
Game Semantic Analysis of Equivalence in IMJ

Andrzej S. Murawski1, Steven J. Ramsay1, and Nikos Tzevelekos2

1 University of Warwick, Coventry, UK 2 Queen Mary University of London, London, UK

Abstract. Using game semantics, we investigate the problem of verifying con-
textual equivalences in Interface Middleweight Java (IMJ), an imperative object
calculus in which program phrases are typed using interfaces. Working in the
setting where data types are non-recursive and restricted to finite domains, we
identify the frontier between decidability and undecidability by reference to the
structure of interfaces present in typing judgments. In particular, we show how to
determine the decidability status of problem instances (over a fixed type signa-
ture) by examining the position of methods inside the term type and the types of
its free identifiers. Our results build upon the recent fully abstract game seman-
tics of IMJ. Decidability is proved by translation into visibly pushdown register
automata over infinite alphabets with fresh-input recognition.

1 Introduction
Contextual equivalence is the problem of determining whether two (possibly open) pro-
gram phrases behave equivalently when placed into any possible whole-program con-
text. It is regarded as a gold standard for the identification of behaviours in programming
language semantics and is a fundamental concern during refactoring and compiler op-
timisations. For example, it can be used to determine whether two implementations of
an interface behave equivalently irrespective of who might interact with them.

In this work, we undertake an algorithmic study of contextual equivalence for Java-
style objects through the imperative object calculus Interface Middleweight Java (IMJ).
IMJ was introduced in [11] as a setting in which to capture the contextual interactions
of code written in Middleweight Java [2]. Our aim is to isolate those features of the
language, or collections of features taken together, that are so expressive that contex-
tual equivalence becomes undecidable. By such a determination, not only do we gain
insight into the power (or complexity) of the features, but also we are able to design
complementary fragments for which we have decision procedures. The result of our
study is the first classification of decidable cases for contextual equivalence in a core
fragment of Java and, on the conceptual front, an exposition of the fundamental limits
of automated verification in this setting.

We start delineating the decidable cases by eliminating two features that clearly
make IMJ Turing-complete, namely, recursive types and infinite data domains (e.g. un-
bounded Integers). Hence, our starting point is a finitary restriction of IMJ, in which
these two features have been removed. Next we uncover two less obvious features that
make termination undecidable (note that termination is a special case of contextual
equivalence with skip): storage of method-carrying objects in fields and unrestricted
recursion. We show that if either of these resources is available then it is possible to
construct a program which simulates a queue machine. In contrast, if the storage of

method-carrying objects is banned and recursion discarded in favour of iteration, we
obtain a fragment with decidable termination. Consequently, we need to work with the
iterative fragment in which storage of method-carrying objects is prohibited.

Returning to the general case of contextual equivalence, recall that it concerns pro-
gram phrases which are not necessarily closed or of type void, which leads us to analyse
the problem in terms of the result type and the kinds of free variables that may occur in
the phrase. When we consider the free variables of a phrase, we find that equivalence
is undecidable whenever the phrase relies on a free variable that is an object whose
method(s) accept method-carrying objects as parameters, irrespective of the type of the
phrase itself. When we consider the type of a program phrase, we find that undecidabil-
ity is inevitable whenever the phrase:

1. is an object whose method(s) return method-carrying objects, or
2. is an object whose method(s) require a parameter that is itself an object whose

method(s) accept method-carrying objects as parameters, irrespective of the free
variables upon which the phrase depends.

In contrast, we prove that equivalence is decidable for the class of program phrases
that avoid the three criteria. This class is constrained but it still remains a non-trivial
object-oriented language: fields cannot store method-carrying objects, but objects with
methods can be created at will. Inheritance and encapsulation are supported fully.

Both our undecidability and decidability arguments are enabled by the fully ab-
stract game semantics of IMJ [11], which characterises contextual equivalence of IMJ
program phrases by means of strategies (sets of interaction traces which capture the
observable behaviour of a program). For undecidability, we observe that, in each of the
three cases mentioned above, the patterns of interaction that arise between the phrase
and the contexts with which it can be completed are expressive enough to encode the
runs of a queue machine. On the other hand, to prove decidability, we show that (in
the relevant cases) the corresponding strategies can be related to context-free languages
over infinite alphabets. More precisely, we develop a routine which, starting from pro-
gram phrases, can construct variants of pushdown register automata [13] that represent
the associated game semantics. In this way, the problem is ultimately reduced to empti-
ness testing for this class of automata, which is known to be decidable.

Related Work. We believe we are the first to present a fully automated method for
proving contextual equivalences in a Java-like setting, accompanied by a systematic
analysis of decidable cases. Contextual equivalence is well known to pose a challenge
to automated verification due to quantification over contexts. The quest for obtaining
more direct methods of attack on the problem in the Java setting has underpinned a great
deal of semantic research, mainly using operational approaches [1,7,8,6,16], but this did
not lead to decision procedures. In our case, the potential for automation stems from the
compositionality of the underlying semantics, which allows for a compositional transla-
tion of terms into automata in the decidable cases. Previous work based on games-based
verification was mainly concerned with various fragments of ML equipped with storage
of ground-type values [5,10]. In contrast, in this paper we tackle richer interactions of
objects equipped with methods. Compared with these fragments of ML, IMJ contexts
are more discriminating, because objects provide a modicum of higher-order state. This
motivates our independent study.

2

Types 3 θ ::= void | int | I IDfns 3 Θ ::= ε | (f : θ), Θ | (m : ~θ → θ), Θ

MImps 3 M ::= ε | (m : λ~x.M),M ITbls 3 ∆ ::= ε | (I ≡ Θ),∆ | (I〈I〉 ≡ Θ),∆

Terms 3 M ::= x | null | a | i | ifM thenM elseM | M ⊕M | M ;M | (I)M | M =M

| M.f | M.m(
−→
M) | new{x : I;M} | M.f :=M | skip | letx =M inM | whileM doM

∆|Γ ` x : θ
(x:θ)∈Γ

∆|Γ ` a : I
(a:I)∈Γ

∆|Γ ` skip : void ∆|Γ ` null : I
I∈dom(∆)

i ∈ [0,MAXINT]

∆|Γ ` i : int
∆|Γ `M,M ′ : int

∆|Γ `M ⊕M ′ : int
∆|Γ `M : int ∆|Γ `M ′ : void
∆|Γ ` whileM doM ′ : void

∆|Γ `M : int ∆|Γ `M ′,M ′′ : θ
∆|Γ ` ifM thenM ′ elseM ′′ : θ

∧n
i=1(∆|Γ] {~xi : ~θi} `Mi : θi)

∆|Γ ` M : {mi : ~θi → θi | 1 ≤ i ≤ n}

∆|Γ `M,M ′ : I

∆|Γ `M =M ′ : int

∆|Γ `M : void ∆|Γ `M ′ : θ
∆|Γ `M ;M ′ : θ

∆|Γ `M : I ∆|Γ `M ′ : θ
∆|Γ `M.f :=M ′ : void

∆(I).f=θ

∆|Γ `M : I

∆|Γ `M.f : θ
∆(I).f=θ

∆|Γ `M : I ′

∆|Γ ` (I)M : I
∆`I≤I′

∨I′≤I

∆|Γ, x : I ` M : Θ

∆|Γ ` new{x : I;M} : I ∆(I)�Meths=Θ

∆|Γ `M : I
∧n
i=1(∆|Γ `Mi : θi)

∆|Γ `M.m(M1, · · · ,Mn) : θ
∆(I).m=~θ→θ

∆|Γ `M : θ′ ∆|Γ, x : θ′ `M ′ : θ
∆|Γ ` letx =M inM ′ : θ

Fig. 1. Definition of IMJf . Typing rules for terms and method-set implementations.

2 Finitary IMJ
We work on Interface Middleweight Java (IMJ), an imperative object calculus based on
Middleweight Java [2] which was introduced and examined game semantically in [11].
Here we examine the finitary restriction of IMJ which excludes recursive datatypes and
unbounded integers. We call this fragment IMJf .

We let A be a countably infinite set of object names, which we range over by a and
variants. Names will appear in most syntactic constructs and also in the game model
and automata we will consider next. For any construction X that may contain (finitely
many) names, we define the support of X , denoted ν(X), to be the set of names oc-
curring in X . Moreover, for any permutation π : A

∼=→ A, the application of π on X ,
written π ·X , to be the structure we obtain from X by transposing all names inside X
according to π. Formally, the above are spelled out in terms of nominal sets [4].

For any pair of natural numbers i ≤ j we shall write [i, j] for the set {i, i+1, · · · j}.
To rule out infinite data domains in IMJf we let integers range over [0,MAXINT], where
MAXINT is some fixed natural number.

The definition of IMJf is given in Figure 1. In more detail, we have the following
components:

Intfs , Flds and Meths are sets of interface, field and method identifiers respec-
tively. We range over interfaces by I , over fields by f and over methods by m. The types
θ of IMJf are selected from Types . An interface definition Θ is a finite set of typed
fields and methods. We require that each identifier f,m can appear at most once in each
such definition.

3

An interface table ∆ is a finite assignment of interface definitions to interface iden-
tifiers. We write I〈I ′〉 ≡ Θ for interface extension: interface I extends I ′ with fields
and methods fromΘ. We require that each I can be defined at most once in∆ (i.e. there
is at most one element of ∆ of the form I : Θ or I〈I ′〉 ≡ Θ) and if (I〈I ′〉 ≡ Θ) ∈ ∆
then dom(∆(I ′)) ∩ dom(Θ) = ∅. Thus, each Θ can be seen as a finite partial function
Θ : (Flds ∪Meths) ⇀ Types∗. We write Θ.f for Θ(f), and Θ.m for Θ(m). Similarly,
∆ defines a partial function ∆ : Intfs ⇀ IDfns . In IMJf there is a recursive types
restriction by which recursive (and mutually recursive) definitions of interfaces are not
allowed.

IMJf terms form the set Terms, where we let x range over a set Vars of variables.
Moreover, “⊕” is selected from some set of binary numeric operations which includes
“=”. Boolean guards are implemented using numbers, with false represented by 0 and
true by any other number.M is a method-set implementation (we stipulate that each
m appear at most once in eachM).

IMJf terms are typed in contexts comprising an interface table∆ and a variable con-
text Γ = {x1 : θ1, · · · , xn : θn} ∪ {a1 : I1, · · · , am : Im} such that any interface in Γ
occurs in dom(∆). The typing rules are given in Figure 1. Here, we write∆(I) � Meths
to denote the interface definition of I according to∆ restricted to method specifiers. We
write I ≤ I ′ to assert that I is a subtype of I ′. The subtyping relation is induced by the
use of interface extension in interface definitions as usual. Note, as in Java, downcasting
is typable but terms of this form will not make progress in our operational semantics.

In several places in the sequel we will use variable interfaces: for each type θ, we
let Varθ ≡ {val : θ} be an interface representing a reference of type θ.

Definition 1. We define the sets of term values, heap configurations by:

TVals 3 v ::= skip | i | null | a HCnfs 3 V ::= ε | (f : v), V

The set of States (3 S) is the set of partial functions A⇀ Intfs × (HCnfs ×MImps).
If S(a) = (I, (V,M)) then we write S(a) : I , while S(a).f and S(a).m stand for V.f
andM.m respectively, for each f,m. The transition relation is defined on terms within
a state, that is, on pairs (S,M) ∈ States × Terms , and is presented in full in [11].

We now define the central problem of our study. Given∆|∅ `M : void, we say that
M terminates and write M ⇓ just if there exists S such that (∅,M)→∗ (S, skip).

Definition 2. Given ∆|Γ ` Mi : θ (i = 1, 2), we shall say that ∆|Γ ` M1 : θ contex-
tually approximates ∆|Γ ` M2 : θ if, for all ∆′ ⊇ ∆ and all contexts C[−] such that
∆′|∅ ` C[Mi] : void, ifC[M1] ⇓ thenC[M2] ⇓. Two terms are contextually equivalent
(written ∆|Γ `M1

∼=M2 : θ) if they approximate each other.
Let X range over subsets of IMJf . The equivalence problem for X is to decide

equivalence of arbitrary X -terms (under general IMJf contexts).

X–EQUIV: Given X -terms ∆|Γ `M1,M2 : θ, does ∆|Γ `M1
∼=M2 hold?

Example 3 ([8]). Let ∆ = {Empty,Cell,VarEmpty,Varint}, where Empty is the empty
interface (no fields or methods) and Cell ≡ {get : void→ Empty, set : Empty→ void},
and consider the terms ∆|∅ `M1,M2 : Cell:

4

M1 ≡ let v = new { : VarEmpty} in
new { : Cell;

get : λ . v.val ,
set : λy. if y=null then div else v.val:=y }

M2 ≡ let b = new { : Varint} in
let v = new { : VarEmpty} in let w = new { : VarEmpty} in
new { : Cell;

get : λ . if b. val=1 then (b. val :=0; v . val) else (b. val :=1; w.val),
set : λy. if y=null then div else v.val:=y; w.val:=y }

Here div stands for while 1 do skip. We saw in [11] that ∆|∅ ` M1
∼=M2 : Cell, by

comparing the game semantics of M1 and M2. The equivalence can be verified auto-
matically, as the terms reside in the decidable fragment for equivalence (we revisit these
terms in Section 6).

3 Preliminary Analysis: Termination
Since termination can be reduced to contextual equivalence, a good starting point for
analysing fragments of IMJf that have decidable equivalence is to exclude those that
have undecidable termination. The restrictions on IMJf preclude obvious undecidabil-
ity arguments based on arithmetic or recursive datatypes such as lists. However, in this
section we identify two more subtle causes for undecidability of termination: fields
containing objects with methods, and recursion.

Theorem 4. The termination problem for IMJf is undecidable. In particular, it is un-
decidable for terms ∆|∅ `M : void where

1. there are no recursive definitions but fields can store objects with methods,
2. no field stores a method-carrying object, but there are recursive method definitions.

Proof (sketch). In both cases it is possible to encode a queue machine. Since there
are no recursive types the structure of the queue has to be coded into other language
features. For example, in 1, the links are formed by capturing an existing object in a
closure which forms part of the definition of a method. ut

It follows that any fragment of IMJf containing unrestricted recursion or allowing
for fields to store method-carrying objects necessarily also has an undecidable equiva-
lence problem. Since IMJf already provides a more restricted form of recursion in the
while construct, a natural question is to next ask whether termination is still undecid-
able in the fragment in which fields are restricted to only store objects without attached
methods and recursion is disallowed in favour of iteration.

Definition 5. The method dependency graph of a term ∆|Γ ` M : θ has as nodes
pairs (I, m) of interface I ∈ dom(∆) and method m ∈ ∆(I) and an edge from (I, m)
to (J, m′) just if there is a subterm of M which has shape new {x : I;M1, (m :

λ~x.C[P.m′(~N)]),M2} with ∆|Γ ′ ` P : J ′ and J ≤ J ′. That is, such an edge exists
just if there is an instance of interface I whose implementation of m depends upon
J.m′. We say a term ∆|Γ `M : θ is iterative just if its dependency graph is acyclic.

5

We shall henceforth consider the fragment of IMJf containing iterative terms∆|∅ `
M : void in which all fields in ∆ have types conforming to the grammar:

G ::= void | int |
−−→
f : G

where we write
−−→
f : G to mean an interface identifier that is declared to contain only

some number of fields, whose types again conform to G. We call such types ground.
For this fragment, termination is decidable.

Theorem 6. If ∆|∅ ` M : void is an iterative term and fields in ∆ belong to G then
M⇓ is decidable.

Proof (sketch). We define a suitable notion of visible state (cf. visible heap of [3]) and
show that is has bounded depth. Our definition is more general than that in [3], where
the heap consists of objects which may be linked to other objects through pointer fields,
since in IMJf objects are also equipped with method implementations. ut

Next we attack contextual equivalence for the IMJf fragment with decidable termi-
nation. That is, terms do not use recursion and fields are of ground type. Our approach
utilises the game model of IMJ [11], adapted to finite integers, the main ingredients of
which are seen next.1 The model makes it possible to analyse the observable compu-
tational steps of a program phrase and its environment, and plays a crucial role in our
decidability and undecidability proofs.

4 The Game Model
Game semantics models computation as an exchange of moves between two players,
representing respectively the program (player P) and its environment (player O). A
program phrase is interpreted as a strategy in the game determined by its type, and the
patterns of interaction between the players are made concrete in the plays of the game.
Given an IMJ term ∆|Γ ` M : θ, its game semantics is a strategy: a set of formal in-
teractions (called plays), each of which consists of a sequence of tokens (called moves-
with-store) that capture the computational potential of M . Moves, plays and strategies
will involve names in their constructions (that is, they shall live within nominal sets [4]).

The moves available for play are very specific and depend upon the typing envi-
ronment ∆|Γ ` θ. For each type θ, we set Valθ to be the set of semantic values of
type θ, given by: Val void = {?}, Val int = [0,MAXINT] and ValI = A ∪ {nul}. We
write Val for the union of all Valθ’s and, for each type sequence ~θ = θ1, · · · , θn, set
Val~θ = Valθ1 × · · · × Valθn . We let a stores Σ be finite partial functions Σ : A ⇀
Intfs×(Flds ⇀ Val) (from names to object types and field assignments) satisfying two
closure conditions. To spell them out, given Σ and v ∈ Val , we first define judgments
Σ ` v : θ by the following rules.

v ∈ Val void
Σ ` v : void

v ∈ Val int
Σ ` v : int

Σ(v) : I ∨ v = null

Σ ` v : I

Now, whenever Σ(a) = (I, φ), we also stipulate the following conditions.

1 Since the space we can devote in this paper to the exposition of the game model is limited, we
kindly refer the reader to [11] for a thorough account.

6

– ∆(I).f = θ′ implies that φ(f) is defined and Σ ` φ(f) : θ, where θ ≤ θ′.
– φ(f) = v implies that ∆(I).f is defined and, if v ∈ A then v ∈ dom(Σ).

We let Sto be the set of all stores. Note that, for every store Σ, ν(Σ) ⊆ dom(Σ).

Definition 7. Given a typing environment ∆|Γ ` θ with Γ = {x1 : θ1, · · · , xn : θn,
a1 : I1, · · · , am : Im}, its moves are MJ∆|Γ`θK =MJΓ K∪MJθK∪Calls ∪Retns , where

MJΓ K = {π · (v1, ..., vn, a1, ..., am) | ~v ∈Val~θ ∧ π : A
∼=→ A}

Calls = {call a.m(~v) | a ∈ A ∧ ~v ∈ Val∗}
Retns = {ret a.m(v) | a ∈ A ∧ v ∈ Val }

and MJθK = Valθ. A move-with-store is pair of a move and a store, written mΣ .
A play is a sequence of moves-with-store that adheres to the following grammar,

PJ∆|Γ`θK ::= ε | mΣ
Γ X | mΣ

Γ Y m
Σ
θ X (Well-Bracketing)

X ::= Y | Y (call a.m(~v))Σ X

Y ::= ε | Y Y | (call a.m(~v))Σ Y (ret a.m(v))Σ

wheremΓ andmθ range overMJΓ K andMJθK respectively, and satisfies some additional
conditions [11]: Frugality, Well-Classing and Well-Calling. A play is called complete
if it is of the form mΣ

Γ Y m
Σ
θ Y . We write PJ∆|Γ`θK for the set of plays over ∆|Γ ` θ.

The first move-with-store of a play is played by player O, and from there on players
alternate. In particular, the set of plays of length 1 is equal to P 1

∆|Γ = {mΣ | m ∈
MJΓ K ∧Σ ∈ Sto ∧ ν(m) ⊆ dom(Σ)} and its elements called initial moves-with-store.

A strategy in J∆|Γ ` θK is an even-prefix-closed set of plays from PJ∆|Γ`θK
satisfying the combinatorial conditions of Determinacy, Equivariance and O-closure
(cf. [11]). We write comp(σ) for the set of complete plays of a strategy σ.

For each table ∆, games yield a category where the morphisms are strategies and
the objects are representations of typing environments Γ and types θ. A term-in-context
∆|Γ `M : θ is translated into a strategy in J∆|Γ `M : θK in a compositional man-
ner [11]. We give a flavour of this interpretation in the next example.

Example 8. Consider interfaces Varint = {val : int}, I = {run : void → void}
and terms f : I ` Mi : I given below, where div implements divergence, f is a free
variable of type I , and assert(condition) stands for if condition then skip else div. The
following terms live in the fragment for which equivalence will be shown decidable.

M1 ≡ let x = new { : Varint} in
new { : I;

run : λ . if x . val=0 then (x . val :=1; f .run (); assert (x . val=2))
else (if x . val=1 then x . val:=2 else div)

}
M2 ≡ new { : I; run: λ . div }

The two terms are not equivalent, since they can be distinguished by a context that first
calls the run method of M1 (thus triggering a call to f.run()) and then calls M1’s run

7

again from within the run method of f . This will engage M1 in a terminating interac-
tion, while calling M1’s run . On the other hand, as soon as M2’s run method is called,
we obtain divergence. In game semantics, this is witnessed by the (unique) complete
play of JM1K: nΣ0

f nΣ calln.run(?)Σ callnf .run(?)
Σ calln.run(?)Σ retn.run(?)Σ

retnf .run(?)
Σ retn.run(?)Σ , where Σ0 = {nf : I} and Σ = Σ0 ∪ {n : I}. Note

that the moves in the play correspond exactly to those interactions that happen between
the term and its environment (the initial moves nΣ0

f and nΣ correspond to the environ-
ment presenting the object nf which instantiates the free variable f and the program
presenting the object n to which M1 evaluates). Computation that is local to M1 is not
part of the play. On the other hand, no such play exists in JM2K.

Theorem 9 ([11]). For all IMJf terms ∆|Γ ` M1,M2 : θ, M1
∼= M2 if and only if

comp(JM1K) = comp(JM2K).

5 Contextual Equivalence is Undecidable
For a start, we identify three undecidable cases. They will inform the design of the de-
cidable fragment in the next section. Each undecidable case is characterised by the pres-
ence of a method in a particular place of the typing judgment ∆|Γ ` M : θ. To estab-
lish undecidability, let Q = {Q,QE , QD, δ, qI , δE , δD}, with the QE the set of states
from which an enqueue transition in δE will fire and QD the set of states from which
a dequeue transition in δD will fire. We shall construct IMJf terms ∆|Γ ` M1,M2 : θ
such that M1

∼= M2 if and only if Q does not halt. Neither recursion nor iteration will
be used in the argument and all fields will belong to G. The terms M1,M2 will not sim-
ulate queue machines directly, i.e. via termination and constructing a queue. Instead, we
shall study the interaction (game) patterns they engage in and find that their geometry
closely resembles the queue discipline.

Case 1. In this case the undecidability argument will rely on the interface table
∆ = {I1, I2, I3, I4}, where I1 ≡ val : int, I3 ≡ step : void → void, I2 ≡ tmp : I1
and I4 ≡ run : I3 → void; and terms ∆|x : I4 `M1,M2 : void. Note that I4 occurs in
the context and the argument type of one of its methods contains a method. We give the
relevant terms M1,M2 below, where N1 ≡ div and N2 ≡ assert(global.val = halt).

1 let global = new { :I1}, aux = new{ :I2} in
2 aux.tmp := new{ :I1};
3 x .run(new{ :I3;
4 step : λ . assert (global .val ∈ QE);
5 let mine = new{ :I1}, prev = aux.tmp in
6 aux.tmp := mine;
7 mine.val := π1δE(global.val); global.val := π2δE(global.val);
8 x .run(new{ :I3;
9 step : λ . assert (global .val ∈ QD);

10 assert (prev .val = 0 and mine.val 6= 0);
11 global .val := δD(global.val, mine.val);
12 mine.val := 0;
13 if (aux.tmp = mine) then global .val := halt });
14 Ni });
15 Ni

8

The terms Mi are constructed in such a way that any interaction with them results in a
call to x.run (line 3). The argument is a new object of type I3, i.e. it is equipped with
a step method. Calls to that step method are used to mimic each enqueuing: the value
is stored in a local variable mine , and global is used to keep track of the state of the
machine. Note that a call to step triggers a call to x.run whose argument is another
new object of type I3 (line 8) with a different step method, which can subsequently
be used to interpret the dequeuing of the stored element once it becomes the top of the
queue. The queue discipline is enforced thanks to private variables of type I2, which
store references to stored elements as they are added to the queue: once a new value
is added a pointer to the previous value is recorded in prev (line 5). To make sure that
only values at the front of the queue are dequeued we insert assertions that checks if the
preceding value was already dequeued (line 10). Other assertions (lines 4, 9) guarantee
that we model operations compatible with the state of the machine. Finally, the differ-
ence between N1 and N2 makes it possible to detect a potential terminating run of the
queue.

Theorem 10. Contextual equivalence is undecidable for terms of the form ∆|x : I4 `
M1,M2 : void, where M1,M2 are recursion- and iteration-free.

Using a similar approach, though with different representation schemes for queue ma-
chines, one can show two more cases undecidable. We mention below the interfaces
used in each case.

Case 2. ∆ = {I1, I2, I3, I5}, where I5 ≡ enq : void → I3. An analogue argument
can then be formulated for terms ∆|∅ `M : I5. Note that I5 is used as a term type and
that it features a method whose result type also contains a method.

Case 3. ∆ = {I1, I2, I3, I4, I6}, where I6 ≡ enq : I4 → void. An analogue
argument can then be formulated for terms∆|∅ `M : I6. Note that I6 is used as a term
type and that it contains a method whose argument type has a method.

In the next section we devise a fragment of IMJf that forbids each of these cases,
which leads to decidability of ∼=.

6 Equivalence is Decidable for IMJ∗

In this section we delineate a fragment of IMJf that circumvents the undecidable cases
identified in the previous section. In order to avoid Case 1, in the context we shall only
allow interfaces conforming to the grammar given below.

L ::= void | int | (
−−→
f : G,

−−−−−−−→
m : ~G→ L)

Note that this prevents methods from having argument types containing methods. Put
otherwise, L interfaces are first-order types.

Similarly, in order to avoid Cases 2 and 3, we restrict term types to those generated
by the grammar R on the left below:

R ::= void | int | (
−−→
f : G,

−−−−−−−→
m : ~L→ G) B ::= void | int | (

−−→
f : G,

−−−−−−−→
m : ~G→ G)

Observe that the intersection of L and R is captured by B.
Using the above restrictions, we define IMJ∗ to be a fragment of IMJf consisting

of iterative terms ∆|Γ ` M : θ such that cod(Γ) ⊆ L and θ ∈ R. Due to asymmetries
between L and R, we do not rely on the standard inductive definition of the syntax and

9

define it by a new grammar, given below. Note that in the grammar below the types of
x, y are required to be in L, and the type of M is in R. Sometimes the types of x, y and
M have to match (e.g. in letx=M inM ′), which enforces them to be in B. We write xB

to say that x must be in B and not only in L.

M ::= null | xB | i | skip | new{x : R ;
−−−−−−→
m : λ~x.M } | x = x′ | aB | M ;M ′ | M.f

| ifM thenM ′ elseM ′′ | M.f :=M ′ | M =M ′ | M.m(~M) | (I)M | M ⊕M ′

| whileM doM ′ | letx = (I)y inM | y.f | letx = y.m(~M) inM | letx =M inM ′

Our approach for deciding equivalence in IMJ∗ consists in translating terms into au-
tomata that precisely capture their game semantics, and solving the corresponding lan-
guage equivalence problem for the latter. The automata used for this purpose are a
special kind of automata over infinite alphabets, defined in the next section.

6.1 Automata

The automata we consider operate over an infinite alphabet W containing moves-with-
store:

W = {mΣ |m ∈MJ∆|Γ`θK ∧Σ a store ∧ ν(m) ⊆ dom(Σ)}
for given Γ,∆, θ. Each automaton will operate on an infinite fragment of W with stores
of bounded size. Thus, the sequences accepted by our automata correspond to repre-
sentations of plays where the domain of the store has been restricted to a bounded size.
Due to bounded visibility, such a representation will be complete.

Even with bounded stores, W is infinite due to the presence of elements of A (the set
of object names) in it. In order to capture names in a finite manner, our automata use a
register mechanism. That is, they come equipped with a finite number of registers where
they can store names, compare them with names read from the input, and update them
to new values during their operation. Thus, each automaton transition refers to names
symbolically: via the indices of the registers where they can be found. The automata are
also equipped with a visible pushdown stack which can also store names; these names
are communicated between the registers and the stack via push/pop operations. They
are therefore pushdown extensions of Fresh-Register Automata [15,10].

To spell out formal definitions, let R refer to the number of registers of our automata
and let Cst be a finite set of stack symbols. These will vary between different automata.
We set:

C = {?, nul} ∪ [0,MAXINT] Cr = { ri | i ∈ [1,R] }
C is the set of constant values that can appear in game moves. Cr are the constants
whose role is to refer to the registers symbolically (e.g. r2 refers to register number 2).

Definition 11. Given some interface table ∆, we let the set of symbolic values be
ValS = C ∪ Cr . The sets of symbolic moves, stores and labels are given by:

MovS = Val∗S ∪ {call ri.m.(~x), ret ri.m(x) | x~x ∈Val+S }
StoS = Cr ⇀ Intfs × (Flds ⇀ ValS)

and LabS = MovS × StoS. For any x ∈ ValS ∪MovS ∪ StoS ∪ LabS, we write νr(x)
for the set of registers appearing in x. We range over symbolic values by ` and variants,

10

symbolic moves by µ etc, and symbolic stores by S etc. For symbolic labels we may
use variants of Φ or, more concretely, µS .

The semantics of our automata employs assignments of names to registers. Given
such an assignment, we can move from symbolic entities to non-symbolic ones.

Definition 12. The set of register assignments is Reg = {ρ : Cr

∼=
⇀ A} and contains

all partial injections from registers to names. Given ρ ∈ Reg and any x ∈ ValS ∪
MovS ∪ StoS ∪ LabS, we can define the non-symbolic counterpart of x:

ρ(x) = x[ρ(r1)/r1] · · · [ρ(rR)/rR]

where substitution is defined by induction on the syntax of x. In particular, ρ(x) is
undefined if, for some index i, ri ∈ νr(x) but ρ(ri) is not defined.

The combination of symbolic labels with register assignments allows us to capture
elements of W. That is, whenever an automaton is at a state where a transition with
label µS can be taken and the current register content is ρ, the automaton will perform
the transition and accept the letter ρ(µS) ∈W.

The pushdown stack that we will be using is going to be of the visible kind: stack
operations will be stipulated by the specific symbolic label of a transition. We thus
assume that the set of symbolic moves be partitioned into three parts,2 which in turn
yields a partition of symbolic labels:

MovS = Movpush]Movpop]Movnoop Labα = {µS ∈ Lab | µ ∈ Movα}

where α ∈ {push, pop, noop}. We let Stk = (Cst × Reg)∗ be the set of stacks. We
shall range over stacks by σ, and over elements of a stack σ by (s, ρ).

Definition 13. The set of transition labels is TL = TLpush] TLpop] TLnoop where,
for α∈{push, pop, noop}:

TLα = { (X,Φ, φ) ∈ P(Cr)× Labα × Sα | X ⊆ νr(Φ) }

and Spush= Cst × P(Cr), Spop= Cst × P(Cr)
2, Snoop= { () }.

We range over TL by νX.(Φ, φ), where if X = ∅ then we may suppress the νX
part altogether; if X is some singleton {ri} then we may shorten ν{ri} to νri. On the
other hand, φ can either be:

– a push pair (s, Z), whereby we may denote νX.(Φ, φ) by νX.Φ/(s, Z);
– a pop triple (s, Y, Z), in which case we may write νX.Φ, (s, Y, Z);
– or a no-op (), and we may simply write νX.Φ.

A transition νX.(Φ, φ) can thus be seen as doing three things:3

– it refreshes the names in registers X (i.e. νX stands for “new X”);
– it accepts the letter ρ(Φ) ∈W, where ρ is the “refreshed” assignment;
– it performs the stack operations stipulated by φ.

2 The partitioning depends on the type of the move (e.g. only P-calls can be pushes, and only
O-returns can be pops) and is made explicit in the automata construction.

3 As we see next, these actions do not necessarily happen in this order (pops happen first).

11

These actions will be described in detail after the following definition.

Definition 14. Given a number of registers R, an IMJ-automaton is a tuple A =
〈Q, q0, X0, δ, F 〉 where:

– Q is a finite set of states, partitioned into QO (O-states) and QP (P -states);
– q0 ∈ QP is the initial state; F ⊆ QO are the final ones;
– X0 ⊆ Cr is the set of initially non-empty registers;
– δ ⊆ (QP ×TLPO×QO)∪ (QO×TLOP ×QP)∪ (QP ×P(Cr)×QP)∪ (QO×
(P(Cr) ∪ (Cr

∼=→ Cr))×QO) is the transition relation;

where TLPO = TLnoop ∪ TLpush, TLOP = TLnoop ∪ TLpop.

We next explain the semantics of IMJ-automata. LetA be as above. A configuration
of A consists of a quadruple (q, ρ, σ,H) ∈ Q × Reg × Stk × Pfn(A) . By saying that
A is in configuration (q, ρ, σ,H) we mean that, currently: the automaton state is q; the
register assignment is ρ; the stack is σ; and all the names that have been encountered so
far are those in H (i.e. H stands for the current history).

Suppose A is at a configuration (q, ρ, σ,H). If q
νX.(µS ,φ)−−−−−−→ q′ then A will accept

an input mΣ ∈W and move to state q′ if the following steps are successful.

• If µS ∈ Labpop and φ = (s, Y, Z) then A will check whether the stack has the form
σ = (s, ρ′) :: σ′ with dom(ρ′) = Y and ρ, ρ′ being the same in Z and comple-
mentary outside it, that is: dom(ρ)∩ dom(ρ′) = Z and ρ ∪ ρ′ is a valid assignment.
If that is the case, it will pop the top of the stack into the registers, that is, set σ = σ′

and ρ = ρ ∪ ρ′.
• A will update the registers in X with fresh names, that is, it will check whether
dom(ρ) ∩ X = ∅ and, if so, it will set ρ = ρ[ri1 7→ a1] · · · [rim 7→ am], where
i1, · · · , im is an enumeration of X and a1, · · · , am are distinct names such that:
• if q1 ∈ QO then a1, · · · , am /∈ cod(ρ) (locally fresh),
• if q1 ∈ QP then a1, · · · , am /∈ H (globally fresh).

In the latter case, A will set H = H ∪ {a1, · · · , am}.
• A will check whether mΣ = ρ(µS).
• If µS ∈ Labpush and φ = (s, Z) then A will perform a push of all registers in Z,

along with the constant s, that is, it will set σ = (s, ρ � Z) :: σ.

Let ρ′ be the resulting assignment after the above steps have been taken, and similarly

for H ′. The semantics of the above transition is the configuration step (q, ρ, σ,H)
mΣ−−→

(q′, ρ′, σ′, H ′).
On the other hand, if q X−→ q′ then A will apply the ‘mask’ X on the registers,

that is, set ρ′ = ρ�X , and move to q′ without reading anything, i.e. (q, ρ, σ,H)
ε−→

(q′, ρ�X,σ,H).
Finally, if q π−→ q thenA will permute its registers according to π, i.e. it will perfom

(q, ρ, σ,H)
ε−→ (q′, ρ ◦ π−1, σ,H).

Given an initial assignment ρ0 such that dom(ρ0)=X0 and taking H0 = cod(ρ0),
the language accepted by (A, ρ0) is

L(A, ρ0) = {w ∈W∗ | (q0, ρ0, ε,H0)
w−→→ (q, ρ, ε,H) ∧ q ∈ F}.

12

We say that A is deterministic if, from any configuration, there is at most one way to
accept each input x ∈W.

Let us next look at the two terms from Example 3 and give an automaton which
captures their semantics.

Example 15. Consider ∆|∅ ` M1,M2 : Cell from Example 3. The game semantics of
the two terms consists of plays of the shape ?∅ nΣ0 G∗0 L1G

∗
1 · · · LkG∗k , where:

G0 = calln.get(?)Σ0 retn.get(nul)Σ0 Gi = calln.get(?)Σi retn.get(ni−1)
Σi (i > 0)

Li = calln.set(ni)
Σi retn.set(?)Σi

Σi = {n 7→(Cell, ∅)} ∪ {nj 7→(Empty, ∅) | j ∈ [1, i]}

for any n, n1, · · · , ni ∈ A with n 6= nj (j ∈ [1, i]). We construct the following IMJ-
automaton with 2 registers and X0 = ∅.

q0 qS1

F
q1

qS2

F
q′1

q′′1

q2

νr1.r
S1
1

call r1.get(?)
S1

ret r1.get(nul)
S1

νr2
.call

r1.s
et(r2

)
S2

ret r1.set(?)
S2

call r1.get(?)
S2

ret r1.get(r2)
S2

{r1}

νr2.call r1.set(r2)
S2

call r1.set(r2)
S2

S1 = {r1 7→ (Cell, ∅)}
S2 = S1 ∪ {r2 7→ (Empty, ∅)}

The automaton represents plays as above, starting from their second move4 and match-
ing each Σi to a representation Σ̂i = Σ0 ∪ {ni 7→ (Empty, ∅)}. The first transition
corresponds to the move nΣ0 : the transition label νr1.rS1

1 stipulates that the automa-
ton will accept nΣ0 , for some/any fresh name n, and store n in its first register (i.e.
register r1). Observe how the value n, stored in r1, is invoked in later transitions. For
instance, the transition labelled call r1.get(?)

S1 will accept the input calln.get(?)Σ0 .
Note also that there are two kinds of transitions involving register r2. Transitions la-
belled νr2.call r1.set(r2)

S2 set the value of register r2 to some locally fresh value
n′′ and accept calln.set(n′′)Σ0∪{n′′ 7→(Empty,∅)} (note how, in the transition from qS2

F

to q′1, the automaton first clears the contents of r2). On the other hand, the transition
call r1.set(r2)

S2 corresponds to accepting calln.set(n′)
Σ0∪{n′ 7→(Empty,∅)} and n′ is the

current value of register r2 (i.e. no register update takes place in this case).

6.2 Automata for IMJ∗

The automata of the previous section are expressive enough to capture the semantics of
terms in IMJ∗, in the following manner. As seen in the previous example, IMJ-automata
do not produce the actual plays of the modelled terms but representations thereof. The
reason is that the stores in the game semantics accumulate all names that are played,
and are therefore unbounded in size, whereas the size of symbolic stores is by definition

4 This is a technical convenience of the interpretation: as we see next, we translate each canoni-
cal term into a family of automata, one per (symbolic) initial move-with-store (here, the unique
initial move is ?∅). Initial states take the initial move as given and are therefore P-states.

13

bounded for each automaton. Our machines represent the actual stores by focussing on
the part of the store that the term can access in its current environment (cf. bounded
visibility). From a representative “play”, where stores are this way bounded, we obtain
an actual play by extending stores to their full potential and allowing the values of the
added names to be solely determined by O.

Definition 16. Let s = mΣ1
1 · · ·m

Σk
k and t = mT1

1 · · ·m
Tk
k be a play and a sequence

of moves-with-store over ∆|Γ ` θ respectively. We call s an extension of t if Ti ⊆ Σi
(i ∈ [1, k]) and, for any i ∈ [1, k/2], if a ∈ dom(Σ2i) \ dom(T2i) then Σ2i(a) =
Σ2i−1(a). The set of all extensions of t is ext(t).

We can now state our main translation result. Recall that, for each ∆,Γ , we write
P 1
∆|Γ for the set of initial moves-with-store in J∆|Γ ` θK. The set of its initial symbolic

moves-with-store is the finite set: L∆|Γ M = {µS0
0 ∈ LabS | ∃ρ0. ρ0(µS0

0) ∈ P 1
∆|Γ }. We

say that a triple (mΣ , Φ, ρ) ∈ P 1
∆|Γ × L∆|Γ M× Reg is compatible if mΣ = ρ(Φ) and

cod(ρ) = dom(Σ), and let Pm,ΣJ∆|Γ`θK be the set of plays over∆|Γ ` θ starting withmΣ.

Theorem 17. Let ∆|Γ ` M : θ be an IMJ∗ term. We can effectively define a family of
deterministic IMJ-automata LM M = { LM MΦ | Φ ∈ L∆|Γ M } such that⋃

w∈L(LM MΦ,ρ)
ext(mΣw) = comp(J∆|Γ `M : θK) ∩ Pm,ΣJ∆|Γ`θK

for each compatible (mΣ , Φ, ρ).

The construction encompasses two stages: first, a syntactic translation of terms into
canonical forms (of an appropriate kind) is applied; the latter is followed by a construc-
tion of IMJ-automata for terms in canonical form. Both steps are compositional, defined
by induction on the term syntax. Let us revisit Example 15 to demonstrate the whole
construction.

Example 18. Recall terms ∆|∅ ` Mi : Cell (i = 1, 2) from Examples 3,15. Apply-
ing our translation on M1 and removing unreachable states we obtain the following
automaton with R = 3 and X0 = ∅.

q0 qS1

F
q1

q′1

q′2

q′3

q′4

q′5

qS2

F
q2

qS3

F
q3

νr1.r
S1
1

call r1.get(?)
S1 ;{r1}

ret r1.get(nul)
S1

`⊥2

`2

call r1.get(?)
S2 ;{r1,r2}

ret r1.get(r2)
S2

call r1.get(?)
S3 ;{r1,r3}

ret r1.get(r3)
S3

`23

`3

`22
`2

`33
`3

`32
`2

S1 = {r1 7→ (Cell, ∅)}
S2 = S1 ∪ {r2 7→ (Empty, ∅)}
S3 = S1 ∪ {r3 7→ (Empty, ∅)}

`33 = call r1.set(r3)
S3 ; {r1, r3}

`22 = call r1.set(r2)
S2 ; {r1, r2}

`2 = ret r1.set(?)
S2

`3 = ret r1.set(?)
S3

`⊥2 = ν{r2}.call r1.set(r2)S2 ; {r1, r2}
`32 = ν{r2}.call r1.set(r2)S2 ; {r1, r2}
`23 = ν{r3}.call r1.set(r3)S3 ; {r1, r3}

We can observe that the constructed automaton is obfuscated compared to the one we
manually constructed in Example 15, which suggests that the translation can be further

14

optimised: e.g. states q′1, q
′
2 and q′5 can be evidently unified (q′3, q

′
4 too). There is also a

symmetry between qS2

F and qS3

F .

Let now ∆|Γ `M1,M2 : θ be IMJ∗ terms. The previous theorem provides us with
deterministic IMJ-automataAi = LMi MΦ (i = 1, 2) representing the complete plays of
JMiK which start withmΣ , for each compatible triple (mΣ , Φ, ρ). Thus, since the game
model is fully abstract with respect to complete plays (Theorem 9), to decide whether
M1
∼= M2 it suffices to check whether A1 and A2 represent the same sets of complete

plays, for all compatible (mΣ , Φ, ρ).
We achieve the latter by constructing a product-like IMJ-automaton B which jointly

simulates the operation of A1 and A2, looking for possible discordances in their oper-
ation which would signal that there is a complete play which one of them can represent
but the other cannot. That is, B operates in joint simulation mode or in divergence mode.
When in simulation mode, at each configuration and input move-with-store m′Σ

′
:

• if A1 and A2 both accept m′Σ
′

(modulo extensions) then B accepts m′Σ
′

and pro-
ceeds its joint simulation of A1,A2;
• if, say, A1 accepts m′Σ

′
but A2 cannot accept it, then B enters divergence mode: it

proceeds with simulating only A1 with the target of reaching a final state (dually if
A2/A1 accepts/not-accepts m′Σ

′
). If the latter is successful, then B will have found

a complete play that can be represented by A1 but not by A2.

Because our automata use visibly pushdown stacks and rely on the same partitioning
of tags, we can synchronise them using a single stack. In addition, B needs to keep
in its registers the union of the names stored by A1 and A2. Inside its states, B keeps
information on: the current states of A1 and A2; the way the names of its registers
correspond to the names in the registers of A1 and A2; the current joint symbolic state
(this is for resolving expansions). On the other hand, once in divergence mode, say for
A1, B operates precisely like A1. The automaton can only accept in divergence mode,
if the simulated automaton (here A1) accepts.

Theorem 19. For ∆|Γ ` M1,M2 : θ and (mΣ , Φ, ρ) as above, we can effectively
construct an IMJ-automaton B such that L(B, ρ) = ∅ iff comp(J∆|Γ ` M1: θK) =
comp(J∆|Γ `M2: θK).

As variants of pushdown fresh-register automata, IMJ-automata have decidable
emptiness problem [10]. Moreover, the number of compatible triples (mΣ , Φ, ρ) is
bounded with respect to Γ,∆ modulo name-permutations. This yields the following.

Corollary 20. IMJ∗–EQUIV is decidable.

7 Conclusion and Further Work
In Section 3 we showed that the ability to construct terms using unrestricted recursion
leads to undecidable termination. Hence, we subsequently dropped unrestricted recur-
sion in favour of the natural alternative: iteration through IMJf ’s while construct. We
conclude by discussing a finer gradation of recursion which allows us to study the al-
gorithmic properties of a larger, if perhaps less natural, class of terms: those using only
first-order recursion. We show that our bounded-depth visible store argument extends
to this new fragment.

15

Definition 21. We say that a method I.m declared in ∆ is first-order just if I.m has
type of shape (G, . . . ,G) → G. Otherwise we shall say that it is higher-order. Fix a
term ∆|∅ ` P : void. We say that P is 1-recursive just if, whenever there is a cycle
(I1, m1), . . . , (Ik, mk) in its method dependency graph, then every Ii.mi is first-order.

For 1-recursive terms, new objects may be created at every frame of an increasingly
large stack of recursive calls and then returned back down the chain so as to be visible in
all contexts. However, the number of frames in this call stack which are associated with
methods that can pass method-carrying objects as parameters is ultimately bounded by
the 1-recursion restriction.

Lemma 22. Let ∆ have only G-valued fields and ∆|∅ `M : void be 1-recursive. Then
M has bounded-depth visible state.

For the equivalence problem, it is unclear whether our argument carries over to the
first-order recursion setting. Recall that we rely on an equivalence-like testing proce-
dure for visibly pushdown register automata. With recursion we cannot hope to remain
in the visible setting [9] and the decidability status of language equivalence for gen-
eral pushdown register automata over infinite alphabets is currently unknown (it would
require extending the celebrated result of Sénizergues [14]).

References
1. E. Ábraham, M. M. Bonsangue, F. S. de Boer, A. Gruener, and M. Steffen. Observability,

connectivity, and replay in a sequential calculus of classes. In FMCO, LNCS vol. 3657. 2004.
2. G. Bierman, M. Parkinson, and A. Pitts. MJ: An imperative core calculus for Java and Java

with effects. Technical Report 563, Computer Laboratory, University of Cambridge, 2002.
3. A. Bouajjani, S. Fratani, and S. Qadeer. Context-bounded analysis of multithreaded pro-

grams with dynamic linked structures. In CAV, pp. 207–220, 2007.
4. M. J. Gabbay and A. M. Pitts. A new approach to abstract syntax with variable binding.

Formal Aspects of Computing, 13:341–363, 2002.
5. D. Hopkins, A. S. Murawski, and C.-H. L. Ong. A fragment of ML decidable by visibly

pushdown automata. In ICALP, LNCS vol. 6756, pp. 149–161. Springer, 2011.
6. R. Jagadeesan, C. Pitcher, and J. Riely. Open bisimulation for aspects. In AOSD. ACM, 2007.
7. A. Jeffrey and J. Rathke. Java Jr: Fully abstract trace semantics for a core Java language. In

ESOP, LNCS vol. 3444, pp. 423–438. 2003.
8. V. Koutavas and M. Wand. Reasoning about class behavior. In FOOL/WOOD. 2007.
9. A. S. Murawski, C.-H. L. Ong, and I. Walukiewicz. Idealized Algol with ground recursion

and DPDA equivalence. In ICALP, LNCS vol. 3580, pp. 917–929. Springer, 2005.
10. A. S. Murawski and N. Tzevelekos. Algorithmic games for full ground references. In ICALP,

LNCS vol. 7392, pp. 312–324. Springer, 2012.
11. A. S. Murawski and N. Tzevelekos. Game semantics for Interface Middleweight Java. In

POPL, pp. 517–528. ACM, 2014.
12. J. Rot, F. S. de Boer, and M. M. Bonsangue. Unbounded allocation in bounded heaps. In

FSEN, pp. 1–16, 2013.
13. L. Segoufin. Automata and logics for words and trees over an infinite alphabet. In CSL,

LNCS, pp. 41–57. Springer, 2006.
14. G. Sénizergues. L(A)=L(B)? decidability results from complete formal systems. Theoretical

Computer Science, 251(1-2):1–166, 2001.
15. N. Tzevelekos. Fresh-register automata. In POPL, pp. 295–306. 2011.
16. Y. Welsch and A. Poetzsch-Heffter. Full abstraction at package boundaries of object-oriented

languages. In SBMF, pp. 28–43. Springer, 2011.

16

	Game Semantic Analysis of Equivalence in IMJ

