
HECTOR: An Equivalence Checker for a
Higher-Order Fragment of ML

David Hopkins1 Andrzej S. Murawski2 C.-H. Luke Ong1

1 Department of Computer Science, University of Oxford, UK
2 Department of Computer Science, University of Leicester, UK

Abstract. We present HECTOR, an observational equivalence checker for a higher-
order fragment of ML. The input language is RML, the canonical restriction of
standard ML to ground-type references. HECTOR accepts programs from a de-
cidable fragment of RML identified by us at ICALP’11, which comprises pro-
grams of short-type (order at most 2 and arity at most 1) that may contain free
variables whose arguments are also of short-type. This is an expressive fragment
that contains complex higher-order types, and includes many examples from the
literature which have proven challenging to verify using other methods. To our
knowledge, HECTOR is the first fully-automated equivalence checker for higher-
order, call-by-value programs. Both sound and complete, the tool relies on the
fully abstract game semantics of RML to construct, on-the-fly, visibly pushdown
automata which precisely capture program behaviour. These automata are then
checked for language equivalence, and if they are inequivalent a counterexample
(in the form of a separating context) is constructed.

1 Introduction

ML-like languages combine the power of higher-order functions with imperative con-
structs and mutable state. We consider the call-by-value language RML, which is es-
sentially the canonical restriction of Standard ML to ground-type references. We are
interested in a notion of program equivalence called observational equivalence. Two
terms Γ � M1,M2 are observationally equivalent just if for every program context
C[−] such that Γ � C[Mi] : unit, we have that C[M1] converges if and only if C[M2]
converges. This definition says that two programs are equivalent if one can replace one
by the other in any context without affecting the outcome of the computation. Observa-
tional equivalence is extremely useful when refactoring or updating code; if the updated
version of a function is observationally equivalent to the older version then the changes
cannot break any existing code which calls it. This makes observational equivalence
an intuitively natural and practically relevant notion of equivalence. Unfortunately, it is
notoriously difficult to reason about. Take the programs below.

F1 ≡ let a = ref 0 in let r = ref 0 inλf.(r := !r + 1; a := f(!r); r := !r − 1; !a)

F2 ≡ λf.f(1)

It may appear that these two terms should be equivalent, as F1 uses local variables
to return f(1). However, they are separated by the term G ≡ λF.F (λx.F (λy.y)).
This forces a nested call of Fi. In GF1 this call will be performed before r has been



decremented. Hence, GF1 evaluates to 2 whereas GF2 returns 1. However, the terms
let c = ref 0 inλfunit→unit.(c :=0; f(); c :=1; f(); !c) and λfunit→unit.(f(); f(); 1)
are equivalent. While the context can use nested calls in the same manner to reset the
value of c to 0, any such state changes must be made in a well-bracketed manner and so
the terms cannot be separated.

2 Theory and Implementation

We will make use of the fully abstract game semantics of RML [7]. This model views
program execution as the playing of a game between the program and its environment.
The type sequent Γ � θ determines the rules of a two player game �Γ � θ� to be played
between P (the program) and O (the environment). Play proceeds by the players taking
it in turn to play a move (which can be either a question or an answer), equipped with
a justification pointer to an earlier move. These pointers model the variable-to-binder
and call-to-return relation within the play. We say a play is complete if every question
has been answered. The denotation of a program Γ � M : θ is a strategy �Γ � M� for
playing the game �Γ � θ�. Strategies are described using a set of plays which form a
playbook telling P how to play. The game model is fully abstract in the sense that two
programs are observationally equivalent if and only if the sets of complete plays of their
denotations are equal [1].

In [7] we identified the O-strict fragment of RML. This is the fragment for which
the justification pointers from O-moves are always uniquely reconstructible from the
underlying move sequence (although those from P-moves can still be ambiguous). This
consists of terms-in-context of the shape x1 : Θ3, · · · , xn : Θ3 � M : Θ2 where Θ2,
Θ3 are defined as follows.

Θ0 ::= unit | int Θ2 ::= Θ0 | Θ1 → Θ0 | int ref
Θ1 ::= Θ0 | Θ0 → Θ1 | int ref Θ3 ::= Θ0 | Θ2 → Θ3 | int ref

If we let a short type be a type of order at most two and arity at most one, then the
O-strict fragment consists of programs of short types which may contain free identifiers
all of whose argument types are short.

We went on to show that the strategies corresponding to terms of the O-strict frag-
ment of RML (with finite data types) can be precisely captured using visibly pushdown
automata (VPA). VPA are a subclass of pushdown automata in which the stack action
(push, pop, or neither) is determined by the input letter [3]. This gives them highly
desirable closure properties; in particular, language equivalence is decidable in polyno-
mial time. Our translation from strategies to VPA allowed us to show that observational
equivalence for O-strict terms is EXPTIME-complete [7].

We have now implemented our algorithm into a tool called HECTOR (Higher-order
Equivalence Checker for Terms of O-strict RML). Our VPA are constructed inductively
over the normal forms of the language, following [7]. Given two such VPA, using a
product construction [3], it is easy to construct another to accept their symmetric dif-
ference. Then our two programs are equivalent if, and only if, the language accepted by
the resulting automaton is empty. We choose to follow an on-the-fly model checking
approach as this has proved successful for the game semantics based model checker



MAGE [4]. That is, when constructing our automata, we just return a function from
states to the list of transitions out of that state. This function will build up the transition
relation only as it is called during our exploration of the automaton. This can allow us to
avoid constructing the entire automaton as we can halt the search as soon as a counter-
example is found. On-the-fly reachability for pushdown systems using summary edges
was described by Alur et al. [2] and we follow their approach. This essentially proceeds
as a depth-first search, recording push- and pop-sites so that additional summary edges
can be added when two matching transitions are found.

A web interface for HECTOR can be found at http://mjolnir.cs.ox.ac.
uk/˜davh/cgi-bin/rml/input/. Our tool allows programs to be compared,
can generate separating contexts where appropriate, and can display the VPA trans-
lation of a given term, which represents its game semantics.

3 Examples and Experiments

In this section we consider a number of examples that HECTOR can handle. Where
applicable we also compare its performance against HOMER, a game semantics based
equivalence checker [8] for the 3rd-order fragment of Idealized Algol (IA). The main
difference between RML and IA is that IA uses call-by-name evaluation (and block-
allocated variables), which lead to game models that differ significantly [1]. A direct
comparison between the two tools is therefore tricky, but we can attempt to use exam-
ples which have similar behaviour under both call-by-name and call-by-value evalua-
tion. A further difference is that HOMER does not take advantage of on-the-fly construc-
tion but always builds up the entire model.

“Tricky” Examples Several examples in the literature are known to be challenging to
verify. In addition to the first inequivalence in Section 1 due to Stark [12], the following
have been analysed respectively by Pitts and Stark [11], and by Dreyer et al. [6].

(i) let c = ref 0 inλf unit→unit.(c :=1; f(); !c) ∼= λf unit→unit.(f(); 1)
(ii) let c = ref 0 inλf unit→unit.(c :=0; f(); c :=1; f(); !c) ∼= λf unit→unit.(f(); f(); 1)

They are known to be extremely tricky to prove using methods based on logical rela-
tions. All three of these examples are in the O-strict fragment and HECTOR can easily
handle them as seen in the table below.

Example Time to Compare Time to Generate Counter-Example State Space
(i) [11] 180ms N.A. 67
(ii) [6] 130ms N.A. 231

Sec. 1 [12] 150ms 50ms 57

No-Snapback Another non-obvious example is below.

p : (unit → unit) → unit �
letx = ref 0 in p(λy.x := 1); if !x = 1 thenΩ else () ∼= p(λy.Ω)

Here Ω is the term which immediately diverges. In the first term, if p ever applies
its functional argument to anything then x will be assigned the value 1. This ensures

http://mjolnir.cs.ox.ac.uk/~davh/cgi-bin/rml/input/
http://mjolnir.cs.ox.ac.uk/~davh/cgi-bin/rml/input/


that when p terminates, the computation will diverge. Conversely, if p does not use its
argument then x will have the value 0 so when p finishes the computation terminates.
The effect is the same as passing p an argument which will diverge if used. The fact
that they are equivalent shows that there is no term which can undo the side-effects
caused by running its argument. The VPA translations of these programs as produced
by HECTOR are shown below. The reachable states are somewhat different in each case
as the divergence occurs at different points. However, in both cases a final state can only
be reached if p’s argument is never called.

Scope Extrusion Consider the following terms.

M1 ≡ F : (int → int) → int �
letx = ref 0 inF (λy.if !x = 0 thenx := y elsex := y − 1; !x)

M2 ≡ F : (int → int) → int �
F (λy.letx = ref 0 in if !x = 0 thenx := y elsex := y − 1; !x)

M3 ≡ F : (int → int) → int � F (λy.y)

The only difference between the first two terms is the location of the letx = ref 0 in -
binding. However, this makes a big difference to their behaviour. In the first term, the
value of x persists between calls so when F calls its argument a second time the value
in x will be the value of y from the first call. On the other hand, in M2 a new reference
of value 0 is allocated each time the argument is called. Hence, the guard will always
be true and so we have M1 �∼= M2

∼= M3. For the inequivalence, HECTOR generates

( fun f .
l e t = f ( fun g .

l e t = ( g 1)
in l e t z = ( g 0 )
in a s s e r t ( ( z = 0 ) ) ;
3 )

in ( ) )
( fun F . [ ] )

a separating context as a counter-example. A readable
version of the context produced is shown on the right.
It can be seen that this binds F to a function which ap-
plies its argument twice, the first time passing it 1 and
the second time 0. It then checks whether the return
value from the second call is 0. When M2 is placed
in the context the check will pass as F ’s argument is



the identity function. However, when M1 is used the check fails and so the terms are
separated.

All the examples in this section can be checked by HECTOR in less than a second.

Sorting Sorting algorithms are a challenging example for any model checker due to
the complex interplay between control-flow and state. We can use HECTOR to compare
different sorting algorithms for equivalence. The table below compares the length of
time required to check the equivalence of bubble sort and insert sort on lists of length
n containing 3-valued elements. For comparison we include the time taken by HOMER,
as well as the state space of the final automaton and the biggest intermediate automaton
HOMER produces. As can be seen, HECTOR is outperformed by HOMER. We suspect
that this is due to the added complexities of the call-by-value semantics over the call-by-
name. However, we can also check the sorting algorithms when they are parameterised
by a comparison function compare : int → int → int. In this case a malicious context
could pass in a comparison function which does not act as a total order and can use
this function to gain more information about the internals of the algorithm. Hence,
the two programs are no longer equivalent. Due to the added size of the model when
parameterised in this manner, HOMER runs out of memory for lists of length 10. On the
other hand, due to the on-the-fly approach HECTOR finds the counter-example almost
immediately and so does not have to construct the entire model.

n HECTOR to Compare Counter-example States HOMER Final States Max States
5 3s N/A 716 1.5s 496 496
7 1min N/A 5,000 10s 2,800 33,000

10 95min N/A 120,000 7.5min 60,000 900,000
With A Comparison Function

5 220ms 120ms 96 2.25min 75,000 75,000
7 225ms 225ms 132 Time Out Time Out Time Out

10 300ms 500ms 186 Time Out Time Out Time Out
15 400ms 2s 276 Time Out Time Out Time Out

Kierstead Terms An interesting family of higher-order terms are the Kierstead terms.

Kn,i ≡ f : ((unit → unit) → unit) → unit � f(λx1.f(λx2. . . . f(λxn.xi()) . . .))

For i �= j, Kn,i �∼= Kn,j . In differentiating these terms the location of justification
pointers from P-moves is critical (HECTOR uses tags on the moves to encode the lo-
cation of these pointers.) We can compare the performance of HECTOR against that
of HOMER on the equivalent call-by-name family of Kierstead terms. Again since this
is an inequivalence, HECTOR outperforms HOMER as we do not have to construct the
entire model. The timing data is shown in the table below.

n HECTOR to Compare Counter-example States HOMER Final States Max States
10 120ms 80ms 150 1s 74 1,400
25 140ms 200ms 366 6s 194 4,000
50 180ms 800ms 576 22s 356 7,000

100 530ms 4.5s 1,600 2min 800 18,000
200 2min 9s 37,000 7min 1,300 42,000



4 Related Work, Conclusions and Further Directions

We have presented HECTOR, an equivalence checker for a higher-order fragment of
ML. Our algorithm utilises the fully abstract game semantics of RML. We believe this
is the only known procedure for deciding observational equivalence of higher-order ML
programs. As HECTOR is the first implementation of this algorithm, a fair comparison
with existing tools is difficult. Compared with the call-by-name equivalence checker
HOMER, our tool performs much better on inequivalences, thanks to the on-the-fly ap-
proach, but not as well on equivalences (which is not surprising as call-by-value game
models are more complex constructions [7]). The only other game semantics based ver-
ification tool that uses on-the-fly model generation is MAGE [4], which is restricted to
2nd-order, (call-by-name) Idealized Algol programs. MAGE can only check reachabil-
ity. Other tools, notably TRECS [10] and HMC [9], can verify safety properties of ML
programs, but not equivalence.

In future work we hope to expand the language accepted by HECTOR. We know
that observational equivalence is undecidable for most types outside the O-strict frag-
ment but there are still a few remaining types whose decidability is unknown. It is also
possible to introduce a limited form of recursion into the language, although VPA are
no longer sufficiently expressive and we would require the power of DPDA. Addition-
ally, we would like to improve the performance of HECTOR, possibly using predicate
abstraction in the style of [5].

References

1. S. Abramsky and G. McCusker. Call-by-value games. In CSL, 1997.
2. R. Alur, S. Chaudhuri, K. Etessami, and P. Madhusudan. On-the-fly reachability and cycle

detection for recursive state machines. In TACAS, 2005.
3. R. Alur and P. Madhusudan. Visibly pushdown languages. In STOC, 2004.
4. A. Bakewell and D. R. Ghica. On-the-fly techniques for game-based software model check-

ing. In TACAS, 2008.
5. A. Bakewell and D. R. Ghica. Compositional predicate abstraction from game semantics. In

TACAS, 2009.
6. Derek Dreyer, Georg Neis, and Lars Birkedal. The impact of higher-order state and control

effects on local relational reasoning. In ICFP, pages 143–156, 2010.
7. D. Hopkins, A. S. Murawski, and C.-H L. Ong. A fragment of ML decidable by visibly

pushdown automata. In ICALP, 2011.
8. D. Hopkins and C.-H L. Ong. HOMER: A higher-order observational equivalence model

checker. In CAV, 2009.
9. Ranjit Jhala, Rupak Majumdar, and Andrey Rybalchenko. HMC: Verifying functional pro-

grams using abstract interpreters. In CAV, pages 470–485, 2011.
10. Naoki Kobayashi. Model-checking higher-order functions. In PPDP, pages 25–36, 2009.
11. A. M. Pitts and I. D. B. Stark. Operational reasoning for functions with local state. Higher

order operational techniques in semantics, 1998.
12. I. D. B. Stark. Names and Higher-Order Functions. PhD thesis, Univ. of Cambridge, 1995.


	Hector: An Equivalence Checker for a Higher-Order Fragment of ML

