Veritying higher-order concurrency
with data automata

Alex Dixon*, Ranko Lazi¢*, Andrzej S. Murawski and Igor Walukiewicz?*

*Department of Computer Science, University of Warwick
TDepartment of Computer Science, University of Oxford
iCNRS, Université de Bordeaux

Abstract—Using a combination of automata-theoretic and
game-semantic techniques, we propose a method for analysing
higher-order concurrent programs. Our language of choice is
Finitary Idealised Concurrent Algol (FICA) due to its relatively
simple fully abstract game model.

Our first contribution is an automata model over a tree-
structured infinite data alphabet, called split automata, whose
distinctive feature is the separation of control and memory. We
show that every FICA term can be translated into such an
automaton. Thanks to the structure of split automata, we are
able to observe subtle aspects of the underlying game semantics.

This enables us to identify a fragment of FICA with iteration
and limited synchronisation (but without recursion), for which,
in contrast to the whole FICA, a variety of verification problems
turn out to be decidable.

I. INTRODUCTION

We investigate how to use game semantics for verification
of concurrent higher-order programs. Game semantics makes
it possible to investigate properties such as “two programs
are equivalent in all contexts”, or “there is a context where a
program behaves in a particular way”. The quantification over
contexts offered by game semantics is particularly interesting
for concurrent programs when we want to understand the
possible behaviours of a program in an environment we do
not control. Our research objective is to find effective ways
of using game semantics to analyse programming languages
with concurrency.

The use of game semantics comes with a price. It uses
sequences with pointers, which is a major obstacle to applying
standard automata-theoretic techniques. In some cases, point-
ers can be ignored or encoded in the structure of sequences. In
the concurrent setting, where closure under shuffle is hardly
avoidable, such approaches do not seem promising.

We use data to encode pointers: roughly, two positions with
related data are linked by a pointer. This approach requires
using data automata to describe the semantics of programs.
The challenge is to find a sufficiently expressive class of data
automata with good algorithmic properties.

We propose a model of data automata, called split automata,
expressive enough to encode the game semantics of Finitary
Idealised Concurrent Algol (FICA). We identify a subclass of
these automata for which the emptiness problem is decidable.

978-1-6654-4895-6/21/$31.00 ©2021 IEEE

We show that this subclass corresponds to restricting the use
of semaphores in FICA.

Finitary Idealised Concurrent Algol is a prototypical pro-
gramming language combining functional, imperative, and
concurrent computation. It is a call-by-name language with
higher-order features, side-effects, and concurrency imple-
mented by a parallel composition operator and semaphores. It
is finitary since, as is common in this context, base types are
restricted to finite domains. The fully abstract game semantics
of FICA is relatively simple [1], making it an appealing
candidate for our study.

Split automata work with data values organised in an infinite
tree. The data values represent occurrences of moves and the
tree structure helps to capture nesting dependencies implied
by pointers. The automata accept data words, which we use to
represent plays in game semantics. We show how to translate
a FICA term to a split automaton accepting precisely the
representations of plays in the semantics of the term. Due to
this close connection, the emptiness problem is undecidable
for split automata, as the corresponding problem for FICA is
undecidable [2].

Nevertheless, the structure of split automata leads us to un-
cover a decidable fragment of FICA. The name, split automata,
emphasises their structure, where the control and memory used
to store values of the program are separated. This separation al-
lows us to discover a restriction on the use of semaphores that
makes automatic verification possible. In restricted-semaphore
FICA (rsFICA), subterms of the form fM;...M; cannot
contain free semaphore variables. Intuitively, this means that
semaphore variables cannot be passed to unspecified functions.
On the other hand, we put no restrictions on the scope of
memory variables, and we allow the iteration construct.

At the level of split automata, the decidable restriction takes
the form of an idempotency requirement on transitions. It
captures in a succinct way the difference between read/write
operations and grab/release operations. We prove that the
emptiness problem for idempotent automata is decidable.
Technically, the argument makes an interesting link with
parametric verification.

Several verification problems become decidable thanks to
the decidability result and the reduction from 7sFICA to
idempotent automata. Unlike standard program analysis, we
do not address the problem of verifying if a property holds

for all executions, but rather whether the property holds for
all executions in all possible contexts. It is game semantics
that permits us to handle the additional quantification over
all possible contexts. For example, we can decide if there
is a context where a given variable in a given program is
assigned value 13, or dually, it is never assigned value 13. The
two questions are different because one uses existential and
the other universal quantification on contexts and executions.
Since the method uses finite automata to express properties,
we can also express standard questions from program analysis,
such as “is a given variable live at a given program point?”
or “is a given variable invariant in some loop?”.

Related work: Concurrency, even with only first-order re-
cursion, leads to undecidability [3]. The first decidable frag-
ment of FICA is Syntactic Control of Concurrency (SCC) [2].
It imposes bounds on the number of threads in which ar-
guments can be used. This restriction makes it possible to
represent the game semantics of programs by finite automata.

Another very recent fragment is local FICA [4] (LFICA). It
forbids while, and requires the binding between declaration
and use of any variable or semaphore to “cross” at most one
free identifier. The decidability argument for LFICA starts from
an automata model related to split automata. However, the
latter are more refined, allowing for a more direct translation of
FICA into automata. Moreover, the decidability arguments are
completely different in the two cases. The one from [4] uses a
reduction to reachability in Petri Nets. Our fragment, rsFICA,
does not encompass LFICA, because the latter allows the use
of semaphores at (applicative) depth 2. In rsFICA we have
unbounded computations thanks to while, and unrestricted
use of state, making it a more natural fragment than LFICA.

Our decidability argument relies on the observation that,
with limited use of semaphores, a program cannot tell how
many copies of code it interacts with. This situation is well
known in parametric verification [S], [6], [Z]], [8], [9], [10]. For
example, the above-cited undecidability argument [3] is based
on the fact that two communicating pushdown automata can
simulate a Turing machine. When one of the two pushdown
automata is duplicated an indeterminate number of times, and
communication uses reads and writes to shared variables, the
model becomes decidable [6]. In our model, parameterisation
is not postulated in order to get decidability but it occurs
naturally in the associated game semantics; intuitively, it
comes from the quantification over all contexts.

Split automata are a model of computation over an infinite
alphabet. Models of this kind have been researched intensively
in recent years, not least due to connections with database
theory, notably XML [11]. Nested data were first considered
in [12]], where the authors discuss shuffle expressions. After
that, data automata [13]] and class memory automata [14] have
been adapted to nested data in [[15]], [L6]. For most models over
nested data, the emptiness problem is undecidable. To achieve
decidability, the authors in [15], [16] relax the acceptance
conditions so that the emptiness problem can eventually be
recast as a coverability problem for a well-structured transition
system. In [17], this result was used to show decidability of

equivalence for a first-order (sequential) fragment of Reduced
ML. On the other hand, in [12] the authors relax the order
of letters in words, which leads to an analysis based on
semi-linear sets. Both of these restrictions are too strong to
represent the semantics of FICA, because of the game-semantic
WAIT condition, which corresponds to waiting until all sub-
processes terminate. In split automata, this is reflected by
making answers conditional on the success of zero tests.

Yet another related strand of work on concurrent
higher-order programs is based on higher-order recursion
schemes [[18]], [19]]. Unlike FICA, they feature recursion but the
computation is purely functional over a single atomic type o.

Structure of the paper: We start with a presentation of FICA
and its game semantics. Next, we introduce split automata.
In section [V] we describe how plays are represented by data
words, and how to translate FICA terms to split automata. In
Section [VIl we introduce rsFICA, and show that split automata
obtained from 7sFICA terms are idempotent. In the following
section we present the decidability of the emptiness problem
for idempotent automata. In section [VIIIl we describe how
some verification problems for 7sFICA can be effectively
reduced to the emptiness problem for idempotent automata.

II. FINITARY IDEALISED CONCURRENT ALGOL (FICA)

Idealised Concurrent Algol [1]] is a paradigmatic language
combining higher-order with imperative computation in the
style of Reynolds [20], extended to concurrency with parallel
composition (||) and binary semaphores. We consider its fini-
tary variant, FICA, where the datatype is finite {0, ..., max}
(mazx = 0), there is no recursion, but there is iteration instead.
Its types 6 are generated by the grammar

=000 B ::= com | exp | var | sem

where com is the type of commands; exp that of
{0, ..., maz}-valued expressions; var that of assignable vari-
ables; and sem that of semaphores. The typing judgments
are displayed in Figure [[l Here, skip and divy are constants
representing termination and divergence respectively, ¢ ranges
over {0,...,maxz}, and op represents unary arithmetic oper-
ations, such as successor or predecessor (since we work over
a finite datatype, operations of bigger arity can be defined
using conditionals). Variables and semaphores can be declared
locally via newvar and newsem. Variables are dereferenced
using !M, and semaphores are manipulated using two (block-
ing) primitives, grab(s) and release(s), which grab and
release the semaphore respectively. A term +— M : com is
said to terminate, written M |, if there exists a terminating
evaluation sequence from M to skip.

FICA terms can be compared using a notion of contextual
(may-)equivalence denoted I' — M; = M,. Two terms of
the same type are equivalent if they cannot be distinguished
with respect to termination by any context: for all contexts C
such that + C[M;]:com we have, C[M;] || if and only
if C[M2] |. Due to quantification over all contexts, even
very simple instances of equivalence, like equivalence with
divy, are undecidable. Intuitively, to show inequivalence of

I'- M :exp I'- M : com r-N:g
I' - skip : com I'-divy: 0 I'Hi:exp '+ op(M) : exp I'-M;N:pS
I'-M :com I'-N:com I'-M:exp '~ Ny,No: I'- M :exp I'-N:com
'+ M||N : com I' - if M then N; else N, : 3 I' - while M do N : com
T,x:0+M:0 T'M:0—-6 '-N:6
Fz:0kFx:0 F'XeM:0—-0 I'-MN :¢
I'-M :var I'-N:exp I'- M :var 'z :var - M : com, exp
I'-M:=N:com ' !M :exp I' - newvar z in M : com, exp
I'- M :sem I'- M :sem I's:sem — M : com, exp

I' - release(M) : com

'+ grab(M) : com

I' - newsem sin M : com, exp

Fig. 1. FICA typing rules

aterm I' — M : 0 with divg, we need to find a terminating
interaction of M with a context. Using game semantics, this
can be reduced to the existence of a so-called complete play. If
one can then find a class of automata to represent such plays,
this can be further reduced to an emptiness problem.

Example 1. In Figure 2l we give two examples of problematic
shapes of FICA terms, where s,z stands for a code fragment
that uses the variable x and semaphore s. Using the method-
ology of [2], it is possible to construct terms of this form to
represent two-counter machines. The terms then represent such
machines in the sense that inequivalence with div coincides
with the halting problem. The expressive power comes from
the use of the free identifier f : com — com, corresponding
to an unspecified procedure, which can investigate its argument
in an unbounded number of concurrent threads. We write M7 +
M, for non-deterministic choice, which can be coded in FICA
as newvar z in ((z :=0||z :=1); if lz then M, else M>), so
the loop corresponds to an arbitrary number of iterations.

In this paper, we will identify a class of terms, called
restricted-semaphore FICA (rsFICA), for which equivalence
with divy will turn out to be decidable. We will also show how
to use the decidability procedure to verify properties of poten-
tial interactions of rsFICA terms with contexts. rsFICA will
allow for iteration (while) and unrestricted use of assignable
variables, but forbid use of semaphores in subterms of the form
fMjy --- My,. Consequently, the overlined uses of semaphores
in Figure 2] will be illegal in rsFICA.

On the other hand, in local FICA [4], which is another
recently established decidable fragment of FICA, while is
completely forbidden, and the use of both semaphores and
variables is restricted in such a way that the underlined parts
are banned.

III. GAME SEMANTICS

In this section, we briefly present the fully abstract game
model for FICA from [[1]], which we rely on in the paper. Game
semantics for FICA involves two players, called Opponent (O)
and Proponent (P), and the sequences of moves made by them
can be viewed as interactions between a program (P) and

a surrounding context (O). The games are defined using an
auxiliary concept of an arena.

Definition 2. An arena A is a triple (M4, Aa, 4y where:

o M4 is a set of moves;

o« Mg My — {O,P} x {Q, A} is a function determining
for each m € M, whether it is an Opponent or a
Proponent move, and a question or an answer; we write
\QP,)\3‘4 for the composite of A4 with respectively the
first and second projections;

e 4 is a binary relation on M4, called enabling, satis-
fying: if m 4 n for no m then Aa(n) = (0, Q), if
m 4 n then AQ¥(m) # AQF(n), and if m 4 n then
A3 (m) = Q.

We shall write 14 for the set of all moves of A which have
no enabler; such moves are called initial. Note that an initial
move must be an O-question (OQ). In arenas used to interpret
base types all questions are initial - the possible P-answers
(PA) are listed below (0 < i < maz).

Arena 0Q PA Arena 0Q PA

[com] run | done exp q i

[var] read i sem grb | ok
write(i) | ok rls ok

More complicated types are interpreted inductively using the
product (A x B) and arrow (A = B) constructions, given in
Figure Bl We write [0] for the arena corresponding to type
0. In Figure [we give (the enabling relations of) A; =
[com — com — com] and Ay = [(var — com) — com]
respectively, using superscripts to distinguish copies of the
same move (the use of superscripts is consistent with our
future use of tags in Definition [10).

Given an arena A, we specify next what it means to be a
legal play in A. For a start, the moves that players exchange
will have to form a justified sequence, which is a finite
sequence of moves of A equipped with pointers. Its first move
is always initial and has no pointer, but each subsequent move
n must have a unique pointer to an earlier occurrence of a
move m such that m 4 n. We say that n is (explicitly)
Jjustified by m or, when n is an answer, that n answers m. If a

f:com - com | newvarzinnewsemsin
while (04 1)do (f(3,2); s,z) || while(0+ 1)do (f(5,z); s,x)

f:com — com | newvarzinnewsems,sy,Ssin
f(grab(s1); f(5,2); 5.a; release(sq)) || f(grab(ss); f(5.2); 5,5 release(s3))

Fig. 2. Problematic FICA terms

Maxp My + Mp Ma—p My + MBA
Axs = [Ma,As] Moep = [OFOA8 5] (AEO(m) = O iff AQP (m) = P)
Faxp = Fa+FsB Fasp = Fa+tbp+{(ba)|belpandac s}

Fig. 3. Arena constructions. We write + and [- - - | for the disjoint union of sets and functions respectively; {- - -) denotes pairing.

A; = [com — com — com]
0 run
|

=
P run?

run' done
I
O done?

done!

m

1 2
run run® run? done" done® done

As = [(var —» com) — com]

O run
- |
P run® done
—— |
O read" “write(i)!* done!
| ‘
P ill okll

T read! O write(1911 okl read!® 11
run run' read™ 0" write(1)'! ok™" read™" 1

Fig. 4. Arenas and justified sequences

question does not have an answer in a justified sequence, we
say that it is pending in that sequence. In Figure 4l we give
two justified sequences from A; and A, respectively.

Not all justified sequences are valid. In order to constitute a
legal play, a justified sequence must satisfy a well-formedness
condition that reflects the “static” style of concurrency of our
programming language: any started sub-processes must end
before the parent process terminates. This is formalised as
follows, where the letters ¢ and a to refer to question- and
answer-moves respectively, while m denotes arbitrary moves.

Definition 3. The set P4 of plays over A consists of the
justified sequences s over A that satisfy the two conditions
below.

FORK : In any prefix s’ = ---¢~--m of s, the question ¢
must be pending when m is played.

WAIT : In any prefix s’ = ---¢~--u of s, all questions
justified by ¢ must be answered.

It is easy to check that the justified sequences given above
are plays. A subset o of P4 is O-complete if s € o and so € Py
imply so € o, when o is an O-move.

Definition 4. A strategy on A, written o : A, is a prefix-closed
O-complete subset of Pj.

Suppose I' = {1 : 61, -, : 6;} and T - M : 0 is a
FICA-term. Let us write [I' - 6] for the arena [0;] x --- x
[6:] = [6]. In [] it is shown how to assign a strategy on
[T+ 0] to any FICA-term T' - M : 0. We write [I' - M]

to refer to that strategy. For example, [I" - div] = {e, run}
and [I" - skip] = {e, run, rundone}. Given a strategy o, we
denote by comp(o) the set of non-empty complete plays of
o, i.e. those in which all questions have been answered. The
game-semantic interpretation [- - -] can be viewed as a faithful
record of all possible interactions between the term and its
contexts. It provides a fully abstract model in the sense that
contextual equivalence is characterized by the sets of non-
empty complete plays.

Theorem 5 ([[L]). We have I' — M; = M if and only if
comp([I" = M;]) = comp([I" - Mz]).

In particular, since comp([I" - divy])) = &, we have that
I' = M : 0 is contextually equivalent to divy if and only if
comp([I' = M]) = &.

IV. SPLIT AUTOMATA

We propose a class of automata recognising sequences of
tags with data values. Every letter in a sequence is a pair from
> x D, where X is a finite set of tags, and D is an infinite set
of data values. Tags will represent moves in game semantics,
and data values will encode pointers. We shall show that the
automata are expressive enough to express the game semantics
of FICA. Namely, for every term we shall be able to construct
an automaton accepting a representation of the set of plays
corresponding to the term.

Because the automata separate control states from memory,
we call them split automata. This structure will allow us to

understand how a term accesses the memory cells. This will
enable us to identify a decidable fragment of FICA.

Our dataset D has the structure of a countably infinite
forest. This structure will be instrumental for representing
game semantics, specifically to encode justification pointers
and to enforce the WAIT condition.

Definition 6 (Dataset). D is a countably infinite set equipped
with a function pred : D — D u {1} (the parent function)
such that the following conditions hold.

« Infinite branching: pred ' ({d,}) is infinite for any d, €
Du{l}.

« Well-foundedness: for any d € D, there exists ¢ € N,
called the level of d, such that pred' ™ (d) = L. Level-0
data values are called roots.

A configuration of a split automaton is a finite subtree of
D labelled with states (consisting of a control state with zero
or more memory cells). We say that 7' < D is a subtree of D
if and only if T is closed (Vz € T': pred(z) € T v {L}) and
rooted (3lx € T: pred(x) = 1). The automaton can add or
remove leaves from its configuration. When doing so, it can
only refer to the control state at the parent level. Moreover, it
has transitions that do not modify the shape of its configuration
but manipulate the control state of a node and the memory
content of one of its ancestors at the same time.

A split automaton has two parameters (k, N). The parame-
ter k is the maximal depth of the data used by the automaton,
while NV is the maximal number of memory cells at each node.
The set of control states of the automaton is partitioned into
sets O for 0 < i < k.

Data at odd levels will be labelled only with control states,
which will not change during runs. Data at even levels will be
labelled with control states (which may change during runs),
as well as with memory stores consisting of N cells, each
storing an element from V' = {0,..., maz}. Accordingly, in
configurations, even-level data will be labelled with elements
of C x VN,

Definition 7. A split automaton (SA) is a tuple A =
(X,k,N,C,§), where:
e X = Xq + Xa is a finite alphabet, partitioned into
questions and answers;
e k >0 is the depth parameter;
e« N =0 is the local memory capacity;
« C = J{CWD 14 =0,...,k} is a finite set of control
states, partitioned into sets C (1) of level-i control states;
« transitions in § are partitioned according to their type and
level on which they operate (below ¢, d(") e C(®)):
— ADD(i) transitions are c¢("~1—% (a1 d(®), and
T—L4>¢(0) for the special case of ¢ = 0, with ¢ € Xq,
- DEL(:) transitions are (c(—1, ¢()—2q0=1 and
c(o)—a>’[for the special case of 7 = 0, with a € Xa,
- EPS(24,2i) transitions read v € V from mem-
ory cell h € {1,...,N} at level 2§ < 2i and
update it to v’ € V, but do not read the input:
(24, h, v,)= (v, d3D),

Transitions cannot modify control states at odd layers: if
c2i=D) 9, (q2i-1) D) § or (21, ((20)-2,q2i-1) ¢ §
then c(?=1) = g(2i—1),

A configuration of a split automaton is a tuple (D, E, f, m),
where D is a finite subset of D (consisting of data values that
have been encountered so far), F is a finite subtree of D (the
shape of the configuration), f : E — C' is a level-preserving
function, i.e. if d is a level-i data value then f(d) € C,
and m : E — V¥ is a partial function whose domain is the
even-level nodes of F.

A split automaton A starts from the empty configuration
ko = (I, 5, d, D) and proceeds according to its transitions
0 as explained below. Let the current configuration be xk =
(D, E, f,m).

An ADD transition from « is possible on a letter (¢,d)
when t = g € ¥q and d ¢ D is a fresh level-¢ datum such
that pred(d) € E (the parent of d is in the configuration). In
this case, the automaton adds a new leaf d to the configuration
and updates the control state. The new leaf gets the control
state determined by the transition, moreover if it is on an even
level its memory is initialised. Formally, A goes from x to
k' = (Du{d}, Eu{d}, f’,m') provided one of the following
conditions holds:

« On transition ¢~ -4 (a0 d(@)) when f(pred(d)) =

=0, 1 = flpred(d) — d*V d — dD], and m' = m
(if 7 is odd) or m’ = m[d — 0] (if i is even).
« On transition T—q>d(0) when D = &, [/ = [d — d(o)],
and m’ = [d — OV].
We write f[---] to extend or update f.

On reading a letter (¢,d) with ¢ = a € ¥p and d € E
a level-: datum, a transition is possible only if d is a leaf
in E. A DEL transition deletes d and updates the neighbouring
control state without modifying the associated memory (if
any). Formally, the automaton changes its configuration to
k' = (D, E\{d}, f'\{d}, m\{d}) provided one of the following
conditions holds:

o On transition (cU=V ¢)—2d® when f(pred(d)) =

=D f(d) =@, and f' = f[pred(d) — ct—D].

« On transition ¢(©)—%>{ when f’ = f.

Observe that the last transition is possible only when d is a
leaf of E and at level O at the same time, the result of the
transition is the empty tree E.

Transitions from EPS are silent. They apply at even
levels only and do not modify the shape of configura-
tions. However, they may change the associated control
state and read/write one memory location situated at the
same level or another even level above. Formally, the
automaton can go to k' = (D, E,f’;m’) on transition
(24, h, v, c?D) =5 (v', dD) if there is a level-2i datum d € E
such that m(pred® 2/ (d))(h) = v, f(d) = ¢®, f' = f[d —
d®9] and m/ (pred*~2/(d)))(h) = v, and m’ is the same as
m otherwise.

Definition 8. A trace of a split automaton A4 is a word
1 1
w € (X x D)* such that kog—>k;...Kp_1——kp, Where

ko = (B, S, T, F), li € {e} v (ExD) (1 <i<h)and
w = ly---Ip. A configuration xk = (D, E, f,m) is accepting
if £ is empty. A trace w is accepted by A if there is a non-
empty sequence of transitions as above with x, accepting. The
set of traces (resp. accepted traces) of A is denoted by 7r(.A)
(resp. L(A)).

Remark 9. A related model, called leafy automata, was
recently proposed in [4]. Leafy automata can modify all states
along the relevant branch in a single step. Split automata are
more constrained in that regard. Their odd levels never change,
and transitions have more restricted access to information on
the branch: control states can be modified only up to one level
up and, at memory access, control states lying strictly above
cannot be accessed at all. This more refined structure is crucial
to identifying a decidable family within split automata.

Although split automata appear more restrictive, we will
next show that they can still express the game semantics of
FICA. Indeed, all the restrictions are motivated by a good fit
with the translation. Thus, split automata are also able to ac-
commodate the semantics of the undecidable terms discussed
in Section[[ll Consequently, the associated emptiness problem
must be undecidable.

V. FROM FICA TO SPLIT AUTOMATA

We present a translation from FICA to split automata. For
this, we first describe how we encode pointers in plays using
both a special indexing scheme and data. Then we present the
translation that proceeds by induction on term structure.

Recall from Section [that, to interpret base types, game
semantics uses moves from the set

M = M[[com]] o M[[exp]] Y M[[var]} o M[[sem]]
= {run, done, q, read, grb, rls, ok }
u{i, write(i) | 0 < i < max }.

The game semantic interpretation of a term-in-context I' —
M : 0 is a strategy over the arena [I' - 0], which is obtained
through product and arrow constructions, starting from arenas
corresponding to base types. As both constructions rely on
the disjoint sum, the moves from [I' - 6] are derived from
the base types present in types inside I' and 6. To indicate
the exact occurrence of a base type from which each move
originates, we will annotate elements of M with a specially
crafted scheme of superscripts. Suppose I' = {x1 : 01, ,z; :
6;}. The superscripts will have one of the two forms, where
ieN*and pe N:
. (Z, p) will represent moves from 6;

-

o (241, p) will represent moves from 6, (1 <wv <1).

The annotated moves will be written as m(ap) or m(xvz*p),
where m € M. We will sometimes omit p on the understand-
ing that this represents p = 0. Similarly, when i is omitted,
the intended value is €, e.g. m stands for m(&0 and m® for
m(#9). The next definition explains how the 7 superscripts are
linked to moves from [0]. Given X < {m(i’pz lie N*, p e N}
and y € NU{zy,--- a1}, we let y X = {m¥r) | m(br) e X},

Definition 10. Given a type 6, the corresponding alphabet 7
is defined as follows

Ts = {mP) |me Mgy, pe N} 8 = com,exp, var,sem
Torms 01 = Uuums (uT5,) © T

For T = {x1 : 01, - ,z; : 0;}, the alphabet Tpg is defined
to be Trg = Ui)zl(mﬂ?}v) u To.

For example, 7}:com—»com,z:com|—com is { run(fl’p),
done ™) run(£:2) . done'”) . run(@2), done™?), run(er),
done'®?) | p e N}.

To represent the game semantics of terms-in-context I' |-
M : 0, we shall use finite subsets of Trip as alphabets. They
will be finite because p will be bounded. Note that 7rg admits
a natural partitioning into questions and answers, depending
on whether the underlying move is a question or an answer.

We will represent plays using data words in which the
underlying sequence of tags comes from (a finite subset of)
the alphabet defined above. Next we explain how superscripts
and data are used to represent justification pointers. Because
no data value can be used twice with a question, occurrences
of questions correspond to unique data values. A justification
pointer from an answer to a question can then be represented
simply by pairing up the same data value with the answer.

Pointers from question-moves will be represented with the
help of the index p. Initial question-moves do not have a
pointer and to represent such questions we simply use p = 0.
To represent moves with justification pointers we will rely on
p on the understanding that (m?-*,d) represents a pointer to
the unique question-move that introduced pred”™(d).

Example 11. Suppose that dy = pred(dy),d; = pred(ds) =
pred(dy),ds = pred(ds), dj = pred(d;). Then the data
word (run(©9 do) (run@-9 d;) (runt10) dy) (runU10) qh)
(run®@2) d3) (run(®2) d5) (done'™? ds) represents the play

run runf runft runfl run® run® done®.
0] P 0] O P P 0]

Note that a play may have several different representations;
the last three moves of the above play could also be rep-
resented by (run@9 @) (run®0 d”) (done'™® d), with
pred(dy) = pred(d]) = do.

Example 12. Consider the SA A = (Q,3,0,%,6), where
Q(O) = {07172}’ Q(l) = {3}’ Q(2) = {47576}’ Q(S) =
(7}, 2q = {run®® run(F0 run(F1.0) ryn@23 35 =
{done(e’o)7 done(f’o),done(fl’o),done(m’o)}, and ¢ is given by

run(€:®) run(/>®

(£,0)
0 (1,3) (1,3)-%0 9
ne(©:0) run(F1,0) run(#:2)
gdone’ Lt 3 (3,4) 4M5(5,7)

one(@:0) one(/1:0)
(5,7)1——0—>6 (3’6)i,3

Then traces from Tr(A) represent all plays from o = [f :
com — com, z : com + fz : com], including the play
from Example [[1l and L(A) represents comp(c).

One may wonder why we did not choose to use the parent
structure of D to represent justification pointers (this would
correspond to p = 0 in all cases). Unfortunately, this simplified
scheme would not work with split automata: in the above
example, the number of run(®2) moves has to be the same
as the number of run(/1:9 moves. If we used level-1 data
values for run®, we would not be able to use the automaton
to enforce this property.

Below we state the main result linking FICA with split
automata. Question-moves in this translation are handled with
ADD transitions (at even levels for O and odd levels for P).
Answer-moves are handled by DEL transitions (at odd levels
for O and even levels for P). The structure of split automata
makes it possible to decouple the interpretation of memory-
related operations from the rest.

Theorem 13. For any FICA term I' — M : 0, there ex-
ists a split automaton Ap; over a finite subset of Trig
such that the set of plays represented by data words from
Tr(Apy) is exactly [T' = M : 0]. Moreover, L(Apy) represents
comp([I" - M : 6]).

Proof sketch. 1t is well known that any FICA term can be
reduced to an equivalent term in S-normal 7-long form. The
argument proceeds by induction on the structure of such forms.
When referring to the inductive hypothesis for a subterm M;,
we use the subscript 4 to refer to the automata components,
e.g. QEJ), X, etc. In contrast, Q), = will refer to the
automaton that is being constructed. Inference lines
indicate that the transitions listed under the line should be
added to the new automaton provided the transitions listed
above the line are present in the automaton obtained via the
inductive hypothesis. Below we discuss the most interesting
cases, giving several representative steps in each case.

(M = M;||Mz2) To model interleaving, we will use pairs
of level-0 control states from both automata with memory
big enough to accommodate both automata. We take k =
max(k1, ko), N = Ny + Ny, C© = 19 x 0§ and
c® = ¢ 4l (i > 0). All it takes then is to embed
transitions from 4, and Ay, suitably.

ADD and DEL transitions that can assess level-0 con-
trol need to preserve the control state of the other
e.g. C(IO)—K)I(ng)7d§1>) <0y EPS transi-

(”,0)=>((dS” c),di")
tions from M> need to be adjusted (by adding N;)

so that their refer to the memory dedicated to Mo,
CEC{[]) (O,h,v,c(o))—e>2(v',d(0))

(0,N14+h,v,(e,el0) == (v, (c,d©)) _
and at the end the automata need to be synchronised:
TLlcgo) Ti,QCgU) Cgo)ﬂ)lT CEO)&ZT

= (e”e5”)

component,

Finally, at the start

k4 done

(0) (0 dore

(M = newvar xin M;j) Ac((:(l)rdirzlg) to [1}, it suffices to
consider plays from M in which read®”) and write(j)(®*)
moves are immediately followed by answers, and the se-
quences obey the “good variable” discipline (a value that
is read corresponds to the most recently written value). To

implement this recipe in an automaton, we will add a memory

cell at level 0 to keep track of the current value of z. To this
end, we take k = ki, N = Ny + 1, CO = ¢\ (0 <i < k).

Transitions that do not use the moves discussed above
can be copied into the new automaton without changes. The
remaining transitions are added according to the following
rules. Note that in the case for writing we add transitions for
every old value v.

(20 DI, (e geien) KD, i
(0,N,U,c<2i))—€>(j,e(2i)) (0<wv<maxz)

(@0

read(m-ﬁ) 1(d(21’)’d(2i+1)) 16(2”

(20

(0,N,,c(3)—=>(j,e(2D)

Altogether the transitions use the Nth memory cell to store
the value of x.

(M = newsemsin Mj) This case is very similar to the
previous one: we need to restrict plays from M; to those in
which grb®*) and rls®”) moves are immediately followed
by answers, and the sequence of such moves obeys the “good
semaphore” discipline (grabs follow releases and vice versa).
To implement this behaviour in an automaton, we will add a
memory cell at level 0 to keep track of the current value of x.
Thus, we take k = ky, N = Ny +1, CO = ¢ (0 < i < k).

Transitions that do not use these special moves are copied
over without changes and the remaining transitions are added
by following the rules above, which keep track of the current
state of the semaphore.

(29 grb(s’p—>) 1(d?D g2+ o0

(0,N,0,c(2))—=>(1,e(21))

(s,p)

Le(2D)

L (d®D g2i+1)) ok(2:0) > e(2)

(0,N,1,e(20))—=(0,e(2))

C(Qi) rls

(M = f(M;)) Here we only discuss the simplest case of
f:com — com. We take k = 2+ k;, N = Ny, Q0 =
{0,1,2}, QW = {3}, QU+ = QU) (0 < j < ky). First we
add transitions corresponding to calling and returning from f:

done(©:®)

(€,0) (£,0) done(F0)
T run O’ 0 run (1’ 3), (1’ 3) one 2’ 2 T
In control state 3 we want to allow the environment to

spawn an unbounded number of copies of the strategy for
run(€:0) done(€,0)

(0 (0) _donel®0) |
I' - M;: com: 1¢ , —< 1 Note
ran(71,0) done(71:0)
——>(3,c(®) (3,c(0))———>3

that 3 is immutable.

Other moves_ related to M; originate from I', and have
the form m(*+**), where (z, € 6,) € T. The associated
transitions are copied over but question-moves of the form
m(@+P) (i.e. initial moves of [0,]) need to have their pointer
adjusted so that they point at the move tagged with run(©0)
(leaving p unchanged in this case would mean pointing at
run(fl’o)). To achieve this, it suffices to add 2 to p in this
case. Otherwise p can remain unchanged, because the pointer
structure is preserved. Below we use oy and op to refer to
arbitrary left- and right-hand sides of transition rules.

m(@v.P) . .
Oo,——>1 0OR m 18 a question

m(zv,p+2)
DL————H]R

m(@vi.e)

oj,——>1 0OR 1 # € or (¢ = € and m is an answer)

m(zvisp)
DL—H]R
Memory-related transitions are also copied, while adjusting
the depth of the level that is being accessed by adding 2:
(2j7havwc(21))—6)l(v,’d(2i)) D
(2j+2,h,v,c(2i))—E>('U’,d(2i)).

V1. RESTRICTED-SEMAPHORE FICA

We introduce rsFICA, a fragment of FICA with a restricted
use of semaphores. The translation of FICA to split automata
allows us to observe structural properties of the automata
generated in this case. We discover that they satisfy an idem-
potency property. In the next section we prove that emptiness
is decidable for idempotent automata. This gives a decision
procedure for verifying a range of properties of rsFICA terms.

Definition 14. Restricted-semaphore FICA (rsFICA) consists
of FICA terms I' - M : 6, whose [-normal n-long form is
such that subterms of the form fM;---M; (I > 0) do not
contain free variables of type sem.

Note that rsFICA retains all sequential features of FICA,
such as unrestricted types, state and loops. On top of this,
it allows for a “shallow” use of semaphores, i.e., not in
subterms of the form f(N). For example, the usage in
newsem s in grab(s); f(skip); release(s) would be shal-
low, while the usage in newsem sin f(grab(s)) is not.
In our automata translation, shallow uses occur at the same
level as the semaphore declaration and, consequently, can be
interpreted using control states alone.

We now explain how the restriction is reflected in the
structure of automata obtained by the translation. We identify
two properties that will be important for us in the decidability
argument of the next section.

The first property, called local boundedness, is actually a
general property of FICA. It concerns the branching degree of
trees in configurations of split automata at even levels only.

Definition 15. A split automaton is locally bounded if there
exists B such that in all reachable configurations (D, E, f, m)
every even-level node in E has at most B children.

By inspecting our constructions one can confirm that the
generated automata are locally bounded, e.g. the bounds add
up for the || construct, and in all other constructions it suffices
to take the maximum of the bounds for subterms.

Remark 16. In Algol, local boundedness is related to the
lack of recursion, which leads to undecidability even without
semaphores. If we wanted to extend our translation to FICA
with recursion, local boundedness would have to be violated.

A strictly stronger restriction, called (global) boundedness,
was considered in [4]]. It put a bound on a total number of
children that can be created below an even-level node during
a run. The difference is that in local boundedness we are
interested in the number of children present at any given time.
This allows us to accommodate iteration.

The second property, called restricted-semaphore, is specific
to the rsFICA fragment. It talks about ways the memory
is manipulated by an automaton. Recall that the memory is
manipulated by EPS transitions that check for a value of
some memory cell and modify it in an atomic transition.
This enables us to check if a semaphore is free and grab it,
if possible. In contrast, read and write operations either just
check the value without modifying it, or just modify the value
without checking it.

Let us now explain this at the level of split automata. EPS
transitions have the form (27, h, v, ¢®*?))—(v’, d(*"). Such a
transition finds a data value d labelled with control state C(Qi),
checks if for the ancestor of d at level 2j5 the h-th cell of
memory has value v, and if so, changes this value to v, and
changes the control state at d to d*). Consequently, if the
use of semaphores is restricted then we only have transitions
that either check for v and do not modify it, or update the cell
to v' without checking the previous value of the cell. This is
formalised in the following definition.

Definition 17. In a restricted-semaphore split automa-
ton, if there exists a transition (27,h,v,)= (v, d9)
for some v # ', then there also exist transitions

(24, h, 0", c?D) =5 (v, d®D) for all v € V.

Some instances of semaphore use can still be translated to
restricted-semaphore split automata. This is exactly the origin
of the rsFICA fragment. A shallow use of a semaphore is
translated into (0, N, 7,¢(®)=5(1 — j,e©) for 5 = 0,1,
i.e. only level-0 states are involved. Such transitions can be
simulated by using the level-0 control state as memory. This
can be done by taking C'(©) = C’fo) x {0,1}, C) = C’{Z)
(¢ > 0), N = Nj + 1, initializing the second component
of the control state to 0 in ADD(0), and propagating it in
other transitions that have access to it, i.e. ADD(1), DEL(1)
and EPS(0,0). The transition above can then be replaced by
(0, N, 0, (¢, 5))=5(0, (e(®,1 — 4)) for j = 0, 1. Note that
here the memory component is used in a dummy way: 0 is
read and not modified.

Corollary 18. Split automata corresponding to rsFICA terms
are locally bounded and restricted-semaphore.

In the next section we show how to decide emptiness
for split automata with these two properties. To simplify
the decidability proof we formulate the restricted-semaphore
property in a more abstract way as a kind of idempotence of
transitions of the automaton.

Recall that even-level data are labelled both by a control
state of the automaton and memory contents. We call the pair
(m3) DY a combined state. In terms of combined states,
a transition (27, h, v, ¢(*))—(v', d(®")) can be written as

(<m(2j)[h — 0], 29, <m(2i)7)5
(<m(2j)[h — '], c(2j)>, <m(2i)’ d(273)>)
If the automaton is restricted-semaphore, we also have
((m(29) [h— '],)y (m(2D 2Dy,
(<m(2j)[h — '], C(2j)>7 <m(2¢)’ d(zi)»

because of (25, h,v’,c®))—5(v/,d?)). Thus, using
¢®) (20 to range over combined states, we have discovered
that the restricted-semaphore condition implies the following
idempotence property:
if (q (24) q(2i)) €
then (r(29) ¢

s (r (24) T(2i))
(r(29) (20,

If we interpret the first transition as putting constraints on
when ¢(®) can be changed to ("), the idempotence property
says that if this change can be done in one node of the
configuration tree, it can be done in an arbitrary number of
nodes. This property is crucial for the decidability argument
in the next section.

VII. IDEMPOTENT AUTOMATA

The aim of the section is to show that emptiness of locally
bounded and restricted-semaphore split automata is decidable.
This will allow us to answer certain verification questions
about rsFICA, since it compiles to this type of automata.

We prove the decidability result using a more abstract kind
of automata called idempotent. Separating memory from con-
trol was instrumental to express properties of the translation
from FICA to automata. For the decidability proof, all we
need is local boundedness and idempotency discussed in the
previous section. For this reason, we will work with abstract
states that represent combined states of split automata, i.e.,
pairs <m(i), c(i)> (where, for odd ¢, the absence of memory is
encoded by m(?) having zero cells). We will use ¢(¥) and (%) to
range over combined states. For convenience, we reformulate
the definition of split automata in this new notation, including
the local boundedness and idempotency properties.

Definition 19. An idempotent automaton is a tuple
(Q,k,%,5) where k is the depth parameter, Q@ = | J{Q®

it =0,...,k} is a finite set of states, X = Xq + Xa is the
alphabet and 0 contains transitions of the shape given below,
where i > 0, g € Xq, a € ¥ and ¢V, r() e Q)

ADD(0) T—q>r(0)
DEL(0) q(())_“,ar
ADD(2i) gD L, (2= (20))
DEL(2i) (q®1,q(?9)—% (-1
ADD(2i + 1) q(Qi)_q,(T(Qi)7T(2i+1))
DEL(2i + 1) (¢®",¢®®*1)-%,p(20)
EPS(2.21) (4,50, r®) <
We require two conditions:
o idempotence: if (¢, ¢ (r(29) r(2D) then

(r(29) g2 55 (r(29) 1 (20));
« local boundedness: there is a bound B such that in every

reachable configuration every even-level node has at most
B children.

The definitions of a run and acceptance are as for split
automata. It should be clear that restricted-semaphore locally-
bounded split automata can be simulated by idempotent

automata by using their states to represent control states
combined with memory. As discussed in the previous section,
the bound B in the local boundedness condition can be derived
from the syntax of the program. Observe that, due to the shape
of transitions, the states at odd levels never change.

We are interested in the emptiness problem: does a given
idempotent automaton accept a word? We show its decidability
via a level reduction lemma. The lemma gives an effective
elimination of two levels of data values for an idempotent
automaton. Its repeated application reduces the problem to the
emptiness problem for standard finite automata.

Lemma 20. For every idempotent automaton A with 2i + 2
levels, one can construct an idempotent automaton A' with
2i levels such that the language of A is non-empty if and only
if the language of A" is nonempty.

Proof. Suppose B is the bound on the number of children a
node at an even level can have. The bound comes from the
local boundedness property of A. The states of A" are the
states of A, except for at level 2i:

QT =Q) x ({1,..., B} = (Q®V x P(Q™*)))

where the second argument is the set of partial functions as
displayed. We write (f for the empty function, and g(i) = L
when ¢ is not defined at 4.

The intention is to suplement the state at level 27 with a
second component, describing subtrees at level 2¢ + 1 that
are eliminated by the construction. A node of level 2i can
have at most B children, hence the second component is a
partial function with domain {1,..., B}. The values of this
function are representations of subtrees rooted at the children
of the node: the label of a node at level 27 + 1, and the set
of labels of children of this node. The representation loses
information about the precise number of children with each
label. Consequently, there are fintely many representations of
subtrees at level 2¢ + 1.

For a configuration (D, E, f) and a datum d € F, we write
fE(d) for the labelled subtree rooted at d. A pair (¢2'+1) S) e
Q1) x P(Q+2)) represents a subtree rooted at a node of
level 2i+1: the root is labelled by ¢(2+1), and the set of labels
of the children of the root is S. We write setrep(fE(d*+1))
for this representation of the subtree rooted at d(2*+1).

A state (¢®9,g) € Q') represents a subtree rooted at
a node of level 2i with ¢(*) the label of the node, and g
representing, at most B, subtrees rooted at the children of the
node as described above.

The transitions of A" reflect this representation of subtrees
by states. The way to modify the transitions is presented in
Figure 3l It gives a set of rules saying that if a transition above
the line is present in A then it is replaced by the transition
below the line in A". Observe that only transitions involving
levels 2¢,2¢ + 1,27 + 2 are modified.

The intuition behind these rules follows the intuition behind
the definition of Q'(*) we have seen earlier. For example,
the first rule, ADD(2i) of A, creates a new node at level 2¢
labelled by 7(*). The rule is changed to an ADD(2i) rule that

ADD(2i) PICL DU (q(2z Doy 2@) DEL(2) (q(2i71)’q(2i))_>q(21 1)
q2i—D) L, (g(2i-1) (p(20)) (gD (q2),) —Lrq(2i-1)
EPS(2j, 2i) 2<q(2j)—:*(7"<2;))
(q() ())_>((7“(1)79))
ADD(2i + 1) Cid UL
(gD, g[l — L)L (r(20), gl — (r2i+1), Z)])
DEL(2i + 1) (¢, g® D) ()
(a®glt = a2, DN, g1 L))
(2i41) 9, (,(2i+1) .(2i+2)
] q (,T)
ADD(2¢ + 2
() (q(zi),g[l — (q(2¢+1), S)])_q,(q(),g[l — (q(22+1)’ S U {r(2i+2)})])
DEL(2i + 2) (¢@HD) ¢2i42)) 2, (2i+1)

(¢, g[l —

(q(2i+1)’ S U {q(2i+2)})])_“,
(q(2j)7 q(2i+2))_€)

(g, gll = (g1, 5)])

(r2) p2i42)) 25 < 2i

EPS(27, 2i + 2)

(4@, (¢, gt — (¢, 8 U (gD])]))—

(q(zvz)7 q(21'+2))_6)(7,(2¢)7 T(21'+2))

(17, (¢, gl1 — (%), S U {rZ2})])

EPS(2i,2i + 2)

(@), g[l = (g1, 5 U {gHD})])—

(10 gli = (@D, 5 u (rE2))

2i+2) _€, .(2i+2)

q(

EPS(2i + 2,2i + 2) :
(@®).g

[(gD, S U {gE+2})])

—— (), g[l > (¢®+D, S U {rEi+2})])

Fig. 5. Translation rules

creates a new node labelled by (r(?*"),), where & is the
empty function representing that the newly created node has no
children. Another example is the last rule EPS(2: + 2, 2i + 2).
The transition of automaton .4 changes the state at a node
of level 2¢ + 2. This is replaced by the change of one of the
elements in the set S. The notation we use actually describes
two possible ways to instantiate the rule. In one, there may be
no ¢(%*2) in S, meaning that ¢(>*2) is replaced by r(?*+2)
in S. In the other, there may still be ¢(*>*+2) remaining in S,
so the rule adds r(>**2) to S without removing ¢(**2). The
two ways are useful: the first corresponds to a situation when
there is only one child labelled by ¢(*+2) the second when
there is more than one.

Observe that all (2¢+1) and (2¢+2) transitions are translated
to EPS(24, 2¢) transitions, except for EPS(2j, 2 + 2) for 2j <
27 + 2. The idempotence property of the resulting automaton
A" then follows from that of A.

We need to show that A accepts some data word if and
only if Al accepts some, possibly different, data word. The
two data words will be different when the one accepted by A
uses data of levels below 2i as these are not accessible for A'.

For the proof we introduce a concept of indexed runs of A,
namely we add a fourth component to configurations that
assigns numbers to some nodes. An indexed configuration

s (D, E, f,ind) where ind : E — {1,...,B} is a partial
function defined for all data of level 2: + 1 in E. Intuitively,
ind gives unique identifiers to siblings at level 2i + 1. When

10

a new node at level 27 + 1 is created it gets the smallest index
different from the indices of its siblings. It keeps this index
till it is removed. Since a node at level 2¢ can have at most B
children we have enough indices. An indexed accepting run
has the form:

(D, B, B, D)2 B, 2,3, D)

where as before every by is either e or a letter (¢;, d;) consisting
of a tag t; € ¥ and a datum d; € D. The indexing functions
allow us to define state(fiE;(d?)), ind;) € Q"9 for every
d(QZ) € Eli

state(m(d(zi)), ind;) = (fl(d(zi))yg)

where g(ind;(d®*V)) = setrep(fiE;(d**D)) for every
child d®*+Y of d®) in E).

From an indexed run v of A, we construct a run of A" by
induction. We suppose that we have constructed a run ! of A"
corresponding to a prefix x of the run of A. Run p' reaches a
configuration (D', ET, 1) while run p reaches (D, E, f, ind).
We assume that the following invariant holds:

. b
.. (Dl7El7fl7 anl)—>

(1) When restricted to levels < 2, set D" is the same as D,
and E' is the same as E.

(2) For every d € E' of level < 2i we have f1(d) = f(d)

(3) For every d®) e ET (of level 2i), we have f'(d*)) =

state(fE(d®Y), ind).
We consider the next transition on the run v. If it does not
concern level 2¢ or below then the same transition can be

executed by A'. If it does we examine the possible cases and
show that the corresponding transition of A" preserves the
invariant. This way we prolong ;. and u' while keeping the
invariant. Property (1) implies that 4! is accepting if y is.
For the other direction we consider an accepting run '
of A". Let ¢ be the length of v!. By induction, for every
prefix u! of this run we construct a run p satisfying the same
invariant as above, and moreover:
(4) Every node of level 2i+2 in (D, E, F') has at least 2f=lu'|
siblings with the same label.
The construction of p is by cases depending on the type of
transitions in the run of A'. We need sufficiently big multi-
plicities of leaves to simulate set operations where the state on
the left hand-side does not disappear (cf. our discussion above
concerning EPS(2i + 2,2¢ + 2)) rule). We can get arbitrary
multiplicities thanks to the idempotency of the rules.
Let us examine a representative case of the EPS(2j, 2i + 2)
rule for 2j < 2i. Suppose A" applies at a node d(**) a rule:

(¢, (¢, g[l > (¢@+D, 5 U {gZ+D})]) -5
(r®7), (g9, gl = (¢®D, S U {rEH2)]))

By the invariant fT(d(?)) = state(fE(d®"), ind), consider
d® D) with ind(d+1) I. We have that it has a
child labeled ¢('t2). By the fourth invariant it has at least
2=I1"| children labeled ¢(+2). On the side of automaton
A we can then do the corresponding EPS(2j,2i + 2) transi-
tion (q(27), ¢(2*+2)) 5 (#(29) r(2142)) followed by some num-
ber of transitions ((27), (2142)) 5 (#(20) p(2142)) 1f ((2142)
does not appear in S U {r(2¥2)} then the above rule is used to
change all occurrences of ¢(2**2) below d**+1) to r(2+2) If it
appears then 2(=Ik"D=1 occurrences are changed, leaving the
rest. This reestablishes the fourth invariant both for ¢(2+2) and
7(242)_ Observe that if invariant (4) talked about (¢ — |u'|)
siblings instead of 2=11"l then it would not be possible to
reestablish it at this point. O

Repeated applications of Lemma 20| reduce the emptiness
problem of an idempotent automaton to the emptiness problem
of a standard finite automaton. Indeed, an idempotent automa-
ton whose depth parameter is O is just a finite automaton.

Theorem 21. Emptiness of idempotent automata is decidable.

VIII. VERIFICATION OF STUTTERING INVARIANT
PROPERTIES

We show some examples of properties that we can verify
using our construction. As described in previous sections, we
can translate a given program fragment into an automaton
accepting the representation of complete plays in the game
semantics. The automaton works on a data tree of some depth,
which reflects the syntactic structure of the underpinning A-
term. We fix some level 2¢ of the data tree, and for every 2
node we look at the sequence of states appearing at the node
during a run. We check if some/every such sequence satisfies a
given regular property. Later we will show how some standard
program analysis properties can be expressed in this way.

11

We first describe automata constructions and then give some
applications. We try to give an idea of the constructions with-
out going to excessive details that are not difficult but tedious.
To fix the notation, consider an idempotent automaton .4, and a
level 2: of the dataset. We assume that we are given a standard
finite automaton C defining interesting sequences of states at
level 2i. So the alphabet of C is Q(9, i.e. the set of states
of A at level 2i. We use ¢° to refer to states of C. The initial
state of C is ¢,,;;, and the set of accepting states of C is Fin®.

We want to check if there is an accepting run of A such
that every node at level 27 goes through a sequence of states
accepted by C. In other words, if there is an accepting run
such that for every datum d of level 2¢ appearing in the run the
sequence of states that label d is accepted by C. We then say
there is an accepting run where every 2i sub-run satisfies C.

We convert an idempotent automaton A into an idempotent
automaton A" such that: A"C has an accepting run if and only
if A has an accepting run where every 2i sub-run satisfies C.
This reduces the question to the emptiness of idempotent
automata that, as we have seen, is decidable.

For this construction to work we require that automaton C
describes a property that is stuttering invariant: automaton C
accepts some word w;bws if and only if it accepts the word
w1bbws. We assume below that C is a minimal deterministic
automaton. Observe that if C is a stuttering invariant minimal
deterministic automaton then, for every transition qf—b>q§, it
has also the transition qg—b>q§.

To construct A"C we modify states at level 2i of A, and
transitions involving this level. The new set of sates at level 2¢
is Q%) x Q¢; namely we add states of C as another component.
We modify transitions:

.(24)

. (2i—1)_4 (2i—1) ,.(24) .
ADD(2i)——— 2) pge T e
q(Zi—D——(q(21=1) (r(29) ¢¢))
. (2i—1) _(24) a (2i—1) . .
DEL(2i)—\4— ¢)—r if ¢° € Fin®

(2i—1) (5(2i) gc))—2s(2i—1)
(g 1(@29,q°)) q

ADD(24) transitions initialise the C component. DEL(23) tran-
sitions allow to remove a 2¢ node provided the C component
is in an accepting state.

We modify other transitions involving level 2¢ so that the C

. . (20))
component is updated as expected. Supposing ¢{———¢5 is a
transition of C:
(¢ ,q(PD)—(r(2D r(20))
(gD ,(g29),q¢)——> (r(2) ,(r(20) ¢5))

ADD(2i + 1) gD —Ls (20 (i)

EPS(27, 2i)

(429,g)—"> ((r(20 q5) (21D
(q(21),q(21+1)) 9 (20
((429,q5),q2+ D)= (r(21) q5)
(q(2i)7q(23))_ﬁ>(r(21)’r(2a))
((¢©29,45),q29)) == ((r(2 ¢5),r(2))

DEL(2i + 1)

EPS(2i,25)

Observe that we have two types of EPS transitions to handle,
depending on whether 2: is the lower or the upper level. Note
that EPS transitions of the first kind are idempotent in A"C
if they were in A. Similarly for the second kind, but here
additionally we rely on stuttering invariance of C.

Lemma 22. If A is an idempotent automaton and C is a
stuttering invariant minimal deterministic automaton then AY¢
is an idempotent automaton. Moreover, A has an accepting
run whose all 2i sub-runs satisfy C if and only if AYC has an
accepting run.

We can modify the above construction to answer another
question: is there an accepting run with at least one 2i sub-run
satisfying C? Automaton A for this question is constructed
from AC. The idea is that once one of the sub-runs at level
2i reaches an accepting state, it puts this information in the
root state. At the same time we should ensure that this sub-run
terminates after this action. In the universal case we could use
termination detection to collect acceptance information: in an
accepting run all components at level 2 needed to disappear,
and they could disappear only when they reached an accepting
state. In the existential case we need to implement an ad hoc
notification mechanism.

In A%, the set of states at level 0 becomes Q©) U {tt, ff};
the second component indicating if there is a 2¢ sub-run satis-
fying C. The modification of transitions reflects this intuition:
T—q>r(0>

== (). 1)

q(D) L’T

(@, tt)—>

ADD(0) DEL(0)

The ADD transition says that we initialize the second com-
ponent to ff, the DEL transition says that an accepting run
should end with the second component set to tt.

For other transitions of 43¢, we take transitions of .4 with
some modifications. Transitions involving level 0 are modified
so that they leave the second component unchanged. The
second component can be changed only by a new e-transition
at level 2i that we introduce now. In A the set of states at
level 2i is Q29 U (QY) x Q°). So a state at level 2i of A€
is either a state of A"C or a state of A at this level. The idea
is that at the end of a computation at some node at level 2,
the automaton can set the component at level 0 to ¢t if the
computation finished in an accepting state of C. We have the
following for arbitrary states and arbitrary « € {¢¢, ff }.

EPS(0,2i) (¢, a), (4@, ¢%) (¢, tt),¢%)) if ¢ € F
EPS(0,2i) (¢, a), (¢, ¢°))-((¢@, @), ¢3))

It is clear that these transitions are idempotent. The other tran-
sitions are as in automaton 47¢ except for the transitions of
type DEL(2i) that are those from A: (¢~ 1), ¢(21))—25(21=1)
The idea is that DEL(2¢) can be performed only after one of
the above EPS(0, 2¢) transitions.

Lemma 23. If A is an idempotent automaton and C is a
stuttering invariant minimal deterministic automaton then A€
is an idempotent automaton. Moreover, A has an accepting
run whose some 2i sub-run satisfies C if and only if A has
an accepting run.

Proposition 24. The following questions are decidable, for
idempotent automata A, data levels 2i, and stuttering invari-
ant finite automata C:
o Is there an accepting run of A whose all 2i sub-runs
satisfy C?

12

o Is there an accepting run of A whose some 2i sub-run
satisfies C?

e Do all accepting runs of A have some 2i sub-run satis-
Sfying C?

e Do all accepting runs of A have all 2i sub-runs satisfy-
ing C?

The first two items are solved by the two lemmas above. The
remaining two are obtained by considering the dual question
for the complement automaton. Observe that the complement
of a stuttering invariant language is also stuttering invariant. In
fact, this is the only point where we need stuttering invariance
of C. In the rest of the arguments till now we need only that
C is closed under stuttering expansion.

This proposition allows the verification of rsFICA terms to
be reduced to emptiness checking of idempotent automata.
Given a term we use the translation from the proof of
Theorem [13] to obtain a split automaton. This automaton is an
idempotent automaton by Corollary [I8] We can then take an
automaton C expressing a property of interest. With stuttering
invariant finite automata C we can express such properties as:

« Is a given variable set to a given value?
« Is a given variable invariant in a loop?
« Is a given variable read after being set?

As reads are silent, in order to check the last property, it will
be necessary to instrument the program to perform a special
write on every relevant read.

Proposition gives a method to verify these properties
for all quantification combinations: every/exists accepting run
and every/exists sub-run of this run. Indeed, the proposition
effectively reduces verification of all these questions to empti-
ness checking of a suitable idempotent automaton. The latter
is decidable by Theorem 211

IX. CONCLUSIONS

This work identifies a fragment of Finitary Idealized Con-
current Algol, called rsFICA, having good algorithmic prop-
erties with respect to verification. Thanks to the use of game
semantics we can verify properties talking about executions in
all contexts. In 7sFICA we restrict the use of semaphores and
we do not permit recursion. Removing one of these restrictions
makes the verification problems we have considered here
undecidable. Observe that we admit iteration in rsFICA, so
there is a striking difference between the power of iteration
and recursion in this context.

We find it interesting that parametrisation appears in our
setting. In existing literature parametrisation was postulated
as a way to get around undecidability. Here, it arises naturally
in the game-semantic interpretation of rsFICA terms. In our
decidability proof we work in a setting similar to that of
[S], but we have a hierarchy of parameterised systems, that
moreover can test for termination. Downward closure argu-
ments are an efficient way to get decidability for parametric
systems [21], [9]. Unfortunately they are not applicable in the
context of termination [7!], [22]. This is where the notion of
idempotent transitions comes very useful. It nicely captures

“no test-and-set” intuition, and allows for a relatively direct
inductive argument on tree levels.

As future work, we would like to investigate the equivalence
problem for idempotent automata. If decidable, this could
be used in testing contextual equivalence of rsFICA terms.
The test would give false negatives though, as our encoding
of plays via data words is not bijective: several different
encodings may represent the same play. Other related chal-
lenges include applying the concurrent games framework [23]]
in verification and investigating contextual equivalence with
respect to semaphore-free contexts [24]. It would also be
interesting to look for connections with abstract machines [25]],
the Geometry of Interaction [26]], and the 7-calculus [27].

We also do not know the complexity of emptiness checking
for idempotent automata. Our procedure has complexity of a
tower of exponentials whose height depends on the idempotent
automaton’s depth parameter.

REFERENCES

[1] D. R. Ghica and A. S. Murawski, “Angelic semantics of fine-grained
concurrency,” Ann. Pure Appl. Log., vol. 151(2-3), pp. 89-114, 2008.
doi:10.1016/j.apal.2007.10.005

D. R. Ghica, A. S. Murawski, and C.-H. L. Ong, “Syntactic
control of concurrency,” Theor. Comp. Sci., pp. 234-251, 2006.
doi:10.1016/j.tcs.2005.10.032

G. Ramalingam, “Context-sensitive synchronization-sensitive analysis is
undecidable,” ACM Trans. Program. Lang. Syst., vol. 22, no. 2, pp. 416—
430, 2000. |doi:10.1145/349214.349241

A. Dixon, R. Lazic, A. S. Murawski, and I. Walukiewicz, “Leafy
automata for higher-order concurrency,” in Proceedings of FoSSaCs,
ser. LNCS, 2021. [Online]. Available: http://arxiv.org/abs/2101.08720
S. A. German and P. A. Sistla, “Reasoning about systems with
many processes,” J. ACM, vol. 39, no. 3, pp. 675-735, 1992.
doi:10.1145/146637.146681

M. Hague, “Parameterised pushdown systems with non-atomic
writes,” in Proceedings of FSTTCS, ser. LIPIcs, 2011, pp. 457—468.
doi:10.4230/LIPIcs. FSTTCS.2011.457

P. Ganty and R. Majumdar, “Algorithmic verification of asynchronous
programs,” ACM Trans. Program. Lang. Syst., vol. 34, no. 1, pp. 6:1—
6:48, 2012.d0i:10.1145/2160910.2160915

J. Esparza, P. Ganty, and R. Majumdar, “Parameterized verification of
asynchronous shared-memory systems,” J. ACM, vol. 63, no. 1, p. 10,
2016. 'do1:10.1145/2842603

S. L. Torre, A. Muscholl, and I. Walukiewicz, “Safety of parametrized
asynchronous shared-memory systems is almost always decidable,”
in Proceedings of CONCUR, ser. LIPIcs, vol. 42, 2015, pp. 72-84.
doi:10.4230/LIPIcs. CONCUR.2015.72

P. A. Abdulla, M. F. Atig, and R. Rezvan, “Parameterized verification
under TSO is pspace-complete,” Proc. ACM Program. Lang., vol. 4, no.
POPL, pp. 26:1-26:29, 2020. doi:10.1145/3371094

T. Schwentick, “Automata for XML - A survey,” J. Comput. Syst. Sci.,
vol. 73, no. 3, pp. 289-315, 2007. doi:10.1016/}.jcss.2006.10.003

H. Bjorklund and M. Bojariczyk, “Shuffle expressions and words with
nested data,” in Proceedings of MFCS, ser. LNCS, vol. 4708, 2007, pp.
750-761. doi:10.1007/978-3-540-74456-6_66

M. Bojanczyk, C. David, A. Muscholl, T. Schwentick, and L. Segoufin,
“Two-variable logic on data words,” ACM Trans. Comput. Log., vol. 12,
no. 4, pp. 27:1-27:26, 2011. |doi:10.1145/1970398.1970403

H. Bjorklund and T. Schwentick, “On notions of regularity for data
languages,” Theor. Comput. Sci., vol. 411, no. 4-5, pp. 702-715, 2010.
doi:10.1016/j.tcs.2009.10.009

N. Decker, P. Habermehl, M. Leucker, and D. Thoma, “Or-
dered navigation on multi-attributed data words,” in Proceed-
ings of CONCUR, ser. LNCS, vol. 8704, 2014, pp. 497-511.
doi:10.1007/978-3-662-44584-6_34

C. Cotton-Barratt, A. S. Murawski, and C. L. Ong, “Weak and nested
class memory automata,” in Proceedings of LATA, ser. LNCS, vol. 8977,
2015, pp. 188-199.d0i:10.1007/978-3-319-15579-1 14

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

13

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

C. Cotton-Barratt, D. Hopkins, A. S. Murawski, and C. L. Ong,
“Fragments of ML decidable by nested data class memory automata,”
in Proceedings of FOSSACS, ser. LNCS, vol. 9034, 2015, pp. 249-263.
doi:10.1007/978-3-662-46678-0 16

M. Hague, “Saturation of concurrent collapsible pushdown systems,”
in Proceedings of FSTTCS, ser. LIPIcs, vol. 24, 2013, pp. 313-325.
doi:10.4230/LIPIcs. FSTTCS.2013.313

N. Kobayashi and A. Igarashi, “Model-checking higher-order programs
with recursive types,” in Proceedings of ESOP, ser. LNCS, vol. 7792,
2013, pp. 431-450. doi:10.1007/978-3-642-37036-6_24

J. C. Reynolds, “The essence of Algol,” in Algorithmic Languages, J. W.
de Bakker and J. van Vliet, Eds. North Holland, 1978, pp. 345-372.
doi:10.1007/978-1-4612-4118-8_4

G. Zetzsche, “An approach to computing downward closures,”
in Proceedings of ICALP, ser. LNCS, 2015, pp. 440-451.
doi:10.1007/978-3-662-47666-6_35

M. Fortin, A. Muscholl, and 1. Walukiewicz, “Model-checking linear-
time properties of parametrized asynchronous shared-memory pushdown
systems,” in Proceedings of CAV, ser. LNCS, vol. 10427, 2017, pp. 155—
175.do1:10.1007/978-3-319-63390-9 9

S. Castellan, P. Clairambault, S. Rideau, and G. Winskel, “Games and
strategies as event structures,” Log. Meth. Comput. Sci., vol. 13, no. 3,
2017. do1:10.23638/LMCS-13(3:35)2017

A. S. Murawski, “Full abstraction without synchronization primitives,”
in Proceedings of MFPS, ser. ENTCS, vol. 265, 2010, pp. 423-436.
doi:10.1016/j.entcs.2010.08.025

O. Fredriksson and D. R. Ghica, “Abstract machines for game se-
mantics, revisited,” in Proceedings of LICS, 2013, pp. 560-569.
doi:10.1109/LICS.2013.63

U. D. Lago, R. Tanaka, and A. Yoshimizu, “The geometry of concurrent
interaction: handling multiple ports by way of multiple tokens,” in
Proceedings of LICS, 2017, pp. 1-12.do1:10.1109/LICS.2017.8005112
M. Berger, K. Honda, and N. Yoshida, “Sequentiality and the pi-
calculus,” in Proceedings of TLCA, ser. LNCS, 2001, vol. 2044, pp.
29-45.do1:10.1007/3-540-45413-6_7

https://doi.org/10.1016/j.apal.2007.10.005
https://doi.org/10.1016/j.tcs.2005.10.032
https://doi.org/10.1145/349214.349241
http://arxiv.org/abs/2101.08720
https://doi.org/10.1145/146637.146681
https://doi.org/10.4230/LIPIcs.FSTTCS.2011.457
https://doi.org/10.1145/2160910.2160915
https://doi.org/10.1145/2842603
https://doi.org/10.4230/LIPIcs.CONCUR.2015.72
https://doi.org/10.1145/3371094
https://doi.org/10.1016/j.jcss.2006.10.003
https://doi.org/10.1007/978-3-540-74456-6_66
https://doi.org/10.1145/1970398.1970403
https://doi.org/10.1016/j.tcs.2009.10.009
https://doi.org/10.1007/978-3-662-44584-6_34
https://doi.org/10.1007/978-3-319-15579-1_14
https://doi.org/10.1007/978-3-662-46678-0_16
https://doi.org/10.4230/LIPIcs.FSTTCS.2013.313
https://doi.org/10.1007/978-3-642-37036-6_24
https://doi.org/10.1007/978-1-4612-4118-8_4
https://doi.org/10.1007/978-3-662-47666-6_35
https://doi.org/10.1007/978-3-319-63390-9_9
https://doi.org/10.23638/LMCS-13(3:35)2017
https://doi.org/10.1016/j.entcs.2010.08.025
https://doi.org/10.1109/LICS.2013.63
https://doi.org/10.1109/LICS.2017.8005112
https://doi.org/10.1007/3-540-45413-6_7

	Introduction
	Finitary Idealised Concurrent Algol (FICA)
	Game semantics
	Split automata
	From FICA to split automata
	Restricted-semaphore FICA
	Idempotent automata
	Verification of stuttering invariant properties
	Conclusions
	References

