
Fragments of ML Decidable by
Nested Data Class Memory Automata

Conrad Cotton-Barratt1,?, David Hopkins1,??, Andrzej S. Murawski2,? ? ?, and C.-H.
Luke Ong1,,†

1 Department of Computer Science, University of Oxford, UK
2 Department of Computer Science, University of Warwick, UK

Abstract. The call-by-value language RML may be viewed as a canonical re-
striction of Standard ML to ground-type references, augmented by a “bad vari-
able” construct in the sense of Reynolds. We consider the fragment of (finitary)
RML terms of order at most 1 with free variables of order at most 2, and iden-
tify two subfragments of this for which we show observational equivalence to be
decidable. The first subfragment, RMLP-Str

2`1 , consists of those terms in which the
P-pointers in the game semantic representation are determined by the underly-
ing sequence of moves. The second subfragment consists of terms in which the
O-pointers of moves corresponding to free variables in the game semantic repre-
sentation are determined by the underlying moves. These results are shown using
a reduction to a form of automata over data words in which the data values have
a tree-structure, reflecting the tree-structure of the threads in the game semantic
plays. In addition we show that observational equivalence is undecidable at every
third- or higher-order type, every second-order type which takes at least two first-
order arguments, and every second-order type (of arity greater than one) that has
a first-order argument which is not the final argument.

1 Introduction

RML is a call-by-value functional language with state [2]. It is similar to Reduced ML
[17], the canonical restriction of Standard ML to ground-type references, except that
it includes a “bad variable” constructor (in the absence of the constructor, the equality
test is definable). This paper concerns the decidability of observational equivalence of
finitary RML, RMLf . Our ultimate goal is to classify the decidable fragments of RMLf

completely. In the case of finitary Idealized Algol (IA), the decidability of observational
equivalence depends only on the type-theoretic order [13] of the type sequents. In con-
trast, the decidability of RMLf sequents is not so neatly characterised by order (see
Figure 1): there are undecidable sequents of order as low as 2 [12], amidst interesting
classes of decidable sequents at each of orders 1 to 4.

Following Ghica and McCusker [6], we use game semantics to decide observational
equivalence of RMLf . Take a sequent Γ ` M : θ with Γ = x1 : θ1, · · · , xn : θn. In
? Supported by an EPSRC Doctoral Training Grant
?? Supported by Microsoft Research and Tony Hoare. Now at Ensoft Limited, UK.

? ? ? Supported by EPSRC (EP/J019577/1)
† Partially supported by Merton College Research Fund

game semantics [7][10], the type sequent is interpreted as a P-strategy JΓ `M : θK for
playing (against O, who takes the environment’s perspective) in the prearena Jθ ` θK.
A play between P and O is a sequence of moves in which each non-initial move has
a justification pointer to some earlier move – its justifier. Thanks to the fully abstract
game semantics of RML, observational equivalence is characterised by complete plays
i.e. Γ ` M ∼= N iff the P-strategies, JΓ `MK and JΓ ` NK, contain the same set
of complete plays. Strategies may be viewed as highly constrained processes, and are
amenable to automata-theoretic representations; the chief technical challenge lies in the
encoding of pointers.

In [9] we introduced the O-strict fragment of RMLf , RMLO-Str, consisting of se-
quents x1 : θ1, · · · , xn : θn ` M : θ such that θ is short (i.e. order at most 2 and arity
at most 1), and every argument type of every θi is short. Plays over prearenas denoted
by O-strict sequents enjoy the property that the pointers from O-moves are uniquely
determined by the underlying move sequence. The main result in [9] is that the set of
complete plays of a RMLO-Str-sequent is representable as a visibly pushdown automa-
ton (VPA). A key idea is that it suffices to require each word of the representing VPA
to encode the pointer from only one P-question. The point is that, when the full word
language is analysed, it will be possible to uniquely place all justification pointers.

The simplest type that is not O-strict is β → β → β where β ∈ {int, unit}. Encod-
ing the pointers from O-moves is much harder because O-moves are controlled by the
environment rather than the term. As observational equivalence is defined by a quan-
tification over all contexts, the strategy for a term must consider all legal locations of
pointer from an O-move, rather than just a single location in the case of pointer from
a P-move. In this paper, we show that automata over data words can precisely capture
strategies over a class of non-O-strict types.

Contributions. We identify two fragments of RMLf in which we can use deterministic
weak nested data class memory automata [4] (equivalent to the locally prefix-closed
nested data automata in [5]) to represent the set of complete plays of terms in these
fragments. These automata operate over a data set which has a tree structure, and we
use this structured data to encode O-pointers in words.

Both fragments are contained with the fragment RML2`1, which consists of terms-
in-context Γ ` M where every type in Γ is order at most 2, and the type of M is
order at most 1. The first fragment, the P-Strict subfragment, consists of those terms in
RML2`1 for which in the game semantic arenas have the property that the P-pointers in
plays are uniquely determined by the underlying sequence of moves. This consists of
terms-in-context Γ ` M : θ in which θ is any first order type, and each type in Γ has
arity at most 1 and order at most 2. The second fragment, RMLres

2`1, consists of terms-
in-context Γ `M : θ in which θ, again, is any first order type, and each type θ′ ∈ Γ is
at most order 2, such that each argument for θ′ has arity at most 1. Although these two
fragments are very similar, they use different encodings of data values, and we discuss
the difficulties in extending these techniques to larger fragments of RMLf .

Finally we show that observational equivalence is undecidable at every third- or
higher-order type, every second-order type which takes at least two first-order argu-
ments, and every second-order type (of arity greater than one) that has a first-order
argument which is not the final argument. See Figure 1 for a summary.

Fragment Representative Type Sequent Recursion Ref.
Decidable

O-Strict / RMLO-Str
(EXPTIME-Complete)

((β → . . .→ β)→ β)→ . . .→ β `
(β → . . .→ β)→ β

while [8,9]

O-Strict + Recursion
(DPDA-Hard)

((β → . . .→ β)→ β)→ . . .→ β `
(β → . . .→ β)→ β

β → β [8]

RMLP-Str
2`1 (β → · · · → β)→ β ` β → · · · → β while †

RMLres
2`1

(β → β)→ · · · → (β → β)→ β `
β → · · · → β

while †

Undecidable

Third-Order
` ((β → β)→ β)→ β

(((β → β)→ β)→ β)→ β ` β ⊥ [8],†

Second-Order
` (β → β)→ β → β

((β → β)→ β → β)→ β ` β ⊥ [8],†

Recursion Any (β → β)→ β [8],†
Unknown

RML2`1
(β → · · · → β)→ · · · → (β → · · · → β)

→ β ` β → · · · → β
⊥ -

RMLX
` β → (β → β)→ β

((β → β)→ β)→ β ` β → β → β
⊥ -

FO RML + Recursion ` β → · · · → β β → β → β -

Fig. 1: Summary of RML Decidability Results. († marks new results presented here; β ∈
{int, unit}; we write ⊥ to mean an undecidability result holds (or none is known) even if no
recursion or loops are present, and the only source of non-termination is through the constant Ω)

Related Work. A related language with full ground references (i.e. with a int ref ref
type) was studied in [15], and observational equivalence was shown to be undecidable
even at types ` unit→ unit→ unit. In contrast, for RMLf terms, we show decidability
at the same type. The key technical innovation of our work is the use of automata
over infinite alphabets to encode justification pointers. Automata over infinite alphabets
have already featured in papers on game semantics [14,15] but there they were used
for a different purpose, namely, to model fresh-name generation. The nested data class
memory automata we use in this paper are an alternative presentation of locally prefix-
closed data automata [5].

2 Preliminaries

RML We assume base types unit, for commands, int for a finite set of integers, and
a integer variable type, int ref. Types are built from these in the usual way. The order
of a type θ → θ′ is given by max(order(θ) + 1, order(θ′)), where base types unit
and int have order 0, and int ref has order 1. The arity of a type θ → θ′ is arity(θ′) +
1 where unit and int have arity 0, and int ref has arity 1. A full syntax and set of
typing rules for RML is given in Figure 2. Note though we include only the arithmetic
operations succ(i) and pred(i), these are sufficient to define all the usual comparisons
and operations. We will write letx = M inN as syntactic sugar for (λx.N)M , and
M ;N for (λx.N)M where x is a fresh variable.

Γ ` () : unit

i ∈ N
Γ ` i : int

Γ `M : int

Γ ` succ(M) : int

Γ `M : int

Γ ` pred(M) : int

Γ `M : int Γ `M0 : θ Γ `M1 : θ

Γ ` ifM thenM1 elseM0 : θ

Γ `M : int ref

Γ ` !M : int

Γ `M : int ref Γ ` N : int

Γ `M :=N : unit

Γ `M : int

Γ ` refM : int ref Γ, x : θ ` x : θ

Γ `M : θ → θ′ Γ ` N : θ

Γ `MN : θ′
Γ, x : θ `M : θ′

Γ ` λxθ.M : θ → θ′

Γ `M : int Γ ` N : unit

Γ ` whileM doN : unit

Γ `M : unit→ int Γ ` N : int→ unit

Γ `mkvar(M,N) : int ref

Fig. 2: Syntax of RML

The operational semantics, defined in terms of a big-step relation, are standard [12].
For closed terms ` M we write M⇓ just if there exist s, V such that ∅,M ⇓ s, V .
Two terms Γ ` M : θ and Γ ` N : θ are observationally equivalent (or contextually
equivalent) if for all (closing) contexts C[−] such that ∅ ` C[M], C[N] : unit, C[M]⇓
if and only if C[N]⇓.

It can be shown that every RML term is effectively convertible to an equivalent term
in canonical form [8, Prop. 3.3], defined by the following grammar (β ∈ {unit, int}).

C ::= () | i |xβ | succ(xβ) |pred(xβ) | if xβ thenC elseC |xint ref := yint | !xint ref |
λxθ.C |mkvar(λxunit.C, λyint.C) | letx = ref 0 inC |whileCdoC | letxβ = C inC |
letx = zyβ inC | letx = zmkvar(λuunit.C, λvint.C) inC | letx = z(λxθ.C) inC

Game Semantics We use a presentation of call-by-value game semantics in the style
of Honda and Yoshida [7], as opposed to Abramsky and McCusker’s isomorphic model
[2], as Honda and Yoshida’s more concrete constructions lend themselves more easily
to recognition by automata. We recall the following presentation of the game semantics
for RML from [9].

An arena A is a triple (MA,`A, λA) where MA is a set of moves where IA ⊆MA

consists of initial moves, `A⊆ MA × (MA\IA) is called the justification relation,
and λA : MA → {O,P} × {Q,A} a labelling function such that for all iA ∈ IA
we have λA(iA) = (P,A) and if m `A m′ then (π1λA)(m) 6= (π1λA)(m

′) and
(π2λA)(m

′) = A⇒ (π2λA)(m) = Q.
The function λA labels moves as belonging to either Opponent or Proponent and

as being either a Question or an Answer. Note that answers are always justified by
questions, but questions can be justified by either a question or an answer. We will use
arenas to model types. However, the actual games will be played over prearenas, which
are defined in the same way except that initial moves are O-questions.

Three basic arenas are 0, the empty arena, 1, the arena containing a single initial
move •, and Z, which has the integers as its set of moves, all of which are initial P-
answers. The constructions on arenas are defined in Figure 3. Here we use IA as an

abbreviation for MA\IA, and λA for the O/P-complement of λA. Intuitively A ⊗ B
is the union of the arenas A and B, but with the initial moves combined pairwise.
A ⇒ B is slightly more complex. First we add a new initial move, •. We take the
O/P-complement of A, change the initial moves into questions, and set them to now
be justified by •. Finally, we take B and set its initial moves to be justified by A’s
initial moves. The final construction, A → B, takes two arenas A and B and produces
a prearena, as shown below. This is essentially the same as A ⇒ B without the initial
move •.

MA⇒B = {•}]MA]MB MA⊗B = IA × IB] IA] IB
IA⇒B = {•} IA⊗B = IA × IB

λA⇒B = m 7→


PA if m = •
OQ if m ∈ IA
λA(m) if m ∈ IA
λB(m) if m ∈MB

λA⊗B = m 7→


PA if m ∈ IA × IB
λA(m) if m ∈ IA
λB(m) if m ∈ IB

`A⇒B = {(•, iA)|iA ∈ IA} `A⊗B = {((iA, iB),m)|iA ∈ IA ∧ iB ∈ IB
∪{(iA, iB)|iA ∈ IA, iB ∈ IB} ∧(iA `A m ∨ iB `B m)}
∪ `A ∪ `B ∪(`A ∩(IA × IA))

∪(`B ∩(IB × IB))

MA→B = MA]MB λA→B(m) =


OQ if m ∈ IA
λA(m) if m ∈ IA
λB(m) if m ∈MB

IA→B = IA `A→B = {(iA, iB)|iA ∈ IA, iB ∈ IB}∪ `A ∪ `B

Fig. 3: Constructions on Arenas

We intend arenas to represent types, in particular JunitK = 1, JintK = Z (or a finite
subset of Z for RMLf) and Jθ1 → θ2K = Jθ1K ⇒ Jθ2K. A term x1 : θ1, . . . , xn : θn `
M : θ will be represented by a strategy for the prearena Jθ1K⊗ . . .⊗ JθnK→ JθK.

A justified sequence in a prearena A is a sequence of moves from A in which the
first move is initial and all other movesm are equipped with a pointer to an earlier move
m′, such that m′ `A m. A play s is a justified sequence which additionally satisfies the
standard conditions of Alternation, Well-Bracketing, and Visibility.

A strategy σ for prearena A is a non-empty, even-prefix-closed set of plays from
A, satisfying the determinism condition: if sm1, sm2 ∈ σ then sm1 = sm2. We
can think of a strategy as being a playbook telling P how to respond by mapping odd-
length plays to moves. A play is complete if all questions have been answered. Note
that (unlike in the call-by-name case) a complete play is not necessarily maximal. We
denote the set of complete plays in strategy σ by comp(σ).

In the game model of RML, a term-in-context x1 : θ1, . . . , xn : θn ` M : θ is
interpreted by a strategy of the prearena Jθ1K ⊗ . . . ⊗ JθnK → JθK. These strategies
are defined by recursion over the syntax of the term. Free identifiers x : θ ` x : θ are
interpreted as copy-cat strategies where P always copies O’s move into the other copy
of JθK, λx.M allows multiple copies of JMK to be run, applicationMN requires a form
of parallel composition plus hiding and the other constructions can be interpreted using
special strategies. The game semantic model is fully abstract in the following sense.

Theorem 1 (Abramsky and McCusker [1,2]). If Γ ` M : θ and Γ ` N : θ are
RML type sequents, then Γ `M ∼= N iff comp(JΓ `MK) = comp(JΓ ` NK).

Nested Data Class Memory Automata We will be using automata to recognise game
semantic strategies as languages. Equality of strategies can then be reduced to equiva-
lence of the corresponding automata. However, to represent strategies as languages we
must encode pointers in the words. To do this we use data languages, in which every
position in a word has an associated data value, which is drawn from an infinite set
(which we call the data set). Pointers between positions in a play can thus be encoded
in the word by the relevant positions having suitably related data values. Reflecting the
hierarchical structure of the game semantic prearenas, we use a data set with a tree-
structure.

Recall a tree is a simple directed graph 〈D, pred 〉 where pred : D ⇀ D is the
predecessor map defined on every node of the tree except the root, such that every node
has a unique path to the root. A node n has level l just if predl(n) is the root (thus the
root has level 0). A tree is of level l just if every node in it has level ≤ l. We define a
nested data set of level l to be a tree of level l such that each data value of level strictly
less than l has infinitely many children. We fix a nested data set of level l, D, and a
finite alphabet Σ, to give a data alphabet D = Σ ×D.

We will use a form of automaton over these data sets based on class memory au-
tomata [3]. Class memory automata operate over an unstructured data set, and on read-
ing an input letter (a, d), the transitions available depend both on the state the automaton
is currently in, and the state the automaton was in after it last read an input letter with
data value d. We will be extending a weaker variant of these automata, in which the
only acceptance condition is reaching an accepting state. The variant of class memory
automata we will be using, nested data class memory automata [4], works similarly:
on reading input (a, d) the transitions available depend on the current state of the au-
tomaton, the state the automaton was in when it last read a descendant (under the pred
function) of d, and the states the automaton was in when it last read a descendant of
each of d’s ancestors. We also add some syntactic sugar (not presented in [4]) to this
formalism, allowing each transition to determine the automaton’s memory of where it
last saw the read data value and each of its ancestors: this does not extend the power of
the automaton, but will make the constructions we make in this paper easier to define.

Formally, a Weak Nested Data Class Memory Automaton (WNDCMA) of level l is
a tuple 〈Q,Σ,∆, q0, F 〉 where Q is the set of states, q0 ∈ Q is the initial state, F ⊆ Q
is the set of accepting states, and the transition function δ =

⋃l
i=0 δi where each δi is a

function:
δi : Q×Σ × ({i} × (Q] {⊥})i+1)→ P(Q×Qi+1)

We writeQ⊥ for the setQ]{⊥}, and may refer to theQj⊥ part of a transition as its sig-
nature. The automaton is deterministic if each set in the image of δ is a singleton. A con-
figuration is a pair (q, f) where q ∈ Q, and f : D → Q⊥ is a class memory function (i.e.
f(d) = ⊥ for all but finitely many d ∈ D). The initial configuration is (q0, f0) where
f0 is the class memory function mapping every data value to ⊥. The automaton can
transition from configuration (q, f) to configuration (q′, f ′) on reading input (a, d) just
if d is of level-i, (q′, (t0, t1, . . . , ti)) ∈ δ(q, a, (i, f(predi(d), . . . , f(pred(d)), f(d))),

and f ′ = f [d 7→ ti, pred(d) 7→ ti−1, . . . , pred
i−1(d) 7→ t1, pred

i(d) 7→ t0]. A run is
defined in the usual way, and is accepting if the last configuration (qn, fn) in the run is
such that qn ∈ F . We say w ∈ L(A) if there is an accepting run of A on w.

Weak nested data class memory automata have a decidable emptiness problem, re-
ducible to coverability in a well-structured transition system [4,5], and are closed under
union and intersection by the standard automata product constructions. Further, Deter-
ministic WNDCMA are closed under complementation again by the standard method
of complementing the final states. Hence they have a decidable equivalence problem.

3 P-Strict RML2`1

In [9], the authors identify a fragment of RML, the O-strict fragment, for which the
plays in the game-semantic strategies representing terms have the property that the jus-
tification pointers of O-moves are uniquely reconstructible from the underlying moves.
Analogously, we define the P-strict fragment of RML to consist of typed terms in
which the pointers for P -moves are uniquely determined by the underlying sequence of
moves. Then our encoding of strategies for this fragment will only need to encode the
O-pointers: for which we will use data values.

3.1 Characterising P-Strict RML

In working out which type sequents for RML lead to prearenas which are P-strict, it is
natural to ask for a general characterisation of such prearenas. The following lemma,
which provides exactly that, is straightforward to prove:

Lemma 1. A prearena is P-strict iff there is no enabling sequence q ` · · · ` q′ in which
both q and q′ are P-questions.

Which type sequents lead to a P-question hereditarily justifying another P-question?
It is clear, from the construction of the prearena from the type sequent, that if a free
variable in the sequent has arity > 1 or order > 2, the resulting prearena will have
a such an enabling sequence, so not be P-strict. Conversely, if a free variable is of a
type of order at most 2 and arity at most 1, it will not break P-strictness. On the RHS
of the type sequent, things are a little more complex: there will be a “first” P-question
whenever the type has an argument of order≥ 1. To prevent this P-question hereditarily
justifying another P-question, the argument must be of arity 1 and order≤ 2. Hence the
P-strict fragment consists of type sequents of the following form:

(β → · · · → β)→ β ` ((β → · · · → β)→ β)→ · · · → ((β → · · · → β)→ β)→ β

(where β ∈ {unit, int}.)
From results shown here and in [8], we know that observational equivalence of all

type sequents with an order 3 type or order 2 type with order 1 non-final argument
on the RHS are undecidable. Hence the only P-strict types for which observational
equivalence may be decidable are of the form: (β → · · · → β)→ β ` β → · · · → β or
(β → · · · → β)→ β ` β → · · · → β → (β → β)→ β. In this section we show that
the first of these, which is the intersection of the P-strict fragment and RML2`1, does
lead to decidability.

Definition 1. The P-Strict fragment of RML2`1, which we denote RMLP-Str
2`1 , consists of

typed terms of the form x1 : Θ̂1, . . . , xn : Θ̂1 ` M : Θ1 where the type classes Θi are
as described below:

Θ0 ::= unit | int Θ1 ::= Θ0 |Θ0 → Θ1 | int ref Θ̂1 ::= Θ0 |Θ1 → Θ0 | int ref

This means we allow types of the form (β → · · · → β)→ β ` β → · · · → β where
β ∈ {unit, int}.

3.2 Deciding Observational Equivalence of RMLP-Str
2`1

Our aim is to decide observational equivalence by constructing, from a term M , an
automaton that recognises a language representing JMK. As JMK is a set of plays, the
language representing JMK must encode both the moves and the pointers in the play.
Since answer moves’ pointers are always determined by well-bracketing, we only rep-
resent the pointers of question moves, and we do this with the nested data values. The
idea is simple: if a play s is in JMK the language L(JMK) will contain a word, w, such
that the string projection of w is the underlying sequence of moves of s, and such that:

– The initial move takes the (unique) level-0 data value; and
– Answer moves take the same data value as that of the question they are answering;

and
– Other question moves take a fresh data value whose predecessor is the data value

taken by the justifying move.

Of course, the languages recognised by nested data automata are closed under automor-
phisms of the data set, so in fact each play s will be represented by an infinite set of
data words, all equivalent to one another by automorphism of the data set.

Theorem 2. For every typed term Γ ` M : θ in RMLP-Str
2`1 that is in canonical form

we can effectively construct a deterministic weak nested data class memory automata,
AM , recognising the complete plays of L(JΓ `MK).

Proof. We prove this by induction over the canonical forms. We note that for each
canonical form construction, if the construction is in RMLP-Str

2`1 then each constituent
canonical form must also be. For convenience of the inductive constructions, we in fact
construct automata AMγ recognising JΓ `MK restricted to the initial move γ. Here we
sketch two illustrative cases.
λxβ.M : β → θ. The prearenas for JMK and Jλxβ .MK are shown in Figure 4.

Note that in this case we must have that Γ, x : β ` M : θ, and so the initial moves in
JMK contain an x-component. We therefore write these initial moves as (γ, ix) where
γ is the Γ -component and ix is the x-component.

P’s strategy Jλxβ .MK is as follows: after an initial move γ, P plays the unique a0-
move •, and waits for a q1-move. Once O plays a q1-move ix, P plays as in JΓ, x `MK
when given an initial move (γ, ix). However, as the q1-moves are not initial, it is pos-
sible that O will play another q1-move, i′x. Each time O does this it opens a new thread
which P plays as per JΓ, x `MK when given initial move (γ, i′x). Only O may switch

q1

a1

...

qn

an

JΓ K

(a) JΓ, β ` θK

q0

a0

q1

a1

...

qn

an

JΓ K

(b) JΓ ` β → θK

Fig. 4: Prearenas for JΓ, x : β `M : θK and JΓ ` λxβ .M : β → θK

between threads, and this can only happen immediately after P plays an aj-move (for
any j).

By our inductive hypothesis, for each initial move (γ, ix) of JΓ, x : β ` θK we have
an automaton AMγ,ix recognising the complete plays of JΓ, x : β `M : θK starting with
the initial move (γ, ix). We construct the automaton Aλx.Mγ by taking a copy of each
AMγ,ix , and quotient together the initial states of these automata to one state, p, (which
by conditions on the constituent automata we can assume has no incoming transitions).
This state p will hold the unique level-0 data value for the run, and states and transitions
are added to have initial transitions labelled with q0 and a0, ending in state p. The final
states will be the new initial state, the quotient state p, and the states which are final in
the constituent automata. The transitions inside the constituent automata fall into two
categories: those labelled with moves corresponding to the RHS of the term in context
Γ ` M , and those labelled with moves corresponding to the LHS. Those transitions
corresponding to moves on the RHS are altered to have their level increased by 1, with
their signature correspondingly altered by requiring a level-0 data value in state p. Those
transitions corresponding to moves on the LHS retain the same level, but have the top
value of their data value signature replaced with the state p. Finally, transitions are
added between the constituent automata to allow switching between threads: whenever
there is a transition out of a final state in one of the automata, copies of the transition are
added from every final state (though keeping the data-value signature the same). Note
that the final states correspond to precisely the points in the run where the environment
is able to switch threads.

letxβ = M inN . Here we assume we have automata recognising JMK and JNK.
The strategy Jletxβ =M inNK essentially consists of a concatenation of JMK and
JNK, with the result of playing JMK determining the value of x to use in JNK. Hence
the automata construction is very similar to the standard finite automata construction
for concatenation of languages, though branching on the different results for JMK to
different automata for JNK.

Corollary 1. Observational equivalence of terms in RMLP-Str
2`1 is decidable

4 A Restricted Fragment of RML2`1

It is important, for the reduction to nested data automata for RMLP-Str
2`1 , that variables

cannot be partially evaluated: in prearenas where variables have only one argument,
once a variable is evaluated those moves cannot be used to justify any future moves.
If we could later return to them we would need ensure that they were accessed only
in ways which did not break visibility. We now show that this can be done, using a
slightly different encoding of pointers, for a fragment in which variables have unlimited
arity, but each argument for the variable must be evaluated all at once. This means that
the variables have their O-moves uniquely determined by the underlying sequence of
moves.

4.1 Fragment definition

Definition 2. The fragment we consider in this section, which we denote RMLres
2`1, con-

sists of typed terms of the form x1 : Θ1
2, . . . , xn : Θ1

2 ` M : Θ1 where the type classes
Θi are as described below:

Θ0 ::= unit | int Θ1
1 ::= Θ0 |Θ0 → Θ0 | int ref

Θ1 ::= Θ0 |Θ0 → Θ1 | int ref Θ1
2 ::= Θ1 |Θ1

1 → Θ1
2

q0

...
. . . a0

q1

a1

...

qn

an

q(1)

q
(1)
0

a
(1)
0

a(1)

q(2)

q
(2)
0

a
(2)
0

a(2)

...

q(k)

q
(k)
0

a
(k)
0

a(k)

AB

C

Fig. 5: Shape of arenas in RMLres
2`1

This allows types of the form
(β → β)→ · · · → (β → β)→ β `
β → · · · → β where β ∈ {unit, int}.
The shape of the prearenas for this
fragment is shown in Figure 5. Note
that moves in sectionA of the prearena
(marked in Figure 5) relate to the type
Θ1 on the RHS of the typing judge-
ment, and that we need only repre-
sent O-pointers for this section, since
the P-moves are all answers so have
their pointers uniquely determined by
well-bracketing. Moves in sections B
and C of the prearena correspond to
the types on the LHS of the typ-
ing judgement. Moves in section B
need only have their P-pointers rep-
resented, since the O-moves are all
answer moves. Moves in section C
have both their O- and P-pointers rep-
resented by the underlying sequence
of moves: the P-pointers because all
P-moves in this section are answer
moves, the O-pointers by the visibility
condition.

4.2 Deciding Observation Equivalence

Similarly to the P-Strict case, we provide a reduction to weak nested data class memory
automata that uses data values to encode O-pointers. However, this time we do not
need to represent any O-pointers on the LHS of the typing judgement, so use data
values only to represent pointers of the questions on the RHS. We do, though, need to
represent P-pointers of moves on the LHS. This we do using the same technique used
for representing P-pointers in [9]: in each word in the language we represent only one

pointer by using a “tagging” of moves: the string s
◦
m s′

•
m′ is used to represent the

pointer s m s′ m′ . Because P’s strategy is deterministic, representing one pointer in
each word is enough to uniquely reconstruct all P-pointers in the plays from the entire
language. Due to space constraints we do not provide a full explanation of this technique
in this paper: for a detailed discussion see [8,9]. Hence for a term JΓ `M : θK the
data language we seek to recognise, L(JΓ `MK) represents pointers in the following
manner:

– The initial move takes the (unique) level-0 data value;
– Moves in JΓ K (i.e. in section B or C of the prearena) take the data value of the

previous move;
– Answer moves in JθK (i.e. in section A of the prearena) take the data value of the

question they are answering; and
– Non-initial question moves in JθK (i.e. in section A of the prearena) take a fresh

data value nested under the data value of the justifying answer move.

Theorem 3. For every typed term Γ ` M : θ in RMLres
2`1 that is in canonical form

we can effectively construct a deterministic weak nested data class memory automaton,
AM , recognising the complete plays of L(JΓ `MK).

Proof. This proof takes a similar form to that of Theorem 2: by induction over canonical
forms. We here sketch the λ-abstraction case.
λxβ.M : β → θ. This construction is almost identical to that in the proof of

Theorem 2: again the strategy for P is interleavings of P’s strategy for M : θ. The only
difference in the construction is that where in the encoding for Theorem 2 the moves
in each AMγ,ix corresponding to the LHS and RHS of the prearena needed to be treated
separately, in this case they can be treated identically: all being nested under the new
level-0 data value. We demonstrate this construction in Example 1

Example 1. Figure 6 shows two weak nested data class memory automata. We draw a

transition p, a, (j,
(s0
...
sj

)
) → p′,

(s′0
...
s′j

)
∈ δ as an arrow from state p to p′ labelled with

“a,
(s0
...
sj

)
→
(s′0
...
s′j

)
”. We omit the “→

(s′0
...
s′j

)
” part of the label if s′j = p′ and si = s′i for

all i ∈ {0, 1, . . . , j − 1}.
The automaton obtained by the constructions in Theorem 3 for the term-in-context

J ` let c = ref 0 inλyunit.if !c = 0 then c := 1 elseΩK is shown in Figure 6a (to aid

3 4 5, 0 6 7 5, 1
q1, (⊥) a1, (4)

q2,
(
5,0
⊥

)

a2,
(
5,0
(6)

)
→
(
5,1
(7)

)
q2,
(
5,0
⊥

)

(a) Automaton for J ` let c = ref 0 inλyunit.if !c = 0 then c := 1 elseΩK

1

2 3 4 5, 0

5, 1

6 7

q0, (⊥)

a0, (2)
q1,
(
(2)
⊥

)
a1,
(
(2)
(4)

)
q2,
(
(2)
5,0
⊥

)

a2,
((2)
5,0
(6)

)
→
((2)
5,1
(7)

)
q2,
(
(2)
5,0
⊥

)

q1,
(
(2)
⊥

)

q1,
(
(2)
⊥

)

(b) Automaton for J ` λxunit.let c = ref 0 inλyunit.if !c = 0 then c := 1 elseΩK

Fig. 6: Automata recognising strategies

readability, we have removed most of the dead and unreachable states and transitions).
Note that we have the states (5, 0) and (5, 1) - here the second part of the state label
is the value of the variable c: the top-level data value will remain in one of these two
states, and by doing so store the value of c at that point in the run. The move q2 in this
example corresponds to the environment providing an argument y: note that in a run of
the automaton the first time a y argument is passed, the automaton proceeds to reach
an accepting state, but in doing so sets the top level data value to the state (5, 1). This
means the outgoing transition shown from state 7 cannot fire.

The automaton for J ` λxunit.let c = ref 0 inλyunit.if !c = 0 then c := 1 elseΩK
is shown in Figure 6b (again, cleaned of dead/unreachable transitions for clarity). Note
that this contains the first automaton as a sub-automaton, though with a new top-level
data value added to the transitions. The q1 move now corresponds to providing a new
argument for x, thus starting a thread. Transitions have been added from the accepting
states (5) and (7), allowing a new x-thread to be started from either of these locations.
Note that the transition from (7) to (6), which could not fire before, now can fire because
several data values (corresponding to different x-threads) can be generated and left in
the state (5, 0).

5 Undecidable Fragments

In this section we consider which type sequents and forms of recursion are expressive
enough to prove undecidability. The proofs of the results this section proceed by identi-
fying terms such that the induced complete plays correspond to runs of Turing-complete
machine models.

On the Right of the Turnstile. In [11] it is shown that observational equivalence is un-
decidable for 5th-order terms. The proof takes the strategy that was used to show unde-
cidability for 4th-order IA and finds an equivalent call-by-value strategy. It is relatively
straightforward to adapt the proof to show that observational equivalence is undecidable
at 3rd-order types, e.g. ((unit→ unit)→ unit)→ unit. A further result in [12] showed
that the problem is undecidable at the type (unit → unit) → (unit → unit) → unit.
Both results easily generalise to show that the problem is undecidable at every 3rd-order
type and every 2nd-order type which takes at least two 1st-order arguments. We modify
the second of these proofs to show undecidability at (unit → unit) → unit → unit.
Our proof of this easily adapts to a proof of the following.

Theorem 4. Observational equivalence is undecidable at every 2nd-order type (of ar-
ity at least two) which contains a 1st-order argument that is not the final argument.

On the Left of the Turnstile. Note that ` M ∼= N : θ if, and only if, f : θ → unit `
fM ∼= fN : unit. Thus, for any sequent ` θ at which observational equivalence is
undecidable, the sequent θ → unit ` unit is also undecidable. So the problem is unde-
cidable if, on the left of the turnstile, we have a fourth-order type or a (third-order) type
which has a second-order argument whose first-order argument is not the last.

Recursion. In IA, observational equivalence becomes undecidable if we add recursive
first-order functions [16]. The analogous results for RML with recursion also hold:

Theorem 5. Observational equivalence is undecidable in RMLO-Str equipped with re-
cursive functions (unit→ unit)→ unit

6 Conclusion

We have used two related encodings of pointers to data values to decide two related
fragments of RML2`1: RMLP-Str

2`1 , in which the free variables were limited to arity 1,
and RMLres

2`1, in which the free variables were unlimited in arity but each argument of
the free variable was limited to arity 1. It is natural to ask whether we can extend or
combine these approaches to decide the whole of RML2`1. Here we discuss why this
seems likely to be impossible with the current machinery used.

In deciding RMLP-Str
2`1 we used the nested data value tree-structure to mirror the shape

of the prearenas. These data values can be seen as names for different threads, with the
sub-thread relation captured by the nested structure. What happens if we attempt to
use this approach to recognise strategies on types where the free variables have arity
greater than 1? With free variables having arity 1, whenever they are interrogated by P,
they are entirely evaluated immediately: they cannot be partially evaluated. With arity
greater than 1, this partial evaluation can happen: P may provide the first argument at
some stage, and then at later points evaluate the variable possibly several times with
different second arguments. P will only do this subject to visibility conditions though:
if P partially evaluates a variable x while in a thread T , it can only continue that partial
evaluation of x in T or a sub-thread of T . This leads to problems when our automata
recognise interleavings of similar threads using the same part of the automaton. If P’s

strategy for the thread T is the strategy JMK for a term M , and recognised by an au-
tomatonAM , then Jλy.MK will consist of interleavings of JMK. The automatonAλy.M
will use a copy ofAM to simulate an unbounded number ofM -threads. If T is one such
thread, which performs a partial evaluation of x, this partial evaluation will be repre-
sented by input letters with data values unrelated to the data value of T . If a sibling of
T , T ′, does the same, the internal state of the automaton will have no way of telling
which of these partial evaluations was performed by T and which by T ′. Hence it may
recognise data words which represent plays that break the visibility condition.

Therefore, to recognise strategies for terms with free variables of arity greater than
1, the natural approach to take is to have the data value of free-variable moves be related
to the thread we are in. This is the approach we took in deciding RMLres

2`1: the free
variable moves precisely took the data value of the part of the thread they were in.
Then information about the partial evaluation was stored by the thread’s data value.
This worked when the arguments to the free variables had arity at most 1: however if
we allow the arity of this to increase we need to start representing O-pointers in the
evaluation of these arguments. For this to be done in a way that makes an inductive
construction work for letx = (λy.M) inN , we must use some kind of nesting of data
values for the different M -threads. The naı̈ve approach to take is to allow the M -thread
data values to be nested under the data value of whatever part of the N -thread they are
in. However, the M -thread may be started and partially evaluated in one part of the
N -thread, and then picked up and continued in a descendant part of that N -thread. The
data values used in continuing theM -thread must therefore be related to the data values
used to represent the partial evaluation of the M -thread, but also to the part of the N -
thread the play is currently in. This would break the tree-structure of the data values,
and so seem to require a richer structure on the data values.

Further Work. A natural direction for further work, therefore, is to investigate richer
data structures and automata models over them that may provide a way to decide
RML2`1.

The automata we used have a non-primitive recursive emptiness problem, and hence
the resulting algorithms both have non-primitive recursive complexity also. Although
work in [8] shows that this is not the best possible result in the simplest cases, the exact
complexities of the observational equivalence problems are still unknown.

To complete the classification of RMLf also requires deciding (or showing undecid-
able) the fragment containing order 2 types (on the RHS) with one order 1 argument,
which is the last argument. A first step to deciding this would be the fragment labelled
RMLX in figure 1. Deciding this fragment via automata reductions similar to those in
this paper would seem to require both data values to represent O-pointers, and some
kind of visible stack to nest copies of the body of the function, as used in [9]. In partic-
ular, recognising strategies of second-order terms such as λf.f() requires the ability to
recognise data languages (roughly) of the form {d1d2...dndn...d2d1 |n ∈ N, each di is
distinct}. A simple pumping argument shows such languages cannot be recognised by
nested data class memory automata, and so some kind of additional stack would seem
to be required.

References

1. Samson Abramsky and Guy McCusker. Linearity, sharing and state: a fully abstract game
semantics for idealized algol with active expressions. Electr. Notes Theor. Comput. Sci.,
3:2–14, 1996.

2. Samson Abramsky and Guy McCusker. Call-by-value games. In Mogens Nielsen and Wolf-
gang Thomas, editors, CSL 1997, volume 1414 of Lecture Notes in Computer Science, pages
1–17. Springer, 1997.

3. Henrik Björklund and Thomas Schwentick. On notions of regularity for data languages.
Theor. Comput. Sci., 411(4-5):702–715, 2010.

4. Conrad Cotton-Barratt, Andrzej S. Murawski, and C.-H. Luke Ong. Weak and nested class
memory automata. Proceedings of LATA 2015, to appear, 2015.

5. Normann Decker, Peter Habermehl, Martin Leucker, and Daniel Thoma. Ordered navigation
on multi-attributed data words. In Paolo Baldan and Daniele Gorla, editors, CONCUR 2014,
volume 8704 of Lecture Notes in Computer Science, pages 497–511. Springer, 2014.

6. Dan R. Ghica and Guy McCusker. The regular-language semantics of second-order idealized
algol. Theor. Comput. Sci., 309(1-3):469–502, 2003.

7. Kohei Honda and Nobuko Yoshida. Game-theoretic analysis of call-by-value computation.
Theor. Comput. Sci., 221(1-2):393–456, 1999.

8. David Hopkins. Game Semantics Based Equivalence Checking of Higher-Order Programs.
PhD thesis, Department of Computer Science, University of Oxford, 2012.

9. David Hopkins, Andrzej S. Murawski, and C.-H. Luke Ong. A fragment of ML decidable
by visibly pushdown automata. In Luca Aceto, Monika Henzinger, and Jiri Sgall, editors,
ICALP 2011, volume 6756 of Lecture Notes in Computer Science, pages 149–161. Springer,
2011.

10. J. M. E. Hyland and C.-H. Luke Ong. On full abstraction for PCF: i, ii, and III. Inf. Comput.,
163(2):285–408, 2000.

11. Andrzej S. Murawski. On program equivalence in languages with ground-type references.
In 18th IEEE Symposium on Logic in Computer Science (LICS 2003), page 108. IEEE Com-
puter Society, 2003.

12. Andrzej S. Murawski. Functions with local state: Regularity and undecidability. Theor.
Comput. Sci., 338(1-3):315–349, 2005.

13. Andrzej S. Murawski, C.-H. Luke Ong, and Igor Walukiewicz. Idealized algol with ground
recursion, and DPDA equivalence. In Luı́s Caires, Giuseppe F. Italiano, Luı́s Monteiro,
Catuscia Palamidessi, and Moti Yung, editors, ICALP 2005, volume 3580 of Lecture Notes
in Computer Science, pages 917–929. Springer, 2005.

14. Andrzej S. Murawski and Nikos Tzevelekos. Algorithmic nominal game semantics. In Gilles
Barthe, editor, 20th European Symposium on Programming, ESOP 2011, volume 6602 of
Lecture Notes in Computer Science, pages 419–438. Springer, 2011.

15. Andrzej S. Murawski and Nikos Tzevelekos. Algorithmic games for full ground references.
In Artur Czumaj, Kurt Mehlhorn, Andrew M. Pitts, and Roger Wattenhofer, editors, ICALP
2012, volume 7392 of Lecture Notes in Computer Science, pages 312–324. Springer, 2012.

16. C.-H. Luke Ong. An approach to deciding the observational equivalence of algol-like lan-
guages. Ann. Pure Appl. Logic, 130(1-3):125–171, 2004.

17. Andrew M. Pitts and Ian D. B. Stark. Operational reasoning for functions with local state.
Higher order operational techniques in semantics, pages 227–273, 1998.

	Fragments of ML Decidable by Nested Data Class Memory Automata

