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Abstract

Inertial information processing plays a pivotal role in ego-
motion awareness for mobile agents, as inertial measurements
are entirely egocentric and not environment dependent. How-
ever, they are affected greatly by changes in sensor place-
ment/orientation or motion dynamics, and it is infeasible to
collect labelled data from every domain. To overcome the chal-
lenges of domain adaptation on long sensory sequences, we
propose MotionTransformer - a novel framework that extracts
domain-invariant features of raw sequences from arbitrary
domains, and transforms to new domains without any paired
data. Through the experiments, we demonstrate that it is able
to efficiently and effectively convert the raw sequence from a
new unlabelled target domain into an accurate inertial trajec-
tory, benefiting from the motion knowledge transferred from
the labelled source domain. We also conduct real-world ex-
periments to show our framework can reconstruct physically
meaningful trajectories from raw IMU measurements obtained
with a standard mobile phone in various attachments.

Introduction
Egomotion awareness plays a vital role in developing percep-
tion, cognition, and motor control for mobile agents through
their own sensory experiences (Agrawal, Carreira, and Malik
2015). Inertial information processing, a typical egomotion
awareness process operating in the human vestibular sys-
tem (Cullen 2012) contributes to a wide range of daily ac-
tivities. Modern micro-electro-mechanical (MEMS) inertial
measurements units (IMUs) are analogously able to sense
angular and linear accelerations - they are small, cheap, en-
ergy efficient and widely employed in smartphones, robots
and drones. Unlike other commonly used sensor modalities,
such as GPS, radio and vision, inertial measurements are
completely egocentric and as such are far less environment
dependent e.g. they work equally well in an unlit underground
tunnel as in open spaces. Developing accurate inertial track-
ing is thus of key importance for robot/pedestrian navigation
and for self-motion estimation (Harle 2013). However, the
task of turning inertial measurements into pose and odome-
try estimates is hugely complicated by the fact that different
placements (e.g. carrying a smartphone in a pocket or in the
hand) and orientations lead to significantly different inertial
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data in the sensor frame. It is clearly infeasible to collect
labelled data from every possible attachment, as this requires
specialized motion capture systems e.g. VICON and a high
degree of effort. In this paper, therefore, we propose a robust
generative adversarial network for sequence domain trans-
formation which is able to directly learn inertial tracking in
unlabelled domains without using any paired sequences.

Prevailing inertial tracking methods, e.g. Strapdown In-
ertial Navigation System (SINS) (Savage 1998) and Pedes-
trian Dead Reckoning (PDR) (Xiao et al. 2015), are mostly
based on delicate handcrafted models. These model-based ap-
proaches can obtain plausible achievements in general scenar-
ios, but their lack of generalisation ability yields poor perfor-
mance in the complex real world applications. Recent work
in neural inertial tracking (Chen et al. 2018a) has demon-
strated that deep neural networks are capable of extracting
high level motion representations (displacement and heading
angle) from raw IMU sequence data, and providing accurate
trajectories. However, the data-driven method that requires
substantial labeled data for training, and a model trained on
a single domain-specific dataset may not generalise well to
new domains (Tzeng et al. 2017). As shown in Figure 1, the
uncertainties of phone placements, the corresponding motion
dynamics, and the projection of gravity significantly alter
the inertial measurements acquired from different domains
(sensor frames) while the actual trajectories in the navigation
frame are identical.

We note that it is possible to train end-to-end deep neu-
ral networks when presented with large amounts of labelled
data. The question becomes, how can we generalize to an
arbitrary attachment in the absence of labels or a paired/time-
synchronized sequence? Although from the observation the
raw inertial data for each domain is very different, and the
resulting odometry trajectories are also unrelated to one an-
other, the underlying statistical distribution of odometry pose
updates, if derived from a common agent (e.g. human mo-
tion), must be similar. Our intuition is to decompose the
raw inertial data into a domain-invariant semantic representa-
tion, learning to discard the domain-specific motion sequence
transformation.

To overcome the challenges of generalising inertial track-
ing across different motion domains, we propose the Mo-
tionTransformer framework with Generative Adversarial
Networks (GAN) for sensory sequence domain transforma-
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Figure 1: Phone was placed in (a) hand, (b) pocket, (c) bag and (d) trolley. Compared to firmly holding in the hand, the IMU
experiences slight swings in pocket. The angular and linear accelerations in the navigation frame are projected on different axes
in each sensor frame, and the gravity is mainly projected onto the y axis rather than z axis. These variations are termed motion
domain shifts as the sensor frames are different yet the inertial data in the navigation frame is invariant, which impose huge
challenges on transferring a learned inertial tracking system to a new domain.

tion. Its key novelty is in using a shared encoder to transform
raw inertial sequences into a domain-invariant hidden rep-
resentation, without the use of any paired data. Different
from many GAN-based sequence generation models applied
in the field of natural language processing (Yu et al. 2017),
where the sequences consist of discrete symbols or words
(e.g. dialogue generation, poem generation and unsupervised
machine translation) (Li et al. 2017), our model is focused
on transferring continuous long time series sensory data. It is
worth mentioning that instead of using the conditional autore-
gressive decoder that takes whole source sequences as input
and generates variant-length sequences (generally applied in
sequence-to-sequence generation models), our framework is
able to take the advantage of time consistency and directly
produces the outputs in target domains aligned to the inputs
in source domains in every time step.

MotionTransformer dramatically reduces the effort in con-
verting raw inertial data to an accurate trajectory, as no la-
belled or even paired data is required to achieve motion trans-
formation in new domains. Through extensive, real-world
experiments, we demonstrate that the framework is able to
efficiently and effectively transform an arbitrary domain into
an accurate inertial trajectory, benefiting from the knowl-
edge transferred from the labelled source domain. This work
addresses a challenging problem in inertial egomotion infer-
ence.

Model
Instead of directly predicting the trajectories conditioned on
IMU outputs, we incorporate the neural model with a phys-
ical model for better inertial tracking inference. Here we

introduce the physical model for inertial tracking and the
MotionTransformer for sequence domain adaptation respec-
tively.

Inertial Tracking Physical Model
The physical model, derived from Newtonian Mechanics,
integrates the angular rates of the sensor frame {wi}Ni=1
(wi ∈ R3 and N is the length of the whole sequence)
measured by the three-axis gyroscope into orientation at-
titudes. While the linear accelerations of the sensor frame
{ai}Ni=1(ai ∈ R3) measured by the three-axis accelerometer
are transformed to the navigation frame and doubly inte-
grated to give the position displacement, which discards the
impact of the constant acceleration of gravity. This physical
model is hard to implement directly on low-cost IMUs, be-
cause even a small measurement error will be exaggerated
exponentially through the integration. Recent deep-learning
based inertial tracking (Chen et al. 2018a) breaks the con-
tinuous integration by segmenting the sequence of inertial
measurements {(ai,wi)}Ni=1 into subsequences. We denote
a subsequence as x = {(ai,wi)}ni=1, whose length is n. By
taking into subsequences as inputs, a recurrent neural network
(RNN) is leveraged to periodically predict the polar vector
y = (∆l,∆ψ), which represents the heading and location
displacement:

(∆l,∆ψ) = RNN({(ai,wi)}ni=1) (1)

Based on the predicted (∆l,∆ψ), we are able to easily con-
struct the trajectories. However, it requires a large labelled
dataset to build an end-to-end inertial tracking system, and it
is infeasible to label data for every possible domain due to the



motion dynamics and unpredictability of device placements.
Therefore, we introduce the MotionTransformer framework
in next subsection which is able to exploit the unlabelled sen-
sory measurements in new domains and carry out accurate
inertial tracking.

MotionTransformer Framework
As Figure. 2 illustrates, our framework consists of encoder,
generator, decoder and predictor modules. Assume a scenario
of two domains: a source domain and a target domain, where
the source domain has labelled sequences (xS ,yS) ∈ DS

(yS is the sequence label - the polar vector of xS), and the
target domain only has unlabelled sequences xT ∈ DT . Note
that the sequences xS and xT are not aligned. The objec-
tives of MotionTransformer Framework are three-fold: 1)
extracting domain-invariant representations z shared across
domains; 2) generating x̂T in the the target domain condi-
tioned on xS ; 3) predicting sequence labels yT in the target
domain.

Sequence Encoder To extract the domain-invariant hidden
representations z of sensory sequences across different do-
mains, a RNN encoder is employed together with a specific
domain vector θ:

z = fenc(x, θ) (2)
where zi is aligned to xi at every ith time step, and θ remains
the same across all the time steps. For different domains,
we apply different domain vectors θ that attempt to isolate
domain-specific features, while the parameters of fenc are
shared across all the domains.

GAN Generator Having the domain-invariant representa-
tions z, a RNN generator fTgen(z) can be directly built to
generate synthetic sequences x̂T in the target domain from
xS . By combining it with the encoder, we derive the sequence
transformation model GS→T = fTgen ◦ fenc as:

x̂T = GS→T (xS , θS) = fTgen(fenc(x
S , θS)) (3)

Likewise, we construct an inverse mapping GT→S = fSgen ◦
fenc for generating x̂S from xT :

x̂S = GT→S(xT , θT ) = fSgen(fenc(x
T , θT )) (4)

GS→T is trained against a target domain discriminator DT

(discriminators are omitted in Figure [2]) in the framework of
GAN, and vice versa for GT→S . Unlike conventional GAN
models, we decompose the generator by the domain-invariant
representation z. Intuitively, this architecture encourages the
encoder fenc to capture domain-invariant features that gener-
ate sensory sequences in different domains, as the encoding
function fenc are shared by both GS→T and GT→S .

Reconstruction Decoder In addition to the GAN gener-
ator, we introduce a RNN decoder fdec to reconstruct the
sequences x̆ conditioned on z. This is aimed at reinforcing
the learning of domain-invariant features when jointly learned
with the GAN generator. Instead of using the conventional

Denoising Autoencoders (DAE) (Vincent et al. 2010) and
Variational Autoencoders (VAE) (Kingma and Welling 2014),
we only introduce an additive noise to the hidden represen-
tations z̄ = z + ε, where ε ∼ N(0, I2), in order to simplify
the learning of the autoencoder component. Similar to the
sequence encoder fenc, the decoder is shared across all the
domains and the domain vector θ is concatenated with inputs
at every time step:

x̆ = fdec(z̄, θ) = fdec(fenc(x, θ) + ε, θ) (5)

Polar Vector Predictor Since the source domain has la-
bels (polar vectors) aligned to every sensory sequence, it is
straightforward to learn a predictor for carrying out inertial
tracking by supervised learning the labels yS . However, this
is not the ultimate objective of this paper, instead we aim
at transferring the knowledge learned in the labelled source
domain to the unlabelled target domain. Hence, with the help
of the sequence encoder fenc, we construct a predictor fpred
also shared by both the source domain and the target domain.
In this case, though there exists no paired data (xT ,yT ) for
supervised learning in the target domain, we can still predict
yT by:

yT = fpred(fenc(x
T , θT )) (6)

Inference
This section introduces the learning method for jointly train-
ing the modules of our MotionTransformer, including GAN
loss LG, reconstruction loss LAE , prediction loss Lpred,
cycle-consistency Lcycle and perceptual consistency Lpercep:

Ltotal = LGAN +λ1LAE+λ2Lpred+λ3Lcycle+λ4Lpercep

(7)
where λ1, λ2, λ3, and λ4 are the hyper-parameters used as
the trade-off for the optimization process.

GAN Loss GAN generator is one of the most important
component in our framework, which is responsible of pro-
ducing sensory sequences in the unlabelled target domain.
Here, following the general GAN framework, we construct a
discriminator DT for the corresponding target domain and
learn to discriminate the generated data x̂ from the real one x.
The GAN loss for the target domain generator can be defined
as:

LGT =ExT∼p(xT )[logDT (xT )]+

ExS∼p(xS)[log(1−DT (GS→T (xS , θS))]
(8)

Similarly, the GAN loss for the source domain generator is:

LGS =ExS∼p(xS)[logDS(xS)]+

ExT∼p(xT )[log(1−DS(GT→S(xT , θT ))]
(9)

Then, we combine these two losses into the final GAN loss
LGAN = LGS + LGT .

Reconstruction Loss Considering the inputs are the con-
tinuous real-valued data, the MSE loss is chosen to optimize
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Figure 2: Architecture of Proposed MotionTransformer: including the source domain sequence Encoder (extracting common
features across different domains), the target domain sequence Generator (generating sensory stream in the target domain), the
sequence reconstruction Decoder (reconstructing the sequence for learning better representations) and the polar vector Predictor
(producing consistent trajectory for inertial navigation). The GAN discriminators and the source domain Generator are omitted
from this figure.

the autoencoder loss for source and target domain data re-
spectively:

LAE = ExS∼p(xS),xT∼p(xT )[‖x̆S − xS‖2 + ‖x̆T − xT ‖2]
(10)

Prediction Loss In addition to the original paired data
(xS ,yS) in the source domain, we are able to make use
of the generated ones x̂T = fTgen(fenc(x

S , θS)) produced
by the GAN generator in the target domain as well, since
the domain-invariant representations can be directly applied
for the prediction no matter which domain the sequences are
from. Hence, a joint regression loss can be constructed for
learning the predictor:

Lpred =E(xS ,yS)∼p(xS ,yS)[‖yS − fpred(fenc(x
S , θS))‖2+

‖yS − fpred(fenc(x̂
T , θT ))‖2]

(11)

Although the adversarial training is unable to produce
exact the same sequences as the ones generated in the tar-
get domain, the labels in the source domain encourages the
sequence encoder to preserve the prominent features for pre-
diction, so that the domain-invariant representations will be
further regularised by the labels in the source domain.

Cycle Consistency Regularisation In order to improve
the sensory sequence generation, we apply the cycle-
consistency regularisation to ensure the sequences gener-
ated to the target domain from the source domain can be
mapped back without losing too much content information.
As demonstrated by (Kim et al. 2017; Zhu et al. 2017;
Yi et al. 2017), this bidirectional architecture encourages

the GAN to generate data in meaningful direction by pun-
ishing the optimizer with the L-1 consistency loss defined
as:
Lcycle =ExS∼p(xS)‖GT→S(GS→T (xS , θS), θT )− xS‖1+

ExT∼p(xT )‖GS→T (GT→S(xT , θT ), θS)− xT ‖1
(12)

Perceptual Consistency Regularisation To further regu-
larise the learning of domain-invariant representations, we
propose the perceptual consistency regularisation. Inspired
by the f constancy (Taigman, Polyak, and Wolf 2017), we
employ the encoder fenc as the perceptual function to enforce
the semantic representation constant after being transformed
into another domain by generators. For example, in source
domains, the hidden representation zS = fenc(x

S , θS) ex-
tracted by the encoder conditioned on the source domain
vector, will be encouraged invariant under GS→T by mini-
mizing a L-2 distance between the original hidden represen-
tation zS and the hidden representation ẑS = fenc(x̂

T , θT )
extracted from the generated synthetic target domain data
x̂T = GS→T (xS , θS). Similar perceptual constraint can be
applied for target domain.
Lpercep =

ExS∼XS‖fenc(xS , θS)− fenc(GS→T (xS , θS), θT )‖2
+ ExT∼XT ‖fenc(xT , θT )− fenc(GT→S(xT , θT ), θS)‖2

(13)

Experiments
Inertial Tracking Dataset
A commercial-off-the-shelf smartphone, the iPhone 7Plus,
is employed to collect inertial measurement data of pedes-
trian random walking. The smartphone was attached in four
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Figure 3: Heading displacement estimation from training in (a) source domain, (b) target domain and (c) MotionTransformer,
and location displacement estimation from training in (d) source domain, (e) target domain and (f) MotionTransformer

different poses: handheld, pocket, handbag and trolley, each
of which represents a domain that has dramatically distinct
motion pattern with others.

We use an optical motion capture system (Vicon) (Vicon
2017) to record the ground truth. The Vicon system is able
to provide high-precision full pose reference (0.01 m for
location, 0.1 degree for orientation), and tracks our partici-
pants carrying the experimental device attached with Vicon
markers. The 100 Hz sensor readings are then segmented
into sequences with corresponding labels, e.g. location and
heading attitude displacement provided by Vicon system.
These source-domain labels are used for MotionTransformer
training while the target-domain labels are used for Motion-
Transformer evaluation only. The length of each sequence is
200 frames (2 seconds), including three linear accelerations
and three angular rates per frame. In summary, the dataset1

(Chen et al. 2018b) used in this work contains around 45K,
53 K, 36K and 29K sequences for handheld, pocket, bag,
trolley domains respectively. Among them, 4K sequences
were selected as validation data in each domain, and the
rest was taken as training set. In our training phase, we set
the hyper-parameters λ1 = 0.01, λ2 = 100, λ3 = 0.1, and
λ4 = 1.

Transferring Across Motion Domains
We evaluate our model on unsupervised motion domain trans-
fer tasks. The source domain is the inertial data collected
in the handheld attachment, while the target domains are
those collected in the attachments of pocket, handbag and
trolley. We test the our framework with the real target data.
Its generalization performance is evaluated by comparing

1Dataset can be found at http://deepio.cs.ox.ac.uk

the label prediction (polar vector) with the ground-truth data
captured by Vicon system. We compare with source-only,
where we use the trained source predictor to predict data
directly in the target domain and with target-only where we
train the target dataset with target labels (40K) to show the
performance of fully supervised learning. Figure 3 presents
the predicted location and heading displacement in pocket
domain for the three different techniques. It can be seen that
source-only is unable to follow either delta heading or delta
location accurately, whereas MotionTransformer achieves a
level of performance close to the fully supervised target-only,
especially for delta heading.

Table. 1 presents the quantitative analysis with a metric of
mean square error of the label prediction against the ground
truth. Compared with using a model trained on source data
only, our proposed unsupervised sequence domain adaptation
technique helps to dramatically decrease the validation loss
(almost 6 times, 9 times, and 3 times in pocket, bag and trolley
domains). Two popular baselines are compared with Motion-
Transformer: i) adversarial discriminative domain adaptation
(ADDA) (Tzeng et al. 2017) and ii) cycle-consistent adver-
sarial domain adaptation (CyCADA) (Hoffman et al. 2017).
ADDA is a discriminative model, forcing the feature fusion of
two domains by distinguishing the features after the encoder.
CyCADA is a generative model, using standard Cycle-GAN
framework to generate synthetic target domain data and fine-
tune the predictor through synthetic data. Because they both
aim to process images rather than continuous sequential data,
we replace their convolutional generator and discriminator
with the same LSTM layers as described in our frameworks.
Moreover, we cut down the reconstruction loss and percep-
tual loss in our framework respectively to show their impact.
As shown in Table. 1, our MotionTransformer still achieves
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Figure 4: Inertial tracking trajectories of (a) Pocket (b) Trolley (c) Handbag, comparing our proposed unsupervised Motion-
Transformer with Ground Truth and Supervised Learning.

Table 1: Unsupervised Transfer Across Motion Domains

Model Hand→ Pocket Hand→ Bag Hand→ Trolley

Training on Source, Testing on Target 0.718 1.129 0.273
ADDA with LSTM 0.471 0.631 0.216

CyCADA with LSTM 0.237 0.455 0.182

MotionTransformer w/o Reconstruction 0.313 0.335 0.113
MotionTransformer w/o Perceptual Loss 0.315 0.202 0.140

MotionTransformer 0.119 0.123 0.098
Semi-Supervised MotionTransformer (1K) 0.113 0.075 0.047

Train on Target, Test on Target (40K) 0.045 0.010 0.006

competitive performance compared to these baselines.
Lastly, we also evaluate our framework on a semi-

supervised domain transfer task, with 1K labelled target
domain sequences to train the predictor. As shown in Ta-
ble. 1, the sparse labels in target domains help decrease the
prediction error, especially in the bag and trolley domains.

Inertial Tracking in Unlabelled Domains
We argue that the predicted label from our domain transfor-
mation framework is capable of solving a downstream task
- inertial odometry tracking. In an inertial tracking task, the
precision of the predicted label determines the localization
accuracy, as the current location (xn, yn) is calculated by
using an initial location (x0, y0) and heading, and chaining
the results of previous windows via Equation 14. This dead
reckoning (DR) technique, also called path integration, can
be widely found in animal navigation (McNaughton et al.
2006), which enables animals to use inertial cues (e.g. steps
and turns) to track themselves in the absence of vision. The
errors in path integration will accumulate and cause unavoid-
able drifts in trajectory estimation, which imposes a require-
ment for accurate motion domain transformation. Without
domain adaptation, if the model trained on source domain

is directly applied to data from target domains, it will not
produce any trajectory representing the self-motion. When
using only inertial information, traditional model-based navi-
gation algorithms perform poorly in unlabelled scenarios, as
SINS will collapse due to the high measurements noises, and
PDR will be influenced by incorrect step detection or device
orientation. {

xn = x0 + ∆lcos(ψ0 + ∆ψ)

yn = y0 + ∆lsin(ψ0 + ∆ψ)
(14)

We show that the inertial tracking trajectory can be recov-
ered from the labels predicted by our domain adaptation
framework in unlabelled domains. The participant walked
with the device placed in the pocket, the handbag and on the
trolley. The inertial data during test walking trajectory was
not included in training dataset, and collected in different
days. Figure 4 illustrates that our proposed model succeeds
in generating physically meaningful trajectories, close to the
ground truth captured by Vicon system. It proves that exploit-
ing the raw sensory stream and transforming to a common
latent distribution can extract meaningful semantic features
that help solve downstream tasks.
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Figure 5: Visualization of extracted representations in the source and target domains. It can be seen that the MotionTransformer
leads to a more consistent latent representation compared with the disjoint representations of the normal encoder and the ADDA
encoder.

Interpreting the Sequence Encoder
The role of the sequence encoder is evaluated by the t-SNE
projection to show its ability to map the raw data from two do-
mains to an identical semantic space. We compare it with two
other baselines: a domain-specific encoder, which is only em-
ployed in the source domain (it is not shared across domains);
an ADDA encoder, which is learned jointly with the predictor
by adversarial training to force the fusion of representations
extracted by the encoder. The t-SNE projection is shown in
Figure 5, and all of the models apply the same parameters
(Perplexity=10, step=5000). As can be seen, the data points
of domain-specific encoder are distinctly separated into two
folds. ADDA attempts to fuse the points from two domains
but it turns out points are still clearly separated. By contrast,
the encoder of our MotionTransformer is able to better scatter
the points dispersively in the semantic space, which removes
the domain shifts and benefit target label prediction.

Related Work
Domain Adaptation Our work is most related to domain
adaptation techniques, which aim to align the learned repre-
sentation across source and target domains by minimizing
maximum mean discrepancy loss (Long et al. 2015) or ad-
versarial loss (Ganin et al. 2016; Tzeng et al. 2017). Recent
adversarial approaches have been achieved the state of art
results in multiple tasks, for example, sleep stages prediction
(Zhao et al. 2017), healthcare data prediction (Purushotham
et al. 2017) and image-to-image translation (Liu, Breuel,
and Kautz 2017). Prior art can be categorized into two main
groups: the discriminative adversarial models seek to align
the embedding representation between target and source do-
main to encourage domain confusion (Ganin et al. 2016;
Tzeng et al. 2015; 2017); the generative adversarial models
aim to employ generated data for training the prediction net-
works and meanwhile fooling the discriminator (Shrivastava
et al. 2017; Hoffman et al. 2017; Liu, Breuel, and Kautz
2017). Here, we utilize the generative adversarial networks
(GAN) to generate sensory sequence data from invariant fea-
tures extracted by an identical encoder.

Inertial Navigation Systems Early inertial navigation sys-
tems were developed as the core components in control and
navigation systems for missiles, submarines, and spacecraft,
relying on expensive, heavy and high-precision inertial mea-

surement units (Savage 1998). The traditional strapdown
inertial navigation algorithms are hard to realize on low-
cost MEMS inertial sensors, because the high measurement
noises cause exponential error propagation via open integra-
tion, and the inertial output collapses within seconds (Harle
2013). To mitigate the unbounded error drift, one solution is
to combine cameras with inertial sensors as realized in visual
inertial odometry (Li and Mourikis 2013). Another solution
is to detect steps and update the trajectory with estimated
step length and heading through pedestrian dead reckon-
ing (Xiao et al. 2015). These model based approaches exploit
the context information to reduce the inertial systems drift,
for example, via zero-velocity update (Nilsson et al. 2012;
Chen et al. 2016), floor map (Xiao et al. 2014), electronic
magnetic field (Lu et al. 2018), but their assumptions are
too strong. As a consequence their performance is variable
in complex real-world conditions: visual-inertial odometry
assumes cameras have feature-rich, well illuminated scenes
without occlusion, and PDR assumes the user’s personal
walking model and the phone placement are prior knowl-
edge (Brajdic and Harle 2013). Recent deep learning based
inertial tracking (Chen et al. 2018a) can learn direct location
transforms from raw inertial data, and construct continuous
accurate trajectories for indoor users, but still suffers from
serious domain shifts and generalization problems. Our work
aims to unsupervised learn the inertial tracking in unlabeled
new domains, effectively increasing its generalization ability
and flexibility in real usages.

Conclusion and Discussion
Motion transformation between different domains is a chal-
lenging task, which typically requires the use of labeled data
for training. In the presented framework, by transforming
target domains to a consistent, invariant representation, a
physically meaningful trajectory can be well reconstructed.
Intuitively, our technique is learning how to transform data
from an arbitrary sensor domain θ to a common latent repre-
sentation. Analogously, this is equivalent to learning how to
translate any sensor frame to the navigation frame, without
any labels in the target domain. Although MotionTransformer
has been shown to work on IMU data, the broad framework
is likely to be suitable for any continuous, sequential domain
transformation task where there is an underlying physical
model.
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