is:

that the machines have become several orders of magnitude powerful! To put
it quite bluntly: as long as there were no machines, programgnwas no problem
at all; when we had a few weak computers, programming becamédaproblem,
and now we have gigantic computers, programming has beconegjaally gigantic

problem.(Dijkstra, 1972)

The causes of the software crisis were directly linked tooerall complexity of the software
process and the relative immaturity of software engingessia profession. The following manifes-
tations of the crisis were identified by the participantshef tonference: projects ran over-budget;
projects ran over-time; software was of low quality; softev@ften did not meet requirements;
projects were unmanageable and code wékdit to maintain.

Nearly 40 years later, is the software crisis a thing of thetpaClearly not! All the man-
ifestations of problems identified at the time are still vpgrtinent problems in today’s software
industry. Of course, such an answer begs for the questi@s tthts mean that in 40 years there was
no progress at all? As we rightfully may hope, this has nohlibe case. Indeed, the development
of new methodologies; new programming language paradiginesadvent of stronger type sys-

tems; as well as the evolution of tools in general, are sabigtamprovements when we compare

1.1. Software Components and Reuse 2

the state of the art of programming at the time with todayisieaent. Still, this is not enough to

cope with today’s needs. Dijkstra’s justification for thésmwains valid. The basic problem is that:

as the power of available machines grew ... society’s amitt apply these machines

grew in proportion(Dijkstra, 1972)

With the machine’s power growing several orders of magmituda small number of years,
software problems that were just a programmer’s dream edfecome feasible after a few years.
What was considered to be a big program in the 70’s is, by tedagndards a small one; and
while using today’s tools may be adequate to solve probldmaah a size; these same tools have
difficulty scaling up to today'’s big-sized (or even mid-sizeajgpems.

The way we have been coping with this problem (as well as mémgrs), is by continuously
increasing the level of abstraction: from writing machiele directly to programming in current
high-level programming languages many abstractions we@wdered, which provided us with

new ways to reuse software.

1.1 Software Components and Reuse

At the same conference, Douglas Mcllroy addressed the acelieith a paper entitledMass
Produced Software ComponehtéMcliroy, 1969). In this paper he set the vision that softeva
should be componentized, i.e. built from prefabricated gonents: in the same way that a complex
piece of electronics is built-up from a set of simpler, s&ndized smaller pieces, software should
be itself built from smaller software components that cagloed together to build more complex
programs. Using the analogy with industrial componentsgee that the idea of interchangeable
parts corresponded to ‘modularity’ in software enginegrand that the idea of machine tools has
an analogue in assembly programs and compilers. His exjetddor what software components

should provide can be summarized in the following quote flospaper:

The mostimportant characteristic of a software componiaaiisstry is that it will gfer
families of routines for any given job...In other words, fhachaser of a software
component from a family will choose one tailored to his exsads... He will be
confident that each routine in the family is of high qualityekable and gicient. He

will expect the routine to be intelligible, doubtless exgzed in a higher level language

2

1.2. Component-Oriented Programming 3

appropriate to the purpose of the component ... He will ekfauilies of routines to
be constructed on rational principles so that families fgether as building blocks. In

short, he should be able safely to regard components as blaaks (Mcllroy, 1969)

The first implementation of an infrastructure for this iddae to Mcllroy himself, Pinson and
Tague (Mcllroyet al,, 1978), is the inclusion of pipes and filters into the Unix igimg system.
The ideas behind pipes and components set the Unix philgsoiWirite programs that do one
thing and do it well’; “ Write programs to work togethé&r. Write programs to handle text streams,
because that is a universal interfateOut of these three premises only the last one is intrirsic t

Unix; the other two can be generally applied to other sofenaoblems.

1.2 Component-Oriented Programming

While Mcllroy’s vision was warmly received by researchend apawned a wave of enthusiasm that
seemed to indicate that component-oriented programmi@gj@vould soon become mainstream,
the truth is that to date that vision has not been fully acdmhed. In fact, apart from Unix pipes
and a few other successes, component based software deegibs still the exception rather
than the rule. The reasons for this are not trivial to pinpo8ome researchers argue that current
tools and programming languages are not adequate for COPasn probably does not help that
Mcllroy’s informal description of a component does not sfate into a widely accepted concrete
formal definition (Broyet al., 1998).

Object-oriented programming (OOP) has often been regaadedpromising platform for the
development of components (Cox, 1990). However, mostiagiséchnologies supporting compo-
nent development are not, in fact, object-based (not at ledise traditional sense). For example,
Microsoft COM (Brockschmidt, 1995) does not support subtgpor inheritance. Similarly, the
niche component market created around early versions ofdstdt’'s Visual Basic involved no
object-oriented programming eitherRé&al objects, as OOP (object-oriented programming) ex-
perts rightly point out, rest on the tripod of inheritancalymorphism, and encapsulation, while
VBXes stand only on the single leg of encapsulétiadell, 1994). Pfister and Szyperski argue
that objects are not enough and that while COP and OOP do hasg things in common, there

are some subtle, but importantffeirences:
A programming language is called component-oriented ifavies polymorphism,

3

1.3. Design Patterns: A Sign of Weakness? 4

information hiding over several objects, late binding aatkllinking, and type safety...
This is in contrast to the typical interpretation of objewriented programming, which
consists of polymorphism, information hiding over indiatl objects, late binding

only, and inheritance (or delegatiofiPfister and Szyperski, 1996)

The most noticeable absent ‘feature’ from the definition afoaxponent-oriented language
(when compared to an object-oriented language) is inmexdtdor delegation). The reason given
by the authors is that code inheritafd®legation mechanisms are noffatiently controllable,
allowing us to #ectively break encapsulation (for example with tregile base class problem
(Snyder, 1986; Weck and Szyperski, 1996). As SzyperskiZpftentions a direct consequence of
breaking encapsulation is that object-oriented compmsdbes not really work. This is, of course,
limiting, since components should be composable.

Perhaps more importantly component-oriented programmaqgires information hiding over
several objects, instead of individual ones. As argued sté?fand Szyperski, the OOP focus on
individual objects is too narrow and often results in sofewahich cannot be used as components.
According to their definition, a component is a collectioncobperating objects; which typically
implies that the objects are tightly intertwined. They segfgthat what is needed is a static and

higher-order module-like structuring construct.

1.3 Design Patterns: A Sign of Weakness?

Design patterns, introduced by théang of Fout (GoF) (Gammaet al, 1995), are frequently
used to abstract non-trivial designs that can be reusedtereint contexts. A design pattern is a
description or template for how to solve a problem that camid®rl in many dferent situations.

A typical description of a design pattern will have a nametivadion, examples, consequences,
implementation tradefts, and so on. In some sense a design pattern allows us to capgfalty
studied solution for a similar problem. This usually leadstl{ a correct interpretation of the
pattern) to a good implementation. Most design patternsgkier, tend not to be captured in some
form of reusable software, which seems a step backwardsdrsoftware engineering perspective.

Design patterns, as understood by Ganenhal. (1995), cannot be considered as components

because they do not allow reuse of the patterns as a librafgct: “The only reuse patterns pro-

vide is reuse of concepts(Meyer and Arnout, 2006). A question that can be asked isthdre

4

1.4. Datatype-Generic Programming 5

design patterns can be captured as a more general abstr&dime authors believe that they can-
not and argue that fierent implementations of the patterns, although similaceptually, are just
incompatible to each other to be captured by a single alstnacOther authors, however, believe
that design patterns can be captured more abstractly, dytrdiblem is thaturrent programming
languages are just too wedk capture the those abstractions. Norvig (1996) arguegshbdlexi-
bility of dynamic languages like Lisp allow us to capture iind$ out of 23) of the design patterns
in Gammaet al. (1995) as reusable code. However, one problem with dynaanguages is that

they do not guarantee type-safety, which is considered &datyre of components.

1.4 Datatype-Generic Programming

Generic Programming (GP) usually manifests itself as a &fmrameterization — in particular, the
genericsmechanism (also known g&rametric polymorphisirfound in Java or C# is a particular
kind of GP where we havearameterization by type8y abstracting from the ffierences in what
would otherwise be separate but similar specific programes,can make a single unified generic
program. Instantiating the parameter in various wayseaeds the various specific programs and,
ideally, some new ones too (Gibbons, 2003).

Datatype-Generic Programming (DGP) is another instaatiagf GP where programs can be
parameterized bglatatypegor type functors By a datatype here we mean a container type, which
is given a formal semantics via the categorical notion &frector. The Algebra of Programming
(AoP) movement (Backhousa al., 1992; Bird and De Moor, 1997) inspires a particular inséanc
of DGP that has a strong formal foundation based on categenry. The work on AoP explored
patterns of recursion onftierent datatypes and showed that we can have a single (ggmegcam
that captures some pattern: as it was demonstrated, atiEracursion follow the datatype defi-
nition. In other words, a generic program to capture one pattern needs to be parameterized by
the shape of the datatype.

It has been argued by Gibbons (2003) that DGP can also be asmpture the abstractions
behind many design patterns formally. This would entailesavadvantages: patterns would be
expressible directly as reusable library components;tbealreasoned about; and type-checked. In
essencethe abstractions behind design patterns would become wtievare componentsMore

recently, Gibbons (2006) substantiated his argument byudag four of the GoF patterns — con-

1.5. A case study on the Ysrror Pattern 6

cretely, the \tsitor, the Gomposite, the lreraror and the Biber— as higher-order datatype generic
programs. The resulting (datatype-generic) programs ar@npeterized on threeftirent dimen-
sions: ‘by theshapeof the computation, which is determined by the shape of tdenying data,
and represented by a type constructor (an operation on dysstheelement typga type); and
by the body of the computation, which is a higher-order argument (a ealtypically a func-
tion).” (Gibbons, 2006).

However, there is a problem: while parametric polymorphfsem parameterization by types)
and parameterization by functions is available in many laggs (one way or another), parame-
terization by shape is not. Fortunately, in languages likskell (Gibbons, 2006; Hinze, 2004)
or Scala (Moort al., 2006) we caralmostwrite fully datatype-generic programs (we still need
to manually write some boilerplate code, but given this we @efine datatype-generic functions).
Research languages like PolyP (Jansson, 2000) and GenasleH (Loh, 2004) actually have

built-in support for some form of datatype-genericity.

1.5 A case study on the Ysrror Pattern

Despite Mcllroy’s vision for a component-oriented softeardustry as a solution for the ‘software
crisis’ not being realised yet, recent developments in Eagning languages (in particular type
systems) show some promise that this could happen in thefuteiae. In this thesis we will make
the case that DGP can play an important role in COP by allowiagy useful abstractions to be
captured asruly reusable software components. In particular, we will atiyag, with type systems
supporting some form of DGP, many design patterns could peuced as software components.
Moreover, components developed in languages supporting W&uld be —as they should be-
extensible, flexibly adaptable and, above all, type cheekab

We will show evidence for this by presenting the foundatiohas library for the Msitor pattern
— one of the most well-known (and also one of the most commleg)gn patterns in the GoF book.
This presentation will be made using the Scala programn@ngdage (Odersky, 2006a) and the
end result will be a compilable generic visitor library titan be parametrized byftirent aspects
(including shape) and with programs written using the lptaaving properties that allow them to
be reasoned about (assuming a sitfeet free setting). We will also show that using our library we

can write generic functions (that is, functions that work doy visitor). Furthermore, the library

1.5. A case study on the Ysrror Pattern 7

will allow us to extend visitors with new cases.

1.5.1 The Msrror: A Valuable Abstraction

How can a thesis be written around a single design pattern?ne-ntay wonder. Th€hurch

numeralsintroduced by Church (1936), can be defined in the untypedbdia calculus as:

zero=Af x —Xx

succ=Anf x—f (nf X

This code shall be explained elsewhere in this thesis, butdw it is suficient to know that its
intent is to provide an encoding for the natural numbers astfans. The technique developed
by Church to encode numerals can be applied to other datagevell: although this code is
probably unfamiliar to most object-oriented programmigis,(arguably) an instance of thasvror
pattern. The Church numerals played an important role teeptimat any computable function can
be expressed and evaluated in the lambda calculus. It iegiieg that Church’s work (which
is a very important foundational work in theoretical congrgcience) and theMror pattern (a
highly practical tool available to the object-oriented gnammer) are related. It is not clear if the
GoF authors knew of this connection, but many researchees diace realised it to an extent that
has become folklore knowledge among some communities. fRgdduchlovsky and Thielecke
(2005), in work directed to the type-theory community, fatiped the relation between visitors
and encodings of datatypes precisely and showed the rlattithe traditional imperative version
of the pattern with a more functional version that is bagycalChurch encoding. It was partly the
inspiration provided by these encodings that led to our ldgveent of a \fsiror library (that we
present in Chapter 3).

The question that we asked at the beginning of this sectionbeafinally be answered by
emphasizing the dual goals of this thesis. The first goal expdoit how the abstractions that arise
in DGP can be useful for COP. Thesvtor pattern is a good example to use becauskedint
aspects of it (like extensibility, genericity, and typdetg) can be easily motivated and developed
using DGP-related abstractions. The second goal, whicls ainexploring good ways to apply
DGP techniques in an object-oriented setting, is closdbted to visitors. Our reasoning is that
since traditional functional DGP techniques are fundamdgntonnected to datatypes (just recall

that we define DGP as parametrization by datatypes) and #teral’ way to encode datatypes in

1.5. A case study on the Ysrror Pattern 8

object-oriented languages is using visitors then the reatation of DGP in OO languages should

be parameterization by visitors

1.5.2 The Scala Option

Scala was chosen as the programming language used for tepeent of our visitor library

because:

1. TheVisiror (and more generally, design patterns), which is the focukisfthesis, is tradi-
tionally associated with object-oriented languag8sala is a statically-typed object-oriented
language that was designed to remain close to mainstreautafsjented languages. In par-
ticular, Scala compiles into the Java Virtual Machine (JVauhd interacts nicely with Java

(there has been some work on supporting the .Net platformedis w

2. Scala is a functional (DGP) languagé&ince almost all the previous work in DGP was de-
veloped using functional programming languages it was ntamb to use a programming
language that supported similar abstractions. Scala stgjist-class functions, parametric
polymorphism and abstract types, which can be used to ertgae constructor polymor-
phism (and DGP). These three forms of abstraction satisfy Gilsbmyuirements for a DGP

language (see Section 1.4).

3. Scala supports information hiding over several objedthlike traditional object-oriented
languages, which only allow information hiding over indiual objects, Scala’s abstract
types together with inner classes allow us to hide inforamativer a set of objects. As
discussed in Section 1.2, this is an essential feature afigponent-oriented language. From
another perspective, it can be said that Scala nicely umifiedules and objects providing

what can be seen as a powerful module system.

4. Scala supports traits and mixin compositiotJnlike current mainstream OO languages
which either support single inheritance (with its well-kwolimitations) or full-fledged mul-
tiple inheritance (with its complexity and safety problgmScala’s support for traits and
mixins means that the language has a safe, simple and elmgatt powerful enough mech-

anism to combine multiple components.

1.5. A case study on the Ysrror Pattern 9

The option not to use a more mainstream OO language such a®l&# was mainly due to
the lack of abstraction provided by the corresponding tyseesns. In particular, neither language
supports (or allows us to encode) fully type-safe forms offD&hile this issue could possibly be
worked around by losing some type-safety, we feel that tlnald/not be desirable because both
DGP and COP regard type-safety as a key feature. Moreowsse thnguages are based on single
inheritance and do not support information hiding over ssvebjects, which severely limits their
use for COP.

Another option that could be considered would be to use a hgectoriented language that
satisfies the DGP criteria. Haskell (Jones, 2003) would belbaious candidate here since it has
been the preferred platform for much of the DGP research énplst. However we feel that
the connection to the object-oriented paradigm is impaorsana should be preserved. While it
is certainly possible to encode visitors in Haskell (ardyafisitors are just typed encodings of
datatypes), the fact is that thasyWfor pattern (and many other design patterns) is somehow alien
to functional programming languages like Haskell: vistptay the same role as datatypes and
it would just be awkward to use visitors when a datatype meishais readily available. On the
other hand, because typical OO languages do not have desatyigitors can be useful to capture
abstractions where datatypes would make more sense tha@ate€dgn. Therefore, theidftor
pattern is a valuable abstraction for the OO programmer angust an intellectual curiosity as
it is for the functional programmer. Also, Haskell’s weak aite support means that information
hiding in the large is not well supported, which limits Hal¥kause for COP.

A word of honour should go to OCaml (Lerast al., 2005) that, like Scala, is a functional
statically-typed OO language. The option to use Scala adstd OCaml was due to two facts.
Firstly, Scala unifies the module system with the objectesysivhile OCaml maintains two sep-
arate mechanisms. In the authors opinion Scala’s solusems more elegant and easier to use
from a programmers perspective. Secondly, Scala remaissrcto the traditional OO languages,
which makes it easier to argue about and develop designripsitteke Haskell, because OCaml
readily supports datatypes, it is somehow awkward to tatkugkisitors in OCaml; however, un-
like Haskell, OCaml has a powerful module system that alloviermation hiding on modules.
Despite these two facts, it should be possible to do a sirddaelopment to the one in this thesis

using OCaml instead of Scala.

1.6. Overview of the Thesis 10

Finally, it should be mentioned that, although we defentl8tala is the most adequate existing
programming language for COP and DGP in an OO setting, we\methat there is still a lot of
space for improvement. In fact, a secondary goal of thissheprecisely to explore the strengths
and weaknesses of Scala for the development of DGP progtar@hapter 6 we will discuss our
findings and make some suggestions that we hope will be afesttéor both the programming

languages and COP communities.

1.6 Overview of the Thesis

In Chapter 2 we will introduce the concepts and notation #natgoing to be used in this thesis.
In particular, we will introduce the Scala programming laage, present theidror and related
CowmrosiTE design patterns and introduce the functional notation uséus thesis to specify parts
of our visitor library.

In Chapter 3 we will show how theMror design pattern is associated witlitdrent encodings
of algebraic datatypes (AlgDTs). In particular we expldre tonnection with Church and Parigot
encodings and we will show that, using some type-theoresalts, it is possible to define generic
visitor libraries for both encodings. These libraries assemtially parameterized by tlsbapeof
the concrete visitors. Furthermore, we will add an extrzll@f parameterization and show that
the diferent kinds of encodings can be themselves a parameter afeanngore general library,
which is not only parameterized by shape but also by (whatha# sall) adecomposition strategy
Finally, we will talk about how we could improve the notatitor programmers and show how
some of that notation can already be implemented withingScal

The relationship between visitors and AlgDTs leads nalital a connection with the DGP
styles found in functional programming. In Chapter 4 we digva DGP library for visitors inspired
by the ‘Generics for the Masse@GM) approach proposed by Hinze (2004). With this approach
we can define our own generic functions on visitors. We alswdhat GM is itself one instance
of the visitor pattern, but it cannot be implemented with tisstor library presented in Chapter 3.
To solve the problem we propose a generalization of ourarighrary, which allows us to encode
a larger family of visitors (including the one that arisemfrGM). With the insight that GM can be
implemented with visitors, we eliminate the need for a desigpice that is present in GM. Finally,

we will see how to express a family of visitors based on sunpaducts within our visitor library,

10

1.7. Related Work 11

which allows us to express a wider range of generic functions

The fact that generic functions cannot be extended is a sammwback, because often we
want to define some ad-hoc behaviour for new datatypes. Trhitation precludes the design
of an extensible and modular generic programming libranyChapter 5 we will talk about the
the expression problerfWadler, 1998) and how it relates to the extensibility pesblof generic
functions. We will then show how we can make our visitors (gederic functions) extensible. Two
different solutions will be presented. The first solution wilbadonly extensible Church encodings,
but it will be easier to use than the second solution, whidiuin will allow any encoding. Finally,
we will discuss the dferent trade-fis of the two solutions.

In Chapter 6 we will start by summarizing our results and gbations and discussing some
extra insights that we found worth mentioning. We then byipfesent the results of this thesis from
a type-theoretic perspective. After that, we compare Hhaske&l Scala for the implementation
of visitor and DGP libraries, discuss their trad#soand show some important shortcomings of

Haskell. Finally, we discuss some applications of our war#t propose some future work.

1.7 Related Work

1.7.1 Encodings of Datatypes and the isiror Pattern

An important foundation of this thesis regards the conoadietween encodings of datatypes (such
as Church encodings) and theifor pattern. As mentioned earlier, many researchers haveedali
this connection and the work by Buchlovsky and ThieleckeDB®Gstablishes this relation more
formally by reconstructing the ifTor pattern in Java (with support for generics) from a Church
encoding in a minor variant of Systefy,.

The Church numerals (along with encodings of other datafyywere first presented by Church
(1936) in the untyped lambda calculus. Bohm and Berard(i&@85) demonstrated that in Sys-
tem F it is possible to give precise typings to those encadinthe nameChurch encodingis
normally associated with Bohm and Beraducci’s System foding. There are well-known limi-
tations on the expressiveness of Church encodings (cdéuaitions that are inherently iffecient
or even inexpressible). A less well-known encoding isRaegot encodingParigot, 1992), which
basically allows us to write aryenerally recursivelefinitions (in contrast to the Church encoding).

However this encoding requires System F to be extended eatlrsion. Jan Martin Jansen (2005)

11

1.7. Related Work 12

uses, perhaps unawaringly, what is essentially an untypesion of the Parigot encoding to show
how to translate datatypes and pattern-based functionitiefie systematically.

Buchlovsky and Thielecke exploit the relationship betwemrors and encodings of datatypes.
They define two dferent categorizations of visitors with two possible cheiceeach. The first cat-
egorization distinguishes who controls the traversal:saai is calledinternal when the visitable
classes define the traversal behaviour, @xtdrnalwhen that role is performed by the visitor itself.
The second categorization is betweenctionalandimperativevisitors. The diference is that
the visit methods of the former kind of visitor can be seen as pure fomgt(a result is returned)
whereas in the later they make use of internal state to sesdts (thus, no result is returned).
Their paper is focused mostly on internal visitors (sincemal visitors in their idealized System
F. are not very useful due to the lack of built-in recursion) dmtusses how we can derive both
functional and imperative versions of visitors.

The most common rendering of thaskfor pattern is imperative (with both the internal and
external alternatives being common). In this thesis weudis@ functional model instead, with
both internal and external variations being covered. Bugdky and Thielecke’s work becomes
relevant for us because they formally show the equivalemteden functional and imperative
visitors — albeit in a somewhat idealized setting. We use therk to partly justify our option of
using functional instead of imperative visitors: since sdormal equivalence exists we are free to

use either option.

1.7.2 Design Patterns and Components

By capturing the knowledge and experience of software desgy design patterns prove to be a
valuable resource for software design. However, from ansot engineering perspective, captur-
ing design patterns as prose instead of some reusable cempggems a step backwards. Some
researchers think that the reason for this is that desigermpatare simply not componentizable.
Other researchers, including us, disagree and point therfboghe lack of abstractions in current
programming languages.

Odersky and Zenger (2005b) point out that the Scala progragtanguage is designed with
component development in mind. In their work they identdystract type memberself type
annotationsand modular mixin compositiomas abstractions that do not exist in mainstream OO

languages but prove to be important for component developriusing the first two features they

12

1.7. Related Work 13

provide an elegant software component that captures thex@r design pattern; all these features
are later used in the larger scale case study about the defdige Scala compiler.

Scala is probably the closest to a mainstream languagesiusvieloped with COP in mind,
but there are other research languages that share simédlr gohave abstractions that could sup-
port COP. The CaesarJ programming language (Arecil., 2006) provides a single construct
that unifies aspects, classes and packages. This con&rpotwerful enough to solve filerent
problems from aspect-oriented and component-orientegranoming. The GBeta programming
language (Ernst, 1999) has powerful constructs like virtiesses, a general block structure and
dynamic multiple inheritance, which proves to be usefulGQP.

Arnout (2004) reviewed all the 23 patterns described in Garatal. (1995) and evaluated
their componentizability in the Hel programming language (Meyer, 1997). The results showed
that about two thirds of the design patterns could be redldgea corresponding component; a
quarter of the patterns had “Wizard or library support”; @he remainder (2 out of 23 patterns)
were classified as nhon-componentizable. According to Arri€itfel features likegenericity tuples

andagentsplayed an essential role in the componentization of desigtems.

The Visitor as a Component There have been several proposals deneric visitors(visitor
libraries that can be reused for developing software ugiag/siror pattern) in the past. Palsberg
and Jay (1998) presented a solution relying on the Javatieflamechanism, where a single Java
classWalkaboutcould support all visitors as subclasses. Refinements tidéaeof using reflection
to capture generic visitors, mostly to improve performataee been proposed since by Grdtho
(2003) and Foraxet al. (2005). One advantage of these approaches is that they tinevasive
— that is, the visitable class hierarchies do not need to bhaeeptmethods, which adds some
flexibility and extensibility because there is no need to@aftware with visitors in mind initially.
However, the heavy reliance of the approaches on reflectimtelrs type-safety; because of that,
those solutions should not be strictly classified as compisn@t least according to our definition
of a component).

Arnout, jointly with Meyer (Meyer and Arnout, 2006), showkdw to componentize therM-
Tor pattern. Like the previous proposals for generic visittrey define a non-invasive version of
the Visitor; however their visitor is less reliant in introspection magisms (although these are
still needed), which makes the approach more type-safe.pfd@osed component consists of a

single generid/isitor class that can be reused by concrete visitors by paranmgfriae class with

13

1.7. Related Work 14

the concrete visitable interface. In essendsitor is implemented as a collection wisit agents
(which are roughly analogous to delegates or closures) anndes avisit method that can be
called by the clients. Since thésitor is parameterized by the visitable interface, only agerds th
have as an argument a subtype of that interface can be adwetthéncollection; if we try to add
an agent that does not satisfy this we will get a type error.eliinevisit method is called, an
introspection mechanism is used to determine at run-timielwdmgent should be called on thisit
argument. Performance measurements indicate that ussigamponent is only slightly slower

than traditional visitors, but has the big advantage ofeéeus

1.7.3 Design Patterns and Functional Programming

Norvig (1996) was among the first to explore the relationslgfween design patterns and func-
tional programming. In his study he used the Lisp and Dylaag@mmming languages, both of
which are (functional) dynamically typed languages andosupsome kind of object system. In
his study he classified design patterngassible (the programming language supports abstractions
that eliminate the need for the design patteimfprmal (the design pattern can only be captured as
prose) andormal (it is possible to capture the design pattern formally inltmguage). What his
study revealed was the flexibility of dynamic languages saghisp or Dylan allowed 16 out of
23 of the design patterns in Gammal. (1995) to have qualitatively simpler implementations —
either because they were invisible or they could be forradlis

Kuhne (1999) argues théDesign patterns inspired by functional programming carvadce
object-oriented designand develops several design patterns from that inspirattoom the op-
posite perspective, Laufer (2003) askghat functional programmers can learn from the visitor
pattern” and argues that functions in functional programming laggsaare too inflexible since
they do not allow reuse by inheritance. Using the connediietween visitors and datatypes and
inspired by existing encodings of inheritance in functidaaguages, he proposes a simple tech-
nique, which can be used in functional languages, that allpmgrammers to encode reuse by
inheritance of functions. We believe that inspiration cardbawn from both sides and we hope to
be able to contribute some new insights to both functiondlabject-oriented programmers.

Gibbons (2003) argues that DGP can be used to capture thachsts behind many design
patterns formally. There would be several advantages imgka: patterns would be expressible di-

rectly as reusable library components; could be reasoneataénd type-checked. In essence, the

14

1.7. Related Work 15

abstractions behind design patterns would become true@a@ftcomponents. He substantiates his
position in Gibbons (2006) by arguing that four of the deggtterns in GoF arefkectively related

to recursion patterns that had been developed by the Algdgliteogramming movement. Specifi-
cally, he argues that theidfror corresponds téolds(or catamorphismys the lrerator corresponds

to maps the BuiLpber corresponds tainfolds(or anamorphisms and GwrosiTeS corresponds to
datatypes. However, as he notes, these comparisons areumaelesimplifying assumptions such
as taking a specific interpretation of the design patternekample, theteraror is related to maps
only when interpreted asternaL ITERATOR and there is the assumption of no sidieets. The later
simplification has been lifted by Gibbons and Oliveira (20@®ere it is argued thapplicative
functorscan be used to model sidéects that exist in imperative languages; and the correspgnd

traverseoperation (argffectfulform of map) models internal iteration witlffects.

The Algebra of Programming In his work on the relation between DGP and design patterns,
Gibbons was inspired by the Algebra of Programming movertidatcolm, 1990; Meijeret al.,
1991; Backhouse and Hoogendijk, 1993; Bird and De Moor, 1L99his movement works on
a branch of the mathematics of program construction thatietuthe relationship between the
structure of programs and the structure of the data thatrttayipulate.

The practical results of this line of research are the stedaftecursion patterns’: functions
that capture common structures of programs using datatypks interesting thing about these
patterns is that they do not depend on specific datatypetaithghey can be parameterized on
the datatypes themselves. For example, the most well-kmdwimese is thdold function, which
basically captures definitions by structural recursiontenghape of datatype. Although the most
common instantiation offoldsis with lists, similar operations still make sense with areetlike
structures. Therefore, instead of providing sepdtefunctions for each datatype, we can provide
a singledatatype-generidefinition.

On the theoretical side, this line of research is based ofotheal foundations of category the-
ory, which provides a solid ground for reasoning about progg written using recursion patterns.
Using the categorical setting we can derive properties aogrpms using an equational style that
resembles secondary school algebra. One practical besradita(major motivation) is thaffecient
programs can be derived from ledi@ent ones by just using equational reasoning. In particula
fusionlaws play a crucial role in this optimization process byitgllus how can we fuse programs

in such a way that they take a single traversal over the data.

15

1.7. Related Work 16

1.7.4 Functional DGP

There are two main streams of work on functional DGP (thaD({SP in the context of functional
programming languages). The first (and earlier) stream aokwehich we shall refer to aga-
ditional DGP, involves the development of new languages or noratrishguage extensions that
allow native language support for DGP. The second (and nemrent) stream of work, which we
shall refer to aightweightDGP, usually builds on existing language features to pmsammne form

of library support for generic programming. There are somledtween forms of DGP that require
only a relatively mild modification on the programming laage (Hinze and Peyton Jones (2000)
is one example). In this thesis we are particularly inte@sh lightweight DGP; in Chapter 4 we

develop the basis of a lightweight DGP library in Scala.

Traditional DGP

PolyP PolyP (Jansson, 2000) is a language extension to Haskell, ttatvslihe definition of
generic functions over regular datatypes of kineb x. Generic programming in PolyP is based
on the notion ofpattern functors Each datatype is associated with a pattern functor tharibes
the structure of the datatype. Isomorphisms between pditarctors and the actual datatype are
automatically generated by PolyP and can readily be usetbgrams. In order to define generic
functions a special construpblytypicis used, which allows the function to exploit the shape of
the pattern functor in its definition. In PolyP, Algebra obBramming style recursion patterns like
foldscan be defined truly generically (i.e. requiring a singlerdgéin only and with no additional
boilerplate code). The original PolyP translated polytygefinitions to Haskell using a specializa-
tion approach. In the more recent PolyP2 (Norell and JansXi), type classes and functional

dependencies are used in order to perform the translation.

Generic Haskell Generic Haskel(GH) (Loh, 2004; Lohet al,, 2005) is a generic programming
extension to Haskell. GH addresses some of the limitatibRelyP; in particular it allows the def-
inition of generic functions over a much wider range of dgtat (nearly all Haskell 98 datatypes
are within the range). This contrasts with PolyP, which isgmsevere limitations: only kind
x — *, only regular (not nested) datatypes and also no mutuallyrséve datatypes. The key idea
is to exploit the fact that Haskell 98 datatypes are algekaad, therefore, they can be perceived

as nested binary sums of products. The sums of products &e<ehat pattern functors are to

16

1.7. Related Work 17

PolyP and, like PolyP, an isomorphism between datatypesams of products is automatically
generated. Generic functions are defined structurally amssaf products. Unlike PolyP, it is not
possible to define recursion patterns in GH, which is an itgmdidimitation. This limitation arises

from the fact that sums of products loose the informatioruabecursion points. Some work has

been done by Holdermaies al. (2006) to alleviate this and some other related problems.

Type-indexed datatypes GH also supportsype-indexed datatypeallowing us to encode ad-
vanced forms of generic programming; for example, a genersion of the Zipper (Huet, 1997) is
implemented in Hinze and Jeuring (2001). Recent work by Ghalty et al. (Chakravartgt al.,
2005b,a) proposes related extensions to Haskell. The sdeaeixtend type classes to support not
only ad-hoc overloading — or type-indexing — on functions élso ontypesanddatatypes Some
applications include those of type-indexed datatype$,cgeimizing libraries that adapt their data

representations, and algorithms that work in a type dicectanner.

Lightweight DGP

Type Classes Haskell's type class system is an (ad-hoc polymorphism)haeism that allows
the definition of type-overloaded definitions. A primitivergeric programming mechanism exists
already in Haskell 98 using type classes. The so-catledving’ mechanism automatically derives
implementations of commonly overloaded functions suckaslityor pretty printing However
this mechanism only works for a few, built-in, type classex] extending it is not possible. Hinze
and Peyton Jones (2000) propose a simple extension to taelygs mechanism that would address
the limitation of thederiving mechanism and thus allow support for generic programmiregty

in Haskell. The key idea is to write default method definitan a class declaration that exploit
a sum-of-products-like structure of datatypes. Like GH Roty/P, all the isomorphisms between
the sums of products and datatypes are automatically héiglehe compiler. One limitation
of this mechanism is that it only works on types of kixd Clean’s generics system (Alimarine
and Plasmeijer, 2001) generalizes derivable type classaloiv generic type classes that can be
defined at arbitrary kinds rather than justThis is achieved by generating a (possibly) infinite set

of classes, one class per kind.

Scrap your boilerplate Lammel and Peyton Jones (2003) presented ‘Scrap your rBlzte’

(SyB): an approach to generic programming based on a siygeedafe cast operator, which makes

17

1.7. Related Work 18

itis possible to (dynamically) compare two types in ordedétermine if they are (nominally) equal.
The generality available is thus created by extending pohaiic, uniform traversal functions
with type-specific behaviour using this cast operator. Adlifp of traversal combinators that works
on anyTypeabledatatype was developed and is available in recent versibtiedGHC Haskell
compiler. The traversal combinators include top-down aotiom-up traversals and queries. In
Lammel and Peyton Jones (2004) introspection facilitiesanadded to the library, which allowed
the development of generic functions that made use of mata-slich as constructor names or
their arity. In this work it was also shown how to encode geneips (which seemed tricky to
achieve in their earlier work). In Lammel and Peyton Jorg05) the issue of extensibility of
generic functions was addressed by providing a comple®lyimplementation of SyB that used
type classes instead of the type-safe cast operator to myukelspecific behaviour — since the
type-safe cast operator implied that all type-specific sag®ded to be provided at once.

Hinzeet al. (2006) presented one alternative implementation for a B§Blibrary. The main
contribution of this implementation was the so-calgine-viewwhich provided a way to access
the structure of datatypes (lacking in the previous SyB enmntations). This contribution was
important in comparing the SyB approach to generic progrargmwith other approaches. With
the insights gained it was shown that SyB could be appliedviera large class of data types that
included, for example, some GADTSs (see below). In subsdquerk, Hinze and Loh (2006) intro-
duced the so-calletype-spine viewo allow the definition of consumer functions; and in Hinzel an
Loh (2008) a detailed study, locating the SyB approacherdésign space of generic programming,
was presented.

Bringert and Ranta (2006) present a line of work that seentetolosely related to the SyB
approach and shows an alternative technique that can beaseghove boilerplate code. Using
this technique, the programmer has to define once a genetip@aeach datatype (tr@mpos
function) and then he can use that function to define boégepbperations over the values of the
datatype. Theomposfunction, in its general form, takes two arguments that hagsentially,
the same types as the applicative functor McBride and Ratgj2007) operations. Due to this
connection we could use the laws of applicative functorsoeg@properties about functions written
with compos Another interesting aspect of this work is that the techaigan be used in languages
other than Haskell. For example, the authors show how bygysainametrized visitors the pattern

could be used in Java.

18

1.7. Related Work 19

Encoding Type Representations Generalized algebraic data typSADTS) (Peyton Jonest al,,
2006), also known agjuarded recursive data typegXi et al., 2003) or first-class phantom typés
(Cheney and Hinze, 2003), are a generalisation of algelatitypes supported by some recent
versions of functional languages. GADTSs allow the progranto define a form ofype-indexed
datatypesand can be used to enforce some typing constraints. HinZ8jZhows how to use
phantom typeso define type representations which can then be used to dgdimeric functions
over the represented types. In earlier work (Cheney andeili@02), type representations are
encoded making use of existential types and a type equadgyator instead of having to rely on
the availability of GADTSs.

Hinze (2004) GM approach shows how to encode generic fumetiathin Haskell 98. Once
again, the idea is to provide a type representation, buttgpeesentations are encoded with type
classes instead of datatypes. A generic function can bededcas an instance of cla€gneric
Another class (th&epclass) defines a functiaep which can be used to construct the type repre-
sentations automatically. The generic library proposediimze comes in two dierent flavours,
which provide two slightly dterent interpretations of generic functions. The inspirafor these
two different flavours comes from encodings of datatypes (spetyfithe Church and Parigot
encodings), which are greatly explored in this thesis (dempter 3).

One limitation of most approaches based on type represamtdas that generic functions are
not extensible, which severely hinders modularity. Oliaet al. (2006) shows a variation of GM
that solves this problem by generalizing Repclass. In Chapter 5 we will make use of this work
to show how we can achieve one extensible version of atrdk library. Weirich (2006) proposes
‘RepLib’, which is a generic programming library using tygpresentations encoded with GADTs

that is also extensible. The extensibility is achieved gisype classes.

1.7.5 The Expression Problem

The term expression probleiwvas originally coined by Wadler (1998) (although the perhlwas
previously known). According to Wadler, a solution for th@iplem should allow the definition
of a datatype with the addition of both new variants and fiamst being possible. Furthermore,
a solution should not require recompilation of existing&oand it should be statically type safe:
applying a function to a variant for which that function i defined for should result in a compile-

time error. Odersky and Zenger (2005a) addiependent extensibilityit should be possible to

19

1.7. Related Work 20

combine independent extensions) to the list of criteria lb&trconstitutes a solution to the expres-
sion problem. The expression problem plays an importaetirolCOP sincéextensible systems
are in principle modular, have no final form or final integrai phase, cannot be subjected to final
total analysis, cannot be exhaustively tested, and havédw dor mutual independence of exten-
sion providers”(Szyperski, 1996). In Chapter 5 we show that our visitor congmts can be made
extensible in both dimensions (functions and variant&rdfore not sfiering from the expression

problem.

Generics Wadler’s solution for the expression problem in GenericaJahowed how generics
could be used to solve the problem using an encoding of gaftyUnfortunately, his solution was
later found to be unsound. Fouifigirent solutions using generics in Java/an€C# were presented
by Torgersen (2004). The first two solutions work in both Jarnd C#, while the third solution
relies on Java wildcards and the fourth solution relies omadyic reification of type parameters
that is only present in C#. Because of the dependency of tirthfsolution on dynamic reification,
it does not totally satisfy the type-safety requirements& @&folution to the expression problem.

Torgersen also defined some terminology that is useful tqpemendiferent solutions.

Haskell There is a folklore solution to the expression problem inkeis The key idea consists

in lifing all the variants of the “open datatypes” to datatyp@&d then use type classes to define the
functions on that datatype. In this solution, the type cliefines a methotl which represents the
open function we want to define and each type class instamoesponds to a case (on a variant) of
f. However this approach has important limitations in thelkiof functions we can express: n-ary
functions (or methods); nested case analysis and mutwelysive definitions are all problematic
to express. Swierstra (2008) recently proposed an eleganbach combining folds and type-level
extensible sums. With this approach, open datatypes caarbpasitionally written and functions
over those datatypes can be elegantly defined using typseslasHowever, dispite the gain of

clarity and elegance, the same limitations as the folkloheten apply.

Polymorphic variants Garrigue (2000) shows hopolymorphic variantsn OCaml can be used
to solve the expression problem. With polymorphic variadi$erent datatypes can share the same
constructor. When a definition using pattern matching idtemi every usage of a polymorphic

variant will raise a type constraint, which ensures thay anldatatypes containing all of those

20

1.7. Related Work 21

constraints will be used in the definition. A limitation ofglapproach is that only top-level pattern
matching is supported. In subsequent work, Garrigue (288djesses this problem and shows a
solution for typing pattern-matching in the presence of/pwrphic variants. However his solution
has to make some compromises to achieve this. In partidudasttategy used does not guarantee
that all polymorphic variant pattern-matching is completice enforcing this would require a
very restricted type. Therefore, Garrigue’s solution fug tleep pattern-matching problem is not

type-safe in Wadler’s sense.

Extensible algebraic datatypes with defaults Zenger and Odersky (2001) proposeensible

algebraic datatypes with defaulés a possible solution for the expression problem. Theyrebse
that the subtyping relationship between a datatype andiension is inverted (the extension is
a supertype of the original datatype), which leads to tha imfeadding a default variant to every
algebraic datatype. This has thiéeet of subsuming all variants defined in future extensionbef

type. Unlike traditional datatypes, in this alternativedabthe extension is a subtype of the original
datatype. This solution is, however, subject to single iithiece, which means that only linear
extensions are possible. Moreover, it assumes that sergdfhult cases exist for all functions,

which may not necessarily be the case.

Virtual Types Odersky and Zenger (2005a) present two solutions for theesspn problem
using a combination of abstract types and nested classethe Itop-level classes, some opera-
tions and variants are initially added and the hard refergiicat would preclude extensibility are
replaced with abstract types. In the subclasses, new apesadngor variants can be added by
suitably extending the top-level class and refining therabstypes. Their solution has, somehow,
the flavour ofvirtual classeswhich provide a more direct way to solve the problem. A sohut
for the expression problem using virtual classes is preserior example, by Ernst (2004) in the
GBeta programming language. Ernst’s solution also berfedits a special composition operation
that can compose two classes and all of its inner classematit@lly. In Scala we have to perform
this operation manually. Nystrosat al.(2004) present a solution in Jx that is very similar to Esst’
one, however instead of virtual classes they use a slighilgrdnt mechanism that does noffsu
from the unsoundness problems usually associated withavidlasses. Jx also supportssted
inheritance which is similar to the composition operation in GBeta @ilog both the classes and

their inner (or nested) classes to be automatically contpose

21

Chapter 2

Preliminaries

In this chapter we will introduce some material in order t@kehis thesis self-contained.
However we will assume familiarity with both functional antject-oriented programming. In
Section 2.1 we will introduce the Scala programming langudg Section 2.2 we will show how
Scala can be used as a DGP language. In Section 2.3 we widnirdee \Msitor pattern and the
related @wmposiTe pattern. Finally, in Section 2.4 we will informally presehe functional notation

that we will use throughout this thesis to specify some ofammponents and reason about them.

2.1 The Scala Programming Language

Scala is a strongly typed programming language, built onofoghe JVM, that combines object-
oriented and functional programming features. Althougbrggly inspired by recent research, Scala
is not just a research language; it is also aimed at indusisege: a key design goal of Scala is
that it should be very easy to interact with Java, making hargeunts of Java libraries readily
available for programmers. The user base of Scala is alrgaity significant, with the compiler
being actively developed and maintained. In this sectiomllgorovide an introduction to Scala
concepts. For a more complete introductdescription of Scala, see Odersky (2006a, 2007a,b);
Schinz (2007).

22

2.1. The Scala Programming Language 23

2.1.1 Expressions and Definitions

Definitions In Scala, we can define functions using thef keyword. For example, a function
that squares a double could be defined as:

def square(x : doublg : double= x = x

This declaration reads as follows: define a new funcéiquiarethat takes an argumerof type

doubleand returns @oublecomputed by s x.

Values When we execute a definitiatef x = e, the expressioe will not be evaluated untik is
used. If we wish to evaluate the right-hand-sedes part of the evaluation of the definition, Scala
offers a value definitiomal x = ewhich provides this behaviour. One importanfteience between

values and definitions is that only definitions can take patans (values are just constants).

Conditional Expressions Scala’s syntax for conditionals is similar to Java but, kmllava, it can
be used not only between statements but also between expmes$his means that it serves as a
substitute for Java’s conditional expressian8... : Here is one example:

def abs(x: doublg : double= if (x > 0) x else— x

First-Class Functions In Scala functions arditst-class values Therefore, we can defin@gher-
order functions For example, here is how to define the functtance that, given a functiori,
appliesf twice to its argumert.

def twice (f : int = int,x: int) :int = f (f (X))

Scala supportanonymous functiong-or instance, to define a function that raises an integer to
the power four, we could use the functitwice together with one anonymous function to achieve
that efect. Here is how:

def power4(x: int) : int = twice ((y: int) = y* Y, X)

The first argument of the function twice is an anonymous fiencthat takes an integgrand
returns another integgr: y.

Scala also supportaurrying. To declare a curried function we can use twfietent pieces of
syntax. Here are two examples:

def twiceCurry(f : int = int) (x:int) :int = f (f (X))

23

2.1. The Scala Programming Language 24

def comp: (int = int) = (int = int) = int = int =
f=g=>x=f(gX)

The first example is just the curried version of the functiwite, where the first and second
arguments are namddandx. In the second example we present a composition operatarran f
tions that take integers and return integers. In this exartig arguments are not named. Either
syntactic option can be used to define curried functions,vemdan even mix the two notations;
for example

def twiceCurry2(f : int = int) : int = int = comp(f) (f)

would name the first argumehbut have an anonymous second argument — alternatively ope ma

think of twiceCurry2as a function that takes a function and returns a function.

Infix Operators In Scala arinfix operatorcan be any one argument operator. As a simple exam-
ple, consider the following class:

classNatint (x : int) {
val value= x
def is (y : NatInf) : boolean= valueequals(y.value
def isZero: boolean= this is zero
def + (x: Natint) : NatInt=
new Natlnt (this.value+ x.value

In this class we have a couple of definitions that can be usidimsperators. The- definition,
for example, can be used to add two naturals by either writihg- (n2) or n1+ n2. We may be
tempted to think that this stems from the fact thas a symbolic and not an alphabetic identifier.
However this is not the reason whycan be used as an operator. In fact, the definisaan itself
be used as an operator because it takes one argument. So aitheamvrite the definition osZero
asthis.is (zerg or asthis is zera The only diference between using an alphabetic and a symbolic

identifier is that Scala gives themfldirent priorities when used as operators.

Lazy Arguments Arguments can be passed by name by prefixing the type with.azy argu-
ments are specially useful when defining our own controlcstmes. Scala’s parsing combinators
are a good example of the use of laziness. For example, theioatar &&& which applies a

parser and if that parser succeeds applies another pateniged as:

24

2.1. The Scala Programming Language 25

def &&& (g: = Parsel) : Parser= ...

In this example, the argumeqt(the second parser) is lazy. This means that ontyif needed it

will be evaluated.

2.1.2 Classes and Objects

Classes In Scala, classes with parameterless constructors arardddimilarly to Java.

classTalker{
def talk (str: String : Unit = Systenoutprintln (str);
}

In this example th&nit type plays the same role @sid in other languages.
When it comes to constructors with parameters, Scdllardifrom other mainstream languages.
Scala encourages a single constructor per class by usitgliheing syntax:

classTalkerPar (str: String) {
def talk () : Unit = Systenoutprintln (str)

}

A class carinherit from another class using tlextendskeyword. As an example, consider a
new classlwiceTalkerthat inherited fromTalker and added two new methods to it. We could do
this by:

classTwiceTalkerextendsTalker{
private def doTwice(f : String= Unit, x: String : Unit = {f (X);f (X)}
def talkTwice(str : String : Unit = doTwice(talk, str)

}

Note that, like in Java or C#, we can have private members ingukeprivate keyword. In
this example theloTwicemethod is private.

Overriding methods in Scala requires the use of an exph@tride keyword. The next exam-
ple overrides the methadlkTwicefrom theTwiceTalkerclass:

classTwiceShouteextendsTwiceTalker{
override def talkTwice(str : String : Unit =
supertalkTwice(str.toUpperCas));

}
The syntax for the creation of objects is fairly standardre-se a couple of examples instan-

tiating and interacting with some of the classes that we baen defining:

25

2.1. The Scala Programming Language 26

scala> def u = new Talker ();

scala> u.talk ("0la");

Ola

scala> def p = new TalkerPar("Hola");
scala> p.talk ();

Hola

scala> def t = new TwiceTalker();
scala> t.talkTwice("Hello");

Hello

Hello

Abstract Classes Like in other OO languages, we can haafestract classegthat is, classes
where some methods may be undefined). To declare an abdfaastwe append thabstract
keyword to the class declaration:

abstract classAbstractTalkel
def talk (str: String : Unit

}

In this case, the methddlk is abstract. Unlike in other languages, atustract keyword is needed

in method declarations.

Objects When a class has a single instance, we can avoid the credtiamew object each
time we want to use that class by usinga@yject. Object definitions follow the syntax of class
definitions; they can have optionaktendsclauses and a body. However, unlike classes, with
object definitions we cannot create other objects usienyy. Furthermore, object definitions do
not have constructor or type parameters. Here is an exarmple abject followed by a definition
which calls a method of that object.

object HowDoYouDaoextendsTalkerPar("Hello!") {

override def talk () = {supertalk (); Systenoutprintin (" How do you do?");}
}
def greet= HowDoYouDdalk ()

Case Classes Scala supports the notion ose classeswhich provide some syntactic sugar and
allow the definition of functions by case analysis. With calesses we can emulate AlgDTs from
conventional functional languages. For example, we coefihd a simple hierarchy of classes for
defining the Peano numerals as follows:

abstract classNat
case clasgeroextendsNat

26

2.1. The Scala Programming Language 27

case classSucc(n: Nat) extendsNat

The first class declares an abstract cldag which is the supertype of the natural numbers. The
classZeroacts as the base case and the ci&ssccan be built provided a natural numberNote
that if we do not need to define any methods in a class, we c@igagiting the empty body{}.

We can also define functions by case analysis on the nat&@xample,

def nat2int(n: Natf) : int = n match {
caseZero() =0
caseSucc(m) = 1 + nat2int(m)

}

defines a function that converts the natural number into l&iounteger.
Case classes also benefit from an automatically definedrootwmt function (with the same
name as the class), which allows us to write

def three= Succ(Succ(Succ(Zera))

instead of the more longwinded version:

def threeLong= new Succ(new Succ(new Succ(new Zero())))

2.1.3 Traits and Mixins

Traits Scala has a special kind of abstract classes cattd (Scharliet al., 2003). Like abstract
classes, traits can have abstract methods and defined mefhioel diterence is that traits cannot
have parameters but they canrbixed intogether. Withmixin compositiora kind of safemultiple
inheritanceis possible. The next example demonstrates the use ofitréisala:

trait Hello {
val hello= "Hello!"

}
trait HowAreU{
val howAreU= "How are you?"

}
trait WhatlsUrName
val whatlsUrName= "What is your name?"

}
trait Shout{
def shout(str : String) : String

}

27

2.1. The Scala Programming Language 28

Mixin composition As we can see traits can be used much like abstract claskesingl both
the declaration of both abstract and concrete methods. nMigmposition solves the problem
of multiple inheritance, while allowing similar expressipower, by ensuring that it is possible
to linearize the inheritance relationship. Next we show lesvcould combine the traits of our
example using Scala’s mixin composition:

trait BasicsextendsHello with HowAreUwith WhatlsUrNamewvith Shout{
val greet= hello+ " " + howAreU
def shout(str : String = str.toUpperCas«)

}

The traitBasicsinherits the methods frorHlello, HowAreU and WhatlsUrNamgimplements
the methodhoutfrom Shout and defines a new methgdeetthat uses the inherited methdusllo

andhowAreU

2.1.4 Generic Types and Methods

Parametric Polymorphism Like Haskell or ML (and more recently Java and .Net), Scaja su
ports parametric polymorphismFor example, the functioocompthat we presented before could
be generalized in the following way:

def comga,b,c]:(b=>c¢c)=>(a=b)y=>a=c=
f=g=>x=f(gX)

Now, instead of only composing operations that take integad return integers, the functioamp
can compose any operation where the input type of the firgatipa is the same as the output type
of the second operation.

Like methods, classes can themselves be parametricallynoophic. For instance, to define a
(homogeneous) list container, we could use a parametriasd to ensure that all elements are of
the same type.

abstract classList[A]
case clasdNil [A] extendsList[A]
case clas€ongA] (x: A, xs: List[A]) extendsList[A]
def len[A] (I : List[A]) : int = | match {
caseNil () =0
caseCons(x,xs) = 1+ len(x9

}

28

2.1. The Scala Programming Language 29

Bounded Polymorphism In Scala we can also have a formlmdundedpolymorphism by using
type parameter boundsThis kind of polymorphism is useful in situations where wanto pa-
rameterize a method or a class by some type but we need to assume operations on that type.
A typical example where this kind of polymorphism is usetilnhen we want to define ordered
insertion on lists.

def insert[A <: Ordered A]] (x: A, I : List[A]) : List[A] = | match {

caseNil () = Cons(x, Nil [A])

caseCons(y,y9 = if (x<y) Cons(x, Cons(y,y9) elseCons(y, insert(x,ys))
}

In this situation we need to assume that the elements of Aypentained in the list have the

operation<. This is ensured by bounding the typdy Ordered A].

Variance Annotations Scala’s generic types have, by default, non-variant sulhdgygHowever,
it is possible to annotate the type parameter to change itance: if we prefix a formal type
parameter with a+’ we change the subtyping so that it becomes covariant;reteely, if we

prefix a ‘=’ we change the subtyping so that it becomes contravariant.

Functions In Scala, functions are objects (since all values are objedheFunctionltrait is
defined as follows.

trait Functionl[—a, +b] {
def apply(x:a):b
}

This trait defines the interface of a function with one inpyteta and an output typb. Note that
the input type is contravariant, while the output type isartant. Beside&unction] there are also
definitions for functions of many other arities: there is aedinition for each possible number of
function parameters. The syntak\(..., Tn) = Sis just a Scala abbreviation for the parameterized
typeFunctionnTL,...,Tn S].

2.1.5 Abstract Types

Scala has the notion of abstract types, which provide a flexviay to abstract over concrete types
used inside a clagsait declaration. Abstract types are used to hide infoiomedbout internals of a

component, in a way similar to their use in SML (Harper anditiiidge, 1994) and OCaml (Leroy,

29

2.1. The Scala Programming Language 30

1994). When creating a new object from a class that has absyes, we need, as with all other
members of a class, to initialize them with concrete typdsstact types are considered by Oder-
sky and Zenger (2005b) as essential for the constructioeusable components and they allow
information hiding over several objects that, as arguedeictiSn 1.2, is a key part of component-
oriented programming. We start by discussing abstractstyseng a simple example first and we
discuss a real-world example next, when we pretantly polymorphism and self types

Consider a toy clas&bstractTypend one object instande

abstract classAbstractTypd
type A

val x: A
}
def t = new AbstractTypdtype A = int;val x = 0; }

One interesting feature of abstract types is that they camastentially or universally. The
following definition, for example,

def func[a] (t : AbstractTypg: a = t.x // type error

incurs on a type error becaus& has typet.A, butt.A is not on scope (much like an existential
type). Alternatively, we could define

def func[a] (t : AbstractTypdtype A= a}):a=1tx

which is a valid definition. The élierence is that nowA is in scope and is unified with. This
usage of abstract types is similar to parametric types.dt flais possible to model generics with

abstract types (Odersky, 2006a).

Family polymorphism and self types We shall now see how to use abstract types to model
families of types that vary together covariantly. This cgpids known asamily polymorphismin
particular we shall see how to capture theséver pattern as a library of code. This example is
taken from Odersky (2006a).

In the GsBservER pattern there are two kinds of participantésibjectsandobservers The subjects
define the methodsubscribeandpublish which are used, respectively, to register observers and to
notify all the observers. The notification of the observeidane by calling the methawtifyon the
observer instances. A system that captures this desigerpastpresented in Figure 2.1. The top-

level classSubjectObservecontains two nested class8sbjectand Observer which correspond

30

2.1. The Scala Programming Language 31

abstract classSubjectObserver
type S<: Subject
type O <: Observer

abstract classSubjectrequires S{
private var observers List[O] = List ()

def subscribgobs: O) =
observers= obs:: observers

def publish=
for (val obs« observeryobsnotify (this)
}
trait Observer{
def notify (sub: S) : unit
}
}

Figure 2.1: The ®server pattern in Scala

to the subject and observer participants of the pattern.

Note that theSubjectand Observerdo not refer directly to each other. Instead, the abstract
typesSandO are used to replace the “hard” references. It is this use stfatt types that allows
the system to be extended covariantly. The usegdires in

abstract classSubjectrequires S{...

expresses th&ubjectcan only be instantiated if its concrete class conformS.t@he typeSis
called aself-typeof Subject The use of self-types means that the typéhef inside the class is the
actual self-type (in the example, the typetbis is S). The self-type annotation is needed in this
example to ensure that the calj.notify (this) is type-correct.

Subclasses ddubjectObservetan define application-specific subjects and observerseXhe
ample we use next SensorReaddhat takes sensors as subjects and displays as observiis. In
example, we instantiate the typ8&ndO to SensorandDisplay, which implement, respectively,
SubjectandObserver

object SensorReadezxtendsSubjectObserver
type S= Sensor
type O = Display
abstract classSensorextendsSubject
val label: String
var value: double= 0.0

31

2.1. The Scala Programming Language 32

def changeValugv : doublg = {
value=v
publish

}
}

classDisplay extendsObserver{
def println (s: String = Systenoutprintin (s)
def notify (sub: Sensoy =
printin (suhlabel+ " has value " + suhvalug

This combination of abstract types, self-types and nedtesses allows us to have information

hiding over several objects, which is one of the premises@PC

2.1.6 Implicit Parameters

Scala’'simplicit parametersallow some parameters to be inferred implicitly by the cderpfthe
inference process is guided by types) and can be used totenidakell’'s type classes (Halt al.,
1996) as noted by Odersky (2006b).

We shall see how this works by looking at another exampleemtesl in Odersky (2006a).
Consider a definition of the concept ofMonoid in Scala. We could define an approximation
using:

trait Monoid[a] {
def unit: a
defadd(x:a,y:a):a
}

The Haskell reader should notice the similarity betweemtbaoid trait and the standard type class
declaration for monoids. An example object would be a mowoidtrings, with the unit being the
empty string and addition being the concatenation of sgting

implicit object stringMonoidextendsMonoid[String] {
def unit: String=""
def add (x: String y : String) : String= x.concat(y)

}

Again, the Haskell reader should note the connection betweeimplicitstringMonoidobject and

the instance declaration for string monoids in Haskell.

32

2.1. The Scala Programming Language 33

Ignoring theimplicit keyword for a moment, we could start defining operationsahageneric
in the monoid. For example:

def suna] (xs: List[a]) (implicit m: Monoid[a]) : a=
if (xsisEmpty m.unit
elsem.add (xshead sum(xstail) (m))

We can now ussumin the following way (as we would have done normally):

def test: String= sum(List ("a", "bc", "def")) (stringMonoid

However, alternatively we could skip the second argumentesthe compiler has enough in-
formation to infer it automatically.

def test2: String= sum(List ("a", "bc", "def"))

This works because thmplicit keyword in the object informs the compiler tretingMonoid
is the default value for the ty@donoid[String]. Theimplicit keyword in the definition ofumin-
forms the compiler that the argumemtmay be skipped if there exists one implicit object with
the type ofMonoid [a] in scope. When definingest2the compiler infers that the type ah
should beMonoid[String] and since the programmer did not speaifyit uses the implicit value
stringMonoidThe second use gum with the implicit parameter inferred by the compiler, imsi
ilar to ad-hoc overloaded functions in Haskell (by usingetyiass constraints).

As we have seen, implicit parameters give us a way to emulas&eéll’'stype classnechanism
is Scala but, in some sense, implicit parameters are moiblftethan type classes because we can
choose to use something else other than the default valuehwemot possible with Haskell’s type

classes.

2.1.7 Higher-kinded Types

Type constructor polymorphism and constructor (type)s#asave proved themselves very useful
in Haskell, allowing the definition of concepts such as maen@tladler, 1993), applicative func-
tors (McBride and Paterson, 2007) or many other contaikerdbstractions. This motivated the
recent addition of type constructor polymorphism to Sclodrset al., 2007), which allows sim-
ilar constructions to be defined. For example, the most taoearnation of thdterable class is

defined in Scala as:

33

2.2. Scala as a DGP language 34

trait Iterable[El, Containef _]] {
def map[NewE] (f : El = NewE) : Containe[NewkEl
def flatMap[NewEl] (f : El = Iterable[NewEl) : ContainefNewEl]
def filter (p: El Boolear) : ContainefEl]

}

The thing to note is that thkerable is parametrized byContainer[_], which is a type that is
itself parametrized by another type. In other wor@sntaineris a type constructor. Because we
parametrize over the type construc@ontainerwe can use it in the method definitions with any
other types. In particular, in the definitionwiap we can see that the return type of that method will
be Containef{NewEl, whereNewElis a type parameter of the methothp With parametrization
by types only, it would not be possible to write this definitiof Iterable and we would have to

content ourselves with something less expressive.

2.2 Scalaas a DGP language

Recalling that the three kinds of parametrization for a progming language to support DGP
are parametrization by shape, type and computation, we @anhat Scala readily supports the
latter two. Parametrization by type is ensured by the gesesupport; and parametrization by
computation is ensured by the support for higher-ordertfans. However, it is not so clear that
Scala supports parametrization by shape. Meb&d. (2006) show how to encodgpe-constructor
polymorphismand with that encoding develop a simple datatype-geneagramming library. In
this section we shall see how the type-constructor polyimerp encoding works and how it can
be used to develop generic programming libraries. Our implgation difers from Moorset al,,

but it is conceptually similar.

2.2.1 Encoding Type-Constructor Polymorphism

When we have &rait like:

trait TypeConstructof
type A
}

we can refer to eithefypeConstructoftype A = ...} or to TypeConstructar As discussed in

Section 2.1.5, the former acts universally on the tgpwhile the latter acts existentially. Because

34

2.2. Scala as a DGP language 35

TypeConstructors just a regular Scala type, we can abstract over type paeasnef that kind.
When we do so, we essentially get type-constructor polytiem. For example, the notion of a
functor, which defines an operatitmapon some type-constructét, can be defined in Scala as:

trait Functor[F <: TypeConstructgr{
def fmap[a,b]: (a= b) = F {type A= a} = F {type A= b}
}

Note that the type parameter Bfinctoris bounded to the typ@&ypeConstructoand not to
TypeConstructoftype A = ...}. If we could only uselypeConstructouniversally we would be
forced to have something like

trait BadFunctoifa, F <: TypeConstructoftype A = a}] {
def fmapla,b]:(a=b)=?=?
}

which would not allow us to have the right types for the secargdiment ofmapand for its output
type. With the initial definition ofFunctor, however, we can abstract odernd still refine its type

parameteA in the definition offmap

2.2.2 A Little DGP Library

Having shown how to encode type-constructor polymorphisthleow to implement the notion of
Functorin Scala, we now turn into implementing a small DGP librargdxhon the Haskell library
presented in Gibbons (2006).

The first step is to define a typéu that is parametrized by a type construdtoMu may be seen
as a template for constructing datatypes (in technicalgetis a type-level fixpoint combinator).
The parametel is theshapeof the datatype — dierent shapes will give rise toftierent datatypes.

trait Mu[F <: TypeConstructgr{
def In: F {type A = Mu[F]}
}

Defining Datatypes Lists are an example of a datatype that can be defined Ming-irst we
define the shape of lists by creating a type construcist=. Then we define the two possible
shapes for lists (a list either is empty, or has an elemengtanther list) using the classBdF and
ConsE Finally, we define d&unctorobject that defines thienapoperation for lists.

trait ListF extendsTypeConstructor
case clasdilF [a] extendsListF {type A = a}

35

2.3. Visitors and CoMPOSITES 36

case clas€onsHa] (x: Int, xs: a) extendsListF {type A = a}

implicit object FunctorListextendsFunctor[ListF] {
def fmap[a, b] : (a = b) = ListF {type A = a} = ListF {type A= b} =
f= {
caseNilF () = NilF ()
caseConsF(x, xg = ConsF(x,f (x9)

}

Having defined the shape, we can define the datatype simplgglyiag Mu to theListF.
type IntList = Mu[ListF]

The two constructors for lists can then be defined as follows.

def Nil : IntList = new IntList {def In = NilF [IntList] }
def Cons(x: Int,xs: IntList) : IntList = new IntList {def In = ConsHIntList] (X, X9}

Defining Generic Functions We can define operations that work for every instancklof(re-
gardless of). For example theatamorphisnmecursion pattern (Meijeet al., 1991) can be defined
once and for all as
def cata[F <: TypeConstructar] (f : F {type A=a} = a)
(implicit ft: Functor[F]) : Mu[F] = a=
comp(f) (comp(ft.fmap(catalF, a] (f))) (.In))
and operations that follow those recursion patterns camiygsdefined by instantiating the shape,
type and functional parameters of the recursion patterardowly.

def sumList IntList = Int =
cata[ListF, Int] {caseNilF () = 0;caseConsF(x,n) = X+ n}

2.3 V\isitorS and CoMPOSITES

In this section we will show how the Mror and Gwmrosite patterns (Gammat al., 1995) are
traditionally presented. ThedsirosiTE pattern is closely related to thasvror since most imple-

mentations of visitors use it implicitly, which justifies eparate presentation.

2.3.1 The GwrosiTE Pattern

Unlike many functional programming languages, most obgented languages do not have a

built-in mechanism to define data types. Instead, the coatioim of composition and subclassing

36

2.3. Visitors and CoMPOSITES 37

Component

0.

children

+operation():void
+add(g:Component):void
+remove(g:Component):void
+getChild(i:int):Component

Q

Composite

Leaf

)) +operation():void void operation() {
+operation():void +add(g:Component):void foreach g in children {
+remove(g:Component):void] g.operation();
+getChild(i:int):Component }

}

Figure 2.2: The Composite Design Pattern

can be used to define hierarchical structures. The aim of tkedSite design pattern is to infor-

mally describe how to design such structures. The pattersists of two types of components:

e TheElemenior Componer)t usually represented as an interface, describes all thiabpns

that can be applied to such structure.

e Concrete Elementare subtypes dElementand they are analogous to a value constructor of

a datatype.

In Figure 2.3.1 we have a typical class diagram for thenéosite showing how the components
interact. TheComponenspecifies all the operations allowed in an interface or abstilass. There
are two kinds of concrete elementseafsandCompositesThe former has no children, while the
later can have children.

A difference between datatypes anav@osiTes is that with @wmposiTes we need to define in
advance all the operations that can be used in the struciims.is not the case with data types,
where we can define functions at any point. In contrast, gakstneed to define all the variants at
once while @mrosiTeS can be extended — by adding new subclass&arhent— at any point.

The two forms of hierarchical structures (data types andrGsiTeS) can be used, most of the

time, for solving the same problems. However, there arasdns where one approach is preferable

37

2.3. Visitors and CoMPOSITES 38

to the other. This fact creates a tension that the programeeds to solve: is it preferable to use
data types and be able to extend the set of functions at amy; oj is it better to use the object
oriented approach and be able to add variants at any poingteTdre even situations where it
would be desirable that the two forms of extensibility casexWadler (1998) identified this issue
and named it thexpression problem

It is possible, in an object-oriented setting, to have hr@al structures that have the same
form of extensibility as datatypes. Theaswfor design pattern, that we shall discuss in the next

section, explains how this can be achieved.

2.3.2 The Msritor Pattern

The Visitor design pattern is an alternative way to implement strustthiat separates the opera-
tions from the object structure, thus allowing us to add nperations without changing the object
structure. Moreover, the iMror keeps related aspects of a single operation together, by-defi
ing them in a single class. Figure 2.3 shows the UML classrdiagor the design pattern. The

components collaborate as follows:

¢ theVisitor interface declaresasit method for eaciConcreteElementype;

e eachConcreteVisitorclass implements a single operation, defininguisé method for each

ConcreteElement

¢ the Elementabstract superclass (which is not actually required to ntia&emplementation

work) declares thacceptmethod, taking &/isitor as argument;

e eachConcreteElemensubclass defines thecceptmethod to select the appropriatesit

method from aVisitor.

The trade-@ encapsulated by theiMror pattern is that while new operations are easy to add,
adding new variants is hard; this is the opposite of the stahdbject-oriented approach. There-
fore, the Msiror is best applied to problems where the object structureyratenges, which is
a perspective is more akin to the functional programminggbigm, and can be considered as a
functional idiom within an object-oriented paradigm. Inrg@ular, the Msitor can be compared

with datatypesandpattern matchingn functional programming languages, where the hieraathic

38

2.3. Visitors and CoMPOSITES 39

Client Visitor

+visitConcreteElementA(e:ConcreteElementA):void
+visitConcreteElementB(e:ConcreteElementB):void

ConcreteVisitor1 ConcreteVisitor2
+visitConcreteElementA(e:ConcreteElementA):void +visitConcreteElementA(e:ConcreteElementA):void
+visitConcreteElementB(e:ConcreteElementB):void +visitConcreteElementB(e:ConcreteElementB):void

ObjectStructure Element
0.*
o>

+accept(v:Visitor):void

T

ConcreteElementA ConcreteElementB
void accept (Visitor v) { void accept (Visitor v) {
v.visitConcreteElementA(this); — —| +accept(v:Visitor):void +accept(v:Visitor):void [— — —| V.visitConcreteElementBi(this);
} +operationA():void +operationB():void }

Figure 2.3: The Yrror design pattern

structure (normally a @urosite) defined by theElementsuperclass an@oncreteElemensub-
classes corresponds to the datatype, and thierdntConcreteVisitorgorrespond to definitions via

pattern matching.

Imperative and Functional Visitors

In the original presentation of the visitor pattern, th&it andacceptmethods do not have a return
value (or, more accurately, they retwaid). However, another possibility would be to have the
visit and acceptmethods to return a value corresponding to some computpédormed during
the traversal. We shall make that distinction, using somaitelogy borrowed from Buchlovsky

and Thielecke (2005):

Definition 1 (Imperative Visitor) An imperative visitorhasvisit andacceptmethods that return
void; all computations are executed through siffeas, accumulating results via mutable state.

O

39

2.3. Visitors and CoMPOSITES 40

Definition 2 (Functional Visitor) A functional visitoris immutable; all computations return their

results through the return values of thisit andacceptmethods, which are pure. |

Imperative visitors have two advantages over functionsitmis. Firstly, functional visitors
require some kind of generics, since visitors computingeslof diferent types requireisit and
acceptmethods with dierent return types. In contrast, imperative visitors h&aeesame interface,
even when computing values offidirent types. Secondly, there is a minor performance penalty
to be paid with functional visitors, due to the overheadsasgu by propagating results via return
values rather than directly via internal variables.

However, there are a few reasons why a functional presentafithe \isiror may be prefer-
able. The first reason concerns composability: becausaciteptmethod returns the result of the
computation, we can immediately feed that value to anothethad without having to extract the
state from the visitor class; that is, the result of the treakcan be obtained through an expression
rather than a statement. Perhaps more importantly, it iretmsreason about functional visitors
because computation is a visiblgext and not an implicit sideféect of the methods: assuming no

other side-#ects, theacceptmethods can be seen as pure mathematical functions.

Example: Binary Trees Figure 2.4 shows how to implement binary trees using a foneti
Visitor in Scala. The traifreeand the classeEmptyand Fork define a Gmposite whereTree
is the Elementand Emptyand Fork are twoConcrete ElementsThe methodaccept defined in
Treeand implemented in the two concrete elements, také®aVisitorobject that has tweisit
methods (one for each concrete element). This whole sysferfasses defines an instance of
the Misiror pattern. Unlike with the traditional presentation of themor the parameters of the
constructors are fed directly into thesit methods instead of passing the whole constructor object.
Parametrizing theisit methods in this way gives, as we shall see, a very functiomgramming
feel when programming with visitors.

In order to define new functions we need to cre@tncreteVisitorobjects. For example, a
function to compute thdepthof a binary tree could be defined as follows:

object DepthextendsTreeVisitofint] {
def empty= 0
def fork (x:int,| : Treer : Treg =
1 + max(l.accept(this), r.accept(this))

40

2.3. Visitors and CoMPOSITES 41

trait Tree{//The Element
def accep{R] (v: TreeVisitofR]) : R

}

case clasEmptyextendsTree{
def accep{R] (v: TreeVisitofR]) : R = v.empty
}
case classork (x:int,| : Treer : Tree extendsTree{
def accep{R] (v: TreeVisitofR]) : R = v.fork (x,1,r)
}
trait TreeVisitofR] {//The Visitor
def empty: R
def fork (x:int,| : Treer : Treg : R
}

Figure 2.4: A Functional Yrror for Binary Trees

When theTreeis Empty then the case for empty trees (#maptymethod) returns 0. Otherwise,
the tree is a branch (handled by floek method), and we return one more than the maximum of the
depth of the two subtrees. In order to compute the depth dub&ees, we need to call thecept
method of those trees with tl&epthvisitor — this is, in essence, a recursive call.

Defining values of typdreebenefits from Scala’sase classyntax, because there is no need
to have redundant uses of thew keyword. To use &oncreteVisitor we need to pass it as a
parameter to tha@acceptmethod of aTreevalue. As a simple example, here is how to define a
methodtestthat computes the depth of a small tree.

def atree= Fork (3, Fork (4, Empty Empty, Empty

def test= atreeaccept(Depth
Relationship with Functional Programming To conclude this section, we compare functional
visitors with datatypes and pattern matching in standandtfanal languages.

In functional programming, datatype declarations are comgnused to define structures. For
example, we could define our binary trees as:

data Treewhere
Empty:: Tree
Fork ::Int — Tree— Tree— Tree

Comparing this with functional visitors we can see that,pitesthe extra code required by

the visitor approach, there is a very close relationshipvbeh this datatype declaration and the

41

2.4. Functional Notation 42

Elementand ConcreteElementypes. In particular, the constructors have the same paease
Emptytakes no parameters, so is a constant of figge andFork takes an integer value together
with two subtrees and constructsTeee This relationship would not be so obvious had we used
imperative visitors instead.

Functions can be defined Ipattern matchingver those values of data types. Tdepthfunc-
tion could be defined as:

depth . Tree— Int
depthEmpty =0
depth(Fork x I r) = 1 + max(depth) (depth 1

This definition bears remarkable similarities to tepthvisitor presented in the previous sub-
section. Thevisit methods correspond to thefldirent cases of the definition by pattern matching,
and the recursive calls take the place of the subtree caltetcceptmethod. Functional concrete

visitors can be regarded as a very close relative to funsti@iined by pattern matching.

2.4 Functional Notation

Throughout this thesis we will use a functional notation peafy parts of our Scala code. This
notation is, essentially, pretty printed Haskell code wehidaskell’s specific technical details are
removed for clarity. This notation can also be interpreted #airly standard extension of System
F (sometimes we assume that primitive types likeexist or we assume that System F has built-in
recursion). We shall use identifiers started with capitite denote types (or type variables) and
identifiers started with lower case to denote (value) véemld-unction types are denotedfas> B,
universal quantification is denot&@\. type (wheretype is some valid type possibly defined using
A). New definitions can be introduced by specifying a namepa,tgnd an expression:

mydefe type
mydef= exp

Expressions consist of variables, applications and lanahdéractions. The application of a
functionf to an argumenk is defined ag x and lambda abstractions are of the following form
Avar = exp.

We also allow the introduction of new types using the symtgitype= type wheremytypeis

just a shorthand faiype. Extra syntactic sugar includes lambda expressions rgrayiar multiple

42

2.4. Functional Notation 43

variables fvar, var, ... var, = exp); and the declaration of variables on the left-side of the
definitionf x y = exp (syntactic sugar fof = AX = 1y = exp).

Whenever we feel the need we will provide the correspondiagidll code in annexe.

43

Chapter 3

Visitors as Encodings of Datatypes

The Misitor design pattern is related to algebraic data types, proyidifunctional program-
ming style in an object-oriented setting. In this chapte¥,axplore this association and argue that
variants of the pattern are related to known encodings dftgiaés — in particular, Church and
Parigot encodings. We use this relationship to capture thaod pattern as a generic library,
parametrized by the shape of the datatype and also by theng@sition strategy, while maintain-
ing type safety. We also show how to implement a functionghtian for visitors that allows the
definition of functions (on those visitors) that resemblérd&gons by pattern matching in conven-

tional functional languages.

3.1 Introduction

Many functional programming languages provide built-ipgort for algebraic datatypes via datatype
declarations. As an example, consider a datatype dedarfati peano naturals in a functional pro-
gramming style.

data Nat where
Zero:: Nat
Succ:: Nat — Nat

The data declaration introduces a new type constructor and new wabmstructors. The type

constructomNat classifies values that are built with the correspondingevalonstructor&eroand

44

3.1. Introduction 45

Succ
An extra benefit of AlgDTs is that we gpattern matchindor free, which allows us to exploit
the shape of the datatype in order to define functions. Fanpie

tolnt - Nat — Int
toint Zero =0
tolnt (Succ n = 1+tolntn

defines the function that converts a peano natural into &iouihteger.

Even though many functional programming languages havie-ihusupport for AlgDTs, it
is possible to encode AlgDTs just using functions, thus equiring special support. However,
those encodings tend to require quite sophisticated tygerfes, which are not available in many
languages.

The best known encoding of datatypes is @teurch encoding(Bohm and Berarducci, 1985).
This encoding derives from System F, and allows us to wi@eative definitionsover the struc-
ture of the datatypes. However, there are certain functibasare inherently irféicient or even
inexpressible using iteration alone. A less well-knownagtiag is theParigot encodingParigot,
1992), which allowsgenerally recursivalefinitions, but requires System F itself to be extended
with recursion.

Object-oriented languages do not generally have nativpatifor AlgDTs, and mostly rely
on class hierarchies and composition to define aggregatetstes. The GwrosiTE design pat-
tern (Gammaet al,, 1995) provides a good model for OO programmers wanting fioeleecursive
tree-structured aggregates. Thervor pattern (Gammat al,, 1995), allows the definition of oper-
ations on the elements of an object structure (typicallyn@efusing a GvrosiTe) without changing
the classes of those elements on which it operates. In thisteh we will discuss two variants of
the Visiror: internalvisitors, which control the traversal themselves, exigrnalvisitors, in which
the traversal is controlled by the client.

VisITorRS correspond, in a very close sense, to encodings of data.typeparticular, internal
visitors are related to Church encodings and externalorsdre related to Parigot encodings. We
do not claim credit for this observation; it seems to be fmi&lknowledge (one way or another)
among some communities. In fact, Buchlovsky and Thiele2k®%) present a type-theoretic for-
malization of the relation between encodings of datatypels\asitors.

Our main goal is to use the existing theory behind these engsdo present thevitor pattern

45

3.1. Introduction 46

as asoftware componennstead of the traditional informal design pattern preseon. Essential
to this goal is the existence of programming languages lik@es which provide standard OO
constructs but also have powerful type systems capableptdiitag such abstractions.

We start by discussing a design choice that needs to be méate la@y implementation of the

VisiTor pattern in Section 3.2. The original contributions of thea@ter follow:

e Section 3.3 builds on Buchlovsky and Thielecke’s obseovetihat one variant of theMror
pattern corresponds to Church encodings, showing how tceehibd corresponding visitors

in Scala.

e Section 3.4 extends the observation, looking at Parigod@ings and describing how they

lead to a diferent variation of the Mitor pattern, which again we capture in Scala.

e Section 3.5 presents two generalizations of the above amg®dT he firstdatatype-genericity
is well-known in the domain of type theory; it allows paranedtion by the shape of data
being traversed. The second, which we stiftegy-genericityis novel as far as we know; it
allows parametrization by the decomposition strategyh wistantiations to (among others)

internal and external strategies for controlling the tragse

e Section 3.6 uses these generalizations to build a highlgrgehbrary of visitors in Scala.
The library supports datatype-genericity and strategyegeity, allowing the programmer
to avoid an early commitment in either of these dimensionB.ths is achieved without

sacrificing type safety.

e Section 3.7 shows how we can have a more intuitive notatiowigitors, implemented di-
rectly in Scala, that allows, for example, visitors to beteg as functions that take compos-

ites (datatypes) as parameters.

e Section 3.8 explores the expressiveness of the visitoarypand shows that the library is
capable of expressingarametric mutually-recursiveand existentialvisitors. Furthermore,
using the connection between recursion patterns and tloergexsition strategy, and inspired

by Meertens (1992) work oparamorphismswe show how to encodgaramorphic visitors

Finally, a discussion of the results and some related wopkdsented in Section 3.9.

46

3.2. Internal or External Visitors: A Design Choice 47

trait Tree{//The Element
def accep{R] (v: TreeVisitofR]) : R

}

case clasEmptyextendsTree{
def accep{R] (v: TreeVisitofR]) : R = v.empty
}
case clas$ork (x:int,| : Treer : Tree extendsTree{
def accep{R] (v: TreeVisitofR]) : R =
v.fork (x, l.accept(v), r.accept(v))

}

trait TreeVisitofR] {//The Visitor
def empty: R
def fork (x:int,l :Rr:R):R

}

Figure 3.1: A functional internal Mitor for binary trees.
3.2 Internal or External V isitors: A Design Choice

In the GoF presentation of the design pattern, the questiano is responsible for traversing the
object structure is raised. In the example in Section 2.2 2ecided that the responsibility should
belong to thevisit methods of the concrete visitors. However, alternatively,could put that re-
sponsibility on theacceptmethods of the concrete elements. Figure 3.1 shows suainatite
implementation of a visitor. The fierence between the two alternatives shows up for recursive
occurrences offree The concrete elemerfork has two recursive occurrences iee and its
acceptmethod passes on it4sitor parameter to each of these trees before callingigiemethod.
This contrasts with the approach taken in the Section 202reby the two subtrees were passed,
unchanged, as arguments to theit method. Consequently, thesit method will have the occur-
rences of the typ@&reereplaced byR. Following Buchlovsky and Thielecke (2005), we introduce

the following terminology.

Definition 3 (Internal Visitor) An internal visitoris an instance of the dror pattern in which
the responsibility for traversing the hierarchical stuwetis assigned to thecceptmethods of the

concrete element classes. O

Definition 4 (External Visitor) An external visitoris an instance of the iitor pattern in which
the responsibility for traversing the hierarchical stuetis assigned to thesit methods of the

concrete visitor classes. O

47

3.3. Internal Visitors and the Church Encoding 48

There are tradefts between the two options: internal visitors are simpleiseand have more
interesting algebraic properties, but the fixed patternoshgutation makes them less expressive

than external visitors.

3.3 Internal Visitors and the Church Encoding

In this section, we look at the well-know@hurch encodingf datatypes in the lambda calcu-

lus (Bohm and Berarducci, 1985), and see that it is direeligted to internal visitors.

3.3.1 Encoding Data Types in the Lambda Calculus

In the pure lambda calculus, there is no native notion oftgpéa Nonetheless, data types can be
encoded just using functions. Church himself observedrattral numbers can be encoded in the
untyped lambda calculus via what is now known as@eirch numeralsin which numbers are
encoded by repeated function composition: the number @resented by ‘zero-fold composition’,
the number 1 by ‘one-fold composition’, the number 2 by ‘tietd composition’, and so on.

zero= Af X = X
succs ANn=>Ffx=Ff(nfx

The functionszeroandsucccan be used to construct numerals. For example, in ordepte-re
sent 1 and 2 we would use:

onhe= succ zero
two = succ one

Standard mathematical operations like addition, muttgiion and exponentiation can be de-
fined as:

Mm+n=Af x=mf((nfx
mxn=Af x=m(nf)x
mTn=Af Xx=>nmf X

Numerals are not the only data structures that can be encsitgglthis technique; the technique
generalizes to many other datatypes. For example, therootwmts for the binary trees that we
presented in Figure 3.1 can be encoded in the untyped lanabclzles as follows:

empty=lef=e
fork =Axl=ref=fx(lef)(ref)

48

3.3. Internal Visitors and the Church Encoding 49

The Church encoding brings significant extra insights whenmwove from an untyped to a
typed lambda calculus such as System F as it reveals deepa@ns with (intuitionistic second
order) logic arising from th&€urry-Howard correspondencgioward, 1980). In a minor variant
of System F — with native support for integers — the Church erats and our binary trees of
integers can be given the following types:

Nat=VX. (X = X) = X=X
Tree=sVX. X=> (Int=X=X=X)= X

3.3.2 The Church Encoding in Scala

Noting that classes are just record types and that recoetdsstlves can be thought of being tuples
of named components, we can transform the functional engsdhat we have just presented into
their uncurried form and using two classes, we can encodsettypes. To demonstrate, consider
our type for natural numbefdat = VX.(X = X) = X = X for which the isomorphic uncurried
type is toVX.((X = X) x X) = X. By definingNatAlgebra X= (X = X) x X and encoding
NatAlgebraas a trait in Scala, we obtain:

trait NatAlgebrd X] {
def succ(n: X): X
def zero: X

}

The typeNat = YX.NatAlgebra X= X can itself be encoded in Scala with the following trait:

trait Nat {
def accep{X] (alg : NatAlgebrd X]) : X
}

The universal quantification of appearing in the definition dflat is translated into generic
methodover type variableX. Using Msitor terminology, the traiNatAlgebra[X] is the Visitor
type of the element superclasst

Our Visitor for peano numerals is internal, since the two constructbidas, which are the
concrete elements, are defined as:

case clasgZeroextendsNat {
def accep{X] (alg: NatAlgebrgdX]) : X = alg.zero
}
case classSucc(n: Nat) extendsNat {
def accep{X] (alg: NatAlgebrdX]) : X = alg.succ(n.accept(alg))}

49

3.4. External Visitors and the Parigot Encoding 50

As we can see, it is the responsibilityadceptto iterate through the recursive parts of the structure
by callingacceptrecursively in theSucccase.

A similar translation process could be applied to the exangdlbinary trees, resulting in
the code already presented in Figure 3.1 (except that whatdwae TreeAlgebrahere is called

TreeVisitorthere).

3.4 External Visitors and the Parigot Encoding

In the previous section we related tGaurch encodingf datatypes with an instance of theskfor
design pattern. In particular, this encoding leadsternal visitors In this section we will look at

another, less well-known, encoding of datatypes, and seathieads toexternal visitors

3.4.1 Limitations of Church Encodings

The Church encodingf datatypes is the most well-known encoding of datatypesjdver, it has
some limitations. In particular, some definitions cannotigten eficiently (or written at all) in
this style. A well known example is the predecessor functiomaturals, which takes linear time
to compute with the Church encoding. Informally, the reaiwrthe limitation is that the visitor
does not control the recursive calls; rather, they are aatically called in theacceptmethod. To
demonstrate this limitation consider a function that tegisther or not a tree is empty. Using an
internal visitor, we could define:

def isEmpty= new TreeVisitofboolean {
def empty= true
def fork (x: int,| : booleanr : boolear) = false

}

While this function would work, it would take linear time ta@do: the recursive calls are
automatically made in thacceptmethod, regardless of whether their results are used (st lea

without making use of lazy evaluation).

50

3.4. External Visitors and the Parigot Encoding 51

Nat =VA(Nat=A) => A=A
Z€ero € Nat
Z€ero =1S72=> 7

succ e Nat = Nat
succn =A4Asz=sSn

Tree =YAA= (Int = Tree= Tree= A) = A

empty € Tree

empty =.1ef=e

fork € Int = Tree= Tree= Tree
fork xIr=z=lef=fxlr

Figure 3.2: Parigot encodings of naturals and binary trees.

3.4.2 Parigot Encodings in the Lambda Calculus

TheParigot encodingParigot, 1992) is another way to encode datatypes. Pamguidings require
a version of System F extended with recursion. This extenallmws us to express recursive (as
opposed to iterative) definitions.

We show Parigot encodings of the naturals and our binarg treEigure 3.2. Note that, unlike
with the Church encodings, the typdatandTreeoccur recursively in their own definitions. Also,
the definitions of constructors with recursive occurrerties succand thefork constructors) are
simpler than those in the Church encoding, because we cdrtlieaecursive parameter directly

into the handling functionsandf.

3.4.3 The Parigot Encoding in Scala

When we translate the Parigot encoding of our binary treggyuke same approach as we did for
the Church encoding, we obtain the code presented in FigdraMth this visitor, we can define a
function that computes whether a tree is empty or not asvistio

def isEmpty= new TreeVisitofboolean {
def empty= true
def fork (x:int,| : Treer : Treg = false

}

While this definition looks much like the function in Secti8mt.2 (the only visible syntactical
differences are the types bandr), the resulting behaviour is significantlyfiirent: instead of

processing all the elements of thiese structure and taking linear time, as the Church encoding

51

3.5. Generic Visitors: Two Dimensions of Parametrization 3

does, this version takes only constant time to computegsiacdr are not recursively processed.

3.5 Generic Visitors: Two Dimensions of Parametrization

We shall see in this section that the encodings presentetbpsety can be generalized such that,
with a single construction, we havedatatype-generiéorm of the encoding. This allows us to
precisely capture the notions of internal and externaltotisi Still, we are confronted with two
incompatible notions of visitors that force the programmneea design choice along with its ad-
vantages and disadvantages. We will show that this needenttitebcase by introducing a second
dimension of genericity that we shall refer to stgategy-genericity With strategy-genericity the
choice between internal and external visitors is parazedite, and a single common definition can
be provided. This will allow us to define, in Section 3.6, ahtyggeneric library for \fsirors. The
Haskell code corresponding to the functional specificghi@sented in this section can be found in

Appendix A.

3.5.1 Abstracting over the shape

Church encodings and, to a lesser extent, Parigot encodagsbeen well studied in the domain
of type theory. A particularly relevant theoretical resslithe fact that those encodings can be
characterized generically. Each of these characterizattostracts from the filerences between
visitors for diferent shapes of data structure, allowing for definitionsdh@ generic in this shape.
The generic template for defining datatype-generic vessadiiboth Church and Parigot encodings
is of the formVX. (F R = X) = X, with Church encodings becomirghurch F= ¥X. (F X =

X) = X and Parigot encodings becomiRgrigot F = VX. (F (Parigot F) = X) = X. Normally,

F is required to be &unctor (i.e. F allows a mapping operation) and it is common to use sums
and products functors to encode a variety of (polynomiatatypes. Because those results are
well established, we shall not delve into details. For ttierested reader, we refer to Bohm and
Berarducci (1985); Parigot (1992); Buchlovsky and Thiké2005).

VisiTors as Products of Functions

The traditional presentation of encodings of datatypeysiedn F (and common variants) is of the

form T = VX. (F R = X) = X. In this form a datatyp@ can be defined by instantiatifgR to

52

3.5. Generic Visitors: Two Dimensions of Parametrization B

some sum-of-product functci Fi R. Buchlovsky and Thielecke (2005) show that a variation of

these encodings, of the forﬂhls ¥X. (1_[Fi R= X) = X, can be precisely related to theskor
pattern. We can easily show that thie two encodings are, lityseaomorphic using the laws of
exponentials:
qIHR:m:X
e elxponential

[xFH=x

& product of exponentials
(X2 ARy = X
< exponential

(O FiR=X) =X

With Buchlovsky and Thielecke’s variation a new datatypean be defined by providing a
product of functionsv R X = l_l Fi R = X (the visitor), where each functioh; R = X
corresponds to gisit method andi:i R corresponds to the arguments of the constructor. It is easy
to see that wheW R X= F R = X we would obtain the traditional form of encodings. Church
and Parigot encodings (corresponding, respectively,tenal and external visitors) follow from

two specific instantiations dR.

Definition 5 (Generic Internal Visitors)

LetV R Xbe a product of functions of the forv}n—l Fi R= X. Then, forR = X, we can define
i

generic internal visitoras:
Internal V=YXV X X= X

Definition 6 (Generic External Visitors)
LetV R Xbe a product of functions of the forlln—l Fi R= X. Then, forR = External V, we can
i

definegeneric external visitoras:
External V= VYX.V (External) X = X

O

The motivation for this generalization stems from the féetttthe visitor components of the

VisiTor pattern are, in essence, products of functions — edégihmethod is a function and the

53

3.5. Generic Visitors: Two Dimensions of Parametrization 8

NatF ra= (a,r = a)
Nat = Internal NatF

zeroe Nat

zero= A(z,s) => z

succe Nat = Nat

succ n=A(zs) = s(n(z9)

Figure 3.3: Church encoding of Peano numerals using predidtinctions

whole class is, therefore, representing a product of fonsti In the two definitions abové/
is a type parameter that is abstracting over concrete visdmponents. It can be said thdt
is theshape parameteof the encodings (since fiierent instantiations o¥ will lead to different

datatypes).

3.5.2 Abstracting over the decomposition strategy

By using generic encodings based on products of functiospdssible to abstract fromfiierences
in the shape of data and modeftdrent decomposition strategies — internal and external — of
visitors that are generic in the shape. Still, there is sl duplication of code whenever we
want to have both strategies. However, this duplicatioroisnecessary because, as we shall see,
we can model visitors that are generic in both the shape ansktategy.

The templateu V = ¥X. V R X = X can be used, as we have seen, to captuierdnt
implementations of the iitor pattern. Howeve V cannot be captured linguistically becauge
is unbound. Therefore, we need to repl&eith something that is linguistically valid if we want
to have a trulystrategygeneric visitor component (this is, a component that candvarpetrized
by its implementation strategy). SinBerepresents the type of recursive occurrences that appear in
the visit methods we can see that, if we want to capture baghrial and external visitor® should
depend on botV andX. We can make this dependency explicit by makig S V Xand bindS
universally.

pV=YSXV(SVXX=X

We shall refer td&s as thedecomposition strategypr juststrategy.
Althoughu V is linguistically capturable it is still not right. To see aththe problem is, lets
first reformulate the Church peano numerals using prodddtsiotions, as in Figure 3.3. Now lets

see what happens when we try to usdatF instead ofinternal NatF

54

3.5. Generic Visitors: Two Dimensions of Parametrization 5

Nat = NatF

zeroe Nat
zero= A(z,s) > z

succe Nat = Nat
succ n= A(zs) = s?

As we can see, we have no problems defining the contraetar However the story is dierent
for succ it is impossible to provide a value of the right type 8sincesrequires an argument with
typeS V Xand we cannot create any values of that type bec8useiniversally quantified. The
solution for this problem consists in adding some extrarimfation abouin the definition ofyu.

uV =YX SDecompose SSV(SV XY X=X

The extra information is given bipecompose Sin essencddecompose $ basically just
a type-overloaded (in the type-parame®method. In other words, the implementation of this
method can be determined solely from the tge@nd, therefore, we can makeecompose 8n-
plicit. Referring to the method iDecompose 8sdeg we have that:

degeV(SVXAX=>uV=SVX

The operatiordeg solves the problem of producing a value of typevV Xand allow us to
define the construct@uccas:

succe Nat = Nat
succ n= A(z, s) = s(deg (z 9 n)

(Note that the paramet&ecompose & implicitly passed). In order to define new strategies
we need to define some concrete tyand the correspondindeg operation. For example, to
make internal and external visitors two instanceg ¥fwe specializesto InternalandExternal

Internal V X = X
External V X= u V

(Here we reuse the identifielsternal and Externalto refer to the associated decomposition
strategies.) The specific instantiationsdetcfor internal and external visitors are:

deGnterna € (V (Internal V X) X) = 'V = Internal V X
deGyema VC =CV

deGyema € (V (External V X X) = u V = External V X
deGExternaI VC=C

In the definition ofdeg.ema the reader should (again) note that hecompose Parameter is

55

3.6. The Msitor Pattern as a Library 56

implicitly passed and, therefore, the compositeist needs to take as an argument the visitor
With deGyemar We simply ignore the visitor parameter and return the casitpatself. This will

then allow the programmer to use the composite directlyendifinitions of thevisit methods.

3.6 The MsiTor Pattern as a Library

In the previous section, we used the Church and Parigot @amgedf datatypes to motivate a notion
of visitors generic in two dimensions: in the shape of thexddtucture being visited, and in the
strategy for assigning the responsibility of traversalm&d with this insight, we will now present

an implementation in Scala of a generic visitor library.

3.6.1 Defining the Library

The functional specification in the previous section camdmesiated into Scala without major issues
(although the typing of th&isitor component is slightly dierent in the Scala version). The type
u that we defined previously corresponds to @amposite We recall that definition (renaming
1 to Compositg and annotate it extra information identifying theceptmethod and the visitor

component.

accept method

Composite V= YX S Decompose SSV(SV Y X = X
N’

Visitor

Visitors

The Visitor component in the library, which corresponds\adn the functional specification, is
parametrized by a strate@and a result typ&. TheVisitor also contains a typR that corresponds
to the typeS V X(the first argument o¥, which specifies the type of recursive arguments).

trait Visitor {

type X

type S<: Strategy

type R[v <: Visitor] = S{type X = Visitor.this.X; type V = v}
}

Here the reader may wonder if the tyReould not have been typed as

type R = S{type X = Visitor.this.X; type V >: Visitor.this.type }

56

3.6. The Msitor Pattern as a Library 57

The intention being thaVisitor.this.type would refer to the type of the concrete subclass of
Visitor in use. However there are issues with this solutisrttas type is not precise enough.
Although there would be other Scala solutions that wouldwapa type foivisitor that is similar
in expressiveness to the functional specification, we ofgohrametrizeR with a visitor. This
solution gives us some extra flexibility over the functiospécification while allowing us to give
precise typings to our visitor. This small inconsistencthviie functional specification is discussed

in more detail in Section 6.3.1.

Composites

The Compositérait is parametrized by a visitdr and contains aacceptmethod that takes two
parameters. The first parameter is the visitor to apply; éoesd is the decomposition strategy to
use while visiting the structure.

trait Composit¢—v <: Visitor] {
def accep{s <: Strategyx] (vis: v {type X = x; type S=s})
(implicit decomposeDecomposEs]) : x
}

Strategies

The decomposition strategy is encoded in Scala with theviafig trait :

trait Strategy
type V <: Visitor
type X
type Y
def get: Y

}

A Strategyis parametrized by a visitdf, type X and a typeY that will be defined in terms of
andX. Subtypes of this trait will correspond toft#irent possible decomposition strategies for the
visitors. In particular, the strategiésternal andExternalare defined as:

trait Internal extendsStrategy{
typeY =X

}

trait ExternalextendsStrategy{
type Y = Composit¢V]

}

57

3.6. The Msitor Pattern as a Library 58

The methodyetretrieves the result of the recursion (whose type is givel)y

The decomposition strategy parameter indlbeeptmethod can be made implicit. This means
that we can call thacceptmethod passing just the first parameter, if there is in scapalecompo-
sition operation of the appropriaBecomposeype for the second argument. The tiagcompose
is parametrized by the decomposition strat&gnd it encapsulates a single methaet This
method takes a visitor and a composite and returns the @sudturring on that composite using

the decomposition strategy.

trait Decomposks <: Strategy {
def dedv <: Visitor, X]
(vis: v {type X = x; type S= s},comp: Compositgv]) : s{type V = v, type X = x}
}

Decomposition strategies for internal and externals aisiare provided by the library (note
that both strategies can be used implicitly):

implicit def internal: Decomposfnternal] = new Decomposfnternal] {
def dedv <: Visitor, X]
(vis: v {type X = x; type S= Internal}, comp: Composit¢v]) =
new Internal {type V = v; type X = x; def get= compaccept(vis) }
}
implicit def external: DecomposfExternall = new DecomposgExternal {
def dedv <: Visitor, X]
(vis: v {type X = x; type S= External}, comp: Composit¢v]) =
new External{type V = v;type X = x; def get= comp
}

The two implementations of the methddccorrespond, respectively, to the definitia@es ternal
anddegyernal IN the functional specification. The important thing here ffeeively the piece of
code that we want to abstract from — is the definitiorgef which iscompaccept(vis) for inter-
nal visitors and justompfor external visitors. In other words, the decompositicatstgy of the
internal visitors recurs on the compostimp(since it calls theacceptmethod); and the decompo-
sition strategy for external visitors returns the compsiitouched, which allows concrete visitors

to control recursion themselves.

58

3.6. The Msitor Pattern as a Library 59

type Tag= String

type Attrs = List[Pair[String String]]

trait XMLVisitor extendsVisitor {
type Rec= R[XMLVisitor]

def text (s: String : X

def entity (x: Tag | : Attrs,r : List[Red) : X
}
type XML = Composit¢XMLVisitor]

case clasJext(x : String) extendsXML {
def accep{s <: Strategyx] (vis: XMLVisitor {type X = Xx;type S=s})
(implicit decomposeDecomposEs]) : X =
vis.text (X)
}
case clas€ntity (x: Tag | : Attrs r : List[XML]) extendsXML {
def accep{s <: Strategyx] (vis: XMLVisitor {type X = x;type S=s})
(implicit decomposeDecomposEs]) : X =
vis.entity (x, |, mapList((x : XML) = decomposéed XMLVisitor, X] (vis, X), r))

Figure 3.4: A simplified form of XML documents as visitors.

3.6.2 Using the Library

We shall now show how to use this library to define visitorgl haw the diferent kinds of visitors
can be used simply by parametrizing them accordingly. As tivating example, we will define a
simplified form of XML documents, and provide functions tawert them into strings and to test

the documents for equality.

A Simple XML Module

Figure 3.4 shows the visitor and composite components forra 6f simplified XML documents.
A document is either some text or an entity; an entity has gatéigt of attributes and a list of XML
documents as children. The trXivL is the composite, with two case clas3estandEntity being

the two concrete elements of the composite; the ¥®t Visitoris the visitor.

Printing XML Documents

Figure 3.5 shows a functigrintXML that transforms an XML document into a string. The function

is defined using an internMLVisitor. The internal strategy is configured by setting the type

59

3.6. The Msitor Pattern as a Library 60

def printXML (x : XML) : String=
x.accepfiInternal, String] (new XMLVisitor {
type X = String
type S = Internal

def printAttrs (I : Attrs) : String=
| match {
caseNil = ""
casePair (s, s ::xs=" " +sl+ "=\""+82+"\"" + printAttrs (x9

}
def printListXML (x: List[Red) : String=
X match {
caseNil = ""
casey:: ys= y.get+ "\n" + printListXML (ys)
}
def text(s: String = s
def entity (x: Tag | : Attrs r : List[Red) =
"<" + X+ printAttrs (1) + ">\n" + printListXML (r) + "<" + x+ "/>"

D)

Figure 3.5: A printing function for XML documents

parameteSand its associated value parametecaccordingly. The return typX is set toString

The function is then defined by implementing the two methiedsandentityin the XMLVisitor.

In thetextcase, we simply return that text. In tbatitycase, we produce the corresponding XML
symbols while printing the attributes (using an auxiliamp€tion printAttrs whose definition we
omit) and the list of XML documents. Because we use an intens#or, the elements of the
list passed to the methqatintListXML are the strings resulting from recursive processing of the

children; these subresults are combined by interspersiadleaks.

Comparing XML Documents

We now present an example of a binary method, checking whitleeXML documents are equal.
Binary methods are notoriouslyfiicult to define in a type-safe way in most object-oriented lan-
guages, but they are not a problem if we use external visifbhe basic idea, presented in Fig-
ure 3.6, is to use nested case analysis. We start by callactteptmethod for the first document
X, using an external visitor that returns a boolean. If th@atigsliscovers thak is a text, it decom-
posesy with another external visitor that analyses its shapg:isfalso a text it compares the two

strings, otherwise it returns false. Dually, wheis an entity, another visitor is used to analyse

60

3.7. Syntactic Sugar for MsiTors in Scala 61

def equalsXML(x: XML,y : XML) : boolean=
x.accep{External boolear] (new XMLVisitor {
// Setting up the parameteds the visitor
type X = boolean
type S= External

// Defining the cases

def text(s1: String = y.accep{External boolear] (new XMLVisitor {
type X = boolean
type S = External

def text (s2: String) : boolean= slequals(s?
def entity (x: Tag | : Attrs r : List[Red) : boolean= false
D
def entity (x1: Tag |1 : Attrs rl: List[Red) : boolean=
y.accep{External boolear] (new XMLVisitor {
type X = boolean
type S = External

def equalsLisfa] (f : a= a = booleanx: List[a], y: List[a]) : boolean=
Pair (x,y) match {

case(Pair (Nil, Nil)) = true
case(Pair (x::xsy::y9) = f (X) (y) A equalsList(f,xsy9
case(Pair (xsy9) = false

}
def text(s2: String = false
def entity (x2: Tag 12 : Attrs, r2 : List[Red) : boolean=
xLlequals(x2) A I1.equals(l2) A
equalsList((x: Reqd = (y: ReQ = equalsXML(x.get y.gel, r1,r2)

Figure 3.6: An equality function for XML documents usingitass.

this visitor returns false if is a text and returns the result of comparing the tags, atgtand
children wheny is an entity. Note that because we use an external visitoneee to manually

applyequalsXMLrecursively to all the XML occurrences.

3.7 Syntactic Sugar for MsriTors in Scala

One criticism that may be made of our visitor library is thasisomewhat verbose to use. In this
section, we shall see how we can improve our notation fotorsusing some advanced features of

the Scala programming language. With this notation, theofiser library becomes more intuitive

61

3.7. Syntactic Sugar for MsiTors in Scala 62

and less cumbersome.

3.7.1 Extending the Library
Functional notation

The invocatiore.accept(f) wherea is a composite anflis a visitor can be interpreted as a form
of reverse applicatiof (a), wheref plays the role of a function and is the argument of that
function. This observation can be quite elegantly expigs&cala by makindisitorsinstances
of functions; this is possible in Scala becaadidunctions are objectsThe Functionlclass from
the Scala standard library is the class of all functions with argument (Odersky, 2006a).

trait Functionl]-S +T] {def apply(x: S : T}

We can make our visitors instances Fdinctionl, but not directly, because we would need
to have the abstract type members\igitor in scope for defining the inheritance relation. The
(somewhat obscure) solution is to create a cMisgorFuncwhose subclasses are alsabtypes
of Visitor. HoweverVisitorFunc(unlike Visitor) uses type arguments instead of the abstract type
members. This allows us to use those type parameters inltbetance relation. We also need to
createVFunctionl(a subclass offunction) that has an extra field with a decomposition strategy.
The code is presented next:

abstract classVFunction][s <: Strategya, b] (dec: DecomposEs])
extendsFunctionla, b] {def decompose: dec}

abstract classVisitorFundv <: Visitor, s <: Strategyx] (dec: DecomposEs])
requires (VFunction]s, Compositév], x] with v {type X = x; type S= s})
extendsVFunction1s, Compositgv], x] (deg {
type X = X
type S=-s
def apply(c: Compositév]) : x = c.accepfs, x] (this) (decompose
}

The dfficult thing is getting the inheritance relation right. In erdor a visitor to become a function

it must be a subclass dFunctionland, thereforeyisitorFuncneeds to extend that class. Concrete
visitors v will then use mixin composition to combine themselves wihitorFunc The apply
method coming fronfFrunctionlwill take aCompositeas first argument, and that composite needs
to know which particular visitow we need; although we know we are defining a visitor, we still

do not know which particular visitor is required by the corape. Fortunately, Scala’s self-types

62

3.7. Syntactic Sugar for MsiTors in Scala 63

allow us to require a type for the self-referenhes that can depend on information that will only
be known at a later stage. In our case this information corsciie parametrized concrete visivor

that will be known when we define the subclasse¥isitorFunc

Shortcuts for VisitorFunc

If we want to make use of the functional notation, we addaibnneed to define a new class that
mixes in the concrete visitor wittlisitorFunc For example, for our XML example we could have:

abstract classVXML[s <: Strategyb] (implicit decomposeDecomposEs])
extendsVisitorFund XMLVisitor, s, b] (decompose
with XMLVisitor

This class also has the advantage of being more concise tharséhe visitor directly (because we

use generic parameters instead of abstract types).

Automatic coercions

Finally, for convenience, we provide automatic coercioesveen thestrategyobjects and the val-
ues that are contained in tgetfield — effectively, this means that trgeetmethod is automatically
called whenever a value of that type is required.

implicit def internal2g[x] (x: Internal {type X = x}) : x = x.get
implicit def external2miiv <: Visitor, X]
(x: External{type V = v; type X = x}) : Compositév] = x.get

3.7.2 Using the Extended Library

It is now time to see how the notation helps defining functittrad make use of visitors. We shall
demonstrate by re-writing the equality function preseireBection 3.6 with the notation from this
section. Figure 3.7 shows tlegualsXMLfunction with the new notation (note that we skip the
definition ofequalsLis}). In particular, we can see two of the three notational esiters: instead of
usingXMLVisitorwe now use/XML thus setting all the relevant parameters for the use of eater
visitors with XML documents. The other thing to notice is til@sence ofet methods, since we
use automatic coercions to convert betwBatand XML.

The functional notation becomes handy when we want to haveedaisitors instead of anony-
mous visitors. For example, suppose that we decided to mmgaéprintXML with an external

visitor. Normally we would have something like

63

3.7. Syntactic Sugar for MsiTors in Scala 64

def equalsXML(x: XML,y : XML) : boolean=
x.accep{External boolear] (new VXML[External boolear] {
def text(s1: String = y.accep{External boolear] (new VXML[External boolear] {
def text(s2: String) : boolean= slequals(s?
def entity (x: Tag | : Attrs r : List[Red) = false
)
def entity (x1: Tag I1 : Attrs, rl : List[Red) =
y.accep{External boolear] (new VXML[External boolear] {
def text(s2: String = false
def entity (x2: Tag 12 : Attrs, r2 : List[Red) =
xlequals(x2) A 11.equals(l2) A
equalsList((x: Reqd = (y: Red = equalsXML(x,y), rl,r2)

Figure 3.7: Equality re-written with the new notation

def printXML : VXML[External String] = new VXML[External String] {
/| code before omitted
def printListXML (x: List[Red) : String=
X match {
caseNil = ""
casey :: ys= Yy.getaccept(this) + "\n" + printListXML (y9)
}

// code before omitted

and the use of the recursive call would have to refer toabeeptmethod. However, because
VXML is a subclass ofFunctionlwe can make use of the functional notation, with the resgltin
code looking like:

def printXML : VXML[External String] = new VXML[External String] {
// code before omitted
def printListXML (x: List[Red) : String=
X match {
caseNil = ""
casey :: ys= printXML (y) + "\n" + printListXML (ys)
}
// code after omitted

Another consequence of this notation is that the clienfwiot XML can just use the functional

notation in their calls. For example

64

3.7. Syntactic Sugar for MsiTors in Scala 65

def testPrint= printXML (Entity ("Name", Nil, Text("ola") :: Nil))

can be written without calling thecceptmethod on th&XML document.

3.7.3 Comparison with Functional Programming

It is interesting to compare the Scala programs that we heweldped in this and the previous sec-
tions with the equivalent program in a functional programgrianguage. Using algebraic datatypes
we could have a definition like (here we use Haskell’'s syntax)

data XML where
Text :: String— XML
Entity:: Tag — Attrs - XML

This definition corresponds, roughly, to the code presemtddgure 3.4. The definition cKML
in Haskell is obviously much more elegant and intuitive thiaa corresponding Scala code. In
Scala, case classes come close to this elegance withoue#uefor a special purpose datatype
declaration. One advantage of our visitors, however, i$ tii@y can be parametrized on their
decomposition strategy. In other words, usual definitiohdatatypes always came with a fixed
decomposition strategy (which is normally equivalent tteexal visitors); with our visitors, we
can choose dierent strategies. In order to obtain the sarieat of, for example, internal visitors
with conventional datatypes, we would need to write new fiioms (thefold combinators) for each
datatype capturing that kind of traversal.

The code corresponding to the definitionezfualXML(in Figure 3.7) could be written in the
following way in a functional language:

equalsXML: XML — XML — boolean

equalsXML x y=
casex of
(Text s) — casey of
(Text s2 —sl=s2

(Entity xIr) — False
(Entity x1 11 r]) — casey of
(Text s2 — False
(Entity X2 1212 — (Xx1=x2) A
(11 = 12) A equalsList{Ax y — equalsXML x yrl r2

This definition, as we can see, is still more elegant than tteein Figure 3.7 using visitors.

However, the syntactical disparity is much less here tharag with the datatype declaration. In

65

3.8. Expressiveness of the Visitor Library 66

fact, defining functions using our visitor library is fairpractical even without any support from
the compiler. Therefore, our library can be used in pradctagefine visitors and we do not have to
worry about design decisions involving the control of thevéarsal (since this is parametrizable).
Our visitor library could be used to provide the semanticpfussible AlgDTs language exten-
sions. It would be interesting to explore a language extengiat allowed us to explore strategy

parametrization.

3.8 Expressiveness of the Visitor Library

In this section we will explore the expressiveness of ouitatidibrary and see how it can be used
to encode a large family of datatypes that inclugasametric mutually recursiveandexistential
datatypes. The translation of datatypes is detailed, nwradlly, in Appendix B. Furthermore,
using the connection between the decomposition stratedjyemursion patterns, we will show that
the internal and external visitors are not the only two kin@lsisitors that can be encoded with
our library. We will demonstrate this by presenting a visitspired byparamorphismgMeertens,
1992).

3.8.1 Parametric Datatypes

Our visitor library can be used to encode parametric daestyn Figure 3.8 we show how para-
metric lists can be encoded in Scala using our visitor ljprdihere are two constructohdl and
Conswith their corresponding visit methodsil andcong in the visitor componentistVisitor[a].
Worth noting is thatListVisitor [a] is parametrized with a generic ty@g which is the type of
the elements in the list. The composite component is defisgdyua parametrized type synonym
List[a] where, again, the typa represents the types of the elements of the list. The &ass

is provided as a convenience and allows us to use the futtration provided byisitorFunc
Two examples of functions defined over lists follow:

def sizeLisfa] = new VList[Internal a, int] {
def nil =0
def cons(x:a,xs:Req = 1+ xs

}

def addList= new VList[Internal, int, int] {
def nil =0

66

3.8. Expressiveness of the Visitor Library 67

trait ListVisitor[a] extendsVisitor {
type Rec= R][ListVisitor[a]]
def nil : X
def cons(x:a,xs: ReqQ: X
}
type List[a] = CompositéListVisitor[a]]
def Nil[a] : List[a] = new List[a] {
def accep{s <: Strategyx] (vis: ListVisitor[a] {type X = X; type S=s})
(implicit decomposeDecomposEs]) : X =
vis.nil
}
def Conda] (x: a, xs: List[a]) : List[a] = new List[a] {
def accep{s <: Strategyx] (vis: ListVisitor[a] {type X = X; type S=s})
(implicit decomposeDecomposEs]) : X =
vis.cons(x, decomposeedListVisitor[a], X] (vis, X9))

}

abstract classVList[s <: Strategya, b] (implicit decomposeDecomposEs])
extendsVisitorFundListVisitor[a], s, b] (decompose
with ListVisitor[a]

Figure 3.8: Parametric lists using the visitor library

def cons(x: int,xs: RegQ = X+ Xs

}

The functionsizeList which computes the size of a list, shows how we can defineapetri-
cally polymorphic function over our lists. The functiaddList which computes the sum of all the
elements of an integer list, shows how we can define a funottena list containing elements of a

particular type.

3.8.2 Mutually Recursive Datatypes

With our library it is possible to define mutually-recursiisitors in a convenient way. The code in
Figure 3.10 shows how we can encode trees in terms of foamsisforests in terms of trees using
two mutually recursive visitors. Trees, whose type is gikgiree[a], have one constructdfork
that builds a tree containing one element and a forest. HitdlteeVisitofa] is the corresponding
visitor and has a visit methoderk matching thé~ork constructor. Forests, whose type is given by
Forest[a], have two constructorNlil and Consthat construct, respectively, an empty forest and a

forest with one tree and another forest. The tralestVisitofa] is the visitor component and the

67

3.8. Expressiveness of the Visitor Library 68

def sumTree VTredInternal int, int] = new VTredInternal int, int] {
def fv = sumForest

def fork (x: int, xs: R[ForestVisitofint]]) = X + xs
}

def sumForest VFores{Internal, int, int] = new VFores{Internal int, int] {
def tv = sumTree
def nil -0
def cons(x : R[TreeVisitofint]], xs: R[ForestVisitofint]]) = X+ Xs

}

Figure 3.9: Adding elements in forests and trees of integers

methodsil andconsmatch theNil andConsconstructors. The fields andtv provide references
to TreeVisitofa] and ForestVisitofa] that will be used when defining functions. For example, the
two functions presented in Figure 3.9 show how we can definetions that add all the elements
of a tree and a forest of integers. The definitions are mytuattursive:sumTreausessumForest

in its definition and vice versa, by setting thveandtv fields in the visitors.

Note that this formulation of mutually-recursive visitis®nly possible becaustis parametrized
by a visitor. With the current functional specification, wanoot define mutually-recursive visitors
in this way (although it is still possible to define them ifdrent ways) becaudeis hard-wired
to the concrete visitor being defined. It is worthwhile to tkader to see the discussions in Sec-
tions 3.6 and 6.3.1 and take a look at Appendix | to see how weusa a dierent functional

specification setting that allowto be parametrized by a visitor.

3.8.3 Existentially Quantified Datatypes

We can also define existentially quantified visitors with lomary. In Figure 3.11 we show how to
encode a form of heterogeneous lists (this is, lists thatatoelements of dierent types) where the
elements have an associated printing operdtionike parametric lists we have two constructors
Nil andConga] that construct values of tygdList and have corresponding visit methadkand
conga] in the traitHListVisitor. The existential types are achieved by universally qugintfthe
element type at the visit methods (in this case we do that at the metiood). The traitVHList
provides the functional notation. The functipnntHList, which uses the printing operation to print

the values contained in the list, is defined as:

68

3.8. Expressiveness of the Visitor Library 69

trait TreeVisitoffa] extendsVisitor {
def fv: ForestVisitofa] {type X = TreeVisitorthis.X; type S = TreeVisitorthis.S}

def fork (x: a, xs: R[ForestVisitofa]]) : X
}

trait ForestVisitofa] extendsVisitor {
def tv: TreeVisitofa] {type X = ForestVisitorthis.X; type S = ForestVisitorthis.S}

def nil : X
def cons(x: R[TreeVisitofa]], xs: R[ForestVisitoffa]]) : X
}
abstract classVTreds <: Strategya, b] (implicit decomposeDecomposEs])
extendsVisitorFund TreeVisitofa], s, b] (decompose
with TreeVisitofa]

abstract classVFores{s <: Strategya, b] (implicit decomposeDecomposEs])
extendsVisitorFund ForestVisitofa], s, b] (decompose
with ForestVisitofa]
type Tregla] = Composit¢TreeVisitofa]]
type Foresfa] = Composit¢ForestVisitofa]]
def Nil[a] : Forestia] = new Foresta] {
def accep{s <: Strategyx] (vis: ForestVisitofa] {type X = x; type S=s})
(implicit decomposeDecomposEs]) : x =
vis.nil
}
def Fork[a] (x: a, xs: Foresa]) : Tree[a] = new Treg[a] {
def accep{s <: Strategyx] (vis: TreeVisitofa] {type X = x; type S=s})
(implicit decomposeDecomposEs)) : x =
vis.fork (x, decomposeéec(vis.fv, xg))
}
def Conda] (x: Tree[a], xs: Foresta]) : Foresa] = new Foresta] {
def accep{s <: Strategyx] (vis: ForestVisitofa] {type X = x;type S=s})
(implicit decomposeDecomposEs]) : X =
vis.cons(decomposeec(vis.tv, X), decomposédec(vis, x9))

Figure 3.10: Visitors for the mutually-recursi#erestand Treetypes.

69

3.8. Expressiveness of the Visitor Library 70

trait HListVisitor extendsVisitor {
type Rec= R[HListVisitor]

def nil : X

def conda] (x:a,f:a= String xs: Req : X
}
type HList = Composit¢HListVisitor]

def Nil : HList = new HList {
def accep{s <: Strategyx] (vis: HListVisitor {type X = x; type S=s})
(implicit decomposeDecomposEs]) : X =
vis.nil
}
def Conda] (x: a,f :a= String xs: HList) : HList = new HList {
def accep{s <: Strategyx] (vis: HListVisitor {type X = x; type S=s})
(implicit decomposeDecomposEs]) : X =
vis.cons(x, f, decomposdedHListVisitor, X] (Vvis, X9))

}

abstract classVHList[s <: Strategyb] (implicit decomposeDecomposEs])
extendsVisitorFundHListVisitor, s, b] (decompose
with HListVisitor

Figure 3.11: Defining heterogeneous list with the visitbrdry

def printHList: HList = String= new VHList[Internal, String] {
def nil =""
def conda] (x:a,f:a= String xs: Reg = "\n" +f (X) + xsget}

3.8.4 Paramorphic Visitors

Internal and external visitors are not the only two possttdeomposition strategies for visitors.
Inspired by the connection between visitors and recursattems, we will now show how we
can specify what we shall cgbaramorphicvisitors — named after thparamorphisnrecursion
pattern (Meertens, 1992). As mentioned in Section 3.5 fitkt thing we need to define is the
strategy parameter:

ParaV X= (X,Mu V)
The paramorphic decomposition strategy consists of a gaérevthe first component is the result
of a recursive call and the second component is the substeuch which that call was made. It is
interesting to observe that we could have equivalentlytemit

Para V X= (Internal V X External V X

70

3.8. Expressiveness of the Visitor Library 71

trait Para extendsStrategy{
type Y = Pair[X, Composit¢V]]
}

implicit def external: DecomposfPara] = new DecomposfPara] {
def dedv <: Visitor, x] (vis: v {type X = x; type S= Para}, comp: Composit¢v]) =
new Para {
type V = v;type X = x; def get= Pair[x, Composit¢v]] (compaccept(vis),comp}
}
implicit def para2pair[v <: Visitor, X]
(x: Paraf{type V >: v; type X = x}) : Pair[x, Composit¢v]] = x.get

Figure 3.12: Paramorphic visitors in Scala.

so in a sensinternal andExternalare primitive entities anéarais not.
The operatiorec,, is defined as:
deGaa:: (V (ParaV X) X) > MuV — ParaV X
deGaatu=(utu)
In Appendix C the full Haskell code for the functional spezation along with some examples is

presented.

Paramorphic Visitors in Scala

In Scala, the necessary code for adding this new kind oforigtpresented in Figure 3.12. A new

decomposition strategy entails the definition of threeghin

1. Thefirstthing that we need is a new strategy. In this casdraitParaprovides this strategy;

2. We also need to provide an Decompose object. For paramsarplhe operatioparadefines
this;

3. Finally, for convenience, we provide one implicit coercbetween instances Baraand the

Pair provided by the fieldyet This coercion is given bgara2pair.

After the library writer adds a new kind of visitor to the ldyy, users can start defining their own
functions. For example, the factorial function can be atlgadefined using paramorphic visitors

as:

71

3.9. Discussion 72

def fact: Nat = Nat = new VNat[Para, Nat] {

def zero = Succ(Zero)

def succ(n: Req = mult (fst (n)) (Succ(snd(n)))
}

The benefit of using a paramorphic visitor for definifiagt is that the definitiorsucc(which
matches the successor of a natural number) has access todotisult of the recursive cdict (n)
(the first component of the pair) amd(the second component of the pair), makfagt very easy

to define. The full code necessary to run this example is pteden Appendix D.

3.9 Discussion

Design patterns are often described akefents of reusable object-oriented softwgf@amma
etal, 1995). Itis, perhaps, an irony that what is meant by “releSdiere is an extra-linguistic reuse
in the form of "prose, pictures and prototype€Gibbons, 2003). This will necessarily manifest
itself in programs through copy, paste and adapt practi€kat is not to say that design patterns
are a bad thing, but rather that they are not providing theximum benefit. It would be better if
“reusable” here were to have its traditional meaning in cotimg: the solutions provided by design
patterns should be abstracted into modular pieces of st{aa, in other words, components),
which can be instantiated and applied without further clean@his cannot be achieved in the
mainstream languages of today such as Java and C#; but asve/stmavn, the more advanced
features provided by more recent languages such as Scalatfib@ s As (Gibbons, 2006, 2003)
and others (Norvig, 1996; Arnout, 2004) have argued elsesyhkis issue of expressivity ig16t
inherent in the patterns themselves, but evidence of a feekpoessivity in the languages of today
We have argued that thesvror pattern is related to well-known encodings of data typesifro
the type theory community. Building on the insights proddsy this relation, we have shown that
it is possible to capture thedfror pattern as a modular software library, given a language avith
suficiently powerful type system. In particular we have showat this can be achievethday,
in the Scala programming language. In addition to Scalaslipation of functional and object-
oriented features, the crucial feature that we need (an@hnisi lacking in current mainstream
languages) is the ability to parametrize on type constradishich is closely related tdatatype-
genericity).

An interesting aspect of our library is that, not only doedliw us to capture a particular kind

72

3.9. Discussion 73

of visitor (such as internal, or external) datatype-geradhy, but it also allows us to parametrize
on the kind of the visitor itself. This increases even moeergusability of the pattern library, and
strengthens the argument that design patterns can be edpioguistically. Rather than having
to implement each variation separately, duplicating thenroon code, the alternatives arise as
instantiations of a common abstraction. We believe that @algo brings something new in more
theoretical terms, since although it has been known thateimplate F U = A) = Ais used
by both the Church and Parigot encodings, we are not awareyfvark that studied the two
encodings as specializations of a more (linguisticallyteegble) general abstraction. In particular,
the extraction of the commonalities via thecoperation seems to be novel.

Notions ofgeneric visitorhave been proposed in the past. Palsberg and Jay (1998) e se
solution relying on a reflection mechanism, where a singla dé&asswWalkaboutcould support all
visitors as subclasses. Refinements to the idea of usingtiefiéo capture generic visitors, mostly
to improve performance, have been proposed since (Gfp2@03; Foravet al., 2005). Our work
in this chapter diers from solutions based on reflection in two aspects. Firstie of the main
motivations of these reflection-based generic visitorstwasmove the need for aacceptmethod
in the hierarchical structure, since this is considered bpyro be intrusive and against the object-
oriented model. We do not share this motivation, since werfmet the \Wsitor as an encoding of
data types. Secondly, our solution is type-safe: we nevefngessage not understoodun-time
errors. This is not the case for reflection-based approaches

Another interesting feature of our library is the fact thaean use &unctional notatiorfor our
visitors by interpreting thacceptmethod as a form of reverse application. A similar idea nabég
the Peripatonlanguage, which supports the so-calleasitor-oriented programming styléVan-
Drunen and Palsberg, 2004). In Peripaton, everything isiovi the visitor object can be consid-
ered the top of the object hierarchy, playing the same rol@lgsctin Java. By interpreting the
visit method as function application, we get a notion that liessitwieen functions and objects. We
believe that this analogy with functions is a useful one aihehids a more intuitive notation to visi-
tors. However, unlike VanDrunen and Palsberg, we do noefexery object into a visitgiunction
and we do not require a language with special support fotovssi Instead, our interpretation is that

visitors correspond to a subset of functions defined by (skinmgeof) pattern matching.

73

Chapter 4

Visitor-Generic Programming

In Chapter 3 we have seen that thervor pattern can be interpreted as a generic encoding of
datatypes. This leads to a generic notion of a visitor that@acaptured as a software library. With
this library we can easily define functions for specific visst however, the libraryfters little help
if we want to define functions that work f@amy visitors. Datatype generic programming (DGP)
aims to solve this problem by allowing us to defgenericfunctions that work for any shape (or
visitor). In this chapter we develop a DGP library for visganspired by Hinze’'s GM approach.
With this approach we can define our own generic functionsisiiovs. We also show that the
GM implementation is itself an instance of the visitor patteHowever, it cannot be modelled
directly with the current library because the family of s that GM belongs to iype-indexed
(and the current library does not support that family). Wevekhat it is possible to generalize our
original visitor library to supportype-indexedisitors. This insight allow us to eliminate the need
for a design choice that is present in GM. Finally, we will $&sv to express a family of sums
of products within our visitor library. Using this family wean express a wider range of generic

functions.

4.1 Introduction

Suppose that we have datatypes of lists and trees of intagdihat we want to add up the integers

contained in values of those datatypes. Assuming that weetkfiisitors for those datatypes using

74

4.1. Introduction 75

our library, it is easy to write two functions that do the job.

def addList= new VList[Internal, int] {
def nil =0
def cons(x: int,xs: RegQ = X+ Xs

}

def addTree= new VTreqInternal int] {
def empty =0
def fork (x:int,| : Recr:ReQ = x+1+r
}

Since our library automatically provides decompositigatggies, we can just choose the most
suitable strategy for solving our problem and define the tnmzfions in a very simple way without
worrying about the recursive boilerplate. For example hi@ definitions above, we opted to use
internal visitors to define the two addition functions fatd and trees, since the recursion pattern
that is involved in these functions is a simple kind of stanat recursion.

While our library can be very helpful when defining functidos particular datatypes, itfters
little help if we want to define functions that work fany datatypes. If we now introduce a new
kind of tree of integers and we wanted to add up all the integéithat tree, we would have to
define yet another function that suits that particular gt A better option would be to define a
generic function that worksnce and for alfor all visitors.

DGP aims precisely at solving this problem. In this chaptemall show that we can extend our
visitor library to support generic functions. In order to slm we will translate the GM approach
to DGP (Hinze, 2004) to Scala and show how to define generictifums on visitors. This will
not require any modifications in our visitor library — althghuit will require that the users of the
library construct their visitors based on sums of produstsgstablish an isomorphism between
their visitor and sums of products.

GM is a particularly interesting lightweight approach tishbws how to use Haskell’s type
classes to model a generic programming library based on stipmeducts. As it turns out, Hinze’s
own inspiration for GM (Hinze, 2006) comes from the same dirggs of datatypes that we have
been using in this thesis: he used Church and Parigot erg®dinencode representations of
datatypes in two dierent ways — this is no coincidence; the work presented m tthesis has
been initially inspired by Hinze’s work on lightweight agaiches to DGP. These two alternative
representations of datatypes give rise to two alternathgamentations of DGP, which have dif-

ferent trade-fis and force the same design choice that we have with the atigiasentation of the

75

4.2. Encoding Sums and Products in Scala 76

VisiTor pattern.
In Section 4.2 we show how to encode sums and products in,ralading us with the basic

machinery that we will need for supporting DGP. The contiidms of this chapter follow:

¢ In Section 4.3 we provide a translation of GM into Scala, akphow we can define generic
functions in this setting, and show two forms of reuse of gerfenctions. The first form
of reuse, quite natural in an OO setting, is using inherganthe second form of reuse is
the so-calledocal redefinition(Loh, 2004), which can be used to override the behaviour of

generic functions for parametric datatypes.

¢ In Section 4.4 we argue that the implementation of GM is fitaalinstance of the Mitor
pattern, but it cannot be encoded using our visitor librarge reason is that GM requires
anindexed visitorwhich is out of reach in our initial library. We modify thesitor library
to support indexed visitors, and show how an alternativdempentation of GM could be
constructed using this modified library. An immediate capusnce of this alternative design

is that the design choice between two alternative impleatemts of GM is unnecessary.

¢ In Section 4.5 we show how to we can caaw another family of visitors as a particular in-
stance of our visitor library and show that the GM approactuilg supports a form ofiews
(Holdermanst al., 2006). In particular, we define a family of visitors basedams of prod-
ucts. Furthermore, the use of this family will have some atlviges in terms of performance,

usability, expressiveness of generic functions compai#ddproducts of functions.

¢ In Section 4.6 we will develop a simple serialization lirar- a common application of
generic programming. Moreover, we will show that, while theary can be defined for
product-of-functions visitors, if we use the family of \isis defined in Section 4.5 we can

use generic functions that express recursion patternstigire

Finally, a discussion of the results and some related wagpkdsented in Section 4.7.

4.2 Encoding Sums and Products in Scala

In this section we will show how to encode sums and produc&cada. This will be the basis for

adding datatype-generic programming to our visitor lifprar

76

4.2. Encoding Sums and Products in Scala 77

trait PIus[A, B] {
def accepft] (vis: PlusVisitofA, B, t]) : t
}
case classnl[A, B] (value: A) extendsPIlus[A, B] {
def accepft] (vis: PlusVisitofA, B, t]) = vis.inl (valug
}
case classnr [A, B] (value: B) extendsPIus[A, B] {
def accepf{t] (vis: PlusVisitof A, B, t]) = vis.inr (valug
}
trait PlusVisitofA, B, T] {
definl (x:A): T
definr (x:B): T
}

Figure 4.1: A visitor for sums.

Sums Scala, like most object-oriented languages, does not icoatarimitive notion of sums.
Most of the time, a hierarchical design such as thenosite is used whenever fierent types of
objects of a common kind are required. Theror pattern that we have employed in the previous
chapters for implementing recursive data types can alsodensums. In fact, we could just use our
library to define sums (and products). However, we shalamefirom doing that here because sums
and products are non-recursive types; we opt for a morewigilght solution where we just apply
the design pattern directly, which has the advantage oitgldn Figure 4.1, we see an encoding
of sums in Scala. The traRlus has two type parametefsandB — which are respectively the
types of the values of the two choices in the sum — and the atdratceptmethod. There are
two instanceslIfl andInr) of Plus which are the constructors for the injections into the sum.
Finally, the traitPlusVisitoris the visitor component and contains a method for handlau ef

the injections.

Products Products are easier to model in object-oriented langudgeshodel a product we just
need a record with two fields and two type parameters (onedredcbne type parameter for each of
the components of the product). We can also make produétahlissby adding aacceptmethod
and defining the corresponding visitor (the tirbdVisitor). The code for products as visitors is

shown in Figure 4.2.

77

4.3. Generic Programming with Visitors 78

case clas$rod[A, B] (fst: A, snd: B) {
def accepf{t] (vis: ProdVisitor[A, B, t]) : t = vis.prod (fst, snd
}
trait ProdVisitor[A, B, T] {
defprod(x:Ay:B): T
}

Figure 4.2: A visitor for products.

Empty Product The final piece of machinery is the empty product, which hasglevalue. In
other words, this is the neutral element of products and eagelily defined as:

trait One

Having defined the necessary machinery for sums of prodwetsan now move on to imple-

ment support for DGP.

4.3 Generic Programming with VISITorS

In the previous section we have shown how to encode sums addgis in Scala. In this section,
we will show how to use sums of products to define generic fanstin Scala. This is achieved by
applying the GM technique proposed by Hinze (2004) to SdAla.will also discuss two distinct
mechanisms that can be used in Scala to reuse generic fusiateuse by inheritancandlocal

redefinition

4.3.1 Generics for the Masses in Scala

The technique presented by Hinze in GM shows how to encoderigdanctions within Haskell 98.

In that proposal, a generic function can be encoded as aanesbdf a type clagseneric Another
type class (th&kepclass) defines a functiaiep that can be used to construct type representations
automatically. As we shall see in Section 4.4, there is diogiship between Hinze’s GM encoding
and our work on the visitor pattern — the claSenericcan be seen as the visitor component and
the classRepas the composite component. GM comes in twbedent flavours, which provide
two slightly different interpretations of generic functions. The inspirafior these two dierent

flavours comes from encodings of datatypes (specificayCturch and Parigot encodings), which

78

4.3. Generic Programming with Visitors 79

were greatly explored in Chapter 3.
GM allows the definition of generic functions on datatypest thre isomorphic to sums of
products. However, these isomorphisms need to be explagtfined, since Haskell does not do it

automatically.

Definition 7 (Isomorphism) An isomorphismbetween two data type& and B consists of two
functionsf :: A— Bandg:: B — A with the following properties:
fog=idg Agof =ida

O

Isomorphisms are very useful in the context of generic @gning, because they allow us to
convert between a small family of datatypes and anotherhrtarger, family of datatypes. Implicit
coercions provided in Scala, can be used to define isomangttizat are automatically applied by
the compiler. Alternatively we can encode an isomorphism as

trait 1so[a, b] {
def from(x:a):b
defto(x:b):a

}

(Note, however, that the properties required by the isoimerp need to be verified manually
since Scala does not provide any facilities for automatidieation.) We shall use this alternative
definition in what follows since it allows us to relate moreanlly our and Hinze’s work, and it
gives us an extra degree of flexibility in terms of which isgptosm to use.

Because GM is a based on type classes, it is not hard to trartdiaze’s work into Scala
— as we have seen in Section 2.1.6, there is a close conndmgiareen Scala’s parametrized
traityclasses and Haskell's type classes (Odersky, 2006a,b).ofilgeapparent diiculty is that
Hinze’s approach relies on constructor classes (this & tyasses parametrized over a type con-
structor instead of a type). However, as we have already, $keisris also not a problem in Scala
because we can encode type constructors using abstrast type

We present the transliteration of the Church encoding earsf Hinze’'sGenericclass in Fig-
ure 4.3. The key idea is that instances of the E@hericrepresent generic functions over sums of
products. A generic function is defined byffdrent cases for sums, products, the unit type and also
a few built-in types such ast or char. For sums and products, which have type parameters, we

need extra arguments that define the generic functions foesaf those type parameters.

79

4.3. Generic Programming with Visitors 80

trait Generic{
type G <: TypeConstructor
def unit: G {type A = Ong}
defint: G {type A = int}
def char: G {type A = char}
def plus[a,b] (a: G {type A= a},b: G {type A = b}) : G {type A = Plug[a, b]}
def prod[a,b] (a: G {type A= a},b: G {type A = b}) : G {type A = Prod[a, b]}
def view[a, b] (iso: Iso[b,a],a: = G {type A = a}) : G {type A = b}

Figure 4.3: Therait Generic

The view case is used to adapt generic functions to existing datstiipet are not directly
defined as sums of products. To defingi@w case, we are required to provide an isomorphism
between the datatydeand its corresponding sum of produetsWe are also required to provide
a valuea: = G{type A = a}, which is just an instance of the generic function for therisgphic
sum of products. Note thats” before the parameteaa signals that values of that type dezy.
This is needed because recursive types unfold infinitely.

In order to use generic functions defined with instanceSeeric we need to combine dif-
ferent cases that match the isomorphic sum of product of atatgpe. For example, suppose that
we wanted to use a generic function on a pair consisting ontager and a character. To get the
generic function at that type we would need:

def repP[g <: TypeConstructdr(implicit gen: Generic{type G = g}) =
genprod (genint, genchar)

It can be quite tedious to define these so-catigie representationdiowever, since they are
merely reflecting the structure of types, the compiler catoraatically generate this code. In
Figure 4.4 we show how this can be achieved in Scala. Agais,jshalmost a transliteration of
Haskell’'s type class version, except that instead of usipg tlasses we now make use of Scala
implicit parameters to achieve the santieet; and we also need to mark the type parameé&ter
with a contravariance annotation. The trRiépdefines a methodep, which takes an instance
of Generic(a generic function) and returns a representation that eansed on a typ&. We
define representations for basic types and sums of prodyatsibg the corresponding methods
in Generic Parametrized representations, sucliR&usandRProdhave one argument for each

parameter that is itself a representation and can be irtiplpassed.

80

4.3. Generic Programming with Visitors 81

trait Reg—T] {
def rep[g <: TypeConstructdr(implicit gen: Generic{type G =g}): g {type A=T}
}
implicit def RUnit= new RedOng¢] {
def rep[g <: TypeConstructgr(implicit gen: Generic{type G = g}) = genunit
}
implicit def RInt= new Redint] {
def rep[g <: TypeConstructdr(implicit gen: Generic{type G = g}) = genint
}
implicit def RChar= new Regchar] {
def rep[g <: TypeConstructgr(implicit gen: Generic{type G = g}) = genchar
}
implicit def RPluga, b] (implicit a: Reda], b: Regb]) = new RedPlus[a, b]] {
def rep[g <: TypeConstructdr(implicit gen: Generic{type G = g}) =
genplus(a.rep (gen), b.rep (gen)
}

implicit def RProd[a, b] (implicit a: Reda], b: Refgb]) = new RegProd[a, b]] {
def rep[g <: TypeConstructgr(implicit gen: Generic{type G = g}) =
genprod (a.rep (gen, b.rep (gen)

Figure 4.4: Representations for generic functions.

4.3.2 Representations of Visitors

We have seen how to set up the generic machinery in Scala. Weslmowv how to use our visi-
torgdatatypes with the generic library.

Consider using generic functions over the parametric distsred in Section 3.8.1. We need to
create a representation of the list datatype as a sum of piadWe can create the representation
using theview method ofGeneric However, we first need to define the isomorphism between
parametric lists and sums of products. In Figure 4.5 we show to define this isomorphism.
We define an auxiliary type synonyimstF to represent the isomorphic sum of product type and
implement the two methodsom andto from the traitlso. The from method is defined by case
analysis using an external list visitor. Theemethod uses the visitor for sums to convert between
the sum of products and lists.

Having defined the isomorphism, we can define a metistidepthat constructs a representa-
tion for lists. For parametric types, the representatiorcfion follows the arity of the parametric

datatype: if the datatype hastype parameters, the function giving the representatiortHat

81

4.3. Generic Programming with Visitors 82

def listlso[a] = new Iso[List[a], Plus|One Prod[a, List[a]]]] {
type ListF = Plus[One Prod|[a, List[a]]]

def from (I : List[a]) = |.accep{External ListF] (new VList[External a, ListF] {
def nil : ListF = Inl (Ong
def cons(x: a xs: Req : ListF = Inr (Prod (x, xsge)

)
def to (x: ListF) = x.accept(new PlusVisitofOne Prod[a, List[a]], List[a]] {

definl (x: Ong = Nil[a]
def inr (x: Prod[a, List[a]]) = Cons(x.fst, x.snd

)
}

Figure 4.5: Isomorphism between parametric lists and sdmpsoducts.

datatype will haven representation arguments. Therefore, for lists, we negaddeide the repre-
sentation for the type parameter as an argumelstiRep The method creates the representation
by using theview case inGenericand providing it withlistlso and the representation for the sum
of products.

def listReda, g <: TypeConstructdr
(a: g{type A =a}) (implicit gen: Generic{type G = g}) : g {type A = List[a]} =
genview (listlso, genplus(genunit, genprod (a, listReda, g] (a) (gen)))

In order to integrate this with our library we should also\pde an instance foregList[a]],
which will implicitly pick a representation for lists prasded that an implicit representation for the
type of the list parameter exists.

implicit def RList[a] (implicit a: Reda]) = new RedList[a]] {
def rep[g <: TypeConstructdr(implicit gen: Generic{type G = g}) =
listRea, g] (arep (gen) (gen

A similar amount of work needs to be repeated for a new dagatyidowever, this code is
mostly boilerplate and, with a smart enough compiler, itasgible to automatically generate it.
Mechanisms that generate code for data types for use wittrigggrogramming includBerivable
Type ClassefHinze and Peyton Jones, 2008xrap your BoilerplatédLammel and Peyton Jones,
2003, 2004) oGeneric Clear(Alimarine and Plasmeijer, 2001).

82

4.3. Generic Programming with Visitors 83

sealed case cladsist[a]
case clasdNil[a] extendsList[a]
case clas€onda] (x: a,xs: List[a]) extendsList[a]

def listlso[a] = new Iso[List[a], Plus[One Prod[a, List[a]]]] {
type ListF = Plus[One Prod[a, List[a]]]
def from (I : List[a]) : ListF = | match {
caseNil () = Inl (Ong
caseCons(x, xs) = Inr (Prod (x, X9))

}

def to (x: ListF) = x.accept(new PlusVisitofOne Prod|[a, List[a]], List[a]] {
def inl (x: Ong = Nil[a]
def inr (x: Prod[a, List[a]]) = Cons(x.fst,x.snd)

)
}

Figure 4.6: Isomorphism betweerLst case class and sums of products.

4.3.3 Representations of Scala’s Case Classes

In the previous section we have shown how we can use our gditegry on visitors by providing
representations for those visitors. However, our genengramming library has a wider applica-
bility and can be used with other kinds of hierarchies suc¢foagxample, Scala’s case classes. We
will show again how we could represent lists, but this timsuaud we will use case classes instead
of a visitor for the source datatype.

In Figure 4.6 we define a form of parametric lists using caassds. The cladsst[a] repre-
sents the datatype and the clagdésandConsplay the roles of the data constructors. The method
listlso, like the equivalent method in Section 4.3.2, establisimesisomorphism betweenist[a]
and the corresponding sum-of-product equivalent. Thishotkts not very dferent from the one
used for visitors. The only fierence is, basically, that instead of using #ueeptmethod as a
means to perform case analysidniom, with case classes we can use Scala’s existing case analysis
mechanism directly.

The equivalenlistRepandRListmethods for out.ist case class have, essentially, equal defini-
tions to the visitor corresponding methods:

def listReda, g <: TypeConstructdr(a: g {type A = a})
(implicit gen: Generic{type G =g}) =
genview (listlso, genplus(genunit, genprod (a, listReda, g] (a) (gen)))
implicit def RList[a] (implicit a: Reda]) = new RedList[a]] {

83

4.3. Generic Programming with Visitors 84

def rep[g <: TypeConstructdr(implicit gen: Generic{type G = g}) =
listReda, g] (a.rep[g] (gen) (gen

This demonstrates that the generic programming librarybmansed with the visitor library,
but it is independent from it. In other words, there is noghgtoping us from using the generic

programming library with standard Scala’s class hieraglike the ones defined by case classes.

4.3.4 Defining Generic Functions

Suppose we want to count the number of values contained ie stmncture. To do so we need cre-
ate an instance dbenericand provide an abstract ty@ethat essentially defines the type signature
of the generic function in question. For our example we@seSize

trait SizeextendsTypeConstructof
def size(x: A) :int
}

The traitSizedefines a methosdizethat takes a value with the type of the structure we want to
consumeA is the type parameter of the type constructor) and returmstager.

We present the definition for the generic function (a subtyp&enerig in Figure 4.7. For
each case, we define a new instanc&iakspecifying the behaviour of the function for that case.
Although the function is supposed to count values of certgies, we want to make it generic
enough such that we can control which values we want to c@edause of this option, we count
0 for basic values such amit, int or char (this can later be overridden). For containers with sums
and products we do the obvious thing, just callgigeon each of the injections of the sum, and
adding up the results of counting the two components of toduymt. Finally, theview case uses
the isomorphism to provide the generic functionality oveemrdefined data types.

We defineMySizeas a trait instead of an object so that we can, in the fututenexa it. We
shall look into this with more detail in Sections 4.3.5 an8.@.and see that this yields increased
reusability benefits. We may, however, be interested inrftgaain object that simply inherits the
functionality defined ifMySize Furthermore, this object can be made implicit so that nahike
rep can automatically be fed with this instance®@é&neric The objecimySizaloes this:

implicit object mySizeextendsMySize

84

4.3. Generic Programming with Visitors 85

trait MySizeextendsGeneric{
type G = Size
def unit = new Size{type A = One def size(x: A) = 0}
def int = new Size{type A = int; def size(x: A) = 0}
def char = new Size{type A = char; def size(x: A) = 0}
def plus[a,b] (a: G {type A= a},b: G {type A = b}) = new Size{
type A = Plug[a, b]
def size(x: A) = x.accept(new PlusVisitofa, b, int] {
definl (y: a) = a.size(y)
def inr (z: b) = b.size(2)
D
}
def prod[a, b] (a: G {type A = a},b: G {type A = b}) = new Size{
type A = Prod[a, b]
def size(x: A) = x.accept(new ProdVisitor[a, b, int] {
def prod (y: a,z: b) = a.size(y) + b.size(2)
D
}
def view[a, b] (iso: Iso[b, a], a: = G {type A = a}) = new Size{
typeA=Db
def size(x: A) = a.size(iso.from (X))
}
}

Figure 4.7: Defining a generic function for counting values.

We can then create a methgdizethat provides an easy-to-use interface for the generic-func
tion: gsizetakes some value of a typéwvheret is representable) and returns the number of elements
counted. However, as mentioned before, just usnygpizeas a parameter faep will not give us
a very useful generic function because it will always retisince every base-type value will be

counted as 0).

def gsizdt] (x:t) (implicit r : Redt]) : int =
r.rep (mySizgsize(x)

4.3.5 Reuse via Inheritance

The traitMySizedefines a template for functions that count values of a cetygie; however if no
functionality is overridden (like in the objentySizg the resulting generic function does not count
anything. The traitMySizebecomes more useful when some of its functionality is ouden.

In object-oriented languages the inheritance mechanisnddbning new generic functions, by

85

4.3. Generic Programming with Visitors 86

1] ®
& O©

Figure 4.8: Tree with depth information.

overriding functionality of other generic functions. Imguages without inheritance (like Haskell)
this kind of reuse is more flicult to achieve.

Suppose that we wanted to define a generic function that s@lirthe integers in some struc-
ture. Using inheritance, all we have to is to extémglSizeand override the case for integers so that
it counts 1 for each integer value it finds.

object mySizeZxtendsMySize{

override def int = new Size{type A = int; def size(x: A) = 1}
}
def countinft] (x: t) (implicit r : Redt]) : int =

r.rep (mySizepsize(X)

With mySize2ve can define a methazbuntint which counts all the integers for some repre-
sentable structure of tyge

Using generic functions is straightforward. The followiagippet of code defines a list of
integergestand a functiorcountTestvhich appliescountintto this list.

def test= Cons(3, Cons(4, Cons(5, Nil[int])))
def countTest= countint(tes)

Note that thamplicit parameter for the type representations is not needed, $edacan be

inferred by the compiler (since we providediamplicit object RLis).

4.3.6 Local Redefinition

Suppose that we have an instance of some parametric datgikgdists) and that we want to
count how many values of the parametric type are in the soraetste of that datatype. It is not
possible to provide an implementation @enericthat defines such a function directly, because
Genericcannot distinguish values of parametric types from oth®that are just stored in the

structure. For example, we could have a parametric binae tinat has an auxiliary integer at

86

4.4. GM and Indexed MsIiTorS 87

each node that is used to store the depth of the tree at thet(tlad could be useful to keep the
tree balanced). In Figure 4.8 we show one example of sucmbirees: the squares represent the
auxiliary integers and the circles represent the valudasafeacontained in the tree. If the elements
of the tree are integers and we try to use camntintmethod we would count all the elements plus
all the auxiliary integers, which may be unintended.

def testTree= Fork (2, Fork (1, Value(6), Value(1)), Value(5))
def five = countInt(testTre¢ // returns 5

To solve this problem we remind ourselves that for paramétpes we need to account for the
representations of the type parameters. The melistiRep for example, needs to receive as an
argument a representation of tygétype A = a} for its type parameter. A similar thing happens
with our binary trees. Assuming that the equivalent mettsockiledbtreeRepwe can provide a
special-purpose counter for our trees that counts only dheeg of the type parameter.

def countAa] = new Size{ // counts one for each element
typeA=a
def size(x:a) =1

}

def countBTre¢a] (x: BTreqa]) = btreeRefpa, Sizg (countAa]).size(x)

def three= countBTregtes) // returns 3

The basic idea here is that we replace the default (i.e. amigliprovided by the compiler)
functionality that we would use for the type parameter by eriefined one given bgountA

(which just counts one per value it sees).

4.4 GM and Indexed MVisITorS

In this section we observe that the GM implementation is ataimce of the Yiror pattern: the
trait Genericis the visitor and the traRepis the composite. However, unlike other visitors that we
have seen so far, GM cannot be defined in terms of our visticanly. The reason for that is that the
GM implementation is based on amdexed visitor the recursive occurrences of the datatype have
different types. We show how we could generalize our library ppett a form of indexed visitors
(that supports GM) and, by doing that, we also show how to kenume design choice from the

original GM approach.

87

4.4. GM and Indexed MsIiTorS 88

4.4.1 Indexed Visitors

Our visitor library is capable of expressing a very large ifgrof visitors (or datatypes). For
example we can use it to define mutually recursive types oymarametric container types (like
lists or trees). In essence the kind of parametric typescirabe defined have the property that all
the self references in the definition of those types are edimlever, certain classes of parametric
datatypes do not have that property. An example of such @ cidatatypes are the so-called
nested datatypesThe following datatype (written in Haskell's syntax) stewane example of a

nested datatype:

data PTree awhere
PNil ::PTree a
PFork::a — PTree(a,a) —» PTree a

The PFork case of @ Tree adepends on a fferent instanc®Tree(a, a), which makePTree
not expressible in our library.

With nested datatypes, all the result references (theyipstdn the signature of the constructor)
are the same as the datatype being defined; only referenaegument positions can befidirent.
A more general class of datatypes is the so-cajlekralised algebraic datatypéSADTS) where
that restriction is dropped, and it is also possible to haustential type variables — we have
already seen, in Section 3.8.3, that our visitor librarypsrgs existential datatypes. The following

datatype is an example of a GADT:

data Rep twhere
RUnit :: Rep One
RInt ::Rep Int
RProd:: Rep a— Rep b— Rep(Prod a b
RPlus:: Rep a— Rep b— Rep(Plusa b

Note the similarity betweelRRep tand the traitsGenericand Repthat we have defined in
Figures 4.3 and 4.4. This is not coincidental: the originsd Bhplementation was inspired by
encodings of a datatype like this. Essentially the {@8nericis the visitor and the traiRepis the
composite. This datatype is not encodable using our viiicary, because we have references to

Replike Rep Oneor Rep(Prod a b.

88

4.4. GM and Indexed MsIiTorS 89

trait TypeConstructoftype A}

trait Strategyf
type V <: Visitor
type X <: TypeConstructor
type T
type Y
def get: Y
}

trait Decomposks <: Strategy {
def dedv <: Visitor, x <: TypeConstructatt]
(vis: v {type X = x; type S = s},comp: Composité¢v, t]) :
s{typeV =v;type X = x;type T =t}

trait Visitor {
type X <: TypeConstructor
type S<: Strategy
type R[v <: Visitor, t] = S{type X = Visitor.this.X;type T =t; type V = v}
}
trait Composit¢—v <: Visitor, t] {
def accep{s <: Strategyx <: TypeConstructdr(vis: v {type X = X; type S= s})
(implicit decomposeDecomposEs]) : x {type A = t}
}
trait Internal extendsStrategy{type Y = X {type A= T}}

trait ExternalextendsStrategy{type Y = Composit¢V, T]}

Figure 4.9: A Visitor library with support for unnested GABT

4.4.2 A \Visitor Library for Indexed Visitors

We now show how to modify our library so that it supports a éarfamily of datatypes, namely
a form of indexed datatypes. We shall call this family of dgtas the (one parametarhnested
GADTs With this new library it will be possible to easily defifepbut PTreeis problematic be-
cause of the complex recursion pattern involved (see Bidd\Meertens (1998); Bird and Paterson
(1999); Martinet al. (2004) for more details). In other words, this family allous to refine the
return types of the constructors and to have existentiglbhkas in the contructors, but, while we
can define recursive references with refined type argumentisg style of nested datatypes), it is

not trivial (or it may be impossible) to define the construstior nested datatypes.

89

4.4. GM and Indexed MsIiTorS 90

The functional specification of the new version of our vislibrary follows from the following

composite:

accept method
Composite V = YX S Decompose SSV(SV XY X=XT
N———
Visitor

Compared to th€ompositgresented in Section 3.6 theldrences are that the n&omposite

is now parametrized by a type and that the return type of ttecceptmethod is refined tX T.
Also X is now a type constructor rather than just a type. In Appemdike full Haskell code
corresponding to the functional specification is presented

Figure 4.9 shows a modified version of our visitor library gogiing unnested GADTs. Ba-
sically, the modifications consist of adding an extra typeapeeter (that appears in the codetas
or T) in a few places, and refining some types. This extra typenpetex is the (type) index of
the datatype. More specifically, we can see thahtegyhas now an extra abstract typeand
X is refined into alypeConstructar The definition ofdecin Decomposes modified to include
an extra type parameteand slightly refine its signature. In thésitor, the typeX is refined to a
TypeConstructgrand the typd (representing the type of recursive references) is nownpetrized
by t. The Compositehas an extra type argumentand theacceptmethod refines its return type.

Finally, InternalandExternalrefinesY with T.

4.4.3 GM as an Instance of the Visitor Library

It is now time to show how the essence of GM is itself an instapicthe visitor pattern and how
we can use the indexed version of the visitor library to ceptu As we shall segzenericis just
a visitor component anBepis the corresponding composite. To show t@anericis a visitor
component we need to find a suitaMe= Genericthat can be replaced in tli&mpositeequation
in Section 4.4.2 so th&ep Thecomes an instance Gbmposite Generic.TSuch an instantiation

of V is given next:

Generic S X= X Onex X Intx (YAB.SA= SB= X (PairAB)) x...

RepT = Composite Generic T
= VS X Decompose S> Generic(S Generic XX = X T

Genericconsists of a product of functions satisfying the visitajuigements. Each element of the

product represents a case of the generic function as erpléiefore. For parametrized cases (that

90

4.4. GM and Indexed MsIiTorS 91

is, for cases involving type constructors), we have, likihhe definition oiGenericin Figure 4.3,
one argument for each type parameter of the type constritbovever, the thing to note is that the
type of those arguments are more general than the ones ireFdai It is this extra generality that
allows us to parametriz8enericby the decomposition strategy allowing us to obtain, fomepke,
the two implementations presented by Hinze (2004).

For (non-parametrized) types we can provide representafar some typd by giving the

corresponding instance of a functicep, € Rep T. For example, foOneandInt we would have:

repone € Rep One
rePone (UNit X int x prod x ...) = unit

rep,: € Rep Int
repine (UNitx int x prod x ...) = int

For parametrized types we need to provide representatosreath of the constructors. If we
have a binary type construct®r then the corresponding representation function hasmsme €

Rep A= Rep B= Rep(T A B). We exemplify with a representation for pairs:

rePprairas € REP A= Rep B= Rep(Pair A B)
reppairag fa rb (unit x int x prod x ...) = prod (deg (unitx int x prodx...) ra)
(deg (unitx int x prodx...) rb)

More generaly, given some type constructowith argumentd\; ... A, then, we can create a

representation fof A; ... A, as follows:

GenericSX=.. x(VA; ... AL, SA=...2SA=>X(TA ... A)) x...

repra,.a EREPA=...=> RepA=Rep(T A ... A
repra,.a,fay ... rap (.. xtx..)=t(deg (... xtx...)ra;)

(dé(g(...xtx...)ran)

The rep function is, in Hinze (2004) words,the mother of all generic functiohsnd, as
Hinze (2000) himself showsgéneric functions possess polykinded typ€air general account of
generic representations, although not as general as teeneckhown by Hinze (because we do not

consider type parameters of higher kinds), follows the shaséc principles.

91

4.4. GM and Indexed MsIiTorS 92

trait GenericextendsVisitor {
type Redt] = R[Generict]
def unit : X {type A = Ong}
defint : X {type A = int}
def char: X {type A = char}
def plus[a, b] (a: Reda],b: Redb]) : X {type A = Plug[a, b]}
def prod[a, b] (a: Reda],b: Redb]): X {type A = Prod[a, b]}
def view[a, b] (iso: Iso[b, a], a: = Reda]) : X {type A = b}
}
type RedT] = Composit¢Generic T]

Figure 4.10: GM as a Visitor

In Scala Figure 4.10 shows how to defifi@enericandRepusing the modified library. The new
version ofGenericis very similar to the one presented in Figure 4.3, excepit@ia now calledX
and the arguments of the constructors Rsestead ofG (or X). Regarding the composifRep the
difference is that the methaep is now calledaccept

Defining generic functions proceeds almost in the same wdyetwe. Figure 4.11 shows a
partial definition ofMySize Compared to the version presented in Figure 4.3, we neeel thes
extra abstract typ8& (representing the strategy) boternal, and use the methagetto extract the
values from the strategy. Both modifications would be unse&ey had we also reimplemented the
notational enhancements that we presented in Section 3.7.

The GM version defined using the modified visitor librarydtyi generalizes the one presented
in Section 4.3, because we can not only have internal vssitmrt also use other kinds of visitors
(such as external or paramorphic visitors). Like with ottlatatypes, this fact can be a valuable
advantage because it does not force us to the design chailke kind of visitor upfront; instead,
for each generic function that we define, we can decide whialegy (or kind of visitor) we want
to use. In contrast, in Hinze (2004) two alternative implatagons ofGenericare presented (one
based on a Church encoding and another based on a Parigalirgg)cforcing us into a design

choice.

92

4.5. A Visitor for a Family Based on Sums of Products 93

trait MySizeextendsGeneric{
type X = Size
type S = Internal
def int = new Size{type A = int; def size(x: A) = 0}

def prod[a, b] (a: R[a], b: R[b]) = new Size{
type A = Prod[a, b]
def size(x: A) = x.accept(new ProdVisitor[a, b, int] {

def prod (y: a,z: b) = a.getsize(y) + b.getsize(2)

D

}

def view[a, b] (iso: Iso[b, a], a: = R[a]) = new Size{
typeA=Db
def size(x: A) = a.getsize(iso.from (x))

}

}

Figure 4.11: Generic function using tl&enericvisitor.
4.5 A Visitor for a Family Based on Sums of Products

Our presentation (and the classical one) of therdr pattern uses products of functions, where
each function corresponds to a case of a datatype. Thiymiches the familiar notion of pattern
matching in functional languages, which allows us to defimefions intuitively. However, writing
generic functions for products of functions idftiult. The generic programming techniques that
we used in the previous sections allow us to write generictfans on sums of products, which
force us to do expensive conversions between products ofifuns and sums of products like the
ones in Figure 4.5. In this section we will propose fiadient family of visitors that can be defined
as a concrete visitor using our existing library giving usaéiernativeviewon datatypes. With this

new family we can define visitors in terms of sums of produatsadly.

45.1 A Visrror Based on Sums of Products

Writing generic functions for products of functions idfiult. A solution is to first map our vis-
itors into sums of products and then apply well known DGP negplnes that work for that family

of datatypes. This was the approach we have taken in thegu®gections. However, there are

93

4.5. A Visitor for a Family Based on Sums of Products 94

inconveniences in doing it this way: firstly it hinders pen@nce (because we need to map be-
tween the visitor and the sum of products); secondly, witlkmmpiler support, it involves some
boilerplate code for each visitor; finally, because the rgiom pattern is not explicit, it is harder to

reason about those visitors.

A Functional Specification

We have already observed (in Section 3.5.1) that a familyatdtypes based on sums of products
can be expressed using products of functions (sifcR & X) = X is just a particular case of
V R X= X, whereV R X=F R = X). Defining

SumProdFFR>XFR= X
SumProd F = CompositgSumProdF F

we can capture the family of visitors based on sums of pradag concrete visitor of our library.
There are single (generic) constructor and deconstrugtmtions for this visitor given by

inF € Functor F= F (SumProd fF = SumProd F
inF t=Av = v (fmap(dec y t)

outF € Functor F= SumProd F= F (SumProd K
outF = dec(fmap inH

which form an isomorphism (that iaF o outF = id andoutF o inF = id). Here we assume
thatF is a functor and thaFunctor Fis implicitly passed (see Section 2.2.1 for a definition of
Functor). We refer to Gibbons (2006) for more details about this farmf visitors. The code for

the functional specification in Haskell is presented in Amé.

Scala Implementation

Figure 4.12 shows a visitor for datatypes based on sums dfupts and implemented with our
generic library. The visitor component (the tr&8mProdVisitor consists of a single method that
takes as a first parameter a fundiofbased on sums of products) and, as the second parameter an
(implicit) Functor object that describes how to perform the functorial map &vefhe composite
componenSumProds just a type synonym t€omposit¢SumProdVisitofF]]. Finally (and like

all other visitors)VSumProctan be used as a shorthand to define visitors on sums of psodiiot

a functional notation.

The single constructan (that follows from the singleisit method) can be defined generically

94

4.5. A Visitor for a Family Based on Sums of Products 95

trait SumProdVisitofF <: TypeConstructdrextendsVisitor {
type Rec= R[SumProdVisitofF]]

def visit (x: F {type A= Reqg) : X
}
type SumProdf <: TypeConstructgr= Composit¢SumProdVisitoff]]

abstract classVSumProds <: Strategyf <: TypeConstructqib]
(implicit decomposeDecomposEs])
extendsVisitorFund SumProdVisitoff], s, b] (decompose
with SumProdVisitoff]

Figure 4.12: A visitor for sums of products data types.

(on the sum of products functéy using the functorial map that traverses the structure apties

decto each recursive occurrence.

def in[f <: TypeConstructdr(x: f {type A = SumProdf]})
(implicit funct: Functor|f]) : SumProdf] = new SumProdf] {
def accepf{s <: Strategyx] (vis: SumProdVisitoff | {type X = x; type S=s})
(implicit decomposeDecomposEs]) : x =
vis.visit (functfmap((y : SumProdf]) = decomposeéec(vis,y)) (X))

The deconstructasut, the inverse oin, can also be encoded in Scala as follows:

def out[f <: TypeConstructdr(s: SumProdf]) (implicit funct: Functor[f]) =
s.accept(new VSumProdlinternal f,f {type A = SumProdf]}] {
def visit (x: f {type A = R[SumProdVisitoff]]}) =
functfmap((y : R[SumProdVisitoff]]) = in (y.ged (funcd) (X)
D)

4.5.2 Creating New Datatypes

In order to create a new data type with a sum of products vjsite need to define the type
constructor based on sums of products that represents thtyp and the corresponding functor
instance. In Figure 4.13 we see a definition of lists. The ttetF — or more precisely the
methodlistF in that trait — is used in Scala to define the sum of producted#&ge constructor
representing the datatype. Having this, the new type faarpatric lists can be defined in terms of
SumProdListF[a]]. Because our type constructor is based on sums of produtgines a functor
— the methodistFunctor provides the instance &functorfor ListF. Finally, the list constructors

Nil andConscan be defined in terms of.

95

4.5. A Visitor for a Family Based on Sums of Products 96

trait ListF[a] extendsTypeConstructof
def listF : Plus[One Prod[a, A]]

}
type List[a] = SumProdListF[a]]
implicit def listFunctor[p] = new Functor[ListF[p]] {
def fmap[a, b] (f : a = b) (x: ListF[p] {type A = a}) : ListF[p] {type A = b} = new ListF[p] {

type A=Db
def listF = x.listF.accept(new PlusVisitofOne Prod|[p, a], Plus[One Prod|[p, b]]] {
definl (y: Ong = Inl[One Prod[p, b]] (y)

def inr (z: Prod[p, a]) = Inr[One Prod[p, b]] (Prod (zfst, f (zsnd))
)
}
}
def Nil[a] : List[a] = in[ListF[a]] (new ListF[a] {
type A = List[a];
def listF = Inl[Oneg Prod[a, A]] (Ong
D)
def Conda] (x: a, xs: List[a]) : List[a] = in[ListF[a]] (new ListF[a] {
type A = List[a];
def listF = Inr[One Prod[a, A]] (Prod (x, x9))
D

Figure 4.13: Parametric lists using a sum of products visito

Comparing the sums of products with the product of functision of lists in Section 3.8.1
we can see that we have to provide roughly the same amountdef cbhe diferences consist
basically in the way that we deal with constructors in eagbre@ach. With products of functions,
each constructor defines the traversal code itself. Withssafimproducts, we use the functor (which
we have to define) to perform the traversal.

While no big diferences between the two versions exist for setting up the émda new
datatype, some more substantiaffeliences exists in the code necessary to enable generic pro-
gramming. Compare the following

def listFIso[p, a] = new Iso[ListF[p] {type A = a}, Plus[One Prod[p, a]]] {
def from (x : ListF[p] {type A = a}) : Plus[One Prod[p, a]] = x.listF
def to (x: Plus[One Prod[p, a]]) = new ListF[p] {type A = &; def listF = x}
}

with the code that we had to provide in Figure 4.5. Becausesgesums of products directly to

define our lists the isomorphism is straightforward to defivieich can be seen as a small advantage

96

4.5. A Visitor for a Family Based on Sums of Products 97

def RSumProdif <: TypeConstructdr(implicit f : FRedf], funct: Functor[f]) =
new Regd SumProdf]] {
def rep[g <: TypeConstructdr(implicit gen: Generic{type G = g}) =
genview (sumProdIséf], f.frep[g, SumProdf]] (rep[g] (gen) (gen)
}
def sumProdIs¢f <: TypeConstructdr(implicit funct: Functor[f]) =
new Iso[SumProdf], f {type A = SumProdf]}] {
def to (x: f {type A= SumProdf]}) =in (X)
def from (x : SumProdf]) = out[f] (X)
}

Figure 4.14: A representation for sums of products visitoiScala.

of this version. More importantly, since sums of productsased directly, we do not incur on any

major performance penalties derived from the embeddingeption pairs from andto).

4.5.3 Functorial Representations

Because sum of product visitors are based on functors, we toelave functor representations
(which differ from normal type representations). The tFiRepthat serves that purpose is defined
as:

trait FRedf <: TypeConstructgr{
def frep[g <: TypeConstructqma]
(a: g{type A = a}) (implicit gen: Generic{type G = g}) : g {type A =f {type A= a}}

The methodrep takes a representation of the type argument of the functraan(implicit)
instance ofGenericand returns the representation for the functor. Note fiegtcan be seen as a
generalization of the methdi$tRepthat we presented in Section 4.3.2.

Given that we can represent functors, we can now define reqiasons for our sum of prod-
ucts composites as shown in Figure 4.14. ThenProdisamethod defines the isomorphism that
converts between thBumProdcomposite and the actual sum of products element wrappéatkins
it. The embedding-projection pairs are respectively givgrihein andout methods. Using this
isomorphism, we can then createvigw that represents any sum of products visitor that has a
functorial representation.

Instances oFRepprovide representations for thel@rent functors. For example, with our lists

97

4.5. A Visitor for a Family Based on Sums of Products 98

based on sums of products, we need to provide an instarfeieegfor ListF[p].

def listFRedp] (implicit p: Redp]) = new FRedListF[p]] {
def frep[g <: TypeConstructar] (a: g {type A = a}) (implicit gen: Generic{type G = g}) =
genview[Plus[One Prod[p, a]], ListF[p] {type A = a}]
(listFlso, genplus (genunit, genprod (p.rep[g] (gen, a)))

As we shall see in the next section, by viewing a recursivatgpe as a sum of products
functorial representation, we will be able to specify hoveagyic function behaves for the recursive

occurrences of a datatype, by using local redefinitions.

4.5.4 Separating Recursion from Generic Programming

Our sum-of-products based visitors allow us to define gerfarictions that separate the generic
parts (the boilerplate associated with sums of productsh fihe recursion points. This separation
gives us extra flexibility and makes reasoning about geffienictions easier. As a simple example
consider a function that counts the number of recursive menages in some value from some
recursive datatype.

def mysizgf <: TypeConstructdr(x : SumProdf]) (implicit fr : FRegf]) =
x.accepfinternal, int] (new VSumProdlinternal f, int] {
def sizea= new Size() {
type A = Rec
def size(x: Req :int=x+1
}
def visit (x: f {type A = Req) = fr.frep[Size Red (sizeg.size(X)
)

The methodmysize given a valuex (which is an element of a sum-of-products datatype), is
defined using a sum-of-products visitor Bn The methodsizeais an example of a local redefi-
nition (presented in Section 4.3.6): this method becomestjument ofrep that specifies what
the function should do for recursive occurrences. Sincegthed of this function is to count the
number of recursive occurrences, the metbambais simply the successor function. We give a
brief example of the usage ofysizenext:

val test= Cons(1, Cons(2, Cons(3, Nil[int])))
def sizeLis{a] (x: List[a]) (implicit a: Reda]) = mysizeg(x) (listFRep

The valuetestdefines a three element list. The metlsizkListtakes a list of values of type

98

4.5. A Visitor for a Family Based on Sums of Products 99

and, provided that there exists a representatiomfoeturns the number of recursive occurrences
of that list. If we evaluatasizeList(tes) we get 3 as the result.

Using FRepwe can define a generic function that applies another geheration to the sum
of product boilerplate, but redefines the behaviour of thatfion for recursive occurrences. This
is not possible to do in general for visitors defined with obordry; only the ones that are defined
using the sum-of-products visitor allow this functiongliBecause we have access to the recursion
points, another thing we can do is capture well-known reouargatterns. We show how to capture

catamorphisms and anamorphisms (Megeal., 1991) next.

Catamorphisms (or folds) are possibly the most well-known recursion pattern, algaus to
write iterative definitions. The functional specificatiohcatamorphisms is given by

cata € Functor F= (FA= A) = SumProd F= A
catavm=myv

and the corresponding Scala implementation is:

def cata[f <: TypeConstructamb]
(func: f {type A = b} = b) (comp: SumProdf]) (implicit funct: Functor[f]): b =
compaccepfinternal, b] (new VSumProdinternal, f, b] {
def visit (x: f {type A = Reg) = func(functfmapgRecb] ((y: Req = y.ge) (xX))})

Note that internal visitors (for example, the visitor usgdnyysizeabove) are essentially cata-
morphisms: the body of the catamorphism (i.e. the paranieter: f {type A = b} = b) cor-
responds to theisit method. The only dference is that with catamorphisms, we do not need to
apply the coercion betwedRecandb, while using the internal visitor directly we do (even ifghi

is done implicitly).

Anamorphisms (or unfold9 are the dual (in a categorical interpretation) recursiattgsn of
catamorphims and they capture a form of co-recursion. Thetional specification of anamor-
phisms is given by

anae Functor F= (A= F A) = A= SumProd F
ana c x= Av = v (fmap(dec v. ana g (c X))

and the corresponding Scala implementation is:

def ana[f <: TypeConstructqib]
(func: b = f {type A = b}) (x: b) (implicit funct: Functor[f]) : SumProdf] =
new SumProdf] {

99

4.6. Example: Generic Serialization and Deserialization ao

def accepf{s <: Strategyx] (vis: SumProdVisitoff | {type X = x; type S=s})
(implicit decomposeDecomposEs]) : x =
vis.visit (functfmap((y: b) =
decomposéded SumProdVisitoff], x] (vis, ana[f, b] (fund (y))) (func(x)))

4.6 Example: Generic Serialization and Deserialization

We are now in a position to develop a fully-fledged applicatising our library. In this section we
will develop a simple serialization library — a common apgtion of generic programming. The
full code for this little library in presented in Annexe E.

For many applications we need to serialize information oag ar another: it may be in some
binary format, XML or some other textual format. Becauséedent applications useftierent data
structures, we usually need to define our own serializateserialization functions or hope that
the language we use has some built-in support for that péatitask. An alternative, which we
will take in this section, is to write a generic function tlsapports a wide range of data structures.

In the next two subsections we will present, respectivelyaty generic serializer and dese-
rializer functions. These functions are proof of concegyosince the serialization process does
not produce an actual binary stream but a string consisfizgres and ones. Producing an actual

binary stream should not, however, be toffidult.

4.6.1 Serialization

In the implementation of our generic serializer functioegsAnnexe E), the traiferialize as
explained in Section 4.3.4, defines the type of the sertabzdunction. The traitMySerialize(a
subtype ofGenerig defines the body of our generic function. Finally the objagSerialprovides
a default implementation.

The methods defined iklySerializedefine the dierent cases of the generic function.uAit
value does not need any bit to be represented, so we can theuempty String as a result of en-
coding such values. For primitive types like andchar we just assume that there exist functions
encodelntandencodeChathat serialize those values. For sum types, we require drie kepre-
sent the choice between the two alternatives: the valuexiasnl are appended with zero; and
the values based anr are appended with one. With products the final result is gbyethe con-

catenation of the serializations of the first and second corepts. Finally theview case converts

100

4.6. Example: Generic Serialization and Deserialization a1

the value into a sum of product and then invokes the serrabize¢he result.

We can provide a Scala methaérial that provides an easy to use interface for our generic
function. The method takes a representable val(ie. a value whose typehas a representation
r of type Rep[t]) and calls theep method with the defaulinySerialfunction, thus allowing us to
call serializeonx.

def serial[t] (x: t) (implicit r : Redt]) : String= r.rep (mySeria).serialize(x)
Serializing Sum of Products Visitors

With serial all representable instances gitor can be serialized. Alternatively we could also
have provided a serialization function that works just femsof-products visitors. It is interesting
to look at this other solution because, unlike the solutioova, here the recursion pattern (which
is associated with the kind of visitor that is used) beconxgdi@t.

def serialSumProdif <: TypeConstructdr(x: SumProdf]) (implicit fr : FRegf]) =
x.accepfinternal, String] (new VSumProdlinternal f, String] {
def seriala= new Serialize() {
type A = Rec
def serialize(x : A) : String= X
}
def visit (x: f {type A = Reg) = fr.frep[Serialize Red (serialg).serialize(x)})

In this case we can see that the recursion pattern that isisisedatamorphism since we are
using an internal visitor — we could make the recursion pateen more explicit by using the
catamethod presented in Section 4.5instead. While wéhal we do not need to specify what to
do whenever a recursive occurrence appears, with this tiefinve do. The inner methaogkriala
specifies that. Because we have an internal visitor, thesseuoccurrences are replaced by the
result of the recursive call and, therefore, what we neeats ¢ust to return that result.

To give and example, consider the following list:

def testVal= Cons(3, Cons(4, Nil [int]))

Invoking the two serialization functions for this value mhéeved with:

def testSerial= serial (testVa)
def testSumProd serialSumProdtestVa)

Both invocations would give a result like:
10000000000000000000000000000001110000000000000000000000001000

101

4.6. Example: Generic Serialization and Deserialization a2

This depends, of course, on how the primitive serializegsimplemented. In this case we opted

(for readability), to encode integers using 16 bits.

4.6.2 Deserialization

In the implementation of our deserializer function (see &®E) the traiDeSerializeprovides
the type of our deserialization function; the tridyDeSerializedefines the body of the generic
function usingDeSerializeas the return type of the generic functions; and the oljgddeSerial
provides a default implementation based\dyDeSerialize

Thedeserializanethod inDeSerializedecodes a segment of the input string and returns a piece
of data plus the remainder of the string yet to be decodedtheamit case, we know that there is
nothing else to decode and thus we return the v@lneand an empty string. For primitive types
we use standard deserialization functions. For the sum afasar generic function we need to
test if the first character of the string is a zero or a one. i & zero we know we need to create
anlinl value, otherwise we create &mr value. For products, we start by decoding the segment of
the string that corresponds to the first component of theymtoand then we decode the segment
corresponding to the second component. We then return tiupr of the two results plus the
remainder of the string. For theew case we deserialize the segment of the string corresponding
to the isomorphic sum of products value; convert the rasgium of product into the value of the
data type and finally return that result plus the remaindé¢n@ftring.

The methoddeSerialtaking a string and an implicit parameter with a represémadf some
typet uses the default implementation of the generic funatyeseriato provide an easy-to-use
interface to deserialization.

def deSeria[t] (x: String) (implicit r : Redt]) : t = r.rep (myDeSerigl.deSerializgx).fst
Deserialization for Sum of Products Visitors

We can also have a deserialization function for sum of prteduisitors. However, because this
function produces a value of a data type instead of consunfatg (like with serialization), we
need to use a productive recursion pattern. We have intestlacamorphisms in Section 4.5, that
can be used here:

def deserialAux= new DeSerializg
type A = String
def deSerializgx : String) : Prod[A, String] = Prod (x, "")

102

4.7. Discussion 103

}
def deSerialSumProd <: TypeConstructgr
(x: String (implicit fr : FRegf], funct: Functor[f]) =
ana[f, String] ((y: String) =
fr.frep[DeSerializeString] (deserialAuxdeSerializdy).fst) (X)

The auxiliary methodleserialAuxspecifies what to do when we find recursive occurrences.
The body of the methodeSerialSumProts an anamorphism, which consumes the stxiagd for

each segment (representing sums of products)xoapplies the generic functidbeSerialize

4.7 Discussion

This chapter explains how we can use DGP techniques withistionvlibrary. The DGP technique
that we use, inspired by GM, follows the current trend of tigbight approaches to generic pro-
gramming, where genericity can be captured as a softwar@aoemt that can be used to define
generic functions.

Generic functions are powerful software components omr tivein since they can be very flex-
ibly parametrized, which allows them to be adapted to sépeodlem domains (via the datatypes
used in the solutions for those problems). Our example egpdin is good example of generic
functions that can be applied to a wide range of problem dosad¥lost software applications re-
quire some form of persistence in order to store the staterobgiece data being manipulated by
these same applications. A mechanism that serigtlessrializes data is almost a necessity since
providing special purpose functions for this task is epmyne and tedious. For many programming
languages the solution is to basically build in special supin the compiler for this task or to use
some form of pre-processor that generates serializatidnleserialization functions automatically.
Alternatively, if the language supports some form of rundiintrospection (for example, the re-
flection mechanism in Java), we can try to use that mechanisi®fine a form of generic functions
that accomplishes this task. However, neither solutiommepetely satisfactory: built-in support
tends to be too inflexible; and run-time introspection megras are not type-safe and are penal-
izing in terms of performance. In contrast, the use of genfemnctions allows a lot of flexibility
(specially when support for extensibility, presented ira@lier 5, is added) while being type-safe
and having minor performance penalties.

In Haskell there has been a recent flurry of proposals for gepeogramming libraries (Ch-
eney and Hinze, 2002; Hinze, 2004; Lammel and Peyton J@O&§, Oliveiraet al, 2006; Hinze

103

4.7. Discussion 104

et al., 2006; Weirich, 2006; Hinze and Loh, 2007), all of which imayinteresting aspects but none
emerging as a clearly best option. Because of that, an atierral committee has been set up
with the goal of developing a standard generic programmioguly in Haskell. The first &ort
from that committee was a thorough comparison of most of @megc programming libraries pro-
posed (Jeuringt al, 2007). The EMGM variation (Oliveirat al, 2006) of GM, which is the
basis of parts of this thesis, was in the pool of approachegeced. The Scala library proposed
in this thesis has basically all the same advantages of fgbach and a few extra ones. Firstly,
with our approach we can, very easily, reuse one existin@mefunction to define a new one
(this is demonstrated in Section 4.3.5). With the Haskgdrapches, this kind of reuse is harder to
achieve. The only mechanism that we know of that comes dioserms of simplicity, to this form
of reuse is Generic Haskellgefault casegLoh, 2004). Secondly, we show in Section 4.5, how
we can use a lierent family of visitors within our generic programmingrfrawork. In essence
this family of visitors is the so-callefixpoint viewin Generic Haskell (Holdermaret al., 2006).
Therefore our approach has support for other views, whiclrasts with the evaluation of EMGM
which considered the approach as not having such supponetés, this second advantage is not
particular to the Scala implementation and it could be asthfui the Haskell one.

In Section 4.4 we present a modified version of our visitordi that can be used to define
a class of type-indexed visitors. In particular, we show tha implementation of GM is itself
a visitor and can be encoded with this modified library. In thiginal presentation of GM a
design choice between Church and Parigot encodings — oig tise visitor terminology, a choice
between internal and external visitors — has to be made.eQiac visitors are naturally strategy
generic this design choice is unnecessary. We believe timptovides a novel and interesting
insight for the field of DGP since existing generic programgnapproaches always choose one
particular encoding and necessarily inherit the disadged of that encoding, which would not be
the case with our generic programming library. For examplegcent versions of GH, because a
Church encoding is used, mutually-recursive generic fanstare hard to define. Théependency
stylé of GH Loh (2004) is an elegant, but complex, solution foe throblem of these (mutual)
dependencies and it does not solve other issues that stemtfeoChurch encoding.

There are several other applications (apart from GM) forindexed variation of the library.
For instance, in Hinze (2003); Peyton Jor¢sl. (2006) many example applications for GADTs

have been proposed, with most of them being examples of teth€&ADTs. We could use our

104

4.7. Discussion 105

library to define those examples and automatically beneifihfrecursion patterns (which can be
considered themselves a form of generic functions). Iniptesavork (Oliveira and Gibbons, 2005)
we proposed a design pattern for type-indexed functior@ined by GM. There were three main
variations of the design pattern, and two of the variatioad Bquivalent expressive power. In
essence we had the same variations as with the original GMsions in general. If we were

to present that work today, we could have done it as a softa@mgonent rather than a design

pattern.

105

Chapter 5

Extensible Visitors and Generic Functions

In Chapter 4 we developed a generic programming library adeéSlbased on the GM approach
and showed a possible implementation of this library as igovidNith this library it is possible to
write generic functions that work over a large family of wiss. However, thgeneric functionsgi.e.
the visitor components) have a single, non-extensiblentiefn. In contrastad-hoc polymorphic
functions require separate implementations for eachy@abut can be extended with new cases
at any time. The fact that generic functions cannot be exemla severe drawback, because often
we want to define some ad-hoc behaviour for new datatypes. lififitation precludes the design
of an extensible and modular generic programming librahe froblem of extensibility of generic
functions is one particular instance of the so-cakegression problemin this chapter, we show
that it is possible to develop extensible generic functi@msl, more generally, extensible visitors)

using our visitor library. We show two solutions withfidirent trade-fis.

5.1 Introduction

We have seen, in Chapter 4, that a generic function is a fumatefined over the structure of
types. With generic functions a single definitionfiszes to obtain a function that works for a
large family of visitors. By contrast, aad-hoc polymorphid¢unction (Strachey, 1967) requires a
separate implementation for each data type. In HaskelgXample, ad-hoc polymorphic functions

are implemented using type classes. In Scala, the sfew ean be achieved with parametric traits

106

5.1. Introduction 107

trait Encoddt] {
def encode(x : t) : String

}

implicit def EncodeChar= new EncodgChar] {
def encode(x : Char) = encodeChaix)

}

implicit def Encodelnt= new Encoddint] {
def encode(x : int) = encodelnt(x)
}
implicit def EncodelLisfa] (implicit encA: Encodda]) = new EncoddList[a]] {
def encode(x : List[a]) = x.accept(new VList[Internal a, String] {
def nil = "@"
def cons(x: a,xs: Req = "1" + encAencode(X) + XS

)
}

Figure 5.1: An ad-hoc binary encoder

and implicit parameters.

In Figure 5.1 we show how to implement an ad-hoc polymorpinction for binary encoding.
The traitEncode[t] defines a type-overloaded (on the type paramBtéunction encode The
implicit definitions provide implementations &ncode€[t] for a number of specific typets The
definitionEncodeLisfa] provides an implementation fdist[a], and is only defined if there exists
an implementation oEncodga] — in other words, we can only encode lists if we know how to
encode the elements. As with the generic serializer thateveldped in Chapter 4, we assume
that primitive bit encoders for integers and charactersgaren, respectively, byncodelntand
encodeCharLists are encoded by replacing an occurrence of the engityili with the bit 0, and
occurrences of the list construct@onswith the bit 1 followed by the encoding of the head element
and the encoding of the remaining list. The functemtoddhus works on characters, integers, and
lists. If we callencodethe compiler figures out the correct implementation to asef no suitable
instance exists, it reports a type error, nicely mimickimg tunctionality of Haskell type classes.

The functionencodecan be extended at any time to work on additional datatypksveAhave
to do is write another instance of the tr&hcode However, each time we add a new datatype
whose values we want to encode, we need to supply anothegnnepitation oencode

In contrast, in the last chapter we have seen how generitifunscallow a single definition that

works for a large family of datatypes. Comparing our ad-hefaation with the generic function for

107

5.1. Introduction 108

binary encoding (the trallySerializein Annexe E), we can see that the case for lists is subsumed,
in the generic definition, by three generic cases for unit) sund product types. By viewing all
datatypes in a uniform way, these three cases dfeignt to call the encoder on lists, tuples, trees,
and several more complex data structures — a new implenemtdtencodas not required!

Nonetheless, there are situations in which a specific case $pecific data type — called an
ad-hoc case- is desirable. For example, lists can be encoded mi@i@ently than shown above:
instead of encoding each constructor, we can encode théhlenghe list followed by encodings
of the elements. Or, suppose that sets are representecgstlre same set can be represented by
multiple trees, so a generic equality function should notpare sets structurally, and therefore we
need an ad-hoc case for sets.

Defining ad-hoc cases for ad-hoc polymorphic functionsvgr we just add a new instance of
Encodewith the desired implementation. For the generic versighebinary encoder, the addition
of a new case is, however, venfiitult. This is one instance of the expression problem (Wadler
1998): each case of the function definition implements a otketf classGeneri¢ and adding a
new case later requires the modification of the class. Welssygeneric functions written in this
style are noextensibleand that the approach is nmbdular, because non-extensibility precludes
writing a flexible generic programming library. In a sentengeneric functions are more concise,
but ad-hoc polymorphic functions are more flexible.

The specific contributions of this chapter are:

¢ In Section 5.2 we discuss the relationship between the sgjne problem and the extensi-
bility of generic functions. Because our generic functians implemented using visitors,
a solution that solves the problem of extensibility on wisst(and the expression problem)
will necessarily solve the problem of extensibility on geadéunctions. We believe that this
is an important insight, since it allows us to investigate #pplication of solutions to the

extensibility of visitors to generic functions and vicersa.

¢ In Section 5.3, we give an encoding of extensible generictfans using internal visitors.
This encoding in based on our previous work (Olivatal., 2006) and has the advantage of
being simple while allowing the addition of extensions. Hwer, there are some issues with

mutually recursive generic functions that can precludersibility in a diferent way.

¢ In Section 5.4 we provide a extensible generic pretty priagean example of an extensible

108

5.2. Generic Functions and The Expression Problem 109

generic function.

¢ In Section 5.5 we present affirent solution for the extensibility problem of generic dun
tions, inspired by work on the extensibility of visitors byl€sky and Zenger (2005a). This
solution has the advantage that it works for any encodinglaeidt can avoid the extensibil-
ity issues related to mutually-recursive generic funiowe demonstrate its application to

generic functions by revisiting the extensible pretty fgirexample.

¢ In Section 5.6 we compare the approaches from Sections 8.5.&n While the latter ap-
proach seems to be superior, at first glance, since it can fpleedgo any kind of visitor
and the problem of mutually-recursive functions is not sabjpgmatic, there are few subtle
advantages of the former approach. In particular, becdwestotmer approach has a single

family of types, extensions do not need to be closed and tteegampatible with each other.

Finally, in Section 5.7, we discuss the results of this chapt

5.2 Generic Functions and The Expression Problem

Wadler (1998) called the need for extensibility in two dirsiems (adding new varianend new
functions) the expression problem. According to him, a sofufor the problem should allow the
definition of a datatype, and the addition of new variantautchsa datatype as well as the addition
of new functions over that datatype. A solution should nquiee recompilation of existing code,
and it should be statically type safe: applying a functioa t@riant for which that function is not
defined should result in a compile-time error.

In traditional OO development, extensible datatypes asg gaimplement, but we can usually
only have a fixed set of functions — the datatypes correspoiadhierarchical structure where all
classes satisfy an interface, which defines the type of ttadygee and the (fixed) set of operations
thatit allows. In contrast, when we use thaivor pattern, adding new functions is easy, but adding
new variants of the datatype is much harder because thenisierface declares the (fixed) set of
variants and that is the only interface that is availabld&atceptmethod in the composite.

The problem of extensible generic functions (with the GMrapph) fundamentally reduces
to the extensibility problem in visitors. While there hasshesome work on extensible generic

functions (Hinze and Peyton Jones, 2000; Lammel and P>oes, 2005) and even on the relation

109

5.2. Generic Functions and The Expression Problem 110

with the expression problem (Loh and Hinze, 2006), we ateam@re of any work that explicitly
explores the relation with extensibility of visitors. Bydwcing the problem of extensibility of
generic functions to the problem of extensibility of visgave can expect that solutions for one of
the problems can be applied to the other problem. This pesvidteresting insight; as we shall
see, two solutions presented in this chapter solve the gixiéty problem, but while the first one
was originally developed in the context of extensibilitygeheric functions, the second one was

inspired by a solution to the extensibility problem of visg in Scala.

5.2.1 The Extensibility Problem of Visitors

In Section 4.4 we have seen that the implementation of GMesponds to a visitor: the trait
Generic(which defines the body of our generic functions) is the grstomponent and the trait
Repis the composite component. If we would like to add additi@mases to our visitor, we would
naturally consider having subtypes@énericwith the additional cases. However, while intuitively
this is the right thing to do, there are a couple of problensotae first. Let’s look at the definition
of Genericin Figure 4.10 and recall the definition of teceptmethod inRepto see where the
problems are.

def accep{s <: Strategyx <: TypeConstructgr

(v: Generic{type X = x; type S = s}) (implicit decom DecomposEs]) : x {type A= T}

Abstracting the visitor in the composite. The first problem (already noted) is that thecept
method oRep(the composite) refers to the specific visi@eneric Although we can use a subtype
of Genericas an argument taccept in the definition ofacceptwe can only (type-safely) call
methods that are known to tlé&enerictrait. A possible solution for this problem is to makep
also parametrizable by the visitor. Interestingly, thisiseady possible to do using our visitor
library, since theComposites itself parametrizable by a visitor. So we could have used

type GRedV <: Generic T] = Composit¢V, T]

instead ofRep[T], which would allow us to refine the visitor used by the accethod with

subtype®f Generic

Abstracting the visitor in the visit methods. The second problem that we have is that the

types of the recursive arguments @enericalso depend on the visitor and we cannot just use

110

5.3. Extensibility in Internal Visitors 111

type Rec[t] = R[Generict] to type those arguments because this would again prechedade

of information only available to subtypes Gfeneric So, again we basically need to be able to
abstract over any subtypes Generic One way to accomplish this is by parametrizing et
methods that have recursive occurrences with an extrartgipe argument. For example, thikeis
method inGenericcould be defined as:

def plus[v <: Generica, b] (a: R[v,a],b: R[v,b]) : X {type A = Plus[a, b]}

The two problems identified here are essentially the problirat make the visitor pattern not
extensible. Although we have exemplified the problems wilh, Gther visitors would have the
similar problems. One of the reasons why this extensibidlityisitors is not solved in mainstream
languages is basically because those languages lack thergtgpe) abstractions to encode possi-
ble solutions. In other settings (which include Scala)amasisolutions for the problem have been
proposed (Odersky and Zenger, 2005a; Ernst, 2004; Nysttaah, 2004). Our visitor library al-
ready supports extensible visitors (since bGtmpositeandR are already visitor-parametrized);
however, we need to implement concrete visitoffedently to account for this extra parametriza-

tion.

5.3 Extensibility in Internal Visitors

In the previous section we identified two problems that ma&aeVisiror pattern hard to extend.
One of the problems is that, in general, we need to abstraatigitor in thevisit methods because
recursive occurrences may depend on the concrete visitaveker, when we use internal visitors
this problem does not exist because recursive occurrerficeemal visitors do not depend on the
concrete visitor. Making use of this observation we will tims section, show that it is possible
to develop internal visitors that can be made extensiblesimgle way. This work is inspired by

previous work done by the author with Hinze and Loh (Oliaeit al., 2006).

5.3.1 Simple Extensible Visitors

Our visitor library allows us to define visitors that are stgy-generic, however it is also possible
to define strategy-specific visitors. In Figure 5.2 we canhs®e to encode an internal version of

the visitorGenericusing our visitor library. Here we opted to specialize theety of the recursive

111

5.3. Extensibility in Internal Visitors 112

trait GenericextendsVisitor {
type S = Internal
def unit : X {type A = Ong}
defint : X {type A = int}
def char: X {type A = char}
def plus[a, b] (a: X {type A = a},b: X {type A = b}) : X {type A = Plug[a, b]}
def prod[a, b] (a: X {type A = a},b: X {type A = b}) : X {type A = Prod[a, b]}
def view[a, b] (iso: Iso[b,a],a: = X {type A = a}) : X {type A = b}

Figure 5.2: An internal version fdgenericusing the visitor library.

references to the forid {type A = «} instead of usindr[v, a] directly, because if we had used the
latter form we would need to do some extra conversions, wivimhld afect the readability of the
code. We can justify the use of the former form by observirag thhenS = Internal the typeY
(which represents the type of recursive references in #iditernal) is set toX {type A = a} and,
therefore, we can just use that type directly. Note thatwbision ofGenericis equivalent to the

one presented in Figure 4.3.

5.3.2 Extending Generic Functions with Extra Cases

Adding extra meta-information to generic functions The generic serializgdeserializer func-
tions in Chapter 4 are two examples of generic functionsdbald be defined just using the struc-
ture of visitors. However, for some other generic functiadslitional meta-information may be
required. For example, a pretty printer may want to disptdgrimation such as the name of the
actual class associated with the object in the pretty pisteng. While information such as this
one is often available through mechanisms like reflectiangwnot need to rely on the existence of
these mechanisms (or we may just not want to rely on them).aWadd that meta-informationto a
generic function by extendin@enericwith an extra method wrapping up the desired information.

trait GenericConstextendsGeneric{
def constr{a] (name: String arity : int,g: X {type A=a}): X {typeA=a} =g
}

The methodconstradds the constructor name and its arity to a generic funeti@his given
a default definition that basically ignores the extra mafarimation, but can be overridden later.

Generic functions that require meta-information aboustactors can be defined usi@gnericConstr

112

5.3. Extensibility in Internal Visitors 113

instead ofGeneric In Section 5.4 we will see an example of a generic functi@n tses the extra

meta-information in its definition.

Extending generic functions with ad-hoc cases The main motivation for extensibility of generic
functions comes from the fact that, sometimes, we want terimesthe generic functionality for
a particular datatype at a particular generic function. &@ample, suppose that we want to use
a different encoding of lists than the one derived genericallystachn be encoded by encoding
its length, followed by the encodings of all the list elenserftor long lists, this encoding is more
efficient than to separate any two successive elements of thalfid to mark the end of the list.
The trait Genericis the base class of all generic functions, and its methoeldimited. If
we want to design a generic programming library, it is maodathat we constrain ourselves to a
limited set of frequently used types. Still, we might hopadal an extra case by extendi@gneric

trait GenericListextendsGenericConstf
def list[a] (a: X {type A= a}) : X {type A = List[a]} =
view (listlso, plus (constr("Nil", 0, unit), constr("Cons", 2, prod (a, list[a] (a)))))

This declaration introduces a tr&denericListas a subclass @seneric The subclass contains
a single methodist. By default,list is defined in a similar way to the methddtRep(from Sec-
tion 4.3.2) — except that here we already included extra fimétamation. However, in contrast to
listRep the default definition olfist can be overridden (in the instances@énericLis}, and conse-
guently we can change the default behaviour of a partic@aegc function for lists. For example,
here is how to define the moréieient length-prefixed encoding for lists:

trait EncodeListextendsGenericList{
override type X = Serialize
override def list[a] (a: X {type A= a}) =
new Serialize]
type A = List[a]
def serialize(x : List[a]) : String=
int.serialize(length(x)) + concatMap((y : a) = a.serialize(y), X)

}
implicit object encodeLisextendsMySerializewith EncodeList

The trait EncodelListextends theGenericListand overrides the case for lists in the generic

function. Using Scala’s mixin composition, we can now ceeatt objecencodeListby combining

113

5.3. Extensibility in Internal Visitors 114

implicit def RUnit= new GRefGeneric Ong {
def accep{s <: Strategyx <: TypeConstructdr
(vis: Generic{type X = x; type S=s}) (implicit decomposeDecomposgs]) =
vis.unit
}
implicit def RInt= new GRefdGenericint] {
def accep{s <: Strategyx <: TypeConstructdr
(vis: Generic{type X = x; type S= s}) (implicit decomposeDecomposgs]) =
vis.int
}
implicit def RChar= new GRedGeneric char] {
def accep{s <: Strategyx <: TypeConstructdr
(vis: Generic{type X = x; type S= s}) (implicit decomposeDecomposgs]) =
vis.char
}
implicit def RPIludv <: Generica, b] (a: GRefdv, a],b: GRefdv, b]) = new GRefyv, Plus[a, b]] {
def accep{s <: Strategyx <: TypeConstructagr
(vis: v {type X = x; type S= s}) (implicit decomposeDecomposEs]) =
vis.plus (a.accept(vis), b.accept(vis))
}
implicit def RProd[v <: Generi¢ca,b] (a: GRedv, a], b: GRedv, b]) = new GRefdv, Prod[a, b]] {
def accep{s <: Strategyx <: TypeConstructagr
(vis: v {type X = x; type S= s}) (implicit decomposeDecomposEs]) =
vis.prod (a.accept(vis), b.accept(vis))

Figure 5.3: A less ad-hoc dispatcher.

the generic serialization functiaviySerializewith the ad-hoc casencodeList

5.3.3 Extensible Representations

By using internal visitors instead of strategy generictois, we have the advantage that there is
no problem of abstracting visitors in thésit methods (since there are no visitors to abstract from
in the first place), which was one of the problems that we ifledtas precluding extensibility of
visitors. We are then left with the problem of abstracting Wisitors in the composites. But, as
we have argued in Section 5.2, this can be done if weGRepinstead ofRep In Figure 5.3 we
see how to us&Repto define extensible representations. The instanc&R#pare very similar

to the correspondinRepinstances, except that they are now parametrized by thwvesnd, for

114

5.4. Example: An Extensible Generic Pretty Printer 115

recursive representations, we use dlceeptmethod directly instead of going videcomposeThe
structural casebnit, Plus and Prod together with the base cased andchar are all handled in
Generig and therefore we only nedglenericas the visitor type parameter. However, kosts the
visitor parameter must be constrainefeliently: we need to us@enericListinstead, since this is
where thelist case is handled.

implicit def RList[v <: GenericLista] (a: GRefdv, a]) = new GRefv, List[a]] {
def accep{s <: Strategyx <: TypeConstructagr
(vis: v {type X = x; type S= s}) (implicit decomposeDecomposEs]) =
vis.list (a.accept(vis))

Had we usedRepinstead oflGRep we would have not been able to define a representation for
lists, since we could not refin@enericto GenericList

We can define an extensible generic serialization functiospecializing the argumedtin the
visitor to Serializeand usingGRepfor the representations:

def extSeria[v <: Generict] (x:t) (r : GRedv, t]) (implicit vis: v {type X = Serializg) =
r.accept(vis).serialize(x)

This approach is extensible, modular and type-safe andiallis to write a very flexible generic

programming library.

5.4 Example: An Extensible Generic Pretty Printer

In this section we present a practical example where exigitgplays a crucial role in the defini-
tion of a generic function. The generic function in quesimanextensible generic pretty printer
an example based on the non-modular version presented ze K@004) (which was itself inspired
by Wadler (2003)).

5.4.1 A Generic Pretty Printer

Mainstream object-oriented programming languages sudhwasor C# define a metheaiString()
in the top-most class of their class hierarchy. The intentibthis method is to provide a human-
readable string representation of the corresponding bbjdtds can be useful for many purposes

and it is advisable that programmers implement this methddeir classes. However, this can be

115

5.4. Example: An Extensible Generic Pretty Printer 116

trait PPrint extendsTypeConstructof
def pprint (x: A) : Document
}
trait GenericPrintextendsGenericConstf
type X = PPrint
def unit = new PPrint {type A = One def pprint (x: A) = empty}
def int = new PPrint {type A = int; def pprint (x: A) = text(x.toString())}
def char = new PPrint {type A = char, def pprint (x: A) = text(x.toString())}
def plug[a, b] (a: X {type A = a},b: X {type A = b}) = new PPrint{
type A = Plug[a, b]
def pprint (x: A) = x.accept(new PlusVisitor{a, b, Document {
definl (y:a) = a.pprint (y)
def inr (z: b) = b.pprint (2)
DY
def prod[a, b] (a: X {type A = a},b: X {type A = b}) = new PPrint {
type A = Prod[a, b]
def pprint (x: A) = x.accept(new ProdVisitor[a, b, Document {
def prod (y: a,z: b) = a.pprint (y) ¢ breake b.pprint (2)
N}
def view[a, b] (iso: Iso[b, a], a: = X {type A = a}) = new PPrint {
typeA=Db
def pprint (x: A) = a.pprint (iso.from (X)) }
def consti{a] (name: String arity : int,a: X {type A = a}) = new PPrint {
typeA=a
def s = text(namg
def pprint (x: A) = if (arity = 0) selse
group (nest(l, (text(" (") ¢ s« breake a.pprint (x) o text(")"))))}

Figure 5.4: A Generic Prettier Printer

tedious since much of the code required tends to be longwiadd repetitive. One alternative to
this “ad-hoc” way of writing a function is to define a genertimttion that can be reused by specific
instances, avoiding the tedious code.

Figure 5.4 presents an instance@énericthat defines a generic pretty printer. The pretty
printer makes use of Scalasalatextpackage, which contains pretty printing combinators. €hes
combinators generate a value of typecumenthat can be rendered into a string afterwards. For
the structural cases, thmit function returns an empty documempius decomposes the sum and
pretty prints the value in both cases; for products, we p&int the first and second components

separated by a line. For base typbsr andint we return a basiBocumenbased on théString

116

5.4. Example: An Extensible Generic Pretty Printer 117

result for those types. Thdew case uses the isomorphism to convert between the userdlefine
type and its structural representation. Finally, sincétprarinters require extra meta-information,
the functionconstradds that information to the resulting String.

Similarly to other generic functions, the methoetty provides an easy-to-use interface for the
generic function. To uspretty, we need a value of typetogether with a representationofnd a
visitor whereX = PPrint. This last argument can be implicitly passed, but the regmmagion oft is
not implicit just because Scala’s type system does not atl¢since their types are not contractive).

def pretty[v <: Generict] (x:t) (r : GRefdv, t]) (implicit vis: v {type X = PPrint}) = {
var writer = new OutputStreamWrite(Systenout);
r.accept(vis).pprint (x).format (80, writer);
writer.flush();

}

The methodgprint (X) produces @ocumentwhich contains a methddrmattaking the num-
ber of characters that we want to have per line an@atputWriter(where we write out the result
produced by the pretty printer). We assume the standard &@cters per line and write the result

to the standard output.

5.4.2 Pretty Printing Trees

As a first example for the pretty printer, let's create an iempéntation of binary trees using our
visitor library. This implementation is shown in Figure 5FBurthermore, we assume that there is
already an isomorphistneelsobetween trees and sums of products.

To use generic functions on trees, we proceed in the same svewe alid for lists, creating a
subtype oiGenericConstand providing an instance @Rep(that we omit here).

trait GenericTreeextendsGenericConstf
def tree[a] (a: X {type A = a}) : X {type A = Treela]} =
view (treelsq plus(constr("Empty", O, unit),
constr("Fork", 3, prod (a, prod (tree[a] (a), tree[a] (a))))))}

Providing a pretty printer that supports ad-hoc casedfee amounts to declaring an object
that uses mixin composition to inherit from bdBenericPrintand GenericTree However, in this
case we do not override the default behaviour of the genegityprinter because, for trees, it will
already produce the desired result.

implicit object prettyTreeextendsGenericPrintwith GenericTree

117

5.4. Example: An Extensible Generic Pretty Printer 118

trait TreeVisitofa] extendsVisitor {
type Rec= R[TreeVisitofa]]
def empty. X
def fork (x:a,1: ReGgr : Req : X
}
type Tree[a] = Composit¢TreeVisitofa]]
def Emptya] = new Treg[a] {
def accep{s <: Strategyx]

(vis: TreeVisitofa] {type X = x; type S= s}) (implicit decomposeDecomposEs]) : X =
vis.empty

}
def Fork[a] (x: a,|: Tregla],r : Treg[a]) = new Treg[a] {
def accep{s <: Strategyx]
(vis: TreeVisitofa] {type X = x; type S= s}) (implicit decomposeDecomposEs]) : X =
vis.fork (x, decomposéec(vis, 1), decomposedec(vis, r))

}

abstract classVTreds <: Strategya, b] (implicit decomposeDecomposEs])
extendsVisitorFund TreeVisitor{a], s, b] (decomposewith TreeVisitofa]

Figure 5.5: A Msrror for binary trees

To see the pretty printer in action, let's consider a smaidtfion that produces trees with some

integer value on top, the predecessor on the nodes belowoand stopping when the last layer of

nodes has value 1 (for each node):

def genTreg(Xx : int) : Tregfint] =
if (x=0) Emptyfint] elseFork (x,genTree(x — 1), genTregx — 1))

The callpretty (genTreg(4)) (RTree(RInt)) would produce the following output:

(Fork
4
(Fork
3
(Fork 2 (Fork 1 Empty Empty(Fork 1 Empty Empt})
(Fork 2 (Fork 1 Empty Empty(Fork 1 Empty Empt)))
(Fork
3
(Fork 2 (Fork 1 Empty Empty(Fork 1 Empty Empt)
(Fork 2 (Fork 1 Empty Empty(Fork 1 Empty Empt})))

As we can see, the pretty printer breaks the result into pialtines, since a single line would

118

5.4. Example: An Extensible Generic Pretty Printer 119

def printList[a] (x: List[a]) (g: PPrint {type A = a}) : Document=
x.accep{External Documen} (new VList[External a, Document {
def rest(l : List[a]) : Document=
|.accepfInternal, Document (new VList[Internal a, Document {
def nil = text("]1")
def cons(y: a,ys: Reg = text(",") ¢ breake g.pprint (y) ¢ ysget
D
def nil =text("[]1")
def cons(y: a,ys: Req = group (nest(1, text("[") ¢ g.pprint (y) ¢ rest(ysged))
)
object prettyList2extendsGenericPrintwith GenericList{
override def list[a] (a: PPrint {type A = a}) = new PPrint {
type A = List[a]
def pprint (x: List[a]) : Document= printList (X) (a)
}
}

Figure 5.6: Ad-hoc pretty printing for lists.

take more than 80 characters. Each level of the tree is nindgnted, and it is clear from the

layout how the tree is structured.

5.4.3 Pretty Printing Lists

For most user-defined types likeee our generic pretty printer works nicely. However, for some
types such as lists or sets, the default generic prettyipgmtigorithm may not be the most appro-
priate. The problem with lists is that we normally use a splauix-fix notation to represent them:
instead of writing ‘Cons (3, Cons (2, Nil))” we usually write something like “[3]". If we just
use the default behaviour that is given @gnericList(see Section 5.3.2) we would get the more
longwinded notation for lists. In order to adapt our genduitction in such a way that the short
notation is used we need to override the default functioynbly providing an ad-hoc definition.
We show the code for pretty printing lists in Figure 5.6. ThethodprintList is used by the

overridden definition ofist (in prettyListd to provide the short notation. It is important to note
that this ad-hoc extension to the generic function is madwa do not need to modify the module

where the main body of the generic function is.

119

5.4. Example: An Extensible Generic Pretty Printer 120

Pretty Printing Lists of Characters

In many programming languages, strings are representadta®f characters. The notation for
strings difers from the conventional list notation: instead ofH[, ’e’,’1’,’1’, 0’]” we usu-

ally have “'Hello"”. As we shall see, it is possible to modify our pretty pringerthat it also
supports this notation. However, this modification is natirety modular. In order to handle
strings as lists of characters, not only do we need to tret in a special manner, but we also
need to handle lists of characters diferently from listsrof ather element type. We thus have to
implement anested case analysis on typds order to do this nested case analysis, we need to
anticipate this possibility and include a functipprintListin the traitPPrint.

trait PPrint extendsTypeConstructof
def pprint (x: A) : Document

def pprintList (x: List[A]) (g: PPrint {type A = PPrint.this.A}) : Document=
printList (X) (g)}

By default, pretty printing a list of values of some typewill use the standard list notation.
However, wherA is the typecharwe override the definition giprintListin the body of the generic
function so that it handles lists of characters specially.

trait GenericPrintextendsGenericConst

def char = new PPrint {
type A = char,
def pprint (x : A) = text (x.toString())
override def pprintList (x: List[A]) (g: PPrint {type A = char}) =
text("\"" + (x.accepfinternal String] (new VList[Internal, Char, String] {
def nil = "\""
def cons(y : char, ys: Req = y.toString() + ysget})))}

The final touch is to modifyprettyList2so that it callgpprintList, thus forwardingpprint to the
appropriate functionality.

object prettyList2extendsGenericPrintwith GenericList{
override def list[a] (a: PPrint {type A = a}) = new PPrint {
type A = List[a]
def pprint (x: List[a]) : Document= a.pprintList (X) (a)
}
}

120

5.5. Extensibility on Visitors of any Kind 121

In contrast to supporting just the list notation (but not $kréng notation), this extension is not
modular since we need to modify both the trd8rint and GenericPrint Still, it is interesting
to observe that such support is possible and, arguably, wieza are a few exceptional cases like
strings this may be acceptable.

The problem with our implementation of the generic functmpporting the string notation is
that, because we are basically using a Church encoding, eveeatricted to a simple pattern of
recursion. Since nested case analysis does not fit thissieauscheme, we are forced to manually
built in support for it.

One immediate question that arises is wheather we can useldtius of encodings to tackle
the same question modularly. For example, unlike Churclodings, Parigot encodings are very
liberal in the recursion scheme that can be used. Howevesttier encodings, recursive references
may depend on the visitor, which raises the problem of atistigathe visitor in thevisit methods
that the Church encoding does not have. In the next sectisea@ow to use afilerent technique

that allows extensibility for other encodings.

5.5 Extensibility on Visitors of any Kind

In the previous section we have a solution for extensibditynternal visitors. In this section we
present a dferent solution for the extensibility problem of visitorsattworks for any encodings.
This solution is inspired by a technique originally intregd by Odersky and Zenger (2005a). We
demonstrate its application to generic functions by réwigithe extensible pretty printer example.

The full code for this section is presented in Appendix H.

5.5.1 Extensibility on Generic Encodings

Internal visitors do not have recursive occurrences invis# methods that depend on the visi-
tors themselves. However, other encodings may not havetbserty and we need to solve this
problem if we want to achieve extensibility. One solutiorentioned in Section 5.2, would be to
parametrize on the type of concrete visitors in ¥t methods. Although this could be done, the
code would become cluttered with type parametrizationth(blom thevisit methods and from the

Composite). Fortunately, using Scala abstract types astbdéraits we can tackle this problem

in a different manner, with a minimum amount of noise. The idea isittsead of abstracting

121

5.5. Extensibility on Visitors of any Kind 122

trait ExtensibleGMVisitof
type Gen<: Generic
type GenWitH x <: TypeConstructars <: Strategy = Gen{type X = x;type S= s}
trait GenericextendsVisitor {
type Redt] = R[Gen]
def unit : X {type A = Ong}
defint : X {type A = int}
def char: X {type A = char}
def plus[a, b] (a: Reda],b: Redb]) : X {type A = Plug[a, b]}
def prod[a, b] (a: Reda],b: Redb]) : X {type A = Prod[a, b]}
def view[a, b] (iso: Iso[b, a],a: = Reda]) : X {type A = b}
}
type RedT] = Composit¢Gen T]
implicit def RUnit= new RedOng€] {
def accep{s <: Strategyx <: TypeConstructdr
(vis: Genf{type X = x; type S= s}) (implicit decomposeDecomposs]) =
vis.unit

}

implicit def RProd[a, b] (implicit a: Reda],b: Redb]) = new RedProd|[a, b]] {
def accep{s <: Strategyx <: TypeConstructgr
(vis: Genf{type X = x; type S= s}) (implicit decomposeDecomposfs]) =
vis.prod (decomposéec(vis, a), decomposeec(vis, b))

Figure 5.7: A parametrized module for generic functions

the concrete visitors in eachsit method and in each composite element, we have a trait with an

abstract type over the concrete visitor in use. In Figure\Wwe/can see how to apply this solution
to theGenericvisitor.

The top-level traitExtensibleGMVisitolhas an abstract typ@en which is a subtype of the
inner traitGeneric The methodacceptin Repuses the abstract tyg@ento define the type of
its argumentis, instead of usingsenericdirectly. This fact means that it is up to the instances
of ExtensibleGMVisitoto define which specific kind dBenericis going to be used. It may well
be that such an instance would instanti@ento Genericitself. In that case not much would be
gained. However, any subclass would also be a valid insi#oni, and therefore we could make

use of any extra cases defined in such subtypes. In the nexduiasections we shall see how we

122

5.5. Extensibility on Visitors of any Kind 123

can independently create two extensions to generic fumgtio

5.5.2 Supporting Lists

The traitExtensibleGMList

trait ExtensibleGMLisextendsExtensibleGMVisitof
type Gen<: Generic

trait GenericextendssuperGeneric{
def list[a] (a: Reda]) : X {type A = List[a]}
}
implicit def RList[a] (implicit a: Reda]) : RedList[a]] = new RegList[a]] {
def accep{s <: Strategyx <: TypeConstructdr
(vis: Gen{type X = x; type S= s}) (implicit decomposeDecomposEgs]) =
vis.list[a] (decomposéec(vis, a))

extendsExtensibleGMVisitoand defines a new tra@eneri¢c which is a subtype of the original.
Because this new version Gfenericis a subtype of the original one, we can refaenby further
constraining it to be a subtype of this new version. This rication means that functions that
have arguments that are instance$seican now assume any new methods declared in the new
version ofGeneric In particular, we have extended the original interfacdnaihew methotist for

handling the case for lists and we have defined a represemiitistmaking use of that method.

5.5.3 Supporting Meta-Information and Pretty Printing

In Section 5.3.2 we presented an extensioehericthat supported constructor information. We
shall do the same now and use that added functionality toelafgreneric pretty printing function
using our new encoding. The traiktensibleGMConstiefines an extension &ixtensibleGMVisitor
supporting extra meta-information.

trait ExtensibleGMConstextendsExtensibleGMVisitof

type Gen<: Generic

trait GenericextendssuperGeneric{
def consti{a] (name: String arity : int,g: Reda]) : X {type A = a}
}
def RConstfa] (name: String arity : int,a: Rega]) : Rega] = new Refda] {
def accepf{s <: Strategyx <: TypeConstructgr
(vis: Genf{type X = x; type S= s}) (implicit decomposeDecomposs]) =

123

5.5. Extensibility on Visitors of any Kind 124

vis.constr(namearity, decomposéec(vis, a))

As in Section 5.5.2, we extend the inner ti@énericwith a new method (the methaanstj).
This method supports meta-information, and can be usedftoedgeneric functions that require
such support.

Also in ExtensibleGMConstiwe define a new generic function for pretty printing. Theeod
for this generic function can be found in Appendix H. ThettRfrint defines the signature of the
generic function; the traiGenericPrintdefines the main body of the generic function; and, finally,
the methodpretty provides a simple interface for pretty printing. A notickabifference to the
solution using internal visitors in Section 5.4.1 is thacause the typ&enis abstract, we do not
know which concreté&enericvisitor is going to be used; therefore, we need to requirettieaself
type of GenericPrintis GenWitHPPrint, Externall. Another diference, is that, since we opted to
use an external visitor in the definition of the pretty pmgtfunctions, we need to explicitly make

recursive calls (by using thecceptmethod).

5.5.4 Merging List and Constructor Support

After defining extensions supporting lists and constrigctee can now merge both functionali-
ties together. To do that we create a new trait that, usingm@@mposition, inherits from both
ExtensibleGMConstandExtensibleGMListFor the inner traiGenericwe do something similar,
inheriting from the two trait§&senericin the top-level traits. We also define a new taénericPring
which inherits its functionality from the traitSenericPrintin ParigotConstrand the newly defined
Generig and overrides the default case for lists adding suppoheantixfix bracket notation. The
code is shown in Figure 5.8.

As a remark we should note that certain programming languagepordeep mixin composi-
tion (Aracic et al,, 2006; Ernst, 1999), which could be used to remove some difutden from the
programmer when mixing in related extensions. With deepmagmposition, we could automat-

ically mixin inner traits. In Scala we need to do this comgosimanually.

124

5.5. Extensibility on Visitors of any Kind 125

trait ExtensibleGMListConstxtendsExtensibleGMConstwith ExtensibleGMList
type Gen<: Generic

trait GenericextendssupelExtensibleGMConsirGeneric
with supefExtensibleGMListGeneric

trait GenericPrintrequires GenWitH{PPrint, External
extendssuperGenericPrintwith Generic{
override def list[a] (a: Reda]) : PPrint {type A = List[a]} = new PPrint {
type A = List[a]
def pprint (x: A) = pprintl (X) (a.get GenericPrintthis)
}
}
def pprintl[a] (x: List[a]) (implicit a: Reda],v: GenWitHPPrint, External]) =
x.accep{E, Documen} (new VList[E, a, Document {
def rest (I : List[a]) : Document=
l.accepf{l, Documen} (new VList[l, a, Document {
def nil = text("]1")
def cons(y: a,ys: ReqQ = text(",") :: break:: a.accept(v).pprint (y) :: ysget
D)
def nil =text("[1")
def cons(y: a,ys: Req = group(nest(1,text("[") :: a.accept(v).pprint (y) ::
rest(ysgey))

Figure 5.8: Merging Support for Constructor and Lists

5.5.5 Creating a New Module

We can create a new object that wraps up all wanted functigraadd closes the door to extensibil-
ity by fixing the abstract typ&en In our example we inherit from the tradtixtensibleGMListConstr
and set the abstract tyggento the typeGenericfrom that trait. SinceextensibleGMListConstr
already supports lists and meta-information in generictions as well as a generic pretty printing
function, we can create a functiomyTesthat uses the pretty printing function to print a list using
a mix-fix notation. This new module could now be imported frother Scala code and be used as
any other Scala library.

object testExtensibleGMListConstixtendsExtensibleGMListConstr
type Gen= Generic

implicit object prettyPrintextendsGenericPrint
def listTest= Cons(’3’,Cons(’2’,Cons(’1’, Nil[char])))
def myTest= pretty (listTes) (RList(RChal), prettyPrin)}

125

5.5. Extensibility on Visitors of any Kind 126

5.5.6 Supporting String Notation

Finally, and to complete the pretty printer example usinggeal visitors, we revisit the problem
of supporting the string notation. The solution presente lfiollows closely Hinze’s own solution
for the problem. However, in contrast to his solution, odugon is extensible and modular.

As a first step, we create a subtypeGdnericthat implements a common default functionality
for all cases of a generic function. This default functidtyak provided by the methodeflt, that
takes a representation of some typand gives an instance of the generic function for that type.
This trait could be incorporated, for example HErtensibleGMVisitar

trait GenericDefauliextendsGeneric{

type S= External

def defltfa] (a: Refda]) : X {type A = a}

def unit = deflt(RUnNit)

def int = deflt(RInt)

def char = deflt (RChan)

def plus[a, b] (a: Reda],b: Redb]) : X {type A = Plus[a, b]} =
deflt (RPlus(a.get b.ged)

def prod[a, b] (a: Reda],b: Redb]): X {type A = Prod[a,b]} =
deflt(RProd(a.get b.ged)

Figure 5.9 shows the code for supporting the string notatidsing ExtensibleGMListConstr
as a base for the traiixtensibleGMStringve define a generic function that handles pretty printing
of list values playing the same role pprintListin PPrint did on the internal visitor solution. The
body of that function is defined on the tr&enericPrintList which extendssenericDefaultand
implementglefltso that it calls the functioprettyDocthat is defined irExtensibleGMConstiWe
also overridecharin GenericPrintListso that it uses the string notation to print a list of chanacte
Then, we define a methgulettyListDochat provides a convenient way to call the generic function.
Finally, we update thést method inGenericPrint making it callpprintl.

To summarize, this solution corresponds, in essence, tafigition of two mutually recursive
(generic) functiongsenericPrintandGenericPrintList in which the case for lists iGenericPrint
is handled byGenericPrintListthat, in turn, handles all the cases except characters lyghhck
GenericPrint Unfortunately, the code in Figure 5.9 did not compile in Hieesion of Scala that

we tried, although we believe it should. The problem is dised briefly in Appendix H and a

126

5.5. Extensibility on Visitors of any Kind 127

trait ExtensibleGMStringxtendsExtensibleGMListConstr
trait PPrintList extendsTypeConstructotdef pprintList (x : List[A]) : Documenj

implicit def defPrint: GenWitH PPrint, Externall

trait GenericPrintListrequires (GenWitl{PPrintList, Externall with GenericDefauly
extendsGenericDefaulf
type X = PPrintList
def defltfa] (a: Reda]) = new PPrintList {type A = a;
def pprintList (X : List[A]) = prettyDoc(x) (RList(a), defPrin)}
override def char = new PPrintList {
type A = char
def pprintList (x : List[char]) =
text("\"" + (x.accepf{internal String] (new VList[Internal Char, String] {
def nil ="\""
def cons(y: A, ys: Req = y.toString() + ys
H)
}

def view[a, b] (iso: Iso[b, a], a: = Reda]) = new PPrintList{
type A=Db
def pprintList (x : List[A]) : Document=
pprintl (
x.accepfinternal List[a]] (new VList[Internal A, List[a]] {
def nil = Nil[a]
def cons(x: A, xs: Reg = Cons(iso.from (x), xsgef
D) (a, defPrini
}
def list[a] (a: Reda]) = deflt(RList(a))
}
def prettyListDodt] (x: List[t]) (implicit r : Reft], v: GenWitl{PPrintList, External)) =
r.accept(v).pprintList (x)
trait GenericPrintrequires GenWitl{PPrint, Externall extendssuperGenericPrint{
override def list[a] (a: Reda]) : PPrint {type A = List[a]} = new PPrint {
type A = List[a]
def pprint (x: A) = pprintl (X) (a.get GenericPrintthis)}
override def constr{a] (name: String arity : int,a: Regda]) = new PPrint {
typeA=a
def s = text(hamg
def pprint (x: A) = if (arity = 0) selse
group (nest(1, (text(" (") :: s:: break::
a.rep (GenericPrintthis).pprint (x) :: text(")"))))}

Figure 5.9: Support the string notation with the Parigotoeliag.

127

5.6. Comparing the Two Approaches to Extensibility 128

workaround is provided.

5.6 Comparing the Two Approaches to Extensibility

The two approaches to extensibility presented in this ardmve diferent advantages and disad-
vantages. While it may be tempting to think that the solupoesented in Section 5.5 is superior
because it supports any kind of visitors and does not hauesssith mutually recursive functions,

the fact is that the solution in Section 5.3 has some inteiggésubtle) advantages worth remarking

upon:

e The first advantage is that therenis need to close extensiotusbe able to use functionality.
With the solution in Section 5.5 we have to create an objeat ithstantiates the abstract
types, so that we can actually use the functionality that@viged (the object defined in
Section 5.5.5 is an example of this). In contrast, the smhutising internal visitors does not

need the creation of these objects, which makes the appstagier to use.

e The second advantage is thia¢re is a single family of type$Vith the solution in Section 5.5,
differentclosedextensions are incompatible with each other, because éasdcextension
has a diferent family of types associated with it. For example, sgepoe had an object that
inherited from the traiExtensibleGMStringnd closed the extension. Then that object would
define its own family of representation typRB&nit, RChar, RiInt, and so on, incompatible
with those of some other closed extension. If we had sevéraéd extensions in the same
project and we did not plan carefully their usage, it may bedssible to mix the functionality
of two closed extensions. In order to combine the two, weeeittave to modify existing
code, or if we cannot access the source, we may end up dupdjcaide and creating a third
(closed) extension. This does not happen with the solutibin iternal visitors, because

there is one common family of types.

e The third and final advantage is that can easily have functions that work orffetent
type universes (or domainspuppose that we want to use our generic programming library
with structures that contain functions. Not all genericdtions can be sensibly applied to
functions, for example, it is not (trivially) possible torgdize and deserialize those values.

However, writing other generic functions for functiongbgs may be possible and desirable.

128

5.7. Discussion 129

For example we could just print the string< function>>" for functions with our generic
pretty printer, and have all other values nicely printed sisali Ideally, we would like to
have serializatiofileserialization functions that cannot be applied to fuumal values (this
is, they would produce a type-error), but we would like oustty printer to handle those
values. To achieve this with the solution in Section 5.5, veel\ need to define two fier-
ent closed extensions: one that supports functional vdluekas no serialization support;
and one that does not support functional values but hadigzatian support. So, with this
solution, we need to carefully plan both the generic prognamg library and its closed ex-
tensions. With the solution using internal visitors thisrisch simpler: if we do not want
to support functional values for serialization we simplerad provide any objects of type
GenericFundtype X = Serializg (hereGenericFunds a hypothetical subtype @eneric

supporting a case for functional values).

In summary, the approach presented in Section 5.5 is morenhavbecause it allows us to
use any kind of visitors without limitation; however, for riamum flexibility, careful planning is
needed. In particular, extensions should be very finelyngdi separating eachfiirent aspect,
so that closed extensions can pick just the functionaligy thvant. In contrast, the solution in
Section 5.3 requires much less planning due to the existehaesingle family of types, which

means that all extensions can remain open and compatildiieeadth other.

5.7 Discussion

A lot of work (Bird et al,, 1996; Jansson, 2000; Hinze, 2000; Loh, 2004) providesyasteong
basis for generic programming, but only considers nonrestibde generic functions. It was realized
by several authors (Hinze and Peyton Jones, 2000; Hinzd, 2@®dnmel and Peyton Jones, 2005)
that this was a severe limitation. The problem of extengjbdf generic functions is related to
the expression problem. In this chapter we have shown thegnwe consider the GM approach,
we can reduce extensibility of generic functions to the fobof extensibility on visitors. This
relation means that solutions from both domains can (phgdie applied interchangeably. The
two solutions presented here can both be applied to eitheaop yet each was were initially
proposed as a solution for one particular domain.

The first solution that we have presented (in Section 5.3ksvonly for internal visitors. How-

129

5.7. Discussion 130

ever, this solution is relatively simple to use and easy fpl@ment because, with internal visitors,
the visit methods do not have recursive arguments. Interestinglyyelieve this is the first time
that a solution for the extensibility of visitors using ar{fional) internal variation of the pattern
is presented. Most solutions that we know of have mutualpeddent visitor and composite inter-
faces, which are closer to external visitors and are haodextend. Alexandrescu (2001) proposed
acyclic visitorsto avoid the problem of mutual dependencies and, at the samee &llow exten-
sibility. However, dynamic casts are required for this soluto work. Several other solutions
(Odersky and Zenger, 2005a; Ernst, 2004; Nystedral., 2004) relax the problem of mutual de-
pendencies by parametrizing on the type of the concretwyisvhich allows extensions to refine
that same type. Our second solution, inspired by Oderskyeander (2005a), works that way.

One problem with internal visitors is that, because thamigias no control of the traversal, we
have a limited recursion scheme available. Because ofrthugjally recursive definitions (which
can be used to implement nested case analysis and binarpasgtire harder to implement in a
modular way: we need to encode the mutually recursive diefivsitusing a single visitor, which
is normally implemented by tupling the definitions togethen class. However, this solution is
non-modular, because we need to modify previously existode. A possible way around this is
to use a mixed solution that combines the two solutions tledtawe presented. The idea is that we
modify the solution with internal visitors so that it abstigover the hard references to the generic
function in use. For example, if we are defining a generictpiinting function we may want to
abstract ovePPrint — the trait with the type of the generic function, where we magyle mutual
definitions together. Then, if we wanted to support the gtniatation in a later extension, we could
just refine the abstract type to a more concrete subtypéant (with the extra definitions).

By choosing a more liberal kind of visitor, the solution ugiabstract types can avoid the
issue with mutually-recursive visitors, meaning that eadstase analysis or binary methods can
be implemented without endangering modularity. In the exinbf generic programming, this
approach provides a novel solution to the problem of exkelitgiof generic functions, since nearly
all approaches that we know of (Lammel and Peyton Jone$;208irich, 2006; Oliveiraet al.,
2006) have issues with mutually recursive generic funstiobhe exception is a solution by Loh
and Hinze (2006) that avoids this issue at the cost of typetysaa call to an undefined case on a
generic function causes a run-time error instead of a caxtpile error. However, we believe our

solution is preferable, because we keep all the expresswempand we do not need to abandon

130

5.7. Discussion 131

type-safety.

131

Chapter 6

Conclusion

6.1 Summary and Contributions

In this dissertation we have argued that, with expressipe systems such as the one in Scala, we
can capture many design patterns as software componergs/elaredibility to our thesis, we have
presented a Scala implementation of a generic library ®Mbkiror pattern that is parametrizable
over several aspects (or alternative implementationshefpattern. We have also shown that,
because visitors are, in essence, encodings of datatypesamnaturally apply well-known DGP
techniques to our visitors. This means that we can write geaad type-safe functions that work
for a very large family of visitors and thus avoid repetitiminsimilar and tedious to write code for
each concrete visitor. Finally, we have looked into the fobof extensibility, and have shown
the connection between extensibility of generic functiand extensibility of visitors, investigating
different solutions for both problems.

The specific contributions of this thesis are as follows:

¢ We have shown that an OO language supporting generics amcehypes can be used
to capture dierent aspects of therdfror pattern as a software component. In particular,
as well as DGP, we have shown that visitors carstrategy-genericavoiding the design
choice in the traditional presentation of thesiVor pattern of who controls the traversal. In
other words, the control of the traversal (the strategypimmetrizable and the programmer
only needs to commit to a particular traversal strategy wdefining a new function (using

visitors) instead of hard-wiring a particular strategy ba implementation of the visitor.

132

6.1. Summary and Contributions 133

e We have implemented a visitor notation, directly in Scatat @allows visitors to be treated
as functions that take composites as parameters. With dégion, functions defined using
visitors look like functions defined by (a simple form of) ah matching, which is more

intuitive for programmers.

¢ We have adapted the GM approach to DGP to Scala and shown bawlite used in combi-
nation with our visitor library to define generic functionsothose visitors. Furthermore, we
have exploited inheritance in Scala to provide an easy waguse code from other generic
functions. This particular kind of reuse is valuable, bus iharder to implement in program-
ming languages like Haskell. Finally, we have also demaiestithat we can define views to
other families of visitors using GM. Specifically, we havewim how to define the so-called

fixpoint view.

¢ We have shown how to adapt our visitor library so that it sufgaihe definition of a particular
class of indexed datatypes (which we called unnested GADAIg)ough Johann and Ghani
(2007) have shown how to define a family of Church encodingsésted datatypes (which
are a form of indexed types not handled by our own family), ekebe this is the first time

that a family of datatype encodings for a form of GADTSs is give

¢ We have established a relationship between visitors andrigefunctions by showing that

the essence of the GM approach is, itself, an instance of ¥reo¥ pattern.

¢ This relationship between GM and visitors means that thblpro of extensibility of generic
functions can be reduced to the problem of extensibilityisiters. This provides new insight
and leads to new solutions for extensibility problems. Irtipalar, we show a new solution
to both problems, using internal visitors, that has the athge of simplicity. We also show
a new solution to the problem of extensibility of genericdtians inspired by an existing
solution to the problem of extensibility of visitors. Thiglstion has the main advantage that

it works for any encoding.

¢ Finally, we have also seen two practical applications ofegierprogramming in an OO lan-
guage. The first application shows how to define a seriatimgind deserialization) compo-
nent that works, generically, for a large family of visitof$e second application is a flexible

generic pretty printing component that can be adaptedeifjimeric behaviour of the pretty

133

6.1. Summary and Contributions 134

printer is not desirable, with an ad-hoc implementation. diNeuld emphasize that current
solutions (in mainstream OO languages) for those problems to be inflexible, inelegant
and (sometimes) type-unsafe. We believe that DGP providesch better solution for these

problems.

6.1.1 Some Extra Insights

The aspect of Who is responsible for traversing the object structuf@ammaet al., 1995) in
the Visitor pattern, which (as far as we know) has always been presestedraparametrizable,
can be precisely related with encodings of datatypes arfu difiierent recursion patterns. These

connections reveal interesting insights, that are worthtroring:

e The connection with encodings of datatypes provides, fangle, an alternative implemen-
tation for internal visitors where the visitor and the corsip® are not mutually dependent
(or cyclic). Most implementations of internal visitorsg(i.visitors where the visitor compo-
nent has no control over the traversal) on the literaturenusieially dependent visitors and

composites, which makes extensibility harder to realise.

e The connection with recursion patterns provides insigttt the expressive power of ftker-
ent implementations of visitors. For instance, internalters are associated with iteration
offering a simple, but limited, pattern of recursion. Many a groblems often found in the
visitor pattern, such as thefficulty of doing binary methods, are related to the pattern of
recursion in use: it is hard to implement binary methods stewcase analysis with internal
visitors, but with some other kinds of visitors (for examp&ternal visitors), these are not

problematic.

e Another insight gained from the connection with recursiattgrns reveals alternative im-
plementations of the ¥iror pattern that have not been explored in the past. While iatern
visitors are related to catamorphisms and external vssitorrespond, basically, to case anal-
ysis, there are other recursion patterns that give risefferdint implementations of visitors.
For example paramorphisms, which capture primitive reoarhave a corresponding Vvisi-
tor implementation. The paramorphic visitors in Sectidh8present an implementation of

visitors of that kind.

134

6.2. A Type-Theoretic Perspective on this Thesis 135

e Finally, recursion patterns afgst-class we can have a function that is parametrized by a
strategy, and dlierent instantiations of that parameter will determine \Whigcursion pattern
is going to be used. With the traditional, higher-orderspreation of recursion patterns, it is
not straightforward to have a function that abstracts frio@recursion pattern in use, because
different recursion patterns have (slightlyifeient types which are fiicult to abstract from.

Although this fact is interesting to observe, we have noeygiored any possible uses.

6.2 A Type-Theoretic Perspective on this Thesis

The main focus of this dissertation was to show how it is gmedio capture the Mitor design

pattern as a software component. For doing so, we were a@tspy type-theoretic results about
encodings of datatypes. However, the development of oitowigbrary lead to some generaliza-
tions of encodings of datatypes that seem to be interestiomg & type-theoretic perspective. We

review our results here with that perspective in mind.

Background The traditional presentation of encodings of datatypesystedn F (and common
variants) is of the forniT = VX. (F R = X) = X. In this form a datatypd can be defined
by instantiatingF to some sum-of-product functor. Buchlovsky and Thielec@06) show that
an isomorphic variation of these encodings, of the farne VX. (1_[Fi R= X) = X, can

be precisely related to therdfror pattern. With this variation a neiw datatypecan be defined
by providing a product of function¥ R X = l_[Fi R = X (the visitor), where each function
Fi R = X corresponds to aisit method and-; R’icorresponds to the arguments of the constructor.
Church and Parigot encodings (corresponding, respegtieahternal and external visitors) follow

from two specific instantiations & (R = X andR = pparigot V):

MParigot V=VXYV (/JParigot V) X=X

Generic encodings of datatypes Although Church and Parigot encodings both follow from the
same template, we were not aware of any more general absiréicat could (linguistically) cap-
ture both encodings as a particular instance of that santeaabisn. In this dissertation we show

that such an abstraction exists and that it can be used tedefieneric encoding of datatypes:

135

6.2. A Type-Theoretic Perspective on this Thesis 136

accept method

uV=V¥X S Decompose S V(SVXRIX=X
N—————

Visitor

The type parametes (called the decomposition strategy) determines which @ingois used
when visiting a value of typg V. We can recover Church or Parigot encodings by instang&in

with eitherChurchor Parigot, where

Church V X= X
ParigotV X=u V

Decomposition function and recursion patterns The typeDecompose 8efines a function

dece V(SVXYX=uV=SVX

whose type is closely related to the types of well-known reicum patterns. For example, when we
instantiateV R X= F R = X (whereF is some sum of products) arfgl= Churchwe obtain the

type (modulo isomorphisms):
catac (FX=>X)=>uF=X

If we would have instantiatefl = Parainstead, we would have obtained a function
paraDece (F (uF,X)=> X) = uF = (uF,X)

which is a ‘cousin’ of the paramorphism recursion patterme Tonnection betweeatecand recur-
sion patterns reveals interesting properties. For exarttpefree theorerm(Wadler, 1989) ofcata
gives us a fusion law. The functiateg being a generalization afata has also a, more general,

free theorem that can be specialized to obtain the fusioa fancataand other recursion patterns.

Encodings of indexed datatypes In this thesis we have also shown how to encode a form of

indexed types by slightly generalizing the typ&

accept method

uV T=¥YXSDecompose SV ((SVXRIX=>XT
N’

Visitor

so that it takes one extra parameterwhich is the index type. Capturing families of GADTS in

this way is, as far as we know, a novel result. Worth notindnesfact that, by using the variation

136

6.3. Haskell versus Scala 137

based on products of functions instead of one based on supmedicts (i.e. of the formH U =

X T) = X T), we can specify the return types of the constructors of ndexed datatypes. With
(a naive) sums of products approach it is not possible toesgthe dependencies between the sum
types and the return type, which means that (with such anoaphj we cannot express indexed
types. Consequently, there is no isomorphism between stipreaducts and products of functions
for the two variations of: V T (that is, the variation with sums of products is less expveghan

the one with products of functions). A possible way to recdbe isomorphism may be to use

something likeF U T = X T) = X T, but we have not explored this path yet.

6.3 Haskell versus Scala

We specified most parts of our library using a functional tiotethat is, in essence, syntactic sugar
for Haskell. The option to use Haskell as a specificationlaigg had basically two motivations.
Firstly, Haskell is relatively close to System F, which gissesuficient confidence that our construc-
tions are (semantically) well-defined. Secondly, Hasleeby far, the most widely experimentation
platform for implementations of DGP.

Because Scala is significantlyfidirent from Haskell, we were curious to know if there would
be any advantages (or disadvantages) of using a languag&diéda instead of Haskell for the
implementation of generic programming libraries. It iei@sting to compare the Haskell imple-

mentation with the Scala one. We start by stating the adgastaf the Haskell version:

e Purity - Our visitor library can strongly benefit from the theory dped around recursion
patterns. In particular, we would expect that the fusionslassociated with recursion pat-
terns could be used to optimize programs written with visitoHowever, in the presence
of side-dfects, those laws do not hold. Because Haskell is a pure lgegwa have the
guarantee that no (hidden) sidffeets exist, which makes this kind of optimization fairly
straightforward to apply. In contrast, in an impure languéige Scala, we do not have the

same guarantees about sidieets, which makes this kind of optimizations much harder to

apply.

e Syntactical clarity- While Scala’s syntax is more elegant than Java’s or C#, wedp at
points, that too much syntactic verbosity was required imngarison with Haskell’s equiva-

lent. In particular, the declaration of types in Scala tetodse quite long-winded. Abstract

137

6.3. Haskell versus Scala 138

types especially contribute to that since, to specify the tygf an abstract type in a method
declaration, we need something likgype A = a} while in Haskell we can often achieve
the same result using type-constructor polymorphism vighsyntax a. Scala has recently
been extended with support for type-constructor polymismph{(Moorset al., 2007), which
may help on the syntactical clarity issue. Also, due to theglexity of Scala’s type system,

we need many more type annotations than in Haskell, whicimagfa&cts clarity.
We now state the advantages of Scala:

e Expressiveness of the type systéhhe combination of subtyping, abstract types, self types,
traits and mixins provides Scala with an impressively pdwedype system. We found two
parts of our library that are typeable in Scala but are verg @ even impossible) to type
in Haskell. The first part, not possible to type in Haskellggngse it would require polymor-
phic kinds), is the precise type of thésitor component. We discuss this in more detail in
Section 6.3.1. The second part of the library that we fourrgl liard to type in Haskell con-
cerns the extensibility solutions. While the first soluttorextensibility was inspired by the
Haskell solution in EMGM, the fact is that the Haskell versieels like a workaround for
the absense of proper subtyping. Specifically, the GM (ndarsible) solution would have
a methodrep :: Yg. Generic g= g t and the EMGM version changes the quantification of
the typeg to the enclosing clag’ep rather than the methaep, to allow extensibility. The
Scala type forep (written in a Haskell-like syntax) would bep:: V(g <: gen. g t, where
gen<: Genericwould be a type parameter of the enclosing class. The késrence to the
Haskell version is that the typgremains universally quantified mep and only the bound
genis quantified in the enclosing class. In Haskell it is posstblsimulate abstraction over
type classes (Hughes, 1999; Lammel and Peyton Jones,, 2@@6h would allow us to have
rep:: ¥g. gen g= g t. Sitill, this would be unsatisfactory becaugen could be any type
class (and not just subclasof Generig. Finally, Haskell lacks a mechanism that mimics
information hiding over several objects as given in Scalthieycombination of nested classes
and abstract types. As an analogy, to help the reader vzsualpossible such mechanism
in Haskell, imagine an hypothetical extension with theigbtb declare type classes inside
type classes combined with associated types (Chakrastaly 2005b) that allowed type re-

finements of these same associated types in subclassescklod such a mechanism means

138

6.3. Haskell versus Scala 139

that there is no straightforward way to encode the seconth Scéution to the extensibility

problem in Haskell.

¢ Inheritance- Another advantage of Scala is that we can easily reuse igdoactions using
inheritance. In Haskell, although we can simulate this fofrmreuse in several ways, we can

not do it in a natural way.

In conclusion, the powerful type system makes Scala a \féegte/e language for the construc-
tion of generic programming libraries — and software congaain general (Odersky and Zenger,
2005b). However Scala’s syntax can be verbose at times andube Scala is not a pure functional
language, reasoning about components may be hard. Haskéllantages are the elegant syntax
and the purity of the language. However, these advantagesuiveighed by the limitations of the
type system — specially the absence of subtyping and a meschanat allows information hiding
over several objects — which means that Haskell cannot oayptu at least not capture precisely

enough) certain aspects of complex components.

6.3.1 A Slightly Inaccurate Specification

In Section 3.6.1 we defined our visitor library based on aftional specification with

Composite V= YX S Decompose SSV(SV Y X = X
N’

Visitor

However, as we have discussed, the visitor component digxaatly follow the specification

since it should be of the ford (S V X X and yet the traiVisitor was defined as

trait Visitor {

type X

type S<: Strategy

type R[v <: Visitor] = S{type X = Visitor.this.X; type V = v}
}

which implied a form like:

Composite V= u (VX S Decompose S V S X= X)
N——

Visitor

139

6.4. Applications of our Work 140

This later form is more flexible and general because we canyawecover all the instances
given by the former (in the Scala code, this is done by pamanreg the typeR with the concrete
visitor that we are defining). The extra generality allows fas example, to handle mutually
recursive visitors in a more natural way (see Section 3&.2étails).

The reason why we did not useS Xin the functional specification, in the first place, is beeaus
our specification setting is too weak to “type” the kinds afgh types. In essence, the visitor
is a type-constructor parametrized by a strat8glput Sis also a type constructor that is, in turn,
parametrized by a visitor. This kind of mutual dependendyvben the two type constructors
means that their kinds cannot be monomorphic. Yet, our Helsised specification setting only
allows monomorphic kinds. In order to specify our visitdorliry with this more general form of
visitors we need a setting that allowslymorphic kinds

In Appendix | we show a diierent specification setting, using the Omega language (&hea
2005), that supports polymorphic kinds and allows us to giveore precise specification to our

visitor component.

6.4 Applications of our Work

Programming with Visitors The obvious application of our work is to use the visitor dityr
to program with visitors. There are plenty of applicationsene visitors can be useful in object-
oriented languages. Any problem where adding functionsmscdtequently and adding variants is
rare can benefit from the use of visitors. The main advantafjasing our visitor library instead

of just following the traditional design pattern approacé:a

1. Elimination of design choice As we have demonstrated in this thesis, the choice of who
controls the traversal is parametrizable. If we follow ttattional design pattern approach,

we need to choose a particular kind of traversal for ourmighius loosing flexibility.

2. Extensibility- Our visitor library supports extensible visitors and caruised more generally
than the original design pattern. In particular, we can ugdibrary on problems where we

have interest in adding both new functions and new variants.

3. Notation- Our visitor library supports a functional notation for #s's, avoiding the need to

useacceptmethods explicitly to express recursion calls. Definitiamigten in this style look

140

6.4. Applications of our Work 141

like definitions by pattern-matching in a functional pragraing language.

4. Easy support for DGR Our visitor library includes DGP support based on GM. To oke
generic functions with some user-defined visitor, we jugidi® provide a few, boilerplate,
definitions. We can even avoid (most of) that boilerplate éf wse a sum-of-product visitor

instead.

In Scala, the existence of case classes essentially subshmaeed for (traditional) visitors
and has the big advantage of having built-in support for defims using this construct. Although
our notation is better than the traditional design pattémoes not fer the same convenience as
case classes. However, case classes force a particulanpesition strategy (basically equivalent
to external visitors) and they do not enjoy of the same lef/glfme-safety when programming with

extensible datatypes — if we do not provide a catch-all cageeasy to get run-time errors.

Programming with Recursion Patterns The use of the functional notation with external visitors
allow us to have definitions that are, essentially, defingiby pattern matching. For example, if
we consider some kind of trees of integers, a possible font¢hat sums all the integers could be

written as:

def addTree= new VTregExternal int] {

def empty =0

def fork (x:int,| : Recr : Req = x + addTree(l) + addTree(r)
}

This style of definition has the advantage of being somewttaitive (due to the pattern match-
ing style) but, because recursion is used directly, thersdgi pattern in use is not immediately
apparent. It is often suggested, as a good programmingg®atiat recursion patterns should be
abstracted and used in definitions instead of this, moretlis¢yle. Recursion patterns are tradi-
tionally captured using higher-order functions. For exeanwe can capture the recursion pattern

of addTreeas afold and defineaddTreein terms of that operation instead.

def foldTreda] (k:a) (f:int=>a=a=a)(t:Tree:a=
t.accep{External a] (new VTregExternal a] {
def empty =k
def fork (x:int,| : Re¢r : ReqQ =
f (X) (foldTree(k) (f) (1)) (foldTree(k) (f) (r))})
def addTree(t : Treg = foldTree(0) X =1 =r = x+1+71) (1)

141

6.4. Applications of our Work 142

Although this style is suggested as good practice, therévayeproblems with it. Firstly, if
the programmer has just defined a new datatype he also nedd§irte the recursion patterns for
that datatype. Secondly, many programmers find the usaggloéiorder functions likéoldTree
counter-intuitive and are much more comfortable with aatkstyle definition by pattern matching.
With our library, however, the first problem is solved sineeursion patterns are generic and
provided automatically with the definition of a new visitéurthermore, we also benefit from the
library for the second problem because, by using visitoesget a pattern-matching-like notation
even with recursion patterns other than the one giveltxigrnal For example, using internal
visitors (which are equivalent tolds) we can writeaddTreein the following way:

def addTree= new VTreqInternal int] {
def empty =0

def fork (x:int,| : Recr:ReQ = x+1+r
}

We believe that, with this programming style, programmaeitshe more inclined to use recur-
sion patterns because they will not need any additiofiatteto use them and they will be able to

use an intuitive notation like pattern matching.

Less boilerplate and more reuse with DGP There has been a lot of work in functional pro-
gramming languages on DGP, but very little has been done jectbriented languages. Still,
many uses of generic programming — such as comparing twesdtu equality, pattern matching
on occurrences of a particular string in a value of some gagatserializing or deserializing values
or pretty-printing a value — would have important applioas in OO languages. Visitors devel-
oped with our library can benefit from generic programmirahteques, which leads to increased
reuse. Moreover, although the DGP component of our librasynficely with visitors, it can also

be used with other hierarchical structures like case ctagsedemonstrated in Section 4.3.3. In
essence all that needs to be done is to provide isomorphistwgén those structures and the cor-
responding sum-of-product representation. Furthern@eguse classes are essentially records (or

named products) these isomorphisms should be easy to define.

Semantics of datatypes Our library allows us to capture a family of visitors and pdms the

basic notation and tools to define functions over these sasiterg. Still, compared to datatypes

142

6.5. Future Work 143

found in functional programming languages, the notatiaarhead required by visitors is rel-

atively large, making them less convenient to use than ylagat Since visitors are encodings
of datatypes, a potential application of our work is to giveesmantics for datatypes (and pat-
tern matching) in a possible programming language extaensiich would solve the notational

problem. Our family of visitors is dficiently powerful to express (regular) parametric datasype
mutually recursive datatypes and even datatypes witheaxrisl components. This power means
that our family of visitors is capable to express most of Mld afaskell 98 algebraic datatypes
(the exception being nested datatypes and datatypes witinagariant recursive occurrences in

function spaces).

Compiler Optimizations ‘The Algebra of Programming’ provides a solid ground forseaing
about programs written with recursion patterns. Becaush &ind of visitor is associated with
a recursion pattern, we may hope to use all the algebra amaauision patterns to transform
inefficient programs intoféicient ones, which is one of the major applications of AoP. Wi@mes,
these kind of optimizations can be applied automaticallgamng that a compiler could do it.
However, as mentioned before, in the presence of di@ets, those laws do not hold. So in a
language like Scala we would need a static analyser thateshsioe absence of sidéfects before
trying to perform any optimizations, but in a language likasKell this kind of analysis would not

be necessary.

6.5 Future Work

In this section we discuss possible future work.

A Purely Functional Object-Oriented Language In Section 6.3 we compared Haskell and
Scala and described the advantages (and disadvantages)lofamguage in the development of
visitor and generic programming components. This compatris helpful to define what would be
an ideal language for such a development. As we have argltledyugh Scala is quite suitable for
the development of components, our library could benefinftbe absence of sidefects, which

is not ensured by Scala. However, this could be easily clthhgalisallowing side-ects in the
first place, making the language pure. A promising startiomtpwould be the work by Cremet

et al.(2006), which proposes a minimal core calculus that captun@ny of the Scala programming

143

6.5. Future Work 144

language constructs and does not have sfteets. Furthermore, it would also be interesting to add
datatypes as an extension, with a semantics inspired by aran the visitor pattern, and explore
the parametrization by decomposition strategy and extéitgion datatypes.

We believe that gurely functional object-oriented programming languagean overlooked
variation on programming languages — of course, by beinglgdunctional, we could raise the
question of whether it remains object-oriented, since nfiany people, a crucial point of object-
orientation is to have stateful objects. Although therdanguages that are purely functional (such
as Haskell and Clean) and other languages that are (impumejidnal object-oriented (such as
OCaml and Scala), there have been little attempts to defigeiteges that are both purely functional
and object-oriented — one exception was the prototype laggW’Haskell (Nordlander, 2000).
Our vision is a language where functions are pure and can tieedewith a clean syntax like
Haskell; where datatypes can be strategy-parametrizablexdensible; and we have a Scala-like

object system (instead of type classes and a Haskell-lilduhesystem).

A Library for Design Patterns In the same way that we can have a library fasrvrs, we
believe that many other design patterns could be expressadilaary using more expressive type
systems like the one found in Scala. For example, one otligrpahat we have been looking at
recently is theteraror. In Gibbons and Oliveira (2006) we showed thatekRNaL I TERATORS Can

be nicely modelled using a kind offectful traversal based on applicative functors (McBridd an
Paterson, 2007). Furthermore, because applicative fismbave a solid theoretical foundation in
terms of so-calledtrong lax monoidal functorsve expect to have a cleaner algebra for reasoning
about and optimizing programs using iterators — althougtiragge need to assume the absence of
side-dfects for the laws to hold. Thedraror pattern can also benefit from generic programming
because it is possible to define thEeetful traversal function generically (that is, using a g&n
function). This would be an advantage since, currentlynitegi a new iterator for some structure
is quite ad-hoc.

Therefore, we would like to develop a library supporting lthearor pattern, as well as explor-
ing the library possibility for other design patterns. Mawver, it would be interesting to explore
this library of design patterns in a setting like the one wecdéed before (a purely functional
object-oriented language) because we expect that ouryibcanponents enjoy of many algebraic

properties that can only be exploited with the guarantedséace of sideftects.

144

6.5. Future Work 145

Indexed Programming Programming languages are progressively allowing therpromer to
express more precise properties of their programs, in a tatycompilers can exploit for safety
and for dficiency. In particular, developments likeested datatype@@ird and Meertens, 1998),
indexed typeéXi and Pfenning, 1999), an@ADTs(Peyton Jonest al., 2006), allow the program-
mer to specify interesting properties that can be verifiedoatpile-time. For example, we can
capture properties about tehape of datgsuch as the dimensions of a matrix, or the balancing of
a tree) and thetate of componen{such as safety or security properties of an agent in a pojtoc
statically. In other words, these language mechanisms alkto lift properties of programs that
would otherwise be available only dynamically, if at alldamake them statically checkable and
analysable.

In this thesis we have explored a family of indexed types Watcalled the (one-parameter)
unnested GADTSs (or, in other words, GADTSs that are not nedédtypes), which has plenty of

applications but it is limited in two ways:

e Nested GADTs Our library does not (readily) support nested GADTS, beeaecursion
patterns for nested datatypes are non-trivial to defined(Bivd Meertens, 1998; Bird and
Paterson, 1999; Hinze, 1999; Margnal,, 2004) and yet our visitor library needs to support
different recursion patterns for the datatypes defined with @wéver, Johann and Ghani
(2007) have recently shown that it is possible to define arge@éurch encoding for nested
datatypes, which may be good starting point towards rengpthis limitation of our (in-

dexed) visitor library.

e Multiple type indexes Our library is currently limited to one type index but, idgawe
would like to allow any number of indexes. We know what theegahtemplate for multiple

arguments is:

accept method
Composite VT ... T,=VX; S Decompose S VS %= XzTy ... T
——

Visitor

and we know how to define visitor libraries for particularwed ofn. However, we have
not investigated yet how to translate from that template ent(usable and) linguistically
capturable arity-generic visitor library. We believe ttiagre are two possible directions that

we can take. The first direction would be a dependently-tygggatoach where the library

145

6.5. Future Work 146

would be parametrized by its arity. The problem that we sdh this approach is that, in a
language like Scala, parametrization by arity is hard t@agdish and, even if we can do it,
the library is probably going to $ier on usability. The second direction would be to create a
hierarchy of visitor components where the component hagdirityn + 1 would refine the
component handling arity. Basically, the type that we need to refine, at each compoisent
Xa, making use of the fact that7 <: X5 <: X (here, we use the notatio to indicate the

fact thatX is a type constructor with arguments).

If both limitations are overcome, we would basically havesiter library that is comparable in
expressive power to Haskell's GADTsita declarations, with the extra advantages of parametriza-
tion by decomposition strategy and extensibility. Funthere, programs that make use of these,
so-called, indexed datatypes can be hard to grasp and ttegyin¥olve additional boilerplate code
not present in the non-indexed versions (Gibbenal., 2007). We believe that DGP and strategy
parametrization (itself a form of DGP) may be helpful hereaaese the f€ort of stating properties

can be amortized over more programs.

Theoretical development In Section 6.2 we presented some results of our thesis froypex t
theoretic perspective. While we believe that these reswéisnteresting, our presentation is not a
proper formal treatment. Such a formalization of our workerdxample, using a type-theoretic or
categorical treatment — may bring further insights thatddne helpful to further simplify anar

increase the expressive power of our library.

146

BIBLIOGRAPHY 147

Bibliography
Alexandrescu, A. (2001 Modern C++ Design C++ In-Depth Series. Addison-Wesley.

Alimarine, A. and Plasmeijer, M. J. (2001). A generic pragmaing extension for Clean. In T. Arts
and M. Mohnen, editorsmplementation of Functional Languageslume 2312 ofLecture

Notes in Computer Scienggages 168—185. Springer-Verlag.

Aracic, |., Gasiunas, V., Mezini, M., and Ostermann, K. (@P0An overview of CaesarJ. In
A. Rashid and M. Aksit, editorsl. Aspect-Oriented Software Developmentdlume 3880 of
Lecture Notes in Computer Scienpages 135-173. Springer.

Arnout, K. (2004).Pattern ComponentizatioriPh.D. thesis, Swiss Institute of Technology.

Backhouse, R. C. and Hoogendijk, P. F. (1993). Elements efaional theory of datatypes. In
Proceedings of the IFIP TQ®/G 2.1 State-of-the-Art Report on Formal Program Develamme

Lecture Notes in Computer Science, pages 7—42, Berlinn§eriVerlag.

Backhouse, R. C., de Bruin, P. J., Hoogendijk, P. F., Mal¢dBn Voermans, E., and van der
Woude, J. (1992). Polynomial relators (extended abstralct) AMAST '91: Proceedings of
the Second International Conference on Methodology antv@cd Technologypages 303326,
London, UK. Springer-Verlag.

Bird, R. and Meertens, L. (1998). Nested datatypes. In Jirdgleditor,Proceedings 4th Int. Conf.
on Mathematics of Program Construction, MPC’98, MarstraBdieden, 15-17 June 199®I-
ume 1422 ol ecture Notes in Computer Scienpages 52—67. Springer-Verlag, Berlin.

Bird, R. and Paterson, R. (1999). Generalised folds forauegatatypesFormal Aspects of Com-
puting 11(2), 200-222.

Bird, R., de Moor, O., and Hoogendijk, P. (1996). Genericctional programming with types and

relations.Journal of Functional Programming(1), 1-28.

Bird, R. S. and De Moor, O. (1997Rnlgebra of Programmingvolume 100 ofnternational Series

in Computing SciencePrentice Hall.

Bohm, C. and Berarducci, A. (1985). Automatic synthesigypled lambda-programs on term
algebrasTheoretical Computer Sciencg(2-3), 135-153.

147

BIBLIOGRAPHY 148

Bringert, B. and Ranta, A. (2006). A pattern for almost cosiponal functions.SIGPLAN Not.
41(9), 216-226.

Brockschmidt, K. (1995)Inside OLE (2nd ed.)Microsoft Press, Redmond, WA, USA.

Broy, M., Deimel, A., Henn, J., Koskimies, K., Plasil, F.,iRberger, G., Pree, W., Stal, M., and
Szyperski, C. (1998). What characterizes a software coemorsoftware Concept& Tools
19(1), 49 - 56.

Buchlovsky, P. and Thielecke, H. (2005). A type-theoreticanstruction of the Visitor pattern.
In 21st Conference on Mathematical Foundations of ProgramgrSiemantics (MFPS XXIol-

ume 4 ofElectronic Notes in Theoretical Computer Science (ENTCS)

Chakravarty, M. M. T., Keller, G., and Peyton Jones, S. (A)0Associated type synonyms. In
ICFP '05: Proceedings of the tenth ACM SIGPLAN InternatioGanference on Functional
Programming pages 241-253, New York, NY, USA. ACM Press.

Chakravarty, M. M. T., Keller, G., Jones, S. P., and Marlow(ZD05b). Associated types with
class. INPOPL '05: Proceedings of the 32nd ACM SIGPLAN-SIGACT Syinposn Principles
of Programming Languagepages 1-13. ACM Press.

Cheney, J. and Hinze, R. (2002). A lightweight implemeptaif generics and dynamics. In
Haskell '02: Proceedings of the 2002 ACM SIGPLAN workshoplaskell pages 90-104, New
York, NY, USA. ACM Press.

Cheney, J. and Hinze, R. (2003). First-class phantom typeshnical report, CUCIS TR2003-
1901, Cornell University.

Church, A. (1936). An unsolvable problem of elementary nantheory. American Journal of
Mathematics58, 345-363.

Cox, B. J. (1990). Planning the software industrial reviolut IEEE Software magaziné&(6),
25-33.

Cremet, V., Garillot, F., Lenglet, S., and Odersky, M. (2DO&\ core calculus for Scala type
checking. InProceddings of Mathmatical Foundations of Computer S@ghecture Notes in

Computer Science. Springer-Verlag.

148

BIBLIOGRAPHY 149

Dijkstra, E. W. (1972). The Humble Programm&ommunications of the ACM5(10), 859—-866.

Ernst, E. (1999).gbeta - a Language with Virtual Attributes, Block Structused Propagating,

Dynamic InheritancePh.D. thesis, University of Arhus, Denmark.

Ernst, E. (2004). The expression problem, Scandinavide.styn P. Lahire and e. al., editors,
Proceedings of MASPEGHI 200l5RN I3SRR-2004-15-FR, Oslo, Norway. Laboratoire I3S,
Sophia Antipolis.

Forax, R., Duris, E., and Roussel, G. (2005). Reflectiorethamplementation of Java extensions:
the double-dispatch use-case SAC '05: Proceedings of the 2005 ACM Symposium on Applied
Computing pages 1409-1413, New York, NY, USA. ACM Press.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1E¥5ign Patterns: Elements of Reusable

Object-Oriented SoftwareAddison-Wesley.

Garrigue, J. (2000). Code reuse through polymorphic vegiain Workshop on Foundations of

Software Engineering, Sasaguri, Japan

Garrigue, J. (2004). Typing deep pattern-matching in presef polymorphic variants. I8SSST

Workshop on Programming and Programming Languages, Gamalgpan

Gibbons, J. (2003). Patterns in datatype-generic progiamnn J. Striegnitz, editoDeclarative
Programming in the Context of Object-Oriented Languaggmdala

Gibbons, J. (2006). Design patterns as higher-order dasgeggneric programs. WGP '06:
Proceedings of the 2006 ACM SIGPLAN Workshop on GenericrBnogning pages 1-12, New
York, NY, USA. ACM Press.

Gibbons, J. and Oliveira, B. (2006). The essence of thetttefaattern. In T. Uustalu and
C. McBride, editorsMathematically-Structured Functional Programmjmplume 4014 ot.ec-

ture Notes in Computer Scienc@pringer-Verlag.

Gibbons, J., Wang, M., and Oliveira, B. (2007). Generic agked programming. In M. Morazan,

editor, Trends in Functional Programming

Grothdt, C. (2003). Walkabout revisited: The Runabout. BEOOP 2003 - Object-Oriented
Programming pages 103-125. Springer-Verlag.

149

BIBLIOGRAPHY 150

Hall, C. V., Hammond, K., Jones, S. L. P., and Wadler, P. L9G)9 Type classes in Haske ACM
Transactions on Programming Languages and Syst&8(8), 109-138.

Harper, R. and Lillibridge, M. (1994). A type-theoretic apach to higher-order modules with
sharing. InConference record of POPL '94: 21st ACM SIGPLAN-SIGACT $gmm on Prin-
ciples of Programming Languaggsages 123-137, Portland, OR.

Hinze, R. (1999). Polytypic functions over nested datasypéscrete Mathematics and Theoretical
Computer Scien¢8&(4), 193-214.

Hinze, R. (2000). Polytypic values possess polykindedgype R. Backhouse and J. N. Oliveira,
editors, Proceedings of the Fifth International Conference on Math&cs of Program Con-
struction, July 3-5, 20Q0volume 1837 ofLecture Notes in Computer Sciengeges 2—27.
Springer-Verlag.

Hinze, R. (2003). Fun with phantom types. In J. Gibbons andi®©Moor, editors,The Fun
of Programming pages 245-262. Palgrave Macmillan. ISBN 1-4039-0772rdldak, ISBN
0-333-99285-7 paperback.

Hinze, R. (2004). Generics for the masseslGRP '04: Proceedings of the ninth ACM SIGPLAN
international conference on Functional programmjnmages 236—243, New York, NY, USA.
ACM Press.

Hinze, R. (2006). Generics for the mass#surnal of Functional Programming.6(4-5), 451-483.

Hinze, R. and Jeuring, J. (2001). Functional pearl: Weawirngeb. Journal of Functional Pro-
gramming (11(6)), 681-6809.

Hinze, R. and Loh, A. (2006). "scrap your boilerplate” rextmns. volume 4014 of ecture Notes
in Computer Scien¢pages 180-208.

Hinze, R. and Loh, A. (2007). Generic programming, now! IrBackhouse, J. Gibbons, R. Hinze,
and J. Jeuring, editor®atatype-Generic Programming, Advanced Lectusedume 4719 of

Lecture Notes in Computer Scien&pringer-Verlag.
Hinze, R. and Loh, A. (2008). Generic programming in 3d.

Hinze, R. and Peyton Jones, S. (2000). Derivable type dasseélaskell Workshop

150

BIBLIOGRAPHY 151

Hinze, R., Loh, A., and d. S. Oliveira, B. C. (2006). ‘Scrapuy Boilerplate’ reloaded. Ifunc-

tional and Logic Programming

Holdermans, S., Jeuring, J., Loh, A., and Rodriguez, AOG0O Generic views on data types.
In T. Uustalu, editorProceedings 8th International Conference on MathematicBrogram
Construction, MPC 2006volume 4014 ot ecture Notes in Computer Scienpages 209-234.
Springer-Verlag, Berlin.

Howard, W. A. (1980). The formulas-as-types notion of camton. In J. P. Seldin and J. R. Hind-
ley, editors,To H. B. Curry: Essays on Combinatory Logic, Lambda Calcudusl Formalism
pages 479-490. Academic Press. Reprint of 1969 article.

Huet, G. (1997). The Zippedournal of Functional Programming(5), 549-554.

Hughes, J. (1999). Restricted data types in Haskell. In Bjevieditor,Proceedings of the 1999
Haskell Workshopnumber UU-CS-1999-28.

Jan Martin Jansen, Pieter Koopman, R. P. (2005). Data typépattern matching by function
application.Proceedings Implementation and Application of Functidrerdiguages, 17th Inter-

national Workshop, IFLO5

Jansson, P. (2000).Functional Polytypic Programming Ph.D. thesis, Computing Science,
Chalmers University of Technology and Goteborg Univgr$Siveden.

Jeuring, J., Yakushev, A. R., Kiselyov, O., Gerdes, A., dBeira, B. C., and Jansson, P. (2007).

Comparing libraries for generic programming in Haskellpteparation.

Johann, P. and Ghani, N. (2007). Initial algebra semandienough! In S. R. D. Rocca, editor,
TLCA volume 4583 ot ecture Notes in Computer Scienpages 207—-222. Springer.

Jones, S. P., editor (2003laskell 98 Language and Libraries — The Revised Repgoambridge

University Press, Cambridge, England.

Kuhne, T. (1999).A Functional Pattern System for Object-Oriented DesiMerlag Dr. Kovac,
ISBN 3-86064-770-9, Hamburg, Germany.

151

BIBLIOGRAPHY 152

Lammel, R. and Peyton Jones, S. (2003). Scrap your baalierph practical design pattern for
generic programmingACM SIGPLAN Notices38(3), 26—37. Proceedings of the ACM SIG-
PLAN Workshop on Types in Language Design and Implementgfia.DI 2003).

Lammel, R. and Peyton Jones, S. (2004). Scrap more baterpleflection, zips, and generalised
casts. InProceedings of the ACM SIGPLAN International Conferenc&wmctional Program-

ming (ICFP 2004)pages 244-255. ACM Press.

Lammel, R. and Peyton Jones, S. (2005). Scrap your baierplith class: extensible generic
functions. InProceedings of the ACM SIGPLAN International Conferencé&wonctional Pro-
gramming (ICFP 2005)pages 204-215. ACM Press.

Laufer, K. (2003). What functional programmers can leaont the Visitor pattern. Technical

report, Loyola University Chicago.

Leroy, X. (1994). Manifest types, modules, and separatepdation. InProceedings 21st Annual
ACM Symposium on Principles of Programming Languagages 109-122.

Leroy, X., Doligez, D., Garrigue, J., Rémy, D., and Vouil|d. (2005) The Objective Caml system
Loh, A. (2004).Exploring Generic HaskellPh.D. thesis, Utrecht University.

Loh, A. and Hinze, R. (2006). Open data types and open fonsti INPPDP '06: Proceedings
of the 8th ACM SIGPLAN symposium on Principles and practfageglarative programming
pages 133-144, New York, NY, USA. ACM Press.

Loh, A., Jeuring, J., and al. (2005). The Generic Haskedtsis guide. Technical Report UU-CS-
2005-004, Utrecht University.

Malcolm, G. (1990). Data structures and program transftiomaSci. Comput. Program14(2-3),
255-279.

Martin, C., Gibbons, J., and Bayley, I. (2004). Disciplinefficient, generalised folds for nested
datatypesFormal Aspects of Computing6(1), 19-35.

McBride, C. and Paterson, R. (2007). Applicative prograngwith efects.Journal of Functional

Programming

152

BIBLIOGRAPHY 153

Mcllroy, M. (1969). Mass Produced Software ComponentsPrioceedings of NATO Conference
on Software Engineeringages 88-98, New York. Petrocéllharter.

Mcllroy, M. D., Pinson, E. N., and Tague, B. A. (1978). Unixg-sharing system forward. Trhe
Bell System Technical Journal. Bell Laboratorigsage 1902.

Meertens, L. (1992). Paramorphisnki®rmal Aspects of Computing(5), 413-425.

Meijer, E., Fokkinga, M., and Paterson, R. (1991). Fun&lgmogramming with bananas, lenses,
envelopes and barbed wire. In J. Hughes, edRooceedings 5th ACM Conf. on Functional
Programming Languages and Computer Architecture, FPCA@Ambridge, MA, USA, 26-30
Aug 1991 volume 523 ol_ecture Notes in Computer Scienpages 124-144. Springer-Verlag,

Berlin.

Meyer, B. (1997)Object-Oriented Software Constructiddpper Saddle River, N.J., Prentice Hall,
2nd edition.

Meyer, B. and Arnout, K. (2006). Componentization: The ¥isiexample. Computer 3%7),
23-30.

Moors, A., Piessens, F., and Joosen, W. (2006). An objeetiad approach to datatype-generic
programming. INWGP '06: Proceedings of the 2006 ACM SIGPLAN Workshop on Gene
Programming pages 96—106, New York, NY, USA. ACM Press.

Moors, A., Piessens, F., and Odersky, M. (2007). Towardalagghts for higher-kinded types. In

6th International Workshop on Multiparadigm ProgramminighaObject-Oriented Languages

Naur, P. and Randell, B., editors (1969%0ftware Engineering: Report of a conference spon-
sored by the NATO Science Committee, Garmisch, GermarlyO6tl 1968, Brussels, Scientific
Affairs Division, NATO

Nordlander, J. (2000). Polymorphic subtyping in O’'Haskel APPSEM Workshop on Subtyping

and Dependent Types in Programming

Norell, U. and Jansson, P. (2004). Polytypic programminigaskell. Inimplementation of Func-

tional Languagesvolume 3145 otf_ecture Notes in Computer Science
Norvig, P. (1996). Design patterns in dynamic programmingObject World 96 Boston, MA.

153

BIBLIOGRAPHY 154

Nystrom, N., Chong, S., and Myers, A. C. (2004). Scalablemsibility via nested inheritance. In
OOPSLA '04: Proceedings of the 19th annual ACM SIGPLAN Qente on Object-Oriented
Programming, Systems, Languages, and Applicatipagies 99-115, New York, NY, USA.
ACM Press.

Odersky, M. (2006a). An Overview of the Scala programmimgjieage (second edition). Technical
Report 1I@2006001, EPFL Lausanne, Switzerland.

Odersky, M. (2006b). Poor man’s type clasdestp: //lamp.epfl.ch/~odersky/talks/wg2.
8-boston06.pdf.

Odersky, M. (2007a). Scala by examplettp://scala.epfl.ch/docu/files/Scalalntro.
pdf.

Odersky, M. (2007b). The Scala language specification @er8i4. http://scala.epfl.ch/
docu/files/ScalaReference.pdf.

Odersky, M. and Zenger, M. (2005a). Independently extémsdplutions to the ex-
pression problem. InProceedings of Foundations of Object-Oriented Languag@s 1

http://homepages.inf.ed.ac.uk/wadler/fool.

Odersky, M. and Zenger, M. (2005b). Scalable componentadigins. INOOPSLA '05: Proceed-
ings of the 20th annual ACM SIGPLAN Conference on Objectrgte Programming, Systems,
Languages, and Applicationgages 41-57, New York, NY, USA. ACM Press.

Oliveira, B. and Gibbons, J. (2005). TypeCase: a desigrepafbr type-indexed functions. In
Haskell '05: Proceedings of the 2005 ACM SIGPLAN WorkshoHaskell pages 98-109, New
York, NY, USA. ACM Press.

Oliveira, B. C., Hinze, R., and Loh, A. (2006). Extensiblelanodular generics for the masses. In

Seventh Symposium on Trends in Functional Programppiages 109-138.

Palsberg, J. and Jay, C. B. (1998). The essence of the Vttern. InProc. 22nd IEEE Int.
Computer Software and Applications Conf., COMPSp&ayes 9-15.

Parigot, M. (1992). Recursive programming with proofheoretical Computer Scienc@4(2),
335-356.

154

BIBLIOGRAPHY 155

Peyton Jones, S., Vytiniotis, D., Weirich, S., and Washpb@n(2006). Simple unification-based
type inference for gadtsSIGPLAN Not.41(9), 50-61.

Pfister, C. and Szyperski, C. (1996). Why objects are notgmoin Proceedings, International

Component Users Conferenddunich, Germany. SIGS.

Scharli, N., Ducasse, S., Nierstrasz, O., and Black, AO80Traits: Composable units of behav-
ior. In Proceedings of European Conference on Object-Orientedyfdaraming (ECOOP’03)
volume 2743 oL ecture Notes in Computer Scienpages 248-274. Springer Verlag.

Schinz, M. (2007). A Scala tutorial for Java programmets.tp://scala.epfl.ch/docu/
files/ScalaTutorial.pdf.

Sheard, T. (2005). Putting Curry-Howard to work. Haskell '05: Proceedings of the 2005 ACM
SIGPLAN workshop on Haskeflages 74—85, New York, NY, USA. ACM Press.

Snyder, A. (1986). Encapsulation and inheritance in obpeieinted programming languages. In
OOPLSA '86: Conference proceedings on Object-OrientedyRrmming Systems, Languages
and Applicationspages 38—-45, New York, NY, USA. ACM Press.

Strachey, C. (1967). Fundamental concepts in programnaingulages. Lecture Notes, Interna-
tional Summer School in Computer Programming, Copenhageprinted inrHigher-Order and
Symbolic Computatiqri3(12), pp. 1-49, 2000.

Swierstra, W. (2008). Data types a la carte. Accepted fotigation in the Journal of Functional

Programming.

Szyperski, C. (1996). Independently extensible systenadtware engineering potential and chal-
lenges. InProceedings of the 19th Australian Computer Science CenéerMelbourne, Aus-

tralia.
Szyperski, C. (2002). Universe of composition.

Torgersen, M. (2004). The expression problem revisitedir F@w solutions using generics. In
M. Odersky, editorECOOP 2004—Object-Oriented Programming, 18th Europeanfé€ence,

Oslo, Norway, Proceedinggolume 3086 of_ecture Notes in Computer Scienpages 123-143.

Udell, J. (1994). Componentware. BY TE Magazingpages 46 — 56.

155

BIBLIOGRAPHY 156

VanDrunen, T. and Palsberg, J. (2004). Visitor-orientegypamming. IlProceedings of FOOL-11,
the 11th ACM SIGPLAN International Workshop on Foundatmfr@bject-Oriented Languagges
New York, NY, USA. ACM Press.

Wadler, P. (1989). Theorems for free! Rroceedings 4th International Conference on Functional
Programming Languages and Computer Architecture, FPCAI®&don, UK, 11-13 Sept 1989
pages 347—-359. ACM Press, New York.

Wadler, P. (1993). Monads for functional programming. In Btoy, editor, Program Design

Calculi: Proceedings of the 1992 Marktoberdorf Internatad Summer Schodbpringer-Verlag.
Wadler, P. (1998). The expression problem. Java Geneliiling list.

Wadler, P. (2003). A prettier printer. In J. Gibbons and OMimr, editors,The Fun of Program-
ming pages 223—-244. Palgrave Macmillan. ISBN 1-4039-077 2r@deeck, ISBN 0-333-99285-
7 paperback.

Weck, W. and Szyperski, C. (1996). Do we need inheritance.

Weirich, S. (2006). RepLib: a library for derivable typesdas. IrHaskell '06: Proceedings of the
2006 ACM SIGPLAN workshop on Hask@ladges 1-12, New York, NY, USA. ACM Press.

Xi, H. and Pfenning, F. (1999). Dependent types in practcaramming (extended abstract).
In A. Aiken, editor,Proceedings of the Symposium on Principles of Programmargluages

pages 214-227, San Antonio, Texas.

Xi, H., Chen, C., and Chen, G. (2003). Guarded recursiveyfagaconstructors. IRroceedings of
the 30th ACM SIGPLAN-SIGACT symposium on Principles of ragiing Languagegages
224-235. ACM Press.

Zenger, M. and Odersky, M. (2001). Extensible algebraiatyaes with defaults. IhCFP '01:
Proceedings of the sixth ACM SIGPLAN International Confeezon Functional Programming
pages 241-252, New York, NY, USA. ACM Press.

156

Index

CowmposITE, 37

OBSERVER, 30

VISITOR, 46, 47
functional, 39
imperative, 39

internal, 109
abstract type, 34

Church numerals, 54
COP, 8, 30

deserialization, 100
DGP, 8

EMGM, 136

equality, 60, 63

existentially quantified datatype, 68, 86
expression problem, 107

extensibility, 101

fixpoint view, 99

functor, 92

GADT, 88

generic function, 110, 124
generic pretty print, 114
generic show, 111
generic size, 82, 89

GM, 77

implicit parameter, 78

isomorphism, 80, 115
local redefinition, 82

mutually recursive datatype, 67

mutually recursive function, 126
Omega, 68, 138

parametric datatype, 66, 80
paramorphic visitor, 70, 91, 132
paramorphism, 70

Parigot numerals, 51

pretty printing, 121
reuse, 102
serialization, 98
type class, 78

visitor library, 7

157

Appendix A

Functional Specification of the MsiTor

Library in Haskell

The typeu is expressed in Haskell as:

newtype Mu v= Mu (Ya s Decompose s> v(svd a— a)
In Haskell we can use type classes to implenigatcompose and make that argument implicit.
The clasDecomposand the operatiodecare defined as:

classDecompose where
dec:v(svda—- Muv—-sva

Internal andExternalvisitors and the corresponding instance®etomposare declared as:

newtypeInternal (v:: = —» * — %) a = F{get:: a}
newtype External v a =C (Muv)
instanceDecompose Internakhere
dect(Muu) =F (ut)
instanceDecompose Externavhere
dec_ =C

We show how to encode natural numbers using the library next

data NatF r a= NatF{z::a,s::r — a}

type Nat = Mu NatF
zero :: Nat
zero = Mu z

suc :: Nat— Nat
suc n= Mu (Av — s v(dec v 1)

158

159

and give two examples: the first one, using a Church encodiegdn internal visitor), converts
a natural to a built-in integer; the second one using a Paggooding (i.e. an external visitor)
defines the predecessor function, which is hard to defineaw@hurch encoding.

tolnt:: Nat — Int
tolnt (Mu n) = n visitor
where visitor :: NatF (Internal NatF Inj Int
visitor = NatF{z=0,s= A(F X) - x+ 1}
predessessar Nat — Nat
predessessdiMu n) = n visitor
where visitor :: NatF (External NatF Na) Nat
visitor = NatF{z = error "Ops!",s= A(C X) — X}

159

Appendix B

Translation of Datatypes

In this appendix we sketch, more formally, how the translabetween a datatype-like declaration
and visitors proceeds. In Section 3.8 we have examples dfdhslation scheme. Before we start
detailing the translation, we note that the extensivelyduseerline notationE is just syntactic
sugar to avoid the proliferation of indexes. So, generakyhave that:

?E El...En

We start by considering a mutually-recursive set of daatygclarations of the form:

dataTa = de Ct

As explained, the overline notation ranging overdiaéa declaration means that there @re. .. T,
mutually-recursive datatypes. Each individual datatygednset of type parametéss and a set of
constructorsC . Each constructdE; can have a number of existentially-quantified type argusient
e and has, itself, a set of parametdrs

We should note that when we mention that we have a set of niytigglursive set of datatypes,
we mean it strictly. For example

data List a= Nil | Cons a(List @)
data Tree a= Empty| Fork a(Tree g (Tree 3

are notmutually-recursive and the translation of the two datasypeoceeds by considering two
sets of declarations independently: the first set wiithata List a} and the second set with
{data Tree &. In contrast, the following two datatype declarations

data RoseTree & Fork a (Forest 9

160

161

data Forest a= Nil | Cons(RoseTree p(Forest g

are mutually-recursive becauseoseTrealepends orrorestand vice-versa. So, in this case, the
translation proceeds by considering the &ddita RoseTree alata Forest g.

The translation imposes some restrictions on the form altylpe declarations.

e The first restriction is that mutually-recursive datatypes... T, must all have the same
number of type argumenta..
e The second restriction is that we cannot have nested datatffor example

data PTree a= PEmpty| PFork a(PTree(a, a))

is not allowed because the recursive ocurrence B/eeis nested. This restriction is im-
posed by the fact that we consider generic encodings. If wsideredParigot encodings

only, this would not be problematic.

e The third restriction is that we cannot have recursive aenges on negative positions of

functional arguments. For example:

data Value= Number Int| Func(Value— Value

is not allowed because a recursive occurrenc¥abfie appears at a contravariant position
in a function space. Again, the reason for this restrictias to do with the fact that we
are considering generic encodings. This would not be a prolif we consideredParigot

encodings only.

¢ Finally, the translation does not consider the existencatdtypesvith higher-ranked types.

For example:

data GTree g a= Fork a(g (GTree g 9)

is not allowed because the type parametbas a higher-ranked type.

For the set of datatypds ... T, we generate a corresponding number of concrete visitaas (th
is, traits that extendéisitor) and composites (which are just type synonymSaoonpositg¢T Visitori[a]]).

This step of the translation is shown next:

161

162

trait TVisitor[a] extendsVisitor {
def mref, : TVisitorp[@] {type X = TVisitor.this.X; type S= TVisitor.this.S}

def c[€] genType(dataT a, tc): X
}
type T[@] = Composit¢TVisitor[a]]

Each of the visitord Visitor;[a]] hasn — 1 mref, , which are the mutually-recursive references
to other visitors. For example, the typeist and Treeabove would have éhref methods because
they do not have any mutually-recursive references. Howavéhe case oRoseTreendForest
there would be one reference to tReseTreeVisitovisitor in ForestVisitorand one reference to
the ForestVisitorin RoseTreeVisitorFor each constructd@®; of the datatype we would also have a
corresponding method with its parameter body being computed ¢pgnType which we discuss
later.

For each constructdC; on a datatypél; we need to generate a constructor definition. We

outline this translation next:

def C[€,a](tc): T[@]=newT[@a] {
def accep{s <: Strategyx] (vis: TVisitor[a] {type X = x;type S=s})
(implicit decomposeDecomposEs]) : X =
visc[€] genBody(vis, dataT & , t¢)

A constructolC; has a set of type arguments composed of the'setsida and its type signature
is just a syntactic variatiort ¢ of t properly adapted to Scala’s syntax. Taeceptmethod of
Compositds implemented by invoking the corresponding metlepdn the visitor and the argu-
ments ofc; are computed bgenBodythat we discuss next.

The type and the bodies of the visit methagl€orresponding to a constructGr are, respec-

tively, computed by the functiorgenTypeandgenBodydefined as follows:

genType(dataTa , t) =
{v: casestatusOf(t’) of
Recursive — R[TVisitor[a]]
MutualRec— R[TVisitorp[@a]]
NonRec —1t
|t « t,v < fresh)
genBody(vis, dataTa , t) =
{casestatusOf(t’) of

Recursive — decomposededTVisitor[a], X] (vis, V)
MutualRec— decomposédedTVisitorp[@], x] (vismrefy, v)

162

163

NonRec —vVv
|t « 1,V « fresh)

Both functions take the set of mutually-recursive datasyaed the set of constructor arguments
't into account; and both functions are defined by checking hdretach type’ in 't is either
recursive(a reference to the same datatype that is being defined); atwaity-recursive reference
(a reference to one of the datatypes in the set of mutuatlyrséve definitions); or if it it just

non-recursive.

163

Appendix C

Paramorphic Visitors Specification

In this appendix, we present the functional specificationg@ramorphic visitors. We start by
defining a datatype for the decomposition strategy and thregjponding instance &@fecompose

newtypePara v a= P (a, Mu V)

instance Decompose Parahere
dec t(Mu u) = P (u t, Mu u)

We then define the functiondusandtimesthat will be used to define factorial.

plus:: Nat — Nat — Nat
plus (Mu n) m = n visitor
where visitor :: NatF (Internal NatF Naj Nat
visitor = NatF{z=m,s = A(F xX) — succ ¥
times:: Nat - Nat — Nat
times(Mu n) m = n visitor
where visitor :: NatF (Internal NatF Naj Nat
visitor = NatF{z = zerqgs = A(F X) — plus x m}

Finally, we define factorial as:

fact:: Nat — Nat
fact (Mu n) = n visitor
where visitor :: NatF (Para NatF Naj Nat
visitor = NatF{z = succ zerps = A(P (X, y)) — times x(succ y}

164

Appendix D

Paramorphic Visitors

Here we present the full Scala code for Section 3.8.4. Thamparphic decomposition strategy is
defined with the following code:

trait Para extendsStrategy
type Y = Pair[X, Composit¢V]]
}
implicit def para: DecomposfPara] = new DecomposfPara] {
def dedv <: Visitor, x] (vis: v {type X = x; type S= Para}, comp: Composit¢v]) =
new Para {type V = v; type X = X;
def get = Pair[x, Composit¢v]] (compaccept(vis), comp}
}
implicit def para2pair[v <: Visitor, X]
(x: Para{type V >: v; type X = x}) : Pair[x, Composit¢v]] = x.get

A visitor for peano numerals, that is going to be used by oangxe, can be defined as follows:

trait NatVisitor extendsVisitor {
type Rec= R[NatVisitor]
def zero: X
def succ(n: Reqg: X
}
type Nat = Composit¢NatVisitor]

case clasZeroextendsNat {
def accep{s <: Strategyx] (vis: NatVisitor{type X = x; type S=s})
(implicit decomposeDecomposEs]) : x =
vis.zero

}

case classSucc(n: Nat) extendsNat {
def accep{s <: Strategyx] (vis: NatVisitor{type X = x; type S=s})
(implicit decomposeDecomposEs]) : x =

165

166

vis.succ(decomposeéec(vis, n))
}
abstract classVNat[s <: Strategyb] (implicit decomposeDecomposks])
extendsVisitorFundNatVisitor, s, b] (decompose
with NatVisitor

Next we implement addition and multiplication on naturalsgdfstandsndon pairs.

def plus(m: Nat) : Nat = Nat = new VNat[Internal Nat] {
def zero =m
def succ(n: Req = Succ(n)
}
def mult (m: Nat) = new VNat[Internal Nat] {
def zero = Zero
def succ(n: Reqg = plus(n) (m)
}
def fst[a, b] (x: Pair[a, b]) : a = x match {casePair (f,s) = f}
def snd[a, b] (x: Pair[a, b]) : b = x match {casePair (f,s) = s}

Finally, we can define the factorial function as:

def fact: Nat = Nat = new VNat[Para, Nat] {
def zero = Succ(Zero)
def succ(n: Req = mult (fst (n)) (Succ(snd(n)))

}

166

Appendix E

Serialization Library

This is the full code for the serialization library presahie Section 4.6.

object Serialization{
def repeat(c: char,times: int) : String={
var sb: StringByfer = new StringBufer ()
var t = times
while (t > 0) {
shappend(c);
t=t-1,
}
return shtoString();
}
def encodelntegra(x : int, size: int) : String={
def s = IntegertoBinaryString(x);
return (repeat(’0’, size— slength()) +s)
}
def encodelnt(x : int) = encodelntegra(x, 32)
def encodeChalx : char) = encodelntegra{x.asinstanceOfint], 8)
def exp(x:int,y:int) :int = {
vari=0;
var value= 1;
while (i < y) {
value= x = value
i=i+1
}
return value
}
def decodelntegra(x: String) : int = {
def sb: StringByfer = new StringBufer (x).reverse();
def len = x.length();

167

168

var value= 0;
vari:int =0:;
while (i < len) {

if (shcharAt(i).equals(’1’)) value= exp(2,i) + value
i=i+1

return value

}

def decodelnt(x : String) : Prod][int, String] = {
def rest: String= x.substring(32)
def value= x.substring(0, 32)

return Prod (decodelntegra(valug, resi)

}

def decodeChalx : String : Prod[char, String] = {
def rest: String= x.substring(8)
def value= x.substring(0, 8)

return Prod (decodelntegra{valué.asinstanceOfchar], resf)

}

// A new generic function

trait SerializeextendsTypeConstructof

}

def serialize(x : A) : String

trait MySerializeextendsGeneric{

}

type G = Serialize

def unit = new Serialize{type A = One def serialize(x: A) = ""}
def int = new Serialize{type A = int; def serialize(x : A) = encodeln{x)}
def char = new Serialize{type A = char; def serialize(x: A) = encodeChakx)}
def plus[a,b] (a: G {type A= a},b: G {type A = b}) = new Serialize{
type A = Plug[a, b]
def serialize(x : A) = x.accept(new PlusVisitofa, b, String] {
definl (y:a) = "0" + a.serialize(y)
definr (z: b) = "1" + b.serialize(2)
D)
}
def prod[a, b] (a: G {type A = a},b: G {type A = b}) = new Serialize{
type A = Prod[a, b]
def serialize(x : A) = x.accept(new ProdVisitor[a, b, String] {
def prod (y: a,z: b) = a.serialize(y) + b.serialize(2)
D)
}
def view[a, b] (iso: Iso[b, a], a: = G {type A = a}) = new Serialize{
typeA=Db
def serialize(x : A) = a.serialize(iso.from (X))

}

168

169

def testVal= Cons(3, Cons(4, Nil[int]))
implicit object mySerialextendsMySerialize
def serial[t] (x: t) (implicit r : Redt]) : String=
r.rep (mySeria).serialize(x)
def serialSumProdif <: TypeConstructdr(x : SumProdf]) (implicit fr : FRedf]) =
x.accepf{internal, String] (new VSumProdinternal f, String] {
def seriala= new Serialize() {
type A = Rec
def serialize(x : A) : String= x
}
def visit (x: f {type A = Reg) = fr.frep[Serialize Red (serialg).serialize(x)
)
def testSer= serialSumProdtestVa) (listFRep

trait DeSerializeextendsTypeConstructof
def deSerializgx : String) : Prod[A, String]
}

trait MyDeSerializeextendsGeneric{
type G = DeSerialize

def unit = new DeSerializg
type A = One
def deSerializgx : String = Prod[A, String] (One "")
}
def int = new DeSerializg
type A = int;
def deSerializgx : String = decodelnt(x)
}
def char = new DeSerializg
type A = char,
def deSerializgx : String = decodeChaix)
}
def plus[a,b] (a: G {type A= a},b: G {type A = b}) = new DeSerializg
type A = Plug[a, b]
def deSerializgx : String) : Prod[Plus[a, b], String] =
if (x.substring(0, 1).equals("0")) {
def prod = a.deSerializgx.substring(1))
return Prod (Inl (prod.fst), prod.snd
} else {
def prod = b.deSerializgx.substring(1))
return Prod (Inr (prod.fst), prod.snd
}
}
def prod[a, b] (a: G {type A = a},b: G {type A = b}) = new DeSerializ€
type A = Prod[a, b]
def deSerializgx : String) : Prod[Prod[a, b], String] = {
def prod1l = a.deSerializgX)

169

170

def prod2 = b.deSerializgprodlsnd
return Prod (Prod (prodl1fst, prod2fst), prod2snd
}
}
def view[a, b] (iso: Iso[b, a], a: = G {type A = a}) = new DeSerializ¢
type A=Db
def deSerializgx : String) : Prod[b, String] = {
def prod = a.deSerializgXx)
return Prod (iso.to (prod.fst), prod.snd
}
}
}

implicit object myDeSeriakxtendsMyDeSerialize
def deSeria[t] (x: String) (implicit r : Re(dt]): t =
r.rep (myDeSerigdl.deSerializgx).fst
def deserialAux= new DeSerializg
type A = String
def deSerializgx : String) : Prod[A, String] = Prod (x,"")
}
def deSerialSumProd <: TypeConstructgr
(x: String) (implicit fr : FRedf], funct: Functor[f]) : SumProdf] =
ana[f, String] ((y : String) =
fr.frep[DeSerializeString] (deserialAu) deSerializgy).fst) (X)

170

Appendix F

Functional Specification for Indexed

VISITORS

Here we present the Haskell code for the functional spetificaf indexed visitors, starting with
the composite that captures our family of indexed visitergiven by:

newtypeMu v t= Mu (Ya s Decompose s> v(svga— at)
As before, we have two strategies (one for internal and onexiernal visitors).

newtype Internal (f :: (+ —) - (x = %) - %) at= F{get:: a t}
newtype External f (a:: « — %) t = C{getC:: Mu f t}

The clasDecomposand its two instance are defined as:

classDecompose where
dec:v(svda—- Muvt—osvat

instanceDecompose Internakhere
dect(Muu) =F (ut)

instanceDecompose Externavhere
dec_=C

Now we show one concrete example of an indexed visitor thateacaptured with this new
version of the library:

data Generic r g= Generid
unit ::g (),
int :gint
prod::Yabra—-rb—-g(ab)
}

171

172

The Genericrecord is a simplified version of the visitor used in GM. We a#so encod®kep
as follows:

classRep twhere
rep:: Decompose s> Generic(s Generic §g — gt

instanceRep() where
rep = unit
instanceRep Intwhere
rep = int
instance(Rep aRep) = Rep(a, b) where
rep gen= prod gen(dec gen(Mu rep)) (dec gen(Mu rep))

Finally we show how to define a generic function that addshadl integers contained in a
structure using internal visitors and external visitors.

newtype GCount t= GCounfcount:: t — Int}

gcount:: Rept=t — Int
gcount= count(rep$ Generid
unit = GCount(const0),
int = GCount id
prod = A(F ra) (F rb) —» GCount(A(x,y) — count ra x+ count rb y})

gcount2: Rep t=t — Int
gcount2= count(rep fung
where func= Generig
unit = GCount(const0),
int = GCount id
prod = A(C (Mu ra)) (C (Mu rb)) —
GCount(A(x,y) — count(ra fung x + count(rb fung y)}

172

Appendix G

Functional Specification for the Family of

Sums of Products

The following code defines a visitor that can handle sums edpets. We first define, as usual, a
concrete visitoSumProdFand a composit&umProd

newtype SumProdF f r a= SumProdvisit:: f r — a}
type SumProd f = Mu (SumProdF j

The constructomF and the deconstructoutF are given by:

inF :: Functor f = f (SumProd j — SumProd f
inF t = Mu (Av — visit v (fmap(dec V t))

outF :: Functor f = SumProd f— f (SumProd j
outF = geto dec(SumProdfmap(inF o get))

We consider parametric lists as one example of a datatypedhebe defined using our visitor
based on sums of products.

newtype ListF a r = ListF{listF :: Either () (a,r)}
type List a= SumProd(ListF a)

instance Functor (ListF a) where
fmap f (ListF (Left())) = ListF (Left ()
fmap f (ListF (Right(x, x9))) = ListF (Right(x, f x9))
nil ;- List a
nil = inF (ListF (Left()))
cons ;a— Lista— Lista
cons x xs= inF (ListF (Right(x, x9)))

173

174

Finally we show how we can define recursion patterns:

cata:: Functor f = (f a —» a) » SumProd f— a
cata v(Mu m) = m (SumProdv o fmap ge})

ana:: Functorf= (a— f @) > a— SumProd f
ana ¢ x= Mu (Av — visit v (fmap(dec vo ana g (c X)))

174

Appendix H

Extensible Visitors Using Abstract Types

Here we present the code for Section 5.5. We start with tliteErdensibleGMVisitar

trait ExtensibleGMVisitof
type Gen<: Generic
type GenWitHx <: TypeConstructars <: Strategy = Gen{type X = X; type S= s}
trait GenericextendsVisitor {
type Redt] = R[Gen]
def unit : X {type A = Ong}
defint : X {type A = int}
def char: X {type A = char}
def plus[a, b] (a: Reda],b: Redb]) : X {type A = Plus[a, b]}
def prod[a, b] (a: Reda],b: Redb]) : X {type A = Prod[a, b]}
def view[a, b] (iso: Iso[b, a], a: = Reda]) : X {type A = b}
}
type RedT] = Composit¢Gen T]
implicit def RUnit= new RedOng] {
def accep{s <: Strategyx <: TypeConstructdr
(vis: Gen{type X = x; type S = s}) (implicit decomposeDecomposEs])
: X {type A = One} = vis.unit
}
implicit def RInt= new Redint] {
def accep{s <: Strategyx <: TypeConstructdr
(vis: Gen{type X = x; type S = s}) (implicit decomposeDecomposEs])
X {type A = int} = visint
}
implicit def RChar= new Regchar] {
def accep{s <: Strategyx <: TypeConstructdr
(vis: Gen{type X = x; type S= s}) (implicit decomposeDecomposs])
: X {type A = char} = vis.char

175

176

implicit def RPluda, b] (implicit a: Reda], b: Regb]) : RegPlus[a, b]] =
new RedPlus[a, b]] {
def accep{s <: Strategyx <: TypeConstructdr
(vis: Gen{type X = x; type S= s}) (implicit decomposeDecomposs])
X {type A = Plus[a, b]} =
vis.plus (decomposéec(vis, a), decomposeéec(vis, b))
}
implicit def RProd[a, b] (implicit a: Reda], b: Regb]) = new RegProd[a, b]] {
def accep{s <: Strategyx <: TypeConstructdr
(vis: Gen{type X = x; type S= s}) (implicit decomposeDecomposks])
: X {type A = Prod[a, b]} =
vis.prod (decomposeec(vis, a), decomposéec(vis, b))
}
trait SizeextendsTypeConstructof
def size(x: A) :int
}
trait MySizerequires GenWitl Size Internal] extendsGeneric{
type X = Size
type S= Internal
def unit = new Size{type A = One def size(x: A) = 0}
def int = new Size{type A = int; def size(x: A) = 0}
def char = new Size{type A = char, def size(x: A) = 0}
def plug[a, b] (a: Reda],b: Redb]) = new Size{
type A = Plug[a, b]
def size(x: A) = x.accept(hew PlusVisitora, b, int] {
def inl (y: a) = a.getsize(y)
definr (z: b) = b.getsize(2)
N
}
def prod[a, b] (a: Reda],b: Redb]) = new Size{
type A = Prod[a, b]
def size(x: A) = x.accept(hew ProdVisitor[a, b, int] {
def prod (y: a,z: b) = a.getsize(y) + b.getsize(2)
)
}
def view[a, b] (iso: Iso[b, a], a: = Reda]) = new Size{
type A=Db
def size(x: A) = a.getsize(iso.from (X))
}
}

Next we present the code required to support lists:

trait ExtensibleGMLisextendsExtensibleGMVisitof
type Gen<: Generic

176

177

trait GenericextendssuperGeneric{

def list[a] (a: Reda]) : X {type A = List[a]}
}
implicit def RList[a] (implicit a: Reda]) : RedList[a]] = new RegdList[a]] {

def accep{s <: Strategyx <: TypeConstructdr
(vis: Gen{type X = x; type S = s}) (implicit decomposeDecomposEs])
X {type A = List[a]} =
vislist[a] (decomposeec(vis, a))

The traitExtensibleGMConstadds support for meta-information.

trait ExtensibleGMConstextendsExtensibleGMVisitof
type Gen<: Generic

trait GenericextendssuperGeneric{

def consti{a] (name: String arity : int,g: Reda]) : X {type A = a}
}
def RConstfa] (name: String arity : int,a: Regda]) : Rega] = new Refda] {

def accep{s <: Strategyx <: TypeConstructgr

(vis: Gen{type X = x; type S = s}) (implicit decomposeDecomposEs])
‘X{type A=a} =
vis.constr(namearity, decomposeec(vis, a))

}

trait PPrint extendsTypeConstructof
def pprint (x : A) : Document
}
trait GenericPrintrequires GenWitl{PPrint, Externall extendsGeneric{
type X = PPrint
type S= External
def unit = new PPrint {type A = One def pprint (x: A) = empty
def int = new PPrint {type A = int; def pprint (X : A) = text (x.toString()) }
def char = new PPrint {type A = char, def pprint (x: A) = text (x.toString())}
def plus[a, b] (a: Reda],b: Redb]) = new PPrint {
type A = Plug[a, b]
def pprint (x : A) = x.accept(new PlusVisitofa, b, Document {
def inl (y: a) = a.getaccept(GenericPrintthis).pprint (y)
def inr (z: b) = b.getaccept(GenericPrintthis).pprint (2)
D)
}
def prod[a, b] (a: Reda],b: Redb]) = new PPrint {
type A = Prod[a, b]
def pprint (x : A) = x.accept(new ProdVisitor[a, b, Document {
def prod (y: a, z: b) = a.getaccept(GenericPrintthis).pprint (y) :: break::
b.getaccept(GenericPrintthis).pprint (2)

177

178

D)
}

def view[a, b] (iso: Iso[b, a], a: = Reda]) = new PPrint {
type A=Db
def pprint (x : A) = a.getaccept(GenericPrintthis).pprint (iso.from (X))
}
def consti{a] (name: String arity : int, a: Reda]) = new PPrint {
typeA=a
def s = text(hamg
def pprint (x: A) = if (arity = 0) selse
group (nest(1, (text(" (") :: s:: break::
a.getaccept(GenericPrintthis).pprint (x) :: text(")"))))
}
}
def pretty[t] (x:t) (implicit r : Redt],v: GenWitHPPrint, External]) = {
var writer = new OutputStreamWrite(Systenout);
r.accept(v).pprint (x).format (80, writer);
writer.flush();
}
def prettyDodt] (x:t) (implicit r : Redt], v: GenWitHPPrint, External) =
r.accept(v).pprint (x)

The traitExtensibleGMListConstnses mixin composition to merge meta-information and list

support.

trait ExtensibleGMListConstxtendsExtensibleGMConstwith ExtensibleGMList
type Gen<: Generic
trait GenericextendssupefExtensibleGMConsirGeneric
with supel ExtensibleGMListGenericf{
}
trait GenericPrintrequires GenWitH{PPrint, External
extendssuperGenericPrintwith Generic{
override def list[a] (a: Reda]) : PPrint {type A = List[a]} = new PPrint {
type A = List[a]
def pprint (x: A) = pprintl (X) (a.get GenericPrintthis)
}
}
def pprintl[a] (x: List[a]) (implicit a: Reda],v: GenWitHPPrint, External)
: Document= x.accep{E, Document (new VList[E, a, Documeni {
def rest (I : List[a]) : Document=
l.accepf{l, Documen} (new VList[l, a, Document {
def nil = text("]1")
def cons(y: a,ys: ReqQ = text(",") :: break:: a.accept(v).pprint (y) :: ysget

D)

178

179

def nil =text("[1")
def cons(y: a,ys: Req = group(nest(1,text("[") :: a.accept(v).pprint (y) ::
rest(ysge?))

Finally we show how to support the string notation. This codgesponds to the workaround

that we had to use since the solution presented in Sectidiaifs3vith the following error:

name clash between defined and inherited member:
method list:[a] (GenericPrint.this.Rec[a])
thesis.Chapter5.PPrint{type A =
thesis.Chapter3.VisitorLib.Composite[
thesis.Chapter4.Lists.ListVisitor[a]]} and
method list:[a] (GenericPrint.this.Rec[a])
thesis.Chapter5.PPrint{type A =
thesis.Chapter3.VisitorLib.Composite[
thesis.Chapter4.Lists.ListVisitor[a]l]}
in trait GenericPrint have same type after erasure:

(thesis.Chapter4.IndexedVisitorLib#External)thesis.Chapter5.PPrint

when trying to compile the trafBenericPrint

trait GenericPrintrequires GenWi it PPrint, Externall extendssuperGenericPrint{
override def list[a] (a: Reda]) : PPrint {type A = List[a]} = new PPrint {
type A = List[a]
def pprint (x: A) = pprintl (X) (a.get GenericPrintthis)
}
override def consti{a] (name: String arity : int,a: Reda]) = new PPrint {
typeA=a
def s = text(namg
def pprint (x: A) = if (arity = 0) selse
group (nest(1, (text(" (") :: s:: break::
a.rep (GenericPrintthis).pprint () :: text(")"))))

We are unsure of what the problem is here and the error messagevery helpful since the
reported signatures for the methods are the same! Nonsthée workaround consists of adding

string support at the same time we merge meta-informatidrisihsupport.

179

180

trait ExtensibleGMStringHackxtendsExtensibleGMConstwith ExtensibleGMList
type Gen<: Generic
trait Genericextendssupel{ExtensibleGMConsjrGeneric
with supelExtensibleGMListGeneric
def pprintl[a] (x: List[a]) (implicit a: Reda],v: GenWitHPPrint, External)
: Document= x.accep{E, Document (new VList[E, a, Documeni {
def rest(l : List[a]) : Document=
l.accepfl, Documen} (new VList[l, a, Documeni {
def nil =text("]1")
def cons(y: a,ys: Reg = text(",") :: break:: a.accept(v).pprint (y) :: ysget
D)
def nil = text("[1")
def cons(y: a,ys: Req = group(nest(1,text("[") :: a.accept(v).pprint (y) ::
rest(ysged))
)
trait PPrintList extendsTypeConstructof
def pprintList (x : List[A]) : Document
}
implicit def defPrint: GenWitHPPrint, Externall
// A generic functiorwith default
trait GenericDefauliextendsGeneric{
type S= External
def defltfa] (a: Refa]) : X {type A = a}
def unit = deflt(RUnNit)
defint = deflt(RInt)
def char = deflt (RChan)
def plus[a, b] (a: Reda],b: Redb]) : X {type A = Plus[a, b]} =

deflt (RPlus(a.get b.ge?)

def prod[a, b] (a: Reda],b: Redb]) : X {type A = Prod[a,b]} =
deflt (RProd(a.get b.ged)

def consti{a] (name: String arity : int,a: Reda]) : X {type A=a} =
deflt (a.ged

override def list[a] (a: Reda]) : X {type A = List[a]} = deflt(RList (a.gel)
}
trait GenericPrintListrequires (GenWitH{PPrintList, External] with GenericDefauly
extendsGenericDefaulf
type X = PPrintList
def defltfa] (a: Refa]) = new PPrintList {
type A =g
def pprintList (x : List[A]) = prettyDoc(x) (RList(a), defPrinj
}
override def char = new PPrintList {
type A = char

def pprintList (x: List[char]) =

180

181

text("\"" + (x.accepfl, String] (new VList[l, Char, String] {
def nil ="\""
def cons(y: A, ys: Reqg = y.toString() + ys
H))
}

def view[a, b] (iso: Iso[b, a], a: = Reda]) = new PPrintList {
type A=Db
def pprintList (x : List[A]) =
pprintl (
x.accepfl, List[a]] (new VList[l, A, List[a]] {
def nil = Nil[a]
def cons(x: A, xs: Req = Cons(iso.from (x), xsgef)
D) (a.get defPrin
}
}
// object printList
implicit def defPrintList: GenWitH{PPrintList, External
def prettyListDodt] (x: List[t]) (implicit r : Reft], v: GenWitl{PPrintList, External)) =
r.accept(v).pprintList (x)
trait GenericPrintrequires GenWitH{PPrint, External
extendsGenericwith superGenericPrint{
override def list[a] (a: Reda]) : X {type A = List[a]} = new PPrint {
type A = List[a]
def pprint (x : A) = prettyListDoc(x) (a.get defPrintLis)
}

181

Appendix |

A Functional Specification in Omega

The Omega programming language has a syntax inspired byeladke code that we will
show in this appendix should, therefore, be fairly famit@ma Haskell programmer, expect that we
use GADT-style, instead of traditional Haskell, datatygeldrations. Also, due to the stratified
kind system that omega has) denotes the type of types (the conventional Haskell) and«1
denotes the type of kinds (more generaHyy + 1) denotes the type of “kinds” at the inferior level
).

The typeMu, which models the composite component, is expressed in @aeeg

data Mu:: ¥(k :: x1). k ~ %0 where
In::(Yxs(Yvavsa—- Muv—-> Wrapsvad—->vsx—X) - Muv

Note that the first argument fddu is kind polymorphic, taking a type constructor of any kind
as an argument and we use the typyeav s a— Mu v — Wrap s v adirectly instead of the
type-synonynDecompose.sAlso, due to what it seems a bug in the type checker, the \tyap
(which is basically the identity) is needed to convince gyetchecker tha¥lu is well-typed.

data Wrap:: V(k1: %1) (k2:: 1). k1~ k2~ x0 ~» 0 where
W:sva—- Wrapsva

unwrap:: Wrapsva— sva
unwrap(W w) = w

The Internal and Externalstrategies are the two corresponding decompositions valeede-
clared as:

data Internal:: V(K :: #1). k ~ %0 ~» 0 where
F:a—Internalva

data External:: V(k :: x1). k ~ %0 ~» %0 where

182

183

C::Muv— External v a

external:: v External a— Mu v — Wrap External v a
external v mu= W (C my

internal:: v Internal a— Mu v — Wrap Internal v a
internal v(In m) = W (F (m internal V)

Again, note the usage of polymorphic kinds to type the firgtiarent (the visitor) ofnternal
andExternal
We show how to encode natural numbers using the library next.

data NatF :: V(k :: %1). k ~ %0 ~» %0 where
NatF::a — (s NatF a— a) —» NatF s a

type Natural = Mu NatF

zero:: Natural

zero= In (Adec(NatF z § — 2)

succ:: Natural — Natural

succ n= In (1dec(NatF z 9 — s (unwrap(dec(NatF z g n)))

and give two examples: the first one, using a Church encpdsitpr, converts a natural to a built-
in integer; the second one using a Parigot encoding defiegsréudecessor function (hard to define
with Church encodings).

tolnt :: Natural — Int
tolnt (In n) = n internal visitor
where visitor :: NatF Internal Int
visitor = NatF 0 (A(F X) —» x+ 1)
pred:: Natural — Natural
pred (In n) = n external visitor
where visitor :: NatF External Natural
visitor = NatF (zerg (1(C X) — X)

183

