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1. INTRODUCTION
This paper establishes the equivalence of two models: higher-order recursion schemes and
collapsible pushdown automata. A recursion scheme is a simply-typed term rewriting sys-
tem. Deterministic recursion schemes can be viewed naturally as generators of possibly
infinite trees. Collapsible pushdown automata (CPDA) are an extension of higher-order
pushdown automata, and they naturally induce a transition graph. An infinite ranked tree
can be constructed by first unfolding such a transition graph and then contracting the silent
transitions. Applying this construction to CPDA defines a family of ranked trees which co-
incides with the family of ranked trees generated from higher-order recursion schemes.
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A:2 Matthew Hague et al.

Recursive Applicative Program Schemes
Recursion schemes have a long and rich history1. They go back to Nivat’s recursive ap-
plicative program schemes [Nivat 1972], which correspond to order-1 recursion schemes in
our sense, and to Garland and Luckham’s monadic recursion schemes [Garland and Luck-
ham 1973]. According to Nivat, a recursive applicative program scheme is a finite system
of equations of the form Fi(x1, . . . , xni) = pi, where each xj is an order-0 variable and pi is
an order-0 term constructed from the non-terminal symbols Fi, terminal symbols and the
variables x1, . . . , xni . A program is then a program scheme together with an interpretation
in some domain. The least fixed point of the function defined by the rewriting rules of a
program scheme gives a possibly infinite term tree over the terminals alphabet, known as
the value of the program in the free / Hebrand interpretation; applying the interpretation
to this infinite term gives the value of the program. Thus the program scheme gives the
uninterpreted syntax tree of some functional program that is then fully specified owing to
the interpretation. For example, the term if (eq(1, 0), 2, 3) has the value 3 under the natural
interpretation of if , eq , and the natural numbers.

Nivat also introduced a notion of equivalence: two program schemes are equivalent just
if they compute the same function under every interpretation. Courcelle and Nivat [Cour-
celle and Nivat 1978] showed that two program schemes are equivalent if and only if they
generate the same infinite term tree, thus underlining the importance of studying the tree
generated by a scheme. Following the work of Courcelle [Courcelle 1978a; Courcelle 1978b],
the equivalence problem for program schemes is inter-reducible to the problem of language
equivalence for deterministic pushdown automata (DPDA). The question of the decidability
of the latter was first posed in the 1960s. It was only settled, positively, by Sénizergues in
1997 [Sénizergues 1997; Sénizergues 2002], which therefore also established the decidability
of the program scheme equivalence problem.

Extension of Schemes to Higher Orders
In Nivat’s program scheme, the non-terminals and the variables are restricted to order 1 and
0 respectively. It follows that they are not suited to model higher-order recursive programs.
A major theme in the late 1970s was the extension of program schemes to higher orders
[Indermark 1976; Damm 1977a; Damm 1977b; Engelfriet and Schmidt 1977; Engelfriet and
Schmidt 1978].

In an influential paper [Damm 1982], Damm introduced level-n λ-schemes, extending
the work of Courcelle and Nivat. Damm’s schemes coincide with the safe fragment of the
recursion schemes, which we will define later in the paper. It is important to note that
so far there was no known model of automata equi-expressive with Damm’s schemes; in
particular, there was no known reduction of the equivalence problem for schemes to a
language equivalence problem for (some model of) automata.

Later, Damm and Goerdt [Damm 1982; Damm and Goerdt 1986] considered the word
languages generated by level-n λ-schemes, and showed that they coincide with a hierarchy
introduced earlier by Maslov [Maslov 1974; Maslov 1976]. To define his hierarchy, Maslov
introduced higher-order pushdown automata (Higher-order PDA); he also gave an equivalent
definition of the hierarchy in terms of higher-order indexed grammars.

Higher-Order Recursion Schemes as Generators of Infinite Structures
Since the late 1990s, motivated mainly by applications to program verification, there has
been a strong and sustained interest in infinite structures that admit finite descriptions; see
[Bárány et al. 2011] for an overview. The central question, given a class of such structures, is

1De Miranda’s thesis [de Miranda 2006], among others, contains an account of the history. See also [Ong
2015a]
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to find the most expressive logic for which model checking is decidable. Of course decidability
here is a trade-off between richness of the structure and expressivity of the logic.

Of special interest are tree-like structures. Higher-order PDA as a generating device for
possibly infinite labelled ranked trees were first studied by Knapik, Niwiński and Urzyczyn
[Knapik et al. 2002]. As in the case of word languages, an infinite hierarchy of trees is
defined according to the order of the generating higher-order PDA; lower orders of the
hierarchy are well-known classes of trees: orders 0, 1 and 2 are respectively the regular [Rabin
1969], algebraic [Courcelle 1995] and hyperalgebraic trees [Knapik et al. 2001]. Knapik et al.
considered another method of generating such trees, namely, by higher-order (deterministic)
recursion schemes that satisfy the safety constraint. A major result of their work is the equi-
expressivity of both methods as tree generators. In particular it implies that the equivalence
problem for higher-order safe recursion schemes is inter-reducible to the problem of language
equivalence for deterministic higher-order PDA.

An alternative approach was developed by Caucal [Caucal 2002] who introduced two in-
finite hierarchies, one consisting of infinite trees and the other of infinite graphs, defined
by mutually recursive maps: unfolding which transforms graphs to trees, and inverse ra-
tional mapping (or MSO-interpretation [Carayol and Wöhrle 2003]) which transforms trees
to graphs. He showed that the tree hierarchy coincides with the trees generated by safe
recursion schemes.

However, the fundamental question open since the early 1980s of finding a class of au-
tomata that characterises the expressivity of higher-order recursion schemes was left open.
Indeed, the results of Damm and Goerdt, as well as those of Knapik et al. may only be
viewed as attempts to answer the question as they both had to impose the same syntactic
constraints on recursion schemes, called derived types and safety respectively, in order to
establish their results.

A partial answer was later obtained by Knapik, Niwiński, Urzyczyn and Walukiewicz.
They proved that order-2 homogeneously-typed, but not necessarily safe, recursion schemes
are equi-expressive with a variant class of order-2 pushdown automata called panic automata
[Knapik et al. 2005].

Finally, we gave a complete answer to the question in an extended abstract [Hague et al.
2008]. For this, we introduced a new kind of higher-order pushdown automata, which gen-
eralises pushdown automata with links [Aehlig et al. 2005], or equivalently panic automata,
to all finite orders, called collapsible pushdown automata (CPDA), in which every symbol
in the stack has a link to a (necessarily lower-ordered) stack situated somewhere below it. A
major result of [Hague et al. 2008] and of the present paper is that for every n ≥ 0, order-n
recursion schemes and order-n CPDA are equi-expressive as generators of trees.

Decidability of Monadic Second Order Logic
This quest of finding an alternative description of those trees generated by recursion schemes
was led in parallel with the study of the decidability of the model-checking problem for the
monadic second order logic (MSO) and the modal µ-calculus (see [Thomas 1997; Arnold
and Niwiński 2001; Grädel et al. 2002; Flum et al. 2007] for background about these logics
and connections with finite automata and games).

The decidability of the MSO theories of trees generated by safe recursion schemes of all
finite orders was established by Knapik, Niwiński and Urzyczyn [Knapik et al. 2002] and
independently by Caucal [Caucal 2002] who proved, additionally, the MSO decidability of
the associated graph hierarchy. The decidability result was first extended to possibly unsafe
recursion schemes of order 2 by Knapik et al. [Knapik et al. 2005] and Aehlig et al. [Aehlig
et al. 2005] independently. The former group introduced panic automata and proved its
equi-expressivity with the class of recursion schemes; the latter introduced an essentially
equivalent automata model called pushdown automata with links.
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In 2006, Ong established the MSO decidability of trees generated by recursion schemes
of all finite orders [Ong 2006a]: he proved that the problem is n-EXPTIME complete. The
result was obtained using techniques from innocent game semantics [Hyland and Ong 2000];
it does not rely on an equivalent automata model for generating trees.

A different, automata-theoretic, proof of Ong’s decidability result was subsequently ob-
tained by Hague, Murawski, Ong and Serre [Hague et al. 2008]. Thanks to the equi-
expressivity between recursion schemes and CPDA, and the well-known connections be-
tween MSO model checking for trees and parity games, they show that the model-checking
problem for recursion schemes is inter-reducible to the problem of determining the winner
of a parity game played over the transition graph associated with a CPDA. Their work
extends the techniques and results of (higher-order) pushdown games, including those of
Walukiewicz [Walukiewicz 2001], Cachat [Cachat 2003] (see also [Carayol et al. 2008] for
a comprehensive study on higher-order pushdown games) and Knapik et al. [Knapik et al.
2005]. These techniques have since been extended by Broadbent, Carayol, Ong and Serre
to establish the closure of recursion schemes under MSO markings [Broadbent et al. 2010],
and more recently by Carayol and Serre to prove that recursion schemes enjoy the effective
MSO selection property [Carayol and Serre 2012].

Following initial ideas in [Aehlig 2006] and [Kobayashi 2009b], Kobayashi and Ong gave
yet another proof of Ong’s decidability result. Their proof [Kobayashi and Ong 2009] consists
in showing that, given a recursion scheme and an MSO formula or an equivalent property,
one can construct an intersection type system such that the scheme is typable in the type
system if and only if the property is satisfied by the scheme. Typability is then reduced to
solving a parity game.

In [Salvati and Walukiewicz 2011; Salvati and Walukiewicz 2014], Salvati and Walukiewicz
used Krivine machines [Krivine 2007] to represent the rewrite sequences of terms of the
λY -calculus, a formalism equivalent to higher-order recursion schemes. A Krivine machine
computes the weak head normal form of a λY -term using explicit substitutions. The MSO
decidability for recursion schemes was then obtained by solving parity games played over
the configurations of a Krivine machine. In [Salvati and Walukiewicz 2012; Salvati and
Walukiewicz 2015] they also provide a translation from recursion schemes to CPDA which
is very close to the translation independently obtained by Carayol and Serre in [Carayol
and Serre 2012]. Also note that in both of these translations the authors remark that if
the original recursion scheme is safe the CPDA that is obtained can safely be transformed
into a higher-order pushdown automaton (i.e. all collapse operations can be replaced by a
standard popping); this was actually previously established by Blum in [Blum 2017] and by
Broadbent in his PhD thesis[Broadbent 2011, chapter 3] for the translation we provide in
this paper (as given in its conference version [Hague et al. 2008]). Also remark that neither
[Carayol and Serre 2012] nor [Salvati and Walukiewicz 2015] provide the translation back
from CPDA to schemes.

Let us stress that even if the proof of the translation from schemes to CPDA we give here
is longer than the ones in [Carayol and Serre 2012; Salvati and Walukiewicz 2015], it makes
use of a richer higher-level concept (namely traversals) which we believe is worth knowing
as it gives a deep insight on how scheme evaluation can be understood.

Structure of this paper
In this paper we present in full a proof of the equi-expressivity result which was first sketched
in [Hague et al. 2008]. Owing to the length of this presentation, full proofs of the results
therein on games played on the transition graphs of CPDA will be presented elsewhere.

The paper is organised as follows. Sections 2 and 3 introduce the main concepts, recursion
schemes and CPDA respectively, together with examples. In Section 4 we state our main
result. Then in Section 5 we give a transformation from CPDA to recursion schemes. The
key idea is to associate a finite ground term with a given configuration of a CPDA and to
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provide rewriting rules for those terms that can simulate transitions of the CPDA. This gives
rise to a transition system over finite ground terms that is isomorphic to the transition graph
of the CPDA. The final step consists in simulating this transition system by an appropriate
recursion scheme. Finally Section 6 gives the transformation in the other direction. For this
we consider an intermediate object, the traversal tree of the recursion scheme, which turns
out to be equivalent to the tree generated by the scheme. We then use the traversal tree to
design an equivalent CPDA that computes paths in the traversal tree.

2. RECURSION SCHEMES
2.1. Types and terms
Types are generated by the grammar A ::= o | A → A. Every type A ̸= o can be written
uniquely as A1 → (A2 → · · · → (An → o) · · · ), for some n ≥ 1 which is called its arity; the
ground type o has arity 0. We follow the convention that arrows associate to the right, and
simply write A1 → A2 → · · · → An → o, which we sometimes abbreviate to (A1, . . . , An, o).
The order of a type measures the nesting depth on the left of →. We define ord(o) = 0
and ord(A1 → A2) = max(ord(A1) + 1, ord(A2)). Thus ord(A1 → . . . → An → o) =
1 +max{ord(Ai) | 1 ≤ i ≤ n}. For example, ord(o→ o→ o→ o) = 1 and ord(((o→ o) →
o) → o) = 3.

Let Σ be a ranked alphabet i.e. each Σ-symbol f has an arity ar(f) ≥ 0 which determines
its type o→ · · · → o→︸ ︷︷ ︸

ar(f)

o. Further we assume that each symbol f ∈ Σ is assigned a finite

set Dir(f) = { 1, . . . , ar(f) } of directions, and we define Dir(Σ) =
∪

f∈Σ Dir(f). Let D be
a set of directions; a D-tree is just a prefix-closed subset of D∗, the free monoid of D. A Σ-
labelled ranked and ordered tree (or simply a Σ-labelled tree) is a function t : Dom(t) −→ Σ
such that Dom(t) is a Dir(Σ)-tree, and for every node α ∈ Dom(t), the Σ-symbol t(α) has
arity k if and only if α has exactly k children and the set of its children is {α 1, . . . , α k }.
We write T ∞(Σ) for the set of (finite and infinite) Σ-labelled trees.

Let Ξ be a set of typed symbols. Let f ∈ Ξ and A be a type, we write f : A to mean that
f has type A. The set of (applicative) terms of type A generated from Ξ, written TA(Ξ), is
defined by induction over the following rules. If f : A is an element of Ξ then f ∈ TA(Ξ); if
s ∈ TA→B(Ξ) and t ∈ TA(Ξ) then s t ∈ TB(Ξ). For simplicity we write T (Ξ) to mean To(Ξ),
the set of terms of ground type. Let t be a term, we write t : A to mean that t is an term
of type A. In case Ξ is a ranked alphabet (and so every Ξ-symbol has an order-0 or order-1
type as determined by its arity) we identify terms in T (Ξ) with the finite trees in T ∞(Ξ).

2.2. Recursion schemes
For each type A, we assume an infinite set VarA of variables of type A, such that VarA and
VarB are disjoint whenever A ̸= B; and we write Var for the union of VarA as A ranges
over types. We use letters x, y, φ, ψ, χ, ξ etc. to range over variables.

A (deterministic) recursion scheme is a quadruple G = ⟨Σ,N ,R, S ⟩ where

— Σ is a ranked alphabet of terminals (including a distinguished symbol ⊥ : o)
— N is a finite set of typed non-terminals; we use upper-case letters F,H, etc. to range

over non-terminals
— S ∈ N is a distinguished start symbol of type o
— R is a finite set of rewrite rules, one for each non-terminal F : (A1, · · · , An, o), of the

form
F ξ1 · · · ξn → e

where each ξi is a variable of type Ai, and e is a term in T (Σ ∪ N ∪ { ξ1, · · · , ξn }). Note
that the expressions on either side of the arrow are terms of ground type.
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The order of a recursion scheme is defined to be the highest order of (the types of) its
non-terminals.

In this paper we use recursion schemes as generators of Σ-labelled trees. Informally the
value tree2 [[G ]] of (or the tree generated by) a recursion scheme G is a possibly infinite
term (of ground type), constructed from the terminals in Σ, that is obtained, starting from
the start symbol S, by unfolding the rewrite rules of G ad infinitum, replacing formal by
actual parameters each time.

To define [[G ]], we first introduce a map (·)⊥ :
∪
A

TA(Σ ∪N ) −→
∪

A:ord(A)≤1

TA(Σ) that

takes a term and replaces each non-terminal, together with its arguments, by ⊥. We define
(·)⊥ by structural recursion as follows: we let f range over Σ-symbols, and F over non-
terminals in N

f⊥ = f

F⊥ = ⊥

(st)⊥ =

{
⊥ if s⊥ = ⊥
(s⊥t⊥) otherwise.

Clearly if s ∈ T (Σ ∪N ) is of ground type, so is s⊥ ∈ T (Σ).
Next we define a one-step reduction relation →G which is a binary relation over terms in

T (Σ∪N ). Informally, s→G s′ just if s′ is obtained from s by replacing some occurrence of
a non-terminal F by the right-hand side of its rewrite rule in which all formal parameters
are in turn replaced by their respective actual parameters, subject to the proviso that the F
must occur at the head of a subterm of ground type. Formally →G is defined by induction
over the following rules:

— (Substitution). Ft1 · · · tn →G e[t1/ξ1, · · · , tn/ξn] where Fξ1 · · · ξn → e is a rewrite rule of
G.

— (Context). If t→G t′ then (st) →G (st′) and (ts) →G (t′s).

Note that T ∞(Σ) is a complete partial order with respect to the approximation or-
dering ⊑ defined by: t ⊑ t′ just if Dom(t) ⊆ Dom(t′) and for all w ∈ Dom(t), we
have t(w) = ⊥ or t(w) = t′(w). I.e. t′ is obtained from t by replacing some ⊥-labelled
nodes by Σ-labelled trees. If one views G as a rewrite system, it is a consequence of
the Church-Rosser property [Church and Rosser 1936] that the set { t⊥ ∈ T ∞(Σ) :
there is a finite reduction sequence S = t0 →G · · · →G tn = t } is directed. Hence, we
can finally define the Σ-labelled ranked tree [[G ]], called the value tree of (or the tree gen-
erated by) G:

[[G ]] = sup{ t⊥ ∈ T ∞(Σ) : there is a finite reduction sequence S = t0 →G · · · →G tn = t }.

We write RecTreenΣ for the class of value trees [[G ]] where G ranges over order-n
recursion schemes.

Example 2.1. Let G1 be the order-2 recursion scheme with non-terminals {S : o, H :
(o, o), F : ((o, o), o)}, variables {z : o, φ : (o, o)}, terminals g, h, a of arity 2, 1, 0 respectively,

2We refer to the Σ-labelled tree generated by a recursion scheme as its value tree, because the name is a good
counterpoint to computation tree. We have in mind here the distinction between value and computation
emphasized by Moggi [Moggi 1989]. The idea is that the value tree is obtained from the computation tree
by a (possibly infinite) process of evaluation.
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and the following rewrite rules:

S → H a

H z → F (g z)

F φ → φ (φ (F h))

The value tree [[G ]] is the Σ-labelled tree representing the infinite term
g a (g a (h (h (h · · · )))):

g

vv
vv
v

HH
HH

H

a g

ww
ww
w

GG
GG

G

a h

h

...

The only infinite path in the tree is the node-sequence ε · 2 · 22 · 221 · 2211 · · · .
Example 2.2. Let G2 be the order-2 recursion scheme with non-terminals {S : o, F :

((o, o), (o, o), o), Cp : ((o, o), (o, o), o, o)}, variables {x : o, φ : (o, o), ψ : (o, o)}, terminals
a, b, c, ♯ of arity 2, 1, 1, 0 respectively, and the following rewrite rules:

S → F b c

F φψ → a (φ (ψ ♯)) (F (Cp b φ) (Cp c ψ))

Cp φψ x → φ (ψ x)

After some applications of the rules, one gets the following term:
a

��� ::
:

b a

��
�

OOO
OOO

O

c b F

��
� ==

=

♯ b Cp

��
�

Cp

???

c b Cp

���
c Cp

~~
~

c b b c c

♯

The value tree [[G ]] is the Σ-labelled tree representing the infinite term
a (b c ♯) (a (b b c c ♯) (a (b b b c c c ♯) · · · ))

In particular, the path language of t (i.e. the set of words obtained by considering the labels
along a maximal branch) is {aω} ∪ {akbkck♯ | k ≥ 1}.

2.3. The safety constraint
The safety constraint on applicative terms may be regarded as a reformulation of Damm’s
derived types [Damm 1982]. To define safety, we first introduce homogeneous types. The type
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(A1, · · · , An, o) is homogeneous just if each Ai is homogeneous, and ord(A1) ≥ ord(A2) ≥
· · · ≥ ord(An). It follows that the ground type o and all order-1 types are homogeneous. In
the following definition, suppose a term s has type A, then we write ord(s) = ord(A).

Definition 2.3. A rewrite rule F x1 . . . xn → t is safe just if

(i) the type of F and of all subterms of t are homogeneous, and
(ii) for each subterm s of t that occurs in the operand position of an application, and for

each 1 ≤ i ≤ n, if xi occurs in s then ord(s) ≤ ord(xi).

We say that a recursion scheme is safe just if all its rewrite rules are safe.

It follows from the definition that all recursion schemes of order at most 1 are safe. For
a study of safety in the setting of the simply-typed lambda calculus, see [Blum and Ong
2009].

Example 2.4. The scheme G1 defined in Example 2.1 is unsafe because of the second
rule. The subterm g z occurs at an operand position and has order 1, but z has order 0.

Paweł Urzyczyn conjectured that safety is a genuine constraint on expressivity i.e. there
is a tree, generated by an order-2 unsafe scheme, which cannot be generated by any safe
recursion scheme of any order. This conjecture was recently proved by Paweł Parys [Parys
2011; Parys 2012].

3. COLLAPSIBLE PUSHDOWN AUTOMATA (CPDA)
We introduce (higher-order) collapsible pushdown automata (CPDA). An order-n CPDA,
or n-CPDA for short, is just an order-n pushdown automaton (n-PDA), in the sense of
[Knapik et al. 2002], in which every non-⊥ symbol in the order-n stack has a link to a
(necessarily lower-ordered) stack situated below it. In the following section we give an
exposition where links are treated informally. A more formal treatment of the links is given
in Section 3.2.

3.1. Stacks with links
Fix a stack alphabet Γ and a distinguished bottom-of-stack symbol ⊥ ∈ Γ. An order-0 stack
(or simply 0-stack) is just a stack symbol. An order-(n + 1) stack (or simply (n + 1)-stack)
s is a non-null sequence (written [s1 · · · sl]) of n-stacks such that every non-⊥ Γ-symbol γ
that occurs in s has a link to a stack of some order e (say, where 0 ≤ e ≤ n) situated below
it in s; we call the link an (e + 1)-link. The order of a stack s is written ord(s).

As usual, the bottom-of-stack symbol ⊥ cannot be popped from or pushed onto a stack.
Thus we require an order-1 stack to be a non-null sequence [γ1 · · · γl] of elements of Γ such
that for all 1 ≤ i ≤ l, γi = ⊥ iff i = 1. We define ⊥k, the empty k-stack, as follows: ⊥0 = ⊥
and ⊥k+1 = [⊥k].

We first define the operations popi and topi with i ≥ 1: topi(s) returns the top (i−1)-stack
of s, and popi(s) returns s with its top (i− 1)-stack removed. Precisely let s = [s1 · · · sl+1]
be a stack with 1 ≤ i ≤ ord(s):

topi([s1 · · · sl+1]︸ ︷︷ ︸
s

) =

{
sl+1 if i = ord(s)

topi(sl+1) if i < ord(s)

popi([s1 · · · sl+1]︸ ︷︷ ︸
s

) =

{
[s1 · · · sl] if i = ord(s) and l ≥ 1

[s1 · · · sl popi(sl+1)] if i < ord(s)
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By abuse of notation, we set topord(s)+1(s) = s. Note that popi(s) is undefined if topi+1(s)

is a one-element i-stack. For example pop2([[⊥αβ]]) and pop1([[⊥αβ][⊥]]) are both
undefined.

There are two kinds of push operations. We start with the order-1 push. Let γ be a
non-⊥ stack symbol and 1 ≤ e ≤ ord(s), we define a new stack operation pushγ,e1 that,
when applied to s, first attaches a link from γ to the (e − 1)-stack immediately below the
top (e− 1)-stack of s, then pushes γ (with its link) onto the top 1-stack of s. Formally for
1 ≤ e ≤ ord(s) and γ ∈ (Γ \ {⊥}), we define

pushγ,e1 ([s1 · · · sl+1]︸ ︷︷ ︸
s

) =


[s1 · · · sl pushγ,e1 (sl+1)] if e < ord(s)

[s1 · · · sl sl+1 γ
†] if e = ord(s) = 1

[s1 · · · sl pushγ̂1(sl+1)] if e = ord(s) ≥ 2 and l ≥ 1

where
— γ† denotes the symbol γ with a link to the 0-stack sl+1

— γ̂ denotes the symbol γ with a link to the (e− 1)-stack sl; and we define

pushγ̂1([t1 · · · tr+1]︸ ︷︷ ︸
t

) =

 [t1 · · · tr pushγ̂1(tr+1)] if ord(t) > 1

[t1 · · · tr+1 γ̂] otherwise i.e. ord(t) = 1

The higher-order pushj , where j ≥ 2, simply duplicates the top (j−1)-stack of s, including
all the links. Precisely, let s = [s1 · · · sl+1] be a stack with 2 ≤ j ≤ ord(s):

pushj([s1 · · · sl+1]︸ ︷︷ ︸
s

) =

 [s1 · · · sl+1 sl+1] if j = ord(s)

[s1 · · · sl pushj(sl+1)] if j < ord(s)

Note that in case j = ord(s) above, the link structure of sl+1 is preserved by the copy that
is pushed on top by pushj .

Finally there is an important operation called collapse. We say that the n-stack s0 is a
prefix of an n-stack s, written s0 ≤ s, just in case s0 can be obtained from s by a sequence
of (possibly higher-order) pop operations. Take an n-stack s where s0 ≤ s, for some n-stack
s0, and top1 s has a link to tope(s0). Then collapse s is defined to be s0.

Example 3.1. When displaying n-stacks in examples, we use bent arrows to denote links;
however to avoir clutter we shall omit 1-links (indeed by construction they can only point
to the symbol directly below), writing e.g. [[⊥][⊥αβ]] instead of [[⊥][⊥ α β]].

Take the 3-stack s = [[[⊥α]] [[⊥][⊥α]]]. We have

pushβ,21 (s) = [[[⊥α]] [[⊥][⊥αβ]]]

collapse (pushβ,21 (s)) = [[[⊥α]] [[⊥]]]

pushγ,31 (pushβ,21 (s))︸ ︷︷ ︸
θ

= [[[⊥α]] [[⊥][⊥αβ γ]]].

Then push2(θ) and push3(θ) are respectively
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[[[⊥α]] [[⊥][⊥αβ γ][⊥αβ γ]]] and

[[[⊥α]] [[⊥][⊥αβ γ]] [[⊥][⊥αβ γ]]].

We have collapse (push2(θ)) = collapse (push3(θ)) = collapse(θ) = [[[⊥α]]].

3.2. A formal definition of CPDA stack operations
One way to give a formal semantics of the stack operations is to work with appropriate
numeric representations of the links. In [Knapik et al. 2005], it has been shown how this can
be done in the order-2 case in the setting of panic automata. Here we use a different encoding
of stacks with links that works for all orders. The presentation follows Kartzow [Kartzow
2010].

The idea is simple: take an order-n stack s and suppose that there is a link from (a
particular occurrence of) a symbol γ in s to some (e − 1)-stack s′, and that s′ is the k-th
element of the e-stack that contains it. In the formal definition, a symbol-with-link of an
order-n CPDA is written γ(e,k), where γ ∈ Γ, 1 ≤ e ≤ n and k ≥ 1, Purely for convenience,
we require that if γ = ⊥ then e = 1 and k = 0.

The set Opn of order-n CPDA stack operations comprises four types of operations:

(1) popk for each 1 ≤ k ≤ n
(2) pushj for each 2 ≤ j ≤ n

(3) pushγ,e1 for each 1 ≤ e ≤ n and each γ ∈ (Γ \ {⊥}), and
(4) collapse.

We begin by defining an operation that truncates a stack.

botki ([t1 · · · tr+1]︸ ︷︷ ︸
t

) =

 [t1 · · · tk] if ord(t) = i and k ≤ r

[t1 · · · tr botki (tr+1)] if ord(t) < i and k ≤ r

We can now define our stack operations. Let 1 ≤ e ≤ ord(s). We first define pushγ,e1
We first define pushγ1 to aid in the definition of pushγ,e1 .

pushγ1([t1 · · · tr+1]︸ ︷︷ ︸
t

) =

 [t1 · · · tr pushγ1(tr+1)] if ord(t) > 1

[t1 · · · tr+1 γ] otherwise i.e. ord(t) = 1

Then we have

pushγ,e1 (t) = pushγ
(e,k)

1

assuming tope+1(t) = [s1 · · · sk+1] if e > 1, and top2(t) = [s1 · · · sk] for e = 1. We are
now ready to define the collapse operation by letting

collapse(s) = botke(s) where top1(s) = γ(e,k) and k > 0

One can think of the collapse operation as a generalisation of the popk operation for any
k > 1 as we have for any stack s and any k > 1 that popk(s) = collapse(pushγ,k1 (s)) for an
arbitrary dummy symbol γ.
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Now for 2 ≤ j ≤ ord(s):

pushj([s1 · · · sl+1]︸ ︷︷ ︸
s

) =

 [s1 · · · sl+1 sl+1] if j = ord(s)

[s1 · · · sl pushj(sl+1)] if j < ord(s) .

. Note that, as an easy consequence of the definitions of the pushγ,e1 and the pushk
operations, a link of order e always points to a (e− 1)-stack inside the current e-stack.

Example 3.2. Let us now revisit Example 3.1. Take the 3-stack s =
[[[⊥α]] [[⊥][⊥α]]]. (To save writing, we omit the superscripts of the form
(1, k).) We have

pushβ,21 (s) = [[[⊥α]] [[⊥][⊥αβ(2,1)]]]

pushγ,31 (pushβ,21 (s)) = [[[⊥α]] [[⊥][⊥αβ(2,1) γ(3,1)]]]

push2(push
γ,3
1 (pushβ,21 (s))) = [[[⊥α]] [[⊥][⊥αβ(2,1) γ(3,1)][⊥αβ(2,1) γ(3,1)]]]

push3(push
γ,3
1 (pushβ,21 (s))) = [[[⊥α]] [[⊥][⊥αβ(2,1) γ(3,1)]] [[⊥][⊥αβ(2,1) γ(3,1)]]]

and we have
collapse(push2(push

γ,3
1 (pushβ,21 (s)))) = collapse(push3(push

γ,3
1 (pushβ,21 (s)))) = [[[⊥α]]]

Note that in the sequel we will use the informal presentation of stacks with links rather
than the formal one.

3.3. Tree-generating CPDA
Collapsible pushdown automata are a generalization (to all finite orders) of pushdown au-
tomata with links [Aehlig et al. 2004; Aehlig et al. 2005], which are essentially the same as
panic automata [Knapik et al. 2005].

We define collapsible pushdown automata (CPDA) as automata with a finite control and
a stack with links as memory.

Definition 3.3. An order-n (deterministic) collapsible pushdown automaton (n-CPDA)
is a 5-tuple A = ⟨A ∪ {ε},Γ, Q, δ, qI ⟩ where A is an input alphabet and ε is a special
symbol, Γ is a stack alphabet, Q is a finite set of control states, qI ∈ Q is the initial state,
and δ : Q× Γ× (A ∪ {ε}) → Q× Opn is a transition (partial) function such that, for all
q ∈ Q and γ ∈ Γ, if δ(q, γ, ε) is defined then for all a ∈ A, δ(q, γ, a) is undefined i.e. if an
ε-transition can be taken, then no other transitions are possible.

As CPDA will be used to generate ranked tree (as explained below), A will always be
here of the form {1, . . . , d} for some integer d.

In the special case where δ(q, γ, ε) is undefined for all q ∈ Q and γ ∈ Γ we refer to A as
an ε-free n-CPDA.

Configurations of an n-CPDA are pairs of the form (q, s) where q ∈ Q and s is an n-stack
with links over Γ; we call (qI ,⊥n) the initial configuration.

An n-CPDA A = ⟨A ∪ {ε},Γ, Q, δ, qI ⟩ naturally defines an (A ∪ {ε})-labelled transition
graph Graph(A) := (V,E ⊆ V × (A ∪ {ε})× V ) whose vertices V are the configurations of
A and whose edge relation E is given by: ((q, s), a, (q′, s′)) ∈ E iff δ(q, top1(s), a) = (q′, op)

and s′ = op(s). Such a graph is called an n-CPDA graph. We shall use the notation v a−→ v′

to mean that (v, a, v′) ∈ E, and v
a1a2···aℓ−−−−−−→ v′ to mean that there exist v0, . . . , vℓ ∈ V such

that v0 = v, vℓ = v′ and vi
ai+1−−−→ vi+1 for all 0 ≤ i < ℓ.
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Fig. 1. Transition graph of the CPDA of Example 3.4

Note that one can transform A, while preserving its transition graph, so that in every
configuration (q, s) reachable from the initial one, whenever δ(q, top1 s, a) = (q′, op) is de-
fined, so is op(s) i.e. whenever a transition is possible, the corresponding stack action is
well-defined. Such a transformation can be obtained by storing in the stack extra informa-
tion about feasibility of the popk operation3. In the following we always assume that we are
in such a setting.

Example 3.4. Consider the following 2-CPDA (that actually does not make use of links)
A = ⟨ {1, 2, ε}, {⊥, α}, {qa, qb, qc, q♯, q̃a, q̃b, q̃c}, δ, q̃a ⟩ with δ as follows (we only give those
transitions that may happen):
— δ(q̃a,⊥, ε) = δ(qa, α, 2) = (qa, push

α
1 );

— δ(qa, α, 1) = (q̃b, push2);
— δ(q̃b, α, ε) = δ(qb, α, 1) = (qb, pop1);
— δ(qb,⊥, 1) = (q̃c, pop2);
— δ(q̃c, α, ε) = δ(qc, α, 1) = (qc, pop1);
— δ(qc,⊥, 1) = (q♯, id) where id is the operation that leaves the stack unchanged;
— δ(q♯,⊥,_) is undefined.

Then Graph(A) is given in Figure 1.
We now explain how to define from A a (Σ ∪ {⊥})-labelled ranked tree t for a ranked

alphabet Σ where ⊥ is an additional symbol of arity 0. The idea is first to unfold Graph(A),
then to contract the ε-transitions, and finally to label the nodes carefully.

A vertex v in Graph(A) is non-productive if it is the source of an infinite path labelled
by εω i.e. for every k ≥ 0 there exists vk such that v ε−→ v1

ε−→ v2
ε−→ v3 · · · Otherwise v is

said to be productive.

3This can be done by extending higher-order PDA to allow the annotation of each order-k stack with
the feasibility of the popk operation, which can in turn be transformed into a standard higher-order PDA
following the remark on Page 9 of Knapik et al. [Knapik et al. 2002].

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.



Collapsible Pushdown Automata and Recursion Schemes A:13

First we assume that A = {1, · · · , d} for some d ≥ 1, and whenever {a ∈ A | (q, γ, a) ∈
Dom(δ)} has k elements then it is {1, · · · , k}. And we consider a partial function ρ : Q×Γ⇀
Σ such that for every q and γ if (q, γ, ε) /∈ Dom(δ) then (q, γ) ∈ Dom(ρ) and {a ∈ A |
(q, γ, a) ∈ Dom(δ)} = Dir(ρ(q, γ)); We will use the function ρ to define the node labels of
the tree t being constructed.

We set Dom(t) to be the prefix-closed subset of A∗ defined by

Dom(t) := {w ∈ A∗ | ∃v ∈ V . (qI ,⊥n)
w−→ v}.

Thanks to determinism, for all w ∈ Dom(t) there is a unique vertex vw such that
(qI ,⊥n)

w−→ vw and such that vw
ε−→ v holds whenever (qI ,⊥n)

w−→ v.
In case vw is productive, define (qw, sw) to be the unique configuration with vw

ε−→ (qw, sw)
that is not the source of an ε transition, i.e. that is such that (qw, top1(sw), ε) /∈ dom(δ).

We can finally define

t(w) :=

{
⊥ if vw is non-productive;
ρ(qw, top1(sw)) otherwise.

Hence there are two kinds of leaves in t: those labelled by symbols in Σ which correspond
to dead-ends in Graph(A), and those labelled by ⊥ which correspond to non-productive
vertices in Graph(A). Note the analogy with trees generated by recursion schemes, where
⊥ is used to label those leaves that correspond to an infinite sequence of “non-productive”
rewritings.

Example 3.5. Consider the CPDA A from Example 3.4 and let ρ(qa,_) = a, ρ(qb,_) =
b, ρ(qc,_) = c, ρ(q♯,_) = ♯, where _ stands for any stack symbol. Then, the tree generated
by A and ρ is the same as the one generated by the order-2 recursion scheme of Example
2.2.

Remark 3.6. Thanks to ε-transitions, we can safely assume that the labelling function
ρ only depends on the control state i.e. ρ : Q → Σ instead of ρ : Q × Γ → Σ, as in
Example 3.5. One can always encode the current top stack symbol in the control state:
after each transition, perform an ε-transition that updates the control state according to
the top stack symbol.

Remark 3.7. A natural variant of CPDA allows the execution of several stack operations
per transition i.e. by defining δ : Q×Γ× (A∪{ε}) → Q×Op∗

n. To simulate such a variant
by a standard CPDA, it suffices to add intermediate states to track a sequence of stack
operations by a finite sequence of ε-transitions.

Remark 3.8. By allowing several stack operations per transition, one can get rid of the
states by encoding them in the stack symbols. In this setting, given a CPDA without state
(i.e. with a dummy single state) but allowing several stack operations per transition, a
ranked tree can be generated by unfolding the transition graph and taking the ε-closure
(i.e. we contract each ε-labelled edge, merging its source and target vertices). The nodes are
labelled according to a function ρ : Γ → Σ. It is easy to check that such a variant CPDA is
equi-expressive with the standard CPDA for generating trees.

Remark 3.9. In [Knapik et al. 2002; Hague et al. 2008], deterministic higher-order push-
down automata and CPDA are used directly as tree-accepting device in a top-down fashion,
allowing silent moves. When reading a node of an input tree in a given state, the automaton
may make a number of ε-transitions (hence changing both the stack and the state) and then
it branches by sending a copy of the automaton to read each child node in a state prescribed
by the transition function. Thanks to the determinism, exactly one tree is accepted by the
automaton. It is easy to see this definition coincides with our notion of tree generation by
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an n-CPDA. Essentially branching corresponds to unfolding, and ε-transitions to taking the
ε-closure of the unfolding.

4. THE EQUI-EXPRESSIVITY THEOREM
In this paper we prove the following theorem.

Theorem 4.1 (Equi-Expressivity). Order-n recursion schemes and n-CPDA are equi-
expressive for generating trees. I.e. we have the following.
(i) Let G be an order-n recursion scheme over Σ and let t be its value tree. There is an

order-n CPDA A = ⟨A ∪ {ε},Γ, Q, δ, q0 ⟩ and a function ρ : Q → Σ such that t is the
tree generated by A and ρ.

(ii) Let A = ⟨A ∪ {ε},Γ, Q, δ, q0 ⟩ be an order-n CPDA, and let t be the Σ-labelled tree
generated by A and a function ρ : Q → Σ. There is an order-n recursion scheme over
Σ whose value tree is t.

Further the inter-translations between schemes and CPDA are polytime computable.
Theorem 4.1 extends to all recursion schemes the following result [Knapik et al. 2001]

about safe recursion schemes. An n-PDA is just an n-CPDA that never performs a collapse.
Theorem 4.2 ([Knapik et al. 2001]). Order-n safe recursion schemes and n-PDA are

equi-expressive for generating trees. Moreover the inter-translations between safe schemes
and n-PDA are polytime computable.

Theorem 4.1 also extends to all finite orders a similar result from [Knapik et al. 2005]
restricted to order 2.

The rest of this paper is devoted to the proof of Theorem 4.1: Section 5 proves that
schemes are at least as expressive as CPDA (Theorem 5.4) and Section 6 proves that CPDA
are at least as expressive as schemes (Theorem 6.11).

5. FROM CPDA TO RECURSION SCHEMES
For the rest of this section we fix an order-n CPDA A = ⟨A ∪ {ε},Γ, Q, δ, q1 ⟩ where
Q = {q1, · · · , qm} and m ≥ 1. We shall first introduce a representation of stacks and
configurations of A by terms which are then organised into a recursion scheme. Finally we
show that the labelled transition system associated with the recursion scheme is identical
to the labelled transition graph of A.

5.1. Term representation of stacks and configurations
We start by defining, for every 0 ≤ k ≤ n a type denoted k that will later be used to type
the behaviour of a k-stack. First we identify the ground type o with a new type denoted n.
Inductively, for each 0 ≤ k < n we define a type

k = (k+ 1)
m → (k+ 1)

where, for types A and B, we write Am → B as a shorthand for A→ · · · → A︸ ︷︷ ︸
m

→ B. In

particular, for every 0 ≤ k < n, we have
k = (k+ 1)

m → (k+ 2)
m → · · · → nm → n

We also introduce a non-terminal Voidk of type k for each 0 ≤ k ≤ n.
Assume s is an order-n stack and p is a control state of A. In the sequel, we will define, for

every 0 ≤ k ≤ n, a term [[s]]pk : k that represents the behaviour of the topmost k-stack in s,
i.e. topk+1(s). To understand why [[s]]pk is of type k one can view an order-k stack as acting
on order-(k+1) stacks: for every order-(k+1) stack we can build a new order-(k+1) stack
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by pushing an order-k stack on top of it. This behaviour has the type (k+ 1) → (k+ 1).
However, for technical reasons, when dealing with control states and configurations, we need
to work with m copies of each stack, one for each control state. Hence we view a k-stack as
mapping m copies of an order-(k + 1) stack to a single order-(k + 1) stack. This explains
why k is defined to be (k+ 1)

m → (k+ 1).
For every stack symbol γ, every 1 ≤ e ≤ n and every state p ∈ Q, we introduce a

non-terminal
Fγ,e

p : em → 1m → · · · → nm → n

Note that the type of Fγ,e
p is non-homogeneous.

For every 0 ≤ k ≤ n, every state p and every order-n stack s whose topmost stack symbol
is top1(s) = γ with an (e + 1)-link, we inductively define the following term of order
k = (k+ 1)

m → · · · → nm → n

[[s]]pk = Fγ,e
p [[collapse(s)]]qe[[pop1(s)]]

q
1[[pop2(s)]]

q
2 · · · [[popk(s)]]

q
k

where [[t]]qh is a shorthand for the sequence [[t]]q1h [[t]]q2h · · · [[t]]qmh , and if popi(s) is undefined
then we adopt the convention that [[popi(s)]]

q
i means Voidi · · ·Voidi︸ ︷︷ ︸

m

.

The preceding definition is well-founded: every stack in the definition of [[s]]pk has fewer
symbols than s. Intuitively [[s]]pk represents the top k-stack of the configuration (p, s).

Let s and t be order-n stacks with links and let 1 ≤ k ≤ n. We define s and t are
topk-identical as follows (where popjk(s) denotes the stack obtained from s by k successive
applications of the popk function):
— s and t are top1-identical just if top1(s) = top1(t), and collapse(s) and collapse(t) are

tope+1-identical where top1(s) has an (e+ 1)-link
— for k > 1, s and t are topk-identical just if for every j ≥ 0, popjk−1(s) is defined if and

only if popjk−1(t) is defined, and if so, popjk−1(s) and popjk−1(t) are topk−1-identical.
Taking j = 0 in the second item, we note that if s and t are topk identical then they are

also topk′-identical for any 1 ≤ k′ ≤ k. The preceding definition is well-founded because it
always refers to stacks with fewer symbols than s or t.

Lemma 5.1. Let s and t be order-n stacks with links, and let 0 ≤ k ≤ n− 1. If s and t
are topk+1-identical then [[s]]pk = [[t]]pk for every state p.

Proof. The proof is by induction on the maximum of the respective sizes of s and t, and
once that is fixed we reason by induction on k.

The base case of s and t containing only the bottom-of-stack symbol is trivial. Assume
that the property holds for every pair of stacks, each with no more than N symbols for
some N > 0, and consider stacks s and t, the larger of the two has size N +1. Assume that
s and t are topk+1-identical for some k ≥ 0. We now reason by induction on k.

Suppose s and t are top1-identical. By definition, we have that top1(s) = top1(t) = (γ, e)
where γ ∈ Γ and 1 ≤ e ≤ n, and that collapse(s) and collapse(t) are tope+1-identical. As
collapse(s) and collapse(t) have size bounded by N , by the induction hypothesis, we have
[[collapse(s)]]qe = [[collapse(t)]]qe. Thus it follows immediately that [[s]]p0 = [[t]]p0.

Now take k ≥ 0 and assume that the property is established for each h ≤ k. We con-
sider the case of k + 1. Assume that s and t are topk+2-identical. It follows that for each
h ≤ k, if poph(s) (equivalently poph(t)) is defined then poph(s) and poph(t) are toph+1-
identical, and so, by the induction hypothesis, [[poph(s)]]

q
h = [[poph(t)]]

q
h for every state q.

Because s and t are topk+2-identical they are also top1-identical and then by definition, we
also have top1(s) = top1(t) = (γ, e) for some γ ∈ Γ, and collapse(s) and collapse(t) are
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Table I. Definition of Ξθ

Cases of op Corresponding Ξθ where θ = (q, op)

pushγ
′,e′

1 Fγ′,e′
q Ψe′ ⟨F

γ,e
i ΦΨ1 | i⟩Ψ2 · · · Ψn

pushk Fγ,e
q ΦΨ1 · · ·Ψ(k−1)⟨F

γ,e
i ΦΨ1 · · ·Ψk | i⟩Ψ(k+1) · · ·Ψn

popk Ψk,q Ψk−1 · · ·Ψn

collapse Φq Ψe−1 · · ·Ψn

tope+1-identical. As collapse(s) and collapse(t) have size bounded by N , by the induction
hypothesis, we have [[collapse(s)]]qe = [[collapse(t)]]qe.

By definition

[[s]]pk+1 = Fγ,e
p [[collapse(s)]]qe[[pop1(s)]]

q
1 · · · [[popk+1(s)]]

q
k+1

and
[[t]]pk+1 = Fγ,e

p [[collapse(t)]]qe[[pop1(t)]]
q
1 · · · [[popk+1(t)]]

q
k+1

Now for any n-stack r define jr be the maximal j such that popjk+1(r) is defined. In particular
we have js = jt. If js = 0, [[popk+1(s)]]

q
k+1 = [[popk+1(t)]]

q
1 = Voidk+1 · · ·Voidk+1, and so

[[s]]pk+1 = [[t]]pk+1. If js > 0, note that jpopk+1(s)
= jpopk+1(t)

= js − 1 and popk+1(s)

and popk+1(t) are top(k+2)-identical. Thus, inductively (on js), we have [[popk+1(s)]]
q
k+1 =

[[popk+1(t)]]
q
k+1 for every state q. Hence we conclude that [[s]]pk+1 = [[t]]pk+1.

5.2. Associated rewrite rules
With every pair θ = (q, op) ∈ Q×Opn, we associate a rewrite rule

Fγ,e
p ΦΨ1 · · ·Ψn

θ
−_ Ξθ

where for each 0 ≤ j ≤ n we have Ψj = Ψj,1 · · ·Ψj,m is a sequence of variables, with each
Ψj,i : j; similarly Φ = Φ1 · · ·Φm is a sequence of variables, with each Φi : e.

The shape of Ξθ depends on op, as shown in Table I , where ⟨Fγ,e
i ΦΨ1 · · ·Ψk | i⟩ is a

shorthand for the sequence
Fγ,e

q1 ΦΨ1 · · ·Ψk Fγ,e
q2 ΦΨ1 · · ·Ψk · · · Fγ,e

qm ΦΨ1 · · ·Ψk : km

The preceding labelled rewrite rules induce a θ-indexed family of outermost labelled one-
step transition relations θ−→ ⊆ T 0(NA)×T 0(NA), where θ ranges over Q×Opn. Informally
M

θ−→ M ′ just if M ′ is obtained from M by replacing the head (equivalently, outermost)
non-terminal by the right-hand side of the corresponding rewrite rule in which all formal
parameters are in turn replaced by their respective actual parameters. Formally, for each
θ = (q, op) ∈ Q× Opn and for each corresponding rewrite rule Fγ,e

p ΦΨ1 · · ·Ψn

θ
−_ Ξθ, we

have the rule scheme

Fγ,e
p LM1 · · ·Mn

θ−→ Ξθ[L/Φ,M1/Ψ1 · · · ,Mn/Ψn]

where L,M1, · · · ,Mn range over sequences of terms that respect the type of Fγ,e
p .

Note that each binary relation θ−→ is a partial function.
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5.3. Correctness of the representation
Let (p, s) be a configuration of an order-n CPDA A and let θ = (q, op) ∈ Q × Opn be
a transition. We say that (p, s) is θ-compatible just if θ is an applicable transition from
(p, s) i.e. θ = δ(p, top1(s), a) for some a ∈ (A ∪ {ε}) and op(s) is defined. Recall that it is
straightforward to transform A — without changing its expressivity — so that for every
reachable configuration (p, s), if θ = (q, op) = δ(p, top1(s), a) for some a ∈ (A ∪ {ε}) then
op(s) is defined.

The following proposition relates the previous transition system with A.
Proposition 5.2. Let (p, s) be a configuration of A and θ = (q, op) ∈ Q× Opn. If (p, s)

is θ-compatible, then [[s]]pn
θ−→ t if and only if t = [[op(s)]]qn.

Proof. The proof is by a case analysis. Let θ = (q, op) ∈ Q × Opn and let (p, s) be
θ-compatible. Set Cqi = [[collapse(s)]]qie : e, and T qi

k = [[popk(s)]]
qi
k : k for every 1 ≤ i ≤ m

and every 1 ≤ k ≤ n. Then
[[s]]pn = Fγ,e

p Cq1 · · ·Cqm T q1
1 · · ·T qm

1 · · · T q1
n · · ·T qm

n

— Assume op = pushγ
′,e′

1 . By definition we have

[[pushγ
′,e′

1 (s)]]qn = Fγ′,e′

q [[collapse(pushγ
′,e′

1 (s))]]qe′

[[pop1(push
γ′,e′

1 (s))]]q1 · · · [[popn(push
γ′,e′

1 (s))]]qn

We have collapse(pushγ
′,e′

1 (s)) = pope′(s), hence [[collapse(pushγ
′,e′

1 (s))]]qe′ = T q
e′ . Fur-

ther we have pop1(push
γ′,e′

1 (s)) = s, hence [[pop1(push
γ′,e′

1 (s))]]qi1 = Fγ,e
qi Cq T q

1 . Finally,
for each j > 1, we have popj(push

γ′,e′

1 (s)) = popj(s), hence

[[popj(push
γ′,e′

1 (s))]]qj = T q
j .

Therefore, we have

[[pushγ
′,e′

1 (s)]]qn = Fγ′,e′

q T q
e′ (Fγ,e

q1 Cq T q
1 ) · · · (Fγ,e

qm Cq T q
1 ) T q

2 · · · T q
n

On the other hand, it follows syntactically from the definition of θ−→ that the right-
hand side of the preceding equation is the term t such that [[s]]pn

θ−→ t. Hence one has
[[s]]pn

θ−→ [[pushγ
′,e′

1 (s)]]qn.
— Assume op = pushk. By definition we have

[[pushk(s)]]
q
n = Fγ,e

q [[collapse(pushk(s))]]
q
e[[pop1(pushk(s))]]

q
1 · · · [[popn(pushk(s))]]

q
n

Note that we used the fact that the top1 element in pushk(s) is the same as that in s
i.e. it is γ and has an (e+ 1)-link. Now if e ≤ k, collapse(pushk(s)) and collapse(s) are
tope+1-identical; hence, thanks to Lemma 5.1

[[collapse(pushk(s))]]
qi
e = [[collapse(s)]]qie = Cqi .

If e > k, collapse(s) = collapse(pushk(s)); hence we also have
[[collapse(pushk(s))]]

qi
e = Cqi .

Next, for j < k, popj(pushk(s)) and popj(s) are topj+1-identical; hence, thanks to
Lemma 5.1, [[popj(pushk(s))]]

qi
j = [[popj(s)]]

qi
j = T qi

j . Further we have popk(pushk(s)) =

s; hence [[popk(pushk(s))]]
qi
k = Fγ,e

qi Cq T q
1 · · · T q

k for every 1 ≤ i ≤ m. Finally, for every
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j > k, we have popj(pushk(s)) = popj(s); hence [[popj(pushk(s))]]
q
j = T q

j . Therefore we
have

[[pushk(s)]]
q
n = Fγ,e

q Cq T q
1 · · · T q

k−1

(Fγ,e
q1 C

q T q
1 · · ·T q

k ) · · · (Fγ,e
qm C

q T q
1 · · ·T q

k ) T q
k+1 · · · T q

n

On the other hand, it follows syntactically from the definition of θ−→ that the right-
hand side of the preceding equation is the term t such that [[s]]pn

θ−→ t. Hence one has
[[s]]pn

θ−→ [[pushk(s)]]
q
n.

— Assume op = popk. By definition we have

[[popk(s)]]
q
n = Fγ′,e′

q [[collapse(popk(s))]]
q
e[[pop1(popk(s))]]

q
1 · · · [[popn(popk(s))]]qn

where the top1 element in popk(s) is a γ′ and has an (e′ + 1)-link. It follows that

[[popk(s)]]
q
n = [[popk(s)]]

q
k[[popk+1(popk(s))]]

q
k+1 · · · [[popn(popk(s))]]

q
n

For every j > k, we have popj(popk(s)) = popj(s), hence [[popj(popk(s))]]
q
j = T q

j . There-
fore we have [[popk(s)]]

q
n = T q

k T q
k+1 · · ·T q

n . On the other hand, it follows syntactically
from the definition of θ−→ that the right-hand side of the preceding equation is the term
t such that [[s]]pn

θ−→ t. Hence one has [[s]]pn
θ−→ [[popk(s)]]

q
n.

— Assume op = collapse. By definition we have

[[collapse(s)]]qn = Fγ′,e′

q [[collapse(collapse(s))]]qe

[[pop1(collapse(s))]]
q
1 · · · [[popn(collapse(s))]]qn

where the top1 element in collapse(s) is γ′ and has an (e′+1)-link. Equivalently, one has

[[collapse(s)]]qn = [[collapse(s)]]qe[[pope+1(collapse(s))]]
q
e+1 · · · [[popn(collapse(s))]]

q
n

For every j > e we have popj(collapse(s)) = popj(s), hence [[popj(collapse(s))]]
q
j =

T q
j . Therefore we have [[collapse(s)]]qn = Cq T q

e+1 · · ·T q
n . On the other hand, it follows

syntactically from the definition of θ−→ that the right-hand side of the preceding equation
is the term t such that [[s]]pn

θ−→ t. Hence one has [[s]]pn
θ−→ [[collapse(s)]]qn.

We define a relation ∼ between configurations of A and ground-type terms generated
from symbols from the set

N = {Fγ,e
p | γ ∈ Γ, 1 ≤ e ≤ n, p ∈ Q} ∪ {Voidi | 1 ≤ i ≤ n},

defined by (p, s) ∼ [[s]]pn. Then ∼ is a bisimulation.

5.4. The recursion scheme GA determined by a CPDA A
Fix some integer d ≥ 1 and let [d] denote {1, . . . , d}. Fix an n-CPDA A = ⟨ [d] ∪
{ε},Γ, Q, δ, q1 ⟩ and a function ρ : Q × Γ → Σ, and let Q = {q1, · · · qm}. Let t be the
tree generated by A and ρ as defined in Section 3.3.

We define from A and ρ an order-n recursion scheme whose value tree is t. The main
idea here is to rely on the previous term representation of configurations of A. Indeed, what
we did so far was to define an ([d] ∪ {ε})-edge-labelled transition system whose elements
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are finite terms of ground type and to prove that it is bisimilar (in the usual sense) with
Graph(A). Hence, it suffices to design a recursion scheme that mimics the dynamics of
the previous term-rewrite system, i.e. such that its value tree is the tree obtained from
the previous transition system by unfolding, contracting the ε-transitions, and labelling
(according to the head non terminal).

Definition 5.3. The order-n recursion scheme determined by A and ρ is defined to be
GA,ρ = ⟨Σ,N ,R, S ⟩ (written GA if ρ is clear) where

N = {Fγ,e
p | γ ∈ Γ, 1 ≤ e ≤ n, p ∈ Q} ∪ {Voidi | 1 ≤ i ≤ n}

consists of those non-terminals as introduced in Section 5.1, and the rules in R are as
follows

S −_ ρ(q1,⊥) if ar(ρ(q1,⊥)) = 0

S −_ F⊥,1
q1 Void1 · · ·Voidn otherwise

and

Fγ,e
p ΦΨ1 · · ·Ψn −_ Ξθ if δ(p, γ, ε) = θ is defined

Fγ,e
p ΦΨ1 · · ·Ψn −_ ρ(p, γ) Ξθ1 · · ·Ξθr otherwise, where r = ar(ρ(p, γ)) where

θi = δ(p, γ, i) for i = 1, . . . , r.

Note that in the definition, we need to distinguish those states p and stack symbols γ
where {a ∈ [d]∪{ε} | (p, γ, a) ∈ Dom(δ)} = ∅. Indeed, one still needs to produce a terminal
for them as they correspond to productive leaves in the tree obtained from Graph(A) by
unfolding and contracting the ε-transitions.

We are now in a position to state the major result of the section.
Theorem 5.4 (Equi-Expressivity 1). Let A be a tree-generating CPDA, and GA be the

recursion scheme determined by A. Then the CPDA and the recursion scheme generate the
same Σ-labelled tree.

Proof. The proof follows from Proposition 5.2, the definition of GA and the way one
generates a tree from a CPDA.

The key idea here is to give a precise description of the terms t such that S ∗→GA t where
∗→GA denotes the transitive closure of →GA .
Let s and t be two finite terms of ground type. We say that s is a subterm of t if either

s = t, or there exist f ∈ Σ and i ∈ { 1, · · · , ℓ } such that t = ft1 · · · tℓ and s is a subterm
of ti. Note that, in the sequel, we implicitly distinguish two copies of a term that appears
as subterm in different parts of a given term. More formally, every subterm s of a term t
has a location, denoted locationt(s) (or simply location(s) if t is clear), which is a sequence,
where · denotes concatenation of sequences. It is defined by

locationt(s) :=


ε if s = t

f · i · locationti(s) otherwise, where t = f t1 · · · tℓ and
s is a subterm of ti

One can easily characterise those terms that can be derived from S in →GA . Indeed
we have S

∗→GA t if and only if either t = S or for every subterm t′ of t such that
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locationt(t
′) = f1 · a1 · · · fℓ · aℓ ∈ (Σ · {1, · · · , d})∗ with ℓ ≥ 0, we have t′ = [[s]]pn for some

configuration (p, s) in Graph(A) such that there exist a sequence (p0, s0), . . . , (pℓ+1, sℓ+1)
of configurations of Graph(A) and numbers k1, . . . , kℓ+1 ≥ 0 such that
— (p0, s0) = (q1,⊥n) is the initial configuration;
— (p0, s0)

εk1

−−→ (p1, s1);
— (pi, si)

aiε
ki+1

−−−−−→ (pi+1, si+1) for all 1 ≤ i ≤ ℓ− 1;
— (pℓ, sℓ)

aℓε
kℓ+1

−−−−−→ (pℓ+1, sℓ+1);
— (pℓ+1, sℓ+1) = (p, s);
— ρ(pi, top1(si)) = fi for all 1 ≤ i ≤ ℓ.

The previous characterisation is proved directly by an induction on the number of rewrite
rules applied to derive t from S: the base case is immediate, and the inductive step follows
from Proposition 5.2.

It follows from the previous lemma and the definition of a tree generated by a CPDA
that the value tree of GA is the tree generated by A and ρ.

6. FROM RECURSION SCHEMES TO CPDA
The previous section demonstrates that higher-order recursion schemes are at least as ex-
pressive as CPDAs. In this section we prove the converse. Hence, CPDAs and recursion
schemes are equi-expressive. A number of related results can be found in the literature,
but an exact correspondence with general recursion schemes has never been proved before.
Notably, in order to establish a correspondence between recursion schemes and higher-order
PDAs, Damm and Goerdt (for word languages [Damm 1982; Damm and Goerdt 1986]) as
well as Knapik, Niwiński and Urzyczyn (for labelled trees [Knapik et al. 2002]), have had to
impose constraints on the shape of the former (called derived types and safety respectively)
and their translation techniques relied on the restrictions in a crucial way.

Our translation from recursion schemes to CPDA is novel: we transform an arbitrary
order-n recursion scheme G to an order-n collapsible pushdown automaton AG that com-
putes the traversals over the computation tree λ(G) (in the sense of [Ong 2006a; Ong
2006b]). The game-semantic interpretation of G is an innocent strategy (in the sense of
[Hyland and Ong 2000]), which coincides with the value tree [[G ]] of G, so that paths
in the value tree are plays of the strategy. Traversals over the computation tree are just
(appropriate representations of) uncoverings [Hyland and Ong 2000] of paths in the value
tree.

6.1. Long transform, graph representing a recursion scheme, traversals
We first introduce several concepts we need for the rest of the section.

We write [n] as a shorthand for { 1, · · · , n } and [n]0 for { 0, · · · , n }. Fix a ranked alphabet
Σ. Typically4 Dir(f) = [ar(f)] and we always have |Dir(f)| = ar(f) for each Σ-symbol f .

We recall the long transform of a recursion scheme as introduced in [Ong 2006b]. Fix
a recursion scheme G. Rules of the new recursion scheme G (which, we shall see, can be
regarded as order 0) are obtained from those of G by applying the following four operations
in turn, which is called long transform. For each G-rule:
1. Expand the right-hand side to its η-long form. I.e. we hereditarily η-expand every sub-

term – even if it is of ground type – provided it occurs in an operand position . Note
that each term s ∈ T (Σ ∪ N ∪ { ξ1, · · · , ξl }) can be written uniquely as † s1 · · · sm
where † is either a variable (i.e. some ξj) or a non-terminal or a terminal. Suppose

4The only exception is the symbol @A of the auxiliary alphabet ΛG, where we have Dir(@A) = [ar(@A)−1]0.
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† s1 · · · sm : (A1, · · · , An, o). We define
⌜† s1 · · · sm⌝ = λφ.† ⌜s1⌝ · · · ⌜sm⌝ ⌜φ1⌝ · · · ⌜φn⌝

where φ is a list φ1 · · ·φn of (fresh) pairwise-distinct variables (which is a null list iff
n = 0) of types A1, · · · , An respectively, none of which occurs free in † ⌜s1⌝ · · · ⌜sm⌝.
For example the η-long form of g a : o is λ.g (λ.a); we shall see that the “dummy
lambda-abstraction”5 λ.a (that binds a null list of variable) plays a useful rôle in the
syntactic representation of the game semantics of a recursion scheme.

2. Insert long-apply symbols @A: Replace each ground-type subterm of the shape
De1 · · · en, where D : (A1, . . . , An, o) is a non-terminal and n ≥ 1 (i.e. D has order
at least 1), by @ADe1 · · · en where A = ((A1, . . . , An, o), A1, . . . , An, o) and @A : A. In
the following, we shall often omit the type tag A from @A, as it is uniquely determined
by the respective types of D, e1, . . . , en.

3. Curry the rewrite rule. I.e. we transform the rule F φ1 · · · φn → λ.e′ to
F → λφ1 · · · φn.e

′.

In case n = 0, note that the curried rule has the form F → λ.e′.
4. Rename bound variables afresh, so that any two variables that are bound by different

lambdas have different names.

Example 6.1. We revisit the recursion scheme of Example 2.1 and illustrate the long
transform:

G :


S → H a

H z → F (g z)

F φ → φ (φ (F h))

7→ G :


S → λ.@H (λ.a)

H → λz.@F (λy.g (λ.z) (λ.y))

F → λφ.φ (λ.φ (λ.@F (λx.h (λ.x))))

For instance, the right hand side of the third rule is λ.φ (λ.φ (λ.F (λx.h (λ.x)))) after the
first step, and λ.φ (λ.φ (λ.@F (λx.h (λ.x)))) after the second step.

For every recursion scheme G, the system of transformed rules in G defines an order-
0 recursion scheme – called the long transform of G – with respect to an enlarged ranked
alphabet ΛG, which is Σ augmented by certain variables and lambdas (of the form λξ which
is a short hand for λξ1 · · · ξn where n ≥ 0) but regarded as terminals. The alphabet ΛG is
a finite subset of the set

Σ ∪ Var ∪ {@A |A ∈ ATypes }︸ ︷︷ ︸
Non-lambdas

∪ {λξ | ξ ⊆ Var }︸ ︷︷ ︸
Lambdas

where ATypes is the set of types of the shape ((A1, · · · , An, o), A1, · · · , An, o) with n ≥ 1.
We rank the symbols in ΛG as follows:

— variable symbol φ : (A1, · · · , An, o) in Var has arity n
— long-apply symbol @A where A = ((A1, · · · , An, o), A1, · · · , An, o) has arity n+ 1
— lambda symbol λξ has arity 1, for every list of variables ξ ⊆ Var .

5To our knowledge, Colin Stirling was the first to use a tree representation of lambda terms in which
“dummy lambdas” are employed; see his paper [Stirling 2005]. Motivated by property-checking games in
Verification, he has introduced a game that is played over such trees as a characterisation of higher-order
matching [Stirling 2009].
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Further, for f ∈ ΛG, we define

Dir(f) =

 [ar(@A)− 1]0 if f = @A

[ar(f)] otherwise

For technical reasons (to be clarified shortly), the leftmost child of an @-labelled node α
is in direction 0 (i.e. it is α’s 0-child); for all other nodes, the leftmost child is in direction
1. The non-terminals of G are exactly those of G, except that each is assigned a new type,
namely, o. We can now define the computation tree λ(G) to be the value tree [[G ]] of the
order-0 recursion scheme G. It follows that λ(G) is a regular tree6.

A Λ-labelled rooted deterministic digraph (or DDG, for short) is a quadruple
K = ⟨V,E, l, v0 ⟩

where ⟨V,E ⟩ is a finite digraph vertex-labelled by the function l : V −→ Λ with Λ a ranked
alphabet, such that each vertex v ∈ V has as many successors as the arity of l(v), and each
of these successors are ordered; and v0 ∈ V is a distinguished vertex called the root. We
denote by Ei(v) the unique i-th successor of v for i = 1, . . . , ar(l(v)).

It is easy to see that every finite Λ-labelled tree can be presented as a DDG.
The unfolding of K is the Λ-labelled ranked tree t : Dom(t) −→ Λ such that Dom(t) is

the set of finite paths in K starting from the root v0, and t(v0 · · · vk) = l(vk) where the
i-th child (when defined) of node v1 · · · vk is v1 · · · vkEi(vk). This definition (canonically)
associates vertices in K with nodes in t: the node ε is mapped to v0, and the node v1 · · · vk
(k ≥ 1) is mapped to vk. This map extends to an association of node sequences in t with
vertex sequences in K. When restricted to paths in t and paths in K starting from the root,
we obtain a bijection.

Fix a higher-order recursion scheme G and an associated long transform G. We define
the HORS graph Gr(G) to be the ΛG-labelled DDG determined by G

Gr(G) = ⟨V, E ⊆ V × V, λG : V −→ ΛG, v0 ∈ V ⟩
that is obtained by the following procedure:
(1) First we define the ranked alphabet ΛG,G = ΛG ∪NG where each symbol in NG (i.e. a

non-terminal of G) is given arity 0.
(2) For each G-rule (say) F → λφ1 · · ·φn.e, the corresponding ΛG,G-labelled DDG

DF = ⟨VF , EF ⊆ VF × VF , lF : VF −→ ΛG,G, rtF ⟩
given by the ΛG,G-labelled tree that is determined by the right-hand side of the rule,
namely, λφ1 · · ·φn.e. In particular, rtF is the root of that tree and we have lF (rtF ) =
λφ1 · · ·φn with reference to the rule F given above.

(3) First for each F in NG we define
EF =

∪
H∈NG

l−1
H ({F }) and E =

∪
F∈NG

EF

Then Gr(G) is intuitively obtained by taking the disjoint union of the underlying di-
graphs of DF and then merging with rtF all those vertices that belong to same EF , as
F ranges over NG.
Formally we have the following.

6An infinite tree is regular if and only if it contains finitely many different infinite subtrees. Equivalently,
an infinite tree is regular if it can be obtained by unfolding a finite directed graph.
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— The vertices V of Gr(G) are defined by

V =
∪

F∈NG

VF \
∪

F∈NG

EF

— The root v0 of Gr(G) is rtS , where S is the start symbol of G.
— The vertex-labels are defined by

λG(v) =

 lF (rtF ) if v = EF for some F ∈ NG

lH(v) otherwise, where v is a vertex in VH

— The edges E of Gr(G) are defined by

E = (
∪

F∈NG

EF ) \ {(v, v′) | v ∈ E or v′ ∈ E} ∪

∪
F ′∈NG

{(rtF , v′) | (v, v′) ∈ EF ′ and v ∈ EF }∪{(v′, rtF ) | (v′, v) ∈ EF ′ and v ∈ EF }

and the edge-labels of Gr(G) are inherited from the edge-labels of the component
DDGs DF according to how vertices and edges where merged.

In the following, we shall only concern ourselves with the connected component of Gr(G)
that contains the root node (and assume that Gr(G) is that connected component)7. It
follows from the definitions that unfolding Gr(G) gives the computation tree λ(G).

Example 6.2. We revisit the recursion scheme of examples 2.1 and 6.1. The graph Gr(G)
is given in Figure 2.

Fix a HORS graph Gr(G) = ⟨V,E, λG, v0 ⟩. We shall call a vertex of Gr(G) prime just
if it is the 0-child8 of a @-labelled vertex. By construction, a prime vertex is labelled by a
lambda. We define the depth of a vertex to be the length of the shortest path from the root
to the vertex (so that the root has depth 0). Let u be a vertex. We define pred(u) = {u′ ∈
V : (u′, u) ∈ E } i.e. the set of predecessors of u. For every vertex u labelled by a variable
φi (say), its binder, written binder(u), is the vertex that is labelled λφ, where φ is a list of
variables that contains φi. (Since bound variables are renamed to prevent any clash in the
construction of G, every variable vertex in Gr(G) has a unique binder.) We say that u is
the i-parameter of binder(u) just if φi is the ith-item of the list φ. The span of the variable
vertex u is defined to be the depth of u minus the depth of binder(u).

We note the following features of HORS graphs:

(i) Except the root and possibly some prime vertices, every vertex u has a unique predecessor
v. For j > 0, if u is the j-child of v, we say that u is a j-child. If u is prime then it is
the 0-child of all its predecessors and we then say that u is a 0-child. Indeed, a vertex is
a 0-child if and only if it is prime.

(ii) For every vertex u, there is a unique shortest path from binder(u) to u, and this path
does not contain any prime vertex.

For convenience, and whenever it is safe to do so, we shall confuse a vertex u with its
ΛG-label λG(u).

7Note that if Gr(G) contains several connected components, some rules in G are never used to produce [[G ]].
8The leftmost child of a @-labelled vertex is the latter’s 0-child (i.e. the child is at the end of a 0-labelled
edge); the leftmost child of any other vertex is a 1-child.
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Fig. 2. The graph determined by the order-2 recursion scheme from examples 2.1 and 6.1.

We now define several notions regarding the computation tree. For simplicity, we shall
refer to a node labelled by some lambda (resp. variable) as a lambda node (resp. a variable
node).

The notion of binder can also be defined for the computation tree. Indeed, let n be some
node in λ(G) labelled by a variable ξ. We say that n is bound by the node n′ (equivalently
that n′ is the binder of n) just in case n′ is the largest prefix of n that is labelled by a
lambda symbol λξ for some list ξ that contains ξ.

Binders allow us to define a binary relation ⊢i over the set of nodes of λ(G), called
enabling (we read n ⊢i n

′ as “n i-enables n′”, or “n′ is i-enabled by n”), as follows.

— Every lambda node, except the root, is i-enabled by its parent node in λ(G), where the
former is the i-child of the latter.

— Every variable node (labelled by some ξi, say) is i-enabled by its binder (labelled by some
ξ, say) where ξi is the i-th element of the list ξ.

We say that a node of λ(G) is initial if it is not enabled by any node. It follows from
the definition that the initial nodes are the root-node (necessarily labelled by the lambda
symbol λ), and all nodes labelled by a long-apply or a Σ-symbol.

Enabling permits us to define the notion of justified sequence over the computation tree.
A justified sequence over λ(G) is a possibly infinite, lambda / non-lambda alternating
sequence of nodes that satisfies the pointer condition: Each non-initial node n that occurs
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Table II. Rules for defining traversals.

(Root). The singleton sequence, comprising the root node ε, is a traversal.

(App). If t n is a traversal for some sequence t and some node n labelled by @, so is t n n′
0��

for some node n′. Note that n′ is always a lambda node.

(Sig). If t n is a traversal for some sequence t and some node n labelled by a Σ-symbol f , so is

t n n′
i��

for each 1 ≤ i ≤ ar(f) and some node n′. Note that n′ is always labelled by a dummy
λ.

(Var). If t n n′ · · · n′′
itt

is a traversal for some sequence t and some lambda node n′

(labelled by some λξ) and some variable node n′′ (labelled by ξi, the i-th variable in ξ), so is

t n n′ · · · n′′
iww

n′′′

i

xx
for each node n′′′. Note that n′′′ is always a lambda node.

(Lam). If t n is a traversal for some sequence t and some lambda node n, so is t n n′ where n′ is
the 1-child of n. By a straightforward induction, ⌜t n⌝ is a path in the tree λ(G); if n′ is labelled by
a variable (as opposed to @) then its pointer in t n n′ is determined by the condition that ⌜t n n′⌝
is a path in λ(G).

in it has a pointer to some earlier node-occurence n0 in the sequence such that n0 ⊢i n
for some i. We say that the node-occurence n is justified by the node-occurence n0 in the
sequence. We use the notation

· · · n0 · · · n

i
{{

· · ·

to mean that n points to n0 and that n0 ⊢i n holds. We say that n is i-justified by n0, or n
has a i-pointer to n0 in the justified sequence. Let us stress that a justified sequence need
not be a path. 9

Let t be a justified sequence and let n be some occurrence of a node in t. Then we write
t≤n (resp. t<n) to mean the prefix of t truncated at and including (resp. excluding) the
node n.

We are now ready to introduce traversals. Traversals over the computation tree λ(G) are
justified sequences of nodes defined by induction over the rules given in Table II.

A remark on rule (Lam). If n′ is a variable then it should point to the binder. But there
may be several occurrences of the binder, and this is what the P-view is for: it selects an
occurrence via the pointer from the variable in question.

Remark 6.3. The pointers in a traversal over any computation tree λ(G) are uniquely
reconstructible from the underlying sequence of nodes and their respective labels; thus
pointers are not an additional structure imposed on the underlying sequence. However it is
convenient (e.g. in the definition of P-view below) to define traversals as sequences equipped
with pointers. Another advantage of pointers is that they help to clarify the correspondence
between traversals and interaction sequences (that arise in the construction of the game
semantics of the recursion scheme in question).

Note that the only rule in Table II that can lead to extending a traversal in a non unique
way is the rule (Sig) that allows ar(f) possible extensions. Traversals define an infinite

9Justified sequences were first introduced to represent plays in dialogue games between two players, O and
P [Hyland and Ong 2000]. A play is a certain sequence of alternating O-moves and P-moves. A player may
only make a given move m provided the move that enables it, m′ (say), has already been played; and if so,
this situation is represented by a pointer from m to m′.
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rooted deterministic digraph10

Tr(G) = ⟨V,E ⊆ V × (Dir(Σ) ∪ {ε})× V, l : V → (Σ ∪ {♯}), v0 ⟩
where
— V is the set of all traversals over λ(G).
— (v, ε, v′) ∈ E iff v′ is obtained from v by applying one of the following rules: (App), (Var)

or (Lam).
— (v, i, v′) ∈ E iff v′ is obtained from v by applying rule (Sig) with parameter i.
— l(v) = λ(G)(n) if v ends by a node n labelled by a terminal, and l(v) = ♯ otherwise.
— The root v0 is the traversal ε.

Note that Tr(G) is a deterministic tree. By taking its ε-closure as explained below, we
obtain a Σ-labelled ranked tree. More precisely, the traversal tree of G, denoted TrTree(G),
is obtained as follows from Tr(G). For every i ∈ Dir(Σ), add an i-labelled edge from v1 to
v2 whenever there is a path from v1 to v2 labelled by a word that matches iε∗ (note that
we treat ε as a standard letter), and there is no outgoing ε-labelled edge from v2; for every
i ∈ Dir(Σ), whenever there is an edge from v1 to a node v2 from which there is an infinite path
made only of ε-labelled edges, create a new vertex vi,⊥1 labelled by ⊥ and add an i-labelled
edge from v1 to vi,⊥1 ; then remove any vertex that is the source of an ε-labelled edge and
remove any ε-labelled edge. In case the resulting object is empty, simply replace it by a tree
made only of a root labelled by ⊥. Note that the resulting object is always a deterministic,
ε-free, Σ-labelled tree (indeed, ♯-labelled nodes, i.e. those that are not labelled by terminal,
as well as ε-labelled edges have all been removed). Define the root as the (unique) node
that is reachable in Tr(G) by a (possibly empty) sequence of ε-labelled edges, and not the
source of an ε-labelled edge. Call TrTree(G) the resulting tree.

In the sequel, to stick to our original definition of ranked-trees, we regard TrTree(G) as
the Σ-labelled ranked tree whose domain is the set of words in Dir(Σ) that labels finite path
from the root, and where a node n is labelled by l(v) where v is the (unique) node reached
by following from the root the path labelled by n.

It turns out that the value tree and the traversal tree are equal [Ong 2015b]:
Theorem 6.4 (Correspondence Theorem). For every recursion scheme G, we have

[[G ]] = TrTree(G).
We finally define the P-view of a justified sequence. The P-view ⌜t⌝ of a justified sequence

t is a subsequence defined by recursion as follows:
— ⌜λ⌝ = λ for a dummy lambda λ.
— ⌜ t n′ · · · n

ivv
⌝ = ⌜t⌝ n′ n

iyy
whenever n is a lambda node (hence n′ is a non-

lambda node). Node n′ is either @ or a signature symbol, and in the latter case the
lambda is dummy.

— ⌜t n⌝ = ⌜t⌝ n whenever n is a non-lambda node.

In the second clause above, if in t n′ · · · n
ivv

the non-lambda node n′ has a pointer

to some node-occurence l (say) in t, and if l appears in ⌜t⌝, then in ⌜t⌝ n′ n
iyy

the node
n′ is defined to point to l; otherwise n′ has no pointer. Similarly, in the third clause above,
if in t n the non-lambda node n has a pointer to some node-occurence l (say) in t and if l
appears in ⌜t⌝, then in ⌜t⌝ n the node n is defined to point to l; otherwise n has no pointer.

10In fact we have a small abuse of terminology and notation here as in our original definition of a DDG we
do not allow ε-labelled edges which we do here only for those edges outgoing an ♯-labelled vertex. For ease
of writing we also make the edge label explicit by describing edges as elements of V × {Dir(Σ) ∪ {ε}} × V .
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In is easy to see that the P-view of a justified sequence is always lambda/non-lambda al-
ternating, that may not necessarily satisfy the pointer condition. When applied to traversals,
the P-view has some nice properties.

Proposition 6.5. [Ong 2006a, Lemma 2][Ong 2006b, Proposition 6] Let t be a finite
traversal over a computation tree λ(G). Then the following hold.
— ⌜t⌝ is a well-defined justified sequence.
— ⌜t⌝ is a path in the computation tree λ(G) from the root to the last node in t.

Traversals (and related concepts) were defined with respect to the computation tree λ(G).
As λ(G) is obtained by unfolding the HORS graph Gr(G) we can associate with every
sequence of nodes in λ(G) a unique sequence of vertices in Gr(G). This mapping, when
restricted to (the sequences of nodes underlying) traversals over the computation tree λ(G),
is injective. Hence, depending on the context, we may see traversals either as sequences of
nodes in λ(G) or as sequences of vertices in Gr(G) (in this case, it is easy to reconstruct the
corresponding traversal over λ(G)). Note that traversals over Gr(G) could equivalently be
defined by stating the rules in Table II in the framework of Gr(G).

6.2. CPDA(G) — the CPDA determined by a recursion scheme G

As stated in the previous section (Correspondence Theorem), traversals provide an alter-
native way to describe the value tree of a given scheme G. We will now define a CPDA,
CPDA(G), and will show that its transition graph Graph(CPDA(G)) is trace-equivalent with
Tr(G). As a byproduct, unfolding the ε-closure of Graph(CPDA(G)) leads to the same tree
as TrTree(G) = λ(G), equivalently CPDA(G) generates the same tree as G.

Fix an order-n recursion scheme G and the HORS graph
Gr(G) = ⟨V, E ⊆ V × V, λG : V −→ ΛG, v0 ∈ V ⟩

determined by it. Note that G is not assumed to be homogeneously typed, and hence, not
necessarily safe

Remark 6.6. For convenience, in the definition of the transform CPDA(G), we shall
write pusha,11 as pusha1 , effectively ignoring the 1-link (to the preceding stack symbol). This
is harmless since 1-links are guaranteed not to feature in any of collapse operations of the
transform CPDA(G).

Definition 6.7. The transform CPDA(G) is an n-CPDA with a single dummy control
state (that we omit from now for simplicity) that has the set V of nodes as the stack
alphabet. The initial configuration is the n-stack [ · · · [⊥ v0] · · · ] i.e. pushv01 ⊥n, where v0
is the root of Gr(G). Let u range over the stack symbols of CPDA(G). For ease of explanation,
we define the transition map δ as a function that takes a node u ∈ V to a sequence of stack
operations (in particular, this allows us to have a single control state), by a case analysis of
the label (from ΛG) of u. The definition is presented in Table III.

Remark 6.8. The transformation is radically different from the compilation method of
Knapik et al. [Knapik et al. 2002; Knapik et al. 2005]. To date, it is not known whether
the approach in [Knapik et al. 2005] is extendable to non-homogeneously typed recursion
schemes of order 2. More generally, it is not known whether the method is extendable to
arbitrary recursion schemes of all finite orders.

6.3. Graph(CPDA(G)) and Tr(G) are trace equivalent
We first recall the standard notion of trace equivalence, that we state here in the specific case
of labelled rooted deterministic digraphs. Let K1 = ⟨V1, E1 ⊆ V1 × Π× V1, l : V1 → Λ, r1 ⟩
and K2 = ⟨V2, E2 ⊆ V2 × Π × V2, l : V2 → Λ, r1 ⟩ be two graphs with the same alphabet
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Table III. Definition of the transform CPDA(G).

If u’s label is not a variable, the action is just a pushv1 , where v is an appropriate child of the node u.
Precisely:

(A). If the label is an @ then δ(u, ε) = push
E0(u)
1 .

(S). If the label is a Σ-symbol f then δ(u, i) = push
Ei(u)
1 , for every 1 ≤ i ≤ ar(f).

Note that if f is nullary, the automaton terminates.
(L). If the label is a lambda then δ(u, ε) = push

E1(u)
1 .

Suppose u is labelled by a variable which is the i-parameter of the lambda node binder(u); and suppose
binder(u) is a j-child. Let p be the span of the variable node u.

(V1). If the variable has order l ≥ 1, then

δ(u, ε) =


pushn−l+1 ; pop

p+1
1 ; push

Ei(top1),n−l+1
1 if j = 0

pushn−l+1 ; pop
p
1 ; collapse ; push

Ei(top1),n−l+1
1 otherwise

where popp1 means the operation pop1 iterated p times, and push
Ei(top1),k
1 is defined to be the

operation s 7→ push
Ei(top1 s),k
1 s.

(V0). Otherwise (i.e. the variable has order 0)

δ(u, ε) =


popp+1

1 ; push
Ei(top1)
1 if j = 0

popp1 ; collapse ; push
Ei(top1)
1 otherwise.

for labelling vertices (resp. edges). We say that K1 and K2 are trace-equivalent just if for
every x ∈ {1, 2}, for every path in Kx that starts from the root rx, there is a (unique)
corresponding path in Kx (here x = 2 if x = 1 and x = 1 otherwise) with the same label in
Π∗. Moreover the terminal vertices of both paths are labelled by the same element in Λ.

Note that the previous notion does not treat the silent letter ε in a specific way (like one
would do for weak bisimulation): it is considered as a standard letter.

The following proposition follows by definition.

Proposition 6.9. Let K1 and K2 be two trace-equivalent labelled rooted deterministic
digraphs (possibly with ε-labelled edges). Then the trees obtained by unfolding the ε-closure
of those two digraphs are the same.

Let Graphℓ(CPDA(G)) be the vertex labelled version of Graph(CPDA(G)) (with the initial
configuration as its root) that is obtained by labelling every vertex with the label of the
topmost symbol of the corresponding stack if it belongs to Σ and by ♯ otherwise. We have
the following key result (to be proved later).

Theorem 6.10. For every order-n recursion scheme G, Graphℓ(CPDA(G)) and Tr(G)
are trace-equivalent.

An important consequence of Theorem 6.10 is the following.

Theorem 6.11 (Equi-Expressivity 2). For every order-n recursion scheme G, CPDA(G)
(together with the identity labelling function) generates (the same tree as) the value tree
[[G ]].

Proof. Take an order-n recursion scheme G. Using Theorem 6.10, Graphℓ(CPDA(G)) and
Tr(G) are trace-equivalent. By definition, the tree generated by CPDA(G) and the identity
function, coincides with that obtained by unfolding the ε-closure of Graphℓ(CPDA(G)).
Hence, using Proposition 6.9, this tree coincides with that obtained by unfolding the ε-
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closure of Tr(G), which is TrTree(G). As the latter coincides with the value tree [[G ]]
(Theorem 6.4), it concludes the proof.

6.4. Proof of Theorem 6.10
We now turn to the technical core of this section. Fix an order-n recursion scheme G. In
order to prove that Graphℓ(CPDA(G)) and Tr(G) are trace-equivalent, it suffices to establish
the following.

Property 6.12. Suppose

s1
x1−→ s2

x2−→ s3
x3−→ · · · xm−1−−−→ sm.

is a path in Graphℓ(CPDA(G)) starting from the root and

t1
x1−→ t2

x2−→ t3
x3−→ · · · xm−1−−−→ tm

is a path in Tr(G) starting from the root (i.e. the trivial traversal ε). Suppose sm, tm have
the same label from Σ ∪ {♯}. Then neither path can be extended or both can be extended
in the same way:
— by a unique ε-labelled edge (if the final vertices of the paths are labelled by ♯) or
— by ar(f) edges with labels in {1, · · · , ar(f)} (if the final vertices of the paths are labelled

by f ∈ Σ).
Moreover, if each path is extended by an edge with the same label, the resulting paths end
in vertices with the same label.

In order to prove the above, we spell out in detail how both paths are related. First, we
shall see that, for each 1 ≤ i ≤ n, the sequence of node labels corresponding to the top
1-stack, written λG(top2(si)), is the P-view of ti. i.e.

λG(top2(si)) = ⌜ti⌝.
Secondly we construct a kind of approximant of ti, written t̂i, which is obtained from ti by
removing all segments w sandwiched between matching pairs of the shape

$ w λ

i
}}

where $ is either an order-1 variable or an @-symbol, and i ≥ 1, and we do it from right to
left. Note that by definition of traversal, the segment w necessarily has the shape

λφ · · · x

izz

where x is an order-0 variable symbol and φ is a list of variables in which x occurs. Finally,
we remove all pointers from t̂i. See Example 6.18 for an illustration of this construction. We
then transform each n-stack si to a sequence of nodes si, which will be shown to coincide
with t̂i.

Remark 6.13. Note that CPDA(G) handles variables of order 0 differently from those at
higher orders. One could have treated level 0 in the same way to obtain correspondence
with t (rather than t̂), but this would cost an extra stack level.

In order to construct the sequence si from an n-stack si, we follow a simple recipe.
(1) We “flatten” the n-stack si so that it has the form of a well-bracketed sequence such as

the following (top of stack is the right-hand end)
[[[ · · · ] · · · [ · · · ]][[ · · · ]] · · · [[ · · · ][ · · · ]]]
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(2) The target of any pointer to a stack is deemed to be the rightmost symbol representing
the stack, i.e. it is always an occurrence of ].

(3) The required subsequence – which we shall write as si – is obtained by a right-to-left
scan of the well-bracketed sequence above according to the following rules.
— When an occurrence of ] is encountered, we simply continue the scan without record-

ing ].
— We record any stack symbols that are being scanned.
— Whenever we encounter the source of a link of order 2 or more, the scan jumps to

its target (an occurrence of ]) without recording any nodes sandwiched in-between.
The source of the link is always recorded.

— The scan ends as soon as some [ is hit.
Note that the last condition is necessary to ensure that s is suitably defined for every
prefix of a reachable stack. This will be important in the proof of Property 6.17.

Here is a more formal definition.
Definition 6.14. Let s be an n-stack. The sequence s of stack symbols is defined as

follows.

s =


ε top2(s) = [ ],

(pop1(s))λG(u) top1(s) = u and u has a 1-link,

(collapse(s))λG(u) top1(s) = u and u has a k-link with k > 1.

The next definition relates configurations of CPDA(G) with traversals over λ(G).
Definition 6.15. Let G be an order-n recursion scheme, let s be a reachable configuration

of CPDA(G), and let t be a traversal over λ(G). We shall say that s computes t if and only
if the following conditions hold.
(a) λG(top2(s)) = ⌜t⌝.
(b) s = t̂.
(c) Suppose top2(s) = [v1, · · · , vn]. Let v′1, · · · , v′n be the respective occurrences of

v1, · · · , vn in t that contribute to ⌜t⌝. Then popn−i
1 (s) computes t≤v′

i
for every 1 ≤ i < n.

(d) Using the same notation as in (c), suppose vi has a link to an l-stack σ. Let sσ be
the prefix of s such that σ is its top l-stack, i.e. sσ = collapse(popn−i

1 (s)). Then sσ
computes t<v′

i
.

Note that the definition is not circular, since t≤v′
i

(1 ≤ i < n) and t<v′
i

(1 ≤ i ≤ n) are
strictly shorter than t. In what follows we shall blur the distinction between vi and its
occurrence v′i, as it will be clear from the context which occurrence is meant. The notion of
computing traversals is stable under higher-order pushes, as specified in the next lemma.

Lemma 6.16. Let s be an n-stack, s′ = pushk(s) and k ≥ 2. Given an n-stack s′′ such
that s < s′′ ≤ s′, let ss′′ be the prefix of s obtained after the same sequence of pop-operations
as that used to obtain s′′ from s′. Then s′′ computes t if and only if ss′′ computes t for any
traversal t.

Proof. By induction on the length of s′′. The base case of s′′ is trivial: we have
topk+1(s

′′) = ⊥k = topk+1(ss′′) and the empty traversal is computed in both cases.
For the inductive step, we need to show that s′′ and ss′′ compute the same traversals. To

that end, observe that top2(s
′′) = top2(ss′′), because – according to the definition of pushk

– top2(s
′′) is a clone of top2(ss′′). Note also that pushk preserves links. Hence, s′′ = ss′′ .
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Thus, conditions (a) and (b) are fulfilled for the same traversal. For (c) and (d), recall
that top2(s

′′) = top2(ss′′) and observe that the requirements regarding computability of
traversals by popn−i

1 (for (c)) and s′′σ (for (d)) are covered by the inductive hypothesis.
The following implies Property 6.12.
Property 6.17. Suppose

s1
x1−→ s2

x2−→ s3
x3−→ · · · xm−1−−−→ sm

is a path in Graphℓ(CPDA(G)) starting from the root and

t1
x1−→ t2

x2−→ t3
x3−→ · · · xm−1−−−→ tm

is a path in Tr(G) starting from the root (i.e. the trivial traversal ε). If sm and tm are
labelled by the same element of Σ ∪ {♯}, then the following conditons hold.
(i) Let u = top1(sm). Then u has a link in sm if and only if it is a j-child (j > 0) labelled

by a lambda of type A11 which has order l ≥ 1. Further, if u has a link, it points to an
(n− l)-stack.

(ii) si computes ti for all 1 ≤ i ≤ m.
Note that (ii) implies that top1(sm) is the same as the final vertex in tm. Consequently,

the respective definitions of traversals and CPDA(G) imply Property 6.12.
Before going to the proof, we should give some examples that illustrate the relationship

between paths in CPDA(G) and in Tr(G).
Example 6.18. Take the following traversal over the computation tree of G (recall that

variable z has order 0 and variable φ has order 1) in Example 6.1 (see also Figure 2 for the
associated HORS graph):

λ @ λz
0��

@ λφ
0��

φ
1��

λy

1

||
g λ

2��
y

1

}}
λ

1

||
φ

1

zz
λy

1

yy
g λ

1��
z

1

ww
λ

1

ww
a

In Figure 3 we give the path of the corresponding 2-CPDA that ends in a configuration
that computes the above traversal. For ease of reading, in Figure 3 (and later in Figures 6
and 7), instead of stack symbols we shall write their image by ΛG rather than the exact
symbol from V .

To save space, we only present the interesting configurations in which the top1-element
of the stack is a variable node. In the picture, the top of a stack is at the right-hand end,
and links are represented by dotted arrows. Set t to be the prefix of the above traversal that
ends in the node labelled by z. We have

t̂ = λ @ λz @ λφ φ λ φ λy g λ z

which coincides with the 2-stack s (s is marked in Figure 3) by following the recipe.
Example 6.19. Consider the order-3 HORS graph in Figure 5 where variables x1, x2, z

have order 0, variable φ has order 1 and variable Ψ has order 2. For ease of reference, we
give nodes numeric names, which are indicated (within square-brackets) as superscripts.
Take the traversal t in Figure 4.

11We are abusing notation here. Technically, λψ is a terminal symbol from the long transform G, hence
it should have order 0 or 1. However, by the type of λψ we mean (type(ψ1), . . . , type(ψk), o), where ψ =
ψ1 · · ·ψk.
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[[λ @ λz @ λφ φ]]

ε−→ [[λ @ λz @ λφ φ] [λ @ λz @ λy]]
ww

ε2ε−−→ [[λ @ λz @ λφ φ] [λ @ λz @ λy
w w

g λ y]]

ε−→ [[λ @ λz @ λφ φ λ]]

ε−→ [[λ @ λz @ λφ φ λ φ]]

ε−→ [[λ @ λz @ λφ φ λ φ] [λ @ λz @ λy]]
vv

ε1ε−−→ [[λ @ λz @ λφ φ λ φ] [λ @ λz @ λy
vv

g λ z]] s

ε−→ [[λ @ λz @ λφ φ λ φ] [λ @ λ]]

ε−→ [[λ @ λz @ λφ φ λ φ] [λ @ λ a]]

Fig. 3. A run of a 2-CPDA
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4
||

5
||

10
||

11 12
��

13
z z

6
zz

7
zz

16
yy

17
vv

18
vv

Fig. 4. An order-3 traversal

We present a run of the 3-CPDA that computes the traversal t in Figure 6 followed by
Figure 7 (for ease of reading, we represent nodes by their labels).

To see the correspondence with the traversal t, note that configurations s2 and s3 in
Figures 6 and 7 respectively have the same top1-element which is node 7 (labelled by x1).
They correspond respectively to the two prefixes of t that end in node 7.

The traversal t corresponding to s3 is the prefix of t that ends in the later occurrence of
7; we have

t̂ = λ @ λΨ Ψ λφz f λ φ λ φ λx1x2 Ψ λφz f λ φ λx′1x
′
2 x1

The reader might wish to check that s3 = t̂. (Note that the justification pointers are uniquely
reconstructible from the underlying sequence of nodes and their respective labels.)

The rest of the section is devoted to the proof of Property 6.17. The proof is by induction
on m. Clearly the above assertions are valid when m = 1. For the inductive case, we assume
that the property holds for some m ≥ 1.

We shall do so by a case analysis of the label of top1(sm) = u.

First suppose u’s label is not a variable. Then sm+1 = pushv1(sm), for an appropriate
node. In particular, no new link is created.
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Fig. 5. An example of an order-3 HORS graph.

For (i), observe that, because u’s label is not a variable, it follows from the definition of
CPDA(G) that, if v was a j-child labelled by a lambda of type A, then u would have to be
labelled by a Σ-symbol and, thus, the order of A would be 0.

For (ii), tm
xm−−→ tm+1 implies that tm+1 = tmv, where v has a pointer to a suitable node

(there is only one way in which a pointer from v can be inserted so as to make tm+1 into a
traversal). We shall show that sm+1 computes tm+1.

For (a), we need to check that λG(top2(sm+1)) = ⌜tm+1⌝. We have λG(top2(sm+1)) =
λG(top2(sm))v and, in all three cases corresponding to the rules (A), (S), (L), ⌜tm+1⌝ =
⌜tm⌝v holds. Thus, by induction hypothesis, we get λG(top2(sm+1)) = ⌜tm+1⌝. For (b),
we note that sm+1 = smv and t̂m+1 = t̂mv. So, by induction hypothesis, sm+1 = t̂m+1.
Condition (c) follows immediately from the induction hypothesis and, because no new links
have been created, so does (d).

Next suppose u’s label is an order-l variable, which is the i-parameter of binder(u) (note
that then we have i ≥ 1) and suppose binder(u) is a j-child. Then sm+1 = δ(u)(sm)
where δ(u) is given in Definition 6.7. There are four cases; in the following we shall use
the notations from Definition 6.7. In order to simplify the notations, we should refer to sm
(resp. tm) as s (resp. t) and to sm+1 (resp. tm+1) as s′ (resp. t′).
1. Case l ≥ 1 and j = 0. Let φi be the order-l variable labelling u.
By the induction hypothesis of (ii), u must be the last node of t. It then follows from the
definition of a traversal (and from binder(u) being a 0-child) that t has the following shape:

t = · · · u0 u1

0
		

· · · u

i
��

@ λφ φi

(in the figure, the label of a node is the symbol just below it). Since the P-view of a traversal
satisfies the pointer condition and is a path in the HORS graph (Proposition 6.5), ⌜t⌝ has
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[
[[λ @ λΨ Ψ]]

]

→
[

[[λ @ λΨ Ψ] [λ @ λφz]]
yy

]

→∗
[

[[λ @ λΨ Ψ] [λ @ λφz
yy

f λ φ]]
]

→

 [[λ @ λΨ Ψ λx1x2

''
]]

[[λ @ λΨ Ψ] [λ @ λφz
yy

f λ φ]]



→

 [[λ @ λΨ Ψ λx1x2

''
Ψ]]

[[λ @ λΨ Ψ] [λ @ λφz
yy

f λ φ]]



→

 [[λ @ λΨ Ψ λx1x2

**

Ψ] [λ @ λφz]]
xx

[[λ @ λΨ Ψ] [λ @ λφz
yy

f λ φ]]



→∗

 [[λ @ λΨ Ψ λx1x2

))

Ψ] [λ @ λφz
yy

f λ φ]]

[[λ @ λΨ Ψ] [λ @ λφz
yy

f λ φ]]



→


[[λ @ λΨ Ψ λx1x2

&&

Ψ λx′
1x

′
2

((

]]

[[λ @ λΨ Ψ λx1x2

))

Ψ] [λ @ λφz
yy

f λ φ]]

[[λ @ λΨ Ψ] [λ @ λφz
yy

f λ φ]]



→


[[λ @ λΨ Ψ λx1x2

&&

Ψ λx′
1x

′
2

((

x1]]

[[λ @ λΨ Ψ λx1x2

))

Ψ] [λ @ λφz
yy

f λ φ]]

[[λ @ λΨ Ψ] [λ @ λφz
yy

f λ φ]]

 s2

→
[

[[λ @ λΨ Ψ] [λ @ λφz
yy

f λ φ λ]]
]

→
[

[[λ @ λΨ Ψ] [λ @ λφz
yy

f λ φ λ φ]]
]

Fig. 6. A run of a 3-CPDA (Part 1 of 2).
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→

 [[λ @ λΨ Ψ λx1x2

((

]]

[[λ @ λΨ Ψ] [λ @ λφz
yy

f λ φ λ φ ]]



→

 [[λ @ λΨ Ψ λx1x2

((

Ψ]]

[[λ @ λΨ Ψ] [λ @ λφz
yy

f λ φ λ φ ]]



→

 [[λ @ λΨ Ψ λx1x2

**

Ψ] [λ @ λφz]]
xx

[[λ @ λΨ Ψ] [λ @ λφz
yy

f λ φ λ φ ]]



→∗

 [[λ @ λΨ Ψ λx1x2

**

Ψ] [λ @ λφz
yy

f λ φ]]

[[λ @ λΨ Ψ] [λ @ λφz
yy

f λ φ λ φ ]]



→


[[λ @ λΨ Ψ λx1x2

''

Ψ λx′
1x

′
2

''
]]

[[λ @ λΨ Ψ λx1x2

**

Ψ] [λ @ λφz
yy

f λ φ]]

[[λ @ λΨ Ψ] [λ @ λφz
yy

f λ φ λ φ ]]



→


[[λ @ λΨ Ψ λx1x2

''

Ψ λx′
1x

′
2

''
x1]]

[[λ @ λΨ Ψ λx1x2

**

Ψ] [λ @ λφz
yy

f λ φ]]

[[λ @ λΨ Ψ] [λ @ λφz
yy

f λ φ λ φ ]]

 s3

→
[

[[λ @ λΨ Ψ] [λ @ λφz
yy

f λ φ λ φ λ ]]
]

→
[

[[λ @ λΨ Ψ] [λ @ λφz
yy

f λ φ λ φ λ z ]]
]

→
[

[[λ @ λΨ Ψ λ ]]
]

Fig. 7. A run of a 3-CPDA (Part 2 of 2).

the shape · · ·u0 u1 · · ·u︸ ︷︷ ︸
θ

and the segment θ has length p + 1, where p is the span of the

variable node u. Indeed u belongs to ⌜t⌝ and so does u1 thanks to the pointer condition;
the length of θ comes from ⌜t⌝ being a path.

Consider the operation δ(u) = pushn−l+1; pop
p+1
1 ; push

Ei(top1),n−l+1
1 . By the induction

hypothesis of (ii), the top 1-stack of s — call it σ — is the P-view of t. Since the top 1-stack
of pushn−l+1s is a copy of σ, applying popp+1

1 to pushn−l+1(s) returns a stack that has
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the @-labelled node u0 as the top1-element. The node that is pushed onto the top of the
stack at this point is the i-child of u0, which we call v. Further, it has a link to the top
(n− l)-stack of the prefix s of s′, hence collapse(s′) = s.

It follows from the structure of λ(G) that v must be labelled by λψ (say) of the same
type as the label φi of u, i.e. its type is also of order l ≥ 1. Thus, since i ≥ 1, (i) follows
as required.

For (ii), observe that t′ = tv, where v has a pointer (labelled by i) to the occurrence of
u0 indicated in the figure above. Also, we have t ε−→ t′. We shall show that s′ computes t′.
(a) We need to show λG(top2(s

′)) = ⌜t′⌝. By definition of s′, we have λG(top2(s
′)) =

λG(top2(s)≤u0
)v, i.e. top2(s′) is the prefix of the 1-stack top2(s) — regarded as a se-

quence — up to and including the occurrence of u0 described above, extended by v. By
induction hypothesis (a), we have λG(top2(s)) = ⌜t⌝. Thus

λG(top2(s
′)) = ⌜t⌝≤u0v = ⌜t≤u0⌝v = ⌜t′⌝

as required (the second equation holds because u0 appears in ⌜t⌝).
(b) We have s′ = sv (indeed v has a link and collapse s′ = s) and t̂′ = t̂v. Since s = t̂ by

induction hypothesis (b), we have s′ = t̂′.
(c) Because the top 1-stack of s′ is (a copy of) a prefix of top2(s) extended with v, we can

simply appeal to the induction hypothesis (ii) – namely, part (c) and the fact that s
computes t.

(d) For the same reason as above, (d) holds for all links in top2(s
′) except (possibly) the

single new link. Let σ′ be the (n − l)-stack pointed at from v. Then we have s′σ′ = s.
Because t = t′<v and s computes t, (d) also holds for the new link.

2. Case l ≥ 1 and j > 0. Suppose the label of u is the order-l variable φi, which is the ith
item of the list φ.
By induction hypothesis (ii) and definition of a traversal, t has the following shape:

t = · · · u0 u1 · · · u

i
��

ψ λφ φi

Further, the variable ψ has the same type as λφ, which (say) is of order l′. It follows that
l′ > l and, consequently, l′ ≥ 1. By induction hypothesis (i) and (ii), s has the following
shape

s = [ · · · · · · · · · [ · · · [σ] · · · [ · · ·u1 · · ·u]︸ ︷︷ ︸
top 1-stack of s

]

︸ ︷︷ ︸
top (n− l)-stack of s, i.e. w

· · · ]

wherein u1 has a link to some (n − l′)-stack σ. Since l′ > l, the (n − l′)-stack σ is
embedded in the top (n − l)-stack of s, as indicated by the figure above. Note that, by
induction hypothesis (ii (d)), sσ computes t<u1 . In particular the top1-element of σ must
be u0.

Now, to see the structure of s′, consider the operation δ(u). Let w = topn−l+1(s). The
operation pushn−l+1(s) pushes a copy of w on top of s. The rest of δ(u), namely,

popp1; collapse; push
Ei(top1),n−l+1
1 ,

affects only the top (duplicate) copy of w. Applying popp1 to pushn−l+1(s) returns a stack
that has u1 as the top1-element; the collapse-operation then reduces it to a stack that has
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a copy σ′ (say) of σ as its top (n − l′)-stack, i.e. its top1-element is u0. The node that is
push1ed onto the top of the stack at the end of the δ(u)-operation (to yield s′) is the i-child
of u0, which we shall call v. Observe that the structure of λ(G) implies that v must then
be labelled by λχ (say) whose type is the same as that of φi, i.e. its order is l. Since v is
linked to the (n− l)-stack w, (i) is satisfied.

For (ii), observe that t′ = tv, where v has an i-pointer to the distinguished occurrence of
u0. Note that we then have t ε−→ t′. We need to show that s′ computes t′.
(a) Observe that ⌜t′⌝ = ⌜t<u0⌝u0v = ⌜t<u1⌝v. Since sσ computes t<u1 (by induc-

tion hypothesis (ii (d))), so does s′σ′ by Lemma 6.16. Hence, λG(top2(s
′)) =

λG(top2(σ
′))v=⌜t<u1

⌝v = ⌜t′⌝.
(b) Observe that s′ = sv (indeed v has a link and collapse(s′) = s) and t̂′ = t̂v. Thus, by

induction hypothesis, s′ = t̂′.
(c) Since s′σ′ computes t<u1 and top2(s

′) is a copy of top2(s′σ′) augmented with v, (c) holds.
(d) We only need to verify (d) for the new link (all other links satisfy (d) because s′σ′

computes t<u1). Recall that v points at the stack w. Since s′w = s and t′<v = t, (d)
holds because s computes t.

3. Case l = 0 and j = 0. Suppose u’s label is the order-0 variable x.
By induction hypothesis (ii) and the definition of a traversal (and from binder(u) being a
0-child), t must have the following shape:

t = · · · u0 u1

0
		

· · · u

i
��

@ λφ x

As in 1., ⌜t⌝ has the shape · · ·u0 u1 · · ·u︸ ︷︷ ︸
θ

and the segment θ has length p+1, where p is the

span of the variable node u.
Consider the operation δ(u) = popp+1

1 ; push
Ei(top1)
1 . Applying popp+1

1 to s returns a stack
that has the @-labelled node u0 as the top1-element. The node that is push1ed onto the top
of the stack at this point is the i-child of u0, which we call v. It follows from the structure
of λ(G) that v must be labelled by λ, i.e. its type has order 0. Thus, since v has no link,
(i) follows as required.

For (ii), note that t′ = tv, where v has a pointer (labelled by i) to the occurrence of u0
indicated above. We have t ε−→ t′. We shall show that s′ computes t′.
(a) We need to show λG(top2(s

′)) = ⌜t′⌝. By definition of s′, we have top2(s
′) =

(top2(s))≤u0
v. By induction hypothesis (ii), we have λG(top2(s)) = ⌜t⌝. Thus

λG(top2(s
′)) = ⌜t⌝≤u0

v = ⌜t≤u0
⌝v = ⌜t′⌝

as required. The second equation follows from the definition of ⌜⌝ and the fact that u0
appears in ⌜t⌝.

(b) We have s′ = (popp+1
1 (s)) v and t̂′ = t̂≤u0

v. By induction hypothesis (ii (c)), popp+1
1 (s)

computes t≤u0 , in particular popp+1
1 (s) = t̂≤u0 . Thus, (b) holds.

(c) We simply appeal to the induction hypothesis (ii). As before, we need (c) and the fact
that s computes t.

(d) Note that no new links have been created in this case, so it suffices to appeal to the
induction hypothesis (ii (d)).

4. Case l = 0 and j > 0. Suppose the label of u is the order-0 variable x, which is the ith
item of the list φ.
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By induction hypothesis (ii) and definition of a traversal, t has the following shape:

t = · · · u0 u1 · · · u

i
��

ψ λφ x

Further, the variable ψ has the same type as λφ, which (say) is of order l′. It follows that
l′ > l. By induction hypothesis (i) and (ii), s has the following shape

s = [ · · · · · ·σ · · · [ · · ·u1 · · ·u]︸ ︷︷ ︸
top 1-stack

· · · ]

wherein u1 has a link to some (n− l′)-stack σ. Note that, by induction hypothesis (ii (d)),
sσ computes t<u1 . In particular the top1-element of σ must be u0.

Now, to understand what s′ looks like, consider the operation δ(u) =

popp1; collapse; push
Ei(top1)
1 . Applying popp1 to s returns a stack that has u1 as the top1-

element; the collapse-operation then reduces it to a stack that has σ as its top (n−l′)-stack,
i.e. its top1-element is u0. The node that is then push1ed onto the top of the stack at the
end of the δ(u)-operation (to yield s′) is the i-child of u0, which we shall call v. Observe
that the structure of λ(G) implies that v must then be labelled by λ. Since v does not have
a link, (i) is satisfied.

For (ii) let t′ = tv, where v has an i-pointer to the distinguished occurrence of u0. Then
t′ is a traversal such that t ε−→ t′. We need to show that s′ computes t′.

(a) Observe that ⌜t′⌝ = ⌜t<u1
⌝v. Since sσ computes t<u1

, we have top2(s
′) = ⌜t<u1

⌝v =
⌜t′⌝.

(b) Observe that s′ = sσv and t̂′ = t̂<u1
v. Again, since sσ computes t<u1

, we have sσ = t̂<u1

and (b) follows.
(c) Because sσ computes t<u1 , condition (c) holds.
(d) Again, it suffices to appeal to the fact that sσ computes t<u1 , because no new links

have been created.

7. CONCLUSION
In this paper, we introduced collapsible pushdown automata and proved that they are equi-
expressive with (general) recursion schemes for generating trees. This is the first automata-
theoretic characterisation of higher-order recursions schemes in full generality.

Due to its length, we decided to restrict this paper to the full proof of the Equi-
Expressivity Theorem (that was originally stated in [Hague et al. 2008]). In particular,
we had to postpone those questions coming from logic and games. We now briefly discuss
the main results in this field as well as other consequences of the Equi-Expressivity.

The Equi-Expressivity Theorem is significant because it acts as a bridge, enabling inter-
translation between model-checking problems about trees generated by recursion scheme
and model-checking problems/solvability of games on collapsible pushdown graphs. Indeed,
consider a µ-calculus formula φ and a transition graph Graph(A) of a CPDA. Deciding
whether φ holds in some vertex v of the graph is equivalent to decide whether the same
formula φ is true at the root of the tree obtained by unfolding Graph(A) from v. As this
tree can be obtained as the value tree of some scheme G, the original question is reduced to
decide validity of a µ-calculus formula at the root of [[G ]]. Of course this chain of reductions
works in the other direction as well. In particular, the results of [Ong 2006a] imply that
µ-calculus model-checking is decidable for transition graphs of CPDA.

As µ-calculus model-checking for transition graphs of CPDA is equivalent to solving parity
games played on transition graphs of CPDA, it was a natural question to study these games
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in order to transfer back decidability results to recursion schemes. We showed in [Hague
et al. 2008] that those games are decidable (actually they are n-ExpTime complete for order-
n CPDA transition graphs), hence leading to an alternative proof of [Ong 2006a] for the
decidability of MSO/µ-calculus model-checking for trees generated by recursion schemes.

Later, by carefully studying these games, Broadbent, Carayol, Ong and Serre showed in
[Broadbent et al. 2010] that the winning regions of these games admit a finite representation
that can later be used (in a non-trivial way and strongly relying on the Equi-Expressivity
Theorem) to prove that recursion schemes are constructively reflective with respect to µ-
calculus and MSO12. This result was later subsumed by a result of Carayol and Serre showing
that recursion schemes enjoy the effective MSO selection property [Carayol and Serre 2012].
The main tools to prove this result are the equi-expressivity theorem and a careful analysis
of the winning strategies of parity games played on transition graph of CPDA.

An important problem on recursion schemes was known as the safe/unsafe conjecture.
It asked whether there exists for all schemes, another scheme having the same value tree
and verifying the safety constraint. The Equi-Expressivity Theorem permits to rephrase
this question as whether CPDA are equi-expressive with higher-order PDA for generating
trees. The conjecture was that the former are strictly more expressive. A first step in this
direction was obtained by Parys who proved that the Urzyczyn language (which is a language
of finite words) is definable by a 2-CPDA but not by any deterministic 2-PDA [Parys 2011].
The proof was obtained by reasoning about accepting runs of 2-PDA, and thus the result
on schemes was made possible thanks to the Equi-Expressivity Theorem. Parys recently
extended this result by showing that the Urzyczyn language cannot be defined by any
deterministic n-PDA (for any n) [Parys 2012].

In [Kartzow and Parys 2012] Karzow and Parys gave a pumping lemma for collapsible
pushdown automata that, thanks to the Equi-Expressivity Theorem, establishes the strict-
ness of the hierarchy (RecTreenΣ)n of trees generated by n-CPDA. More precisely, they
gave, for every n ≥ 0, a tree generated by an order-(n + 1) (safe) scheme that no order-n
scheme can generate.

The Equi-Expressivity Theorem also opened a new avenue of model-checking algorithms
for recursion schemes. The saturation technique – underlying the Moped tool [Schwoon 2002;
Suwimonteerabuth et al. 2005; Suwimonteerabuth et al. 2007] for reachability analysis of
PDA – was extended in [Broadbent et al. 2012] to CPDA, which led to the implemen-
tation of the C-SHORe tool [Broadbent et al. 2013] for recursion scheme model-checking.
This automata-theoretic approach contrasted with existing tools (TRecS [Kobayashi 2009a],
GTRecS(2) [Kobayashi 2011; Kobayashi 2012], and TravMC [Neatherway et al. 2012]) that
are based on intersection type checking. This work also inspired the HorSat tool, which
transferred the saturation method to the intersection type setting [Broadbent and Kobayashi
2013]. For completeness, we also mention the recent Preface tool [Ramsay et al. 2014], a
fast counter-example abstraction-refinement based model checker for recursion.

Another advantage of the automata-theoretic view on recursion schemes is the transferral
of techniques for reasoning about concurrent systems. The search for concurrent extensions
of pushdown automata with decidable model-checking properties has been well-studied, and

12Let R be a class of generators of node-labelled infinite trees, and L be a logical language for describing
correctness properties of these trees. Given R ∈ R and φ ∈ L, we say that Rφ is a φ-reflection of R just if

— R and Rφ generate the same underlying tree, and
— suppose a node u of the tree [[R ]] generated by R has label f , then the label of the node u of [[Rφ ]] is f

if u in [[R ]] satisfies φ; it is f otherwise.

Thus if [[R ]] is the computation tree of a program R, we may regard Rφ as a transform of R that can
internally observe its behaviour against a specification φ. We say that R is (constructively) reflective w.r.t. L
just if there is an algorithm that transforms a given pair (R,φ) to Rφ.
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it has been shown that a number of these extensions can be generalised to CPDA [Hague
2013].

We conclude with a brief discussion of further directions:
(1) Is there an à la Caucal definition for the ε-closure of CPDA graphs? As trees generated

by n-CPDA are exactly those obtained by unravelling and unfolding an n-CPDA graph,
is there a class of transformations T from trees to graphs such that every (n+1)-CPDA
graph is obtained by applying a T -transformation to some tree generated by an n-
CPDA. Note that a T -transformation may in general not preserve MSO decidability
(as n-CPDA graphs have undecidable MSO theory [Hague et al. 2008]), but should
preserve modal µ-calculus decidability of trees generated by n-CPDA.

(2) The deepest open problem is without any doubt the equivalence problem for higher-
order recursion schemes (i.e. given two schemes, decide whether they have the same
value tree). The Equi-Expressivity Theorem implies that the equivalence problem for
schemes is interreducible to the problem of decidability of language equivalence between
deterministic CPDA (as words acceptors). Of course this problem is extremely hard, as
it would generalise the DPDA equivalence decidability result of Sénizergues [Sénizergues
1997; Sénizergues 2002].
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