
A Fragment of ML Decidable by
Visibly Pushdown Automata

David Hopkins1! Andrzej S. Murawski2!! C.-H. Luke Ong1

1 Department of Computer Science, University of Oxford, UK
2 Department of Computer Science, University of Leicester, UK

Abstract. The simply-typed, call-by-value language, RML, may be viewed as a
canonical restriction of Standard ML to ground-type references, augmented by a
“bad variable” construct in the sense of Reynolds. By a short type, we mean a
type of order at most 2 and arity at most 1. We consider the O-strict fragment of
(finitary) RML, RMLO-Str, consisting of terms-in-context x1 : θ1, · · · , xn : θn !
M : θ such that θ is short, and every argument type of every θi is short. RMLO-Str
is surprisingly expressive; it includes several instances of (in)equivalence in the
literature that are challenging to prove using methods based on (state-based) log-
ical relations. We show that it is decidable whether a given pair of RMLO-Str
terms-in-context is observationally equivalent. Using the fully abstract game se-
mantics of RML, our algorithm reduces the problem to the language equivalence
of visibly pushdown automata. When restricted to terms in canonical form, the
problem is EXPTIME-complete.

1 Introduction

The standard approaches to the verification of higher-order programs are type-based
program analysis on the one hand, and theorem-proving and dependent types on the
other. The former is sound, but often imprecise; the latter typically requires human
intervention. The paper is concerned with a relatively recent, game-semantics based
approach to the verification of higher-order procedural programs. We consider a call-
by-value language, RML, which has both functional and (stateful) imperative features,
mediated by Church’s simple type theory. RML may be viewed as a canonical restric-
tion of Standard ML to ground-type references, except that it includes a “bad variable”
construct [17, 2].

Observational equivalence is a compelling notion of program equivalence. Two
terms M and N are observationally equivalent, written M ∼= N , if they are mutually
replaceable in every program without changing the computational outcome. Because of
the quantification over all program contexts, the theory of observational equivalence is
rich and hard to reason about, as illustrated by the following example.

Example 1. (i) let c = ref inλfunit→unit.(c :=1; f(); !c) ∼= λfunit→unit.(f(); 1)
(ii) let c = ref inλfunit→unit.(c :=0; f(); c :=1; f(); !c) ∼= λfunit→unit.(f(); f(); 1)

! Supported by Microsoft Research through its PhD Scholarship Programme.
!! Supported by an EPSRC Advanced Research Fellowship (EP/C539753/1).

(iii) let a = ref in let r = ref inλf.(r := !r+1; a := f(!r); r := !r−1; !a) #∼= λf.f(1)
The two equivalences above, due to Pitts and Stark [16] and Thamsborg [3] respectively,
are notoriously tricky to verify using methods based on (state-based) logical relations.
The inequivalence, a somewhat surprising instance due to Stark [19], requires a rather
delicate separating context to exhibit.

Let θi and θ range over RML types. We say that observational equivalence is decid-
able at a type sequent θ1, · · · , θn $ θ (or simply, θ $ θ is decidable) just if the following
problem is decidable: given terms-in-context x1 : θ1, · · · , xn : θn $ M,N : θ of fini-
tary RML (henceforth, written RMLf), are they observationally equivalent? This paper
is concerned with the question of classifying the decidable type sequents of RMLf .

Following Ghica and McCusker [6], we use a method based on game semantics
to decide observational equivalence of RMLf . Take a term-in-context Γ $ M : θ with
Γ = x1 : θ1, · · · , xn : θn. In game semantics [9, 7], the term-in-context is interpreted
as a P strategy !Γ $ M : θ" for playing (against O, who takes the environment’s per-
spective) in the prearena !θ $ θ". A play between P and O is a sequence of moves in
which each non-initial move has a justification pointer to some earlier move. Thanks to
the fully abstract game semantics of RML, observational equivalence is characterised
by complete plays i.e.M ∼= N iff the P-strategies, !Γ $ M" and !Γ $ N", trace out the
same set of complete plays. (A play is complete if every question in it is subsequently
answered in the play.) Strategies may be viewed as highly constrained processes, and are
amenable to concrete, automata-theoretic representations. In certain prearenas—which
we shall call bi-strict—plays may be represented simply by their underlying move se-
quence, because the justification pointers from both O- and P-moves are uniquely de-
termined. Murawski studied bi-strict sequents in [11] and identified those that are de-
cidable by reduction to the equivalence problem of deterministic FSA.

In this paper, we consider type sequents of RMLf that areO-strict. Plays over preare-
nas denoted by O-strict sequents enjoy the property that pointers from O-moves are
uniquely determined by the underlying move sequence. We first give a simple charac-
terisation of O-strict type sequents: θ1, · · · , θn $ θ is O-strict iff θ is short, and every
argument type of every θi is short, where a type is said to be short if it has order at most
2 and arity at most 1. (Henceforth we write the O-strict fragment of RMLf as RMLO-Str.)
We then prove our first result: observational equivalence of RMLO-Str is decidable by re-
duction to the equivalence problem of visibly pushdown automata [4]. Our proof is by
induction over the canonical forms of RMLO-Str terms-in-contexts. For each such term-
in-context Γ $ M , we construct a visibly pushdown automaton AΓ"M that accepts the
complete plays in the strategy denotation of the term, whereby P-questions are pushes,
O-answers pops and all other moves no-ops. The key innovation of the construction
lies in the encoding of the pointers from P-questions. Instead of trying to represent
all such pointers present, we concentrate only on representing a single pointer. Note
that for every pointer we need to represent, there must be an accepting run encoding
its location. So even though each individual word accepted by the automaton may not
have enough information to fully reconstruct the pointers, when we consider the full
language we will be able to uniquely place all justification pointers. Our second result
is that the observational equivalence of RMLO-Str terms-in-context in canonical form is
EXPTIME-complete. EXPTIME-hardness is shown by a reduction of the equivalence

problem for nondeterministic automata on binary trees [18] to the problem of deciding
observational equivalence at the sequent unit → int $ (unit → unit) → unit.

Example 2. Our algorithm can decide the (in)equivalence3 instances in Example 1 as
the terms belong to RMLO-Str. (i) The VPA below represents the complete plays of the
game semantics of the terms of Example 1(i). In the diagram, the edge label ‘q/n’
means ‘on reading q, push n’, and ‘a, n’ means ‘on reading a and stack top is n, pop’.

3 q1/3 3′q1/3
′

1
•

2

q0

2′

q0

a1,3

a1,3
′

510 5′

10

(ii) This VPA represents the complete plays of the game semantic strategy for the terms
of Example 1(ii).

5
q1/5

3
q1/3

3′q1/3
′

1
•

2
q0

2′

q0

a1,5

a1,3

a1,5
′

a1,3
′

7

10

5′

q1/5
′

7′
10

Our results may be viewed as the first steps towards a complete classification of
the decidable RMLf type sequents. In the case of (finitary) Idealized Algol, decidability
(and if so, the complexity) of a given type sequent depends only on its type-theoretic
order [12]. In contrast, the decidability of RMLf -sequents is not so neatly characterised
by order (see the table below): there are undecidable sequents of order as low as 2 [11],
amidst interesting classes of decidable sequents at each of orders 1 to 4. For comparison,
we also give DFA-decidable (regular) and undecidable sequents [10, 11].

RMLf -Fragment Examples of Type Sequents (writing o for unit)
bi-strict, regular (o → o) → o ! o → o

bi-strict, not-reg. ! (o → o) → o

RMLO-Str ((o → . . . → o) → o) → o ! (o → . . . → o) → o

undecidable ! (o → o) → (o → o) → o, (((o → o) → o) → o) → o ! o

The remaining open cases are those in which pointers from O-moves need to be
represented explicitly. At the moment we see no way of dealing with them, as they
seem to require potentially unbounded references to past computations. What we can
say is that our method of single-pointer representation cannot be extended beyond the
O-strict fragment of RMLf (as there are distinct strategies that have the same single-
pointer representation).
3 Restricted to sequents in which int ref does not occur, observational equivalence of RML
conservatively extends that of Reduced ML (because mkvar is only needed at int ref for de-
finability).

2 RML, Game Semantics and Visibly Pushdown Automata

RML is a call-by-value functional language with state [1]. It is similar to Reduced
ML [16], the canonical restriction of Standard ML to ground-type references, except
that it includes a “bad-variable” constructor (in the absence of the “bad-variable” con-
structor the equality test is definable). Types are generated by the grammar θ ::=
unit | int | int ref | θ → θ. The type assignment rules are completely standard. The
operational semantics, which is defined as a “big-step” relation [11], is also standard.
For closed terms, we write M⇓ just if M reduces to some value. This can be used to
define a natural notion of equivalence; intuitively, two terms are observationally equiv-
alent if one can always replace the other without affecting the result of the computation.
Given two terms-in-context Γ $ M1,M2 : θ, we say thatM1 observationally approxi-
matesM2 (written Γ $ M1

!
∼ M2) if for all contexts C[−] such that C[M1] and C[M2]

are closed terms of type unit, we have that if C[M1]⇓ then C[M2]⇓. We say M1 and
M2 are observationally equivalent (written Γ $ M1

∼= M2) if Γ $ M1
!
∼ M2 and

Γ $ M2
!
∼ M1. It can be shown that every RML term is effectively convertible to an

equivalent term in canonical form, defined by the following grammar (β ∈ {unit, int}).

C ::= () | i | xβ | xβ op yβ | if xβ thenC elseC | xint ref := yint | !xint ref | λxθ.C |
mkvar(λxunit.C,λyint.C) | letx = ref inC | whileC doC | letxβ = C inC |
letx = zyβ inC | letx = zmkvar(λuunit.C,λvint.C) inC | letx = z(λxθ.C) inC

In order to achieve a decidability result, we consider the finitary fragment of RML,
written RMLf . That is, we restrict the type int to be a finite subset of Z.

Call-By-Value Game Semantics We present call-by-value game semantics in the style
of Honda and Yoshida [7], as opposed to Abramsky and McCusker’s isomorphic model
[1], as Honda and Yoshida’s constructions are more concrete, lead to more compact
alphabets, and so are more suited to algorithmic analysis.

An arena A is a triple (MA,$A,λA) whereMA is a set of moves where IA ⊆ MA

consists of initial moves, $A⊆ MA × (MA\IA) is called the justification relation,
and λA : MA → {O,P} × {Q,A} a labelling function such that for all iA ∈ IA
we have λA(iA) = (P,A) and if m $A m′ then (π1λA)(m) #= (π1λA)(m′) and
(π2λA)(m′) = A ⇒ (π2λA)(m) = Q.

The function λA labels moves as belonging to either Opponent or Proponent and
as being either a Question or an Answer. Note that answers are always justified by
questions, but questions can be justified by either a question or an answer. We will use
arenas to model types. However, the actual games will be played over prearenas, which
are defined in the same way except that initial moves are O-questions.

Three basic arenas are 0, the empty arena, 1, the arena containing a single initial
move •, and Z, which has the integers as its set of moves, all of which are initial P-
answers.

Some constructions on arenas are described below. Here we use IA as an abbrevia-
tion forMA\IA, and λA for the O/P-complement of λA. Intuitively A⊗B is the union
of the arenasA andB, but with the initial moves combined pairwise.A ⇒ B is slightly
more complex. First we add a new initial move, •. We take the O/P-complement of A,
change the initial moves into questions, and set them to now be justified by •. Finally,

we take B and set its initial moves to be justified by A’s initial moves. The final con-
struction, A → B, takes two arenas A and B and produces a prearena, as shown below.
This is essentially the same as A ⇒ B without the initial move •.

MA⇒B = {•} #MA #MB MA⊗B = IA × IB # IA # IB
IA⇒B = {•} IA⊗B = IA × IB

λA⇒B = m %→















PA ifm = •
OQ ifm ∈ IA
λA(m) ifm ∈ IA
λB(m) ifm ∈ MB

λA⊗B = m %→







PA ifm ∈ IA × IB
λA(m) ifm ∈ IA
λB(m) ifm ∈ IB

!A⇒B = {(•, iA)|iA ∈ IA} !A⊗B = {((iA, iB),m)|iA ∈ IA ∧ iB ∈ IB
∪{(iA, iB)|iA ∈ IA, iB ∈ IB} ∧(iA !A m ∨ iB !B m)}
∪ !A ∪ !B ∪(!A ∩(IA × IA))

∪(!B ∩(IB × IB))

MA→B = MA #MB λA→B(m) =







OQ ifm ∈ IA
λA(m) ifm ∈ IA
λB(m) ifm ∈ MB

IA→B = IA !A→B = {(iA, iB)|iA ∈ IA, iB ∈ IB}∪ !A ∪ !B

We intend arenas to represent types, in particular !unit" = 1, !int" = Z (or a finite
subset of Z for RMLf) and !θ1 → θ2" = !θ1" ⇒ !θ2". A term x1 : θ1, . . . , xn : θn $
M : θ will be represented by a strategy for the prearena !θ1" ⊗ . . .⊗ !θn" → !θ".

A justified sequence in a prearena A is a sequence of moves from A in which the
first move is initial and all other movesm are equipped with a pointer to an earlier move
m′, such thatm′ $A m.

A play s is a justified sequence which additionally satisfies the following conditions.

(i) Alternation: O and P take it in turns to play moves. That is if tmm′ , s then
λOP (m) #= λOP (m′).

(ii) Well-Bracketing: Questions asked first must be answered first. If t q t′ a , s then
all questions in t′ must be answered in t′.

(iii) Visibility: If t m t′ m′ , s then m appears in view(tm t′), where view is defined
by, view(ε) = ε, view(o) = o if o is initial, and view(t m t′ m′) = view(t)mm′ .

We denote the set of all valid plays over prearena A as PA.
A strategy σ for prearena A is a non-empty, even-prefix-closed set of plays from A,

satisfying the condition that if sm1, sm2 ∈ σ then sm1 = sm2.
We can think of a strategy as being a playbook telling P how to respond by mapping

odd-length plays to moves.
A play is complete if all questions have been answered. Note that (unlike in the

call-by-name case) a complete play is not necessarily maximal. We denote the set of
complete plays in strategy σ by comp(σ).

Game Semantics of RML In the game semantic model of RML, a term-in-context x1 :
θ1, . . . , xn : θn $ M : θ is represented by a strategy for the prearena !θ1" ⊗ . . . ⊗
!θn" → !θ". These strategies are built up compositionally over the syntax of the term.
Essentially, free identifiers x : θ $ x : θ are interpreted as copy-cat strategies where
P always copies O’s move into the other copy of !θ", λx.M allows multiple copies of

!M" to be run, applicationMN requires a form of parallel composition plus hiding and
the other constructions can be interpreted using special strategies. The game semantic
model is fully abstract in the following sense.
Theorem 1 (Abramsky and McCusker 1997 [1, 2]). For all RML-terms-in-context
Γ $ M,N : θ, we haveM !

∼ N iff comp(!Γ $ M") ⊆ comp(!Γ $ N").

We will show decidability of observational equivalence for a fragment of RML by
representing the game semantics of terms as Visibly Pushdown Automata (VPA) [4].
VPA are a subclass of pushdown automata in which the stack action is uniquely deter-
mined by the input letter. The alphabet is partitioned into push-letters, pop-letters and
noop-letters. On reading a letter the automaton must perform the appropriate action.
(We write s q/x

−→ s′ to mean “on reading q, push x” and s
a,x
−→ s′ to mean “on read-

ing a and stack top is x, pop”.) This gives them very attractive closure properties. In
particular, equivalence of deterministic VPA is decidable in polynomial time.

3 Characterising the O-Strict Fragment of RML
In order to represent strategies using automata, we need to be able to encode plays
(move sequence with pointers) as words. In some cases pointers can be uniquely recon-
structed from the underlying move sequence, thanks to the visibility or well-bracketing
conditions, which constrain the position of the justifying move. For instance, the targets
of pointers from answer-moves can always be deduced from the underlying sequence
of moves. In general, however, pointers must be encoded explicitly, and this poses a
representational challenge because the target of a pointer can be arbitrarily far back
in the history of the play. We say that a play is O-strict just if the pointer from every
O-question in the play is uniquely determined by the underlying move sequence. A
prearena is said to be O-strict if every play of the prearena is O-strict; a type sequent is
O-strict if its denotation (in the call-by-value game semantics) is an O-strict prearena.
It follows that when representing plays of an O-strict prearena, only pointers from P-
questions need to be encoded. In this section, we aim to find a simple characterisation
of the O-strict sequents.

Every RML-type θ can be written uniquely as θ1 → · · · → θn → β (by convention
→ associates to the right), where n ≥ 0 and β stands for unit, int or int ref. In what fol-
lows we shall write (θ1, · · · , θn,β) for θ. The arity, ar(θ), and order, ord(θ), of θ are

defined as follows. ar(θ) :=

{

n if β = unit or int
n+ 1 if β = int ref. ord(unit) = ord(int) = 0,

ord(int ref) = 1 and ord(A → B) = max(ord(A) + 1, ord(B)). For clarity, we shall
assume β = unit in the argument that follows; there is no loss of generality because
essentially identical considerations work for the case of int, and int ref can be treated
as unit → unit.

Types on the right of O-strict sequents. Consider an arena with the following enabling
chain q0 $ a0 $ q1 $ a1 $ q2. (For brevity, we shall say that the arena has a qaqaq-
branch.) Then sequences of the form q0a0(q1a1)nq2, where n ≥ 0, are all plays, re-
gardless of which occurrence of a1 is used to justify q2. Representing the pointer from
the O-question q2 would seem to require unbounded memory or an infinite alphabet.

Observe that the prearena of the type sequent $ (unit, unit, unit) has a qaqaq-
branch. In general, the same is the case for Γ $ (θ1, · · · , θk, unit), where k ≥ 2. In
other words, the type on the right of an O-strict sequent has the shape (θ, unit) or is
unit. Another troublesome sequent is $ (((unit, unit), unit), unit) which has a qaqqq-
branch. In general, types of the form ((θ1, · · · , θk, unit), unit) have a similar problem
in case θi is functional for some 1 ≤ i ≤ k. Thus, types on the right of an O-strict
sequent must be of type Θ2 (we shall call a type short just if it is in Θ2) where

Θ1 ::= unit | unit → Θ1 Θ2 ::= unit | Θ1 → unit.

Equivalently, a type is in Θ2 just if it has order at most 2 and arity at most 1.

Types on the left of O-strict sequents. Type sequents that contain((unit, unit, unit), unit)
on the left are similarly problematic because the corresponding prearenas have a qqqaq-
branch. Generally, sequents of the shape · · · , (θ1, · · · , θk, unit), · · · $ · · · are not O-
strict, if for some i, θi = (θ1i , · · · , θ

k′

i , unit) and k′ ≥ 2.
Sequents that have the type (((unit, unit), unit), unit), unit) on the left are also not

O-strict because the corresponding prearenas have a qqqqq branch. In general, this is
the case for θ1i = (α1i , · · · ,α

k′′

i , unit), whenever some αji is functional. Hence, if a
sequent is O-strict, then each θ1i must be of type Θ1, i.e. each θi must be in Θ2. This
leads us to the class Θ3 ::= unit | Θ2 → Θ3. Equivalently a type is in Θ3 just if it has
shape (θ1, · · · , θk, unit) where k ≥ 0 and θi ∈ Θ2 for each i. Note that Θ3 contains Θ1

but not Θ2.

Lemma 1. A type sequent, θ1, · · · , θn $ θ, is O-strict iff θ ∈ Θ2, and each θi ∈ Θ3.

So far we have omitted int and int ref. To incorporate them into the characterisation,
we treat int in the same way as unit, and int ref in the same way as unit → unit. The
revised definition of the collections, Θ2 and Θ3, thus reads as follows.

Θ0 ::= unit | int Θ2 ::= Θ0 | Θ1 → Θ0 | int ref
Θ1 ::= Θ0 | Θ0 → Θ1 | int ref Θ3 ::= Θ0 | Θ2 → Θ3 | int ref

Definition 1. The O-strict fragment of RML, henceforth referred to as RMLO-Str, con-
sists of terms-in-context of the shape x1 : Θ3, · · · , xn : Θ3 $ M : Θ2.

Since conversion to canonical form preserves types, canonical forms of RMLO-Str-terms
also belong to RMLO-Str. Consequently, they satisfy the following properties.

(i) If Γ $ λx.C is in RMLO-Str, then Γ, x : Θ1 $ C : Θ0.
(ii) If Γ $ letx = ref inC is in RMLO-Str, then Γ, x $ C : Θ2.
(iii) If Γ $ letx = · · · inC is in RMLO-Str, then Γ, x : Θ3 $ C : Θ2.
(iv) If Γ $ letx = z(λy.C) in · · · is in RMLO-Str, then Γ, y : Θ1 $ C : Θ0.

Example 3. The following are RMLO-Str terms-in-contexts.

(i)
{

f : unit → unit → unit $ let g = f() in (leth = f() in g()) : unit
f : unit → unit → unit $ let g = f() in (leth = f() inh()) : unit

(ii)
{

f : ((unit → unit) → unit) → unit $ f(λxunit→unit.f(λyunit→unit.x()) : unit
f : ((unit → unit) → unit) → unit $ f(λxunit→unit.f(λyunit→unit.y()) : unit

(iii) The three pairs of terms in Example 1.

4 The O-Strict Fragment is VPA-Decidable

We shall show that the (fully abstract) game semantics of every RMLO-Str-term can be
faithfully represented using VPAs in the following sense.

Theorem 2. There is an algorithm that transforms a given RMLO-Str-term-in-context
Γ $ M : θ to a VPA AΓ"M such that Γ $ M1

∼= M2 iff L(AΓ"M1
) = L(AΓ"M2

).

Proof Outline We wish to show that for all RMLO-Str-terms Γ $ M : θ there exists
(constructively) a VPA AΓ"M that accepts (some representation of) !Γ $ M : θ".

(i, •)

!Γ " •z

q0

q1 a0

a1

...

qn

an

j

!Θ3"

!Θ2"

To simplify this, we define !. . ."i by !Γ $ M : θ" :=
∑

i∈I!Γ"
i !Γ $ M : θ"i. (To save space, we write !Γ $

M : θ" simply as !M".) That is, !M"i contains all plays
of !M" which begin with initial move i, but with i re-
moved. We will define automataAi

M which accept the un-
derlying move sequences of all complete plays in !M"i.
To complete the proof, we will need to encode justifica-
tion pointers, but for now we omit them. We partition our
alphabet so that all P-questions are pushes, all O-answers
pops and everything else noops.

Our construction proceeds inductively over the canon-
ical forms. The simpler canonical forms can be described
using regular expressions or as straightforward combina-
tions of their subautomata. The case of λ-abstraction re-
quires using the stack to nest copies of the body of the
function. The construction for letx = ref inM stores the
value of the variable in the state. The most complicated
cases are those of the form letx = zM inN and here we consider the hardest of them,
letx = z(λy.M) inN . The relevant prearena is shown in the figure on the right.

We assume the automata A(i,q0)
Γ,y"M and A(i,j)

Γ,x"N . To construct Ai
Γ"let x=z(λy.M) inN

we take as our set of states:

Qi
Γ"let x=z(λy.M) inN = {(1), (2)} /

⊎

q0∈I!θ1"

Q(i,q0)
Γ,y"M /

⊎

j∈I!θ3"

Q(i,j)
Γ,x"N

/
⊎

q0∈I!θ1",j∈I!θ3"

(

Q(i,q0)
Γ,y"M ×

̂
Q(i,j)

Γ,x"N

)

where ̂
Q(i,j)

Γ,x"N is the set of states s in A(i,j)
Γ,x"N such that t mx→ s is a transition, withmx

a P-move in !Θ3". (1) is the initial state and the final states are those fromA(i,j)
Γ,x"N . The

set of stack symbols is the disjoint union of the stack symbols used in the automata for
M and N , plus the fresh symbol (1), plus the states of each Q(i,q0)

Γ,y"M .
Large sections of the play will proceed as in !M" or !N". In particular, when in a

Q(i,j)
Γ,x"N -state, play proceeds as inA

(i,j)
Γ,x"N (although we will add additional transitions).

Similarly, when in a state with a Q(i,q0)
Γ,y"M component, play continues as in A(i,q0)

Γ,y"M

(although non-!Γ "-transitions will be redirected). Hence we have that if sM
m!
→ tM in

A(i,q0)
Γ,y"M where m is a !Γ "-move then in our new automaton we have sM

m!
→ tM and

(sM , sN)
m!
→ (tM , sN) for all sN ∈

̂
Q(i,j)

Γ,x"N . Similarly, if sN
m!
→ tN in A(i,j)

Γ,x"N then

we have sN
m!
→ tN . Here we use

m!
→ to represent that this could be a push-, pop- or a

noop-transition but whatever the case the transitions in the new automaton will perform
the same stack action as in the old one.

The initial section of the play will correspond to evaluating z(λy.M). After the
initial move, P will play •z . At this point, O can either play an initial !Θ3" move j, or
play q0, opening an M -thread. If O chooses the latter, play proceeds as in !M" until
P plays in !Θ1 → Θ0" (that is either P plays a0, closing the M -thread, or some qi).
At this point O can choose to continue the currentM -thread (unless P has closed it by
playing a0) or to open a newM -thread with q0. Note that if O opens a newM -thread,
while the old one is still open, the old thread will be left in a position where the only
valid move is for O to answer the pending qi with ai. Thus bracketing ensures that we
cannot revisit an oldM -thread until we have closed the current one.

The transitions needed to represent this section of the play are:

– (1)
•z/(1)
→ (2).

– (2)
q0→ iq0M where iq0M is the initial state in A(i,q0)

Γ,y"M .
– If sM

a0→ tM in A(i,q0)
Γ,y"M , then sM

a0→ (2).

– If sM
qi/γ
→ tM

ai,γ→ uM , i > 0, inA(i,q0)
Γ,y"M (note that this must be the only transition

out of sM), then sM
qi/(sM)
→ (2) and (2) ai,(sM)

→ uM .

Eventually we may reach a point where allM -threads are closed and O plays j, for
which we have transitions (2) j,(1)

→ ijN where i
j
N is the initial state inA

(i,j)
Γ,x"N . Play then

proceeds as in !N", except that if P ever plays in x (that is in !Θ3"), then O again gets
the chance to play q0 and open anM -thread. If this happens then as before the threads
can be stacked. Further, whenever O has the chance to open a new M -thread, O also
has the option of resuming play in N by playing in !Θ3". If there are currently open
M -threads when O chooses to return to N , then to obey bracketing it must be a !Θ3"-
question which O plays. As before, the only way to resume an openM -thread is with an
answer, so to obey bracketing this can only happen after the !Θ3"-question is answered.

To manage this, for all sN ∈
̂
Q(i,j)

Γ,x"N we need to have the following transitions:

– sN
q0→ (iq0M , sN), where iq0M is the initial state in A(i,q0)

Γ,y"M .
– If sM

a0→ tM in A(i,q0)
Γ,y"M , then (sM , sN)

a0→ sN .

– If sM
qi/γ
→ tM

ai,γ→ uM , i > 0, in A(i,q0)
Γ,y"M then (sM , sN)

qi/(sM)
→ sN and

sN
ai,(sM)
→ (uM , sN).

Remark 1. It follows from the construction thatAΓ"M :θ is regular if types of free vari-
ables are ((unit, unit), · · · , (unit, unit), unit) and the type ofM is (unit, unit) or unit.

Pointers We now consider how to represent pointers. Since we are concerned with
O-strict prearenas, we only try to encode pointers from P-moves. Further, instead of
describing the location of every pointer in a play, in each run of the automaton we only
give the position of a single pointer. However, for every pointer we need to represent
there must be an accepting run encoding its location. Since our strategies are determin-
istic, each P-move has a unique justifier and so when we consider the full language
accepted by the automaton this encoding scheme gives us sufficient information to re-
construct all justification pointers.

If sms′ns′′ is a sequence of moves, we will use s •
m s′

◦
n s′′ to represent that

there is a pointer from (the P-move) n tom. We refer to moves tagged with • as target-
moves and those tagged with ◦ as source-moves. We will construct automataAi

M which
accept all strings that are either the underlying move sequence of a complete play in
!M"i or the underlying move sequence plus the encoding of a single justification pointer
from a P question. Note that as we omit the initial move, we cannot encode pointers
that point to it. However, this is not a problem since there is only ever one occurrence
of the initial move so any pointers to it are always uniquely reconstructible. All other
justification pointers from P-questions must have a representation in the automaton’s
language. Note that if L(Ai

Γ"M) = L(Ai
Γ"N) for all i ∈ I!Γ " then comp(!Γ $ M") =

comp(!Γ $ N").
In the case of letx = z(λy.M) inN we must ensure we preserve all pointers from

!M" and !N", plus that in each !M"-thread q1 can point to the q0 that opened that
thread and finally that if in !N" P plays an !x"-move justified by j, this can point at the
copy of j which started !N". We must also take care to enforce that each accepting run
only contains the encoding of a single pointer.
Example 4. (i) Take the term let g = f() in (while b() do (leth = f() in ())); g(),
where f : unit → unit → unit and b : unit → int. The corresponding automaton will
accept the following sequences: qfaf (qb1bqfaf)∗qb0bqf ′af ′a (no pointer information),
qf

•
af (qb1bqfaf)∗qb0bqf ′af ′a and qfaf (qb1bqfaf)∗qb1bqf

•
af (qb1bqfaf)∗qb0bqf ′af ′a

(information about single possible targets), and qf
•
af (qb1bqfaf)∗qb0b

◦
qf ′ af ′a (a sin-

gle pointer is represented). Note that any occurrence of af could be a potential target
for the pointer from qf ′ . By annotating moves with • and ◦ we avoid the need for un-
bounded indices that would otherwise have to be used to represent pointers.

(ii) These automata represent the complete plays of the strategies for the terms of
Example 3(i). As the language is regular we hide the stack actions. The underlying move
sequences are identical but the encoding of pointers allows us to differentiate them.

3
q0

5
a0

7

q1

◦
q1

1
q0

2

•
a0

a0
9

a1

10
•

11

4
q0

6
a0

•
a0

8
q1

3
q0

5
a0

7 q1

1
q0

2

•
a0

a0
9

a1

10
•

11

4
q0

6

a0
•
a0

8

q1

◦
q1

5 Complexity

Following [15], we define the size of a VPA to be the sum of the number of states and
the number of stack symbols. The size of the alphabet is linear in the size of the input
word and so we ignore it. The number of transitions is bounded by a polynomial in the
size of the automaton.

In each case of the construction, the set of states consists of a number of fresh states,
a number of copies of the states from sub-automata and a number of copies of pairs of
states from different sub-automata. The set of stack symbols is similar. This means,
that if automaton AM is built up from n sub-automata AM1

. . .AMn
then |AM | ≤

c ×
(

1 +
∑

|AMi
|+

∑

i(=j |AMi
|× |AMj

|
)

, for some constant c. Given that at each
step the size of the problem is greater than the sum of the size of the sub-problems, the
implied recursion has an exponential bound.

Now the time required to construct each automaton is polynomial in its size (so ex-
ponential in the size of the input). The time taken to check whether two deterministic
VPA are equivalent is polynomial in the size of the two VPA. Finally, the number of
VPA we will need to check is exponential in the size of the input (in the number of
int-components in the context). Altogether, this gives an exponential bound on the total
amount of time required to check two RMLO-Str-terms in canonical form for observa-
tional equivalence.

q

qgen *

agen q0

q1 a0

a1

It turns out that this bound is optimal. One can show EXPTIME-
hardness using a reduction of the EXPTIME-complete equivalence
problem for nondeterministic automata on binary trees [18]. Through
that route, we can show that observational equivalence is EXPTIME-
hard for canonical terms gen : unit → int $ C : (unit → unit) → unit.
The associated arena A is shown on the right.

In order to represent (ranked) binary trees, let us assume that
values of type int are partitioned into the set of binary and nullary labels, ranged over
l2 and l0 respectively. Then any ranked binary tree T over such labels can be repre-
sented by the play q * S(T) on A, where S(T) is defined as S(l) := q0 qgen lgen a0;
S(n(T1, T2)) := q0 qgen ngen q1 S(T1) a1 q1 S(T2) a1 a0. Note that S(T) can be seen
as a record of a depth-first traversal of T . The key to the hardness argument is the
construction of a term gen : unit → int $ CA : (unit → unit) → unit for a given tree
automaton A such that comp(!gen $ CA") = {q *} ∪ {q * S(T) |T ∈ T (A)}, where
T (A) is the set of trees accepted by A. To that end we take advantage of the term
$ λf .f(); f() : (unit → unit) → unit. Observe that it generates complete plays that
are very similar to the plays used to represent trees: they have the form q * X , where
X ::= ε | q0 q1 X a1 q1 X a1 a0 X . To construct CA we can equip the term above
with additional code that tracks possible states ofA, as the input tree is being traversed.
In order to cover all possible tree shapes the free identifier gen : unit → int is used as
a label generator.

Alternatively, one could readily adapt the EXPTIME-hardness argument for third-
order Idealized Algol [15] to the call-by-value setting. This would yield EXPTIME-
hardness of observational equivalence for canonical forms typable as

gen : unit → int, f : ((unit → unit) → unit) → unit $ C : unit.

Theorem 3. Observational equivalence ofRMLO-Str-terms in canonical form is EXPTIME-
complete.

Further Directions Does RMLO-Str capture all the decidable sequents? (We think not.) It
would be interesting to identify (and classify) the decidable type sequents of the follow-
ing related languages. (i) Call-by-value Idealized Algol [5, 13], which can be viewed as
a fragment of RML with block-allocated storage. It is known that the order-2 fragment
is decidable [13] and not order-5 [10]. (ii) The case of Reduced ML [19] (i.e. RML
without mkvar) is significantly more complicated. Recently it was shown that terms-
in-contexts of the shape· · · , x : β → β, · · · $ M : β → β, where β = unit, int, int ref,
can be represented with automata over infinite alphabets [14].

Another direction we intend to pursue is to implement the model checking algorithm
described, building upon the infrastructure of the call-by-name tool Homer [8].

References
1. S. Abramsky and G. McCusker. Call-by-value games. In CSL, 1997.
2. S. Abramsky and G. McCusker. Linearity, sharing and state: a fully abstract game semantics
for Idealized Algol with active expressions. In Algol-like languages, Birkhauser, 1997.

3. A. Ahmed, D. Dreyer, and A. Rossberg. State-dependent representation independence. In
POPL, 2009.

4. R. Alur and P. Madhusudan. Visibly pushdown languages. In STOC, 2004.
5. D. R. Ghica. Regular-language semantics for a call-by-value programming language. In

MFPS, 2001.
6. D. R. Ghica and G. McCusker. The regular-language semantics of second-order Idealized
Algol. Theor. Comput. Sci., 309(1-3), 2003.

7. K. Honda and N. Yoshida. Game theoretic analysis of call-by-value computation. In ICALP,
1997.

8. D. Hopkins and C.-H. L. Ong. Homer: A Higher-Order Observational Equivalence Model
checkER. In CAV, 2009.

9. J. M. E. Hyland and C.-H. L. Ong. On full abstraction for PCF: I, II, and III. Inf. Comput.,
163(2), 2000.

10. A. S. Murawski. About the undecidability of program equivalence in finitary languages with
state. ACM Transactions on Computational Logic, 6(4), 2005.

11. A. S. Murawski. Functions with local state: regularity and undecidability. Theoretical Com-
puter Science, 338(1/3), 2005.

12. A. S. Murawski, C.-H. L. Ong, and I. Walukiewicz. Idealized Algol with ground recursion
and DPDA equivalence. In ICALP, 2005.

13. A. S. Murawski and N. Tzevelekos. Block structure vs scope extrusion: between innocence
and omniscience. In FOSSACS, 2010.

14. A. S. Murawski and N. Tzevelekos. Algorithmic nominal game semantics. In ESOP, 2011.
15. A. S. Murawski and I. Walukiewicz. Third-order Idealized Algol with iteration is decidable.

In FOSSACS, 2005.
16. A. M. Pitts and I. D. B. Stark. Operational reasoning for functions with local state. Higher

order operational techniques in semantics, 1998.
17. J. C. Reynolds. The essence of Algol. In J. W. de Bakker and J. C. van Vliet, editors,

Algorithmic Languages, pages 345–372. North Holland, 1978.
18. H. Seidl. Deciding equivalence of finite tree automata. SIAM J. Comput., 19(3), 1990.
19. I. D. B. Stark. Names and Higher-Order Functions. PhD thesis, Univ. of Cambridge, 1995.

