
On Automated Verification of Probabilistic

Programs

Axel Legay1, Andrzej S. Murawski2, Joël Ouaknine2, and James Worrell2

1 Institut Montefiore, Université de Liège, Belgium
2 Oxford University Computing Laboratory, UK

Abstract. We introduce a simple procedural probabilistic programming
language which is suitable for coding a wide variety of randomised algo-
rithms and protocols. This language is interpreted over finite datatypes
and has a decidable equivalence problem. We have implemented an auto-
mated equivalence checker, which we call apex, for this language, based
on game semantics. We illustrate our approach with three non-trivial case
studies: (i) Herman’s self-stabilisation algorithm; (ii) an analysis of the
average shape of binary search trees obtained by certain sequences of ran-
dom insertions and deletions; and (iii) the problem of anonymity in the
Dining Cryptographers protocol. In particular, we record an exponential
speed-up in the latter over state-of-the-art competing approaches.

1 Introduction

Ever since Michael Rabin’s seminal paper on probabilistic algorithms [23], it has
been widely recognised that introducing randomisation in the design of algo-
rithms can yield substantial benefits. Unfortunately, randomised algorithms and
protocols are notoriously difficult to get right, let alone to analyse and prove
correct. In this paper, we propose a simple prototype programming language
which we believe is suitable for coding a wide variety of algorithms, systems,
and protocols that make use of probability.

Our language incorporates several high-level programming constructs, such
as procedures (with local scoping) and arrays, but is predicated on finite data-
types and enjoys some key decidability properties. From our perspective the most
important of these is probabilistic contextual equivalence, which can be used to
express a broad range of interesting specifications on various systems.

We have developed an automated equivalence checker, apex, for our proba-
bilistic programming language. Our approach is based on game semantics, and
enables us to verify open programs (i.e., programs with undefined components),
which is often essential for the modular analysis of complex systems. Game se-
mantics itself has a strong compositional flavour, which we have exploited by
incorporating a number of state-space reduction procedures that are invoked
throughout a verification task.

We illustrate our framework with three non-trivial case studies. The first
is Herman’s algorithm, a randomised self-stabilising protocol. The second is a

2 Axel Legay, Andrzej S. Murawski, Joël Ouaknine, and James Worrell

problem about the average shape of binary search trees obtained by certain
sequences of random insertions and deletions. Finally, our third case study is an
analysis of anonymity in the Dining Cryptographers protocol. In the latter, we
record an exponential speed-up over state-of-the-art competing approaches.

Main Contributions.3 Our main contributions are twofold: First, we de-
fine a simple imperative, non-recursive call-by-name procedural probabilistic
language, interpreted over finite datatypes, and show that it has a decidable
contextual equivalence problem. Our language is related to second-order Prob-
abilistic Idealized Algol, as studied in [19], and our decidability proof relies in
important ways on results from [6, 19]. Among the new ingredients are direct
automata constructions (rather than reliance on abstract theoretical results, as
was done in [19]), in particular with respect to epsilon-elimination.

Our second—and arguably most significant—contribution lies in the novel
application of our framework in the treatment of the case studies. In particular,
we use contextual equivalence for open programs in a key way in two of the
three instances. As discussed in greater details below and in Section 6, our use
of contextual equivalence in the Dining Cryptographers protocol results in a
dramatic improvement in both verification time and memory consumption over
current alternative approaches.

Related Work. Proposals for imperative probabilistic programming lan-
guages, along with associated semantics, go back several decades (see, e.g., [16]).
As noted in [8], most of the semantic models in the literature are variants of
Markov chains, where the states of the Markov chain are determined by the
program counter and the values of the variables.

While such treatments are perfectly adequate for model checking closed
(monolithic) programs, they are usually ill-suited to handle open programs, in
which certain variables or even procedures are left undefined. Moreover, such
semantic approaches are also generally of no help in establishing (probabilistic)
contextual equivalence: the indistinguishability of two open programs by any
(program) context. Contextual equivalence, in turn, is arguably one of the most
natural and efficient ways to specify various properties such as anonymity—see
Section 6 for further details and background on this point.

As we explain in Section 3, our approach, in contrast, is based on game se-
mantics, and differs radically from the various ‘probabilistic state-transformer’
semantics discussed above. The main benefit we derive is an algorithm for de-
ciding contextual equivalence.

We note that many probabilistic model checkers, such as PRISM [11] and
LiQuor [4], have been reported upon in the literature—see [18] for a partial
survey. Most of these tools use probabilistic and continuous-time variants of
Computation Tree Logic, although Linear Temporal Logic is also occasionally
supported.

3 A full version of this paper, which will include all the formal definitions, construc-
tions, and proofs that have been omitted here, is currently in preparation [18].

On Automated Verification of Probabilistic Programs 3

2 A Probabilistic Programming Language

Code fragments accepted by apex are written in a probabilistic procedural lan-
guage with call-by-name evaluation, whose full syntax is given below.

const ::= [0-9]+

id ::= [a-z]+

gr_type ::= ’void’ | ’int%’ const | ’var%’ const

gr_list ::= gr_type {’,’ gr_list }

type ::= { gr_type ’->’ | ’(’ gr_list ’) ->’ } gr_type

rand_dist ::= const ’:’ const ’/’ const {’,’ rand_dist }

gr_params ::= gr_type id {’,’ gr_params }

params ::= gr_type id { ’(’ gr_list ’)’ } {’,’ params }

program_list ::= program {’,’ program_list }

binop ::= ’+’ | ’-’ | ’*’ | ’/’ | ’and’ | ’or’ | ’<=’ | ’<’ | ’=’

unop ::= ’not’

typable_val ::= const | ’coin’ | ’rand[’ rand_dist ’]’

program ::=

’skip’ | typable_val | ’(int%’const typable_val ’)’ |

id | id ’(’ { program_list } ’)’ | id ’[’ program ’]’ |

’int%’const id | ’int%’const id ’[’ const ’]’ |

’if’ program ’then’ program { ’else’ program } |

’case’ ’(’ program ’)’ ’[’ program_list ’]’ |

program ’;’ program | ’while’ program ’do’ program |

program ’:=’ program | program binop program | unop program |

gr_type id ’(’ {gr_params} ’) {’ program ’}’ program |

’(’ program ’)’ | ’{’ program ’}’

input ::= type ’main(’ { params } ’) {’ program ’}’

This language has two simple mechanisms for specifying random values. First,
the ‘probabilistic’ constant coin represents the fair coin: it returns value 0 or 1,
each with probability 1

2
. More generally, one can specify arbitrary finite distri-

butions using rand, e.g., rand[1:1/3, 2:1/3, 3:1/3] stands for the fair three-
sided die. Other syntactic elements are intended to resemble C in order to make
it easier to analyse pieces of code; for example, blocks are delimited by braces
({. . . }). The language is predicated on finite integer datatypes, which support
modulo arithmetic (+,-,*,/). Local variables can be declared using statements
of the form int%n i, where n indicates the modulus and i is a variable name.
Similarly, arrays are defined using declarations such as int%n a[m], where m

represents the size of the array. int%2 can double as the Boolean type with the
associated logical operations (and, or, not). Procedures can be introduced with
syntax such as

void procname(int%4 i, var%7 j) {. . .}

4 Axel Legay, Andrzej S. Murawski, Joël Ouaknine, and James Worrell

where i is a {0, 1, 2, 3}-valued parameter (modulo 4) and j is a reference pa-
rameter (analogous to ‘int &j’ in C++) modulo 7. Functions are defined in the
same way except that int%n should be used instead of void for some n ∈ N

+.
Procedures/functions can be declared locally within other procedures/functions,
but recursive calls are not allowed. Iteration is provided in the form of while

loops.

Our framework also supports open code with undefined variables, procedures
or functions (also known as undefined parameters). Their names together with
types (e.g., var%6 x, or void f(int%3,var%7)) have to be declared as part of
the input statement whose general shape is as follows:

type main(undefined parameters) {open code}.

3 Contextual Equivalence

As a result of randomisation, closed programs of type void terminate with some
probability, whereas closed programs of type int%m generate a sub-distribution
on {0, . . . ,m−1}. In addition to closed programs, we also consider open program
fragments in which some parts are not specified and are represented by undefined
parameters, as discussed earlier. Open programs cannot be executed on their
own and become executable only when put in a program context that makes
them closed, i.e., provides instantiations for the undefined parts. Note that open
programs can alternatively be viewed as higher-order procedures.

We say that two (open or closed) programs P1 and P2 are equivalent iff they
behave the same way inside all program contexts, i.e., for any context C such that
C[P1], C[P2] are closed programs of type void, C[P1] and C[P2] terminate with
the same probability4. Thus equivalent programs exhibit the same observable
behaviour. The observable behaviour of closed programs is determined simply
by the sub-distribution generated by termination. That of open programs can be
said to correspond to the ways the program can use its undefined components.
This intuition is made precise by game semantics [1, 12, 6, 19], which we briefly
examine below.

Intuitively, probabilistic contextual equivalence is a linear-time (as opposed
to branching-time) and statistical (as opposed to possibilistic) notion of program
equivalence. We remark that it is an especially powerful instrument in the case
of open programs, which we make full use of in the case studies presented in
Sections 5 and 6.

The main theoretical result underpinning the work we present here is the
following.

Theorem 1. Probabilistic contextual equivalence is decidable for the program-

ming language given in Section 2.

4 The probability of termination is formally computed using an operational semantics;
we refer the reader to [18] for the precise details.

On Automated Verification of Probabilistic Programs 5

The proof of Theorem 1 is based on game semantics and relies heavily on the
results of [6, 19]. Full details will appear in [18].

Game semantics is a modelling theory for a wide range of programming
paradigms. It associates to any given (probabilistic) open program a (proba-
bilistic) strategy, which in turn gives rise to a set of (probabilistic) complete

plays. Full abstraction is then the assertion that two open programs are con-
textually equivalent iff they exhibit precisely the same set of complete plays.
Theorem 1 is established via a full abstraction result, in which moreover the rel-
evant sets of complete plays can be represented using probabilistic automata [22].
Probabilistic program equivalence therefore reduces to language equivalence for
probabilistic automata, which can be decided in polynomial time [25].

We note that the probabilistic automata arising from game semantics are
radically different from the Markov chains that arise in the various probabilistic
state-transformer semantics discussed in Section 1. Whereas the latter essentially
correspond to an operational unwinding of a program, the game-semantical prob-
abilistic automata capture the ways in which a program can interact with its
environment, i.e., the broader context in which the program lies. For a more
detailed account of game semantics as used in this paper, we refer the reader
to [18].

Our tool apex generates the probabilistic automata representing open pro-
grams in a compositional manner, by executing bespoke automata operations
for each of the syntactic constructs of our language. The state spaces of the
resultant intermediate automata are reduced using a variety of algorithmic tech-
niques, including reachability analysis, decomposition into strongly connected
components, and quotienting by probabilistic bisimulation [17].

We remark that closed programs always give rise to single-state automata,
whereas open programs yield non-trivial automata. Of course, in both cases the
intermediate automata produced can be arbitrarily large5 and complex, hence
the need for efficient implementations of the constructions and the use of state-
space reduction techniques.

As an example, consider the following open program P1:

void main(var%2 x) { x:=rand[0:1/3, 1:2/3]; x:=coin }

P1 has a single free identifier, x, which is a variable ranging over {0, 1}. In the
program code, x is first assigned 0 or 1 with respective probabilities of 1

3
and 2

3
,

and is then again assigned 0 or 1, but with equal probability.
The open program P2, below, is similar to P1 except that the two assignments

to x are both made by a fair coin:

void main(var%2 x) { x:=coin; x:=coin }

P1 and P2, it turns out, are not equivalent; indeed, it is possible to manu-
facture a context which (probabilistically) distinguishes them by observing the

5 More precisely, the automata can have size exponential in the size of the code frag-
ment.

6 Axel Legay, Andrzej S. Murawski, Joël Ouaknine, and James Worrell

sequence of assignments to x.6 By full abstraction, the complete plays of P1

and P2, captured respectively by the two probabilistic automata depicted be-
low, must therefore differ:

	write(0)_x, 1/3

	write(1)_x, 2/3
(0,1)

	write(0)_x, 1/2

	write(1)_x, 1/2

	write(0)_x, 1/2

	write(1)_x, 1/2
(0,1)

	write(0)_x, 1/2

	write(1)_x, 1/2

Each automaton consists of three states. Initial states are shaded, and ac-
cepting states are doubly circled. Transitions are labelled by the corresponding
assignments to x together with the associated probabilities.

The probabilistic languages of the two automata are plainly different; for
instance, the word 〈write(0) x,write(0) x〉 is accepted by the first automaton
with probability 1

6
and by the second automaton with probability 1

4
.

P1 and P2 both contain a free identifier x, and are therefore not closed pro-
grams. It is of course possible to declare x as a local variable instead, as in the
following:

void main() { int%2 x; x:=coin[0:1/3, 1:2/3]; x:=coin }

The above program is closed, and terminates with probability 1; it is therefore
equivalent to void main() { skip }, and its set of complete plays is captured
by the following probabilistic automaton:

(0,1)

The second component of the label on the accepting state, the number ‘1’,
represents the probability of termination. This automaton therefore accepts the
empty word with probability 1 (and all other words with probability 0).

It should be clear that, if P1 and P2 are modified by making x a local variable
rather than a free identifier, then no context can possibly distinguish them and
they therefore become equivalent (in accordance with one’s intuition). Hence
the way in which variables are declared, whether as free identifiers or locally,
intuitively corresponds to whether they are visible or not to the outside world.
We will make use of this idea when we consider the notion of anonymity in
Section 6.

The current version of apex relies on manipulating text files with a library
of automata routines. apex takes as input a text file containing a description of
an open probabilistic program which comprises the program type, the list of its
free identifiers, and the program code. The output is a probabilistic automaton.
After the automata have been generated they can be inspected immediately, or
fed to other automata-theoretic procedures such as Tzeng’s equivalence-checking
algorithm [25].

6 An instance of such a context could, for example, instantiate the free occurrences
of x with the sequential composition of a command followed by a variable; in effect,
assignments to x then induce side-effects, which can be detected by the context.

On Automated Verification of Probabilistic Programs 7

4 Herman’s Self-Stabilisation Algorithm

Self-stabilisation is an important area of research in distributed systems that
originated with Dijkstra’s seminal 1974 paper [7]. Roughly speaking, a self-
stabilising system is one that always eventually recovers in finite time from
transient faults and operates correctly.

Herman’s algorithm is a classical example of a randomised self-stabilisation
protocol [9]. Imagine a network of processes, arranged in a ring, with each process
possibly holding a token. ‘Legitimate’ configurations are those in which a token
is held by exactly one process. The aim of a self-stabilisation protocol is to guide
the network towards legitimate configurations.

Let us assume that each process possesses a distinguished two-valued vari-
able, and let us adopt the convention that a process is deemed to hold a token if
its distinguished variable has the same value as that of its immediate right-hand
neighbour. (Note that in order for this representation scheme to make sense,
there must be an odd number of processes in the network.)

The algorithm works as follows. At every time step, each process determines
whether or not it holds a token. If it does, it flips its distinguished variable with
probability 1

2
, and otherwise sets its distinguished variable equal to that of its

right-hand neighbour. We assume that processes execute synchronously.

What we would like to show is that such a protocol is correct, i.e., that it
always eventually leads the system to a legitimate, single-token configuration.

To this end, we implemented Herman’s algorithm in our probabilistic pro-
gramming language for various numbers of processes in the network. The code
for a 15-process network is given below.

void main() {

int%2 x[15]; int%2 z; int%3 token; int%15 i;

token:=2;

while(not (token=1)) do {

token:=0;

i:=0;

z:=x[0];

while (i+1) do {

if (x[i]=x[i+1]) then

x[i]:=coin else x[i]:=x[i+1];

if (i>0) and (x[i-1]=x[i]) then

token:=case(token)[1,2,2];

i:=i+1

};

if (x[i]=z) then x[i]:=coin else x[i]:=z;

if (x[i-1]=x[i]) then token:=case(token)[1,2,2];

if (x[i]=x[0]) then token:=case(token)[1,2,2]

}

}

8 Axel Legay, Andrzej S. Murawski, Joël Ouaknine, and James Worrell

Most of the syntax is self-explanatory, perhaps with the exception of the
statement token:=case(token)[1,2,2];. This is similar to the switch con-
struct in C, and is equivalent to

if token=0 then token:=1 else

if token=1 then token:=2 else

if token=2 then token:=2;

In the program, the distinguished variables of processes are held in a 15-
element array x of two-valued variables. The inner while loop simulates the
synchronous execution of the network over a single time step. In this loop, the
variable token is used to count the total number of tokens present in the network,
with the value 2 representing ‘two or more’. Recall the use of modulo arithmetic
so that variables that overflow simply cycle through 0. The outer while loop
ensures that the code is executed until the network contains just a single token.

Note that our implementation is a closed program of type void. It should be
clear that the correctness of Herman’s algorithm (a single-token configuration
is always eventually reached) corresponds to the assertion that our program
terminates with probability 1. And indeed, when running apex, the output is the
one-state automaton corresponding to void main() { skip } already depicted
in Section 3.

We remark that it is trivial to modify the code to model networks with
different numbers of processes: it suffices to replace the two occurrences of the
number ‘15’ in the first line by whatever other value is desired.

Although all instances of our program ultimately give rise to the same single-
state automaton, the computation times of apex increase with the sizes of the
networks modelled. This is not surprising since an n-process network has 2n

distinct configurations (ignoring symmetries). The intermediate automata gen-
erated by apex reflect this growth, although this is mitigated to some extent by
the use of state-space reduction techniques throughout the computation.

5 Hibbard’s Algorithm and Random Trees

apex makes it possible to compare various finite-state distribution generators.
For instance, one can easily verify that the standard iterative algorithm for
simulating a six-sided die using a fair coin is correct.

In this section we analyse a more complicated example, having to do with the
average shape of binary search trees generated by sequences of random insertions
and deletions. This is a classical problem in the theory of algorithms, in which a
central concern is to ensure that the random trees generated within a particular
scheme have low average height.

Binary search trees have been used and studied by computer scientists since
the 1950s. In 1962, Hibbard proposed a simple algorithm to dynamically delete
an element from a binary tree [10]. Moreover, he also proved that a random
deletion from a random tree, using his algorithm, leaves a random tree. Although
the statement might seem self-evident, we will see shortly that this is not quite

On Automated Verification of Probabilistic Programs 9

the case. More precisely, Hibbard’s theorem can be stated as follows: “If n + 1
items are inserted into an initially empty binary tree, in random order, and if one
of those items (selected at random) is deleted, the probability that the resulting
binary tree has a given shape is the same as the probability that this tree shape
would be obtained by inserting n items into an initially empty tree, in random
order.”

Hibbard’s paper was remarkable in that it contained one of the first formal
theorems about algorithms. Furthermore, the proof was not simple. Interestingly,
for more than a decade it was subsequently believed that Hibbard’s theorem in
fact proved that trees obtained through arbitrary sequences of random insertions
and deletions are automatically random, i.e., have shapes whose distribution is
the same as if the trees had been generated directly using random insertions
only; see [10, 15].

Quite surprisingly, it turns out that this intuition was wrong. In 1975, Knott
showed that, although Hibbard’s theorem establishes that n + 1 random inser-
tions followed by a deletion yield the same distribution on tree shapes as n

insertions, we cannot conclude that a subsequent random insertion yields a tree
whose shape has the same distribution as that obtained through n + 1 random
insertions [14].

As Jonassen and Knuth point out, this result came as a shock. In [13], they
gave a careful counterexample (based on Knott’s work) using trees having size
no greater than three. More precisely, they showed that three insertions, followed
by a deletion and a subsequent insertion (all random) give rise to different tree
shapes from those obtained by three random insertions. Despite the small sizes of
the trees involved and the small number of random operations performed, their
presentation showed that the analysis at this stage is already quite intricate. This
suggests a possible reason as to why an erroneous belief was held for so long:
carrying out even small-scale experiments on discrete distributions is inherently
difficult and error-prone. For example, it would be virtually impossible to carry
out by hand Jonassen and Knuth’s analysis for trees of size no greater than five
(i.e., five insertions differ from five insertions followed by a deletion and then
another insertion), and even if one used a computer it would be quite tricky to
correctly set up a bespoke exhaustive search.

Our goal here is to show that such analyses can be carried out almost ef-
fortlessly with apex. It suffices to write programs that implement the relevant
operations and subsequently print the shape of the resultant tree, and then ask
whether the programs are equivalent or not.

As an example, we describe how to use apex to reproduce Jonassen and
Knuth’s counterexample, i.e., three insertions differ from three insertions fol-
lowed by a deletion and an insertion. Since apex does not at present support
pointers, we represent binary trees of size n using arrays of size 2n −1, following
a standard encoding (see, e.g., [5]): the left and right children of an i-indexed
array entry are stored in the array at indices 2i + 1 and 2i + 2 respectively.

It is then possible to write a short program that inserts three elements at
random into a tree, then sequentially prints out the tree shape in breadth-first

10 Axel Legay, Andrzej S. Murawski, Joël Ouaknine, and James Worrell

manner into a free identifier ch. The actual code is omitted here for lack of space,
and can be found in [18]. From this open program, apex generates the following
probabilistic automaton:

	write(1)_ch, 1/3

	write(1)_ch, 1/6

	write(1)_ch, 1/6

	write(1)_ch, 1/6

	write(1)_ch, 1/6

	write(1)_ch, 1

	write(1)_ch, 1

	write(1)_ch, 1

	write(0)_ch, 1

	write(0)_ch, 1

	write(0)_ch, 1

	write(0)_ch, 1

	write(0)_ch, 1

(0,1)

	write(0)_ch, 1

	write(1)_ch, 1

	write(0)_ch, 1 	write(1)_ch, 1

	write(0)_ch, 1 	write(0)_ch, 1 	write(1)_ch, 1

	write(0)_ch, 1 	write(0)_ch, 1 	write(1)_ch, 1	write(1)_ch, 1

	write(0)_ch, 1 	write(0)_ch, 1 	write(0)_ch, 1
	write(1)_ch, 1

	write(1)_ch, 1

The upper path in this automaton, for example, represents the balanced
three-element tree shape . The probability that this shape occurs can be
determined by multiplying together the weights of the corresponding transitions,
yielding a value of 1

3
.

It is likewise straightforward to produce a program implementing three inser-
tions followed by a deletion and an insertion, all of them random—the code can
be found in [18]. The corresponding probabilistic automaton is the following:

	write(1)_ch, 25/72

	write(1)_ch, 11/72

	write(1)_ch, 13/72

	write(1)_ch, 11/72

	write(1)_ch, 1/6

	write(1)_ch, 1

	write(1)_ch, 1

	write(1)_ch, 1

	write(0)_ch, 1

	write(0)_ch, 1

	write(0)_ch, 1

	write(0)_ch, 1

	write(0)_ch, 1

(0,1)

	write(0)_ch, 1

	write(1)_ch, 1

	write(0)_ch, 1 	write(1)_ch, 1

	write(0)_ch, 1 	write(0)_ch, 1 	write(1)_ch, 1

	write(0)_ch, 1 	write(0)_ch, 1 	write(1)_ch, 1	write(1)_ch, 1

	write(0)_ch, 1 	write(0)_ch, 1 	write(0)_ch, 1
	write(1)_ch, 1

	write(1)_ch, 1

The reader will note that the balanced three-element tree shape occurs with
slightly greater probability: 25

72
. Thus the two programs are indeed not equivalent.

Note that none of this, of course, contradicts Hibbard’s theorem, to the effect
that the distribution on tree shapes upon performing two random insertions is
the same as that obtained from three random insertions followed by a random
deletion. The reason is that, although the distribution on tree shapes is the same,
that on trees is not. This is then witnessed by performing an additional random
insertion, which in the second case very slightly biases the resulting tree shape
towards balance, as compared to the first case.

6 The Dining Cryptographers

Anonymity is a key concept in computer security. It arises in a wide range of
contexts, such as voting, blogging, making donations, passing on sensitive in-
formation, etc. A celebrated toy example illustrating anonymity is that of the
‘Dining Cryptographers protocol’ [3]. Imagine that a certain number of cryptog-
raphers are sharing a meal at a restaurant around a circular table. As the end of
the meal, the waiter announces that the bill has already been paid. The cryptog-
raphers conclude that it is either one of them who has paid, or the organisation
that employs them. They resolve to determine which of the two alternatives is
the case, with the proviso that for the former the identity of the payer should
remain secret.

On Automated Verification of Probabilistic Programs 11

A possible solution goes as follows. A coin is placed between each pair of adja-
cent cryptographers. The cryptographers flip the coins and record the outcomes
for the two coins that they can see, i.e., the ones that are to their immediate left
and right. Each cryptographer then announces whether the two outcomes agree

or disagree, except that the payer (if there is one) says the opposite. When all
cryptographers have spoken, they count the number of disagrees. If that number
is odd, then one of them has paid, and otherwise, their organisation has paid.
Moreover, if the payer is one of the cryptographers, then no other cryptographer
is able to deduce who it is.

There are many formalisations of the concept of anonymity in the literature.
The earliest approaches ignored probabilities and relied instead on nondeter-
minism; anonymity was then equated with ‘confusion’, or more precisely with
notions of equivalence between certain processes [24]. For example, in the case
of the dining cryptographers, every possible behaviour visible to one of the cryp-
tographers (i.e., outcomes of the two adjacent coin flips and subsequent round
of announcements) should be consistent with any of the other cryptographers
having paid, provided the number of disagrees is odd.

A more sophisticated treatment takes probabilities into account. In our exam-
ple, assuming the coins are fair, it can be shown that the a posteriori probability
of having paid, given a particular protocol run, is the same for all cryptographers.
Note that this does not hold if the coins are biased, which highlights one of the
advantages of using probability over nondeterminism. A survey of the literature,
as well as an in-depth treatment using process algebra, can be found in [2].

We show how to model the Dining Cryptographers protocol in our probabilis-
tic programming language, and verify anonymity using apex. Let us consider
the case of three cryptographers, numbered 1, 2, and 3, from the point of view
of the first cryptographer; the open program below enacts the protocol. This
program has a local variable whopaid that can be set to 2 or 3, to model the
appropriate situation. All events meant to be visible to the first cryptographer,
i.e., the outcomes of his two adjacent coins, as well as the announcements of all
cryptographers, are written to the free identifiers cn and ch respectively. (Prob-
abilistic) anonymity with respect to the first cryptographer corresponds to the
assertion that the program in which whopaid has been set to 2 is equivalent to
the program in which whopaid has been set to 3.

void main(var%2 ch, var%2 cn) {

int%4 whopaid; int%2 first; int%2 right; int%2 left; int%4 i;

whopaid:=2; first:=coin; right:=first; i:=1;

while (i) do {

left := if (i=3) then first else coin;

if (i=1) then { cn:=right; cn:=left };

if ((left=right)+(i=whopaid)) then ch:=1 else ch:=0;

right:=left;

i:=i+1

}

}

12 Axel Legay, Andrzej S. Murawski, Joël Ouaknine, and James Worrell

From this code, apex produces the following probabilistic automaton:

	write(0)_cn, 1/4

	write(0)_cn, 1/4

	write(1)_cn, 1/4

	write(1)_cn, 1/4

	write(0)_cn, 1

	write(1)_cn, 1

	write(0)_cn, 1

	write(1)_cn, 1 	write(1)_ch, 1 	write(0)_ch, 1/2

	write(1)_ch, 1/2

(0,1)

	write(1)_ch, 1

	write(0)_ch, 1

	write(0)_ch, 1
	write(1)_ch, 1/2

	write(0)_ch, 1/2

It turns out that setting whopaid to 3 in the above program yields precisely
the same automaton. The two programs are therefore equivalent, which estab-
lishes anonymity of the protocol with three cryptographers.

One can easily investigate larger instances of the protocol, through very mi-
nor modifications of the code. For example, the probabilistic automaton below
corresponds to an instance of the protocol comprising 10 cryptographers. It
is interesting to note that the size of the state space of the automata grows
only linearly with the number of cryptographers, despite the fact that the raw
cryptographers state space is ostensibly exponential (due to the set of possible
outcomes of the coin flips). Note however that this complexity is in our case
reflected in the number of paths of the automata rather than in the number of
their states. In fact, in our experiments (see Figure 1), the state spaces of the
intermediate automata as well as the total running times grew linearly as well.
This unexpected outcome arose partly from apex’s use of bisimulation reduction
throughout the construction, in which most symmetries were factored out.

	write(0)_cn, 1/4

	write(0)_cn, 1/4

	write(1)_cn, 1/4

	write(1)_cn, 1/4

	write(0)_cn, 1

	write(1)_cn, 1

	write(0)_cn, 1

	write(1)_cn, 1 	write(1)_ch, 1 	write(0)_ch, 1/2

	write(1)_ch, 1/2

	write(1)_ch, 1/2

	write(0)_ch, 1/2

	write(0)_ch, 1/2

	write(1)_ch, 1/2

	write(1)_ch, 1/2

	write(0)_ch, 1/2

	write(0)_ch, 1/2

	write(1)_ch, 1/2

	write(1)_ch, 1/2

	write(0)_ch, 1/2

	write(0)_ch, 1/2

	write(1)_ch, 1/2

	write(1)_ch, 1/2

	write(0)_ch, 1/2

	write(0)_ch, 1/2

	write(1)_ch, 1/2

	write(1)_ch, 1/2

	write(0)_ch, 1/2

	write(0)_ch, 1/2

	write(1)_ch, 1/2

	write(1)_ch, 1/2

	write(0)_ch, 1/2

	write(0)_ch, 1/2

	write(1)_ch, 1/2

	write(1)_ch, 1/2

	write(0)_ch, 1/2

	write(0)_ch, 1/2

	write(1)_ch, 1/2

(0,1)

	write(1)_ch, 1

	write(0)_ch, 1

	write(0)_ch, 1
	write(1)_ch, 1/2

	write(0)_ch, 1/2

We can also show that probabilistic anonymity fails when the coins are bi-
ased, as described in [18]. Note that thanks to full abstraction, whenever two
probabilistic programs are not equivalent, their corresponding probabilistic au-
tomata will disagree on the probability of accepting some particular word. This
word, whose length need at most be linear in the sizes of the automata, can be
thought of as a counterexample to the assertion of equivalence of the original
programs, and can potentially be used to ‘debug’ them. In the case at hand,
such a word would illustrate why anonymity fails when the coins are biased,
albeit only in a probabilistic sense. A would-be spymaster could then return to
the programs and attempt to fix the problem.

Although apex does not at present generate counterexamples in instances of
inequivalence, we remark that it would be straightforward and computationally
inexpensive to instrument it to do so.

Related Work. Although the Dining Cryptographers protocol was proposed
almost twenty years ago and has been extensively studied since7, it had until

7 Google Scholar lists over 500 papers dealing with the Dining Cryptographers!

On Automated Verification of Probabilistic Programs 13

recently never been verified8 in a fully automated way. In the last few weeks,
we have become aware of two automated verification instances (other than that
proposed in the present paper): [21] and [20].

As explained earlier, assertions of anonymity are most commonly and natu-
rally expressed as equivalences; in [24], for example, trace equivalence in (non-
probabilistic) CSP is used, whereas [2] is based on bisimulation equivalence for
a probabilistic extension of the π-calculus. Most probabilistic verification en-
gines, however, focus on model checking, i.e., whether a particular probabilistic
system satisfies a given specification, where the latter is usually given in some
(probabilistic) temporal logic such as PCTL.

As regards anonymity, model checking is considerably less convenient than
equivalence checking. In [21], for example, the authors establish anonymity of the
Dining Cryptographers protocol by considering all possible visible behaviours,
and proving for each that the likelihood of its occurrence is the same regardless of
the payer. This leads to exponentially large specifications, and correspondingly
intractable model-checking tasks.9 In practice, a proper verification of the proto-
col can only be carried out for a handful of cryptographers—see the experimental
results reported in Figure 1, running on a Fujitsu-Siemens Lifebook P7120 at
1.2 GHz, with 1 GB RAM, under Windows XP. In particular, PRISM takes
over an hour to handle 10 cryptographers, and runs out of memory for larger
instances. By contrast, we can handle 100 cryptographers in approximately 125
seconds.

The same difficulties beset the framework of [20], which gives an algorithm
for PCTL model checking of the probabilistic π-calculus, along with a PRISM-
based implementation. Again, the combinatorial explosion (of both the model
and the specification) severely limits the sizes of the protocol instances that can
be verified. We believe that the work presented in this section makes a forceful
case for the development of probabilistic equivalence checkers alongside model-
checking tools.

7 Future Work

There are many avenues for further research. We are currently implementing
support for pointers, which would enable more flexible modelling of algorithms
that use dynamic data structures. We would also like to extend apex to handle
programs that feature parameterised random constants, representing undeter-
mined sub-distributions, which can be viewed as a form of nondeterminism. For

8 By verification of the protocol we refer here to the automated handling of instances in
which the number of cryptographers is fixed; the parameterised verification problem,
which deals at once with all possible numbers of cryptographers, is substantially more
difficult to achieve in fully automated fashion.

9 The state space of the underlying Markov chain generated by PRISM also grows
exponentially, but this is mitigated by PRISM’s use of symbolic representations in
the form of MTBDDs.

14 Axel Legay, Andrzej S. Murawski, Joël Ouaknine, and James Worrell

crypt. PRISM apex

3 4 7
4 4 8
5 7 8
6 39 9
7 95 9
8 282 10
9 964 10
10 > 1h 11
15 OOM 13
50 OOM 56
100 OOM 125

Fig. 1. Dining Cryptographers protocol verification times. Timeout was set at one
hour, all other times reported in seconds. OOM indicates ‘out of memory’.

instance, in a version of Herman’s protocol with biased coins, one could verify
termination for all possible biases at once.

To support such an extension, we believe that Tzeng’s algorithm for lan-
guage equivalence of probabilistic automata [25] can be generalised to a ran-
domised polynomial-time algorithm for determining universal equivalence of pa-
rameterised probabilistic automata: ‘Are two automata equivalent for all possible
instantiations of their parameters, subject to a set of linear constraints?’

We also aim to extend the capabilities of apex beyond equivalence checking,
by exploiting the probabilistic automata it generates in different ways. Model
checking and counterexample generation are the most obvious examples, but
refinement checking and performance analysis, among others, would also be very
useful.

A more ambitious line of research would consist in extending the current ap-
proach to handle concurrency, which would facilitate the modelling of distributed
systems and protocols.

Acknowledgements. We would like to thank Marta Kwiatkowska, Gethin
Norman, and Dave Parker for useful discussions and their help with PRISM,
and the London Mathematical Society for financial support.

References

[1] S. Abramsky, R. Jagadeesan, and P. Malacaria. Full abstraction for PCF. Inf.
Comput., 163:409–470, 2000.

[2] M. Bhargava and C. Palamidessi. Probabilistic anonymity. In Proceedings of
CONCUR, volume 3653 of LNCS, 2005.

[3] D. Chaum. The dining cryptographers problem: Unconditional sender and recip-
ient untraceability. J. Cryptology, 1(1):65–75, 1988.

[4] F. Ciesinski and C. Baier. LiQuor: A tool for qualitative and quantitative lin-
ear time analysis of reactive systems. In Proceedings of QEST. IEEE Computer
Society, 2006.

On Automated Verification of Probabilistic Programs 15

[5] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algo-
rithms. MIT Press, second edition, 2001.

[6] V. Danos and R. Harmer. Probabilistic game semantics. ACM Trans. Comput.
Log., 3(3):359–382, 2002.

[7] E. W. Dijkstra. Self-stabilizing systems in spite of distributed control. Commun.
ACM, 17(11):643–644, 1974.

[8] J. Esparza and K. Etessami. Verifying probabilistic procedural programs. In
Proceedings of FSTTCS, volume 3328 of LNCS, 2004.

[9] T. Herman. Probabilistic self-stabilization. Inf. Process. Lett., 35(2):63–67, 1990.
[10] T. N. Hibbard. Some combinatorial properties of certain trees with applications

to searching and sorting. J. ACM, 9(1):13–28, 1962.
[11] A. Hinton, M. Z. Kwiatkowska, G. Norman, and D. Parker. PRISM: A tool for

automatic verification of probabilistic systems. In Proceedings of TACAS, volume
3920 of LNCS, 2006.

[12] J. M. E. Hyland and C.-H. L. Ong. On Full Abstraction for PCF: I. Models, ob-
servables and the full abstraction problem, II. Dialogue games and innocent strate-
gies, III. A fully abstract and universal game model. Inf. Comput., 163(2):285–408,
2000.

[13] A. T. Jonassen and D. E. Knuth. A trivial algorithm whose analysis isn’t. J.
Comput. Syst. Sci., 16(3):301–322, 1978.

[14] G. D. Knott. Deletion in Binary Storage Trees. PhD thesis, Stanford University,
1975. Computer Science Technical Report STAN-CS-75-491.

[15] D. E. Knuth. Sorting and searching. In Volume 3 of The Art of Computer
Programming (first printing). Addison-Wesley, 1973.

[16] D. Kozen. Semantics of probabilistic programs. J. Comput. Syst. Sci., 22(3):328–
350, 1981.

[17] K. Larsen and A. Skou. Compositional verification of probabilistic processes. In
Proceedings of CONCUR, volume 630 of LNCS, 1992.

[18] A. Legay, A. S. Murawski, J. Ouaknine, and J. Worrell. Verification of probabilistic
programs via equivalence checking. In preparation.

[19] A. S. Murawski and J. Ouaknine. On probabilistic program equivalence and
refinement. In Proceedings of CONCUR, volume 3653 of LNCS, 2005.

[20] G. Norman, C. Palamidessi, D. Parker, and P. Wu. Model checking the proba-
bilistic π-calculus. In Proceedings of QEST. IEEE Computer Society, 2007.

[21] PRISM case study: Dining Cryptographers.
www.prismmodelchecker.org/casestudies/dining crypt.php.

[22] M. O. Rabin. Probabilistic automata. Information and Control, 6(3):230–245,
1963.

[23] M. O. Rabin. Probabilistic algorithms. In Proceedings of the Symposium on
Algorithms and Complexity. Academic Press, 1976.

[24] S. Schneider and A. Sidiropoulos. CSP and anonymity. In Proceedings of ES-
ORICS, volume 1146 of LNCS, 1996.

[25] W.-G. Tzeng. A polynomial-time algorithm for the equivalence of probabilistic
automata. SIAM J. Comput., 21(2):216–227, 1992.

