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Abstract—The environmental impact of aviation has become

the focus of increased concerns for policymakers around the

world. The recent pandemic provided many interesting case

studies on the impact of aviation on the environment. Following

the initial COVID-19 containment measures and hard lock-

downs, the sharp decrease in aircraft movements caused a

measurably improved air quality worthy of further study.

The OpenSky Network has acted as an important open data

source for aviation research since 2013. In this paper, we analyze

one year of fine-grained pre-COVID air traffic trajectories

(comprising the entire year 2018) to estimate fuel consumption

and pollutant emissions in the aviation industry. We compare

this large-scale big data processing approach to a reduced model

approach based solely on global commercial aircraft movement

schedules collected from airlines and airports, aggregated by a

commercial provider.

Our study quantifies the impact of commercial aviation on

global emissions. The numbers reveal that aviation’s CO2 emis-

sions contribute to 2% of global emissions and that commercial

aviation contribution remains a proxy for countries’ wealth.

I. INTRODUCTION

With record-breaking heatwaves and yearly temperature
records, the aviation industry’s climate-impacting emissions
have been drawing the acute attention of policy-makers around
the globe. While efforts to decrease the climate impact of
flying are underway, from synthetic fuels and electric aircraft
to more efficient traditional engines, these solutions will still
require many years to come to fruition.

However, to tackle these sustainability challenges in a
scientific and data-driven manner, we first require accurate
representations of global flight emissions. Such representations
require both new models and large-scale high-quality data to
feed them. In the spirit of open science, these data and models
should be openly accessible so that they can be scrutinized and
built upon. We tackle this problem by providing a new open
data study on global aviation emissions in this paper.

To obtain the detailed global flight trajectory and speed
information that we need, we turn to Automatic Dependent
Surveillance-Broadcast (ADS-B) as a source technology. With
the proliferation of crowdsourced ground receivers combined
into large sensor networks, ADS-B has become a valuable
source for aviation research. Established in 2013, the OpenSky
Network [1] is a dedicated non-profit ADS-B network that

provides such flight data to the aviation research community.
With the increasing number of ground receivers, OpenSky’s
data has enabled many aviation research studies (over 300 to
date), including previous OpenSky reports [2]–[4].

By combining OpenSky’s ADS-B data with the open aircraft
performance and emission model OpenAP [5], we perform a
global study of aviation emissions in this paper. We study
different emissions, including CO2, H2O, NOX, and SOX,
within the coverage of OpenSky network receivers.

For our study, several pieces must be in place. OpenSky
offers so-called state vectors, which contain the ground speed
of aircraft. Wind models are obtained from Global Weather
Forecast reanalysis data and combined with the ground speed
to approximate the true airspeed of flights. Aircraft weight is
an unknown performance parameter that affects the estima-
tions. In this paper, we make simple assumptions based on
several possible load factors. With assumed mass, calculated
airspeed, and other flight conditions obtained from ADS-B,
we can estimate the emissions for all trajectories observed by
the OpenSky network.

Due to its extremely large quantity, we perform an anal-
ysis of all captured global flights for one year (2018), with
trajectories down-sampled to one point per 30 seconds. The
large volume of detailed ADS-B data in some areas and
its limited availability in other regions motivates the use of
complementary methods like FEAT (Fuel Estimation in Air
Transportation) [6] and datasets such as OAG [7]. FEAT
estimates the fuel consumption by leveraging a reduced model
and exploiting flight frequencies and great circle distances
between airport pairs from the historical dataset provided by
OAG, a global travel data provider. An additional contribution
of this paper is to assess how FEAT estimations compared
with the ones performed with OpenSky data.

The remainder of this work is structured as follows. Section
II provides the necessary background on our data and its
collection. Section III introduces the methodology for estimat-
ing aircraft emissions at scale, followed by detailed results
in Section IV. Section V analyzes the results and addresses
the limitations of our study. Section VI discusses insights and
takeaways from our work before Section VII concludes.



II. BACKGROUND

A. The OpenSky Network

The OpenSky Network is a crowdsourced sensor network
collecting surveillance data for air traffic control (ATC). Its
objective is to make real-world ATC data accessible to the
public and support the development and improvement of ATC
technologies and processes. Since 2013, it has continuously
been collecting air traffic surveillance data. Unlike commercial
flight tracking networks (e.g., Flightradar24 or FlightAware),
the OpenSky Network keeps the raw Mode S replies as they
are received by the sensors in a large historical database, which
can be accessed by researchers and analysts from different
areas.

The non-profit network started with eight sensors in Switzer-
land and Germany and has grown to more than 5000 registered
receivers at locations all around the world. At the time of
writing, OpenSky’s dataset contains over eight years of ATC
communication data. While the network initially focused on
ADS-B only, it extended its data range to the full Mode S
downlink channel in March 2017 and more recently other
technologies such as FLARM and VHF. The dataset currently
contains more than 30 trillion Mode S replies and during peak
times receives more than 20 billion messages per day.
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Fig. 1: The growth of OpenSky’s dataset over time from 2013 to
March 2022

Figure 1 shows the growth and development over the
past several years, which saw the inclusion of the dump1090
and Radarcape feeding solutions and the integration of non-
registered, anonymous receivers. This practice has been dis-
continued in early 2019 to further ensure the quality of the
feeder data. In March 2020, the number of daily messages
dropped to about 30% from the previous level, reflecting the
curtailment of air travel around the world due to the COVID-
19 pandemic. While the air traffic numbers have returned
almost to pre-pandemic levels in some areas, the number of
daily messages has not. This is due to an optimized collection
process that emphasizes the de-duplication of messages earlier
in the collection process. This approach ensures the continued
growth of sensors around the world but means that numbers
are not strictly comparable over time due to breaks in the data.

Fig. 2: OpenSky’s global coverage in 2018 and 2022

The global data reception of the OpenSky Network fully
depends on its crowdsourced network of receivers, comprised
mostly of enthusiasts, academics, and some companies. The
coverage of any single sensor is limited by the line-of-
sight range of the antennas (about 400-500 km for the best-
performing ones reaching the radio horizon). This means that
such a crowdsourced network’s organic growth is effectively a
proxy for densely-populated wealthier areas around the world.
Between 2018 and 2022 (Figure 2), the global footprint of the
coverage thus reached a certain saturation point, new sensors
mostly increased lower altitude reception in already covered
areas in Europe, the US, and other industrialized countries.
Notable coverage extensions can still be seen in the Middle
East, East Asia, and New Zealand. Desert areas and oceans are
naturally lacking ground-based coverage due to their physical
limitations. Commercial ADS-B providers partly address this
shortcoming with space-based ADS-B [8].

Besides the payload of each Mode S downlink transmis-
sion, OpenSky stores additional metadata. Depending on the
receiver hardware, this metadata includes precise timestamps
(suitable for multilateration), receiver location, and signal
strength. For more information on OpenSky’s history, archi-
tecture, and use cases refer to [1], [9] or visit the website
https://opensky-network.org.

B. Description of the OAG dataset

The Official Aviation Guide (OAG) [7] sells curated aviation
data about scheduled flight movements and some airport
ground transportation links covering several years of global
city-pair operations.



The OAG data for 2018 used for this study contains around
47.2 million lines. Each line corresponds to a flight (or an
airport ground connection movement) and includes the carrier,
airport origin and destination IATA codes, aircraft type IATA
code, dates-times, and great circle distances.

The dataset contains all commercial flights that were sched-
uled in 2018, including some military and helicopter opera-
tions. However, it does not contain general aviation, and freight
traffic is limited.

Preprocessing of the dataset is necessary to align the pro-
vided IATA codes with the ICAO codes used by our models,
as well as to remove duplicated and wrong flight information
(see Section V-F for further details).

III. METHODOLOGY

A. Data collection and processing

For this study, we collect all flights recorded by the Open-
Sky network during the year 2018, resulting in approximately
2.5 terabytes of data containing global state vectors sampled
every 30 seconds. The data is then cleaned with unused
columns removed and converted to a compact parquet format
and organized per day.

All flight trajectories are processed using the traffic
Python library [10], where sampling and filtering are applied.
Then, we estimate the fuel consumption and emissions using
OpenAP [5] based on the state vector data of each trajectory.
One of the challenges raised from the data processing is to
properly handle flights spanning two consecutive days. The
other challenge is the computation resources and time required
for estimating the emissions, since the fuel flow estimation
for each flight has to be computed sequentially, updating the
estimation of the aircraft mass at every timestamp.

To cope with such an immense computational task, we lever-
aged the DelftBlue supercomputer provided by TU Delft [11],
with can reduce the computation time from approximately two
months to one week. Once the emissions are calculated, we
generate the aggregated statistics per day and use that for the
analysis of the paper. Figure 3 details the process of handling
the OpenSky data and estimating the emissions from flight
trajectories.
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Fig. 3: Data processing and emissions calculation

B. Estimation of fuel consumption based on ADS-B tracks

Fig. 4: Flight trajectory of an example flight

Figure 4 shows an example flight trajectory and the main
states we use for the emissions estimation. We calculate the
flight emissions using the OpenAP library, which provides
the necessary aircraft performance and emissions models to
estimate fuel consumption and emissions with real trajectory
data. Different gas emission types for common aircraft types
are considered, including CO2, H2O, NOX, SOX, CO, and HC.

Currently, OpenAP defines the aircraft performance and
emissions models for more than 20 common aircraft type
codes. For less common aircraft types, we choose a similar
type based on a synonym database defined in OpenAP. In
total, we identify more than 22 000 aircraft (tail numbers)
across more than 30 aircraft types (53 types with synonyms).

In addition to the flight trajectory data, the calculation of
fuel flow and emissions also requires information on aircraft
mass. Since aircraft mass information is not publicly available,
mass is often inferred based on flight trajectories. However,
the process requires expensive computations [12], [13]. In our
case, when dealing with global flights, simple assumptions
have to be made. To this extent, we estimated four different
emission values based on four different assumptions of mass
for each flight. Similar to a previous study [4], these masses are



defined at 60%, 70%, 80%, and 90% of the aircraft’s maximum
take-off weight.

The fuel flow is linearly correlated to CO2, H2O and SOX.
For other types of emissions, OpenAP uses and extends upon
the ICAO Aircraft Engine Emissions Databank [14] and Fuel
Flow Method [15]. The first model provides the base emissions
of engines at the static test and the second model provides
corrections of emissions at different flight conditions related
to altitudes. With these models, NOX, CO, and HC emissions
for trajectories can be calculated.

C. FEAT reduced model with OAG

As an alternative to estimating fuel and CO2 consumption
from ADS-B tracks, the FEAT method [6] is a reduced model
approach. This method is particularly adapted to speeding
up computation when estimations are needed at the global
scale every year involving millions of flights, as well as when
different traffic scenarios need to be compared. In FEAT,
payload, engine degradation, and flight route inefficiencies are
approximated to derive a reduced-order distance-fuel relation-
ship based on a quadratic regression function.

For each aircraft type, FEAT generates a set of flight profiles
with the BADA model [16] covering the operational range
of the aircraft. Then, it estimates the fuel consumption for
each profile with BADA. This results in a series of point
estimates on which a quadratic curve can be fitted. Once
the regression coefficients per aircraft type are calculated,
yearly global fuel consumption and CO2 can be computed
in a matter of milliseconds by exploiting city-pair traffic
frequencies available in datasets like OAG.

In addition to computational efficiency, the combination of
FEAT and OAG is useful to overcome the lack of ADS-B
coverage in some regions of the planet. It should be noted
however that OAG contains only scheduled flights with a very
limited volume of freighter operations.

D. OpenAP, FEAT reduced model, and OpenSky data

FEAT can be used independently of the OAG dataset. We
extract from the OpenSky data the aircraft ICAO transponder
codes and link them to aircraft type codes, city pairs, and
flight distances for each type of aircraft. We perform a fuel
consumption analysis between OpenAP and FEAT using these
aggregated flight distances and total great circle distances.

IV. RESULTS

In this section, we compare the global fuel estimation and
CO2 for 2018 obtained by FEAT with the OAG dataset with
the one from OpenAP with full OpenSky ADS-B trajectories.

The 2018 OAG dataset contains around 47.2 million in lines
corresponding to city-pair movements including airport ground
connections with trains or buses, which we removed to focus
only on air traffic. Helicopters and a few military and old
aircraft were also deleted, as they could not be matched with
a FEAT reduced model.

Pre-processing also included the aggregation of flights by
origin, destination, and aircraft type code, with the number

of flights and great circle distance associated. In a few cases,
it was also necessary to remove duplicated information and
to correct invalid distances for certain aircraft types and city
pairs.

We also aligned the IATA aircraft type codes used in the
OAG dataset with the ICAO ones used by the FEAT models.
In some cases, one IATA type code corresponds with several
ICAO codes (e.g. IATA code 32S ! A318/A319/A320/A321),
so we estimated a traffic distribution of the ICAO codes per
origin-destination pair based on either historic ADS-B data or
by assuming a uniform distribution when ADS-B data was not
available for a specific origin-destination pair.

After pre-processing, over 38.4 millions of flights were left.
The total fuel consumption and CO2 emissions calculated for
2018 are 261 Mt and 818 Mt respectively, which is close to
the 257 Mt and 812 Mt published in the original FEAT paper
[6].

TABLE I: Total fuel consumption and emissions estimated with FEAT
reduced model (based on OAG schedules) and with OpenAP (based
on OpenSky Network data). Flights with negeative HC and CO values
were removed from the CO and HC emission statistics.

FEAT OpenAP

OAG data OpenSky data

Fuel consumption (in Mt) 261 141
CO2 emissions (in Mt) 818 444
H2O emissions (in Mt) · 173
NOX emissions (in Mt) · 2.54
SOX emissions (in Mt) · 0.18
CO emissions (in Mt) · 0.322
HC emissions (in Mt) · 0.021

V. ANALYSIS

A. Limitations regarding coverage

The coverage of the OpenSky Network (Figure 2) relies on
the positions of feeding receivers from the community, which
roughly correlates with the most inhabited and wealthy areas
of the planet. Oceans and deserts, as well as most of Africa
lack coverage. Space ADS-B, exploited by commercial ADS-
B data providers, has been a recent approach to address the
lack of coverage in those areas, but it was not available for
our study due to the high cost. It should also be noted that
space-based ADS-B largely works for the en-route airspace
and not in terminal areas.

In this analysis, we addressed lacking coverage by filling
gaps over oceans by interpolating trajectories along the great
circle. This approach should be sufficient for transatlantic
flights but may be lacking realism in the Pacific Ocean where
coverage is sparser.

The OAG dataset could be helpful to estimate how much
we miss. However a systematic link between this dataset—
based on scheduled commercial flights, listed as IATA flight
numbers—and the ADS-B data— utilizing ICAO callsigns, a
low sampling rate (a feasibility constraint coming with this
study), and missing coverage—is difficult. Only a few city



pairs were sampled for a non-representative comparison in
Section V-E.

As an upside, we note that the OpenSky Network coverage
is good exactly in those places around the world where air
traffic is most dense (except for mainland China). Hence, we
are confident that it provides a representative sample of the
most relevant routes and airspaces.

B. Limitations around general aviation

General aviation (GA) is poorly covered by this study for
several reasons:

• the OAG dataset only references commercial flights;
• many GA aircraft are still not ADS-B compliant [4];
• GA aircraft models of consumption and emissions are

still immature.

As general aviation accounts for a large share of global
aviation emissions in terms of CO2 per passenger per kilo-
meter, it would be worth investigating this area further and
developing a performance model for general aviation as well.
The progression of ADS-B Out mandates should aid future
studies and the integration of other data sources such as UAT
and FLARM.

C. Uncertainty due to wind forces

ADS-B messages contain positional information (latitude,
longitude, barometric, and GPS altitude) and their derivative
(true track angle, ground speed, and vertical rate). In some
areas of the world, true airspeed, indicated airspeed, and
Mach number can be transmitted, upon request by a secondary
surveillance radar, as part of the Enhanced Surveillance (EHS)
standard [4].

For this study, we made all fuel flow estimation compu-
tations based on the ground speed values which are part of
the ADS-B. To validate the soundness of this assumption, we
compared the total fuel consumption for 5000 flights covering
various distances (short, medium, and long haul flights), once
using the ground speed, and once using a true airspeed value
interpolated from wind field values found in ERA5 historical
data [17].

Figure 5 plots one point per flight and compares the fuel
consumption estimation based on ground speed and true
airspeed values. As expected, these are mostly centered on
the x = y line. Figure 6 considers the error ratio between
both values. The positive part of the density plot (in orange)
means the assumption overestimates the fuel consumption, the
negative part (in blue) means it underestimates it, by up to
±15%. The assumption that ground speed can be sufficient
may be hard to justify for single flights but should compensate
itself for the whole dataset: on this subset, the average value of
the difference ratio is +1.5%. This remaining positive value
may reflect the effect of airlines optimizing their routes to
benefit from tailwinds or to limit the negative impact of strong
headwinds.
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Fig. 5: One point corresponds to one of 5000 flights on January 1st,
2018. Fuel consumption (in kg) using the ground speed matches the
x-coordinate, using the true air speed matches the y-coordinate.
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Fig. 6: Distribution of difference ratio between fuel consumption
per flight, calculated with ground speed and with true air speed. A
positive ratio means that ground speed overestimates the fuel flow.

D. Uncertainty around the aircraft mass

Since aircraft mass is unknown in the OpenSky dataset, we
have to make simple assumptions for emissions estimations.
We propose to calculate the interval of emissions based on
aircraft mass between 60% and 90% of the maximum takeoff
mass. For example, the emissions from the example flight
(Figure 4) and their uncertainties are shown in Figure 7. We
can observe the uncertainties caused by unknown aircraft mass
in these estimations.

When all flights are considered, the uncertainties in total
emissions can also be calculated by aggregating emission
status over the entire dataset.

E. Limitations due to the great circle approach with FEAT

The FEAT approach uses a reduced model to estimate
fuel consumption based on the total flown distance. Although
FEAT considers trajectories between city pairs as great circles,
its quadratic coefficients integrate the effect of a distance cor-
rection factor estimated with historical ADS-B data to account
for ATM inefficiencies (see Appendix I [6] for further details).



Fig. 7: Emissions estimated based on the example flight

This gives a fairly good approximation when aggregating
such a volume of data over a year. Conversely, the OpenAP
approach uses the full trajectory to compute an instantaneous
fuel flow along time and yields a total fuel consumption
different for every day on the same route.

Figure 8 plots a comparison between the FEAT estimation
(the circle marks on top) and the distribution of OpenAP
estimation as density plots (below) for a few routes. Most
frequent aircraft types are represented in different colors.

On most city pairs, FEAT estimations are in general higher
than OpenAP estimations. Overall, values seem consistent,
but there is no systematic way to relate the value to the
ground truth consumption. On the other hand, Figure 9 shows
peculiarities that the great circle approximation fails to cap-
ture the fact that jet streams’ effects on transatlantic flights.
Eastbound flights tend to stick to the great circle route, while
westbound flights fly more to the North to limit the effects of
headwinds. The distributions, despite both being purely based
on the ground speed, show different fuel consumption values
in both directions.

Fuel consumption in the distributions of Figures 8 and 9
show very different values according to aircraft types. In
Figure 10, we compare fuel consumption per passenger for
different aircraft types and show that the most recent aircraft
tend to burn less fuel and emit fewer pollutants. Values for
Airbus A380 are very optimistic, as it has proved difficult to
fly with full aircraft of more than 800 passengers.
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Fig. 8: Comparison of fuel consumption estimations between FEAT
(great circle distance based) and OpenAP with ADS-B trajectories,
interpolated along great circles when data is missing.
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Fig. 9: The great circle approach with FEAT misses the impact of
the jet stream effects on trajectory optimisation in its estimation.

F. Comparison between OpenAP and FEAT model

After all flight data from 2018 was processed, we were
about to provide a further in-depth comparison between the
OpenAP and FEAT model.

For each flight in the dataset, we calculate its fuel consump-
tion with OpenAP considering the uncertainty of takeoff mass,
and we also estimated its fuel consumption using the FEAT
model. We then aggregated the results for all aircraft model
types based on the total distances per aircraft type code.

Table II presents the difference in fuel flow estimations
between OpenAP and FEAT for the top 20 aircraft types based
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Fig. 10: FEAT estimation of the fuel consumption per passenger on
a Paris–New York flight. Most recent aircraft tend to burn less fuel
per passenger, but the analysis is only valid if the aircraft is full.

on the same flights in the OpenSky dataset. The red color
indicates FEAT over estimates fuel consumption compared
to the maximum possible fuel from OpenAP, while the blue
color indicates FEAT underestimates the fuel consumption
compared to the minimum possible fuel from OpenAP. While
the final results for all aircraft types combined for OpenAP and
FEAT align with each other, there are quite some differences
for specific aircraft types.

TABLE II: Comparison of fuel estimation of top 20 aircraft types.
OpenAP uses total flight distance, and FEAT uses total great circle
distances.

distance OpenAP great circle FEAT

type code (Mkm) (Mt) (Mkm) (Mt)

B738 2.78 13.14 - 16.93 2.55 19.70
A320 2.15 8.75 - 11.09 1.98 14.77
A321 1.18 6.05 - 7.85 1.08 9.67
B77W 0.88 16.20 - 19.78 0.82 14.38
A319 0.69 3.13 - 3.94 0.61 4.25
A333 0.58 8.10 - 9.95 0.55 7.88
B739 0.50 2.57 - 3.24 0.47 3.51
B763 0.45 4.73 - 5.67 0.43 5.02
A332 0.43 5.81 - 7.09 0.41 5.59
B772 0.40 7.26 - 8.64 0.38 5.79
B752 0.33 2.51 - 3.16 0.31 2.91
E75L 0.32 0.84 - 1.04 0.28 1.39
B744 0.30 6.35 - 8.03 0.28 6.11
B737 0.30 1.53 - 1.89 0.27 1.96
A388 0.29 6.85 - 8.92 0.28 7.75
B789 0.27 3.15 - 3.83 0.25 2.60
B788 0.25 2.22 - 2.76 0.23 2.38
B77L 0.22 4.21 - 5.21 0.21 3.11
A359 0.21 3.17 - 3.81 0.20 2.72
A20N 0.21 0.73 - 0.95 0.19 1.24

Total 12.738 107.30 - 133.78 11.793 122.720

VI. DISCUSSIONS

In this paper, we carry out an unprecedented analysis of fuel
consumption and pollutant emissions estimations based on:

• an open-source aircraft performance model (OpenAP)
run on a global crowdsourced network of trajectory data



(OpenSky Network). Trajectories are interpolated along
with great circles in areas with partial coverage. A range
of mass is used, and the effects of wind are ignored;

• a reduced model (FEAT) run on global aircraft move-
ments schedules (OAG). This approach approximates
trajectories with a simplified mass model and great circle
distances, while ignoring the effects of altitude and wind.

Fuel and CO2 estimations are consistent between the two
approaches and broadly validate the approach of using aircraft
schedules to substitute for missing coverage. For pollutants
other than CO2, a comparative analysis between the two
approaches is not possible, as there is no way to estimate these
pollutants with FEAT so far. In addition, the final results do
agree with another recent study [18].

The resulting order of magnitude is 261 megatons of fuel,
i.e. 818 megatons of CO2 for the impact of commercial avia-
tion on the environment in one pre-covid year. This is roughly
100 kilograms of CO2 emissions per capita (worldwide).
In comparison, the CO2 emissions per capita in 2018 was
4.80 tons worldwide, but few countries (e.g. Chad, Rwanda,
Burundi, Somalia) emitted less than 100 kilograms per capita
that year.

Without surprise, wealthier countries are responsible for the
carbon burden of commercial aviation. The same can be seen
for emissions produced by private or business jets. In addition,
general aviation aircraft remained out of this study because of
lacking performance models, which can be a future area of
research focus.

In this paper, we use precomputed coefficients provided with
the original FEAT [6] implementation, based on simulated
flight profiles and fuel estimations with BADA models. A
novel approach could be to replace them with data from actual
flight profiles and the OpenAP emission model.

VII. CONCLUSION

In this paper, we analyzed several years of real-world
and high-resolution aircraft trajectory data collected by the
OpenSky Network. Using the openly accessible flight emission
models of OpenAP, we proposed this new approach to assess
global aviation estimations based on this high-resolution data.

We concluded that reduced models are sufficient for large-
scale aggregated emissions statistics, but precise models re-
main more accurate and provide better assessments to measure
the impact of particular flight procedures.

By comparing the estimations produced by the reduced-
order model, FEAT, with OAG data, we find large discrepan-
cies in fuel consumption and CO2emissions due to the lack of
coverage from OpenSky. Such lack of coverage may account
for approximately 45% of missing emissions using only the
OpenSky data.

Despite some natural limitations, our analysis showed again
the power and utility of large-scale crowdsourced aviation data
to assess the air traffic environmental impact around the world.
We believe our work can help policymakers, who can build
on our model and data to make informed decisions impacting
aviation and its emissions in the future.
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