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As satellite systems become a greater part of critical infrastructure, they have become a significantly more appealing target for attacks.
The availability of cheap off-the-shelf radio hardware has made signal spoofing and physical layer attacks more accessible than ever to
a wide range of adversaries, from hobbyists to nation-state actors. Legacy systems are particularly vulnerable due to their lack of
cryptographic security, and cannot be patched to support novel security measures.

In this paper we use radio transmitter fingerprinting to authenticate satellite downlinks, using characteristics of the transmitter
hardware expressed as impairments on the physical layer radio signal. Our SatIQ system employs a Siamese neural network and an
autoencoder to extract an efficient encoding of message headers that preserves identifying information. We focus on high sample rate
fingerprinting, making device fingerprints difficult to forge without similarly high sample rate transmitting hardware.

We collected 10 290 000 messages from the Iridium satellite constellation at 25MS/s, and demonstrate that the SatIQ model trained
on this data maintains performance over time without retraining, and can be used on new transmitters with no impact on performance.
We analyze the system’s robustness against weather and signal factors, and demonstrate its effectiveness under attack, achieving an
Equal Error Rate of 0.072 and ROC AUC of 0.960. We conclude that our techniques are useful for building fingerprinting systems that
are effective at authenticating satellite communication, maintain performance over time and across satellite replacement, and provide
robustness against spoofing and replay by raising the required budget for attacks.

1 Motivation

Recent years have seen a dramatic rise in the availability of cheap radio hardware, particularly Software-Defined Radios
(SDRs). Not only have these devices become more widely available, but their capabilities have increased, with devices
like the HackRF One (340USD, Adafruit) able to transmit and receive in frequencies ranging from 1MHz to 6GHz [2].
As a result, the ability to carry out physical layer attacks (particularly spoofing, jamming, and replay), once exclusive
to large-budget organizations and nation-state actors, is now within reach for even motivated hobbyists. This poses
a particular threat to satellite systems, many of which were built under the assumption that tampering with signals
would be prohibitively expensive for the vast majority of attackers.

Physical layer attacks have been widely explored in wireless systems – attackers equipped with an SDR can
overshadow legitimate communications or spoof messages outside normal communication. Many widely used systems
are vulnerable to these attacks, including the ADS-B avionics protocol [3], the LTE telephony system [4, 5], and satellite
systems including GPS [6]. Due to the critical nature of satellite systems, it is vital that operators can prevent or detect
spoofing attacks to protect the systems and applications that rely on them.
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There are a wide range of techniques for detection and prevention of spoofing attacks, the foremost of which is
cryptography – a properly implemented cryptosystem with associated key management provides robust authentication,
making spoofing attacks near-impossible. However, there are a number of reasons why cryptography may not be
desirable (or possible) in the context of satellite systems. Firstly, there are a huge number of legacy satellites currently
in orbit. Many of these do not implement cryptography, and cannot be retrofitted to do so due to their limited onboard
processing power. However, the data collected by these satellites is immensely useful in both scientific and private
use cases – they are used for monitoring forest fires, land usage, population density, flooding, and more [7–10]. These
satellites are often bespoke designs which would be prohibitively expensive to replace; it is important to ensure systems
like these can be used for their entire projected lifespan (and beyond).

There are also a number of satellite systems which were initially built with cryptography, but which have become
insecure post-launch due to leaked keys [11] or outdated cryptosystems [12]. Some of these satellites cannot be patched
due to a lack of over-the-air update capabilities, so other methods must be used to authenticate their telemetry data.

Finally, some attacks can be carried out without violating any cryptographic properties of the system. The authors
of [13] show that precisely timed message replays can cause Global Navigation Satellite Systems (GNSS) to misreport
the location of the receiver to an attacker-specified location. Since these attacks are carried out by simply introducing
delay to messages rather than altering message contents, conventional cryptography does not protect against them. We
still want to be able to detect and prevent these attacks, so we must turn to non-cryptographic techniques for message
authentication. In particular, we investigate radio transmitter fingerprinting, in which radio signal characteristics are
used to identify the transmitters. This is achieved by identifying impairments on the signal which are created by small
differences in the radio transmitter hardware. These impairments are unique to transmitters and consistent over time,
as we will show for the satellite case.

Contributions

In this paper we present SatIQ, a novel approach to fingerprinting satellite signals. We work with signals at a high
sample rate to counteract problems with spoofing at lower sample rates. This makes the techniques more useful in a
security context, requiring attackers to use more expensive radio hardware that works at high sample rates in order to
successfully impersonate a device – thus excluding a large number of low-budget adversaries. In doing this we can
provide an additional level of confidence in the authenticity of the origin of satellite signals, particularly in systems
where cryptography is either unavailable or ineffective. We verify that the system can detect replay attacks by replaying
captured messages using an SDR.

We also use a Siamese model – unlike conventional classifiers, these compare two signals and produce a distance
metric representing the likelihood of two messages having been sent from the same transmitter. This technique enables
one-shot learning: new transmitters can be introduced without requiring the system to be retrained, and can be used
immediately with only a small number of examples. This is particularly useful in the context of satellites in Low Earth
Orbit (LEO), which must be replaced more frequently.

In Section 4 we describe our large, high sample rate dataset of real-world data from the Iridium satellite constellation,
composed of 10 290 000 messages from 3 different locations and hardware configurations. We use this data to train
and test the SatIQ system, showing its ability to distinguish legitimate transmitters from one another, and exploring
methods to enhance performance. In Section 5 we evaluate various useful properties of SatIQ, including its stability
over time and extensibility to new transmitters without requiring retraining, correlations between performance and
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weather/signal factors, and transferability between different receiver configurations. We also evaluate SatIQ under a
replay attack case, showing that it can easily distinguish an attacker-controlled radio from legitimate transmitters.

Finally, we discuss how our baseline architecture can be used and enhanced for use in deployed satellite systems. To
faciliate this, our full dataset and code will be made freely available.1

2 Background

In this section we discuss key concepts in radio and digital signal processing. We also explore existing countermeasures
to spoofing attacks, and look at existing research in radio fingerprinting in general. Finally, we discuss related work that
focuses on radio fingerprinting of satellites, as well as related work that considers fingerprinting in a security context.

2.1 Software-Defined Radios

Software-Defined Radios (SDRs) allow the use of software for signal processing tasks traditionally done using dedicated
hardware. This is achieved by sampling raw signals into a digital form and sending the samples to a computer, where
they can be processed further. This provides significant versatility to signal processing over traditional radio hardware,
at the cost of additional processing power.

A concept at the core of digital signal processing is IQ Sampling. By taking a carrier signal at a given frequency and
sampling the components of the incoming signal that are in phase (𝐼 ) and out of phase (quadrature, 𝑄) with the carrier
before sampling, the incoming signal is downsampled, shifting the carrier frequency to 0Hz [14]. This significantly
reduces the sample rate required.

One benefit of sampling in this way is that samples can be represented as complex numbers, and plotted on the
complex plane. In this representation, distance from the origin represents amplitude and angle from the horizontal
axis represents phase relative to the carrier signal. This makes it a particularly useful representation of Phase Shift
Keying (PSK), a form of signal modulation which encodes data in the phase of the signal. In this case, symbols appear as
distinct points on the complex plane, producing a constellation diagram.

We only see distinct points on the constellation diagram if we sample at the exact symbol rate of the modulation
scheme. If we instead oversample the signal by using a significantly higher sample rate, we start to see the points between
the symbols, as the transmitter hardware modulates between them. This can be seen later on in Figure 9 (Section 4.3).
The appearance of this interpolation between points is affected by a number of factors including atmospheric noise and
multipath distortion, but also by small variations in the transmitter hardware – these can be used to fingerprint the
transmitter.

2.2 Spoofing Countermeasures

In Section 3 we explore the threat of an attacker equipped with a software-defined radio, looking in particular at
spoofing attacks. When implemented properly, modern cryptographic authentication can solve this problem, but it is
also possible to make these systems more secure without the use of cryptography. As discussed in Section 1, this is
desirable in legacy systems without cryptography, or systems where cryptographic authentication is undesirable or has
been compromised. Additionally, some systems provide open data by design, leaving out cryptography on downlinked
communications by choice.

1The code for the original paper is available at https://github.com/ssloxford/SatIQ, and the dataset and model weights can be found at https:
//zenodo.org/record/8220494 and https://zenodo.org/record/8298532 respectively [1]. The new code and expanded dataset will be released on publication.

https://github.com/ssloxford/SatIQ
https://zenodo.org/record/8220494
https://zenodo.org/record/8220494
https://zenodo.org/record/8298532
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There are a diverse range of approaches for the authentication of downlinked transmissions without the use of
cryptography. These can be partitioned into data inspection, timing analysis, and waveform analysis.

Data Inspection. The integrity of data can be verified by receiving the same transmission at multiple locations, and
comparing the data or its hash between receivers. This requires an attacker to be physically present at each location
in order to successfully carry out spoofing attacks, where they would have previously only needed to be at a single
location. This is particularly useful in cases where there are already large numbers of community-operated ground
stations, such as with NASA’s Direct Readout Laboratory (168 operated worldwide at the time of writing) [15]. However,
it is likely to be infeasible for smaller organizations to set up multiple ground stations.

Timing Analysis. These techniques involve looking at the timing of signals in order to verify their legitimacy. At the
simplest level, this could be ensuring the signal is received at a time the satellite was known to be transmitting – this
does not provide much real security. More advanced techniques in this area include Time Difference of Arrival (TDOA)
analysis, looking at the time difference between multiple receivers to verify the transmitter’s location against where the
satellite is known to be [16]. This is an effective technique, forcing any potential attackers to be physically present at
every ground station, but is once again only feasible for larger organizations capable of operating many ground stations.

Waveform Analysis. Alongside data and timing analysis, the waveform itself can be inspected to detect attacks. A
spoofed signal is likely to have different properties from the legitimate signal, particularly when spoofing requires over-
shadowing an ongoing transmission. These properties include amplitude, SNR, doppler shift, and signal distortion [17,
18]. With appropriate radio hardware it is possible to verify these parameters, making attacks more difficult to execute –
the adversary must replicate the measured properties in order to successfully spoof messages.

Fingerprinting also falls into this category – by looking at unique impairments on the raw waveform we can identify
the transmitter. When spoofing or replaying messages the attacker’s radio will impart a different fingerprint on the
signal, allowing a fingerprinting system to detect when this has occurred. In order for the adversary to circumvent this
system they will need to replicate the fingerprint of the legitimate transmitter. Depending on how the fingerprinter has
been designed, this may raise the required budget to carry out attacks.

2.3 Fingerprinting

Radio fingerprinting is a mature field, with a large base of research looking at a wide range of techniques on many
different systems – [19] provides a good overview of existing research. Fingerprinting techniques can be partitioned
into two key areas: transient fingerprinting and steady-state fingerprinting.

2.3.1 Transient Fingerprinting. The transient of a radio signal occurs when the transmitter first powers on, or changes
power levels following a signal lock. Various properties of the transient, such as its duration or the number of peaks
which occur in the carrier signal, are characteristic to the transmitter and can be used to identify it, if properly extracted.
The majority of historical fingerprinting research makes use of transient analysis, since almost all radio transmission
involves a transient, and the transient typically exhibits the same characteristics every time the device powers up. Much
of the work in transient fingerprinting revolves around novel techniques for precisely identifying the start and end of
the transient [20, 21], or processing the transient to extract useful identifying features [22].

Transient fingerprinting has seen some use in security contexts – in [23], transient fingerprinting is used to identify
devices even when all other identifying information has been removed, and to detect wormhole and device cloning
attacks (these attack types are explored further in Section 3).
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Table 1. Summary of related work in satellite fingerprinting. Ticks (✓) denote support, dashes (—) indicate that the feature was not

discussed or tested.

Fingerprinting Satellites High Stable over Extensible to Transferable to No Manual Single
Technique Sample Rate Time New Transmitters New Receivers Features Message

Rasmussen et al. [23] Transient ✓ — ✓ — ✓

Tekbaş et al. [31] Transient — — — ✓

Kennedy et al. [27] Steady State — — — ✓

Bassey et al. [28] Steady State ✓ — (✓)A — ✓ ✓

DeepRadioID [29] Steady State — (✓)B — ✓

ORACLE [30] Steady State ✓ — — (✓)C ✓

Wang et al. [32] Steady State — — (✓)D ✓

PAST-AI [26] Steady State ✓ — — ✓

Spotr [24] Steady State ✓ ✓ ✓ — ✓ ✓

SatIQ Steady State ✓ ✓ ✓ ✓ ✓ ✓ ✓

A: Claimed to be extensible but not experimentally verified
B: Requires transmitter modifications
C: Some manual features, optional transmitter modifications
D: Manual filtering/smoothing, neural network classifier

2.3.2 Steady-state Fingerprinting. In contrast to transient fingerprinting looking at a very brief portion of the signal,
steady-state fingerprinting instead looks at the modulated portion of the signal. The features in the steady-state
portion of the signal are different from the transient, often looking at how the IQ constellation is affected by hardware
impairments. These impairments include quadrature errors, self-interference, amplitude clipping, and frequency offsets
in the various stages of signal modulation (DAC, mixer, filter, upconverter, amplifier) [24]. Additionally, the signal is
affected by properties of the wireless channel, including background noise, free space path loss, and multipath distortion,
which are likely to change over time as the environment changes. These wireless channel properties are significantly
more prominent in satellite communication, due to the long-distance radio links involved. Very good performance has
been achieved using fingerprinting techniques to authenticate devices using over-the-wire communication [25], but
these have much lower levels of noise on the channel, making the problem significantly easier.

There is some variety in the techniques used, including observing features of the constellation at a low sample
rate [26], analyzing features in the frequency domain [27], and looking at high sample rate signals to observe high
frequency impairments [28]. Machine learning techniques are more commonly used to aid steady-state fingerprinting,
particularly in approaches working at a high sample rate, in order to pull out features which may not be immediately
obvious. Manual feature engineering is also used, but is less common than in transient analysis.

The majority of steady-state fingerprinting looks at a single protocol or class of devices at a time, but with the recent
rapid increase in machine learning capabilities this is no longer a requirement, and there has been some work into
generalizable fingerprinting techniques which do not require retraining to apply to new contexts [29].

There are also some interesting techniques extending the concept of fingerprinting – the authors of [30] train
a convolutional neural network to identify SDRs at 5MS/s, then intentionally introduce signal impairments at the
transmitter in order to further increase classification accuracy. This achieves incredible accuracy (greater than 0.995),
but fingerprint forgery is not considered in this context.

2.4 Related Work

We have explored the existing body of radio fingerprinting research in the previous section. However, there is also
some research that focuses specifically on satellite fingerprinting and fingerprinting in a security context.
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2.4.1 Satellite Fingerprinting. Unlike signals from terrestrial devices, satellite signals have to travel hundreds of
kilometers through the atmosphere, causing significant signal attenuation and channel noise. This adds additional
challenge to fingerprinting in this context, particularly since many techniques rely on minimal presence of background
noise. There are some works looking at fingerprinting in the presence of noise, either by adding noise to clean signals
during model training (effectively training models to remove/ignore the noise) [31], or by smoothing out long signals
at low sample rates to obtain average symbol positions [32]. In the context of satellites it is difficult to obtain signals
without noise, and smoothing does not work with high sample rate signals (since important detail is lost) – we must
find other methods of reducing or ignoring noise. We discuss this further in Section 4.

The authors of [26] design “PAST-AI”, analyzing heatmaps of low sample rate transmissions from the Iridium

constellation to classify satellites. This technique achieves an accuracy of approximately 0.85, increasing to 1.00 for
small subsets of the constellation. Although this technique achieves high accuracy, it is not as useful from a security
context – the classifier works by processing large batches of consecutive messages, making it more difficult to detect
individual message spoofing. Furthermore, fingerprinting at a very low sample rate (1 sample per symbol) makes
fingerprint forgery significantly easier, since the attacker does not need to replicate as many features of the waveform.
The work claims to be able to discriminate SDR-equipped attackers from legitimate satellites by solving the harder
problem of discriminating between satellites with the same hardware. This is true, however, the assumption only holds
at the sample rate used by the fingerprinting system. As PAST-AI operates at 1 sample per symbol, it cannot protect
against SDR-based attacks at higher sample rates.

There has also been some fingerprinting work looking at other satellite systems – the authors of [24] make use of
manual feature extraction to identify spoofing of GPS localization satellites. This technique is effective, but manual
feature extraction is less likely to transfer easily to other satellites or constellations.

2.4.2 Security. Most fingerprinting is done for the purpose of security, preventing spoofing and replay attacks, but
some techniques have been specifically proposed to provide better security properties. For instance, the authors of [28]
address the problem of identifying devices which have not been seen in the training dataset by separating the feature
extraction and classification components of the model, using clustering techniques on the extracted features to identify
transmitters. This allows new transmitters to be introduced without retraining the feature extraction component. We
take a similar approach in our work, using an autoencoder to produce the fingerprints and a Siamese model in the place
of clustering. The SatIQ system is fully described in Section 4.

There has also been work assessing attacks on fingerprinting systems – it has been shown that an arbitrary waveform
generator with a sufficiently high sample rate can be used to impersonate devices, fooling fingerprinting systems [33].
Hardware that can achieve these sample rates is prohibitively expensive for the vast majority of adversaries (we discuss
budget further in Section 3), so we do not consider this to be a major issue – although our techniques are likely
vulnerable to impersonation at a very high sample rate, preventing spoofing below a certain transmitter sample rate is
sufficient to exclude the vast majority of lower-budget attackers. In prior work we have also looked at denial of service
attacks on the fingerprinting system itself, showing that the introduction of fingerprinting does not necessarily make
the overall system more vulnerable to jamming attacks [34].

2.4.3 Our Approach. Table 1 gives an overview of the features supported in the related works discussed. We see that
our approach provides many desirable features, not all of which are present in other related works. SatIQ is designed
to work in the high-noise environment of satellite communication, and works at a high sample rate to prevent spoofing
and replay attacks using cheap SDRs from forging the fingerprint. Performance is stable over time, and the system can
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be trivially extended to support new transmitters – this is critical in satellite systems, where at any time new satellites
may be introduced or existing satellites replaced, and gathering enough data on the new transmitters to retrain the
model would be time-consuming. Furthermore, it does not rely upon any manual feature extraction, and operates
on individual incoming messages, making it easy to deploy and use. In later sections we describe the architecture of
SatIQ that makes these features possible. We also demonstrate its features through experimentation, confirming its
performance under attack and its ability to function over time and as new transmitters are introduced.

3 Threat Model

Goal. In this paper we concentrate on attacks involving spoofing and message replay. In the case of spoofing, the
adversary’s goal is to broadcast messages appearing to come from a satellite such that the ground system processes
them alongside legitimate messages. Alternatively, the attacker may delay or advance messages (jamming the original
and replaying a recording) to affect timing-based systems such as GPS [13]. Similarly, they could carry out “wormhole
attacks”, in which messages are captured at one location and tunneled to another location, from where they are broadcast
– this is also effective against GPS and other localization systems. Unlike spoofing, these attacks can be performed even
on signed or encrypted messages, since they do not affect message contents.

Capabilities. The adversary’s capabilities and budget will vary depending on the type of adversary. We can reasonably
expect any attacker to have access to an off-the-shelf SDR (as well as the appropriate amplifiers and antennas) enabling
them to transmit messages within the vicinity of a single ground station. An equipment setup similar to the one
given in Section 4.3 could be used to carry out attacks, costing approximately 6600USD. By using a cheaper SDR
with a lower sample rate and a different antenna (with a suitable amplifier), the budget can be significantly lowered
to approximately 500USD.2 Alternatively, with a greater budget the attacker could afford a more powerful amplifier
enabling messages to be broadcast from a greater distance, or multiple copies of the hardware to attack multiple ground
stations simultaneously.

It has been demonstrated in [33] that device fingerprinting is vulnerable to signal replay attacks, provided the attacker
has access to a high-end arbitrary waveform generator capable of transmitting signals with a sufficiently high sample
rate.3 For this reason we do not consider attackers with nation-state level capabilities, since they are always capable of
purchasing hardware that can fool a fingerprinting system.

In this work we are particularly interested in lower-budget attacks; a simple spoofing or replay attack with a cheap
SDR can have a potentially devastating effect on improperly secured satellite systems. Through robust high-sample-rate
device fingerprinting, we aim to defeat these attacks by making it impossible to forge the fingerprint on spoofed signals
using only cheap COTS radio hardware. In doing so, we increase the budget of attacks such that they can no longer be
carried out by lower-budget attackers.

Of course, we do not expect fingerprinting techniques to be able to prevent all attacks; such a goal is unrealistic for
this scope, requiring robust cryptography. As discussed in Section 1, there are a large number of satellites with outdated
or no cryptography and no capability for in-flight patching, and we argue that it is still crucial to secure these satellites
as well as possible despite this, so they can still be used to serve customers and for the advancement of science. We
discuss in more detail in Section 5 how the threat model changes with the introduction of robust signal fingerprinting,
addressing remaining concerns and potential avenues for future research.
2For example, a HackRF One can be used as the radio (340USD, Adafruit), with a suitable power amplifier and passive antenna.
3The authors approached a reputable manufacturer, and received a quote for approximately 125 000USD at academic institution rates. We therefore
conservatively assume that in the best case this hardware would cost no less than 60 000USD.
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Fig. 1. An overview of the end-to-end fingerprinting process used by SatIQ . Satellite signals are received, decoded, processed into

fingerprints, and compared to historical fingerprints to determine a distance metric, which is used to accept or reject the message.

We also do not consider attacks from within a compromised system, in which compromised satellites are communi-
cating with other devices in the network. This further means that spoofing attacks launched from satellites within the
constellation that our system protects are out of scope for this work. Existing systems such as PAST-AI [26] are already
well-suited to tackle this type of attacker. However, as these existing systems are based on low-sample rate data, they
cannot protect against SDR-based attacks – the focus of this work.

We are primarily concerned with attackers overshadowing messages on the downlink – whilst attacks on the uplink
are possible, they have not been extensively explored due to the greater hardware cost of a suitable amplifier and
directional dish. Furthermore, device fingerprinting on the space segment is currently infeasible, requiring large amounts
of computational power, and cannot be carried out aboard the legacy satellites with which we are primarily concerned.
Further work may consider fingerprinting the uplink of legacy satellite systems by capturing signals in-transit, but this
is a very limited use case and is out of scope for this research.

4 System Design

Our system comprises two primary components: data collection and the SatIQ machine learning fingerprinting system.
A representation of the end-to-end system can be seen in Figure 1 – messages are collected by an SDR and decoded
into message contents, and the raw samples are ran through an encoder network (explained below), and compared
against known example messages from the same transmitter. This produces a distance metric – low distances indicate
the message is likely to be legitimate. This is used to accept or reject the message.

All code and datasets will be made openly available on publication. The source code for the original SatIQmodels can
be found at https://github.com/ssloxford/SatIQ, and the dataset and model weights at https://zenodo.org/record/8220494
and https://zenodo.org/record/8298532 respectively [1].

4.1 Design Decisions

Our fingerprinting model, illustrated in Figure 2, uses an autoencoder combined with a Siamese model to compare two
input waveforms and produce a distance metric between the two inputs. In the following, we describe autoencoders
and Siamese networks in general, and we explain why we chose them as the basis for our fingerprinting system.

https://github.com/ssloxford/SatIQ
https://zenodo.org/record/8220494
https://zenodo.org/record/8298532
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Fig. 2. An overview of the Siamese autoencoder architecture used in SatIQ’s fingerprinting model. Two inputs are passed into the

encoder with identical weights, and the encodings are compared using the comparator (angular distance) to generate a distance
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Fig. 3. The layout of an autoencoder. Input is passed through an encoder to produce a low-dimensional encoding, and then through a

decoder to produce output of the same dimension as the input. The model is trained to reconstruct the input as best as possible.

Autoencoders. An autoencoder is a type of neural network which is used to learn an efficient encoding of data. This
is achieved by simultaneously training an encoder and decoder, validating the accuracy of the encoding by comparing
the output of the decoder to the input (reconstruction accuracy). The output of the encoder is restricted in size, thus
forcing data to pass through a bottleneck at this portion of the network. This forces the model to discard less important
information, producing an efficient encoding. This technique is particularly useful for dimensionality reduction, since the
encoder produces an embedding of the input in a significantly lower-dimensional space. The layout of an autoencoder
can be seen in Figure 3.

Siamese Neural Networks. Siamese neural networks are designed to be effective for one-shot classification. To this
end, they generate a similarity score between two inputs [35]. This is achieved by passing each input through the same
“encoder” network to generate an embedding of the inputs in some feature space, followed by a comparison function to
generate a distance metric in the feature space – the lower the distance, the more similar the samples are. The weights
of the encoder network are shared between the two inputs.

We chose this approach due to some of its advantages over a simple classifier, particularly in the context of
fingerprinting:

• The number of classes is not fixed – new classes can be introduced after training by comparing to examples
from the new class.
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Fig. 4. An illustration of the triplet loss function. This function takes an anchor 𝑎, a positive sample 𝑝 of the same class as the anchor,

and a negative sample 𝑛 of a different class. Optimizing this loss function minimizes the distance between the anchor and positive

samples, and maximizes the distance between the anchor and negative samples.

• The one-shot (or in some cases few-shot) nature of the model means a new class can be identified using only a
very small number of examples.

• The distance threshold can be raised to increase the acceptance rate of legitimate messages at the cost of
increased false positives (or vice versa), granting fine-grained control of the level of protection granted by
fingerprinting.

Past work has shown these models to be effective in a wide range of use cases, particularly in classification problems
with huge numbers of classes such as malware detection or gait recognition [36, 37]. The architecture has also been
demonstrated to be successful at detecting spoofing and replay attacks on other systems, such as face recognition and
voice biometrics [38, 39]. Siamese networks have also seen use in radio systems, shown to be effective in areas such as
automatic modulation classification [40]. Finally, some research has shown promise in using Siamese networks for
fingerprinting radio transmitters [41, 42].

Our work builds upon these in a number of key aspects. Firstly, we deal with a more difficult scenario than the
majority of terrestrial fingerprinting cases – the great distance of satellite transmitters introduces large amounts of
atmospheric noise and multipath distortion, which dwarf the hardware impairments on the signal. Secondly, we consider
in particular the security implications of radio fingerprinting, assessing the level of protection against spoofing and
replay attacks granted by our approach, and the expected budget required to circumvent these techniques. Finally, we
use an autoencoder alongside the Siamese network to provide encodings that better capture meaningful features in the
input – prior work has shown this to be effective in areas such as signature verification, but to our knowledge we are
the first to apply this architecture to radio fingerprinting [43].

In a non-adversarial classification setting, simple classifiers typically exhibit higher performance than Siamese
networks, since they partition the entire input space into fixed categories. However, this is less effective in adversarial
settings, since malicious transmitters will still be given a legitimate label. Our results in Section 5 show that Siamese
architectures are particularly effective at detecting replay attacks, even with the levels of noise observed in satellite
signals.

Siamese models can also require more data during training, since they must learn a distance metric that works for all
transmitters. Furthermore, independently of the model architecture, greater levels of noise mean more training data is
required. Our results show that our dataset was sufficient for this work, but more data may yield further performance
improvements.

4.2 Fingerprinting Model

The Siamese network of SatIQ uses the encoder portion of the autoencoder to produce embeddings of two inputs,
which are then compared to one another using an angular distance function. A triplet loss term encourages the model
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Fig. 5. The layers of the Siamese neural network used in SatIQ . The encoder uses separate convolutional and max-pooling layers

for the 𝐼 and𝑄 portions of the signal, before producing a final embedding using a dense layer. Similarly, the decoder uses separate

convolutional and upsampling layers. The comparator uses two copies of the encoder with identical weights, computing a difference

score between the outputs.

to produce embeddings that are close to one another for messages from the same transmitter, and different for messages
from different transmitters:

𝑑 (𝑢, 𝑣) = 1 − 𝑢 · 𝑣
∥𝑢∥∥𝑣 ∥

𝐿(𝑎, 𝑝, 𝑛) = max (𝑑 (𝑎, 𝑝) − 𝑑 (𝑎, 𝑛) + 𝛼, 0)

This takes an anchor 𝑎, a positive example 𝑝 belonging to the same class as the anchor, and a negative example 𝑛 of a
different class, and encourages the distance from 𝑎 to 𝑝 to be less than 𝑎 to 𝑛. A margin 𝛼 ensures that effort is not
wasted on optimizing triplets for which this is already the case. This is illustrated in Figure 4.

Convolutional layers are used in the encoder to enable identification of position-invariant features and reduce the
overall size of the model. For the comparator, we compute the angular distance between the embeddings – this tends to
work better than L2 distance for high-dimensional data. A diagram of the fingerprinting model architecture used in this
paper can be seen in Figure 5.

The inclusion of convolutional layers reduces the model’s size, and allows it to extract position-invariant features
from the waveform. We also use separate layers for the in-phase (𝐼 ) and quadrature (𝑄) portions of the signal – although
the components are tightly coupled to one another, we find that they express different features and the model is able
to perform better when the two are separated. Following the convolutional layers, we concatenate the outputs and
flatten, before using a fully connected layer to reduce the output to the correct size. The decoder uses a very similar
architecture to the encoder, composed of alternating upsampling and convolutional layers.
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4.3 Data Collection

For a fingerprinting model to be effective, a good dataset is essential. Community projects such as SatNOGS (an
open-source network of ground stations [44]) provide data from a wide range of satellites. However, in this paper
we collect our own data for a couple of important reasons: firstly, collecting our own data enables us to capture at a
significantly higher sample rate than existing datasets, providing a good foundation for a fingerprinting system. We also
capture signals from a specific constellation rather than a collection of individual satellites; by doing this, we ensure
that the signal modulation and protocol does not vary between messages. We can therefore guarantee that the message
header is always the same between messages, so differences in the captured waveform will be caused only by hardware
differences and channel noise – the contents are always identical at the bit level. This gives us a consistent baseline
upon which a fingerprinting model can be built.

We focus on the Iridium constellation, used in telecommunications. This constellation has a number of useful
properties:

• The constellation contains a large number of satellites (66, each with 48 transmitters [45]), providing sufficient
variety within the dataset;

• The transmitter hardware on each satellite is identical, so a fingerprinter will need to distinguish satellites only
through differences introduced at time of manufacture, rather than distinguishing between entirely different
components;

• The communication protocols are known and well documented [45], so no reverse engineering is required;
• Downlinked transmissions can be received using cheap and widely available COTS hardware, as it transmits at

a frequency below 6GHz.

Other constellations are available; for instance, the ORBCOMM and Globalstar constellations have open-source
decoders available but fewer satellites, and Starlink and Planet’s Dove constellations have more satellites but operate at
high frequencies and (at the time of writing) have no open-source decoder available. Some of these constellations may
be useful for future evaluations of the versatility of SatIQ. Furthermore, existing research in fingerprinting also uses
Iridium satellites [26], providing evidence that some fingerprinting is plausible in this context and providing a baseline
to which fingerprinting systems can be compared. We argue that testing on Iridium is sufficient to demonstrate and
validate the effectiveness of SatIQ, as the properties of the signal used by SatIQ are not constellation-specific.

For the primary data collection setup, we use the following hardware:4

• Iridium Beam active antenna (1245USD, Beam Communications)
• Mini-Circuits ZKL-33ULN-S+ low-noise amplifier (209USD, Mini-Circuits)
• NooElec DC block (20USD, Amazon)
• Mini-Circuits VBF-1560+, 1500–1620MHz band pass filter (44USD, Mini-Circuits)
• USRP N210 SDR (3354USD, Ettus Research)
• UBX 40 USRP daughterboard (1732USD, Ettus Research)

The SDR is connected to a computer running GNU Radio, a software library to aid digital signal processing. We
use components from the gr-iridium library, created and maintained by the Chaos Computer Club München e.V., to
demodulate and decode messages [46]. Figure 6 illustrates our full data collection and processing pipeline.

4Prices are as recorded on 2023-04-21, and may not reflect current prices.
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GNU Radio

Fig. 6. An overview of the data collection system. Signals are captured by the SDR and sent to GNURadio for processing. Raw IQ

samples, demodulated bytes, and fully decoded message data are all sent to a database.

Table 2. Hardware and dataset information for the data collected at each location.

Oxford, UK Thun, Switzerland Würzburg, Germany

SDR USRP N210 USRP N210 USRP B205mini-i
Antenna Beam RST740 Comant CI-490-490 Tallysman TW4600
Amplifier Mini-Circuits ZKL-33ULN-S+ Qorvo SPF5189Z Nooelec LaNA
Filter Mini-Circuits VBF-1560+ Mini-Circuits VBF-1560+ Mini-Circuits VBF-1560+

Start Date 2023-05-11 2024-08-09 2023-03-14
End Date 2024-04-29 2024-09-01 2023-04-13
Days Active 248 20 40
Messages Collected 9 695 000 450 000 145 000

Iridium downlink messages have a number of different message types, one of which is the Iridium Ring Alert (IRA)
message – this is the only type of message we collect. These messages contain diagnostic information about the satellite,
including the satellite ID, beam ID (identifier of the current transmitter), position, and altitude. They also contain the
anonymous identifiers of subscribers currently receiving incoming paging calls. The messages are openly broadcast
and do not contain any personally identifiable information, so we can decode and collect them without raising any
ethical concerns.

We save the raw IQ samples from the message headers in a database, alongside demodulated bytes and decoded
message contents. This gives us a consistent dataset of raw message headers which can be used for fingerprinting,
using the decoded messages to label the data. All data was collected at 25MS/s, giving us an oversampling rate of 1000
(Iridium messages have a symbol rate of 25 000 symbols per second). This allows us to capture the high-frequency
features characteristic to a transmitter for effective fingerprinting.

Our data collection was spread across multiple locations, enabling analysis of the effect of receiver hardware and
physical location on the performance of a trained fingerprinter. The bulk of the data was collected on the roof of a
building in Oxford, UK, with additional hardware in Würzburg, Germany, and Thun, Switzerland. Each had an antenna
located on the roof of a building with a good view of the sky in all directions. Table 2 gives some information about
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Fig. 8. The distribution of the number of Iridium messages received per transmitter.

each location’s data collection hardware, and the dataset collected – note that in Germany a cheaper patch antenna was
used, resulting in fewer messages per day and lower signal quality. Additionally, Figure 7 illustrates the number of
messages collected over time. This data extends the original dataset of 1 705 202 messages collected over 40 days used
to train the original SatIQ model [1].

For each transmitter in the UK dataset, as many as 1588 messages were received, with a mean of 260 messages per
transmitter. The distribution of message count per transmitter can be seen in Figure 8.

An example of the collected data can be seen in Figure 9.We can see the signal encodes 8QPSK symbols, corresponding
to the bit sequence for the Iridium message header: 11 00 00 11 11 00 11 00. However, unlike a constellation plot
at 1 sample per symbol, we can see the movement between the two symbols and the impairment on the signal. It is
clear that there is significant impairment; this is likely caused by a combination of channel noise, multipath distortion,
and hardware characteristics of the transmitter. Our goal is to isolate the last of these, ignoring the channel noise and
other characteristics – these will be the same between transmitters, and not useful in this context.

4.3.1 Data Preprocessing. We opt to use a minimal amount of preprocessing to avoid destroying data which might be
useful for fingerprinting. On top of the band-pass filtering and phase synchronization performed by gr-iridium, we scale
each waveform in the dataset so values range between −1 − i and 1 + i. This removes amplitude as a factor the model
needs to learn to adjust for, and makes visualization easier. We also remove all messages which do not decode as valid
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Fig. 9. A message header received from an Iridium satellite, shown in the time domain (left) and as a constellation plot (right).

IRA messages – although this removes a large number of messages, it ensures that all data is labeled and eliminates
the noisiest messages which do not properly decode. This leaves us with messages that are the most likely to contain
meaningful identifying factors. In Section 5.2 we look into this further, identifying environmental and signal features
that affect performance.

Finally, we process the data into “TFRecord” files – this format is optimized for use in TensorFlow, storing data as
raw protocol buffers. This enables us to read data directly from disk as needed, minimizing RAM usage with only a
small buffer to reduce read latency. This is vital for a dataset this large; even on machines with significant amounts of
RAM (≥500GB) the dataset cannot be loaded into RAM in its entirety.

4.3.2 Dataset Construction. After data preprocessing, the entire dataset is split up into files of 5000 entries each, split
up by location and organized by date.5 This is split into training, validation, and testing datasets as follows: for each
date, the first file (i.e. the first 5000 entries) is used for testing, the second file for validation, and the remaining files
are used for training. This resulted in a training:validation:testing split of 74:13:13 for our dataset. This ensures we
have sufficient data for validation and testing without significantly reducing the size of the training dataset, whilst
maintaining an even distribution of timestamps across all three datasets.

Since the triplet loss function is used, the batch generator is configured to produce batches of inputs with 32messages
(8 batches of 4 messages each from the same transmitter). This ensures the loss function has a large number of triplets
that can be selected from each batch.

4.4 Model Training

Model training was performed on a machine with the following hardware:

• Intel Xeon Gold 6134 CPU (32 threads, 3.20GHz)
• Nvidia TITAN V GPU (1455MHz, 12GB VRAM)
• 512GB DDR4 RAM

5Previous versions of the dataset shuffled the data at this point, but this proved impossible once the dataset grew sufficiently large. Instead, the data is
shuffled by the TensorFlow data pipeline as needed.
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Fig. 10. The performance of the base SatIQ model, evaluated by comparing messages from different pairs of satellites without

analyzing the attack case.

On this hardware, 2 model configurations can be trained simultaneously.6 All models are trained for up to 200 epochs,
with early stopping if no improvement is seen within 10 epochs. Training on the full dataset took approximately 10 days,
with most other training runs taking closer to 24 hours – each epoch runs through the full dataset, so larger datasets
result in longer training runs.

Running a trained model takes significantly fewer resources, taking a fraction of a second to verify messages – this
makes it possible to run SatIQ in real-time, verifying messages as they arrive. Furthermore, much less RAM and disk
space is required, as the training dataset is not needed. Hardware requirements are discussed further in Section 5.6.

4.5 Model Optimization

We start by assessing the base performance of the SatIQ model, trained on the full dataset from a single location and
tested on the problem of differentiating satellites from different transmitters in the dataset. Note that this differs from
the most likely attack case, in which a ground-based attacker transmits messages via an SDR. However, it does enable
us to get a good idea of initial performance and fine-tune the system, and enables us to work with a large dataset
when performing analysis later on. It is also much harder to distinguish between nearly identical transmitters than to
distinguish a ground-based SDR, so we can be confident that good performance in this evaluation will likely translate
to good performance in a more realistic attack case. We back this up in Section 5.5 with an evaluation of SatIQ under
simple replay attacks.

Figure 10 shows the base performance of SatIQ. In this section, models are trained and tested on the problem of
differentiating satellites in the dataset, in order to achieve better performance later on when identifying adversaries in
an attack scenario. Results in this section are primarily to assess relative performance and fine-tune the system. When
assessing performance, we focus on two key metrics:

• Equal Error Rate (EER): the error rate when the false positive rate (FPR) and false negative rate (FNR) are equal.

6The primary constraint is VRAM, with the model requiring approximately 6GB to train. The vast majority of the system’s RAM is not used, since the
data is streamed from files stored on disk.
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Fig. 11. ROC curves as we compare each incoming message to a larger number of anchors, taking the mean distance.

• Area Under Curve (AUC): the area under the Receiver Operating Characteristic (ROC) curve, obtained by plotting
the true positive rate (TPR) against the FPR. This can be intuitively thought of as the probability that the system
can distinguish between two inputs of different classes [47].

To compute each of these, we vary the distance threshold below which we accept two messages as being from the
same transmitter. By raising this threshold, we accept a greater number of legitimate messages, but open the system up
to easier spoofing attacks. Conversely, by lowering the threshold the system is made more secure by rejecting more
attacker messages, but legitimate messages are more likely to be erroneously rejected.

Our base model has an AUC of 0.703 and EER of 0.351. This is sufficient performance to demonstrate the feasibility
of our techniques, particularly in the more difficult case of distinguishing satellite transmitters with identical hardware.
In Section 5 we go on to demonstrate that performance is significantly better in a replay attack scenario, confirming
its usefulness in a security context. For the rest of this section we continue to assess performance on the original
(non-attacked) dataset.

4.5.1 Multiple anchors. To improve performance over the base system, we can compare each incoming message to a
larger number of “anchors” (known messages from that transmitter), taking the mean distance between the message
and each anchor in the embedding space. The results of this are shown in Figure 11. By taking 32 anchors for each
incoming message, we can achieve an EER of 0.277 and AUC of 0.795 – a significant improvement! In practice, this can
be implemented by saving a larger set of messages from each known transmitter, or by comparing multiple consecutive
messages to the same set of anchors. Both of these techniques are practical – our observations suggest that during an
Iridium phone call or web connection approximately 11 packets are exchanged per second, so an attacker will need to
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Table 3. Performance of SatIQ models (ROC AUC, Equal Error Rate) trained on 16 days of data, as we adjust the “margin” term on

the triplet loss parameter.

Margin AUC EER

2.00 0.674 0.377
1.00 0.674 0.377
0.50 0.677 0.374
0.10 0.678 0.373
0.05 0.669 0.380
0.01 0.665 0.383

spoof many packets to have a meaningful impact on the victim. Such an attack would certainly be picked up by SatIQ,
even if multiple consecutive messages are compared. We explore attack scenarios further in Section 5.

4.5.2 Model variations. We also tested a number of variations on the model architecture and hyperparameters. To save
time and enable further iteration, these were all tested on a reduced portion of the dataset with only 16 days of data,
and compared to an equivalent base model trained on the same dataset. The base model has an AUC of 0.674 on the file
used for testing (5000 messages).

We first trained a model with the autoencoder removed. This model achieves an AUC of 0.676 on the same dataset
– a very small change, well within random variation. We may therefore be able to save training time by removing
the autoencoder, although this would remove the ability to reconstruct message headers from their fingerprints. This
capability is not used in this work, but may be useful if adversarial ML techniques are used. We discuss this in Section 6.

We also tested the effect of switching the autoencoder for a “variational autoencoder” [48] – in these models, the
encoder maps the input to a probabilistic latent space (in this case, a multivariate Gaussian distribution) instead of
mapping directly to the latent space. This provides benefits in avoiding overfitting and can sometimes produce more
meaningful features in the latent space. However, our trained model on this architecture had an AUC of 0.499, essentially
equivalent to random guessing. Variational autoencoders are noted to be quite sensitive to certain hyperparameters, so
it may be possible to achieve good performance on this architecture via tuning if the

Finally, we adjust the “margin” of the triplet loss parameter used in model training. By increasing this, the separation
of the anchor and negative samples during training can be increased further before it stops yielding further gains, and
vice versa. Table 3 shows the performance of models trained on different margin values – we can see that changing the
margin has nearly no effect, so we do not need to worry about fine-tuning this parameter to maximize performance.

Further optimizations to the model are likely possible – there are a wealth of machine learning techniques not
explored in this paper, and model/hyperparameter optimization is a known difficult problem. We have demonstrated
that SatIQ is effective for fingerprinting satellites, and operators may choose to fine-tune the model further to achieve
greater performance, either on the dataset provided or on a new constellation.

5 Evaluation

In the previous section we designed and trained the SatIQ system to distinguish between different legitimate satellite
transmitters. In this section we evaluate the key properties that enable SatIQ to be deployed in the real world as a
component of a satellite authentication system. We evalaute the system’s stability over time, look at how performance
correlates with weather and signal quality factors, and measure extensibility to new satellite transmitters and receiver
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Fig. 12. Graph showing the performance of SatIQ on incoming messages over time, relative to the start of the training data, for

different training dataset sizes. The gap is caused by a break in the training data.

configurations. We next evaluate the robustness of SatIQ against replay attacks over a wire, demonstrating a dramatic
increase in effectiveness at distinguishing an attacker-controlled SDR from legitimate transmitters. Finally, we discuss
practical questions surrounding a real-world deployment of SatIQ, including hardware requirements, handling rejected
messages, and keeping anchors up to date.

5.1 Time Stability

We start by evaluating the stability of SatIQ over time. Existing works in radio fingerprinting observe a decrease in
performance when there is a time gap between the training and testing data [49, 50]. This is thought to be caused by
changes in the conditions of the wireless channel over time. Our dataset is sufficiently large that we can easily establish
the extent of this phenomenon, and explore methods of counteracting it without compromising the security of the
system.

We assess the effect in two ways. Firstly, we train a number of models on increasing portions of the dataset, starting
with just 1 day of data and going up in multiples of 2, up to 64 days followed by the full dataset. We also ensure the
start time of each of these dataset slices is 1 month after the start of data collection, so we can look backwards in time
as well as forwards. Next, we test each model by computing its AUC and EER on 24-hour slices of the dataset, taking
the anchors from the same dataset as the testing samples. This enables us to see how, or indeed if, performance drops
off over time as the collected data becomes newer than the training data.

Secondly, we assess the effect of using older anchors in the testing data. We use the same trained models as above,
and the same testing methodology, but instead of taking the anchors and testing samples from the same 24-hour slice,
we offset the anchor by a number of days (ranging from 1 to 32 days). This enables us to see how accuracy drops off if
anchors are not replaced, and establish how frequently they must be updated.
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Fig. 13. Graph showing the performance of SatIQ on incoming messages over time, relative to the start of the training data, with

anchors collected at an offset from the testing messages. The gap is caused by a break in the training data.
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Fig. 14. Average performance (AUC and EER) of models trained on each dataset size, as the time difference between the anchors and

testing samples is increased.

The results of the first experiment can be seen in Figure 12. We can see that overall performance improves with
dataset size, and does not drop off with newer testing data when fresh anchors are used. This is a promising result,
indicating that it will not be necessary to retrain the model repeatedly over time; it is sufficient to train the model once
and then keep updating the anchors. We also see that larger datasets start to yield diminishing performance returns –
this is unsurprising, as all systems demonstrate this behavior, but it’s promising that this occurs with only weeks to
months of training data. We can therefore be confident that a system trained on this amount of data will perform well
and maintain its accuracy as time goes on.

The results of the second experiment are shown in Figure 13, for a subset of the training dataset sizes – aggregated
metrics for all dataset sizes are shown in Figure 14. We can see that when SatIQ is trained on only 1 day of data there is
a significant drop in performance the moment anchors deviate from the testing data – with just 1 day of difference the
average AUC drops dramatically from 0.667 to 0.515. When training on larger datasets the drop in performance is still
present, but less pronounced: on 64 days of data the AUC drops from 0.695 to 0.568. We recommend for Iridium that
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Fig. 15. Heatmap showing the number of pairs of messages with the same transmitter ID in each day of the testing dataset. Black

sections represent gaps in the collected data.

data collection should run for a minimum of 32 days, and that anchors are refreshed every 8 days or fewer to ensure
freshness and maximize performance.

Interestingly, there is a spike in performance at an offset of 4 days. Figure 15 shows a heatmap of how many
transmitter IDs overlap for different offset values – we can see there is a non-uniform distribution, with some IDs
disappearing for a while before reappearing. It is likely that this is largely due to the sequential nature in which data
was collected – each 1-day slice of the testing data represents only a small amount of time, with approximately 24-hour
spacing, and the same periodicity may not be present in the full dataset.

Note that refreshing anchors presents some security issues of its own: if an attacker manages to insert their own
messages into the dataset as anchors in place of legitimate messages, then the entire authentication system may be
compromised, with legitimate messages rejected and the attacker’s messages accepted. Caution must be exercised to
ensure anchors are securely refreshed. This could be achieved by periodically verifying messages through other means
– for instance, by precisely measuring angle of arrival, or making use of other physical measurements.

5.2 Correlations

Next we evaluate the performance of the fingerprinting model compared to other factors. We look at characteristics of
the waveform: noise level and magnitude reported by the Iridium decoder, amplitude of the waveform, confidence of
the decoder, etc. We also look at weather data and distance from the satellite to the receiver.7 For each of the tested
variables, we filter the dataset into slices comprising 10% of the testing dataset, sorted by that variable. We then compute
the model’s statistics as normal to see results.

7Weather data provided by Visual Crossing [51].
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Fig. 16. Performance of the SatIQ model on slices of 10% of the dataset, sorted by various properties output by the decoder and data

collection system.

Figure 16 displays the results of this analysis. We can see that for some weather properties (cloud cover, solar
radiation, temperature) there does not appear to be any correlation between the property and the performance of
SatIQ. However, we do see a strong correlation for the “level” and “magnitude” properties output by the decoder, which
roughly correspond to signal strength. This is unsurprising – cleaner and louder signals are easier for the fingerprinter
to identify, and contain more identifying information. We also see a weak negative correlation between distance and
performance – this is also unsurprising, as messages sent from satellites closer to the receiver will have been subject to
less atmospheric attenuation.

To see if any weather effects emerged over time, we also compute the average of each weather-related variable for
each 24-hour slice of the testing dataset. This can be seen in Figure 17 – even looking at the entire dataset, no clear



SatIQ: Extensible and Stable Satellite Authentication using Hardware Fingerprinting 23

0 20 40 60 80 100
Cloud Cover (%)

0.68

0.70

0.72

0.74

0.76
AU

C

925 950 975 1000 1025 1050 1075
Distance (km)

AU
C

40 50 60 70 80 90 100
Humidity (%)

AU
C

0 1 2 3 4
Precipitation (mm)

0.68

0.70

0.72

0.74

0.76

AU
C

0 200 400 600 800
Solar Radiation (W/m^2)

AU
C

0 5 10 15 20 25
Temperature (°C)

AU
C

Fig. 17. Performance of the SatIQ model on 1-day slices of the dataset, plotted against the physical conditions during data collection

at that time.

correlations emerge. This indicates that weather does not have a significant effect on the performance of SatIQ, and
suggests that weather features are unlikely to be incorporated into the transmitter fingerprint.

Some of the tested properties could be used to filter the dataset to improve performance, but operators must take care
when performing this kind of filtering. If only a small fraction of messages are accepted, a denial of service attack can
be performed on the system by affecting measured factors – for instance, by adding noise to the channel. Furthermore,
if the data is filtered using factors affected by weather, a deployed system might naturally go through an extended
period with no suitable messages. Not only would this prevent the satellite from being authenticated, but if anchors
cannot be refreshed frequently enough then authentication will be impacted going forward. Nevertheless, these factors
may be useful alongside the confidence of the SatIQ fingerprinter to gain a good understanding of the signal state.

5.3 Extensibility

Next we look at how well SatIQ performs on transmitters it has never seen before. This is of particular importance
in satellite constellations, where satellites may need to be replaced at any time, and we want to minimize time and
effort spent retraining the model. To test the extensibility of SatIQ, we trained the fingerprinting model on a dataset
with some of the transmitters in the testing dataset removed. Specifically, we sorted the transmitter IDs in the testing
files by how frequently they appeared, and removed every other ID from training. This resulted in the removal of 422
transmitters. To minimize training time, we once again trained the model on a reduced dataset with only 16 days of
data.
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Fig. 18. ROC curve showing the system’s performance on transmitters it has never seen before.

The results of this analysis are shown in Figure 18. As expected, the base performance roughly matches the testing
performance of our original model trained on this dataset, with an AUC of 0.672. When tested on the transmitters
removed from the training data, the performance actually increases slightly to an AUC of 0.681! This is far better than
existing classifier-based systems, which require retraining each time a satellite is launched or replaced – in modern
systems this can be very frequent, with Starlink launching 1984 satellites across 63 launches in 2024 [52]. From this
result we can be confident that SatIQ can easily be extended to new transmitters without requiring any retraining,
resulting in a system that can continue to be used indefinitely as transmitters are added and replaced.

5.4 Transferability

We have already shown that SatIQ can authenticate transmitters it has never seen before, but we also need to ensure
that it can be used across different receiver configurations. All our training and evaluation so far has looked at data
collected from a single source, but this does not provide a useful system if the data collection hardware differs from
that of the deployed system – even if the hardware is identical, the receiver may be imparting its own fingerprint, or
additional factors like multipath distortion may be affecting the signal. We therefore perform analyses on the additional
data collected in Germany and Switzerland, in addition to the main dataset collected in the UK.

We start by taking our base model (trained on the UK data only) and assess its performance on datasets from the other
two locations – we evaluate a model trained on the full dataset, and a model trained on a reduced dataset comparable in
size to the data collected in Switzerland.8 Next, we train models on the Switzerland dataset and test it on the other
two datasets, to see if the same effects are present. Finally, we train using a combined dataset from both the UK and
Switzerland.9 This provides potential for interesting analysis – not only can we see whether training on two datasets is

8The reduced dataset contained only 8 days of collected data.
9We do not include the data collected in Germany due to the smaller number of messages and low signal quality.



SatIQ: Extensible and Stable Satellite Authentication using Hardware Fingerprinting 25

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Training Data: UK (Full)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Training Data: UK (Smaller)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Training Data: Switzerland

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Training Data: Combined

Testing Data
UK Germany Switzerland

Fig. 19. ROC curves for models trained on datasets from each location, tested against different locations.

Table 4. Performance of models trained on datasets from each location when tested against the other locations.

Training Data Testing Data AUC EER

UK (Full) UK 0.703 0.351
Germany 0.536 0.473
Switzerland 0.620 0.410

UK (Smaller) UK 0.660 0.385
Germany 0.512 0.492
Switzerland 0.585 0.440

Switzerland UK 0.577 0.444
Germany 0.564 0.458
Switzerland 0.678 0.372

Combined UK 0.627 0.408
Germany 0.524 0.481
Switzerland 0.652 0.392

a good technique for performance across both datasets, but we can also see how well this model can transfer to the
third dataset.

The results of these experiments are shown in Figure 19, with statistics for each model on each dataset in Table 4. In
each case we see a drop in performance when using data from other locations, but not a complete loss of ability to
distinguish transmitters. This is an encouraging result, indicating that SatIQ is looking at characteristics inherent to the
transmitter even across different locations and receiver configurations, rather than at unrelated properties. We also see
that the model trained on data collected in the UK does not show good performance on the data collected in Germany
– this data was collected using cheaper hardware, and as a result has lower signal quality, so this is not surprising.
Interestingly, the model trained on the Switzerland dataset shows better performance on the Germany dataset. This
could be due to the lower signal quality of the Switzerland data resulting in a greater ability to withstand noise. We also
note that the smaller UK dataset performs similarly to the Switzerland dataset, suggesting that good performance will
be possible with a larger dataset from any location or hardware configuration.

When training a model on the combined dataset, good performance is achieved on both the UK and Switzerland
datasets, with the results on the data from Germany somewhere between the two single-dataset models. The training
dataset for this analysis was relatively small compared to the full dataset, but it is sufficient to show the transferability of
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Fig. 20. Hardware setup for the replay attacks. Raw samples are captured using an SDR, then replayed directly into the fingerprinting

system’s SDR over a cable.

the architecture. From these results we can also be reasonably confident that with a larger dataset that mixes data from
more hardware configurations and physical locations, good performance can be achieved even on unseen hardware.
This will dramatically increase the deployability of SatIQ, as it can be deployed in new locations on any receiver
hardware without requiring a new dataset or model retraining.

It may also be possible to transfer a trained SatIQ model to a completely new satellite constellation, since many of
the signal impairments will be common between hardware configurations. With a small amount of retraining, similar
performance might be achieved across a wide range of satellite systems. Such analysis is beyond the scope of this paper,
as it will require a new dataset for the second constellation.

5.5 Security

We next evaluate the security properties of SatIQ, assessing its performance under an attack scenario. The simplest
such scenario involves merely swapping the identifiers of transmitters in our existing dataset. This models an attack
from within a compromised system, in which an attacker has gained control of a satellite currently in use – this matches
our training scenario and results. As discussed in Section 3, this scenario is somewhat unrealistic, and not our primary
concern.

The more interesting case is to evaluate SatIQ’s robustness under real-world replay attacks. We can realistically
evaluate this by performing replay attacks over-the-wire. These do not perfectly model real-world spoofing and replay
attacks, but any concessions made are in the attacker’s favor – for instance, they do not have to account for path loss or
background noise as they would in a radio setting. A similar result could be achieved through the use of an RF-shielded
box, but this has the potential to introduce further impairments through reflections and other effects. Our experimental
setup is as shown in Figure 20. We first capture Iridium messages at 25MS/s, saving the raw IQ samples to a file –
this provides us with a dataset of samples identical to what the SDR would normally receive. We then replay these
samples over a wire connected to the “victim” SDR, feeding the captured messages into the fingerprinting system. By
this strategy, 253 messages were collected.
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Fig. 21. ROC curves showing the system’s performance when detecting replayed messages. Performance is significantly better than

our training results, achieving a maximum AUC of 0.946.

Table 5. True positive (true accept) rates and false positive (false accept) rates for key threshold values, tested on replayed messages.

Messages are tested against 32 anchors, and the mean distance is taken.

TPR FPR Threshold

0.999 0.257 1.238
0.990 0.107 1.092
0.950 0.074 0.970
0.900 0.072 0.907
0.989 0.100 1.081
0.524 0.050 0.703
0.327 0.010 0.624
0.148 0.000 0.538

For each replayed message, we take a number of “known good” messages from the same transmitter from our
testing dataset. We randomly select a number of these messages to be our anchors using a “shuffle split” strategy. We
compare the anchors to the replayed messages to obtain the false positive rate, and to the other known good messages
to get the true positive rate. The results of this experiment are shown in Figure 21. We can see that SatIQ performs
significantly better in this scenario, with a base AUC of 0.927. When we compare each message to 16 anchors this
performance increases even further, with an AUC of 0.960 and an EER of 0.072!10 This indicates that the attacker’s SDR
has introduced its own fingerprint, distorting the message and altering its features.

Furthermore, this performance is good enough to deploy in a real-world system – by adjusting the acceptance
threshold we can achieve a high true acceptance rate while minimizing the number of spoofed messages that are

10Note that performance starts to drop off slightly for larger numbers of anchors – this is not an indication of the strategy’s ineffectiveness, but of the
limited size of the replay dataset. If more replayed messages were collected then this artifact would disappear.
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accepted. These results are summarized in Table 5. By setting the threshold such that 99% of legitimate messages are
accepted, we accept only 10% of the attacker’s messages. This performance is good enough to use in a real-world setting,
particularly if we continuously fingerprint messages over the course of a communication session, taking the average
acceptance rate over time as an indicator of attack – in order to have a meaningful impact the attacker will need to
spoof multiple messages, which significantly raises the likelihood of detection.

This attack scenario assumes a well-equipped adversary with access to a high-end SDR, and eliminates all the
difficulties of over-the-air replay attacks. Despite all these concessions, we are still able to detect the attack in the
majority of cases. With an even higher budget (to transmit at an even higher sample rate) and careful effort to eliminate
noise introduced by the radio, it will certainly be possible to circumvent this system [33], but our results show that it
will take a concerted effort to do so – simple message replay is not enough. We can therefore exclude a large proportion
of attackers with all but the highest budgets, granting a real-world security benefit to ground systems.

5.6 Deployment Considerations

Finally, we discuss what it would look like to deploy SatIQ in a real-world system. As we mention in Section 4.4, a
trained SatIQ model can be run in real-time, verifying messages as they arrive. We validate this by running the model
on lightweight hardware. Our data collection observed roughly 0.5 ring alert messages per second, or 6 to 7 messages
per second across all message types. This gives us approximately 150ms to validate each incoming message. On the
Intel Xeon CPU used for training (disabling the GPU), the model takes 4.85 s to validate a batch of 543 messages (8.9ms
per message), with a maximum RAM usage of 1.7GB – this is more than fast enough to validate all incoming messages.

We also ran SatIQ on a Raspberry Pi 4B single-board computer, with 4GB of RAM and a 1.8GHz quad-core processor.
On this hardware, it took 93.25 s to validate the same 543 messages (171ms per message), using 2.0GB of RAM. This
demonstrates that SatIQ can run on lightweight hardware – although slightly too slow to validate all messages in
real time, this can certainly validate incoming ring alert messages, and could run even faster with the addition of a
dedicated AI accelerator.

We must also consider how deployed devices can capture high sample rate message fingerprints. Our current setup
requires a moderately powerful computer to perform the necessary high sample rate message synchronization and
decoding, but this can be reduced significantly with the use of a dedicated FPGA demodulator. Combined with the good
performance on low-power CPUs shown above, it will be possible to integrate SatIQ into even lightweight devices –
however, some instances may require the addition of hardware.

Additionally, it is important to decide what action is taken when a (potentially legitimate) message is rejected by
SatIQ. The action taken depends on the level of security required. For some systems it may be sufficient to simply
notify the user, but still accept the message, providing increased awareness of potential attacks without risking any
impact to service through rejected legitimate messages. Alternatively, higher security applications may choose to reject
all messages flagged by SatIQ, accepting the increased packet loss in exchange for greater security against spoofing
and replay attacks. It may be possible for some systems to request message retransmission in this case, to ensure
messages are still delivered – this may occur at the transport or application layer, or systems may be modified to allow
retransmission requests (if this has not already been implemented).

Finally, we must consider the logistics of such a deployment. As discussed in Section 5.1, we propose that SatIQ-based
systems periodically refresh their anchor messages to maximize performance. An additional benefit of this approach is
that no centralized database of fingerprints is required, significantly reducing the complexity of deploying SatIQ –
there is no need to gather or maintain a database of fingerprints, and devices do not need to connect to a server to
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update their databases or verify incoming messages. SatIQ-based systems can therefore also be developed by either the
satellite operator or the receiver manufacturer, or by a third party building devices to integrate with existing ground
systems.

6 Future Work

Our research has revealed several promising avenues of future research. Firstly, it is likely that better performance can
be achieved through fine-tuning, using the same base model architecture as SatIQ. We show that by training a model
on data collected from multiple receiver configurations can produce a system that transfers more readily to different
ground systems; with a larger dataset from more locations, this would likely be even more versatile.

It would also be useful to implement some of the other fingerprinting techniques, particularly in assessing the
extent to which a trained system can be transferred to another constellation, and what degree of retraining is required.
Furthermore, it would be particularly beneficial to standardize the other analyses such that they could be applied to
other fingerprinting techniques. We currently have no method of empirically comparing fingerprinting techniques to
each other in terms of their security properties – a standard suite of tests would remedy this. We consider a comparison
between fingerprinting systems to be out of scope for this paper, as each fingerprinting technique relies on different kinds
of data. For example, PAST-AI uses full messages rather than just message headers [26], and transient fingerprinting
requires precise transient synchronization.

Another promising area of research would be to assess the effectiveness of fingerprinting in conjunction with other
methods of spoofing detection, such as assessing SNR or distortion. Multiple fingerprinting methods could also be used
in concert, providing even greater effectiveness than any model alone. However, some methods are likely to use the
same signal properties as each other (providing no mutual benefit), so a full analysis is needed in order to understand
which methods are effective together.

Finally, it would be useful to assess the effectiveness of fingerprinting in systems which already have some amount
of authentication. For instance, such an analysis could evaluate fingerprinting as a preventative measure against GNSS
message delay/advancement attacks [13]. This would demonstrate that fingerprinting is not just useful in legacy systems,
but has concrete usefulness even in new satellite systems.

7 Conclusion

In this paper we have contributed newmethods towards radio signal fingerprinting in the context of satellite transmitters,
providing novel techniques which can be used to build high sample rate fingerprinting systems. We have succeeded in
demonstrating that satellite signals at high sample rates contain sufficient identifying information, and confirmed that
our techniques combining autoencoders and Siamese models are feasible for fingerprinting. We have also provided a
large dataset of captured message headers from Iridium satellites, which can be used for further research and testing in
satellite transmitter fingerprinting.

We have performed detailed analysis showing that the accuracy of the system remains stable over time, demonstrated
that it is not affected by weather and other conditions, and shown that it can be extended to new transmitters with
no drop in performance. We have also confirmed that the system can be used across different receiver hardware with
a suitable dataset. Finally, we have demonstrated excellent performance detecting replay attacks in the scenario of a
well-equipped attacker sending messages via a wired channel, achieving an Equal Error Rate of 0.072 and ROC AUC
of 0.960.
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Our work shows that high sample rate fingerprinting is feasible to secure satellite communication, does not degrade
over time or on new trasmitters, and can significantly improve security against spoofing and replay attacks.
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